WorldWideScience

Sample records for meniscus cells derived

  1. Intra-Articular Injection of Human Meniscus Stem/Progenitor Cells Promotes Meniscus Regeneration and Ameliorates Osteoarthritis Through Stromal Cell-Derived Factor-1/CXCR4-Mediated Homing

    Science.gov (United States)

    Shen, Weiliang; Chen, Jialin; Zhu, Ting; Chen, Longkun; Zhang, Wei; Fang, Zhi; Heng, Boon Chin; Yin, Zi; Chen, Xiao; Ji, Junfeng

    2014-01-01

    Meniscus injury is frequently encountered in clinical practice. Current surgical therapy involving partial or complete meniscectomy relieves pain in the short-term but often leads to osteoarthritis (OA) in the long-term. In this study, we report a new strategy of articular cartilage protection by intra-articular injection of novel human meniscus stem/progenitor cells (hMeSPCs). We found that hMeSPCs displayed both mesenchymal stem cell characteristics and high expression levels of collagen II. In the rat meniscus injury model, hMeSPC transplantation not only led to more neo-tissue formation and better-defined shape but also resulted in more rounded cells and matured extracellular matrix. Stromal cell-derived factor-1 (SDF-1) enhanced the migration of hMeSPCs, whereas AMD3100 abolished the chemotactic effects of SDF-1 on hMeSPCs, both in vitro and in vivo. In an experimental OA model, transplantation of hMeSPCs effectively protected articular cartilage, as evidenced by reduced expression of OA markers such as collagen I, collagen X, and hypoxia-inducible factor 2α but increased expression of collagen II. Our study demonstrated for the first time that intra-articular injection of hMeSPCs enhanced meniscus regeneration through the SDF-1/CXCR4 axis. Our study highlights a new strategy of intra-articular injection of hMeSPCs for meniscus regeneration. PMID:24448516

  2. Characteristics of meniscus progenitor cells migrated from injured meniscus.

    Science.gov (United States)

    Seol, Dongrim; Zhou, Cheng; Brouillette, Marc J; Song, Ino; Yu, Yin; Choe, Hyeong Hun; Lehman, Abigail D; Jang, Kee W; Fredericks, Douglas C; Laughlin, Barbara J; Martin, James A

    2017-09-01

    Serious meniscus injuries seldom heal and increase the risk for knee osteoarthritis; thus, there is a need to develop new reparative therapies. In that regard, stimulating tissue regeneration by autologous stem/progenitor cells has emerged as a promising new strategy. We showed previously that migratory chondrogenic progenitor cells (CPCs) were recruited to injured cartilage, where they showed a capability in situ tissue repair. Here, we tested the hypothesis that the meniscus contains a similar population of regenerative cells. Explant studies revealed that migrating cells were mainly confined to the red zone in normal menisci: However, these cells were capable of repopulating defects made in the white zone. In vivo, migrating cell numbers increased dramatically in damaged meniscus. Relative to non-migrating meniscus cells, migrating cells were more clonogenic, overexpressed progenitor cell markers, and included a larger side population. Gene expression profiling showed that the migrating population was more similar to CPCs than other meniscus cells. Finally, migrating cells equaled CPCs in chondrogenic potential, indicating a capacity for repair of the cartilaginous white zone of the meniscus. These findings demonstrate that, much as in articular cartilage, injuries to the meniscus mobilize an intrinsic progenitor cell population with strong reparative potential. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1966-1972, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Region-Specific Effect of the Decellularized Meniscus Extracellular Matrix on Mesenchymal Stem Cell-Based Meniscus Tissue Engineering.

    Science.gov (United States)

    Shimomura, Kazunori; Rothrauff, Benjamin B; Tuan, Rocky S

    2017-03-01

    The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). Controlled laboratory study. Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 10 6 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the

  4. Do cell based tissue engineering products for meniscus regeneration influence vascularization?

    Science.gov (United States)

    Koch, Matthias; Ehrenreich, Tobias; Koehl, Gudrun; Pattappa, Girish; Pfeifer, Christian; Loibl, Markus; Müller, Michael; Nerlich, Michael; Angele, Peter; Zellner, Johannes

    2017-01-01

    Meniscus regeneration is observed within the peripheral, vascularized zone but decreases in the inner two thirds alongside the vascularization. Within this avascular area, cell-based tissue-engineering-approaches appear to be a promising strategy for the treatment of meniscal defects. Evaluation of the angiogenic potential of cell-based tissue-engineering-products for meniscus healing. Evaluation of angiogenesis induced by rabbit meniscus-pellets, meniscus-cells (MC) or mesenchymal stem-cells (MSC) in cell-based tissue-engineering-products within a rabbit meniscus-ring was performed using a transparent dorsal skin fold chamber in nude mice. Observations were undertaken during a 14 days period. Cell preconditioning differed between experimental groups. Immunohistochemical analysis of the regenerated tissue in the meniscus-ring induced by cell loaded composite scaffolds for differentiation and anti-angiogenic factors were performed. Meniscus-pellets and MSC-/MC-based tissue-engineering-products induced angiogenesis. An accelerated vascularization was detected in the group of meniscus-pellets derived from the vascularized zone compared to avascular meniscus-pellets. In terms of cell-based tissue-engineering-products, chondrogenic preconditioning resulted in significantly increased vessel growth. MSC-constructs showed an accelerated angiogenesis. Immunohistochemical evaluation showed a progressive differentiation and lower content for anti-angiogenic endostatin in the precultured group. Preconditioning of MC-/MSC-based tissue-engineering-products is a promising tool to influence the angiogenic potential of tissue-engineering-products and to adapt these properties according to the aimed tissue qualities.

  5. Cell-Based Strategies for Meniscus Tissue Engineering

    Science.gov (United States)

    Niu, Wei; Guo, Weimin; Han, Shufeng; Zhu, Yun; Liu, Shuyun; Guo, Quanyi

    2016-01-01

    Meniscus injuries remain a significant challenge due to the poor healing potential of the inner avascular zone. Following a series of studies and clinical trials, tissue engineering is considered a promising prospect for meniscus repair and regeneration. As one of the key factors in tissue engineering, cells are believed to be highly beneficial in generating bionic meniscus structures to replace injured ones in patients. Therefore, cell-based strategies for meniscus tissue engineering play a fundamental role in meniscal regeneration. According to current studies, the main cell-based strategies for meniscus tissue engineering are single cell type strategies; cell coculture strategies also were applied to meniscus tissue engineering. Likewise, on the one side, the zonal recapitulation strategies based on mimicking meniscal differing cells and internal architectures have received wide attentions. On the other side, cell self-assembling strategies without any scaffolds may be a better way to build a bionic meniscus. In this review, we primarily discuss cell seeds for meniscus tissue engineering and their application strategies. We also discuss recent advances and achievements in meniscus repair experiments that further improve our understanding of meniscus tissue engineering. PMID:27274735

  6. Identification and characterization of adult mouse meniscus stem/progenitor cells.

    Science.gov (United States)

    Gamer, Laura W; Shi, Rui Rui; Gendelman, Ashira; Mathewson, Dylan; Gamer, Jackson; Rosen, Vicki

    Meniscal damage is a common problem that accelerates the onset of knee osteoarthritis. Stem cell-based tissue engineering treatment approaches have shown promise in preserving meniscal tissue and restoring meniscal function. The purpose of our study was to identify meniscus-derived stem/progenitor cells (MSPCs) from mouse, a model system that allows for in vivo analysis of the mechanisms underlying meniscal injury and healing. MSPCs were isolated from murine menisci grown in explant culture and characterized for stem cell properties. Flow cytometry was used to detect the presence of surface antigens related to stem cells, and qRT-PCR was used to examine the gene expression profile of MSPCs. Major proteins associated with MSPCs were localized in the adult mouse knee using immunohistochemistry. Our data show that MSPCs have universal stem cell-like properties including clonogenicity and multi-potentiality. MSPCs expressed the mesenchymal stem cell markers CD44, Sca-1, CD90, and CD73 and when cultured had elevated levels of biglycan and collagen type I, important extracellular matrix components of adult meniscus. MSPC also expressed significant levels of Lox and Igf-1, genes associated with the embryonic meniscus. Localization studies showed staining for these same proteins in the superficial and outer zones of the adult mouse meniscus, regions thought to harbor endogenous repair cells. MSPCs represent a novel resident stem cell population in the murine meniscus. Analysis of MSPCs in mice will allow for a greater understanding of the cell biology of the meniscus, essential information for enhancing therapeutic strategies for treating knee joint injury and disease.

  7. Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model

    Science.gov (United States)

    Ozeki, Nobutake; Muneta, Takeshi; Matsuta, Seiya; Koga, Hideyuki; Nakagawa, Yusuke; Mizuno, Mitsuru; Tsuji, Kunikazu; Mabuchi, Yo; Akazawa, Chihiro; Kobayashi, Eiji; Saito, Tomoyuki; Sekiya, Ichiro

    2015-01-01

    Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells 2015;33:1927–1938 PMID:25993981

  8. Tissue-Derived Extracellular Matrix Bioscaffolds: Emerging Applications in Cartilage and Meniscus Repair.

    Science.gov (United States)

    Monibi, Farrah A; Cook, James L

    2017-08-01

    Musculoskeletal injuries are a common problem in orthopedic practice. Given the long-term consequences of unaddressed cartilage and meniscal pathology, a number of treatments have been attempted to stimulate repair or to replace the injured tissue. Despite advances in orthopedic surgery, effective treatments for cartilage and meniscus injuries remain a significant clinical challenge. Tissue engineering is a developing field that aims to regenerate injured tissues with a combination of cells, scaffolds, and signals. Many natural and synthetic scaffold materials have been developed and tested for the repair and restoration of a number of musculoskeletal tissues. Among these, biological scaffolds derived from cell and tissue-derived extracellular matrix (ECM) have shown great promise in tissue engineering given the critical role of the ECM for maintaining the biological and biomechanical properties, structure, and function of native tissues. This review article presents emerging applications for tissue-derived ECM scaffolds in cartilage and meniscus repair. We examine normal ECM composition and the current and future methods for potential treatment of articular cartilage and meniscal defects with decellularized scaffolds.

  9. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells.

    Science.gov (United States)

    Baek, Jihye; Sovani, Sujata; Glembotski, Nicholas E; Du, Jiang; Jin, Sungho; Grogan, Shawn P; D'Lima, Darryl D

    2016-03-01

    The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling "longitudinal tears" were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears.

  10. Biomechanics of Meniscus Cells: Regional Variation and Comparison to Articular Chondrocytes and Ligament Cells

    OpenAIRE

    Sanchez-Adams, Johannah; Athanasiou, Kyriacos A.

    2012-01-01

    Central to understanding mechanotransduction in the knee meniscus is the characterization of meniscus cell mechanics. In addition to biochemical and geometric differences, the inner and outer regions of the meniscus contain cells that are distinct in morphology and phenotype. This study investigated the regional variation in meniscus cell mechanics in comparison to articular chondrocytes and ligament cells. It was found that the meniscus contains two biomechanically distinct cell populations,...

  11. Rapidly dissociated autologous meniscus tissue enhances meniscus healing: An in vitro study.

    Science.gov (United States)

    Numpaisal, Piya-On; Rothrauff, Benjamin B; Gottardi, Riccardo; Chien, Chung-Liang; Tuan, Rocky S

    Treatment of meniscus tears is a persistent challenge in orthopedics. Although cell therapies have shown promise in promoting fibrocartilage formation in in vitro and preclinical studies, clinical application has been limited by the paucity of autologous tissue and the need for ex vivo cell expansion. Rapid dissociation of the free edges of the anterior and posterior meniscus with subsequent implantation in a meniscus lesion may overcome these limitations. The purpose of this study was to explore the effect of rapidly dissociated meniscus tissue in enhancing neotissue formation in a radial meniscus tear, as simulated in an in vitro explant model. All experiments in this study, performed at minimum with biological triplicates, utilized meniscal tissues from hind limbs of young cows. The effect of varying collagenase concentration (0.1%, 0.2% and 0.5% w/v) and treatment duration (overnight and 30 minutes) on meniscus cell viability, organization of the extracellular matrix (ECM), and gene expression was assessed through a cell metabolism assay, microscopic examination, and quantitative real-time reverse transcription polymerase chain reaction analysis, respectively. Thereafter, an explant model of a radial meniscus tear was used to evaluate the effect of a fibrin gel seeded with one of the following: (1) fibrin alone, (2) isolated and passaged (P2) meniscus cells, (3) overnight digested tissue, and (4) rapidly dissociated tissue. The quality of in vitro healing was determined through histological analysis and derivation of an adhesion index. Rapid dissociation in 0.2% collagenase yielded cells with higher levels of metabolism than either 0.1% or 0.5% collagenase. When seeded in a three-dimensional fibrin hydrogel, both overnight digested and rapidly dissociated cells expressed greater levels of collagens type I and II than P2 meniscal cells at 1 week. At 4 and 8 weeks, collagen type II expression remained elevated only in the rapid dissociation group. Histological

  12. ROCK inhibition stimulates SOX9/Smad3-dependent COL2A1 expression in inner meniscus cells.

    Science.gov (United States)

    Furumatsu, Takayuki; Maehara, Ami; Ozaki, Toshifumi

    2016-07-01

    Proper functioning of the meniscus depends on the composition and organization of its fibrocartilaginous extracellular matrix. We previously demonstrated that the avascular inner meniscus has a more chondrocytic phenotype compared with the outer meniscus. Inhibition of the Rho family GTPase ROCK, the major regulator of the actin cytoskeleton, stimulates the chondrogenic transcription factor Sry-type HMG box (SOX) 9-dependent α1(II) collagen (COL2A1) expression in inner meniscus cells. However, the crosstalk between ROCK inhibition, SOX9, and other transcription modulators on COL2A1 upregulation remains unclear in meniscus cells. The aim of this study was to investigate the role of SOX9-related transcriptional complex on COL2A1 expression under the inhibition of ROCK in human meniscus cells. Human inner and outer meniscus cells were prepared from macroscopically intact lateral menisci. Cells were cultured in the presence or absence of ROCK inhibitor (ROCKi, Y27632). Gene expression, collagen synthesis, and nuclear translocation of SOX9 and Smad2/3 were analyzed. Treatment of ROCKi increased the ratio of type I/II collagen double positive cells derived from the inner meniscus. In real-time PCR analyses, expression of SOX9 and COL2A1 genes was stimulated by ROCKi treatment in inner meniscus cells. ROCKi treatment also induced nuclear translocation of SOX9 and phosphorylated Smad2/3 in immunohistological analyses. Complex formation between SOX9 and Smad3 was increased by ROCKi treatment in inner meniscus cells. Chromatin immunoprecipitation analyses revealed that association between SOX9/Smad3 transcriptional complex with the COL2A1 enhancer region was increased by ROCKi treatment. This study demonstrated that ROCK inhibition stimulated SOX9/Smad3-dependent COL2A1 expression through the immediate nuclear translocation of Smad3 in inner meniscus cells. Our results suggest that ROCK inhibition can stimulates type II collagen synthesis through the cooperative activation

  13. Tendon and ligament as novel cell sources for engineering the knee meniscus.

    Science.gov (United States)

    Hadidi, P; Paschos, N K; Huang, B J; Aryaei, A; Hu, J C; Athanasiou, K A

    2016-12-01

    The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Effect of Human Serum and 2 Different Types of Platelet Concentrates on Human Meniscus Cell Migration, Proliferation, and Matrix Formation.

    Science.gov (United States)

    Freymann, Undine; Metzlaff, Sebastian; Krüger, Jan-Philipp; Hirsh, Glen; Endres, Michaela; Petersen, Wolf; Kaps, Christian

    2016-06-01

    To evaluate the effect of 10% human serum (HS), 5% platelet-rich plasma (PRP), and 5% autologous conditioned plasma (ACP) on migration, proliferation, and extracellular matrix (ECM) synthesis of human meniscus cells. Cell migration and proliferation on stimulation with HS, PRP, and ACP were assessed by chemotaxis assays and measurement of genomic DNA content. Meniscus cells were cultivated in pellets stimulated with 10% HS, 5% PRP, or 5% ACP. Meniscal ECM formation was evaluated by histochemical staining of collagen type I, type II, and proteoglycans and by analysis of fibrochondrocyte marker gene expression. Human meniscus cells were significantly attracted by all 3 blood-derived products (10% HS and 5% ACP: P = .0001, 5% PRP: P = .0002). Cell proliferation at day 9 was significantly increased on stimulation with 10% HS (P = .0001) and 5% PRP (P = .0002) compared with 5% ACP and controls. Meniscus cell pellet cultures showed the formation of a well-structured meniscal ECM with deposition of collagen type I, type II, and proteoglycans on stimulation with 10% HS, whereas 5% PRP or 5% ACP resulted in the formation of an inhomogeneous and more fibrous ECM. Stimulation with 10% HS and 5% ACP showed a significant induction of fibrochondrocyte marker genes such as aggrecan (HS: P = .0002, ACP: P = .0147), cartilage oligomeric matrix protein (HS: P = .0002, ACP: P = .0005), and biglycan (HS: P = .0002, ACP: P = .0003), whereas PRP showed no inducing effect. Among all tested blood-derived products, only stimulation with HS showed the formation of a meniscal ECM as well as positive cell proliferating and migrating effects in vitro. Regarding a potential biological repair of nonvascular meniscus lesions, our results may point toward the use of HS as a beneficial augment in regenerative meniscus repair approaches. Our findings may suggest that HS might be a beneficial augment for meniscus repair. Copyright © 2016 Arthroscopy Association of North America. Published

  15. Electrical stimulation enhances cell migration and integrative repair in the meniscus

    Science.gov (United States)

    Yuan, Xiaoning; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been applied towards the repair of articular tissues in the laboratory and clinical settings for over seventy years. We focus on healing of the meniscus, a tissue essential to knee function with limited innate repair potential, which has been largely unexplored in the context of electrical stimulation. Here we demonstrate for the first time that electrical stimulation enhances meniscus cell migration and integrative tissue repair. We optimize pulsatile direct current electrical stimulation parameters on cells at the micro-scale, and apply these to healing of full-thickness defects in explants at the macro-scale. We report increased expression of the adenosine A2b receptor in meniscus cells after stimulation at the micro- and macro-scale, and propose a role for A2bR in meniscus electrotransduction. Taken together, these findings advance our understanding of the effects of electrical signals and their mechanisms of action, and contribute to developing electrotherapeutic strategies for meniscus repair. PMID:24419206

  16. Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells

    Science.gov (United States)

    2012-01-01

    Introduction The main objective of this study was to determine whether meniscus cells from the outer (MCO) and inner (MCI) regions of the meniscus interact similarly to or differently with mesenchymal stromal stem cells (MSCs). Previous study had shown that co-culture of meniscus cells with bone marrow-derived MSCs result in enhanced matrix formation relative to mono-cultures of meniscus cells and MSCs. However, the study did not examine if cells from the different regions of the meniscus interacted similarly to or differently with MSCs. Methods Human menisci were harvested from four patients undergoing total knee replacements. Tissue from the outer and inner regions represented pieces taken from one third and two thirds of the radial distance of the meniscus, respectively. Meniscus cells were released from the menisci after collagenase treatment. Bone marrow MSCs were obtained from the iliac crest of two patients after plastic adherence and in vitro culture until passage 2. Primary meniscus cells from the outer (MCO) or inner (MCI) regions of the meniscus were co-cultured with MSCs in three-dimensional (3D) pellet cultures at 1:3 ratio, respectively, for 3 weeks in the presence of serum-free chondrogenic medium containing TGF-β1. Mono-cultures of MCO, MCI and MSCs served as experimental control groups. The tissue formed after 3 weeks was assessed biochemically, histochemically and by quantitative RT-PCR. Results Co-culture of inner (MCI) or outer (MCO) meniscus cells with MSCs resulted in neo-tissue with increased (up to 2.2-fold) proteoglycan (GAG) matrix content relative to tissues formed from mono-cultures of MSCs, MCI and MCO. Co-cultures of MCI or MCO with MSCs produced the same amount of matrix in the tissue formed. However, the expression level of aggrecan was highest in mono-cultures of MSCs but similar in the other four groups. The DNA content of the tissues from co-cultured cells was not statistically different from tissues formed from mono-cultures of

  17. Anatomical region-dependent enhancement of 3-dimensional chondrogenic differentiation of human mesenchymal stem cells by soluble meniscus extracellular matrix.

    Science.gov (United States)

    Rothrauff, Benjamin B; Shimomura, Kazunori; Gottardi, Riccardo; Alexander, Peter G; Tuan, Rocky S

    2017-02-01

    Extracellular matrix (ECM) derived from decellularized tissues has been found to promote tissue neogenesis, most likely mediated by specific biochemical and physical signaling motifs that promote tissue-specific differentiation of progenitor cells. Decellularized ECM has been suggested to be efficacious for the repair of tissue injuries. However, decellularized meniscus contains a dense collagenous structure, which impedes cell seeding and infiltration and is not readily applicable for meniscus repair. In addition, the meniscus consists of two distinct anatomical regions that differ in vascularity and cellular phenotype. The purpose of this study was to explore the region-specific bioactivity of solubilized ECM derived from the inner and outer meniscal regions as determined in 2D and 3D cultures of adult mesenchymal stem cells (MSCs). When added as a medium supplement to 2D cultures of MSCs, urea-extracted fractions of the inner (imECM) and outer meniscal ECM (omECM) enhanced cell proliferation while imECM most strongly upregulated fibrochondrogenic differentiation on the basis of gene expression profiles. When added to 3D cultures of MSCs seeded in photocrosslinked methacrylated gelatin (GelMA) hydrogels, both ECM fractions upregulated chondrogenic differentiation as determined by gene expression and protein analyses, as well as elevated sulfated glycosaminoglycan sGAG content, compared to ECM-free controls. The chondrogenic effect at day 21 was most pronounced with imECM supplementation, but equivalent between ECM groups by day 42. Despite increased cartilage matrix, imECM and omECM constructs possessed compressive moduli similar to controls. In conclusion, soluble meniscal ECM may be considered for use as a tissue-specific reagent to enhance chondrogenesis for MSC-based 3D cartilage tissue engineering. The inner region of the knee meniscus is frequently injured and possesses a poor intrinsic healing capacity. Solubilized extracellular matrix (ECM) derived from

  18. Human Migratory Meniscus Progenitor Cells Are Controlled via the TGF-β Pathway

    Science.gov (United States)

    Muhammad, Hayat; Schminke, Boris; Bode, Christa; Roth, Moritz; Albert, Julius; von der Heyde, Silvia; Rosen, Vicki; Miosge, Nicolai

    2014-01-01

    Summary Degeneration of the knee joint during osteoarthritis often begins with meniscal lesions. Meniscectomy, previously performed extensively after meniscal injury, is now obsolete because of the inevitable osteoarthritis that occurs following this procedure. Clinically, meniscus self-renewal is well documented as long as the outer, vascularized meniscal ring remains intact. In contrast, regeneration of the inner, avascular meniscus does not occur. Here, we show that cartilage tissue harvested from the avascular inner human meniscus during the late stages of osteoarthritis harbors a unique progenitor cell population. These meniscus progenitor cells (MPCs) are clonogenic and multipotent and exhibit migratory activity. We also determined that MPCs are likely to be controlled by canonical transforming growth factor β (TGF-β) signaling that leads to an increase in SOX9 and a decrease in RUNX2, thereby enhancing the chondrogenic potential of MPC. Therefore, our work is relevant for the development of novel cell biological, regenerative therapies for meniscus repair. PMID:25418724

  19. Mechanobiology of the Meniscus

    Science.gov (United States)

    McNulty, Amy L.; Guilak, Farshid

    2015-01-01

    The meniscus plays a critical biomechanical role in the knee, providing load support, joint stability, and congruity. Importantly, growing evidence indicates that the mechanobiologic response of meniscal cells plays a critical role in the physiologic, pathologic, and repair responses of the meniscus. Here we review experimental and theoretical studies that have begun to directly measure the biomechanical effects of joint loading on the meniscus under physiologic and pathologic conditions, showing that the menisci are exposed to high contact stresses, resulting in a complex and nonuniform stress-strain environment within the tissue. By combining microscale measurements of the mechanical properties of meniscal cells and their pericellular and extracellular matrix regions, theoretical and experimental models indicate that the cells in the meniscus are exposed to a complex and inhomogeneous environment of stress, strain, fluid pressure, fluid flow, and a variety of physicochemical factors. Studies across a range of culture systems from isolated cells to tissues have revealed that the biological response of meniscal cells is directly influenced by physical factors, such as tension, compression, and hydrostatic pressure. In addition, these studies have provided new insights into the mechanotransduction mechanisms by which physical signals are converted into metabolic or pro/anti-inflammatory responses. Taken together, these in vivo and in vitro studies show that mechanical factors play an important role in the health, degeneration, and regeneration of the meniscus. A more thorough understanding of the mechanobiologic responses of the meniscus will hopefully lead to therapeutic approaches to prevent degeneration and enhance repair of the meniscus. PMID:25731738

  20. Free fatty acid palmitate activates unfolded protein response pathway and promotes apoptosis in meniscus cells.

    Science.gov (United States)

    Haywood, J; Yammani, R R

    2016-05-01

    Obesity is the major risk factor for the development of osteoarthritis (OA); however, the mechanisms involved are not clearly understood. Obesity is associated with increased production of adipokine and elevated levels of circulating free fatty acids (FFA). A recent study has shown that saturated fatty acid palmitate induced pro-inflammatory and pro-apoptotic pathways in chondrocytes. Meniscus has been shown to be more susceptible than articular cartilage to catabolic stimuli. Thus, the aim of this study was to determine the effect of FFA (specifically, palmitate) on meniscus cells. Cultured primary porcine meniscus cells were stimulated with 500 μM FFA (palmitate and oleate) for 24 h to induce endoplasmic reticulum (ER) stress. After treatment, cell lysates were prepared and immunoblotted for C/EBP homologous protein (CHOP). To determine the activation of unfolded protein response (UPR) signaling, cell lysates were probed for cJun n-terminal kinase (JNK), cleaved caspase -3 and Xbp-1s, an alternative mRNA splicing product generated due to Ire1α activation. Treatment of isolated primary meniscus cells with palmitate but not oleate induced expression of CHOP and Xbp-1s. Palmitate treatment of meniscus cells also activated JNK and increased expression of caspase-3, thus promoting apoptosis in meniscus cells. Palmitate induces ER stress and promotes apoptotic pathways in meniscus cells. This is the first study to establish ER stress as a key metabolic mechanistic link between obesity and OA, in addition to (or operating with) biomechanical factors. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering.

    Science.gov (United States)

    Kremer, Antje; Ribitsch, Iris; Reboredo, Jenny; Dürr, Julia; Egerbacher, Monika; Jenner, Florien; Walles, Heike

    2017-05-01

    Meniscal injuries are the most frequently encountered soft tissue injuries in the equine stifle joint. Due to the inherent limited repair potential of meniscal tissue, meniscal injuries do not only affect the meniscus itself but also lead to impaired joint homeostasis and secondary osteoarthritis. The presented study compares 3D coculture constructs of primary equine mesenchymal stem cells (MSC) and meniscus cells (MC) seeded on three different scaffolds-a cell-laden collagen type I hydrogel (Col I gel), a tissue-derived small intestinal matrix scaffold (SIS-muc) and a combination thereof-for their qualification to be applied for meniscus tissue engineering. To investigate cell attachment of primary MC and MSC on SIS-muc matrix SEM pictures were performed. For molecular analysis, lyophilized samples of coculture constructs with different cell ratios (100% MC, 100% MSC, and 50% MC and 50% MSC, 20% MC, and 80% MSC) were digested and analyzed for DNA and GAG content. Active matrix remodeling of 3D coculture models was indicated by matrix metalloproteinases detection. For comparison of tissue-engineered constructs with the histologic architecture of natural equine menisci, paired lateral and medial menisci of 15 horses representing different age groups were examined. A meniscus phenotype with promising similarity to native meniscus tissue in its GAG/DNA expression in addition to Col I, Col II, and Aggrecan production was achieved using a scaffold composed of Col I gel on SIS-muc combined with a coculture of MC and MSC. The results encourage further development of this scaffold-cell combination for meniscus tissue engineering.

  2. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?

    Science.gov (United States)

    Korpershoek, Jasmijn V.; de Windt, Tommy S.; Hagmeijer, Michella H.; Vonk, Lucienne A.; Saris, Daniel B. F.

    2017-01-01

    Background: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult. Purpose: To systematically evaluate the literature on in vivo meniscus regeneration and explore the optimal cell sources and conditions for clinical translation. We aimed at thorough evaluation of current evidence as well as clarifying the challenges for future preclinical and clinical studies. Study Design: Systematic review. Methods: A search was conducted using the electronic databases of MEDLINE, Embase, and the Cochrane Collaboration. Search terms included meniscus, regeneration, and cell-based. Results: After screening 81 articles based on title and abstract, 51 articles on in vivo meniscus regeneration could be included; 2 additional articles were identified from the references. Repair and regeneration of the meniscus has been described by intra-articular injection of multipotent mesenchymal stromal (stem) cells from adipose tissue, bone marrow, synovium, or meniscus or the use of these cell types in combination with implantable or injectable scaffolds. The use of fibrochondrocytes, chondrocytes, and transfected myoblasts for meniscus repair and regeneration is limited to the combination with different scaffolds. The comparative in vitro and in vivo studies mentioned in this review indicate that the use of allogeneic cells is as successful as the use of autologous cells. In addition, the implantation or injection of cell-seeded scaffolds increased tissue regeneration and led to better structural organization compared with scaffold

  3. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep

    Science.gov (United States)

    Lee, Chang H.; Rodeo, Scott A.; Fortier, Lisa Ann; Lu, Chuanyong; Erisken, Cevat

    2015-01-01

    Regeneration of complex tissues, such as kidney, liver, and cartilage, continues to be a scientific and translational challenge. Survival of ex vivo cultured, transplanted cells in tissue grafts is among one of the key barriers. Meniscus is a complex tissue consisting of collagen fibers and proteoglycans with gradient phenotypes of fibrocartilage and functions to provide congruence of the knee joint, without which the patient is likely to develop arthritis. Endogenous stem/progenitor cells regenerated the knee meniscus upon spatially released human connective tissue growth factor (CTGF) and transforming growth factor–β3 (TGFβ3) from a three-dimensional (3D)–printed biomaterial, enabling functional knee recovery. Sequentially applied CTGF and TGFβ3 were necessary and sufficient to propel mesenchymal stem/progenitor cells, as a heterogeneous population or as single-cell progenies, into fibrochondrocytes that concurrently synthesized procollagens I and IIα. When released from microchannels of 3D–printed, human meniscus scaffolds, CTGF and TGFβ3 induced endogenous stem/progenitor cells to differentiate and synthesize zone-specific type I and II collagens. We then replaced sheep meniscus with anatomically correct, 3D–printed scaffolds that incorporated spatially delivered CTGF and TGFβ3. Endogenous cells regenerated the meniscus with zone-specific matrix phenotypes: primarily type I collagen in the outer zone, and type II collagen in the inner zone, reminiscent of the native meniscus. Spatiotemporally delivered CTGF and TGFβ3 also restored inhomogeneous mechanical properties in the regenerated sheep meniscus. Survival and directed differentiation of endogenous cells in a tissue defect may have implications in the regeneration of complex (heterogeneous) tissues and organs. PMID:25504882

  4. Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue

    International Nuclear Information System (INIS)

    Sarem, Melika; Moztarzadeh, Fathollah; Mozafari, Masoud; Shastri, V. Prasad

    2013-01-01

    Meniscus lesions are frequently occurring injuries with poor ability to heal. Typical treatment procedure includes removal of damaged regions, which can lead to sub-optimal knee biomechanics and early onset of osteoarthritis. Some of the drawbacks of current treatment approach present an opportunity for a tissue engineering solution. In this study, gelatin (G)/chitosan (Cs) scaffolds were synthesized via gel casting method and cross-linked with naturally derived cross-linker, genipin, through scaffold cross-linking method. Based on the characteristics of native meniscus tissue microstructure and function, three different layers were chosen to design the macroporous multilayered scaffolds. The multi-layered scaffolds were investigated for their ability to support human-derived meniscus cells by evaluating their morphology and proliferation using MTT assay at various time points. Based on structural, mechanical and cell compatibility considerations, laminated scaffolds composed of G60/Cs40, G80/Cs20 and G40/Cs60 samples, for the first, second and third layers, respectively, could be an appropriate combination for meniscus tissue engineering applications. - Graphical abstract: The wedge shaped multilayer/multiporous G/Cs meniscus scaffolds were mimicked by MR images of anatomical knee meniscus. The layers were chosen as G60/Cs40, G80/Cs20 and G40/Cs60, according to their characteristics similar to meniscus natural tissue, as the first, second and third layers, respectively. - Highlights: • Different gelatin/chitosan systems were chosen to engineer a multilayered scaffold. • The compressive modulus increased gradually by increasing the gelatin concentration. • Further addition of gelatin showed a meaningful decrease in the water uptake degree. • The layers supported cell growth and mimicked the meniscus fibrocartilage structure

  5. Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue

    Energy Technology Data Exchange (ETDEWEB)

    Sarem, Melika [Sports Engineering Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Institute for Macromolecular Chemistry, University of Freiburg, Hermann Staudinger Haus, Freiburg D-79104 (Germany); Helmholtz Virtual Institute: Multifunctional Biomaterials for Medicine, Freiburg (Germany); Moztarzadeh, Fathollah [Sports Engineering Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Mozafari, Masoud, E-mail: mozafari.masoud@gmail.com [Sports Engineering Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Helmerich Advanced Technology Research Center, School of Material Science and Engineering, Oklahoma State University, OK 74106 (United States); Shastri, V. Prasad [Institute for Macromolecular Chemistry, University of Freiburg, Hermann Staudinger Haus, Freiburg D-79104 (Germany); Helmholtz Virtual Institute: Multifunctional Biomaterials for Medicine, Freiburg (Germany)

    2013-12-01

    Meniscus lesions are frequently occurring injuries with poor ability to heal. Typical treatment procedure includes removal of damaged regions, which can lead to sub-optimal knee biomechanics and early onset of osteoarthritis. Some of the drawbacks of current treatment approach present an opportunity for a tissue engineering solution. In this study, gelatin (G)/chitosan (Cs) scaffolds were synthesized via gel casting method and cross-linked with naturally derived cross-linker, genipin, through scaffold cross-linking method. Based on the characteristics of native meniscus tissue microstructure and function, three different layers were chosen to design the macroporous multilayered scaffolds. The multi-layered scaffolds were investigated for their ability to support human-derived meniscus cells by evaluating their morphology and proliferation using MTT assay at various time points. Based on structural, mechanical and cell compatibility considerations, laminated scaffolds composed of G60/Cs40, G80/Cs20 and G40/Cs60 samples, for the first, second and third layers, respectively, could be an appropriate combination for meniscus tissue engineering applications. - Graphical abstract: The wedge shaped multilayer/multiporous G/Cs meniscus scaffolds were mimicked by MR images of anatomical knee meniscus. The layers were chosen as G60/Cs40, G80/Cs20 and G40/Cs60, according to their characteristics similar to meniscus natural tissue, as the first, second and third layers, respectively. - Highlights: • Different gelatin/chitosan systems were chosen to engineer a multilayered scaffold. • The compressive modulus increased gradually by increasing the gelatin concentration. • Further addition of gelatin showed a meaningful decrease in the water uptake degree. • The layers supported cell growth and mimicked the meniscus fibrocartilage structure.

  6. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates.

    Science.gov (United States)

    Kondo, Shimpei; Muneta, Takeshi; Nakagawa, Yusuke; Koga, Hideyuki; Watanabe, Toshifumi; Tsuji, Kunikazu; Sotome, Shinichi; Okawa, Atsushi; Kiuchi, Shinji; Ono, Hideo; Mizuno, Mitsuru; Sekiya, Ichiro

    2017-06-01

    Transplantation of aggregates of synovial mesenchymal stem cells (MSCs) enhanced meniscus regeneration in rats. Anatomy and biological properties of the meniscus depend on animal species. To apply this technique clinically, it is valuable to investigate the use of animals genetically close to humans. We investigated whether transplantation of aggregates of autologous synovial MSCs promoted meniscal regeneration in aged primates. Chynomolgus primates between 12 and 13 years old were used. After the anterior halves of the medial menisci in both knees were removed, an average of 14 aggregates consisting of 250,000 synovial MSCs were transplanted onto the meniscus defect. No aggregates were transplanted to the opposite knee for the control. Meniscus and articular cartilage were analyzed macroscopically, histologically, and by MRI T1rho mapping at 8 (n = 3) and 16 weeks (n = 4). The medial meniscus was larger and the modified Pauli's histological score for the regenerated meniscus was better in the MSC group than in the control group in each primate at 8 and 16 weeks. Mankin's score for the medial femoral condyle cartilage was better in the MSC group than in the control group in all primates at 16 weeks. T1rho value for both the regenerated meniscus and adjacent articular cartilage in the MSC group was closer to the normal meniscus than in the control group in all primates at 16 weeks. Transplantation of aggregates of autologous synovial MSCs promoted meniscus regeneration and delayed progression of degeneration of articular cartilage in aged primates. This is the first report dealing with meniscus regeneration in primates. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1274-1282, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Building an Anisotropic Meniscus with Zonal Variations

    Science.gov (United States)

    Higashioka, Michael M.; Chen, Justin A.; Hu, Jerry C.

    2014-01-01

    Toward addressing the difficult problems of knee meniscus regeneration, a self-assembling process has been used to re-create the native morphology and matrix properties. A significant problem in such attempts is the recapitulation of the distinct zones of the meniscus, the inner, more cartilaginous and the outer, more fibrocartilaginous zones. In this study, an anisotropic and zonally variant meniscus was produced by self-assembly of the inner meniscus (100% chondrocytes) followed by cell seeding the outer meniscus (coculture of chondrocytes and meniscus cells). After 4 weeks in culture, the engineered, inner meniscus exhibited a 42% increase in both instantaneous and relaxation moduli and a 62% increase in GAG/DW, as compared to the outer meniscus. In contrast, the circumferential tensile modulus and collagen/DW of the outer zone was 101% and 129% higher, respectively, than the values measured for the inner zone. Furthermore, there was no difference in the radial tensile modulus between the control and zonal engineered menisci, suggesting that the inner and outer zones of the engineered zonal menisci successfully integrated. These data demonstrate that not only can biomechanical and biochemical properties be engineered to differ by the zone, but they can also recapitulate the anisotropic behavior of the knee meniscus. PMID:23931258

  8. Pro-inflammatory stimulation of meniscus cells increases production of matrix metalloproteinases and additional catabolic factors involved in osteoarthritis pathogenesis

    Science.gov (United States)

    Stone, Austin V.; Loeser, Richard F.; Vanderman, Kadie S.; Long, David L.; Clark, Stephanie C.; Ferguson, Cristin M.

    2014-01-01

    Objective Meniscus injury increases the risk of osteoarthritis; however, the biologic mechanism remains unknown. We hypothesized that pro-inflammatory stimulation of meniscus would increase production of matrix-degrading enzymes, cytokines and chemokines which cause joint tissue destruction and could contribute to osteoarthritis development. Design Meniscus and cartilage tissue from healthy tissue donors and total knee arthroplasties was cultured. Primary cell cultures were stimulated with pro-inflammatory factors [IL-1β, IL-6, or fibronectin fragments (FnF)] and cellular responses were analyzed by real-time PCR, protein arrays and immunoblots. To determine if NF-κB was required for MMP production, meniscus cultures were treated with inflammatory factors with and without the NF-κB inhibitor, hypoestoxide. Results Normal and osteoarthritic meniscus cells increased their MMP secretion in response to stimulation, but specific patterns emerged that were unique to each stimulus with the greatest number of MMPs expressed in response to FnF. Meniscus collagen and connective tissue growth factor gene expression was reduced. Expression of cytokines (IL-1α, IL-1β, IL-6), chemokines (IL-8, CXCL1, CXCL2, CSF1) and components of the NF-κB and tumor necrosis factor (TNF) family were significantly increased. Cytokine and chemokine protein production was also increased by stimulation. When primary cell cultures were treated with hypoestoxide in conjunction with pro-inflammatory stimulation, p65 activation was reduced as were MMP-1 and MMP-3 production. Conclusions Pro-inflammatory stimulation of meniscus cells increased matrix metalloproteinase production and catabolic gene expression. The meniscus could have an active biologic role in osteoarthritis development following joint injury through increased production of cytokines, chemokines, and matrix-degrading enzymes. PMID:24315792

  9. Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus.

    Science.gov (United States)

    Abdelgaied, A; Stanley, M; Galfe, M; Berry, H; Ingham, E; Fisher, J

    2015-06-01

    Meniscal repair is widely used as a treatment for meniscus injury. However, where meniscal damage has progressed such that repair is not possible, approaches for partial meniscus replacement are now being developed which have the potential to restore the functional role of the meniscus, in stabilising the knee joint, absorbing and distributing stress during loading, and prevent early degenerative joint disease. One attractive potential solution to the current lack of meniscal replacements is the use of decellularised natural biological scaffolds, derived from xenogeneic tissues, which are produced by treating the native tissue to remove the immunogenic cells. The current study investigated the effect of decellularisation on the biomechanical tensile and compressive (indentation and unconfined) properties of the porcine medial meniscus through an experimental-computational approach. The results showed that decellularised medial porcine meniscus maintained the tensile biomechanical properties of the native meniscus, but had lower tensile initial elastic modulus. In compression, decellularised medial porcine meniscus generally showed lower elastic modulus and higher permeability compared to that of the native meniscus. These changes in the biomechanical properties, which ranged from less than 1% to 40%, may be due to the reduction of glycosaminoglycans (GAG) content during the decellularisation process. The predicted biomechanical properties for the decellularised medial porcine meniscus were within the reported range for the human meniscus, making it an appropriate biological scaffold for consideration as a partial meniscus replacement. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Role of scaffold mean pore size in meniscus regeneration.

    Science.gov (United States)

    Zhang, Zheng-Zheng; Jiang, Dong; Ding, Jian-Xun; Wang, Shao-Jie; Zhang, Lei; Zhang, Ji-Ying; Qi, Yan-Song; Chen, Xue-Si; Yu, Jia-Kuo

    2016-10-01

    Recently, meniscus tissue engineering offers a promising management for meniscus regeneration. Although rarely reported, the microarchitectures of scaffolds can deeply influence the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation in meniscus tissue engineering. Herein, a series of three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds with three distinct mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The scaffold with the mean pore size of 215μm significantly improved both the proliferation and extracellular matrix (ECM) production/deposition of mesenchymal stem cells compared to all other groups in vitro. Moreover, scaffolds with mean pore size of 215μm exhibited the greatest tensile and compressive moduli in all the acellular and cellular studies. In addition, the relatively better results of fibrocartilaginous tissue formation and chondroprotection were observed in the 215μm scaffold group after substituting the rabbit medial meniscectomy for 12weeks. Overall, the mean pore size of 3D-printed PCL scaffold could affect cell behavior, ECM production, biomechanics, and repair effect significantly. The PCL scaffold with mean pore size of 215μm presented superior results both in vitro and in vivo, which could be an alternative for meniscus tissue engineering. Meniscus tissue engineering provides a promising strategy for meniscus regeneration. In this regard, the microarchitectures (e.g., mean pore size) of scaffolds remarkably impact the behaviors of cells and subsequent tissue formation, which has been rarely reported. Herein, three three-dimensional poly(ε-caprolactone) scaffolds with different mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The results suggested that the mean pore size significantly affected the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation. This study furthers

  11. Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration

    Science.gov (United States)

    Chen, Mingxue; Guo, Weimin; Gao, Shunag; Hao, Chunxiang; Shen, Shi; Zhang, Zengzeng; Wang, Zhenyong; Wang, Zehao; Li, Xu; Jing, Xiaoguang; Zhang, Xueliang; Yuan, Zhiguo; Wang, Mingjie; Zhang, Yu; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang

    2018-01-01

    Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation. PMID:29581987

  12. A physical model of the evaporating meniscus

    International Nuclear Information System (INIS)

    Mirzamoghadam, A.; Catton, I.

    1985-01-01

    Transport phenomena associated with the heating of a saturated stationary fluid near saturation by an inclined, partially submerged copper plate was studied analytically. Under steady state evaporation, the meniscus profile was derived using an appropriate liquid film velocity and temperature distribution in an integral approach. The solution was then back-substituted in order to identify regions of influence of various physical phenomena given the fluid properties, wall superheat and plate tilt. The degree of superheat and wall tilt were seen to control instability in the meniscus. This instability, connected to the experimental observation of meniscus oscillation, was credited to contributions by liquid inertia and Marangoni convection

  13. Hydrogels for precision meniscus tissue engineering: a comprehensive review.

    Science.gov (United States)

    Rey-Rico, Ana; Cucchiarini, Magali; Madry, Henning

    The meniscus plays a pivotal role to preserve the knee joint homeostasis. Lesions to the meniscus are frequent, have a reduced ability to heal, and may induce tibiofemoral osteoarthritis. Current reconstructive therapeutic options mainly focus on the treatment of lesions in the peripheral vascularized region. In contrast, few approaches are capable of stimulating repair of damaged meniscal tissue in the central, avascular portion. Tissue engineering approaches are of high interest to repair or replace damaged meniscus tissue in this area. Hydrogel-based biomaterials are of special interest for meniscus repair as its inner part contains relatively high proportions of proteoglycans which are responsible for the viscoelastic compressive properties and hydration grade. Hydrogels exhibiting high water content and providing a specific three-dimensional (3D) microenvironment may be engineered to precisely resemble this topographical composition of the meniscal tissue. Different polymers of both natural and synthetic origins have been manipulated to produce hydrogels hosting relevant cell populations for meniscus regeneration and provide platforms for meniscus tissue replacement. So far, these compounds have been employed to design controlled delivery systems of bioactive molecules involved in meniscal reparative processes or to host genetically modified cells as a means to enhance meniscus repair. This review describes the most recent advances on the use of hydrogels as platforms for precision meniscus tissue engineering.

  14. Saturated fatty acid palmitate negatively regulates autophagy by promoting ATG5 protein degradation in meniscus cells.

    Science.gov (United States)

    Mallik, Aritra; Yammani, Raghunatha R

    2018-07-20

    Obesity and associated metabolic factors are major risk factors for the development of osteoarthritis. Previously, we have shown that the free fatty acid palmitate induces endoplasmic reticulum (ER) stress and induces apoptosis in meniscus cells. However, the molecular mechanisms involved in these effects are not clearly understood. In our current study, we found that palmitate inhibits autophagy by modulating the protein levels of autophagy-related genes-5 (ATG5) that is associated with decreased lipidation of LC3 and increased activation of cleaved caspase 3. Pretreatment of meniscus cells with 4-phenyl butyric acid, a small molecule chemical chaperone that alleviates ER stress, or with MG-132, a proteasome inhibitor, restored normal levels of ATG5 and autophagosome formation, and decreased expression of cleaved caspase 3. Thus, our data suggest that palmitate downregulates autophagy in meniscus cells by degrading ATG5 protein via ER-associated protein degradation, and thus promotes apoptosis. This is the first study to demonstrate that palmitate-induced endoplasmic reticulum stress negatively regulates autophagy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Meniscus tear surgery and meniscus replacement

    Science.gov (United States)

    Vaquero, Javier; Forriol, Francisco

    2016-01-01

    Summary Objective the menisci are easily injured and difficult to repair. The aim of this study was to analyze the current state of meniscal surgery aimed at preserving morphology and conserving the biomechanics of the knee to prevent joint degeneration. Methodology a search of the electronic medical literature database Medline was conducted, from http://www.ncbi.nlm.nih.gov/pubmed. The search was not limited by language. Candidate articles were identified by searching for those that included the keywords meniscus, surgery, suture, implant, allograft. The limits were included for clinical research and clinical trials. Basic research was not included. The studies selected were evaluated and classified in three different categories: basic science, reconstruction (suture and meniscectomy) and implants (scaffolds and allograft). Results the consequences of meniscectomy performed at a young age can lead to a joint cartilage degeneration twenty years later. There are few surgical options for the repair of meniscal injuries in order both to preserve the meniscus and to ensure the long term survival of the knee joint, meniscectomy, repair, suturing the tear, or reconstruction, when a meniscal allograft or synthetic substitute is used to replace the meniscus, but the biomechanical properties of the native meniscus are not reproduced entirely by the scaffolds that exist today. Conclusion therapies that successfully repair or replace the meniscus are therefore likely to prevent or delay osteoarthritis progression. PMID:27331034

  16. An Analysis of Pathological Activities of CCN Proteins in Joint Disorders: Mechanical Stretch-Mediated CCN2 Expression in Cultured Meniscus Cells.

    Science.gov (United States)

    Furumatsu, Takayuki; Ozaki, Toshifumi

    2017-01-01

    The multifunctional growth factor CYR61/CTGF/NOV (CCN) 2, also known as connective tissue growth factor, regulates cellular proliferation, differentiation, and tissue regeneration. Recent literatures have described important roles of CCN2 in the meniscus metabolism. However, the mechanical stress-mediated transcriptional regulation of CCN2 in the meniscus remains unclear. The meniscus is a fibrocartilaginous tissue that controls complex biomechanics of the knee joint. Therefore, the injured unstable meniscus has a poor healing potential especially in the avascular inner region. In addition, dysfunction of the meniscus correlates with the progression of degenerative knee joint disorders and joint space narrowing. Here, we describe an experimental approach that investigates the distinct cellular behavior of inner and outer meniscus cells in response to mechanical stretch. Our experimental model can analyze the relationships between stretch-induced CCN2 expression and its functional role in the meniscus homeostasis.

  17. Ipsilateral Medial and Lateral Discoid Meniscus with Medial Meniscus Tear

    OpenAIRE

    Shimozaki, Kengo; Nakase, Junsuke; Ohashi, Yoshinori; Numata, Hitoaki; Oshima, Takeshi; Takata, Yasushi; Tsuchiya, Hiroyuki

    2016-01-01

    Introduction: Discoid meniscus is a well-documented knee pathology, and there are many cases of medial or lateral discoid meniscus reported in the literature. However, ipsilateral concurrent medial and lateral discoid meniscus is very rare, and only a few cases have been reported. Herein, we report a case of concurrent medial and lateral discoid meniscus. Case Report: A 27-year-old Japanese man complained of pain on medial joint space in his right knee that was diagnosed as a complete medial ...

  18. Silicon Sheet Quality is Improved By Meniscus Control

    Science.gov (United States)

    Yates, D. A.; Hatch, A. E.; Goldsmith, J. M.

    1983-01-01

    Better quality silicon crystals for solar cells are possible with instrument that monitors position of meniscus as sheet of solid silicon is drawn from melt. Using information on meniscus height, instrument generates feedback signal to control melt temperature. Automatic control ensures more uniform silicon sheets.

  19. Meniscus repair and regeneration: review on current methods and research potential

    Directory of Open Access Journals (Sweden)

    C Scotti

    2013-01-01

    Full Text Available Meniscus regeneration is an unsolved clinical challenge. Despite the wide acceptance of the degenerative consequences of meniscectomy, no surgical procedure has succeeded to date in regenerating a functional and long-lasting meniscal fibrocartilage. Research proposed a number of experimental approaches encompassing all the typical strategies of regenerative medicine: cell-free scaffolds, gene therapy, intra-articular delivery of progenitor cells, biological glues for enhanced bonding of reparable tears, partial and total tissue engineered meniscus replacement. None of these approaches has been completely successful and can be considered suitable for all patients, as meniscal tears require specific and patient-related treatments depending on the size and type of lesion. Recent advances in cell biology, biomaterial science and bioengineering (e.g., bioreactors have now the potential to drive meniscus regeneration into a series of clinically relevant strategies. In this tutorial paper, the clinical need for meniscus regeneration strategies will be explained, and past and current experimental studies on meniscus regeneration will be reported.

  20. The meniscus ganglion

    International Nuclear Information System (INIS)

    Schaefer, H.

    1982-01-01

    Normal dimensions of the meniscus quoted in the literature vary somewhat; measurements were therefore carried out on the height and width on standardised arthrograms. This made it possible to evaluate changes in the height of the meniscus objectively and to diagnose degeneration with a ganglion at an earlier stage. Taking into account other, secondary, signs, 261 meniscus ganglia were diagnosed amongst 3133 meniscus lesions (8.3%) in the course of 5650 knee arthrograms. These were confirmed at operation and histologically. For the first time it has been possible to provide an estimate of the frequency of meniscus ganglion in the radiological literature. (orig.) [de

  1. Societal and Economic Effect of Meniscus Scaffold Procedures for Irreparable Meniscus Injuries.

    Science.gov (United States)

    Rongen, Jan J; Govers, Tim M; Buma, Pieter; Grutters, Janneke P C; Hannink, Gerjon

    2016-07-01

    Meniscus scaffolds are currently evaluated clinically for their efficacy in preventing the development of osteoarthritis as well as for their efficacy in treating patients with chronic symptoms. Procedural costs, therapeutic consequences, clinical efficacy, and future events should all be considered to maximize the monetary value of this intervention. To examine the socioeconomic effect of treating patients with irreparable medial meniscus injuries with a meniscus scaffold. Economic and decision analysis; Level of evidence, 2. Two Markov simulation models for patients with an irreparable medial meniscus injury were developed. Model 1 was used to investigate the lifetime cost-effectiveness of a meniscus scaffold compared with standard partial meniscectomy by the possibility of preventing the development of osteoarthritis. Model 2 was used to investigate the short-term (5-year) cost-effectiveness of a meniscus scaffold compared with standard partial meniscectomy by alleviating clinical symptoms, specifically in chronic patients with previous meniscus surgery. For both models, probabilistic Monte Carlo simulations were applied. Treatment effectiveness was expressed as quality-adjusted life-years (QALYs), while costs (estimated in euros) were assessed from a societal perspective. We assumed €20,000 as a reference value for the willingness to pay per QALY. Next, comprehensive sensitivity analyses were performed to identify the most influential variables on the cost-effectiveness of meniscus scaffolds. Model 1 demonstrated an incremental cost-effectiveness ratio of a meniscus scaffold treatment of €54,463 per QALY (€5991/0.112). A threshold analysis demonstrated that a meniscus scaffold should offer a relative risk reduction of at least 0.34 to become cost-effective, assuming a willingness to pay of €20,000. Decreasing the costs of the meniscus scaffold procedure by 33% (€10,160 instead of €15,233; an absolute change of €5073) resulted in an incremental

  2. Meniscus Tears (For Teens)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Meniscus Tears KidsHealth / For Teens / Meniscus Tears What's in this ... surgery to fix it. What Is a Meniscus Tear? Your knee is made up of three bones: ...

  3. Formation and maturation of the murine meniscus.

    Science.gov (United States)

    Gamer, Laura W; Xiang, Lin; Rosen, Vicki

    2017-08-01

    Meniscal injuries are commonplace, but current surgical repair procedures do not prevent degenerative joint changes that occur after meniscal injury and often lead to osteoarthritis. Successful tissue regeneration in adults often recapitulates events that occur during embryogenesis, suggesting that understanding the regulatory pathways controlling these early processes may provide clues for developing strategies for tissue repair. While the mouse is now widely used to study joint diseases, detailed knowledge of the basic biology of murine meniscus is not readily available. Here, we examine meniscal morphogenesis in mice from embryonic day 13.5 (E13.5) to 6 months of age using histology, in situ hybridization, and immunohistochemistry. We find that the meniscus is a morphologically distinct structure at E16 when it begins to regionalize. At birth, the meniscus has a distinguishable inner, avascular, round chondrocyte cell region, an outer, vascularized, fibroblast cell region, and a surface superficial zone. Maturation begins at 2 weeks of age when the meniscus expresses type I collagen, type II collagen, type X collagen, and MMP-13 in specific patterns. By 4 weeks of age, small areas of ossification are detected in the anterior meniscal horn, a common feature seen in rodents. Maturation appears complete at 8 weeks of age, when the meniscus resembles the adult structure complete with ossifying tissue that contains bone marrow like areas. Our results provide, the first systematic study of mouse meniscal development and will be a valuable tool for analyzing murine models of knee joint formation and disease. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1683-1689, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears.

    Science.gov (United States)

    Bochyńska, A I; Van Tienen, T G; Hannink, G; Buma, P; Grijpma, D W

    2016-03-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study, a series of amphiphilic copolymers based on polyethylene glycol, trimethylene carbonate and citric acid were synthesized and subsequently end-functionalized with hexamethylene diisocyanate to form reactive adhesive materials. The shear adhesive strength of the networks to bovine meniscus tissue measured in a lap-shear adhesion test ranged between 20 and 80 kPa, which was better than for fibrin glue (10 kPa). The elastic modulus of the networks depended on composition and was in the same range as that of human meniscus. Cell compatibility was assessed using Alamar Blue staining after incubation of the bovine meniscus cells with different concentrations of the glues for 7 days. Cell viability was not affected after adding up to 3mg of the adhesive/mL of medium. The proposed materials are suitable candidates to be used as resorbable tissue adhesives for meniscus repair. They have excellent mechanical and adhesive properties that can be adjusted by varying the composition of the copolymers. Meniscal tears often occur and current treatment strategies do not bring fully satisfactory results. Use of biodegradable tissue adhesives would be an interesting option, but currently available adhesives are not suited due to toxicity or poor mechanical properties. Here, we describe the development of novel biodegradable, hyper-branched, adhesive copolymers. These adhesives cure upon contact with water forming flexible networks. Their adhesion to bovine meniscus tissue was significantly better than that of clinically used fibrin glue. The tensile properties of the cured networks were in the same range of values of the human meniscus. When physiologically relevant amounts were added to

  5. Smectic meniscus and dislocations

    International Nuclear Information System (INIS)

    Geminard, J.C.; Oswald, P.; Holyst, R.

    1998-01-01

    In ordinary liquids the size of a meniscus and its shape is set by a competition between surface tension and gravity. The thermodynamical process of its creation can be reversible. On the contrary, in smectic liquid crystals the formation of the meniscus is always an irreversible thermodynamic process since it involves the creation of dislocations (therefore it involves friction). Also the meniscus is usually small in experiments with smectics in comparison to the capillary length and therefore the gravity does not play any role in determining the meniscus shape. Here we discuss the relation between dislocations and meniscus in smectics. The theoretical predictions are supported by a recent experiment performed on freely suspended films of smectic liquid crystals. In this experiment the measurement of the meniscus radius of curvature gives the pressure difference, Δp, according to the Laplace law. From the measurements of the growth dynamics of a dislocation loop (governed by Δp) we find the line tension (∼8 x 10 -8 dyn) and the mobility of an elementary edge dislocation (∼4 x 10 - 7 cm 2 s/g). (author)

  6. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering.

    Science.gov (United States)

    Esposito, Andrea Rodrigues; Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende

    2013-04-01

    The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration.

  7. The nutrition of the human meniscus: A computational analysis investigating the effect of vascular recession on tissue homeostasis.

    Science.gov (United States)

    Travascio, Francesco; Jackson, Alicia R

    2017-08-16

    The meniscus is essential to the functioning of the knee, offering load support, congruency, lubrication, and protection to the underlying cartilage. Meniscus degeneration affects ∼35% of the population, and potentially leads to knee osteoarthritis. The etiology of meniscal degeneration remains to be elucidated, although many factors have been considered. However, the role of nutritional supply to meniscus cells in the pathogenesis of meniscus degeneration has been so far overlooked. Nutrients are delivered to meniscal cells through the surrounding synovial fluid and the blood vessels present in the outer region of the meniscus. During maturation, vascularization progressively recedes up to the outer 10% of the tissue, leaving the majority avascular. It has been hypothesized that vascular recession might significantly reduce the nutrient supply to cells, thus contributing to meniscus degeneration. The objective of this study was to evaluate the effect of vascular recession on nutrient levels available to meniscus cells. This was done by developing a novel computational model for meniscus homeostasis based on mixture theory. It was found that transvascular transport of nutrients in the vascularized region of the meniscus contributes to more than 40% of the glucose content in the core of the tissue. However, vascular recession does not significantly alter nutrient levels in the meniscus, reducing at most 5% of the nutrient content in the central portion of the tissue. Therefore, our analysis suggests that reduced vascularity is not likely a primary initiating source in tissue degeneration. However, it does feasibly play a key role in inability for self-repair, as seen clinically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Biological augmentation and tissue engineering approaches in meniscus surgery.

    Science.gov (United States)

    Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C

    2015-05-01

    The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and

  9. Meniscus Shapes in Detached Bridgman Growth

    Science.gov (United States)

    Volz, M. P.; Mazuruk, K

    2010-01-01

    In detached Bridgman crystal growth, most of the melt is in contact with the ampoule wall, but the crystal is separated from the wall by a small gap, typically 1-100 micrometers. A liquid free surface, or meniscus, bridges across this gap at the position of the melt-crystal interface. Meniscus shapes have been calculated for the case of detached Bridgman growth in cylindrical ampoules by solving the Young-Laplace equation. Key parameters affecting meniscus shapes are the growth angle, contact angle of the meniscus to the ampoule wall, the pressure differential across the meniscus, and the Bond number, a measure of the ratio of gravitational to capillary forces. In general, for specified values of growth and contact angles, solutions exist only over a finite range of pressure differentials. For intermediate values of the Bond number, there are multiple solutions to the Young-Laplace equations. There are also cases where, as a function of pressure differential, existence intervals alternate with intervals where no solutions exist. The implications of the meniscus shape calculations on meniscus stability are discussed.

  10. Segmental and regional quantification of 3D cellular density of human meniscus from osteoarthritic knee.

    Science.gov (United States)

    Cengiz, Ibrahim Fatih; Pereira, Hélder; Pêgo, José Miguel; Sousa, Nuno; Espregueira-Mendes, João; Oliveira, Joaquim Miguel; Reis, Rui Luís

    2017-06-01

    The knee menisci have important roles in the knee joint. Complete healing of the meniscus remains a challenge in the clinics. Cellularity is one of the most important biological parameters that must be taken into account in regenerative strategies. However, knowledge on the 3D cellularity of the human meniscus is lacking in the literature. The aim of this study was to quantify the 3D cellular density of human meniscus from the osteoarthritic knee in a segmental and regional manner with respect to laterality. Human lateral menisci were histologically processed and stained with Giemsa for histomorphometric analysis. The cells were counted in an in-depth fashion. 3D cellular density in the vascular region (27 199 cells/mm 3 ) was significantly higher than in the avascular region (12 820 cells/mm 3 ). The cells were observed to possess two distinct morphologies, roundish or flattened. The 3D density of cells with fibrochondrocyte morphology (14 705 cells/mm 3 ) was significantly greater than the 3D density of the cells with fibroblast-like cell morphology (5539 cells/mm 3 ). The best-fit equation for prediction of the 3D density of cells with fibrochondrocyte morphology was found to be: Density of cells with fibrochondrocyte morphology = 1.22 × density of cells withfibroblast-like cell morphology + 7750. The present study revealed the segmental and regional 3D cellular density of human lateral meniscus from osteoarthritic knee with respect to laterality. This crucial but so far missing information will empower cellular strategies aiming at meniscus tissue regeneration. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. MRI of discoid lateral meniscus

    International Nuclear Information System (INIS)

    Araki, Yutaka; Ootani, Masatoshi; Furukawa, Tomoaki; Yamamoto, Tadatsuka; Tomoda, Kaname; Tsukaguchi, Isao; Mitomo, Masanori.

    1991-01-01

    We retrospectively reviewed the MR examinations of 10 patients (17 knees) with surgically documented discoid lateral meniscus of the knee joint. As MRI of the knee is being used more often, the criteria for diagnosis of this entity with MRI need to be established. We tried to define MRI criteria for the detection of discoid menisci by performing numerical measurements of MR images on a display screen. The transverse diameter of the midbody of a discoid lateral meniscus averaged 21.9 mm (normal control: 8.6 mm), and its proportion to the transverse width of the tibia averaged 29.4% (normal control: 12.0%). The measurable difference in height between the discoid and the medial meniscus was negligible. The number of sagittal sections on which the anterior and posterior horns connected varied from two to five in cases of discoid lateral meniscus, and from zero to two in normal controls. Among these parameters, the transverse diameter and its proportion of the transverse width of the tibia proved to be the most reliable. We concluded that a discoid meniscus is indicated if a transverse diameter of a lateral meniscus exceeds 15 mm (proportion to the tibia: 20%). (author)

  12. Anisotropy in the viscoelastic response of knee meniscus cartilage.

    Science.gov (United States)

    Coluccino, Luca; Peres, Chiara; Gottardi, Riccardo; Bianchini, Paolo; Diaspro, Alberto; Ceseracciu, Luca

    2017-01-26

    The knee meniscus is instrumental to stability, shock absorption, load transmission and stress distribution within the knee joint. Such functions are mechanically demanding, and replacement constructs used in meniscus repair often fail because of a poor match with the surrounding tissue. This study focused on the native structure-mechanics relationships and on their anisotropic behavior in meniscus, to define the target biomechanical viscoelastic properties required by scaffolds upon loading. To show regional orientation of the collagen fibers and their viscoelastic behavior, bovine lateral menisci were characterized by second harmonic generation microscopy and through time-dependent mechanical tests. Furthermore, their dynamic viscoelastic response was analyzed over a wide range of frequencies. Multilevel characterization aims to expand the biomimetic approach from the structure itself, to include the mechanical characteristics that give the meniscus its peculiar properties, thus providing tools for the design of novel, effective scaffolds. An example of modeling of anisotropic open-cell porous material tailored to fulfill the measured requirements is presented, leading to a definition of additional parameters for a better understanding of the load transmission mechanism and for better scaffold functionality.

  13. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells

    Science.gov (United States)

    He, Ming; Li, Bo; Cui, Xun; Jiang, Beibei; He, Yanjie; Chen, Yihuang; O'Neil, Daniel; Szymanski, Paul; Ei-Sayed, Mostafa A.; Huang, Jinsong; Lin, Zhiqun

    2017-07-01

    Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.

  14. An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus

    Directory of Open Access Journals (Sweden)

    Jie Sun

    2017-01-01

    Full Text Available Current surgical treatments for meniscal tears suffer from subsequent degeneration of knee joints, limited donor organs and inconsistent post-treatment results. Three clinical scaffolds (Menaflex CMI, Actifit® scaffold and NUsurface® Meniscus Implant are available on the market, but additional data are needed to properly evaluate their safety and effectiveness. Thus, many scaffold-based research activities have been done to develop new materials, structures and fabrication technologies to mimic native meniscus for cell attachment and subsequent tissue development, and restore functionalities of injured meniscus for long-term effects. This study begins with a synopsis of relevant structural features of meniscus and goes on to describe the critical considerations. Promising advances made in the field of meniscal scaffolding technology, in terms of biocompatible materials, fabrication methods, structure design and their impact on mechanical and biological properties are discussed in detail. Among all the scaffolding technologies, additive manufacturing (AM is very promising because of its ability to precisely control fiber diameter, orientation, and pore network micro-architecture to mimic the native meniscus microenvironment.

  15. An in vitro study of cartilage-meniscus tribology to understand the changes caused by a meniscus implant.

    Science.gov (United States)

    Majd, Sara Ehsani; Rizqy, Aditya Iman; Kaper, Hans J; Schmidt, Tannin A; Kuijer, Roel; Sharma, Prashant K

    2017-07-01

    Active lifestyles increase the risk of meniscal injury. A permanent meniscus implant of polycarbonate urethane (PCU) is a promising treatment to postpone/prevent total knee arthroplasty. Study of the changes in articular cartilage tribology in the presence of PCU is essential in developing the optimum meniscus implant. Therefore, a cartilage-meniscus reciprocating, sliding model was developed in vitro, mimicking the stance and swing phases of the gait cycle. The meniscus was further replaced with PCU and surface-modified PCUs (with C18 chains, mono-functional polydimethylsiloxane groups and mono-functional polytetrafluoroethylene groups) to study the changes. The coefficient of friction (COF) was calculated, and cartilage wear was determined and quantified histologically. The cartilage-meniscus sliding resulted in low COF during both stance and swing (0.01tribological performance. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Two-Tunnel Transtibial Repair of Radial Meniscus Tears Produces Comparable Results to Inside-Out Repair of Vertical Meniscus Tears.

    Science.gov (United States)

    Cinque, Mark E; Geeslin, Andrew G; Chahla, Jorge; Dornan, Grant J; LaPrade, Robert F

    2017-08-01

    Radial meniscus tears disrupt the circumferential fibers and thereby compromise meniscus integrity. Historically, radial tears were often treated with meniscectomy because of an incomplete understanding of the biomechanical consequences of these tears, limited information regarding the biomechanical performance of repair, and the technical difficulty associated with repair. There is a paucity of studies on the outcomes of the repair of radial meniscus tears. Purpose/Hypothesis: The purpose was to determine the outcomes of 2-tunnel transtibial repair of radial meniscus tears and compare these results to the outcomes of patients who underwent the repair of vertical meniscus tears with a minimum of 2-year follow-up. The hypothesis was that radial and vertical meniscus tear repair outcomes were comparable. Cohort study; Level of evidence, 3. Patients who underwent 2-tunnel transtibial pullout repair for a radial meniscus tear were included in this study and compared with patients who underwent inside-out repair for a vertical meniscus tear. Subjective questionnaires were administered preoperatively and at a minimum of 2-year follow-up, including the Lysholm score, the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), the Short Form-12 (SF-12) physical component summary (PCS), the Tegner activity scale, and patient satisfaction. Analysis of covariance was used to compare postoperative outcome scores between the meniscus repair groups while accounting for baseline scores. Adjusted mean effects relative to the radial repair group were reported with 95% CIs. Twenty-seven patients who underwent 2-tunnel transtibial pullout repair for radial meniscus tears and 33 patients who underwent inside-out repair for vertical meniscus tears were available for follow-up at a mean of 3.5 years (range, 2.0-5.4 years). No preoperative outcome score significantly differed between the groups. There were no significant group differences for any of the 2-year

  17. Meniscus and beam halo formation in a tandem-type negative ion source with surface production

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Hatayama, A.

    2012-01-01

    A meniscus of plasma-beam boundary in H - ion sources largely affects the extracted H - ion beam optics. Although it is hypothesized that the shape of the meniscus is one of the main reasons for the beam halo observed in experiments, a physical mechanism of the beam halo formation is not yet fully understood. In this letter, it is first shown by the 2D particle in cell simulation that the H - ions extracted from the periphery of the meniscus cause a beam halo since the surface produced H - ions penetrate into the bulk plasma, and, thus, the resultant meniscus has a relatively large curvature.

  18. Meniscus and beam halo formation in a tandem-type negative ion source with surface production

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2012-06-04

    A meniscus of plasma-beam boundary in H{sup -} ion sources largely affects the extracted H{sup -} ion beam optics. Although it is hypothesized that the shape of the meniscus is one of the main reasons for the beam halo observed in experiments, a physical mechanism of the beam halo formation is not yet fully understood. In this letter, it is first shown by the 2D particle in cell simulation that the H{sup -} ions extracted from the periphery of the meniscus cause a beam halo since the surface produced H{sup -} ions penetrate into the bulk plasma, and, thus, the resultant meniscus has a relatively large curvature.

  19. Discoid meniscus of the knee: MR imaging

    International Nuclear Information System (INIS)

    Kim, Sung Moon; Kang, Heung Sik; Ahn, Joong Mo; Seong, Sang Cheol

    1992-01-01

    To evaluate the role of magnetic resonance (MR) imaging in the diagnosis of the discoid meniscus, the authors reviewed 31 cases of discoid menisci diagnosed by MR imaging among which 16 cases received arthroscopy. Using knee surface coil, sagittal T1, T2 and proton density images and coronal T1 weighted images were obtained with 18 cm FOV and 4 mm/ 1 mm thickness/gap. A discoid meniscus was considered if three or more contiguous sagittal images demonstrated continuity of the meniscus between the anterior and posterior horns or the diameter of the mid-portion of the meniscus exceeded 15 mm on the coronal image. The authors also observed the associated abnormalities including tears of meniscus and ligament, meniscal cyst, and osteochondral defects. All discoid menisci were lateral menisci and torn discoid lateral menisci were present in 26 cases (83%). In two cases, tears of the contralateral medial meniscus were present. The tears of anterior and posterior cruciate ligaments, meniscal cyst, and osteochondral defects were present in 4, 2, 4, and 5 cases respectively. All collateral ligaments were intact. In conclusion MR imaging was useful for the detection of discoid meniscus and associated abnormalities

  20. Is there crosstalk between subchondral bone, cartilage, and meniscus in the pathogenesis of osteoarthritis?

    Science.gov (United States)

    Atik, O Şahap; Erdoğan, Deniz; Seymen, Cemile Merve; Bozkurt, Hasan Hüseyin; Kaplanoğlu, Gülnur Take

    2016-08-01

    This study aims to investigate if there is any crosstalk between subchondral bone, cartilage, and meniscus in the pathogenesis of osteoarthritis. Twelve female patients (mean age 64 years; range 59 to 71 years) with osteoarthritis in medial compartment were included in the study. The samples of subchondral bone, cartilage and meniscus were obtained during total knee arthroplasty. Degenerated tissue samples obtained from medial compartment were used as the experimental group (12 samples of subchondral bone and cartilage, 1x1 cm each; and 12 samples of meniscus, 1x1 cm each). Healthy tissue samples obtained from lateral compartment were used as the control group (12 samples of subchondral bone and cartilage; 1x1 cm each; and 12 samples of meniscus, 1x1 cm each). After decalcification, tissue samples were evaluated with light and transmission electron microscopy. In the experimental group, light microscopic evaluation of subchondral bone samples demonstrated that the cartilage-to-bone transition region had an irregular structure. Degenerated cartilage cells were observed in the transition region and bone cells were significantly corrupted. In the experimental group, light microscopic evaluation of the meniscus samples demonstrated that the intercellular tissue was partly corrupted. Separation and concentration of the collagen fibers were evident. All findings were supported with ultra structural evaluations. Our findings indicate that degeneration of subchondral bone, cartilage, and meniscus probably plays a role in the pathogenesis of osteoarthritis with crosstalk.

  1. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  2. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  3. Radiologic Study of Meniscus Perforations in the Temporomandibular Joint

    International Nuclear Information System (INIS)

    Kim, Kee Duck; Park, Chang Seo

    1990-01-01

    Thirty-nine patients (forty-four joints) who had been diagnosed as having meniscus perforation of the temporomandibular joint by inferior joint space arthrography and had been treated by surgical procedures were evaluated retrospectively. Information of clinical findings, arthrotomographic findings and surgical findings was collected on a standardized form and evaluated. The results were as follows: 1. On the 34 patients of 38 joints which were surgically confirmed perforation of meniscus or its attachments of the temporomandibular joint, there were 29 females and 5 males (5.8:1). The average age was 36 years (range 17 to 70). 2. The common clinical findings of group that had meniscus displacement without reduction and with perforation were pain on the affected joint and limitation of mouth opening. In the group showing meniscus displacement with reduction and with perforation the common clinical findings were pain and clicking on the affected joint. 3. 32 joints (84.2%) were arthrotomographically anterior meniscus displacement without reduction and with perforation, 6 joints (15.8%) showed anterior meniscus displacement with reduction and with perforation. 4. Joints categorized arthrotomographically as having meniscus displacement without reduction and with perforation were less likely to have full translation of the condyle in comparison with the normal or meniscus displacement with reduction and with perforation groups (p<0.05) 5. The arthrographic findings of 44 joints having meniscus perforation were compared with surgical findings, there were 6 false positive findings of meniscus perforation, the reliability of arthrographic findings of meniscus perforation was a 86.4% correlation with surgical findings. 6. On the site of perforations of 38 joints which were surgically confirmed perforation of meniscus or its attachments, twenty-three of perforations (60.5%) were in location at the junction of the meniscus and posterior attachment, fourteen (36.9%) were

  4. Apparent dynamic contact angle of an advancing gas--liquid meniscus

    International Nuclear Information System (INIS)

    Kalliadasis, S.; Chang, H.

    1994-01-01

    The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle Θ that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecular forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan Θ=7.48 Ca 1/3 for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca 1/3 dependence occurs only at very low Ca, where the intermolecular forces become more important and tan Θ diverges slightly from the above asymptotic behavior toward lower values

  5. Optical spectroscopic determination of human meniscus composition.

    Science.gov (United States)

    Ala-Myllymäki, Juho; Honkanen, Juuso T J; Töyräs, Juha; Afara, Isaac O

    2016-02-01

    This study investigates the correlation between the composition of human meniscus and its absorption spectrum in the visible (VIS) and near infrared (NIR) spectral range. Meniscus samples (n = 24) were obtained from nonarthritic knees of human cadavers with no history of joint diseases. Specimens (n = 72) were obtained from three distinct sections of the meniscus, namely; anterior, center, posterior. Absorption spectra were acquired from each specimen in the VIS and NIR spectral range (400-1,100 nm). Following spectroscopic probing, the specimens were subjected to biochemical analyses to determine the matrix composition, that is water, hydroxyproline, and uronic acid contents. Multivariate analytical techniques, including principal component analysis (PCA) and partial least squares (PLS) regression, were then used to investigate the correlation between the matrix composition and it spectral response. Our results indicate that the optical absorption of meniscus matrix is related to its composition, and this relationship is optimal in the NIR spectral range (750-1,100 nm). High correlations (R(2) (uronic)  = 86.9%, R(2) (water)  = 83.8%, R(2) (hydroxyproline)  = 81.7%, p meniscus composition, thus suggesting that spectral data in the NIR range can be utilized for estimating the matrix composition of human meniscus. In conclusion, optical spectroscopy, particularly in the NIR spectral range, is a potential method for evaluating the composition of human meniscus. This presents a promising technique for rapid and nondestructive evaluation of meniscus integrity in real-time during arthroscopic surgery. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Surgical techniques and radiological findings of meniscus allograft transplantation.

    Science.gov (United States)

    Lee, Hoseok; Lee, Sang Yub; Na, Young Gon; Kim, Sung Kwan; Yi, Jae Hyuck; Lim, Jae Kwang; Lee, So Mi

    2016-08-01

    Meniscus allograft transplantation has been performed over the past 25 years to relieve knee pain and improve knee function in patients with an irreparable meniscus injury. The efficacy and safety of meniscus allograft transplantation have been established in numerous experimental and clinical researches. However, there is a lack of reviews to aid radiologists who are routinely interpreting images and evaluating the outcome of the procedures, and also meniscus allograft transplantation is not widely performed in most hospitals. This review focuses on the indications of the procedure, the different surgical techniques used for meniscus allograft transplantation according to the involvement of the lateral and medial meniscus, and the associated procedures. The postoperative radiological findings and surgical complications of the meniscus allograft transplantation are also described in detail. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. MRI evaluation of the posterior meniscus root tear

    International Nuclear Information System (INIS)

    Zhang Jianjun; Zheng Zhuozhao; Li Xuan

    2010-01-01

    Objective: To determine the value of MRI for diagnosing the posterior meniscus root tear. Methods: MR examinations of 30 patients with tear of the posterior meniscus root confirmed by knee arthroscopies were retrospectively reviewed. Of the 30 patients, 17 with posterior medial meniscus root tear (MMRT) and 13 with posterior lateral meniscus root tear (LMRT). The diagnostic sensitivity of' MRI for the posterior meniscus root tear was analyzed. Fisher's exact test was used to compare the detection rate of MRI for MMRT with that for LMRT. Results: All 17 cases with MMRT and 9 cases out of 13 with LMRT were correctly diagnosed by MRI and the diagnostic sensitivity of MRI for the posterior meniscus root tear was 86.7% (26/30). The main MR appearance of the posterior meniscus root tear was distortion of the meniscal root, with its low signal replaced by abnormal high signal. The detection rate of MRI for MMRT (17/17) was significantly greater than that for LMRT (9/13) (P=0.026). The prevalence of MMRT associated with meniscus extrusion (15/17) was significantly greater than that of LMRT (6/13) (P=0.020), but the prevalence of MMRT associated with anterior cruciate ligament (ACL) injury (5/17) was significantly lower than that of LMRT (11/13) (P=0.004). Conclusion: MRI is a relatively good method for detection of posterior meniscus root tears and associated injuries. (authors)

  8. Smoking increases the risk of early meniscus repair failure.

    Science.gov (United States)

    Blackwell, Ryan; Schmitt, Laura C; Flanigan, David C; Magnussen, Robert A

    2016-05-01

    The goal of this study is to determine whether patients who smoke cigarettes at the time of surgery are at significantly increased risk of early meniscus repair failure relative to non-smokers. Retrospective chart review identified 64 current smokers within a series of 444 consecutive patients who underwent meniscus repair during a 7 years period. Fifty-two of these 64 smokers were available for follow-up and were matched by age, sex, and ACL status with non-smokers from the same cohort. Records of these 104 patients with a total of 120 meniscus repairs were reviewed to identify meniscus repair failure (defined as repeat surgery on the index meniscus) during the median 13-month (range: 3-79 months) follow-up period. The smoking and non-smoking groups were similar in age, sex, ACL status, BMI, meniscus repair technique, and meniscus involved. Meniscus repair failure occurred in 19 of the 112 menisci in 104 patients, for an overall failure risk of 17 %. Of the 19 failures, 14 occurred in 79 repaired medial menisci (18 % failure risk) and 5 occurred in 33 repaired lateral menisci (15 % failure risk). Meniscus repair failure occurred in significantly more smokers (15 failures in 56 menisci in 52 patients -27 % failure risk) than non-smokers (4 failures in 56 menisci in 52 patients -7 % failure risk) (p = 0.0076). Smoking is associated with significantly increased risk of early meniscus repair failure as defined by the incidence of repeat surgery on the index meniscus. III.

  9. Cost effectiveness of meniscal allograft for torn discoid lateral meniscus in young women.

    Science.gov (United States)

    Ramme, Austin J; Strauss, Eric J; Jazrawi, Laith; Gold, Heather T

    2016-09-01

    A discoid meniscus is more prone to tears than a normal meniscus. Patients with a torn discoid lateral meniscus are at increased risk for early onset osteoarthritis requiring total knee arthroplasty (TKA). Optimal management for this condition is controversial given the up-front cost difference between the two treatment options: the more expensive meniscal allograft transplantation compared with standard partial meniscectomy. We hypothesize that meniscal allograft transplantation following excision of a torn discoid lateral meniscus is more cost-effective compared with partial meniscectomy alone because allografts will extend the time to TKA. A decision analytic Markov model was created to compare the cost effectiveness of two treatments for symptomatic, torn discoid lateral meniscus: meniscal allograft and partial meniscectomy. Probability estimates and event rates were derived from the scientific literature, and costs and benefits were discounted by 3%. One-way sensitivity analyses were performed to test model robustness. Over 25 years, the partial meniscectomy strategy cost $10,430, whereas meniscal allograft cost on average $4040 more, at $14,470. Partial meniscectomy postponed TKA an average of 12.5 years, compared with 17.30 years for meniscal allograft, an increase of 4.8 years. Allograft cost $842 per-year-gained in time to TKA. Meniscal allografts have been shown to reduce pain and improve function in patients with discoid lateral meniscus tears. Though more costly, meniscal allografts may be more effective than partial meniscectomy in delaying TKA in this model. Additional future long term clinical studies will provide more insight into optimal surgical options.

  10. Abnormal Mechanical Loading Induces Cartilage Degeneration by Accelerating Meniscus Hypertrophy and Mineralization After ACL Injuries In Vivo.

    Science.gov (United States)

    Du, Guoqing; Zhan, Hongsheng; Ding, Daofang; Wang, Shaowei; Wei, Xiaochun; Wei, Fangyuan; Zhang, Jianzhong; Bilgen, Bahar; Reginato, Anthony M; Fleming, Braden C; Deng, Jin; Wei, Lei

    2016-03-01

    Although patients with an anterior cruciate ligament (ACL) injury have a high risk of developing posttraumatic osteoarthritis (PTOA), the role of meniscus hypertrophy and mineralization in PTOA after an ACL injury remains unknown. The purpose of this study was to determine if menisci respond to abnormal loading and if an ACL injury results in meniscus hypertrophy and calcification. The hypotheses were that (1) abnormal mechanical loading after an ACL injury induces meniscus hypertrophy and mineralization, which correlates to articular cartilage damage in vivo, and (2) abnormal mechanical loading on bovine meniscus explants induces the overexpression of hypertrophic and mineralization markers in vitro. Controlled laboratory study. In vivo guinea pig study (hypothesis 1): Three-month-old male Hartley guinea pigs (n = 9) underwent ACL transection (ACLT) on the right knee; the left knee served as the control. Calcification in the menisci was evaluated by calcein labeling 1 and 5 days before knee harvesting at 5.5 months. Cartilage and meniscus damage and mineralization were quantified by the Osteoarthritis Research Society International score and meniscus grade, respectively. Indian hedgehog (Ihh), matrix metalloproteinase-13 (MMP-13), collagen type X (Col X), progressive ankylosis homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1), alkaline phosphatase (ALP), inorganic pyrophosphate (PPi), and inorganic phosphate (Pi) concentrations were evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. In vitro bovine meniscus explant study (hypothesis 2): Bovine meniscus explants were subjected to 25% strain at 0.3 Hz for 1, 2, and 3 hours. Cell viability was determined using live/dead staining. The levels of mRNA expression and protein levels were measured using real-time quantitative reverse transcription polymerase chain reaction and Western blot after 24, 48, and 72 hours in culture. The conditioned medium was collected for sulfated

  11. Surgical management of degenerative meniscus lesions: the 2016 ESSKA meniscus consensus.

    Science.gov (United States)

    Beaufils, Ph; Becker, R; Kopf, S; Englund, M; Verdonk, R; Ollivier, M; Seil, R

    2017-02-01

    A degenerative meniscus lesion is a slowly developing process typically involving a horizontal cleavage in a middle-aged or older person. When the knee is symptomatic, arthroscopic partial meniscectomy has been practised for a long time with many case series reporting improved patient outcomes. Since 2002, several randomised clinical trials demonstrated no additional benefit of arthroscopic partial meniscectomy compared to non-operative treatment, sham surgery or sham arthroscopic partial meniscectomy. These results introduced controversy in the medical community and made clinical decision-making challenging in the daily clinical practice. To facilitate the clinical decision-making process, a consensus was developed. This initiative was endorsed by ESSKA. A degenerative meniscus lesion was defined as a lesion occurring without any history of significant acute trauma in a patient older than 35 years. Congenital lesions, traumatic meniscus tears and degenerative lesions occurring in young patients, especially in athletes, were excluded. The project followed the so-called formal consensus process, involving a steering group, a rating group and a peer-review group. A total of 84 surgeons and scientists from 22 European countries were included in the process. Twenty questions, their associated answers and an algorithm based on extensive literature review and clinical expertise, were proposed. Each question and answer set was graded according to the scientific level of the corresponding literature. The main finding was that arthroscopic partial meniscectomy should not be proposed as a first line of treatment for degenerative meniscus lesions. Arthroscopic partial meniscectomy should only be considered after a proper standardised clinical and radiological evaluation and when the response to non-operative management has not been satisfactory. Magnetic resonance imaging of the knee is typically not indicated in the first-line work-up, but knee radiography should be used as

  12. Surgical Management of Degenerative Meniscus Lesions: The 2016 ESSKA Meniscus Consensus.

    Science.gov (United States)

    Beaufils, P; Becker, R; Kopf, S; Englund, M; Verdonk, R; Ollivier, M; Seil, R

    2017-06-01

    Purpose  A degenerative meniscus lesion is a slowly developing process typically involving a horizontal cleavage in a middle-aged or older person. When the knee is symptomatic, arthroscopic partial meniscectomy has been practised for a long time with many case series reporting improved patient outcomes. Since 2002, several randomised clinical trials demonstrated no additional benefit of arthroscopic partial meniscectomy compared to non-operative treatment, sham surgery or sham arthroscopic partial meniscectomy. These results introduced controversy in the medical community and made clinical decision-making challenging in the daily clinical practice. To facilitate the clinical decision-making process, a consensus was developed. This initiative was endorsed by ESSKA. Methods  A degenerative meniscus lesion was defined as a lesion occurring without any history of significant acute trauma in a patient older than 35 years. Congenital lesions, traumatic meniscus tears and degenerative lesions occurring in young patients, especially in athletes, were excluded. The project followed the so-called formal consensus process, involving a steering group, a rating group and a peer-review group. A total of 84 surgeons and scientists from 22 European countries were included in the process. Twenty questions, their associated answers and an algorithm based on extensive literature review and clinical expertise, were proposed. Each question and answer set was graded according to the scientific level of the corresponding literature. Results  The main finding was that arthroscopic partial meniscectomy should not be proposed as a first line of treatment for degenerative meniscus lesions. Arthroscopic partial meniscectomy should only be considered after a proper standardised clinical and radiological evaluation and when the response to non-operative management has not been satisfactory. Magnetic resonance imaging of the knee is typically not indicated in the first-line work-up, but

  13. In Vitro Testing of Scaffolds for Mesenchymal Stem Cell-Based Meniscus Tissue Engineering—Introducing a New Biocompatibility Scoring System

    Directory of Open Access Journals (Sweden)

    Felix P. Achatz

    2016-04-01

    Full Text Available A combination of mesenchymal stem cells (MSCs and scaffolds seems to be a promising approach for meniscus repair. To facilitate the search for an appropriate scaffold material a reliable and objective in vitro testing system is essential. This paper introduces a new scoring for this purpose and analyzes a hyaluronic acid (HA gelatin composite scaffold and a polyurethane scaffold in combination with MSCs for tissue engineering of meniscus. The pore quality and interconnectivity of pores of a HA gelatin composite scaffold and a polyurethane scaffold were analyzed by surface photography and Berliner-Blau-BSA-solution vacuum filling. Further the two scaffold materials were vacuum-filled with human MSCs and analyzed by histology and immunohistochemistry after 21 days in chondrogenic media to determine cell distribution and cell survival as well as proteoglycan production, collagen type I and II content. The polyurethane scaffold showed better results than the hyaluronic acid gelatin composite scaffold, with signs of central necrosis in the HA gelatin composite scaffolds. The polyurethane scaffold showed good porosity, excellent pore interconnectivity, good cell distribution and cell survival, as well as an extensive content of proteoglycans and collagen type II. The polyurethane scaffold seems to be a promising biomaterial for a mesenchymal stem cell-based tissue engineering approach for meniscal repair. The new score could be applied as a new standard for in vitro scaffold testing.

  14. Meniscus transplantation in skeletally immature patients.

    Science.gov (United States)

    Kocher, Mininder S; Tepolt, Frances A; Vavken, Patrick

    2016-07-01

    Meniscal pathology in skeletally immature patients includes meniscal tears and discoid lateral meniscus. Total or subtotal meniscectomy may occur in patients with discoid lateral meniscus or severe meniscal tears. Meniscal transplantation may be an option in skeletally immature patients status after total or subtotal meniscectomy with knee symptoms or dysfunction. This study focuses on the surgical technique and short-term outcomes of meniscus transplantation in skeletally immature patients. We reviewed our clinical database for skeletally immature patients who had undergone meniscus transplantation with a minimum of 2 years of follow-up. Patients were contacted, invited for a physical exam, and asked to complete a Pedi-IKDC, Lysholm, and Tegner outcomes questionnaire. The study protocol was approved by the responsible institutional review board. Three patients (two females/one male) were eligible for the study, each of whom responded to our invitation indicating availability for physical exam and questionnaire. Two patients had undergone subtotal discoid meniscus resection, leading to early lateral compartment degeneration. One patient developed advanced degeneration after a delay in treatment for a medial bucket-handle tear associated with anterior cruciate ligament rupture. The mean age of the patients at the time of surgery was 12.6±2.3 years. At a mean follow-up of 31±20 months, the mean Pedi-IKDC score was 68.3±4, the mean Lysholm was 55.7±22.3, and the median Tegner was 7 points. There were no indications of growth deformity during the regular postoperative radiological assessments. One patient required subsequent lysis of adhesions along the lateral mini arthrotomy and mobilization under anesthesia. The other two patients were able to return to sports at the same level as before meniscus transplantation and were able to do so within 9 months postoperatively. Over-resection of discoid menisci as well as untreated meniscus injury, the latter typically in

  15. Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold

    Science.gov (United States)

    Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao

    2018-03-01

    A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.

  16. ARTHROSCOPIC MENISCUS REPAIR WITH BIOABSORBABLE ARROWS IN LOCAL ANESTHESIA

    Directory of Open Access Journals (Sweden)

    Vladimir Senekovič

    2004-11-01

    Full Text Available Background. The menisci have important function in the knee joint. Because of this it is universally accepted that we have to preserve them as much as possible. After open and partially arthroscopic suture techniques new methods of all-inside meniscus repair with bioabsorbable arrows have been developed in the last decade. The meniscus repair using these arrows represents an easy task for a skilled surgeon. In addition, it can be performed in local anesthesia. We have evaluated the results of the first group of patients who were treated by this method.Methods. From February 2001 to August 2002 15 patients with torn meniscuses have been treated at the Clinical Department for Traumatology, University Medical centre, Ljubljana. We repaired their torn menisci arthroscopically with bioabsorbable arrows in local anesthesia. We divided patients in three groups: a group with isolated meniscus injury, a group with meniscus injury and anterior cruciate ligament injury and a group with associated pathology. Four patients had incarcerated meniscuses. Preoperative Lysholm score in the first group was 38, in the second 42 and in the third group 48. We repaired 12 medial and 3 lateral meniscuses. On average we need 45 minutes for therapeutic arthroscopy. Torn meniscus was fixated with minimum of 1 and maximum of 5 bioabsorbable arrows. All patients except one had the affected knee immobilized with cylinder plaster for 15 days on average.Results. At least three months after the arthroscopic fixation of the torn meniscus in local anesthesia another clinical evaluation was made. In all groups significant improvement was observed regarding the range of motions and absence of pain. Postoperative Lysholm score in the first group was 89, in the second 75 and in the third 71. Average deficit of flexion was 3 degrees while extension was full. One patient complained about the same pain in the joint, he underwent another arthroscopy which showed that the meniscus was

  17. IL-10 ameliorates TNF-α induced meniscus degeneration in mature meniscal tissue in vitro.

    Science.gov (United States)

    Behrendt, P; Häfelein, K; Preusse-Prange, A; Bayer, A; Seekamp, A; Kurz, B

    2017-05-16

    Joint inflammation causes meniscus degeneration and can exacerbate post-traumatic meniscus injuries by extracellular matrix degradation, cellular de-differentiation and cell death. The aim of this study was to examine whether anti-inflammatory interleukin-10 exerts protective effects in an in vitro model of TNF-α-induced meniscus degeneration. Meniscus tissue was harvested from the knees of adult cows. After 24 h of equilibrium explants were simultaneously treated with bovine TNF-α and IL-10. After an incubation time of 72 h cell death was measured histomorphometrically (nuclear blebbing, NB) and release of glycosaminoglycans (GAG, DMMB assay) and nitric oxide (NO, Griess-reagent) were analysed. Transcription levels (mRNA) of matrix degrading enzymes, collagen type X (COL10A1) and nitric oxide synthetase 2 (NOS2) were measured by quantitative real time PCR. TNF-α-dependent formation of the aggrecanase-specific aggrecan neoepitope NITEGE was visualised by immunostaining. Differences between groups were calculated using a one-way ANOVA with a Bonferroni post hoc test. Administration of IL-10 significantly prevented the TNF-α-related cell death (P .001), release of NO (P .003) and NOS2 expression (P .04). Release of GAG fragments (P .001), NITEGE formation and expression of MMP3 (P .007), -13 (P .02) and ADAMTS4 (P .001) were significantly reduced. The TNF-α-dependent increase in COL10A1 expression was also antagonized by IL-10 (P .02). IL-10 prevented crucial mechanisms of meniscal degeneration induced by a key cytokine of OA, TNF-α. Administration of IL-10 might improve the biological regeneration and provide a treatment approach in degenerative meniscus injuries and in conditions of post-traumatic sports injuries.

  18. Ferrofluid meniscus in a horizontal or vertical magnetic field

    International Nuclear Information System (INIS)

    Rosensweig, R.E.; Elborai, S.; Lee, S.-H.; Zahn, M.

    2005-01-01

    An optical system using reflections of a narrow laser beam to measure the height and shape of a ferrofluid meniscus in response to uniform applied magnetic fields finds that meniscus height on a vertical flat wall decreases in horizontal applied field and increases in vertical applied field. An approximate energy minimization analysis predicts meniscus height in directional agreement with measurements. This study is a first step in calculating the tangential surface force acting in flows where magnetization magnitude and direction lag a changing magnetic field direction, and the meniscus shape is magnetically perturbed

  19. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration

    Science.gov (United States)

    Makris, Eleftherios A.; Hadidi, Pasha; Athanasiou, Kyriacos A.

    2011-01-01

    Extensive scientific investigations in recent decades have established the anatomical, biomechanical, and functional importance that the meniscus holds within the knee joint. As a vital part of the joint, it acts to prevent the deterioration and degeneration of articular cartilage, and the onset and development of osteoarthritis. For this reason, research into meniscus repair has been the recipient of particular interest from the orthopedic and bioengineering communities. Current repair techniques are only effective in treating lesions located in the peripheral vascularized region of the meniscus. Healing lesions found in the inner avascular region, which functions under a highly demanding mechanical environment, is considered to be a significant challenge. An adequate treatment approach has yet to be established, though many attempts have been undertaken. The current primary method for treatment is partial meniscectomy, which commonly results in the progressive development of osteoarthritis. This drawback has shifted research interest towards the fields of biomaterials and bioengineering, where it is hoped that meniscal deterioration can be tackled with the help of tissue engineering. So far, different approaches and strategies have contributed to the in vitro generation of meniscus constructs, which are capable of restoring meniscal lesions to some extent, both functionally as well as anatomically. The selection of the appropriate cell source (autologous, allogeneic, or xenogeneic cells, or stem cells) is undoubtedly regarded as key to successful meniscal tissue engineering. Furthermore, a large variation of scaffolds for tissue engineering have been proposed and produced in experimental and clinical studies, although a few problems with these (e.g., byproducts of degradation, stress shielding) have shifted research interest towards new strategies (e.g., scaffoldless approaches, self-assembly). A large number of different chemical (e.g., TGF-β1, C-ABC) and

  20. Cationic Contrast Agent Diffusion Differs Between Cartilage and Meniscus.

    Science.gov (United States)

    Honkanen, Juuso T J; Turunen, Mikael J; Freedman, Jonathan D; Saarakkala, Simo; Grinstaff, Mark W; Ylärinne, Janne H; Jurvelin, Jukka S; Töyräs, Juha

    2016-10-01

    Contrast enhanced computed tomography (CECT) is a non-destructive imaging technique used for the assessment of composition and structure of articular cartilage and meniscus. Due to structural and compositional differences between these tissues, diffusion and distribution of contrast agents may differ in cartilage and meniscus. The aim of this study is to determine the diffusion kinematics of a novel iodine based cationic contrast agent (CA(2+)) in cartilage and meniscus. Cylindrical cartilage and meniscus samples (d = 6 mm, h ≈ 2 mm) were harvested from healthy bovine knee joints (n = 10), immersed in isotonic cationic contrast agent (20 mgI/mL), and imaged using a micro-CT scanner at 26 time points up to 48 h. Subsequently, normalized X-ray attenuation and contrast agent diffusion flux, as well as water, collagen and proteoglycan (PG) contents in the tissues were determined. The contrast agent distributions within cartilage and meniscus were different. In addition, the normalized attenuation and diffusion flux were higher (p < 0.05) in cartilage. Based on these results, diffusion kinematics vary between cartilage and meniscus. These tissue specific variations can affect the interpretation of CECT images and should be considered when cartilage and meniscus are assessed simultaneously.

  1. Centralization of extruded medial meniscus delays cartilage degeneration in rats.

    Science.gov (United States)

    Ozeki, Nobutake; Muneta, Takeshi; Kawabata, Kenichi; Koga, Hideyuki; Nakagawa, Yusuke; Saito, Ryusuke; Udo, Mio; Yanagisawa, Katsuaki; Ohara, Toshiyuki; Mochizuki, Tomoyuki; Tsuji, Kunikazu; Saito, Tomoyuki; Sekiya, Ichiro

    2017-05-01

    Meniscus extrusion often observed in knee osteoarthritis has a strong correlation with the progression of cartilage degeneration and symptom in the patients. We recently reported a novel procedure "arthroscopic centralization" in which the capsule was sutured to the edge of the tibial plateau to reduce meniscus extrusion in the human knee. However, there is no animal model to study the efficacy of this procedure. The purposes of this study were [1] to establish a model of centralization for the extruded medial meniscus in a rat model; and [2] to investigate the chondroprotective effect of this procedure. Medial meniscus extrusion was induced by the release of the anterior synovial capsule and the transection of the meniscotibial ligament. Centralization was performed by the pulled-out suture technique. Alternatively, control rats had only the medial meniscus extrusion surgery. Medial meniscus extrusion was evaluated by micro-CT and macroscopic findings. Cartilage degeneration of the medial tibial plateau was evaluated macroscopically and histologically. By micro-CT analysis, the medial meniscus extrusion was significantly improved in the centralization group in comparison to the extrusion group throughout the study. Both macroscopically and histologically, the cartilage lesion of the medial tibial plateau was prevented in the centralization group but was apparent in the control group. We developed medial meniscus extrusion in a rat model, and centralization of the extruded medial meniscus by the pull-out suture technique improved the medial meniscus extrusion and delayed cartilage degeneration, though the effect was limited. Centralization is a promising treatment to prevent the progression of osteoarthritis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Nishioka, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  3. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Nishioka, S.; Hatayama, A.

    2013-01-01

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H − extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases

  4. Discoid Meniscus Associated With Achondroplasia.

    Science.gov (United States)

    Hoernschemeyer, Daniel G; Atanda, Alfred; Dean-Davis, Ellen; Gupta, Sumit K

    2016-05-01

    Achondroplasia is the most common skeletal dysplasia. This form of dwarfism is caused by a point mutation in the fibroblast growth factor receptor 3 (FGFR3) gene, leading to inhibition of endochondral ossification for these patients. This results in a normal trunk height but shortened limbs. The discoid meniscus may be an important associated finding to better understand the common complaints of leg pain for these patients. Although the incidence for a discoid meniscus is between 3% and 5% for the general population, it is unknown with achondroplasia. This case series includes 4 patients, with ages ranging from adolescence to early adulthood, with symptoms of knee pain that were not attributable to some of the more common findings seen in this patient population. Typically, patients with achondroplasia who experience knee pain are evaluated for more common and well-known etiologies such as genu varum, ligamentous instability, and neurogenic claudication. However, the authors propose that symptomatic discoid lateral meniscus should be added to the differential diagnosis for lower-extremity pain in the achondroplasia population. A thorough history and physical examination, in combination with magnetic resonance imaging, can aid in making the diagnosis. Treatment with arthroscopic debridement, saucerization of the meniscus, and repair for unstable injuries has yielded good outcomes for this patient population. [Orthopedics. 2016; 39(3):e498-e503.]. Copyright 2016, SLACK Incorporated.

  5. Structure-function relationships of human meniscus.

    Science.gov (United States)

    Danso, Elvis K; Oinas, Joonas M T; Saarakkala, Simo; Mikkonen, Santtu; Töyräs, Juha; Korhonen, Rami K

    2017-03-01

    Biomechanical properties of human meniscus have been shown to be site-specific. However, it is not known which meniscus constituents at different depths and locations contribute to biomechanical properties obtained from indentation testing. Therefore, we investigated the composition and structure of human meniscus in a site- and depth-dependent manner and their relationships with tissue site-specific biomechanical properties. Elastic and poroelastic properties were analyzed from experimental stress-relaxation and sinusoidal indentation measurements with fibril reinforced poroelastic finite element modeling. Proteoglycan (PG) and collagen contents, as well as the collagen orientation angle, were determined as a function of tissue depth using microscopic and spectroscopic methods, and they were compared with biomechanical properties. For all the measurement sites (anterior, middle and posterior) of lateral and medial menisci (n=26), PG content and collagen orientation angle increased as a function of tissue depth while the collagen content had an initial sharp increase followed by a decrease across tissue depth. The highest values (pmeniscus. This location had also higher (pmeniscus, higher (pmeniscus) significantly higher (pmeniscus modulus and/or nonlinear permeability. This study suggests that nonlinear biomechanical properties of meniscus, caused by the collagen network and fluid, may be strongly influenced by tissue osmotic swelling from the deep meniscus caused by the increased PG content, leading to increased collagen fibril tension. These nonlinear biomechanical properties are suggested to be further amplified by higher collagen content at all tissue depths and superficial collagen fibril orientation. However, these structure-function relationships are suggested to be highly site-specific. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Double-Layered Lateral Meniscus in an 8-Year-Old Child: Report of a Rare Case

    OpenAIRE

    Araki, Susumu; Kubo, Mitsuhiko; Kumagai, Kosuke; Imai, Shinji

    2016-01-01

    Reports of congenital abnormalities of the lateral meniscus include discoid meniscus, accessory meniscus, double-layered meniscus, and ring-shaped meniscus. Particularly, only a few cases of double-layered meniscus have been reported. We report a case of double-layered lateral meniscus, in which an additional semicircular meniscus was observed under the normal lateral meniscus. The accessory hemimeniscus was resected by means of arthroscopic surgery. This case demonstrates an interesting and ...

  7. Prosthetic replacement of the medial meniscus in cadaveric knees - Does the prosthesis mimic the functional behavior of the native meniscus?

    NARCIS (Netherlands)

    Tienen, TG; Verdonschot, N; Heijkants, RGJC; Buma, R; Scholten, JGF; van Kampen, A; Veth, RPH

    2004-01-01

    Meniscus replacement by a polymer meniscus prosthesis in dogs resulted in generation of new meniscal tissue. Hypothesis: Optimal functioning of the prosthesis would involve realistic deformation and motion patterns of the prosthesis during knee joint motion. Study Design: Controlled laboratory

  8. Meniscus maturation in the swine model: changes occurring along with anterior to posterior and medial to lateral aspect during growth

    Science.gov (United States)

    Di Giancamillo, Alessia; Deponti, Daniela; Addis, Alessandro; Domeneghini, Cinzia; Peretti, Giuseppe M

    2014-01-01

    The meniscus plays important roles in knee function and mechanics and is characterized by a heterogeneous matrix composition. The changes in meniscus vascularization observed during growth suggest that the tissue-specific composition may be the result of a maturation process. This study has the aim to characterize the structural and biochemical variations that occur in the swine meniscus with age. To this purpose, menisci were collected from young and adult pigs and divided into different zones. In study 1, both lateral and medial menisci were divided into the anterior horn, the body and the posterior horn for the evaluation of glycosaminoglycans (GAGs), collagen 1 and 2 content. In study 2, the menisci were sectioned into the inner, the intermediate and the outer zones to determine the variations in the cell phenotype along with the inner–outer direction, through gene expression analysis. According to the results, the swine meniscus is characterized by an increasing enrichment in the cartilaginous component with age, with an increasing deposition in the anterior horn (GAGs and collagen 2; P meniscus maturation, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. PMID:25216283

  9. Modeling study on axial wetting length of meniscus in vertical rectangular microgrooves

    International Nuclear Information System (INIS)

    Nie, Xuelei; Hu, Xuegong; Tang, Dawei

    2013-01-01

    In this work, the traditional model for predicting axial wetting length of meniscus in vertical microgrooves is introduced firstly. The traditional model may cause inaccurate results in predicting wetting length in vertical microgrooves because of the assumption of round meniscus in cross sections of microgrooves and the way of calculating curvature. In order to develop this model and make it more accurate, a revised micro-PIV system is built to test the meniscus shapes in cross sections of vertical and horizontal microgrooves, and the experimental results prove that the real shapes of meniscus are parabolic other than round. The fitting formulas of meniscus shapes are obtained with software Origin 7.5. Based on experimental results and fitting formulas, the traditional model is revised by changing the way to calculate curvature. In the modified model, the curvature for calculating axial wetting length of meniscus equals average curvature of meniscus in cross section of vertical microgrooves minus the average curvature of meniscus in cross section of horizontal microgrooves. It is proved that the modified model can predict the wetting length in vertical microgrooves better than the original model. The average difference between experiment and modified model is 2.5% while that between experiment and traditional model is 174.2%. The disadvantage of the modified model is that using the new model to predict wetting length needs to know the real shapes of meniscus in vertical and horizontal microgrooves. -- Highlights: ► An experimental system is designed to test the shapes of meniscus in microgrooves. ► The real shapes of meniscus in microgrooves are obtained for first time. ► The shapes of meniscus in microgrooves is compared and analyzed. ► The model for predicting wetting length of meniscus in microgrooves is developed

  10. Polymer composite microtube array produced by meniscus-guided approach

    Directory of Open Access Journals (Sweden)

    Kyu Hwang Won

    2013-09-01

    Full Text Available Single freestanding microtubes of poly(methyl methacrylate/polypyrrole (PMMA/PPy are produced based on a meniscus-guided approach. A ring-deposit of nanoparticles is first formed in a meniscus solution of PMMA/PPy nanoparticles by outward liquid flow in fast solvent evaporation. Continuous accumulation of nanoparticles on the ring-deposit is then made by guiding the meniscus upward under the outward flow, thereby forming single composite microtube with controlled outer diameter and wall thickness. The meniscus-guiding enables us to produce an array of freestanding microtubes that are individually controlled in size at the desired positions. We demonstrate individually addressable gas sensors by integrating PMMA/PPy microtubes on electrodes.

  11. MRI diagnosis of reverse and separation of meniscus articular capsule

    International Nuclear Information System (INIS)

    Tang Xiaofeng; Zhou Chengtao; Mu Renqi; Zhang Guanghui; Xu Yongzhong

    2005-01-01

    Objective: To explore the MR imaging of reverse and separation of meniscal articular capsule. Methods: MR imaging of reverse and separation of meniscus articular capsule confirmed by surgery and arthroscope were analyzed retrospectively in 8 cases. Results: The 'Butterfly knot sign' disappeared and was replaced with fluid signal on the sagittal slice of meniscal body in 8 cases. Part of back angle remained in 3 cases. 'Double anterior cruciate ligament sign' was showed on one side of middle sagittal slice in 7 cases. 'Reverse meniscus sign' was revealed in intercondylar fossa on the coronary view in 8 cases. Abnormal high signal was showed in the injured meniscus in 6 cases. Abnormal high signal was detected in the opposite meniscus in 5 cases. Conclusion: The MR findings of reverse and separation of meniscus articular capsule include disappearance of 'butterfly knot sign', appearance of 'reverse meniscus sign' and 'double anterior cruciate ligament sign'. The diagnosis would be established if the former 2 signs were present or all the 3 signs were present simultaneously. (authors)

  12. Transport of Iodine Is Different in Cartilage and Meniscus.

    Science.gov (United States)

    Honkanen, J T J; Turunen, M J; Tiitu, V; Jurvelin, J S; Töyräs, J

    2016-07-01

    Contrast enhanced computed tomography (CECT) has been proposed for diagnostics of cartilage and meniscus injuries and degeneration. As both tissues may be imaged simultaneously, CECT could provide a method for comprehensive evaluation of knee joint health. Since the composition and structure of cartilage and meniscus are different, we hypothesize that transport characteristics of anionic contrast agents also differ between the tissues. This would affect interpretation of CECT images and warrants investigation. To clarify this, we aimed to determine the transport kinematics of anionic iodine (q = -1, M = 126.9 g/mol), assumed to not be significantly affected by the steric hindrance, thus providing faster transport than large molecule contrast agents (e.g., ioxaglate). Cylindrical samples (d = 6 mm, h = 2 mm) were prepared from healthy bovine (n = 10) patella and meniscus, immersed in isotonic phosphate-buffered NaI solution (20 mgI/mL), and subsequently imaged with a micro-CT at 20 time points up to 23 h. Subsequently, normalized attenuation and contrast agent flux, as well as water, collagen, and proteoglycan (PG) contents in the tissues were determined. Normalized attenuation at equilibrium was higher (p = 0.005) in meniscus. Contrast agent flux was lower (p = 0.005) in the meniscus at 10 min, but higher (p meniscus was different, especially between the first 2 hours after the immersion. This is an important finding which should be considered during simultaneous CECT of cartilage and meniscus.

  13. The MR diagnosis of discoid lateral meniscus of the knee

    International Nuclear Information System (INIS)

    Araki, Yutaka; Ishida, Tsuyoshi; Ohtani, Masatoshi; Yamamoto, Hironori; Yamamoto, Tadasi; Tsukaguchi, Isao; Nakamura, Hitonobu.

    1992-01-01

    To establish the criteria for the diagnosis of discoid lateral meniscus, we introduced a discriminant analysis to our statistical study. Materials included surgically proved 38 discoid lateral menisci and 36 normal menisci imaged by means of MR. Numerical measurements were performed interactively on the MR monitor with eight possible parameters of these parameters, a discriminant analysis revealed that the transverse width of the lateral meniscus on the coronal image was the best parameter. Our study showed that discoid lateral meniscus should be present if the transverse width of the lateral meniscus exceeded 14.3 mm. (author)

  14. The Degeneration of Meniscus Roots Is Accompanied by Fibrocartilage Formation, Which May Precede Meniscus Root Tears in Osteoarthritic Knees.

    Science.gov (United States)

    Park, Do Young; Min, Byoung-Hyun; Choi, Byung Hyune; Kim, Young Jick; Kim, Mijin; Suh-Kim, Haeyoung; Kim, Joon Ho

    2015-12-01

    Fibrocartilage metaplasia in tendons and ligaments is an adaptation to compression as well as a pathological feature during degeneration. Medial meniscus posterior roots are unique ligaments that resist multidirectional forces, including compression. To characterize the degeneration of medial meniscus posterior root tears in osteoarthritic knees, with an emphasis on fibrocartilage and calcification. Cross-sectional study; Level of evidence, 3. Samples of medial meniscus posterior roots were harvested from cadaveric specimens and patients during knee replacement surgery and grouped as follows: normal reference, no tear, partial tear, and complete tear. Degeneration was analyzed with histology, immunohistochemistry, and real-time polymerase chain reaction. Uniaxial tensile tests were performed on specimens with and without fibrocartilage. Quantifiable data were statistically analyzed by the Kruskal-Wallis test with the Dunn comparison test. Thirty, 28, and 42 samples harvested from 99 patients were allocated into the no tear, partial tear, and complete tear groups, respectively. Mean modified Bonar tendinopathy scores for each group were 3.97, 9.31, and 14.15, respectively, showing a higher degree of degeneration associated with the extent of the tear (P fibrocartilage according to the extent of the tear. Tear margins revealed fibrocartilage in 59.3% of partial tear samples and 76.2% of complete tear samples, with a distinctive cleavage-like shape. Root tears with a similar shape were induced within fibrocartilaginous areas during uniaxial tensile testing. Even in the no tear group, 56.7% of samples showed fibrocartilage in the anterior margin of the root, adjacent to the meniscus. An increased stained area of calcification and expression of the ectonucleotide pyrophosphatase/phosphodiesterase 1 gene were observed in the complete tear group compared with the no tear group (P Fibrocartilage and calcification increased in medial meniscus posterior roots, associated

  15. Are Applied Growth Factors Able to Mimic the Positive Effects of Mesenchymal Stem Cells on the Regeneration of Meniscus in the Avascular Zone?

    Directory of Open Access Journals (Sweden)

    Johannes Zellner

    2014-01-01

    Full Text Available Meniscal lesions in the avascular zone are still a problem in traumatology. Tissue Engineering approaches with mesenchymal stem cells (MSCs showed successful regeneration of meniscal defects in the avascular zone. However, in daily clinical practice, a single stage regenerative treatment would be preferable for meniscus injuries. In particular, clinically applicable bioactive substances or isolated growth factors like platelet-rich plasma (PRP or bone morphogenic protein 7 (BMP7 are in the focus of interest. In this study, the effects of PRP and BMP7 on the regeneration of avascular meniscal defects were evaluated. In vitro analysis showed that PRP secretes multiple growth factors over a period of 8 days. BMP7 enhances the collagen II deposition in an aggregate culture model of MSCs. However applied to meniscal defects PRP or BMP7 in combination with a hyaluronan collagen composite matrix failed to significantly improve meniscus healing in the avascular zone in a rabbit model after 3 months. Further information of the repair mechanism at the defect site is needed to develop special release systems or carriers for the appropriate application of growth factors to support biological augmentation of meniscus regeneration.

  16. Successful Total Meniscus Reconstruction Using a Novel Fiber-Reinforced Scaffold: A 16- and 32-Week Study in an Ovine Model.

    Science.gov (United States)

    Merriam, Aaron R; Patel, Jay M; Culp, Brian M; Gatt, Charles J; Dunn, Michael G

    2015-10-01

    Meniscus injuries in the United States result in an estimated 850,000 surgical procedures each year. Although meniscectomies are the most commonly performed orthopaedic surgery, little advancement has been made in meniscus replacement and regeneration, and there is currently no total meniscus replacement device approved by the Food and Drug Administration. A novel fiber-reinforced meniscus scaffold can be used as a functional total meniscus replacement. Controlled laboratory study. A tyrosine-derived, polymer fiber-reinforced collagen sponge meniscus scaffold was evaluated mechanically (tensile and compressive testing) and histologically after 16 and 32 weeks of implantation in an ovine total meniscectomy model (N = 20; 16 implants plus 4 meniscectomies, divided equally over the 2 time periods). The extent of cartilage damage was also measured on tibial plateaus by use of toluidine blue surface staining and on femoral condyles by use of Mankin scores on histological slides. Scaffolds induced formation of neomeniscus tissue that remained intact and functional, with breaking loads approximating 250 N at both 16 and 32 weeks compared with 552 N for native menisci. Tensile stiffness values (99 and 74 N/mm at 16 and 32 weeks, respectively) were also comparable with those of the native meniscus (147 N/mm). The compressive modulus of the neomeniscus tissue (0.33 MPa at both 16 and 32 weeks) was significantly increased compared with unimplanted (time 0) scaffolds (0.15 MPa). There was histological evidence of extensive tissue ingrowth and extracellular matrix deposition, with immunohistochemical evidence of types I and II collagen. Based on significantly decreased surface damage scores as well as Mankin scores, the scaffold implants provided greater protection of articular cartilage compared with the untreated total meniscectomy. This novel fiber-reinforced meniscus scaffold can act as a functional meniscus replacement, with mechanical properties similar to those of the

  17. Meniscus and viscous forces during normal separation of liquid-mediated contacts

    International Nuclear Information System (INIS)

    Cai Shaobiao; Bhushan, Bharat

    2007-01-01

    Menisci form between two solid surfaces with the presence of an ultra-thin liquid film. Meniscus and viscous forces contribute to an adhesive force when two surfaces are separated. The adhesive force can be very large and can result in high friction, stiction and possibly high wear. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small, as is common for micro-/nanodevices. In this study, equations for meniscus and viscous forces during separation of two flat surfaces, and a sphere and a flat surface, are developed, and the corresponding adhesive forces contributed by these two types of forces are examined. The geometric meniscus curvatures and break point are theoretically determined, and the role of meniscus and viscous forces is evaluated during separation. The influence of separation distance, liquid thickness, meniscus area, separation time, liquid properties and contact angles are analyzed. Critical meniscus areas at which transition in the dominance of meniscus to viscous forces occurs for different given conditions, i.e. various initial liquid thicknesses, contact angles and designated separation time, are identified. The analysis provides a fundamental understanding of the physics of separation process, and insights into the relationships between meniscus and viscous forces. It is also valuable for the design of the interface for various devices

  18. The accuracy of musculoskeletal ultrasound examination for the exploration of meniscus injuries in athletes.

    Science.gov (United States)

    Mureşan, Simona; Mureşan, Mircea; Voidăzan, Septimiu; Neagoe, Radu

    2017-05-01

    Meniscus injuries represent a frequently occurring pathology in athletes and require an optimum diagnosis protocol. This study aimed to evaluate the accuracy of ultrasound examination for the identification of meniscus injuries, in comparison with magnetic resonance imaging (MRI), using the arthroscopy as reference. This prospective longitudinal comparative study included 45 athletes who were clinically examined by MRI and further, by arthroscopy, in a medical center dedicated to sport traumatology. The conventional ultrasound exploration of the knee allowed the identification of a diverse pathology, presenting a sensitivity of 88.8% for the diagnosis of medial meniscus injuries and 70.0% for the lateral meniscus. The specificity was 77.7% for the medial meniscus and 96.0% for the identification of lateral meniscus injuries. Using MRI, a sensitivity of 69.4% was obtained for the medial meniscus and 75.0% for the lateral meniscus, with a specificity of 76.6% for the pathology of medial meniscus and 80.0% for the lateral meniscus. Statistical analysis, based on the comparison of ROC curves, did not show any significant difference between the two applied diagnostic techniques (P=0.061 for the medial meniscus and P=0.534 for the lateral meniscus). The musculoskeletal ultrasound exploration of the knee joint, performed in a medical center with high addressability, by an experienced examiner, was able to identify the medial and lateral meniscus injuries with an accuracy comparable to that of MRI examination.

  19. MRI of radial displacement of the meniscus in the knee

    International Nuclear Information System (INIS)

    Chen Jian; Lv Houshan; Lao Shan; Guan Zhenpeng; Hong Nan; Liang Hao

    2006-01-01

    Objective: To describe the phenomenon of radial displacement of the meniscus of the knees in the study population with MR imaging, and to establish MRI diagnostic criteria for radial displacement of the meniscus and displacement index. Methods: MR signs of radial displacement of the meniscus were evaluated retrospectively in 398 patients with knee symptoms who were examined with non- weight bearing MR images from Jan. 2000 to Feb. 2004. The patients younger than 18 years old, with joint effusion or serious arthropathy were excluded and 312 patients were eligible to be enrolled in this study. The criterion for radial displacement of the meniscus was defined as the location of the edge of meniscal body beyond the femoral and tibial outer border line. A displacement index, defined as the ratio of meniscal overhang to meniscal width, was used to quantify meniscal displacement. Results: The prevalence of radial displacement of the meniscus was 16.7% (52/312) and 13.9% (21/151) in right knee and 19.3% (31/161 )in left knee, respectively. There was no significant difference between left and right knee (χ 2 =1.60, P>0.05) and the ratio between medial and lateral meniscus was 7.8:1. The average displacement index was 0.54±0.24. The displacement indices were significant higher in older group (F=3.63, P<0.05). The incidence and indices of radial displacement of the meniscus for patients under or above 50 year older were 12.0%(17/142), 0.46±0.22 and 20.6% (35/170), 0.64±0.20, respectively. Difference was highly significant (t=0.84, P<0.01). Conclusion: It was concluded that radial displacement of the meniscus in knees was not a rare finding with MR imaging in patients with knee symptoms. The incidence increased in older age group. Further investigations were recommended to understand the etiology and clinical significance of the phenomenon of radial displacement of the meniscus. (authors)

  20. [Correlation between morphogical factor of lateral plateau fracture and meniscus injury].

    Science.gov (United States)

    Bai, L; Zhou, W; Zhang, W T; Huang, W; You, T; Chen, P; Zhang, H L

    2016-04-18

    To analyze morphological character of lateral tibial plateau fracture fragment, and its correlation to the presence of a meniscus injury in tibial plateau fractures. A total of 79 consecutive patients of the simple lateral tibial plateau fractures from July 2011 to July 2015 were included in this study, with 65 males and 14 females with an average age of (34.3±7.2) years and 22-61 years. According to Schatzker classification, 21 cases were of Type I, 41 cases Type II, and 17 cases Type III. The characteristics of lateral tibial plateau fractures were evaluated by plain X-ray and magnetic resonance imaging (MRI). The type and severity of meniscus injury were diagnosed by MRI scan. Three-dimensional measurements of the lateral fragment width (LFW), the lateral plateau depression (LPD), the coronal angulation of lateral fragment (CALF), and tibial plateau widening (TPW) were measured with Picture Archiving and Communication Systems(PACS) software. The patients with and without meniscus injuries were divided into different groups and analyzed respectively. Comparison of the above measurements between the two groups was analyzed by independent t test. In all the 79 lateral tibial plateau fracture patients, 26 cases (32.9%) of meniscus injuries were detected by MRI. Among all the meniscus injury cases, 3 were of Schatzker I, 16 Schatzker II, and 7 Schatzker III. In meniscus intact group, the average LFW was (22.0±2.8) mm while in meniscus injury group it was (21.3± 3.3) mm (t=-1.008, P=0.317).The average LPD of non meniscus injury group was (5.4±2.8) mm, while in meniscus injury group was (8.7±2.8) mm (t=4.98, P=0.001). The average CALF of the two groups were 9.1°±6.1°and 10.6°± 7.1°, and there was no significant difference between the two groups (t=0.38, P=0.831). The average TPW was (3.0± 1.1) mm, and (4.8±1.7) mm of the two groups. There were significant differences between the two groups (t=5.216, P=0.001). There was no obvious correlation between the

  1. Influence of the liquid helium meniscus on neutron reflectometry data

    International Nuclear Information System (INIS)

    Kinane, C.J.; Kirichek, O.; Charlton, T.R.; McClintock, P.V.E.

    2016-01-01

    Neutron reflectometry offers a unique opportunity for the direct observation of nanostratification in 3 He- 4 He mixtures in the ultra-low temperature limit. Unfortunately the results of recent experiments could not be well-modelled on account of a seemingly anomalous variation of reflectivity with momentum transfer. We now hypothesize that this effect is attributable to an optical distortion caused by the liquid meniscus near the container wall. The validity of this idea is tested and confirmed through a subsidiary experiment on a D 2 O sample, showing that the meniscus can significantly distort results if the beam size in the horizontal plane is comparable with, or bigger than, the diameter of the container. The meniscus problem can be eliminated if the beam size is substantially smaller than the diameter of the container, such that reflection takes place only from the flat region of the liquid surface thus excluding the meniscus tails. Practical measures for minimizing the meniscus distortion effect are discussed.

  2. Posterior meniscus root tears: associated pathologies to assist as diagnostic tools.

    Science.gov (United States)

    Matheny, Lauren M; Ockuly, Andrew C; Steadman, J Richard; LaPrade, Robert F

    2015-10-01

    The purpose of this study was to investigate associated pathologies identified at arthroscopy in patients with meniscus root tears. This study was Institutional Review Board approved. All patients who underwent arthroscopic knee surgery where a complete meniscus root tear was identified were included in this study. Concurrent ligament tears and articular cartilage changes ≥Outerbridge grade 2 were recorded and stored in a data registry. Fifty patients (28 males, 22 females) [mean age = 36.5 years (range 17.1-68.1 years)] who were diagnosed with a medial or lateral meniscus root tear at arthroscopy were included in this study out of 673 arthroscopic surgeries (prevalence 7.4 %). Twenty-three (46 %) patients had a medial meniscus root tear, 26 (52 %) patients had a lateral meniscus root tear and one (2 %) patient had both. Thirty-four per cent of patients (n = 17) underwent partial meniscectomy, while 60 % (n = 31) underwent suture repair. During arthroscopy, 60 % (n = 30) of patients were diagnosed with an anterior cruciate ligament (ACL) tear. Patients with lateral meniscus root tears were 10.3 times (95 % CI 2.6-42.5) more likely to have ACL tears than patients with medial meniscus root tears (p = 0.012). Patients who had medial meniscus root tears were 5.8 times (95 % CI 1.6-20.5) more likely to have chondral defects than patients who had lateral meniscus root tears (p = 0.044). In this study, patients' preoperative functional scores and activity levels were low. Patients with lateral meniscal root tears were more likely to have an ACL tear. Patients with medial meniscal root tears were more likely to have an knee articular cartilage defect with an Outerbridge grade 2 or higher chondral defect. This study confirms the importance of comprehensive assessment of concurrent injuries to properly diagnose meniscus root tears. IV.

  3. Micromechanical anisotropy and heterogeneity of the meniscus extracellular matrix.

    Science.gov (United States)

    Li, Qing; Qu, Feini; Han, Biao; Wang, Chao; Li, Hao; Mauck, Robert L; Han, Lin

    2017-05-01

    To understand how the complex biomechanical functions of the meniscus are endowed by the nanostructure of its extracellular matrix (ECM), we studied the anisotropy and heterogeneity in the micromechanical properties of the meniscus ECM. We used atomic force microscopy (AFM) to quantify the time-dependent mechanical properties of juvenile bovine meniscus at deformation length scales corresponding to the diameters of collagen fibrils. At this scale, anisotropy in the elastic modulus of the circumferential fibers, the major ECM structural unit, can be attributed to differences in fibril deformation modes: uncrimping when normal to the fiber axis, and laterally constrained compression when parallel to the fiber axis. Heterogeneity among different structural units is mainly associated with their variations in microscale fiber orientation, while heterogeneity across anatomical zones is due to alterations in collagen fibril diameter and alignment at the nanoscale. Unlike the elastic modulus, the time-dependent properties are more homogeneous and isotropic throughout the ECM. These results enable a detailed understanding of the meniscus structure-mechanics at the nanoscale, and can serve as a benchmark for understanding meniscus biomechanical functions, documenting disease progression and designing tissue repair strategies. Meniscal damage is a common cause of joint injury, which can lead to the development of post-traumatic osteoarthritis among young adults. Restoration of meniscus function requires repairing its highly heterogeneous and complex extracellular matrix. Employing AFM, this study quantifies the anisotropic and heterogeneous features of the meniscus ECM structure and mechanics. The micromechanical properties are interpreted within the context of the collagen fibril nanostructure and its variation with tissue anatomical locations. These results provide a fundamental structure-mechanics knowledge benchmark, against which, repair and regeneration strategies can

  4. Thermocapillary flow about an evaporating meniscus

    Science.gov (United States)

    Schmidt, G. R.; Chung, T. J.

    1992-01-01

    The steady motion and thermal behavior of an evaporating superheated liquid in a small cavity bounded by isothermal sidewalls is examined. Scaling analyses and a two-dimensional finite element model are used to investigate the influence of thermocapillarity, buoyancy, and temperature-dependent mass flux on flowfield, interfacial heat transfer, and meniscus morphology. Numerical investigations indicate the existence of two counter-rotating cells symmetric about the cavity center. Results also show that evaporation tends to counteract this circulation by directing flow toward the hotter sidewalls. Although thermocapillarity and evaporation yield different flowfield distributions, both effects tend to increase interfacial temperature and heat transfer.

  5. Case report 483: Discoid lateral meniscus (DLM), medially displaced, with complex tear

    International Nuclear Information System (INIS)

    Howe, M.A.; Buckwalter, K.A.; Braunstein, E.M.; Wojtys, E.M.

    1988-01-01

    A case of a 9-year-old girl who presented with persistent pain in the left knee was demonstrated to have a discoid lateral meniscus (DLM). The sagittal MR images demonstrated the oval shape of the meniscus, consistent with the typical arthrographic appearance. The coronal images showed that the main substance of the meniscus was displaced medially, with overgrowth of the articular cartilage at the lateral aspect of the joint. The medial aspect of the lateral femoral condyle was concave to accommodate the abnormal meniscus. These findings are consistent with long-standing, medial displacement of the torn meniscus. The literature concerning DLM, an uncommon variant, was reviewed and discussed. (orig.)

  6. Platelet-rich plasma can replace fetal bovine serum in human meniscus cell cultures

    NARCIS (Netherlands)

    Gonzales, V.K.; Mulder, E.L.W. de; Boer, T. den; Hannink, G.; Tienen, T.G. van; Heerde, W.L. van; Buma, P.

    2013-01-01

    Concerns over fetal bovine serum (FBS) limit the clinical application of cultured tissue-engineered constructs. Therefore, we investigated if platelet-rich plasma (PRP) can fully replace FBS for meniscus tissue engineering purposes. Human PRP and platelet-poor plasma (PPP) were isolated from three

  7. Inertial rise of a meniscus on a vertical cylinder

    KAUST Repository

    O’ Kiely, Doireann; Whiteley, Jonathan P.; Oliver, James M.; Vella, Dominic

    2015-01-01

    © © 2015 Cambridge University PressA. We consider the inertia-dominated rise of a meniscus around a vertical circular cylinder. Previous experiments and scaling analysis suggest that the height of the meniscus, h-{m}, grows with the time following

  8. Analysis of Multigrid Extraction Plasma Meniscus Formation

    CERN Document Server

    Cavenago, Marco; Sattin, Fabio; Tanga, Arturo

    2005-01-01

    Effects of plasma meniscus on the emittance in negative ion source proposed for spallation sources or neutral beam injectors (NBI) for tokamaks are particularly interesting to study with fluid models because: 1) at least three different charged fluid can be recognised: the thermalized and fully magnetized electrons; the slightly magnetized and roughly thermalized positive ions; the negative ions, typically formed within few cm from meniscus; 2) different implementation of the magnetic filter system need to be compared; 3) optimization of electron dump and outlet electrode strongly depends on plasma meniscus contact point. With reasonable assumption on system geometry, 2D and 3D charged fluid quation for the selfconsistent electrostatic field can be written and effect of grid aperture is investigated. Moreover, these equations are easily implemented into a multiphysics general purpose program. Preliminary results are described, and compared to existing codes.

  9. Changes of rabbit meniscus influenced by hyaline cartilage injury of osteoarthritis.

    Science.gov (United States)

    Zhao, Jiajun; Huang, Suizhu; Zheng, Jia; Zhong, Chunan; Tang, Chao; Zheng, Lei; Zhang, Zhen; Xu, Jianzhong

    2014-01-01

    Osteoarthritis (OA) is a common disease in the elderly population. Most of the previous OA-related researches focused on articular cartilage degeneration, osteophyte formation and synovitis etc. However, the role of the meniscus in these pathological changes has not been given enough attention. The goal of our study was to find the pathological changes of the meniscus in OA knee and determine their relationship. 20 months old female Chinese rabbits received either knee damaging operations with articular cartilage scratch method or sham operation randomly on one of their knees. They were sacrificed after 1-6 weeks post-operation. Medial Displacement Index (MDI) for meniscus dislocation, hematoxylin and eosin (HE) for routine histological evaluation, Toluidine blue (TB) stains for evaluating proteoglycans were carried out. Immunohistochemical (IHC) staining was performed with a two-step detection kit. Histological analysis showed chondrocyte clusters around cartilage lesions and moderate loss of proteoglycans in the operation model, as well as MDI increase and all characteristics of OA. High expression of MMP-3 and TIMP-1 also were found in both hyaline cartilage and meniscus. Biomechanical and biochemistry environment around the meniscus is altered when OA occur. If meniscus showed degeneration, subluxation and dysfunction, OA would be more severe. Prompt repair or reconstruction of hyaline cartilage in weight bearing area when it injured could prevent meniscus degeneration and subluxation, then prevent the development of OA.

  10. Use of intravoxel incoherent motion diffusion-weighted imaging in identifying the vascular and avascular zones of human meniscus.

    Science.gov (United States)

    Guo, Tan; Chen, Juan; Wu, Bing; Zheng, Dandan; Jiao, Sheng; Song, Yan; Chen, Min

    2017-04-01

    To investigate the hypothesis that the intravoxel incoherent motion (IVIM) diffusion-weighted imaging may depict microcirculation of meniscus and the perfusion changes in meniscal disorder. Fifty patients received diffusion-weighted MRI with multiple b-values ranging from 0 to 400 s/mm 2 . The four horns of the menisci were divided into normal, degenerated, and torn groups. IVIM parameters including perfusion fraction (f), pseudo-diffusion coefficient (D*), true diffusion coefficient (D), and the product of f and D* (f D*) of normal meniscal red zone and white zone were derived and compared for microcirculation changes of normal, degenerated, and torn posterior horn of the medial meniscus (PMM). The parameters between red and white zones among the groups were compared. Significant differences were considered when P meniscus and the perfusion changes in meniscal disorder. 3 J. Magn. Reson. Imaging 2017;45:1090-1096. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Dislocation of the temporomandibular joint meniscus: contrast arthrography vs. computed tomography

    International Nuclear Information System (INIS)

    Thompson, J.R.; Christiansen, E.; Sauser, D.; Hasso, A.N.; Hinshaw, D.B. Jr.

    1985-01-01

    A prospective study to determine the accuracy of computed tomography (CT) for the diagnosis of dislocation of the temporomandibular joint (TMJ) meniscus was made by performing both CT and contrast arthrography on 18 joints suspected of meniscus dislocation. Arthography rather than surgery was chosen as the quality standard for comparing CT findings, as not all patients undergoing the studies underwent surgery. The results of each test were reported independently by the radiologist who obtained either all of the arthograms or all of the CT scans. For dislocation of the meniscus, there were excellent agreement between the two methods. CT seems to be nearly as accurate as arthrography for showing meniscus dislocation, is performed with lower x-ray exposure, and is noninvasive. Arthrograpy discloses more detailed information about the joint meniscus, such as perforation and maceration, and should continue to be used when this kind of information is clinically important

  12. Clinical Application of Scaffolds for Partial Meniscus Replacement.

    Science.gov (United States)

    Moran, Cathal J; Withers, Daniel P; Kurzweil, Peter R; Verdonk, Peter C

    2015-09-01

    Meniscal tears are common injuries often treated by partial meniscectomy. This may result in altered joint contact mechanics which in turn may lead to worsening symptoms and an increased risk of osteoarthritis. Meniscal scaffolds have been proposed as a treatment option aimed at reducing symptoms while also potentially reducing progression of degenerative change. There are 2 scaffolds available for clinical use at the present time; Collagen Meniscus Implant and Actifit. Medium-term to long-term data (4.9 to 11.3 y) demonstrate efficacy of partial meniscus replacement. The patients who seem to benefit most are chronic postmeniscectomy rather than acute meniscal injuries. Herein we report on available clinical data for Collagen Meniscus Implant and Actifit while describing our preferred surgical technique and postoperative rehabilitation program.

  13. Quantitative histological grading methods to assess subchondral bone and synovium changes subsequent to medial meniscus transection in the rat.

    Science.gov (United States)

    Kloefkorn, Heidi E; Allen, Kyle D

    The importance of the medial meniscus to knee health is demonstrated by studies which show meniscus injuries significantly increase the likelihood of developing osteoarthritis (OA), and knee OA can be modeled in rodents using simulated meniscus injuries. Traditionally, histological assessments of OA in these models have focused on damage to the articular cartilage; however, OA is now viewed as a disease of the entire joint as an organ system. The aim of this study was to develop quantitative histological measures of bone and synovial changes in a rat medial meniscus injury model of knee OA. To initiate OA, a medial meniscus transection (MMT) and a medial collateral ligament transection (MCLT) were performed in 32 male Lewis rats (MMT group). MCLT alone served as the sham procedure in 32 additional rats (MCLT sham group). At weeks 1, 2, 4, and 6 post-surgery, histological assessment of subchondral bone and synovium was performed (n = 8 per group per time point). Trabecular bone area and the ossification width at the osteochondral interface increased in both the MMT and MCLT groups. Subintimal synovial cell morphology also changed in MMT and MCLT groups relative to naïve animals. OA affects the joint as an organ system, and quantifying changes throughout an entire joint can improve our understanding of the relationship between joint destruction and painful OA symptoms following meniscus injury.

  14. Repair of the meniscus. An experimental investigation in rabbits

    NARCIS (Netherlands)

    Veth, R. P.; den Heeten, G. J.; Jansen, H. W.; Nielsen, H. K.

    1983-01-01

    The healing process of wedge-shaped and longitudinal lesions in the meniscus of the knee was investigated in 74 menisci in 24 Chinchilla rabbits. In four cases the whole meniscus was removed and reimplanted. healing was most evident in the wedge-shaped lesions, which were repaired by fibrocartilage.

  15. Augmentation of the Pullout Repair of a Medial Meniscus Posterior Root Tear by Arthroscopic Centralization

    OpenAIRE

    Koga, Hideyuki; Watanabe, Toshifumi; Horie, Masafumi; Katagiri, Hiroki; Otabe, Koji; Ohara, Toshiyuki; Katakura, Mai; Sekiya, Ichiro; Muneta, Takeshi

    2017-01-01

    The meniscus roots are critical for meniscus function in preserving correct knee kinematics and avoiding meniscus extrusion and, consequently, in the progression of osteoarthritis. Several techniques exist for medial meniscus posterior root tear repair; however, current surgical techniques have been proved to fail to reduce meniscus extrusion, which has been shown to be associated with development of osteoarthritis, although significant improvements in the postoperative clinical findings have...

  16. Prevalence of Discoid Meniscus During Arthroscopy for Isolated Lateral Meniscal Pathology in the Pediatric Population.

    Science.gov (United States)

    Ellis, Henry B; Wise, Kelsey; LaMont, Lauren; Copley, Lawson; Wilson, Philip

    2017-06-01

    Meniscus tears in the young patient are becoming more prevalent. Knowledge of presenting characteristics and morphology can affect treatment decisions. The purpose of this study was to review and evaluate all the isolated lateral meniscus pathology that required arthroscopic treatment in a pediatric sports medicine practice and compare presenting characteristics between those with a discoid meniscus and those with normal meniscal morphology. We performed a retrospective review of all isolated lateral meniscus arthroscopic procedures from 2003 to 2012 in a high-volume pediatric sports practice. Presentation, radiographs, and intraoperative findings were reviewed. The prevalence and clinical findings of a discoid meniscus in this population and among all age groups were compared with those with a meniscus tear occurring in a normal meniscus. Two hundred and sixty-one arthroscopies were performed for symptomatic isolated lateral menisci pathology. Of these, 75% were discoid in nature; the remainder was tears occurring in normal menisci. Ninety-six of 99 patients (97%) with lateral meniscus pathology under the age of 13 had a discoid meniscus and 66% presented with no injury. There was a transition within the population at 14 years of age, with a rise in the incidence of normal meniscal body tears. Even after this transition point, meniscal pathology incidence remained notable; 59% of isolated lateral meniscus pathology in patients between the ages of 14 and 16 years old were a discoid meniscus. Magnetic resonance imaging criteria for discoid meniscus (3 consecutive sagittal cuts or coronal mid-compartment measure) were unreliable after the age of 13 years old. The ratio of complete to incomplete discoids in all age groups was 4 to 3. In conclusion, discoid menisci have a high prevalence in isolated lateral meniscus pathology requiring knee arthroscopy. Clinical presentation, imaging, characteristics, and treatment may be different among different age groups. In the

  17. Flow near the meniscus of a pressure-driven water slug in microchannels

    International Nuclear Information System (INIS)

    Kim, Sung Wook; Jin, Song Wan; Yoo, Jung Yul

    2006-01-01

    Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion

  18. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  19. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    International Nuclear Information System (INIS)

    Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Okuda, S.; Fukano, A.

    2014-01-01

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result

  20. MR appearance of anomalous insertion of the medial meniscus. A case report

    International Nuclear Information System (INIS)

    Arjun, S.; Takahashi, S.; Nakane, N.; Yonemitsu, H.; Tang, Y.

    1998-01-01

    We report on the MR imaging of an anomalous medial meniscus with a tear in a 41-year-old man. Anomaly of the medial meniscus is rare and difficult to diagnose clinically. The MR images contributed to the pre-arthroscopic diagnosis and arthroscopy confirmed the lesion. The anomalous meniscus was not related to the symptoms. (orig.)

  1. Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions.

    Science.gov (United States)

    Croutze, Roger; Jomha, Nadr; Uludag, Hasan; Adesida, Adetola

    2013-12-13

    Limited intrinsic healing potential of the meniscus and a strong correlation between meniscal injury and osteoarthritis have prompted investigation of surgical repair options, including the implantation of functional bioengineered constructs. Cell-based constructs appear promising, however the generation of meniscal constructs is complicated by the presence of diverse cell populations within this heterogeneous tissue and gaps in the information concerning their response to manipulation of oxygen tension during cell culture. Four human lateral menisci were harvested from patients undergoing total knee replacement. Inner and outer meniscal fibrochondrocytes (MFCs) were expanded to passage 3 in growth medium supplemented with basic fibroblast growth factor (FGF-2), then embedded in porous collagen type I scaffolds and chondrogenically stimulated with transforming growth factor β3 (TGF-β3) under 21% (normal or normoxic) or 3% (hypoxic) oxygen tension for 21 days. Following scaffold culture, constructs were analyzed biochemically for glycosaminoglycan production, histologically for deposition of extracellular matrix (ECM), as well as at the molecular level for expression of characteristic mRNA transcripts. Constructs cultured under normal oxygen tension expressed higher levels of collagen type II (p = 0.05), aggrecan (p oxygen tension. There was no significant difference in expression of these genes between scaffolds seeded with MFCs isolated from inner or outer regions of the tissue following 21 days chondrogenic stimulation (p > 0.05). Cells isolated from inner and outer regions of the human meniscus demonstrated equivalent differentiation potential toward chondrogenic phenotype and ECM production. Oxygen tension played a key role in modulating the redifferentiation of meniscal fibrochondrocytes on a 3D collagen scaffold in vitro.

  2. Evaluation of posterior lateral femoral condylar hypoplasia using axial MRI images in patients with complete discoid meniscus.

    Science.gov (United States)

    Xu, Zhihong; Chen, Dongyang; Shi, Dongquan; Dai, Jin; Yao, Yao; Jiang, Qing

    2016-03-01

    Hypoplasia of the lateral femoral condyle has been reported in discoid lateral meniscus patients, but associated imaging findings in the axial plane have not been characterized. In this study, we aimed to identify differences in the lateral femoral condyle between patients with discoid lateral meniscus and those with normal menisci using axial MRI images. Twenty-three patients (24 knees) with complete discoid lateral meniscus, 43 (45 knees) with incomplete discoid lateral meniscus, and 50 with normal menisci (50 knees) were enrolled and distributed into three groups. Two new angles, posterior lateral condylar angle (PLCA) and posterior medial condylar angle (PMCA), were measured on axial MRI images; the posterior condylar angle (PCA) was also measured. Differences between the three groups in the PLCA, PMCA, PCA, and PLCA/PMCA were analysed. The predictive value of PLCA and PLCA/PMCA for complete discoid lateral meniscus was assessed. In the complete discoid lateral meniscus group, PLCA and PLCA/PMCA were significantly smaller compared with the normal meniscus group and the incomplete discoid lateral meniscus group (P meniscus group compared with the incomplete discoid lateral meniscus group (P meniscus group (P meniscus. Hypoplasia of the posterior lateral femoral condyle is typically seen in patients with complete discoid lateral meniscus. PLCA and PLCA/PMCA can be measured from axial MRI images and used as excellent predictive parameters for complete discoid lateral meniscus. Diagnostic study, Level III.

  3. UTE-T2* mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear

    Science.gov (United States)

    Williams, A.; Qian, Y.; Golla, S.; Chu, C.R.

    2018-01-01

    SUMMARY Objective Meniscus tear is a known risk factor for osteoarthritis (OA). Quantitative assessment of meniscus degeneration, prior to surface break-down, is important to identification of early disease potentially amenable to therapeutic interventions. This work examines the diagnostic potential of ultrashort echo time-enhanced T2* (UTE-T2*) mapping to detect human meniscus degeneration in vitro and in vivo in subjects at risk of developing OA. Design UTE-T2* maps of 16 human cadaver menisci were compared to histological evaluations of meniscal structural integrity and clinical magnetic resonance imaging (MRI) assessment by a musculoskeletal radiologist. In vivo UTE-T2* maps were compared in 10 asymptomatic subjects and 25 ACL-injured patients with and without concomitant meniscal tear. Results In vitro, UTE-T2* values tended to be lower in histologically and clinically normal meniscus tissue and higher in torn or degenerate tissue. UTE-T2* map heterogeneity reflected collagen disorganization. In vivo, asymptomatic meniscus UTE-T2* values were repeatable within 9% (root-mean-square average coefficient of variation). Posteromedial meniscus UTE-T2* values in ACL-injured subjects with clinically diagnosed medial meniscus tear (n = 10) were 87% higher than asymptomatics (n = 10, P meniscus degeneration. Further study is needed to determine whether elevated subsurface meniscus UTE-T2* values predict progression of meniscal degeneration and development of OA. PMID:22306000

  4. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Hye-Rim Lee

    2016-01-01

    Full Text Available Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP, containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW rabbits were incubated for 3, 10, 14 and 21 days with PRP(−, 10% PRP (PRP(+, IL(+ or IL(+PRP(+. The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR. Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+ and in IL(+PRP(+. In PRP(+, the aggrecan expression levels were lower than in the PRP(− until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+ and IL(+PRP(+, at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage.

  5. Autologous Bone Marrow Concentrate in a Sheep Model of Osteoarthritis: New Perspectives for Cartilage and Meniscus Repair.

    Science.gov (United States)

    Desando, Giovanna; Giavaresi, Gianluca; Cavallo, Carola; Bartolotti, Isabella; Sartoni, Federica; Nicoli Aldini, Nicolò; Martini, Lucia; Parrilli, Annapaola; Mariani, Erminia; Fini, Milena; Grigolo, Brunella

    2016-06-01

    Cell-based therapies are becoming a valuable tool to treat osteoarthritis (OA). This study investigated and compared the regenerative potential of bone marrow concentrate (BMC) and mesenchymal stem cells (MSC), both engineered with Hyaff(®)-11 (HA) for OA treatment in a sheep model. OA was induced via unilateral medial meniscectomy. Bone marrow was aspirated from the iliac crest, followed by concentration processes or cell isolation and expansion to obtain BMC and MSC, respectively. Treatments consisted of autologous BMC and MSC seeded onto HA. The regenerative potential of bone, cartilage, menisci, and synovia was monitored using macroscopy, histology, immunohistochemistry, and micro-computed tomography at 12 weeks post-op. Data were analyzed using the general linear model with adjusted Sidak's multiple comparison and Spearman's tests. BMC-HA treatment showed a greater repair ability in inhibiting OA progression compared to MSC-HA, leading to a reduction of inflammation in cartilage, meniscus, and synovium. Indeed, the decrease of inflammation positively contributed to counteract the progression of fibrotic and hypertrophic processes, known to be involved in tissue failure. Moreover, the treatment with BMC-HA showed the best results in allowing meniscus regeneration. Minor healing effects were noticed at bone level for both cell strategies; however, a downregulation of subchondral bone thickness (Cs.Th) was found in both cell treatments compared to the OA group in the femur. The transplantation of BMC-HA provided the best effects in supporting regenerative processes in cartilage, meniscus, and synovium and at less extent in bone. On the whole, both MSC and BMC combined with HA reduced inflammation and contributed to switch off fibrotic and hypertrophic processes. The observed regenerative potential by BMC-HA on meniscus could open new perspectives, suggesting its use not only for OA care but also for the treatment of meniscal lesions, even if further analyses are

  6. Biomechanical Properties of Murine Meniscus Surface via AFM-based Nanoindentation

    Science.gov (United States)

    Li, Qing; Doyran, Basak; Gamer, Laura W.; Lu, X. Lucas; Qin, Ling; Ortiz, Christine; Grodzinsky, Alan J.; Rosen, Vicki; Han, Lin

    2015-01-01

    This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip ≈ 5 μm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction observed on 12-week old menisci. The indentation resistance was calculated as both the effective stiffness, Sind = dF/dD, and the effective modulus, Eind, via the isotropic Hertz model. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1 ± 0.8 MPa for 12 weeks of age, mean ± SEM, n = 13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4 ± 0.1 MPa, n = 6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models. PMID:25817332

  7. The Influence of Articular Cartilage Thickness Reduction on Meniscus Biomechanics.

    Science.gov (United States)

    Łuczkiewicz, Piotr; Daszkiewicz, Karol; Chróścielewski, Jacek; Witkowski, Wojciech; Winklewski, Pawel J

    2016-01-01

    Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis (OA) model. Two variants of medial knee OA model with congruent and incongruent contact surfaces were analysed to investigate the influence of congruency. A nonlinear static analysis for one compressive load case was performed. The focus of the study was the influence of cartilage degeneration on meniscal extrusion and the values of the contact forces and contact areas. In the model with incongruent contact surfaces, we observed maximal compressive stress on the tibial plateau. In this model, the value of medial meniscus external shift was 95.3% greater, while the contact area between the tibial cartilage and medial meniscus was 50% lower than in the congruent contact surfaces model. After the non-uniform reduction of cartilage thickness, the medial meniscus carried only 48.4% of load in the medial compartment in comparison to 71.2% in the healthy knee model. We have shown that the change in articular cartilage geometry may significantly reduce the role of meniscus in load transmission and the contact area between the meniscus and cartilage. Additionally, medial knee OA may increase the risk of meniscal extrusion in the medial compartment of the knee joint.

  8. Laser reflectometry of submegahertz liquid meniscus ringing.

    Science.gov (United States)

    Farahi, R H; Passian, A; Jones, Y K; Tetard, L; Lereu, A L; Thundat, T G

    2009-10-15

    Optical techniques that permit nondestructive probing of interfacial dynamics of various media are of key importance in numerous applications such as ellipsometry, mirage effect, and all-optical switching. Characterization of the various phases of microjet droplet formation yields important information for volume control, uniformity, velocity, and rate. The ringing of the meniscus and the associated relaxation time that occurs after droplet breakoff affect subsequent drop formation and is an indicator of the physical properties of the fluid. Using laser reflectometry, we present an analysis of the meniscus oscillations in an orifice of a piezoelectric microjet.

  9. Growth Factor Supplementation Improves Native and Engineered Meniscus Repair in Vitro

    Science.gov (United States)

    Ionescu, Lara C.; Lee, Gregory C.; Huang, Kevin L.; Mauck, Robert L.

    2012-01-01

    Few therapeutic options exist for meniscus repair after injury. Local delivery of growth factors may stimulate repair and create a favorable environment for engineered replacement materials. In this study, we assessed the effect of basic fibroblast growth factor (bFGF) (a pro-mitotic agent) and transforming growth factor beta 3 (TGF-β3) (a pro-matrix formation agent) on meniscus repair and the integration/maturation of electrospun poly(ε-caprolactone) (PCL) scaffolds for meniscus tissue engineering. Circular meniscus repair constructs were formed and refilled with either native tissue or scaffolds. Repair constructs were cultured in serum-containing media for 4 and 8 weeks with various growth factor formulations, and assessed for mechanical strength, biochemical content, and histological appearance. Results showed that either short-term delivery of bFGF or sustained delivery of TGF-β3 increased integration strength for both juvenile and adult bovine tissue, with similar findings for engineered materials. While TGF-β3 increased proteoglycan content in the explants, bFGF did not increase DNA content after 8 weeks. This work suggests that in vivo delivery of bFGF or TGF-β3 may stimulate meniscus repair, but that the time course of delivery will strongly influence success. Further, this study demonstrates that electrospun scaffolds are a promising material for meniscus tissue engineering, achieving comparable or superior integration compared to native tissue. PMID:22698946

  10. Propagative modes along a superfluid helium-4 meniscus

    International Nuclear Information System (INIS)

    Poujade, M.; Guthmann, C.; Rolley, E.

    2002-01-01

    We have studied the dynamics of a superfluid helium-4 meniscus on a solid substrate. In a pseudo-non-wetting situation, there is no hysteresis of the contact angle. We show that distortions of a liquid meniscus do propagate along the contact line. We have analyzed the propagation of pulses. We find a good agreement with theoretical predictions by Brochard for the dispersion relation of oscillation modes of the contact line. (authors)

  11. The Inverted Discoid Meniscus Segment: Clinical, Radiographic, and Arthroscopic Description of a Hidden Tear Pattern.

    Science.gov (United States)

    LaMont, Lauren; Ellis, Henry; Wise, Kelsey; Wilson, Philip

    2016-06-01

    A flipped, or inverted, meniscus segment is easily visualized in the normal meniscus. However, an inverted discoid meniscus segment may be difficult to appreciate because the tear occurs more centrally and leaves more meniscal rim; thus, it may be undertreated if not addressed during arthroscopy. To describe findings on clinical history, radiographs, MRI, and arthroscopy of a lateral discoid meniscus with an inverted segment and compare them with characteristics of a lateral discoid meniscus without an inverted segment. Case-control study; Level of evidence, 3. Between 2009 and 2012, a retrospective series of 121 consecutive knee arthroscopies for symptomatic lateral discoid meniscus were reviewed for the presence of an inverted fragment. Chart review of clinical presentation, operative reports, radiographic images, and arthroscopic images was performed. Comparative analysis of the clinical presentation between lateral discoid menisci with an inverted segment and noninverted lateral discoid menisci was performed by use of Fisher exact test and Mann-Whitney test. Nineteen patients with an inverted discoid meniscus segment (14 males, 5 females; average age, 15.0 years; range, 9.5-17.0 years) were compared with 102 patients with a noninverted discoid meniscus (53 males, 49 females; average age, 12.3 years; range, 5-17.0 years) (P = .011 for sex and P meniscus patients with an inverted segment had activity-related knee pain. Only 4 patients (21.0%) reported mechanical symptoms. Patients with an inverted discoid segment, compared with patients with discoid menisci without inverted segments, were more likely to have instability and effusion (P = .012 and P meniscus patients with an inverted segment (94.7%) had an injury, while only 41.2% of patients with noninverted symptomatic discoid menisci had an injury (P meniscus. During arthroscopy, the inverted discoid segment appeared normal, without a tear; upon probing, however, the inverted segment could be exposed. An

  12. Quantitative analysis of the difference between an intact complete discoid lateral meniscus and a torn complete discoid meniscus on MR imaging: a feasibility study for a new classification

    International Nuclear Information System (INIS)

    Lee, Mi Hee; Choi, Sang-Hee; Woo, Sook Young

    2010-01-01

    To determine the quantitative difference between an intact complete discoid lateral meniscus (CDLM) and a torn CDLM on MR imaging. Between May 2005 to November 2009, 137 patients with a CDLM (107 intact CDLM and 30 torn CDLM) and 92 patients with a normal meniscus were included in this study. The evaluated parameters were the height of the posterior horn of the lateral and medial menisci on the sagittal images and their ratio as assessed by two observers twice at an interval of 1 month. Each parameter was analyzed based on the Kruskal Wallis test, and the analysis using the mixed model. Intraclass correlation coefficient (ICC) was used to determine the interobserver reliabilities at session 2. The mean heights of the posterior horn of the lateral and medial menisci on the sagittal images for an intact CDLM, a torn CLDM, and a normal meniscus were 6.5, 7.3, 5.7 and 6.6, 6.4, 6.7 mm at session 1, respectively. The mean heights of the posterior horn of the lateral and medial menisci on the sagittal images for an intact CDLM, a torn CDLM, and a normal meniscus for both observers were 6.5, 7.2, 5.7 and 6.6, 6.3, 6.8 mm at session 2, respectively. The ratio of the height of the lateral to the height of the medial meniscus for an intact CDLM at both sessions for both observers was 1.0. The ratios were 1.2 and 0.8 for a torn CDLM and for a normal meniscus, respectively, at both sessions for observer 1. The ratios were 1.2 and 0.9 for a torn CDLM and for a normal meniscus, respectively, at session 2 for observer 2. The heights of the posterior horn of the lateral meniscus on the sagittal images and the ratios of the heights of the lateral to the medial menisci in all three groups were statistically significantly different for both sessions (p < 0.0001). The interobserver ICCs for each parameter of both an intact CDLM and a torn CDLM at session 2 showed high correlations (p < 0.0001). The height of the lateral meniscus and the ratio of the height of the lateral to the height

  13. Matrix metalloproteinase activity and prostaglandin E2 are elevated in the synovial fluid of meniscus tear patients.

    Science.gov (United States)

    Liu, Betty; Goode, Adam P; Carter, Teralyn E; Utturkar, Gangadhar M; Huebner, Janet L; Taylor, Dean C; Moorman, Claude T; Garrett, William E; Kraus, Virginia B; Guilak, Farshid; DeFrate, Louis E; McNulty, Amy L

    Meniscus tears are a common knee injury and are associated with the development of post-traumatic osteoarthritis (OA). The purpose of this study is to evaluate potential OA mediators in the synovial fluid and serum of meniscus tear subjects compared to those in the synovial fluid of radiographic non-OA control knees. Sixteen subjects with an isolated unilateral meniscus injury and six subjects who served as reference controls (knee Kellgren-Lawrence grade 0-1) were recruited. Twenty-one biomarkers were measured in serum from meniscus tear subjects and in synovial fluid from both groups. Meniscus tear subjects were further stratified by tear type to assess differences in biomarker levels. Synovial fluid total matrix metalloproteinase (MMP) activity and prostaglandin E2 (PGE2) were increased 25-fold and 290-fold, respectively, in meniscus tear subjects as compared to reference controls (p meniscus tear subjects (R = 0.83, p meniscus tear subjects, synovial fluid levels of MMP activity, MMP-2, MMP-3, sGAG, COMP, IL-6, and PGE2 were higher than serum levels (p meniscus tears had higher synovial fluid MMP-10 (p meniscus injury may be targets to promote meniscus repair and prevent OA development.

  14. Review: Modelling of meniscus of knee joint during soccer kicking

    Science.gov (United States)

    Azrul Hisham Mohd Adib, Mohd; Firdaus Jaafar, Mohd

    2013-12-01

    Knee is a part of the body that located between thigh and shank is one of the most complicated and largest joints in the human body. The common injuries that occur are ligaments, meniscus or bone fracture. During soccer games, the knee is the most critical part that will easily injure due to the shock from an external impact. Torn meniscus is one of the effects. This study will investigate the effect towards the meniscus within the knee joint during soccer ball kicking. We conduct a literary review of 14 journals that discuss the general view of meniscus and also soccer kicking. The selected topics for this review paper are meniscal function, meniscal movement, meniscal tears and also instep kick. As a finding, statistics show that most meniscal tears (73%) occurred in athletes who were soccer players, basketball players or skiers. The tear is frequently happening at the medial side rather than lateral side with a percentage of 70%.

  15. Comparison of Medial and Lateral Meniscus Root Tears.

    Directory of Open Access Journals (Sweden)

    Ji Hyun Koo

    Full Text Available The meniscus root plays an essential role in maintaining the circumferential hoop tension and preventing meniscal displacement. Studies on meniscus root tears have investigated the relationship of osteoarthritis and an anterior cruciate ligament tear. However, few studies have directly compared the medial and lateral root tears. To assess the prevalence of meniscal extrusion and its relationship with clinical features in medial and lateral meniscus root tears, we performed a retrospective review of the magnetic resonance imaging (MRI results of 42 knee patients who had meniscus posterior horn root tears and who had undergone arthroscopic operations. The presence of meniscal extrusion was evaluated and the exact extent was measured from the tibial margin. The results were correlated with arthroscopic findings. Clinical features including patients' ages, joint abnormalities, and previous trauma histories were evaluated. Twenty-two patients had medial meniscus root tears (MMRTs and twenty patients had lateral meniscus root tears (LMRTs. Meniscal extrusion was present in 18 MMRT patients and one LMRT patient. The mean extent of extrusion was 4.2mm (range, 0.6 to 7.8 in the MMRT group and 0.9mm (range, -1.9 to 3.4 in the LMRT group. Five patients with MMRT had a history of trauma, while 19 patients with LMRT had a history of trauma. Three patients with MMRT had anterior cruciate ligament (ACL tears, while 19 patients with LMRT had ACL tears. The mean age of the patients was 52 years (range: 29-71 years and 30 years (range: 14-62 years in the MMRT and LMRT group, respectively. There was a significant correlation between a MMRT and meniscal extrusion (p<0.0001, and between an ACL tear and LMRT (p<0.0001. A history of trauma was significantly common in LMRT (p<0.0001. LMRT patients were significantly younger than MMRT patients (p<0.0001. Kellgren-Lawrence (K-L grade differed significantly between MMRT and LMRT group (p<0.0001. Meniscal extrusion is

  16. Yoga is found hazardous to the meniscus for Chinese

    Directory of Open Access Journals (Sweden)

    ZHU Jun-kun

    2012-06-01

    Full Text Available 【Abstract】Objective: Yoga is becoming more and more popular in the female society while the concomitant sports injury is seldom mentioned. Many clinicians have noted that yoga may result in knee problems, which though requires more researches to corroborate. This investigation was conducted to ascertain the relationship between yoga and meniscus injury as well as the extent of impairment ac-cording to variant yoga practice periods. Methods: Totally 819 women aged 20-49 years who practiced yoga or other popular sports including badminton, jogging, climbing hills, etc for at least one hour per day were selected to participate in this research. These subjects were required to complete a questionnaire and receive relevant physical examination. Magnetic resonance (MR scan of the knee was recommended for the suspicious subjects for ultimate diagnosis. The subject with abnormal meniscus MR signals was defined as a case and matched with two con-trols in terms of age and body mass index (BMI. Altogether there were 273 cases and 546 controls. The nested case-control model was adopted to assess the risk of meniscus injury between variant exposures in practicing yoga and several other popular sports. Moreover, the 181 yoga sub-jects were subdivided into three groups according to differ-ent exercise durations, followed by further analysis with the variables of age, BMI and Lysholm score. Results: Yoga was found associated with a higher risk (P=0.008, OR=1.621 of meniscus injury compared with badminton, jogging and climbing hills. The three yoga sub-groups showed statistical difference between each other in terms of Lysholm score (P=0.027 and BMI (P=0.003. The subjects with longer-term yoga practice had lighter weight but lower Lysholm scores. Conclusions: Yoga perhaps exerts destructive impact on the meniscus for Chinese women, yet it needs further verifications. Furthermore, the female yoga players with longer exercise duration are more susceptible to

  17. Diagnostic value of MRI in meniscus injury. Comparison of MRI and arthrography

    International Nuclear Information System (INIS)

    Iso, Yoshinori; Nozaki, Hiroyuki; Emoto, Mari; Miyairi, Taro; Hirata, Aya; Hirasawa, Seiichi; Suguro, Toru; Igata, Atsuomi; Kudo, Yukihiko.

    1995-01-01

    Magnetic resonance imaging (MRI) and arthrography were performed on 90 knees to compare the diagnostic value for meniscus injury with these techniques. The diagnostic accuracy of MRI and arthrography was 89.1% and 87.1%, respectively. Imaging of the medial meniscus was somewhat better with arthrography, and delineation of the lateral meniscus was somewhat better with MRI. MRI was superior in diagnoses of horizontal and degenerative lacerations, but showed the shape of the injuries less clearly than arthrography. The diagnostic accuracy of MRI decreased with the age of the patients and was inferior to arthrography for patients in their forties or older. In conclusion, MRI is a less invasive approach with high diagnostic accuracy for meniscus injury and is a promising substitute for arthrography. (author)

  18. Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration

    International Nuclear Information System (INIS)

    Nebelung, Sven; Kuhl, Christiane; Truhn, Daniel; Tingart, Markus; Jahr, Holger; Pufe, Thomas

    2016-01-01

    To evaluate the diagnostic performance of T1, T1ρ, T2, T2*, and UTE-T2* (ultrashort-echo time-enhanced T2*) mapping in the refined graduation of human meniscus degeneration with histology serving as standard-of-reference. This IRB-approved intra-individual comparative ex vivo study was performed on 24 lateral meniscus body samples obtained from 24 patients undergoing total knee replacement. Samples were assessed on a 3.0-T MRI scanner using inversion-recovery (T1), spin-lock multi-gradient-echo (T1ρ), multi-spin-echo (T2) and multi-gradient-echo (T2* and UTE-T2*) sequences to determine relaxation times of quantitative MRI (qMRI) parameters. Relaxation times were calculated on the respective maps, averaged to the entire meniscus and to its zones. Histologically, samples were analyzed on a four-point score according to Williams (0-III). QMRI results and Williams (sub)scores were correlated using Spearman's ρ, while Williams grade-dependent differences were assessed using Kruskal-Wallis and Dunn's tests. Sensitivities and specificities in the detection of intact (Williams grade [WG]-0) and severely degenerate meniscus (WG-II-III) were calculated. Except for T2*, significant increases in qMRI parameters with increasing Williams grades were observed. T1, T1ρ, T2, and UTE-T2* exhibited high sensitivity and variable specificity rates. Significant marked-to-strong correlations were observed for these parameters with each other, with histological WGs and the subscores tissue integrity and cellularity. QMRI mapping holds promise in the objective evaluation of human meniscus. Although sufficient discriminatory power of T1, T1ρ, T2, and UTE-T2* was only demonstrated for the histological extremes, these data may aid in the future MRI-based parameterization and quantification of human meniscus degeneration. (orig.)

  19. Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration.

    Science.gov (United States)

    Nebelung, Sven; Tingart, Markus; Pufe, Thomas; Kuhl, Christiane; Jahr, Holger; Truhn, Daniel

    2016-12-01

    To evaluate the diagnostic performance of T1, T1ρ, T2, T2*, and UTE-T2* (ultrashort-echo time-enhanced T2*) mapping in the refined graduation of human meniscus degeneration with histology serving as standard-of-reference. This IRB-approved intra-individual comparative ex vivo study was performed on 24 lateral meniscus body samples obtained from 24 patients undergoing total knee replacement. Samples were assessed on a 3.0-T MRI scanner using inversion-recovery (T1), spin-lock multi-gradient-echo (T1ρ), multi-spin-echo (T2) and multi-gradient-echo (T2* and UTE-T2*) sequences to determine relaxation times of quantitative MRI (qMRI) parameters. Relaxation times were calculated on the respective maps, averaged to the entire meniscus and to its zones. Histologically, samples were analyzed on a four-point score according to Williams (0-III). QMRI results and Williams (sub)scores were correlated using Spearman's ρ, while Williams grade-dependent differences were assessed using Kruskal-Wallis and Dunn's tests. Sensitivities and specificities in the detection of intact (Williams grade [WG]-0) and severely degenerate meniscus (WG-II-III) were calculated. Except for T2*, significant increases in qMRI parameters with increasing Williams grades were observed. T1, T1ρ, T2, and UTE-T2* exhibited high sensitivity and variable specificity rates. Significant marked-to-strong correlations were observed for these parameters with each other, with histological WGs and the subscores tissue integrity and cellularity. QMRI mapping holds promise in the objective evaluation of human meniscus. Although sufficient discriminatory power of T1, T1ρ, T2, and UTE-T2* was only demonstrated for the histological extremes, these data may aid in the future MRI-based parameterization and quantification of human meniscus degeneration.

  20. Ex vivo quantitative multiparametric MRI mapping of human meniscus degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Nebelung, Sven; Kuhl, Christiane; Truhn, Daniel [Aachen University Hospital, Department of Diagnostic and Interventional Radiology, Aachen (Germany); Tingart, Markus; Jahr, Holger [Aachen University Hospital, Department of Orthopaedics, Aachen (Germany); Pufe, Thomas [RWTH Aachen University, Institute of Anatomy and Cell Biology, Aachen (Germany)

    2016-12-15

    To evaluate the diagnostic performance of T1, T1ρ, T2, T2*, and UTE-T2* (ultrashort-echo time-enhanced T2*) mapping in the refined graduation of human meniscus degeneration with histology serving as standard-of-reference. This IRB-approved intra-individual comparative ex vivo study was performed on 24 lateral meniscus body samples obtained from 24 patients undergoing total knee replacement. Samples were assessed on a 3.0-T MRI scanner using inversion-recovery (T1), spin-lock multi-gradient-echo (T1ρ), multi-spin-echo (T2) and multi-gradient-echo (T2* and UTE-T2*) sequences to determine relaxation times of quantitative MRI (qMRI) parameters. Relaxation times were calculated on the respective maps, averaged to the entire meniscus and to its zones. Histologically, samples were analyzed on a four-point score according to Williams (0-III). QMRI results and Williams (sub)scores were correlated using Spearman's ρ, while Williams grade-dependent differences were assessed using Kruskal-Wallis and Dunn's tests. Sensitivities and specificities in the detection of intact (Williams grade [WG]-0) and severely degenerate meniscus (WG-II-III) were calculated. Except for T2*, significant increases in qMRI parameters with increasing Williams grades were observed. T1, T1ρ, T2, and UTE-T2* exhibited high sensitivity and variable specificity rates. Significant marked-to-strong correlations were observed for these parameters with each other, with histological WGs and the subscores tissue integrity and cellularity. QMRI mapping holds promise in the objective evaluation of human meniscus. Although sufficient discriminatory power of T1, T1ρ, T2, and UTE-T2* was only demonstrated for the histological extremes, these data may aid in the future MRI-based parameterization and quantification of human meniscus degeneration. (orig.)

  1. Geometry Effects of Capillary on the Evaporation from the Meniscus

    International Nuclear Information System (INIS)

    Choi, Choong Hyo; Jin, Song Wan; Yoo, Jung Yul

    2007-01-01

    The effect of capillary cross-section geometry on evaporation is investigated in terms of the meniscus shape, evaporation rate and evaporation-induced flow for circular, square and rectangular cross-sectional capillaries. The shapes of water and ethanol menisci are not much different from each other in square and rectangular capillaries even though the surface tension of water is much larger than that of ethanol. On the other hand, the shapes of water and ethanol menisci are very different from each other in circular capillary. The averaged evaporation fluxes in circular and rectangular capillaries are measured by tracking the meniscus position. At a given position, the averaged evaporation flux in rectangular capillaries in much larger than that in circular capillary with comparable hydraulic diameter. The flow near the evaporating meniscus is also measured using micro-PIV, so that the rotating vortex motion is observed near the evaporating ethanol and methanol menisci except for the case of methanol meniscus in rectangular capillary. This difference is considered to be due to the existence of corner menisci at the four corners

  2. Diagnosis of radial tear of posterior horn of medial meniscus by MR imaging. Prospective study

    International Nuclear Information System (INIS)

    Motoyama, Tatsuo; Ihara, Hidetoshi; Kawashima, Mahito

    2002-01-01

    It is not easy to detect radial tears of the posterior horn of the medial meniscus (torn posterior horn) under arthroscopy if the surgeon does not notice the tear before arthroscopy. Occasionally the tear goes undetected or is missed during arthroscopy. The sagittal view of MR imaging is very useful for diagnosing torn posterior horns. The normal posterior horn of the medial meniscus appears as an image of low intensity triangle of the sagittal MRI medial slice next to the PCL. On the contrary, the image of the torn posterior horn shows a high intensity triangle, so we refer to the feature as a white meniscus sign. We prospectively examined the accuracy of white meniscus sign of MRI. Forty-two knees in 41 patients were studied. They were over 40 years of age, diagnosed with medial meniscus tear and had undergone MRI before arthroscopy. Before arthroscopy, we predicted the existence of torn posterior horn by the white meniscus sign and examined the accuracy of the MRI after arthroscopy. Total accuracy rate was 90.5%, sensitivity was 94.1%, and specificity was 88.0%. We concluded that the white meniscus sign on MRI is very useful for defecting torn posterior horn of the medial meniscus. (author)

  3. Meniscal pathology in children: differences and similarities with the adult meniscus

    Energy Technology Data Exchange (ETDEWEB)

    Francavilla, Michael L.; Restrepo, Ricardo; Zamora, Kathryn W.; Sarode, Vijaya [Department of Radiology, Miami Children' s Hospital, Miami, FL (United States); Swirsky, Stephen M. [Department of Orthopedics, Miami Children' s Hospital, Miami, FL (United States); Mintz, Douglas [Hospital for Special Surgery, New York, NY (United States)

    2014-08-15

    The normal meniscus undergoes typical developmental changes during childhood, reaching a mature adult appearance by approximately 10 years of age. In addition to recognizing normal meniscal appearances in children, identifying abnormalities - such as tears and the different types of discoid meniscus and meniscal cysts, as well as the surgical implications of these abnormalities - is vital in pediatric imaging. The reported incidence of meniscal tears in adolescents and young adults has increased because of increased sports participation and more widespread use of MRI. This review discusses the normal appearance of the pediatric meniscus, meniscal abnormalities, associated injuries, and prognostic indicators for repair. (orig.)

  4. Meniscal pathology in children: differences and similarities with the adult meniscus

    International Nuclear Information System (INIS)

    Francavilla, Michael L.; Restrepo, Ricardo; Zamora, Kathryn W.; Sarode, Vijaya; Swirsky, Stephen M.; Mintz, Douglas

    2014-01-01

    The normal meniscus undergoes typical developmental changes during childhood, reaching a mature adult appearance by approximately 10 years of age. In addition to recognizing normal meniscal appearances in children, identifying abnormalities - such as tears and the different types of discoid meniscus and meniscal cysts, as well as the surgical implications of these abnormalities - is vital in pediatric imaging. The reported incidence of meniscal tears in adolescents and young adults has increased because of increased sports participation and more widespread use of MRI. This review discusses the normal appearance of the pediatric meniscus, meniscal abnormalities, associated injuries, and prognostic indicators for repair. (orig.)

  5. A meniscus causing painful snapping of the elbow joint: MR imaging with arthroscopic and histologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guo-Shu; Chen, Cheng-Yu [National Defense Medical Center, Department of Radiology, Tri-Service General Hospital, Taipei (Taiwan); Lee, Chian-Her [National Defense Medical Center, Department of Orthopedic Surgery, Tri-Service General Hospital, Taipei (Taiwan); Lee, Herng-Sheng [National Defense Medical Center, Department of Pathology, Tri-Service General Hospital, Taipei (Taiwan)

    2005-12-01

    Snapping of the elbow joint can cause pain. We report a case of painful snapping elbow produced by an interposed meniscus in the radiohumeral joint in a 20-year-old man. The MR arthrogram demonstrated a meniscus-like tissue interposed between the radial head and humeral capitellum. The MR-arthrographic findings were well correlated with surgical findings. The location and appearance of the meniscus-like tissue was similar to that of meniscus in the knee joint. Histologic findings of the excised meniscus-like tissue showed a typical presentation of fibrocartilage. A meniscus may exist in the elbow joint and can be a rare cause of painful snapping elbow. MR arthrography is helpful for identifying the snapping tissue in the elbow joint. (orig.)

  6. Evidence that meniscus damage may be a component of osteoarthritis: the Framingham study.

    Science.gov (United States)

    Englund, M; Haugen, I K; Guermazi, A; Roemer, F W; Niu, J; Neogi, T; Aliabadi, P; Felson, D T

    2016-02-01

    The etiology of degenerative meniscus tear is unclear but could be related to a generalized osteoarthritic disease process. We studied whether radiographic hand osteoarthritis (OA) is associated with meniscus damage. We examined 974 persons aged 50-90 years drawn via census tract data and random-digit dialing from Framingham, Massachusetts, United States. One reader assessed bilateral hand radiographs (30 joints) and another read frontal knee radiographs, all according to the Kellgren-Lawrence (KL) scale. A third reader assessed right knee 1.5-T magnetic resonance imaging (MRI) scans for meniscus damage. We calculated the prevalence of medial and/or lateral meniscus damage in those with one to two and three or more finger joints with radiographic OA (KL grade ≥2) compared to those without radiographic hand OA with adjustment for age, sex, and body mass index. We also evaluated the above association in persons without evidence of radiographic OA (KL grade 0) in their knee (n = 748). The prevalence of meniscus damage in the knee of subjects with no, one to two, and three or more finger joints with OA was 24.9%, 31.7%, and 47.2%, respectively. The adjusted prevalence ratio (PR) of having meniscus damage was significantly increased in those who had three or more finger joints with OA (1.40 [95% confidence interval (CI) 1.11-1.77]). The estimate remained similar in persons without evidence of radiographic OA in their knee (PR, 1.42 [95% CI 1.03-1.97]). The association was more robust for medial meniscus damage. Results suggest a common non-age related etiologic pathway for both radiographic hand OA and meniscus damage. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Over-optimistic patient expectations of recovery and leisure activities after arthroscopic meniscus surgery

    DEFF Research Database (Denmark)

    Pihl, Kenneth; Roos, Ewa M; Nissen, Nis

    2016-01-01

    Background and purpose - Patients' expectations of outcomes following arthroscopic meniscus surgery are largely unknown. We investigated patients' expectations concerning recovery and participation in leisure-time activities after arthroscopic meniscus surgery and the postoperative fulfillment...... of these. Patients and methods - The study sample consisted of 491 consecutively recruited patients (mean age 50 (SD 13) years, 55% men) who were assigned for arthroscopy on suspicion of meniscus injury and later verified by arthroscopy. Before surgery, patients completed questionnaires regarding...... meniscus surgery were too optimistic regarding their recovery time and postoperative participation in leisure activities. This highlights the need for shared decision making which should include giving the patient information on realistic expectations of recovery time and regarding participation in leisure...

  8. A three-dimensional gradient refocused 3D volume imaging of discoid lateral meniscus

    International Nuclear Information System (INIS)

    Araki, Yutaka; Ootani, Masatoshi; Furukawa, Tomoaki; Yamamoto, Tadatsuka; Tomoda, Kaname; Tsukaguchi, Isao; Mitomo, Masanori.

    1991-01-01

    An axial 3D volume scan with MRI was applied to the evaluation of discoid lateral meniscus of the knee. By 0.7 mm-thick thin sliced and gapless images with volume scan, characteristically elongated appearance of discoid lateral meniscus was clearly depicted. These MR findings completely accorded with those on arthroscopy. Our conclusion is that an axial 3D volume scan was essential to the diagnosis of discoid lateral meniscus. (author)

  9. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Hatayama, A.; Hanada, M.; Kojima, A.

    2013-01-01

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  10. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  11. Negative pressure characteristics of an evaporating meniscus at nanoscale

    Directory of Open Access Journals (Sweden)

    Maroo Shalabh

    2011-01-01

    Full Text Available Abstract This study aims at understanding the characteristics of negative liquid pressures at the nanoscale using molecular dynamics simulation. A nano-meniscus is formed by placing liquid argon on a platinum wall between two nano-channels filled with the same liquid. Evaporation is simulated in the meniscus by increasing the temperature of the platinum wall for two different cases. Non-evaporating films are obtained at the center of the meniscus. The liquid film in the non-evaporating and adjacent regions is found to be under high absolute negative pressures. Cavitation cannot occur in these regions as the capillary height is smaller than the critical cavitation radius. Factors which determine the critical film thickness for rupture are discussed. Thus, high negative liquid pressures can be stable at the nanoscale, and utilized to create passive pumping devices as well as significantly enhance heat transfer rates.

  12. Development of meniscus substitutes using a mixture of biocompatible polymers and extra cellular matrix components by electrospinning.

    Science.gov (United States)

    López-Calzada, G; Hernandez-Martínez, A R; Cruz-Soto, M; Ramírez-Cardona, M; Rangel, D; Molina, G A; Luna-Barcenas, G; Estevez, M

    2016-04-01

    Despite the significant advances in the meniscus tissue engineering field, it is difficult to recreate the complex structure and organization of the collagenous matrix of the meniscus. In this work, we developed a meniscus prototype to be used as substitute or scaffold for the regeneration of the meniscal matrix, recreating the differential morphology of the meniscus by electrospinning. Synthetic biocompatible polymers were combined with the extracellular matrix component, collagen and used to replicate the meniscus. We studied the correlation between mechanical and structural properties of the polymer blend as a function of collagen concentration. Fibers were collected on a surface of a rapidly rotating precast mold, to accurately replicate each sectional morphology of the meniscus; different electro-tissues were produced. Detailed XRD analyses exhibited structural changes developed by electrospinning. We achieved to integrate all these electro-tissues to form a complete synthetic meniscus. Vascularization tests were performed to assess the potential use of our novel polymeric blend for promising meniscus regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus.

    Science.gov (United States)

    Cucchiarini, M; McNulty, A L; Mauck, R L; Setton, L A; Guilak, F; Madry, H

    2016-08-01

    Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis (OA). Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Familial Discoid Medial Meniscus Tear in Three Members of a Family: A Case Report and Review of Literature

    OpenAIRE

    Ahmed Ali, Raheel; McKay, Scott

    2014-01-01

    Background. A discoid meniscus is a thickened variant of the normal C-shaped meniscus prone to injury. Discoid medial meniscal tears have rarely been reported within families and may suggest familial or developmental origins. Methods. We report the cases of two Caucasian brothers with symptomatic discoid medial meniscus tears. A literature review was conducted addressing discoid medial meniscus and cases of familial meniscus tears. Case Presentation. Physically active brothers presented with ...

  15. Symptomatic discoid lateral meniscus: a clinical and arthroscopic study in a Chinese population.

    Science.gov (United States)

    Chen, Gang; Zhang, Zhong; Li, Jian

    2016-08-05

    Discoid lateral meniscus (DLM) is relatively common in East Asia..Symptomatic discoid lateral meniscus (SDLM) is an important indication for knee arthroscopic surgery. However, studies investigating SDLM are rare. The purpose of this study was to evaluate the clinical characteristics and intra-articular variants of SDLM in a Chinese population. We retrospectively reviewed all patients with SDLM from January 2005 to December 2014 in our hospital. Clinical variables included gender, age, duration, age of onset, affected side, symptoms and trauma history as well as arthroscopic findings: DLM types, tear patterns and concomitant medial meniscus tear, which were evaluated and compared statistically. Of the 496 consecutive participants with SDLM, females outnumbered males (69.6 % vs. 30.4 %). The age of onset ranged from 3 to 80 years (median, 31 years), and was significantly higher in females than in males (p meniscus tear (11, 2.2 %), at a significantly higher age compared with patients without tear (median, 57 years vs. 33 years, p meniscus.

  16. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    Science.gov (United States)

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  17. Longitudinal change in quantitative meniscus measurements in knee osteoarthritis - data from the Osteoarthritis Initiative

    International Nuclear Information System (INIS)

    Bloecker, Katja; Wirth, W.; Eckstein, F.; Guermazi, A.; Hitzl, W.; Hunter, D.J.

    2015-01-01

    We aimed to apply 3D MRI-based measurement technology to studying 2-year change in quantitative measurements of meniscus size and position. Forty-seven knees from the Osteoarthritis Initiative with medial radiographic joint space narrowing had baseline and 2-year follow-up MRIs. Quantitative measures were obtained from manual segmentation of the menisci and tibia using coronal DESSwe images. The standardized response mean (SRM = mean/SD change) was used as measure of sensitivity to longitudinal change. Medial tibial plateau coverage decreased from 34.8 % to 29.9 % (SRM -0.82; p < 0.001). Change in medial meniscus extrusion in a central image (SRM 0.18) and in the central five slices (SRM 0.22) did not reach significance, but change in extrusion across the entire meniscus (SRM 0.32; p = 0.03) and in the relative area of meniscus extrusion (SRM 0.56; p < 0.001) did. There was a reduction in medial meniscus volume (10 %; p < 0.001), width (7 %; p < 0.001), and height (2 %; p = 0.08); meniscus substance loss was strongest in the posterior (SRM -0.51; p = 0.001) and weakest in the anterior horn (SRM -0.15; p = 0.31). This pilot study reports, for the first time, longitudinal change in quantitative 3D meniscus measurements in knee osteoarthritis. It provides evidence of improved sensitivity to change of 3D measurements compared with single slice analysis. (orig.)

  18. Longitudinal change in quantitative meniscus measurements in knee osteoarthritis - data from the Osteoarthritis Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Bloecker, Katja [Paracelsus Medical University Salzburg and Nuremberg (Austria); Salzburg, Institute of Anatomy, Salzburg (Austria); BHS Linz, Department of Orthopaedics, Linz (Austria); Wirth, W.; Eckstein, F. [Paracelsus Medical University Salzburg and Nuremberg (Austria); Salzburg, Institute of Anatomy, Salzburg (Austria); Chondrometrics GmbH, Ainring (Germany); Guermazi, A. [Boston University School of Medicine, Boston, MA (United States); Boston Imaging Core Lab (BICL), Boston, MA (United States); Hitzl, W. [Paracelsus Medical University Salzburg and Nuremberg, Research Office, Salzburg (Austria); Hunter, D.J. [University of Sydney, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, Sydney (Australia)

    2015-10-15

    We aimed to apply 3D MRI-based measurement technology to studying 2-year change in quantitative measurements of meniscus size and position. Forty-seven knees from the Osteoarthritis Initiative with medial radiographic joint space narrowing had baseline and 2-year follow-up MRIs. Quantitative measures were obtained from manual segmentation of the menisci and tibia using coronal DESSwe images. The standardized response mean (SRM = mean/SD change) was used as measure of sensitivity to longitudinal change. Medial tibial plateau coverage decreased from 34.8 % to 29.9 % (SRM -0.82; p < 0.001). Change in medial meniscus extrusion in a central image (SRM 0.18) and in the central five slices (SRM 0.22) did not reach significance, but change in extrusion across the entire meniscus (SRM 0.32; p = 0.03) and in the relative area of meniscus extrusion (SRM 0.56; p < 0.001) did. There was a reduction in medial meniscus volume (10 %; p < 0.001), width (7 %; p < 0.001), and height (2 %; p = 0.08); meniscus substance loss was strongest in the posterior (SRM -0.51; p = 0.001) and weakest in the anterior horn (SRM -0.15; p = 0.31). This pilot study reports, for the first time, longitudinal change in quantitative 3D meniscus measurements in knee osteoarthritis. It provides evidence of improved sensitivity to change of 3D measurements compared with single slice analysis. (orig.)

  19. Jurin's law revisited: Exact meniscus shape and column height.

    Science.gov (United States)

    Liu, Sai; Li, Shanpeng; Liu, Jianlin

    2018-03-30

    Capillary rise of a liquid column is a historical problem, which has normally been formulated by Jurin's law. In the present study, we investigate the exact solutions of the column height, considering the real shape of the meniscus according to the Young-Laplace equation. The analytical solution in the planar model and the numerical solution in the axisymmetric model on the meniscus shape are both given, which are compared with the results from Jurin's law, modified Jurin's law and Surface Evolver simulation. The results quantitatively show that when the distance between the two plates or the diameter of the tube becomes bigger, Jurin's law and modified Jurin's law would cause serious errors, and the profile morphology of the meniscus must be calculated according to the Young-Laplace equation. These findings are beneficial for us to better understand the mechanism of capillarity and wetting, which are promising for such areas as oil displacement, ore floatation, building materials, fabrics, etc.

  20. "Meniscus Sign" to Identify the Lenticule Edge in Small-Incision Lenticule Extraction.

    Science.gov (United States)

    Titiyal, Jeewan S; Kaur, Manpreet; Brar, Anand S; Falera, Ruchita

    2018-06-01

    To describe our technique of lenticule edge identification in small-incision lenticule extraction using the "meniscus sign" to prevent lenticule misdissection. Femtosecond laser application for small-incision lenticule extraction was performed. A "double ring" was visible, signifying the edge of the cap cut (outer ring) and lenticule cut (inner ring). The anterior and posterior lamellar planes were delineated in 2 different directions. During creation of the posterior lamellar channel, the lenticule edge was slightly pushed away from the surgeon to create a gap between the inner ring (diameter of the lenticule cut) and the lenticule edge. The lenticule edge assumed a frilled wavy appearance, and the meniscus sign was observed as a gap between the lenticule edge and the inner ring. The meniscus-shaped gap served as a landmark to identify the lenticule edge, and the relationship between the frilled lenticule edge and surgical instruments further acted as a guide to identify the correct plane of dissection. This technique was successfully undertaken in 50 eyes of 25 patients. The meniscus sign was observed in all cases, and no case had cap lenticular adhesions. The meniscus sign helps to identify the lenticule edge and correct dissection planes and provides a visual landmark during the entire surgical procedure.

  1. Squat Winnowing: Cause of Meniscus Injuries in Non-Athletic Females.

    Science.gov (United States)

    Kamal, Younis; Ahmad Khan, Hayat; Ahmad Latoo, Irfan; Gani, Naseemul; Farooq, Munir; Gul, Snobar

    2016-02-01

    Sports activities were thought to be the major cause of meniscus injury in both men and woman, but our observations of non-athletic females show that the cause of meniscus injury was unrelated to any type of sports activity. This study revealed squat winnowing to be a major cause of meniscus injury in non-athletic females. This retrospective study was conducted in a tertiary care orthopaedic hospital which caters to a population of 10 million people. We assessed 120 non-athletic females who had received treatment in our hospital over a period of 2 years. The most probable cause of knee injury, per initial patient history, was recorded for all non-athletic females who presented clinical signs and symptoms of meniscus injury. The diagnoses were confirmed by relevant MRI and arthroscopy of patients' knees. All females who engaged in athletic activity and other females with unrelated, non-traumatic knee pathologies were excluded from the study. Through our study, we found that 42% (n = 50) of females suffered an injury during squat winnowing of rice, either at home or at work. Another 29% (n = 35) of females cited a history of slipping and spraining their knee as a cause of knee injury, while 19% (n = 16) of females suffered a knee injury during complex accidents such as a traffic accident. Finally, 13% (n = 16) of the females had no definite history of knee injury. Our observations add to the knowledge base of the various causes of meniscus tears; this study also revealed that socio-cultural factors influence and contribute to the mechanism of various types of knee injury.

  2. Meniscus formation in a capillary and the role of contact line friction.

    Science.gov (United States)

    Andrukh, Taras; Monaenkova, Daria; Rubin, Binyamin; Lee, Wah-Keat; Kornev, Konstantin G

    2014-01-28

    We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 μm to 350 μm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.

  3. Adipokines induce catabolism of newly synthesized matrix in cartilage and meniscus tissues.

    Science.gov (United States)

    Nishimuta, James F; Levenston, Marc E

    Altered synovial levels of various adipokines (factors secreted by fat as well as other tissues) have been associated with osteoarthritis (OA) onset and progression. However, the metabolic effects of adipokines on joint tissues, in particular the fibrocartilaginous menisci, are not well understood. This study investigated effects of several adipokines on release of recently synthesized extracellular matrix in bovine cartilage and meniscus tissue explants. After labeling newly synthesized proteins and sulfated glycosaminoglycans (sGAGs) with 3 H-proline and 35 S-sulfate, respectively; bovine cartilage and meniscus tissue explants were cultured for 6 days in basal medium (control) or media supplemented with adipokines (1 µg/ml of leptin, visfatin, adiponectin, or resistin) or 20 ng/ml interleukin-1 (IL-1). Release of radiolabel and sGAG to the media during culture and the final explant water, DNA, sGAG, and retained radiolabel were measured. Matrix metalloproteinase (MMP-2) and MMP-3 activities were assessed using gelatin and casein zymography, respectively. Water and DNA contents were not significantly altered by any treatment. Visfatin, adiponectin, resistin, and IL-1 stimulated sGAG release from meniscus, whereas only IL-1 stimulated sGAG release from cartilage. Release of 3 H and 35 S was stimulated not only by resistin and IL-1 in meniscus but also by IL-1 in cartilage. Retained 3 H was unaltered by any treatment, while retained 35 S was reduced by visfatin, resistin, and IL-1 in meniscus and by only IL-1 in cartilage. Resistin and IL-1 elevated active MMP-2 and total MMP-3 in meniscus, whereas cartilage MMP-3 activity was elevated by only IL-1. Resistin stimulated rapid and extensive catabolism of meniscus tissue, similar to IL-1, whereas adipokines minimally affected cartilage. Release of newly synthesized matrix was similar to overall release in both tissues. These observations provide further indications that meniscal tissue is more sensitive to pro

  4. Effect of meniscus constact angle during early regimes of spontaneous capillarity in nanochannels

    DEFF Research Database (Denmark)

    Karna, N.K.; Oyarzua, Elton; Walther, Jens Honore

    2016-01-01

    4 and 18 nm. We alsofind that the meniscus contact angle remains constant during the inertial regime and its value depends upon the height of the channel. We also find that the meniscus velocity computed at the channel entrance is related to the particular value of themeniscus contact angle....... Moreover, after the inertial regime, the meniscus contactangle is found to be time dependent for all the channels under study. We propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated in Bosanquets equation, satisfactorily explains the initial...

  5. Anterior Segment Optical Coherence Tomography for Tear Meniscus Evaluation and its Correlation with other Tear Variables in Healthy Individuals

    Science.gov (United States)

    Dhasmana, Renu; Nagpal, Ramesh Chander

    2016-01-01

    Introduction Dry eye is one of the most common ocular diseases in this cyber era. Despite availability of multiple tests, no single test is accurate for the diagnosis of dry eye. Anterior segment optical coherence tomography is the recent tool which can be added in the armentarium of dry eye tests. Aim To evaluate tear meniscus with anterior segment optical coherence tomography and its correlation with other tear variables in normal healthy individuals. Materials and Methods In this prospective cross-sectional observational study, right eye of 203 consecutive patients were studied. All the patients were divided into three groups Group 1, 2 and 3 according to their age ≤20 years, 21-40 years and >40 years respectively. All patients underwent routine ophthalmologic examinations along with slit-lamp bio-microscopy for tear meniscus height measurement, tear film break up time, Schirmer’s I test (with anaesthesia) and optical coherence tomography imaging of inferior tear meniscus height. After focusing of the instrument with a Cross Line (CL) centered on lower tear meniscus at 6’0 clock of cornea, a 6 mm long scan was obtained. The tear meniscus height (μm) and tear meniscus area (mm2) were measured manually with help of callipers by joining upper corneo-meniscus junction to the lower lid-meniscus junction and tear meniscus height and area within the plotted line respectively and calculated by using the integrated analysis available in the custom software. Results There was significant decrease in the all tear variables with the increase in the age. According to age groups in group 1, the mean Schirmer’s (24.0±4.9)mm, tear film break up time (11.1±1.9) sec, tear meniscus height on slit lamp (600.2±167.3)mm were higher but decreased in group 2 (21.5±5.4,10.8±1.4, 597.5±186.3) and group 3 (19.8 ± 5.1, 10.2 ± 1.6, 485.6 ± 157.7) respectively. Schirmer’s test values and tear film break up time were similar in both sexes (p=0.1 and p= 0.9). Tear meniscus

  6. Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels

    DEFF Research Database (Denmark)

    Karna, Nabin Kumar; Oyarzua, Elton; Walther, Jens Honore

    2016-01-01

    study, large scale atomistic simulations are conducted to investigate capillary imbibition of water in slit silica nanochannels with heights between 4 and 18 nm. We find that the meniscus contact angle remains constant during the inertial regime and its value depends on the height of the channel. We...... also find that the meniscus velocity computed at the channel entrance is related to the particular value of the meniscus contact angle. Moreover, during the subsequent visco-inertial regime, as the influence of viscosity increases, the meniscus contact angle is found to be time dependent for all...... the channels under study. Furthermore, we propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated into Bosanquet's equation, satisfactorily explains the initial capillary rise....

  7. Natural history of minimal anterior displacements of the temporomandibular joint meniscus

    International Nuclear Information System (INIS)

    Drace, J.E.

    1988-01-01

    Magnetic resonance (MR) imaging of the temporomandibular joint (TMJ) often provides more precise localization of the meniscus than other imaging modalities. Previous study of the distribution of meniscus position in a control population showed that anterior displacements of more than 10 0 were more than 2 standard deviations from the mean, but the clinical significance and natural history of minimal displacements remained uncertain. Twenty follow-up MR studies were performed after 1-2 years in subjects with minimal meniscus displacements drawn from an original series of 125 symptomatic patients and 50 asymptomatic volunteers. These were correlated with repeated clinical histories and clinical examinations. A significant increase in the amount of anterior displacement was found in 55% of the originally asymptomatic volunteers with minimal displacements, which was accompanied by new symptoms in 40%. This was seen exclusively among those with a history of orthodontia. Worsening anterior displacements were seen in 50% of the patient population, and 25% had associated worsening symptoms. These findings indicate that detection of even minimal displacements of the TMJ meniscus is necessary and warrants follow-up MR examinations. Routine follow-up MR images should be obtained following malocclusion treatment and after major dental procedures

  8. Meniscus Imaging for Crystal-Growth Control

    Science.gov (United States)

    Sachs, E. M.

    1983-01-01

    Silicon crystal growth monitored by new video system reduces operator stress and improves conditions for observation and control of growing process. System optics produce greater magnification vertically than horizontally, so entire meniscus and melt is viewed with high resolution in both width and height dimensions.

  9. PET/CT manifestation of the meniscus sign of ulcerating gastric carcinoma

    International Nuclear Information System (INIS)

    Bahk, Yong Whee

    2007-01-01

    Meniscus-like presentation of ulcerating gastric carcinoma on upper gastrointestinal series radiograph was first described in 1921 by Carman and has since been known as a useful differential diagnostic sign in radiology. In 1982 using then newly introduced computed tomography (CT) Widder and Mueller revisited the meniscus sign. Their study was primarily focused on a dynamic assessment of the demonstrability of the meniscus sign that largely depends on the judgment and technical skill of examiner, especially graded compression and patient positioning. One year earlier Balfe et al. assessed the diagnostic reliability of gastric wall thickening as observed on CT scan in adenocarcinoma, lymphoma and leiomyosarcoma and concluded that it is not a reliable finding. In contrast, however, Lee et al. recently emphasized that the wall thickness measurement on CT of exophytic carcinoma, myoma and ulcers was a useful diagnostic means. Thus, it appears that gastric wall thickening or mucosal heave-up is by itself not as reliable as the meniscus sign. The electronic search of world literature failed to disclose earlier report of this sign demonstrated by 18 F-FDG positron emission tomography and computed tomography (PET/CT). The present communication documents 18 F-FDG PET/CT finding of the meniscus sign as encountered in a case of ulcerating gastric carcinoma, the histological diagnosis of which was moderately differentiated tubular adenocarcinoma. Unlike most gastric tumors without ulceration that tend to unimpressively accumulate 18 F-FDG the present case of Borrmann type III gastric carcinoma demonstrated markedly increased 18 F-FDG uptake

  10. Radial tear of posterior horn of the medial meniscus and osteonecrosis of the knee

    International Nuclear Information System (INIS)

    Motoyama, Tatsuo; Ihara, Hidetoshi; Kawashima, Mahito

    2003-01-01

    We studied the relation between a radial tear of the posterior horn of the medial meniscus and osteonecrosis of the knee. Thirty-eight knees of 37 patients were diagnosed as medial meniscus tear and received arthroscopic knee surgery. We divided them into two groups: knees having radial tear of the posterior horn of the medial meniscus (posterior horn group) and knees containing radial tear except for posterior horn, horizontal tear, degenerative tear, and flap tear of the medial meniscus (non-posterior horn group). The posterior horn group consisted of 14 knees (average age: 65.1 years old) and the non-posterior horn group consisted of 24 knees (average age: 59.6 years old). All cases underwent MRI before arthroscopy. MRI findings were classified into three types (typical osteonecrosis, small osteonecrosis, and non-osteonecrosis). In the posterior horn group, typical osteonecrosis were five knees and small osteonecrosis were five knees, while in the non-posterior horn group only three knees were small osteonecrosis. These findings suggest the relevance between radial tear of the posterior horn of the medial meniscus and osteonecrosis of the knee (Mann-Whitney test p<0.01). The etiology of spontaneous osteonecrosis of the knee joint is unknown, however one etiology could be the radial tear of the posterior horn of the medial meniscus. (author)

  11. Relationship Between Preoperative Extrusion of the Medial Meniscus and Surgical Outcomes After Partial Meniscectomy.

    Science.gov (United States)

    Kim, Sung-Jae; Choi, Chong Hyuk; Chun, Yong-Min; Kim, Sung-Hwan; Lee, Su-Keon; Jang, Jinyoung; Jeong, Howon; Jung, Min

    2017-07-01

    No previous study has examined arthritic change after meniscectomy with regard to extrusion of the medial meniscus. (1) To determine the factors related to preoperative meniscal extrusion; (2) to investigate the relationship between medial meniscal extrusion and postoperative outcomes of partial meniscectomy, and to identify a cutoff point of meniscal extrusion that contributes to arthritic change after partial meniscectomy in nonosteoarthritic knees. Cohort study; Level of evidence, 3. A total of 208 patients who underwent partial meniscectomy of the medial meniscus between January 2000 and September 2006 were retrospectively reviewed. The extent of extrusion and severity of degeneration of the medial meniscus as shown on preoperative MRI were evaluated. The minimum follow-up duration was 7 years. Clinical function was assessed with the Lysholm knee scoring scale, the International Knee Documentation Committee (IKDC) subjective knee evaluation form, and the Tapper and Hoover grading system. Radiological evaluation was conducted by use of the IKDC radiographic assessment scale. Regression analysis was performed to identify factors affecting preoperative extrusion of the medial meniscus and factors influencing follow-up results after partial meniscectomy. Receiver operating characteristic curve was used to identify a cutoff point for the extent of meniscal extrusion that was associated with arthritic change. The mean ± SD preoperative Lysholm knee score was 65.0 ± 6.3 and the mean IKDC subjective score was 60.1 ± 7.5. The mean follow-up functional scores were 93.2 ± 5.1 ( P meniscus showed a tendency to increase as the extent of intrameniscal degeneration increased, and the medial meniscus was extruded more in patients with horizontal, horizontal flap, and complex tears. The preoperative extent of meniscal extrusion had a statistically significant correlation with follow-up Lysholm knee score (coefficient = -0.10, P = .002), IKDC subjective score (coefficient

  12. Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach

    Science.gov (United States)

    Hamdan, Mohammad O.; Abu-Nabah, Bassam A.

    2018-04-01

    In this study, a new term representing net flux rate of linear momentum is introduced to Lucas-Washburn equation. Following a fluid in rigid-body motion in modeling the meniscus rise in vertical capillary tubes transforms the nonlinear Lucas-Washburn equation to a linear mass-spring-damper system. The linear nature of mass-spring-damper system with constant coefficients offers a nondimensional analytical solution where meniscus dynamics are dictated by two parameters, namely the system damping ratio and its natural frequency. This connects the numerous fluid-surface interaction physical and geometrical properties to rather two nondimensional parameters, which capture the underlying physics of meniscus dynamics in three distinct cases, namely overdamped, critically damped, and underdamped systems. Based on experimental data available in the literature and the understanding meniscus dynamics, the proposed model brings a new approach of understanding the system initial conditions. Accordingly, a closed form relation is produced for the imbibition velocity, which equals half of the Bosanquet velocity divided by the damping ratio. The proposed general analytical model is ideal for overdamped and critically damped systems. While for underdamped systems, the solution shows fair agreement with experimental measurements once the effective viscosity is determined. Moreover, the presented model shows meniscus oscillations around equilibrium height occur if the damping ratio is less than one.

  13. One-Year Outcomes of Total Meniscus Reconstruction Using a Novel Fiber-Reinforced Scaffold in an Ovine Model.

    Science.gov (United States)

    Patel, Jay M; Merriam, Aaron R; Culp, Brian M; Gatt, Charles J; Dunn, Michael G

    2016-04-01

    Meniscus injuries and resulting meniscectomies lead to joint deterioration, causing pain, discomfort, and instability. Tissue-engineered devices to replace the meniscus have not shown consistent success with regard to function, mechanical integrity, or protection of cartilage. To evaluate a novel resorbable polymer fiber-reinforced meniscus reconstruction scaffold in an ovine model for 52 weeks and assess its integrity, tensile and compressive mechanics, cell phenotypes, matrix organization and content, and protection of the articular cartilage surfaces. Controlled laboratory study. Eight skeletally mature ewes were implanted with the fiber-reinforced scaffold after total meniscectomy, and 2 additional animals had untreated total meniscectomies. Animals were sacrificed at 52 weeks, and the explants and articular surfaces were analyzed macroscopically. Explants were characterized by ultimate tensile testing, confined compression creep testing, and biochemical, histological, and immunohistochemical analyses. Cartilage damage was characterized using the Mankin score on histologic slides from both the femur and tibia. One sheep was removed from the study because of a torn extensor tendon; the remaining 7 explants remained fully intact and incorporated into the bone tunnels. All explants exhibited functional tensile loads, tensile stiffnesses, and compressive moduli. Fibrocartilagenous repair with both types 1 and 2 collagen were observed, with areas of matrix organization and biochemical content similar to native tissue. Narrowing in the body region was observed in 5 of 7 explants. Mankin scores showed less cartilage damage in the explant group (femoral condyle: 3.43 ± 0.79, tibial plateau: 3.50 ± 1.63) than in the meniscectomy group (femoral condyle: 8.50 ± 3.54, tibial plateau: 6.75 ± 2.47) and were comparable with Mankin scores at the previously reported 16- and 32-week time points. A resorbable fiber-reinforced meniscus scaffold supports formation of functional

  14. Development of biodegradable hyper-branched tissue adhesives for the repair of meniscus tears

    NARCIS (Netherlands)

    Bochynska, A. I.; Van Tienen, T. G.; Hannink, G.; Buma, P.; Grijpma, D. W.

    2016-01-01

    Meniscus tears are one of the most commonly occurring injuries of the knee joint. Current meniscus repair techniques are challenging and do not bring fully satisfactory results. Tissue adhesives are a promising alternative, since they are easy to apply and cause minimal tissue trauma. In this study,

  15. Tibial avulsion fracture of the posterior root of the medial meniscus in children

    DEFF Research Database (Denmark)

    Iversen, Jonas Vestergård; Krogsgaard, Michael Rindom

    2012-01-01

    of displaced avulsion fractures of the posterior root of the medial meniscus in children are presented along with a concise report of the literature regarding avulsion fractures of the posterior root of the medial meniscus. Both avulsions were reattached arthroscopically by trans-tibial pull-out sutures...

  16. Co-culture with infrapatellar fat pad differentially stimulates proteoglycan synthesis and accumulation in cartilage and meniscus tissues.

    Science.gov (United States)

    Nishimuta, James F; Bendernagel, Monica F; Levenston, Marc E

    2017-09-01

    Although osteoarthritis is widely viewed as a disease of the whole joint, relatively few studies have focused on interactions among joint tissues in joint homeostasis and degeneration. In particular, few studies have examined the effects of the infrapatellar fat pad (IFP) on cartilaginous tissues. The aim of this study was to test the hypothesis that co-culture with healthy IFP would induce degradation of cartilage and meniscus tissues. Bovine articular cartilage, meniscus, and IFP were cultured isolated or as cartilage-fat or meniscus-fat co-cultures for up to 14 days. Conditioned media were assayed for sulfated glycosaminoglycan (sGAG) content, nitrite content, and matrix metalloproteinase (MMP) activity, and explants were assayed for sGAG and DNA contents. Co-cultures exhibited increased cumulative sGAG release and sGAG release rates for both cartilage and meniscus, and the cartilage (but not meniscus) exhibited a substantial synergistic effect of co-culture (sGAG release in co-culture was significantly greater than the summed release from isolated cartilage and fat). Fat co-culture did not significantly alter the sGAG content of either cartilage or meniscus explants, indicating that IFP co-culture stimulated net sGAG production by cartilage. Nitrite release was increased relative to isolated tissue controls in co-cultured meniscus, but not the cartilage, with no synergistic effect of co-culture. Interestingly, MMP-2 production was decreased by co-culture for both cartilage and meniscus. This study demonstrates that healthy IFP may modulate joint homeostasis by stimulating sGAG production in cartilage. Counter to our hypothesis, healthy IFP did not promote degradation of either cartilage or meniscus tissues.

  17. The effect of meniscus on the permeability of micro-post arrays

    International Nuclear Information System (INIS)

    Byon, Chan; Kim, Sung Jin

    2011-01-01

    This study aims to investigate the effect of meniscus curvature on the permeability of the micro-post arrays, which are widely used for applications of microfluidics. An analytical model that accounts for the meniscus curvature is developed. The model considers two common array types: quadratic and hexagonal arrays. The permeability of micro-post arrays is estimated using the capillary rate of rise experiment and numerical simulation. The results obtained from the analytical model match the experimental and numerical results within the error of 5% over the range of parameters commonly found in microfluidic applications (0.06 0.2), where d * and H * are the post-diameter and the post-height, respectively, which are normalized by the pitch. Based on the analytic results, the effects of the post-diameter, post-height and the contact angle on the permeability of post-arrays are investigated. It is shown that the previous permeability models based on the flat meniscus assumption overestimate the experimental value by 26% for the quadratic array and 24% for the hexagonal array when cos θ = 1, d * = 0.5 and H *=1. The effect of the meniscus curvature is shown to become more pronounced as the contact angle or the post-height decreases.

  18. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis--data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Emmanuel, K; Quinn, E; Niu, J; Guermazi, A; Roemer, F; Wirth, W; Eckstein, F; Felson, D

    2016-02-01

    To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Effect of Strain, Region, and Tissue Composition on Glucose Partitioning in Meniscus Fibrocartilage.

    Science.gov (United States)

    Kleinhans, Kelsey L; Jackson, Alicia R

    2017-03-01

    A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p < 0.001) affected by compression, decreasing with increasing strain. Furthermore, we did not find a statistically significant effect of tissue when comparing medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.

  20. The Pathobiology of the Meniscus: A Comparison Between the Human and Dog

    Directory of Open Access Journals (Sweden)

    Olga Krupkova

    2018-04-01

    Full Text Available Serious knee pain and related disability have an annual prevalence of approximately 25% on those over the age of 55 years. As curative treatments for the common knee problems are not available to date, knee pathologies typically progress and often lead to osteoarthritis (OA. While the roles that the meniscus plays in knee biomechanics are well characterized, biological mechanisms underlying meniscus pathophysiology and roles in knee pain and OA progression are not fully clear. Experimental treatments for knee disorders that are successful in animal models often produce unsatisfactory results in humans due to species differences or the inability to fully replicate disease progression in experimental animals. The use of animals with spontaneous knee pathologies, such as dogs, can significantly help addressing this issue. As microscopic and macroscopic anatomy of the canine and human menisci are similar, spontaneous meniscal pathologies in canine patients are thought to be highly relevant for translational medicine. However, it is not clear whether the biomolecular mechanisms of pain, degradation of extracellular matrix, and inflammatory responses are species dependent. The aims of this review are (1 to provide an overview of the anatomy, physiology, and pathology of the human and canine meniscus, (2 to compare the known signaling pathways involved in spontaneous meniscus pathology between both species, and (3 to assess the relevance of dogs with spontaneous meniscal pathology as a translational model. Understanding these mechanisms in human and canine meniscus can help to advance diagnostic and therapeutic strategies for painful knee disorders and improve clinical decision making.

  1. Determination of the meniscus shape of a negative ion beam from an experimentally obtained beam profile

    Science.gov (United States)

    Ichikawa, M.; Kojima, A.; Chitarin, G.; Agostinetti, P.; Aprile, D.; Baltador, C.; Barbisan, M.; Delogu, R.; Hiratsuka, J.; Marconato, N.; Nishikiori, R.; Pimazzoni, A.; Sartori, E.; Serianni, G.; Tobari, H.; Umeda, N.; Veltri, P.; Watanabe, K.; Yoshida, M.; Antoni, V.; Kashiwagi, M.

    2017-08-01

    In order to understand the physics mechanism of a negative ion extraction in negative ion sources, an emission surface of the negative ions around an aperture at a plasma grid, so-called a meniscus, has been analyzed by an inverse calculation of the negative ion trajectory in a two dimensional beam analysis code. In this method, the meniscus is defined as the final position of the negative ion trajectories which are inversely calculated from the measured beam profile to the plasma grid. In a case of the volume-produced negative ions, the calculated meniscus by the inverse calculation was similar to that obtained in conventional beam simulation codes for positive ion extractions such as BEAMORBT and SLACCAD. The negative ion current density was uniform along the meniscus. This indicates that the negative ions produced in the plasma are transported to the plasma grid uniformly as considered in the transportation of the positive ions. However, in a surface production case of negative ions, where the negative ions are generated near the plasma grid with lower work function by seeding cesium, the current density in the peripheral region of the meniscus close to the plasma grid surface was estimated to be 2 times larger than the center region, which suggested that the extraction process of the surface-produced negative ions was much different with that for the positive ions. Because this non-uniform profile of the current density made the meniscus shape strongly concave, the beam extracted from the peripheral region could have a large divergence angle, which might be one of origins of so-called beam halo. This is the first results of the determination of the meniscus based on the experiment, which is useful to improve the prediction of the meniscus shape and heat loads based on the beam trajectories including beam halo.

  2. Weightbearing Versus Nonweightbearing After Meniscus Repair.

    Science.gov (United States)

    VanderHave, Kelly L; Perkins, Crystal; Le, Michael

    2015-01-01

    Optimal rehabilitation after meniscal repair remains controversial. To review the current literature on weightbearing status after meniscal repairs and to provide evidence-based recommendations for postoperative rehabilitation. MEDLINE (January 1, 1993 to July 1, 2014) and Embase (January 1, 1993 to July 1, 2014) were queried with use of the terms meniscus OR/AND repair AND rehabilitation. Included studies were those with levels of evidence 1 through 4, with minimum 2 years follow-up and in an English publication. Systematic review. Level 4. Demographics and clinical and radiographic outcomes of meniscus repair at a minimum of 2 years follow-up were extracted. Successful clinical outcomes ranged from 70% to 94% with conservative rehabilitation. More recent studies using an accelerated rehabilitation protocol with full weightbearing and early range of motion reported 64% to 96% good results. Outcomes after both conservative (restricted weightbearing) protocols and accelerated rehabilitation (immediate weightbearing) yielded similar good to excellent results; however, lack of similar objective criteria and consistency among surgical techniques and existing studies makes direct comparison difficult. © 2015 The Author(s).

  3. Effect of the meniscus contact angle during early regimes of spontaneous imbibition in nanochannels.

    Science.gov (United States)

    Karna, Nabin Kumar; Oyarzua, Elton; Walther, Jens H; Zambrano, Harvey A

    2016-11-30

    Nanoscale capillarity has been extensively investigated; nevertheless, many fundamental questions remain open. In spontaneous imbibition, the classical Lucas-Washburn equation predicts a singularity as the fluid enters the channel consisting of an anomalous infinite velocity of the capillary meniscus. Bosanquet's equation overcomes this problem by taking into account fluid inertia predicting an initial imbibition regime with constant velocity. Nevertheless, the initial constant velocity as predicted by Bosanquet's equation is much greater than those observed experimentally. In the present study, large scale atomistic simulations are conducted to investigate capillary imbibition of water in slit silica nanochannels with heights between 4 and 18 nm. We find that the meniscus contact angle remains constant during the inertial regime and its value depends on the height of the channel. We also find that the meniscus velocity computed at the channel entrance is related to the particular value of the meniscus contact angle. Moreover, during the subsequent visco-inertial regime, as the influence of viscosity increases, the meniscus contact angle is found to be time dependent for all the channels under study. Furthermore, we propose an expression for the time evolution of the dynamic contact angle in nanochannels which, when incorporated into Bosanquet's equation, satisfactorily explains the initial capillary rise.

  4. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis – data from the Osteoarthritis Initiative

    Science.gov (United States)

    Emmanuel, K.; Quinn, E.; Niu, J.; Guermazi, A.; Roemer, F.; Wirth, W.; Eckstein, F.; Felson, D.

    2017-01-01

    SUMMARY Objective To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. Methods 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Results Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Conclusion Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. PMID:26318658

  5. A new arthroscopic classification of degenerative medial meniscus root tear that correlates with meniscus extrusion on magnetic resonance imaging.

    Science.gov (United States)

    Bin, Seong-Il; Jeong, Tae-Wan; Kim, Su-Jin; Lee, Dae-Hee

    2016-03-01

    To determine a new classification system for medial meniscus root tears (MMRT) based on arthroscopic findings. 24 knees (55%) belonged to the nondisplaced or overlapped group, and 20 knees (45%) to the widely displaced group. Absolute meniscal extrusion was defined as distance between outer edge of the articular cartilage of tibial plateau and meniscal outer edge. Relative extrusion was defined as extruded meniscus width divided by entire meniscal width, multiplied by 100. The proportion of knees with major (>3 mm) extrusion were compared in two groups, as were the severity of chondral wear and osteoarthritic change. Absolute (4.6 mm vs. 3.7 mm, P=0.006) and relative (46% vs. 39%, P=0.042) extrusion of the medial meniscus were greater in widely displaced than in nondisplaced or overlapped group. Medial joint space width was significantly narrower in the widely displaced than in the nondisplaced or overlapped group (3.0 mm vs. 4.0 mm, P=0.007). The widely displaced group had a 4° greater varus deformity, and higher rates of major extrusion (>3 mm), grade III or IV chondral wear in the medial femoral condyle (60% vs. 29%, P=0.039) and medial compartment osteoarthritis (75% vs. 21%, P=0.001) than did the nondisplaced or overlapped group. Widely displaced MMRT had greater meniscal extrusion and more severe chondral wear and osteoarthritis than did nondisplaced or overlapped MMRT. In this novel classification system, the stage of MMRT severity was associated with tear site displacement. Case series (level IV). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Complex Medial Meniscus Tears Are Associated With a Biconcave Medial Tibial Plateau.

    Science.gov (United States)

    Barber, F Alan; Getelman, Mark H; Berry, Kathy L

    2017-04-01

    To determine whether an association exists between a biconcave medial tibial plateau and complex medial meniscus tears. A consecutive series of stable knees undergoing arthroscopy were evaluated retrospectively with the use of preoperative magnetic resonance imaging (MRI), radiographs, and arthroscopy documented by intraoperative videos. Investigators independently performed blinded reviews of the MRI or videos. Based on the arthroscopy findings, medial tibial plateaus were classified as either biconcave or not biconcave. A transverse coronal plane ridge, separating the front of the tibial plateau from the back near the inner margin of the posterior body of the medial meniscus, was defined as biconcave. The medial plateau slope was calculated with MRI sagittal views. General demographic information, body mass index, and arthroscopically confirmed knee pathology were recorded. A total of 179 consecutive knees were studied from July 2014 through August 2015; 49 (27.2%) biconcave medial tibial plateaus and 130 (72.8%) controls were identified at arthroscopy. Complex medial meniscus tears were found in 103. Patients with a biconcave medial tibial plateau were found to have more complex medial meniscus tears (69.4%) than those without a biconcavity (53.1%) (P = .049) despite having lower body mass index (P = .020). No difference in medial tibial plateau slope was observed for biconcavities involving both cartilage and bone, bone only, or an indeterminate group (P = .47). Biconcave medial tibial plateaus were present in 27.4% of a consecutive series of patients undergoing knee arthroscopy. A biconcave medial tibial plateau was more frequently associated with a complex medial meniscus tear. Level III, case-control study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.

  7. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    International Nuclear Information System (INIS)

    Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Fukano, A.

    2015-01-01

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short

  8. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S.; Goto, I.; Hatayama, A. [Graduate school of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Fukano, A. [Tokyo Metropolitan Collage of Industrial Technology, Higashioi, Shinagawa, Tokyo 140-0011 (Japan)

    2015-04-08

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short.

  9. Inertial rise of a meniscus on a vertical cylinder

    KAUST Repository

    O’Kiely, Doireann

    2015-03-03

    © © 2015 Cambridge University PressA. We consider the inertia-dominated rise of a meniscus around a vertical circular cylinder. Previous experiments and scaling analysis suggest that the height of the meniscus, h-{m}, grows with the time following the initiation of rise, t, like h-{m}\\\\propto t^{1/2}. This is in contrast to the rise on a vertical plate, which obeys the classic capillary-inertia scaling h-{m}\\\\propto t^{2/3}. We highlight a subtlety in the scaling analysis that yielded h-{m}\\\\propto t^{1/2} and investigate the consequences of this subtlety. We develop a potential flow model of the dynamic problem, which we solve using the finite element method. Our numerical results agree well with previous experiments but suggest that the correct early time behaviour is, in fact, h-{m}\\\\propto t^{2/3}. Furthermore, we show that at intermediate times the dynamic rise of the meniscus is governed by two parameters: the contact angle and the cylinder radius measured relative to the capillary length scale, t^{2/3}. This result allows us to collapse previous experimental results with different cylinder radii (but similar static contact angles) onto a single master curve.

  10. Kinematic characteristics of anterior cruciate ligament deficient knees with concomitant meniscus deficiency during ascending stairs.

    Science.gov (United States)

    Zhang, Yu; Huang, Wenhan; Ma, Limin; Lin, Zefeng; Huang, Huayang; Xia, Hong

    2017-02-01

    It is commonly believed that a torn ACL or a damaged meniscus may be associated with altered knee joint movements. The purpose of this study was to measure the tibiofemoral kinematics of ACL deficiency with concomitant meniscus deficiency. Unilateral knees of 28 ACL deficient participants were studied while ascending stairs. Among these patients, 6 had isolated ACL injuries (group I), 8 had combined ACL and medial meniscus injuries (group II), 8 had combined ACL and lateral meniscus injuries (group III) and 6 had combined ACL and medial-lateral meniscus injuries (group IV). Both knees were then scanned during a stair climb activity using single fluoroscopic image system. Knee kinematics were measured at 0°, 5°, 10°, 15°, 30° and 60° of flexion during ascending stairs. At 0°, 15° and 30° flexion of the knee, the tibia rotated externally by 13.9 ± 6.1°,13.8 ± 9.5° and 15.9 ± 9.8° in Group I. Group II and III exhibited decreased external rotation from 60° to full extension. Statistical differences were found in 0°, 15°and 30° of flexion for the 2 groups compared with Group I. In general, the tibia showed anterior translation with respect to the femur during ascending stairs. It was further determined that Group III had larger anterior translation compared with Group IV at 0° and 5° of flexion (-6.9 ± 1.7 mm vs. 6.2 ± 11.3 mm, P = 0.041; -9.0 ± 1.8 mm vs. 8.1 ± 13.4 mm, P = 0.044). During ascending stairs the ACL deficient knee with different deficiencies in the meniscus will show significantly different kinematics compared with that of uninjured contralateral knee. Considering the varying effect of meniscus injuries on knee joint kinematics, future studies should concentrate on specific treatment of patients with combined ACL and meniscus injuries to protect the joint from abnormal kinematics and subsequent postoperative degeneration.

  11. Meniscus suture repair: minimum 10-year outcomes in patients younger than 40 years compared with patients 40 and older.

    Science.gov (United States)

    Steadman, J Richard; Matheny, Lauren M; Singleton, Steven B; Johnson, Nicholas S; Rodkey, William G; Crespo, Bernardo; Briggs, Karen K

    2015-09-01

    Few studies have compared outcomes after meniscus suture repair in patients younger than 40 years versus patients 40 years and older. To document failure rates and long-term outcomes after meniscus suture repair by a single surgeon, using the inside-out technique, at a minimum 10-year follow-up in patients younger than 40 years versus those 40 years and older. Cohort study; Level of evidence, 3. This study included all patients 18 years or older who underwent meniscus suture repair with the inside-out technique by a single surgeon between January 1992 and December 2003. Patients were divided into 2 cohorts according to age: meniscus as repaired in the index surgery. Patients completed a subjective questionnaire at minimum of 10 years after arthroscopy. Outcomes measures included Lysholm, Tegner, and patient satisfaction with outcome. All data were collected prospectively. The surgeon performed 339 meniscus repairs between 1992 and 2003. The study included 181 knees in 178 patients, who had a mean age of 33 years (range, 18-70 years). Cohort 1 contained 136 knees; 16 patients (12%) were lost to follow-up and 47 (35%) underwent a subsequent knee arthroscopy. Cohort 2 contained 45 knees; 2 patients (4.4%) were lost to follow-up, 3 patients had a total knee arthroplasty, and 12 patients (28%) underwent a subsequent knee arthroscopy. In cohort 1, the meniscus repair failure rate was 5.5% (6/110), and in cohort 2 it was 5.3% (2/38) (P = .927). There was no significant difference in failure rate based on which meniscus was repaired (P = .257), concomitant anterior cruciate ligament (ACL) reconstruction (P = .092), or microfracture (P = .674). Average follow-up time for cohort 1 was 16.1 years (range, 10.0-21.9 years), with 82% follow-up (n = 73/89); average follow-up time for cohort 2 was 16.2 years (range, 10.1-21.0 years), with 93% follow-up (n = 28/30). There were no significant differences in outcomes scores after meniscus suture repair based on age cohort or meniscus

  12. Impact of Partial and complete rupture of anterior cruciate ligament on medial meniscus: A cadavaric study

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2012-01-01

    Conclusions: Similar to complete rupture, partial rupture of ACL can also trigger strain concentration on medial meniscus, especially posterior horn, which may be a more critical reason for meniscus injury associated with chronic ACL deficiency.

  13. Rupture of posterior cruciate ligament leads to radial displacement of the medial meniscus.

    Science.gov (United States)

    Zhang, Can; Deng, Zhenhan; Luo, Wei; Xiao, Wenfeng; Hu, Yihe; Liao, Zhan; Li, Kanghua; He, Hongbo

    2017-07-11

    To explore the association between the rupture of posterior cruciate ligament (PCL) and the radial displacement of medial meniscus under the conditions of different flexion and various axial loads. The radial displacement value of medial meniscus was measured for the specimens of normal adult knee joints, including 12 intact PCLs, 6 ruptures of the anterolateral bundle (ALB), 6 ruptures of the postmedial bundle (PMB), and 12 complete ruptures. The measurement was conducted at 0°, 30°, 60°, and 90° of knee flexion angles under 200 N, 400 N, 600 N, 800 N and 1000 N of axial loads respectively. The displacement values of medial meniscus of the ALB rupture group increased at 0° flexion under 800 N and 1000 N, and at 30°, 60° and 90° flexion under all loads in comparison with the PCL intact group. The displacement values of the PMB rupture group was higher at 0° and 90° flexion under all loads, and at 30° and 60° flexion under 800 N and 1000 N loads. The displacement of the PCL complete rupture group increased at all flexion angles under all loads. Either partial or complete rupture of the PCL can increase in the radial displacement of the medial meniscus, which may explain the degenerative changes that occuring in the medial meniscus due to PCL injury. Therefore, early reestablishment of the PCL is necessarily required in order to maintain stability of the knee joint after PCL injury.

  14. A 12-Week Exercise Therapy Program in Middle-Aged Patients With Degenerative Meniscus Tears

    DEFF Research Database (Denmark)

    Stensrud, Silje; Roos, Ewa M.; Risberg, May Arna

    2012-01-01

    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 STUDY DESIGN: Case Series. BACKGROUND: Exercise is a viable treatment alternative to arthroscopic partial meniscectomy in patients with degenerative meniscus tears. No study has reported in detail type of exercises, progres......Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 STUDY DESIGN: Case Series. BACKGROUND: Exercise is a viable treatment alternative to arthroscopic partial meniscectomy in patients with degenerative meniscus tears. No study has reported in detail type of exercises......, progression, tolerance, and potential benefit from an exercise therapy program in these patients who have not had surgery. This study describes a progressive exercise therapy program aiming at improving neuromuscular function and muscle strength in middle-aged patients with degenerative meniscus tears...... had undergone surgery. DISCUSSION: The described neuromuscular- and strength-training program should be considered for rehabilitation of middle-aged individuals with degenerative meniscus tears. Head-to-head comparison of programs in a randomized design is however needed to be able to answer...

  15. The protective effect of meniscus allograft transplantation on articular cartilage: a systematic review of animal studies.

    Science.gov (United States)

    Rongen, J J; Hannink, G; van Tienen, T G; van Luijk, J; Hooijmans, C R

    2015-08-01

    Despite widespread reporting on clinical results, the effect of meniscus allograft transplantation on the development of osteoarthritis is still unclear. The aim of this study was to systematically review all studies on the effect of meniscus allograft transplantation on articular cartilage in animals. Pubmed and Embase were searched for original articles concerning the effect of meniscus allograft transplantation on articular cartilage compared with both its positive (meniscectomy) and negative (either sham or non-operated) control in healthy animals. Outcome measures related to assessment of damage to articular cartilage were divided in five principal outcome categories. Standardized mean differences (SMD) were calculated and pooled to obtain an overall SMD and 95% confidence interval. 17 articles were identified, representing 14 original animal cohorts with an average timing of data collection of 24 weeks [range 4 weeks; 30 months]. Compared to a negative control, meniscus allograft transplantation caused gross macroscopic (1.45 [0.95; 1.95]), histological (3.43 [2.25; 4.61]) damage to articular cartilage, and osteoarthritic changes on radiographs (3.12 [1.42; 4.82]). Moreover, results on histomorphometrics and cartilage biomechanics are supportive of this detrimental effect on cartilage. On the other hand, meniscus allograft transplantation caused significantly less gross macroscopic (-1.19 [-1.84; -0.54]) and histological (-1.70 [-2.67; -0.74]) damage to articular cartilage when compared to meniscectomy. However, there was no difference in osteoarthritic changes on plain radiographs (0.04 [-0.48; 0.57]), and results on histomorphometrics and biomechanics did neither show a difference in effect between meniscus allograft transplantation and meniscectomy. In conclusion, although meniscus allograft transplantation does not protect articular cartilage from damage, it reduces the extent of it when compared with meniscectomy. Copyright © 2015 Osteoarthritis

  16. AMECM/DCB scaffold prompts successful total meniscus reconstruction in a rabbit total meniscectomy model.

    Science.gov (United States)

    Yuan, Zhiguo; Liu, Shuyun; Hao, Chunxiang; Guo, Weimin; Gao, Shuang; Wang, Mingjie; Chen, Mingxue; Sun, Zhen; Xu, Yichi; Wang, Yu; Peng, Jiang; Yuan, Mei; Guo, Quan-Yi

    2016-12-01

    Tissue-engineered meniscus regeneration is a very promising treatment strategy for meniscus lesions. However, generating the scaffold presents a huge challenge for meniscus engineering as this has to meet particular biomechanical and biocompatibility requirements. In this study, we utilized acellular meniscus extracellular matrix (AMECM) and demineralized cancellous bone (DCB) to construct three different types of three-dimensional porous meniscus scaffold: AMECM, DCB, and AMECM/DCB, respectively. We tested the scaffolds' physicochemical characteristics and observed their interactions with meniscus fibrochondrocytes to evaluate their cytocompatibility. We implanted the three different types of scaffold into the medial knee menisci of New Zealand rabbits that had undergone total meniscectomy; negative control rabbits received no implants. The reconstructed menisci and corresponding femoral condyle and tibial plateau cartilage were all evaluated at 3 and 6 months (n = 8). The in vitro study demonstrated that the AMECM/DCB scaffold had the most suitable biomechanical properties, as this produced the greatest compressive and tensile strength scores. The AMECM/DCB and AMECM scaffolds facilitated fibrochondrocyte proliferation and the secretion of collagen and glycosaminoglycans (GAGs) more effectively than did the DCB scaffold. The in vivo experiments demonstrated that both the AMECM/DCB and DCB groups had generated neomeniscus at both 3 and 6 months post-implantation, but there was no obvious meniscus regeneration in the AMECM or control groups, so the neomeniscus analysis could not perform on AMECM and control group. At both 3 and 6 months, histological scores were better for regenerated menisci in the AMECM/DCB than in the DCB group, and significantly better for articular cartilage in the AMECM/DCB group compared with the other three groups. Knee MRI scores (Whole-Organ Magnetic Resonance Imaging Scores (WORMS)) were better in the AMECM/DCB group than in the

  17. Magnetic resonance tomography - a possibility for noninvasive meniscus diagnosis. Pt. 1

    International Nuclear Information System (INIS)

    Wacker, F.; Koenig, H.; Sell, S.

    1989-01-01

    Meniscus tears were experimentally produced by surgery in 5 pigs. They were identified via MR tomography with the selected routine sequence (SE: TR 1600, TE 22/80msec, SD 3 mm) independent of position, orientation and severity. The best imaging was obtained between the 2nd and 8th weeks after the operation in the sagittal plane. Subsequently the contrast and with it simultaneously the delineation between intact fibrous cartilage and rupture cleft decreased; this could be observed in sequences weighted according to proton density and T2 in different degrees of intensity. Parallel to this a trial to induce degeneration in the meniscus tissue resulted 8 weeks after the operation in central, signal-intensive zones in the menisci. No success was achieved in trying to improve imaging of the pathological changes by means of intraarticular injections of Gd-DTPA; this was tried out at various points of time. Besides enabling the imaging of lesions of the fibrous cartilage as a matter of principle, MR tomography can also give limited information on the age of a meniscus tear. (orig.) [de

  18. Fourier-Domain Optical Coherence Tomography for Monitoring the Lower Tear Meniscus in Dry Eye after Acupuncture Treatment

    Directory of Open Access Journals (Sweden)

    Tong Lin

    2015-01-01

    Full Text Available Dry eye is highly prevalent and has a significant impact on quality of life. Acupuncture was found to be effective to treat dry eye. However, little was known about the effect of acupuncture on different subtypes of dry eye. The objective of this study was to investigate the applicability of tear meniscus assessment by Fourier-domain optical coherence tomography in the evaluation of acupuncture treatment response in dry eye patients and to explore the effect of acupuncture on different subtypes of dry eye compared with artificial tear treatment. A total of 108 dry eye patients were randomized into acupuncture or artificial tear group. Each group was divided into three subgroups including lipid tear deficiency (LTD, Sjögren syndrome dry eye (SSDE, and non-Sjögren syndrome dry eye (Non-SSDE for data analysis. After 4-week treatment, the low tear meniscus parameters including tear meniscus height (TMH, tear meniscus depth (TMD, and tear meniscus area (TMA in the acupuncture group increased significantly for the LTD and Non-SSDE subgroups compared with both the baseline and the control groups (all P values < 0.05, but not for the SSDE. Acupuncture provided a measurable improvement of the tear meniscus dimensions for the Non-SSDE and LTD patients, but not for the SSDE patients.

  19. Bonding and fusion of meniscus fibrocartilage using a novel chondroitin sulfate bone marrow tissue adhesive.

    Science.gov (United States)

    Simson, Jacob A; Strehin, Iossif A; Allen, Brian W; Elisseeff, Jennifer H

    2013-08-01

    The weak intrinsic meniscus healing response and technical challenges associated with meniscus repair contribute to a high rate of repair failures and meniscectomies. Given this limited healing response, the development of biologically active adjuncts to meniscal repair may hold the key to improving meniscal repair success rates. This study demonstrates the development of a bone marrow (BM) adhesive that binds, stabilizes, and stimulates fusion at the interface of meniscus tissues. Hydrogels containing several chondroitin sulfate (CS) adhesive levels (30, 50, and 70 mg/mL) and BM levels (30%, 50%, and 70%) were formed to investigate the effects of these components on hydrogel mechanics, bovine meniscal fibrochondrocyte viability, proliferation, matrix production, and migration ability in vitro. The BM content positively and significantly affected fibrochondrocyte viability, proliferation, and migration, while the CS content positively and significantly affected adhesive strength (ranged from 60±17 kPa to 335±88 kPa) and matrix production. Selected material formulations were translated to a subcutaneous model of meniscal fusion using adhered bovine meniscus explants implanted in athymic rats and evaluated over a 3-month time course. Fusion of adhered meniscus occurred in only the material containing the highest BM content. The technology can serve to mechanically stabilize the tissue repair interface and stimulate tissue regeneration across the injury site.

  20. Micrograph evidence of meniscus solidification and sub-surface microstructure evolution in continuous-cast ultralow-carbon steels

    International Nuclear Information System (INIS)

    Sengupta, J.; Shin, H.-J.; Thomas, B.G.; Kim, S.-H.

    2006-01-01

    Hooks and other sub-surface features in continuous-cast ultralow-carbon steel samples were examined using optical microscopy, electron backscattering diffraction, energy dispersive X-ray spectroscopy, and electron probe microanalysis techniques. Special etching reagents revealed dendrites growing from both sides of the line of hook origin. This line was found to represent the frozen meniscus and persisted into the final microstructure, as revealed by grain orientation measurements. A broken hook tip was observed in one micrograph, which explains the characteristic truncated shape of most hooks. Mold powder was found entrapped along the frozen meniscus. These results provide evidence of both solidification and subsequent overflow of the liquid steel meniscus. Thus, the instantaneous meniscus shape governs the shape and microstructure of the final hook, and the extent of the liquid steel overflow determines the shape of oscillation marks. This mechanism has important implications for the entrapment of inclusions and other surface defects

  1. Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method.

    Science.gov (United States)

    Seyfi, Behzad; Fatouraee, Nasser; Imeni, Milad

    2018-01-01

    In this paper, to characterize the mechanical properties of meniscus by considering its local microstructure, a novel nonlinear poroviscoelastic Finite Element (FE) model has been developed. To obtain the mechanical response of meniscus, indentation experiments were performed on bovine meniscus samples. The ramp-relaxation test scenario with different depths and preloads was designed to capture the mechanical characteristics of the tissue in different regions of the medial and lateral menisci. Thereafter, a FE simulation was performed considering experimental conditions. Constitutive parameters were optimized by solving a FE-based inverse problem using the heuristic Simulated Annealing (SA) optimization algorithm. These parameters were ranged according to previously reported data to improve the optimization procedure. Based on the results, the mechanical properties of meniscus were highly influenced by both superficial and main layers. At low indentation depths, a high percentage relaxation (p < 0.01) with a high relaxation rate (p < 0.05) was obtained, due to the poroelastic and viscoelastic nature of the superficial layer. Increasing both penetration depth and preload level involved the main layer response and caused alterations in hyperelastic and viscoelastic parameters of the tissue, such that for both layers, the shear modulus was increased (p < 0.01) while the rate and percentage of relaxation were decreased (p < 0.01). Results reflect that, shear modulus of the main layer in anterior region is higher than central and posterior sites in medial meniscus. In contrast, in lateral meniscus, posterior side is stiffer than central and anterior sides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of Leukocyte-Rich and Platelet-Rich Plasma on Healing of a Horizontal Medial Meniscus Tear in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Kyun Ho Shin

    2015-01-01

    Full Text Available There are limited reports on the effect of platelet-rich plasma (PRP on meniscus healing. The purpose of this study was to investigate the effect of leukocyte-rich PRP (L-PRP on potential healing of the horizontal medial meniscus tears in a rabbit model. A horizontal medial meniscus tear was created in both knees of nine skeletally mature adult rabbits. Left or right knees were randomly assigned to a L-PRP group, or a control group. 0.5 mL of L-PRP from 10 mL of each rabbit’s whole blood was prepared and injected into the horizontal tears in a L-PRP group. None was applied to the horizontal tears in a control group. The histological assessment of meniscus healing was performed at two, four, and six weeks after surgery. We found that there were no significant differences of quantitative histologic scoring between two groups at 2, 4, and 6 weeks after surgery (p>0.05. This study failed to show the positive effect of single injection of L-PRP on enhancing healing of the horizontal medial meniscus tears in a rabbit model. Single injection of L-PRP into horizontal meniscus tears may not effectively enhance healing of horizontal medial meniscus tears.

  3. Gas-Jet Meniscus Control in Ribbon Growth

    Science.gov (United States)

    Zoutendyk, J. A.; Vonroos, O.

    1983-01-01

    Gas jet used to control shape of meniscus and thus to regulate ribbon thickness in vertical silicon-ribbon growth. Gas jet also cools ribbon, increasing maximum possible pull speed for silicon, contact angle of 11 degrees plus or minus 1 degree required for constant thickness ribbon growth. Cooling effect of gas jet increases maximum possible pull speed.

  4. An observational study on MR images of the effect of the discoid meniscus on articular cartilage thickness.

    Science.gov (United States)

    Oni, David Babajide; Jeyapalan, K; Oni, Olusola O A

    2011-06-01

    The discoid meniscus is known to affect the morphology and mechanics of the knee compartment in which it is housed. To determine whether it also is determinative of the articular cartilage thickness, measurements were made on MR images. There was no statistically significant difference in femoral or tibial articular cartilage thickness between compartments with normal meniscus and compartments with discoid meniscus. These findings suggest that mechanical disturbances wrought by the discoid shape do not have a 'Wolff law' effect. Copyright © 2010. Published by Elsevier B.V.

  5. Clinical and radiographic outcomes of meniscus surgery and future targets for biologic intervention: A review of data from the MOON Group.

    Science.gov (United States)

    Westermann, Robert W; Jones, Morgan; Wasserstein, David; Spindler, Kurt P

    Meniscus injury and treatment occurred with the majority of anterior cruciate ligament reconstructions (ACLR) in the multicenter orthopedic outcomes (MOON) cohort. We describe the patient-reported outcomes, radiographic outcomes, and predictors of pain from meniscus injuries and treatment in the setting of ACLR. Patient-reported outcomes improve significantly following meniscus repair with ACLR, but differences exist based on the meniscus injury laterally (medial or lateral). Patients undergoing medial meniscus repair have worse patient-reported outcomes and more pain compared to those with uninjured menisci. However, lateral meniscal tears can be repaired with similar outcomes as uninjured menisci. Medial meniscal treatment (meniscectomy or repair) results in a significant loss of joint space at 2 years compared to uninjured menisci. Menisci treated with excision had a greater degree of joint space loss compared to those treated with repair. Clinically significant knee pain is more common following injuries to the medial meniscus and increased in patients who undergo early re-operation after initial ACLR. Future research efforts aimed at improving outcomes after combined ACLR and meniscus treatment should focus on optimizing biologic and mechanical environments that promote healing of medial meniscal tears sustained during ACL injury.

  6. Electrical conductivity and ion diffusion in porcine meniscus: effects of strain, anisotropy, and tissue region.

    Science.gov (United States)

    Kleinhans, Kelsey L; McMahan, Jeffrey B; Jackson, Alicia R

    2016-09-06

    The purpose of the present study was to investigate the effects of mechanical strain, anisotropy, and tissue region on electrical conductivity and ion diffusivity in meniscus fibrocartilage. A one-dimensional, 4-wire conductivity experiment was employed to measure the electrical conductivity in porcine meniscus tissues from two tissue regions (horn and central), for two tissue orientations (axial and circumferential), and for three levels of compressive strain (0%, 10%, and 20%). Conductivity values were then used to estimate the relative ion diffusivity in meniscus. The water volume fraction of tissue specimens was determined using a buoyancy method. A total of 135 meniscus samples were measured; electrical conductivity values ranged from 2.47mS/cm to 4.84mS/cm, while relative ion diffusivity was in the range of 0.235 to 0.409. Results show that electrical conductivity and ion diffusion are significantly anisotropic (pmeniscus fibrocartilage, which is essential in developing new strategies to treat and/or prevent tissue degeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Traumatic posterior root tear of the medial meniscus in patients with severe medial instability of the knee.

    Science.gov (United States)

    Ra, Ho Jong; Ha, Jeong Ku; Jang, Ho Su; Kim, Jin Goo

    2015-10-01

    To examine the incidence and diagnostic rate of traumatic medial meniscus posterior root tear associated with severe medial instability and to evaluate the effectiveness of pullout repair. From 2007 to 2011, 51 patients who underwent operation due to multiple ligament injuries including medial collateral ligament rupture were reviewed retrospectively. The International Knee Documentation Committee (IKDC) subjective and Lysholm score were evaluated pre- and postoperatively. Postoperative magnetic resonance imaging (MRI) was performed, and if indicated, a second-look arthroscopic examination was conducted. Fourteen out of 51 patients were associated with severe medial instability. Seven patients were diagnosed with traumatic medial meniscus posterior root tear and underwent arthroscopic pullout repair. Five of them were missed at initial diagnosis using MRI. In seven patients, the mean Lysholm and IKDC subjective scores improved from 74.6 ± 10.3 and 47.6 ± 7.3 to 93.0 ± 3.7 and 91.6 ± 2.6, respectively. All showed complete healing of meniscus root on follow-up MRI and second-look arthroscopy. Medial meniscus posterior root tear may occur in severe medial instability from trauma. It is a common mistake that surgeons may not notice on the diagnosis of those injuries using MRI. Therefore, a high index of suspicion is required for the diagnosis of medial meniscus posterior root tear in this type of injuries. The traumatic medial meniscus posterior root tear could be healed successfully using arthroscopic pullout repair technique. The possibility of the medial meniscus posterior root tear should be considered in severe medial instability and arthroscopic pullout repair can be an effective option for treatment. Case series with no comparison group, Level IV.

  8. A numerical study on the behavior of the water meniscus formed between a flat surface and a flat or circular tip

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Wan; Ha, Man Yeong; Yoon, Hyun Sik; Kim, Chang Min [Pusan National University, Busan (Korea, Republic of); Kim, Sang Sun [Korea Aerospace Industries, Sacheon (Korea, Republic of)

    2014-04-15

    We numerically investigated the behavior of the water meniscus formed between a flat surface and a tip surface, which is flat or circular in shape, using the lattice Boltzmann method (LBM). The shape of the water meniscus formed between the flat bottom surface and the tip surface depends on the tip shape and the interaction between the water meniscus and the bottom or tip surface. The interaction is determined by the contact angles of the bottom and tip surfaces, resulting in different contact lengths between the water meniscus and the bottom or tip surface. The difference in these contact lengths depends on the effects of both the tip curvature and the interaction between the water meniscus and the bottom or tip surface. We classified the shapes of the water meniscus into seven different patterns as a function of the contact angles of the flat bottom and tip surfaces: concave, semi-concave, inverse semi-concave, column, convex, semiconvex, and inverse semi-convex.

  9. A numerical study on the behavior of the water meniscus formed between a flat surface and a flat or circular tip

    International Nuclear Information System (INIS)

    Son, Sung Wan; Ha, Man Yeong; Yoon, Hyun Sik; Kim, Chang Min; Kim, Sang Sun

    2014-01-01

    We numerically investigated the behavior of the water meniscus formed between a flat surface and a tip surface, which is flat or circular in shape, using the lattice Boltzmann method (LBM). The shape of the water meniscus formed between the flat bottom surface and the tip surface depends on the tip shape and the interaction between the water meniscus and the bottom or tip surface. The interaction is determined by the contact angles of the bottom and tip surfaces, resulting in different contact lengths between the water meniscus and the bottom or tip surface. The difference in these contact lengths depends on the effects of both the tip curvature and the interaction between the water meniscus and the bottom or tip surface. We classified the shapes of the water meniscus into seven different patterns as a function of the contact angles of the flat bottom and tip surfaces: concave, semi-concave, inverse semi-concave, column, convex, semiconvex, and inverse semi-convex

  10. Fatigue life of bovine meniscus under longitudinal and transverse tensile loading.

    Science.gov (United States)

    Creechley, Jaremy J; Krentz, Madison E; Lujan, Trevor J

    2017-05-01

    The knee meniscus is composed of a fibrous extracellular matrix that is subjected to large and repeated loads. Consequently, the meniscus is frequently torn, and a potential mechanism for failure is fatigue. The objective of this study was to measure the fatigue life of bovine meniscus when applying cyclic tensile loads either longitudinal or transverse to the principal fiber direction. Fatigue experiments consisted of cyclic loads to 60%, 70%, 80% or 90% of the predicted ultimate tensile strength until failure occurred or 20,000 cycles was reached. The fatigue data in each group was fit with a Weibull distribution to generate plots of stress level vs. cycles to failure (S-N curve). Results showed that loading transverse to the principal fiber direction gave a two-fold increase in failure strain, a three-fold increase in creep, and a nearly four-fold increase in cycles to failure (not significant), compared to loading longitudinal to the principal fiber direction. The S-N curves had strong negative correlations between the stress level and the mean cycles to failure for both loading directions, where the slope of the transverse S-N curve was 11% less than the longitudinal S-N curve (longitudinal: S=108-5.9ln(N); transverse: S=112-5.2ln(N)). Collectively, these results suggest that the non-fibrillar matrix is more resistant to fatigue failure than the collagen fibers. Results from this study are relevant to understanding the etiology of atraumatic radial and horizontal meniscal tears, and can be utilized by research groups that are working to develop meniscus implants with fatigue properties that mimic healthy tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Advances and Prospects in Tissue-Engineered Meniscal Scaffolds for Meniscus Regeneration

    Directory of Open Access Journals (Sweden)

    Weimin Guo

    2015-01-01

    Full Text Available The meniscus plays a crucial role in maintaining knee joint homoeostasis. Meniscal lesions are relatively common in the knee joint and are typically categorized into various types. However, it is difficult for inner avascular meniscal lesions to self-heal. Untreated meniscal lesions lead to meniscal extrusions in the long-term and gradually trigger the development of knee osteoarthritis (OA. The relationship between meniscal lesions and knee OA is complex. Partial meniscectomy, which is the primary method to treat a meniscal injury, only relieves short-term pain; however, it does not prevent the development of knee OA. Similarly, other current therapeutic strategies have intrinsic limitations in clinical practice. Tissue engineering technology will probably address this challenge by reconstructing a meniscus possessing an integrated configuration with competent biomechanical capacity. This review describes normal structure and biomechanical characteristics of the meniscus, discusses the relationship between meniscal lesions and knee OA, and summarizes the classifications and corresponding treatment strategies for meniscal lesions to understand meniscal regeneration from physiological and pathological perspectives. Last, we present current advances in meniscal scaffolds and provide a number of prospects that will potentially benefit the development of meniscal regeneration methods.

  12. Assessment of the Relationship between the Shape of the Lateral Meniscus and the Risk of Extrusion Based on MRI Examination of the Knee Joint.

    Directory of Open Access Journals (Sweden)

    Arkadiusz Szarmach

    Full Text Available Meniscus extrusion is a serious and relatively frequent clinical problem. For this reason the role of different risk factors for this pathology is still the subject of debate. The goal of this study was to verify the results of previous theoretical work, based on the mathematical models, regarding a relationship between the cross-section shape of the meniscus and the risk of its extrusion.Knee MRI examination was performed in 77 subjects (43 men and 34 women, mean age 34.99 years (range: 18-49 years, complaining of knee pain. Patients with osteoarthritic changes (grade 3 and 4 to Kellgren classification, varus or valgus deformity and past injuries of the knee were excluded from the study. A 3-Tesla MR device was used to study the relationship between the shape of the lateral meniscus (using slope angle, meniscus-cartilage height and meniscus-bone angle and the risk of extrusion.Analysis revealed that with values of slope angle and meniscus-bone angle increasing by one degree, the risk of meniscus extrusion raises by 1.157 and 1.078 respectively. Also, an increase in meniscus-cartilage height by 1 mm significantly elevates the risk of extrusion. At the same time it was demonstrated that for meniscus-bone angle values over 42 degrees and slope angle over 37 degrees the risk of extrusion increases significantly.This was the first study to demonstrate a tight correlation between slope angle, meniscus-bone angle and meniscus-cartilage height values in the assessment of the risk of lateral meniscus extrusion. Insertion of the above parameters to the radiological assessment of the knee joint allows identification of patients characterized by an elevated risk of development of this pathology.

  13. Assessment of the Relationship between the Shape of the Lateral Meniscus and the Risk of Extrusion Based on MRI Examination of the Knee Joint.

    Science.gov (United States)

    Szarmach, Arkadiusz; Luczkiewicz, Piotr; Skotarczak, Monika; Kaszubowski, Mariusz; Winklewski, Pawel J; Dzierzanowski, Jaroslaw; Piskunowicz, Maciej; Szurowska, Edyta; Baczkowski, Bogusław

    2016-01-01

    Meniscus extrusion is a serious and relatively frequent clinical problem. For this reason the role of different risk factors for this pathology is still the subject of debate. The goal of this study was to verify the results of previous theoretical work, based on the mathematical models, regarding a relationship between the cross-section shape of the meniscus and the risk of its extrusion. Knee MRI examination was performed in 77 subjects (43 men and 34 women), mean age 34.99 years (range: 18-49 years), complaining of knee pain. Patients with osteoarthritic changes (grade 3 and 4 to Kellgren classification), varus or valgus deformity and past injuries of the knee were excluded from the study. A 3-Tesla MR device was used to study the relationship between the shape of the lateral meniscus (using slope angle, meniscus-cartilage height and meniscus-bone angle) and the risk of extrusion. Analysis revealed that with values of slope angle and meniscus-bone angle increasing by one degree, the risk of meniscus extrusion raises by 1.157 and 1.078 respectively. Also, an increase in meniscus-cartilage height by 1 mm significantly elevates the risk of extrusion. At the same time it was demonstrated that for meniscus-bone angle values over 42 degrees and slope angle over 37 degrees the risk of extrusion increases significantly. This was the first study to demonstrate a tight correlation between slope angle, meniscus-bone angle and meniscus-cartilage height values in the assessment of the risk of lateral meniscus extrusion. Insertion of the above parameters to the radiological assessment of the knee joint allows identification of patients characterized by an elevated risk of development of this pathology.

  14. Effect of ionic transport and separation on the meniscus in molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, P.H.; Chen, C.C.; Selman, J.R. [Center for Electrochemical Science and Engineering, Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2012-06-15

    Migrational separation due to differences in cationic mobility is commonly observed during current passage in molten carbonate mixtures, and this might be responsible for the improved wetting observed upon polarization, as found experimentally according to the literature. To check this, a 2D transport model based on concentrated-solution theory was applied to analyze the movement of ions in and near the meniscus. The effect of differences in cationic mobility and of ionic transport in general on current distribution, reaction rate, and electrolyte composition in the meniscus region was quantified, and corresponding surface tension gradients over the meniscus surface predicted. The resulting surface tension gradients were found to be too small to account for the experimentally observed meniscus rise. It is, therefore, concluded that the polarization effect on electrode wetting is not due to the gradient of surface tension caused by cationic separation. A plausible alternative explanation is that a gradient of the S/L interfacial tension exists but that this is due to specifically adsorbed intermediate reaction products, in particular oxides. Such a current density dependent adsorption layer would be in dynamic equilibrium with the local melt composition, and, thereby, drive the wetting/dewetting of the electrode surface that is experimentally observed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Light emitting diode package element with internal meniscus for bubble free lens placement

    Science.gov (United States)

    Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen

    2010-09-28

    A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.

  16. Mathematical modelling of liquid meniscus shape in cylindrical micro-channel for normal and micro gravity conditions

    Science.gov (United States)

    Marchuk, Igor; Lyulin, Yuriy

    2017-10-01

    Mathematical model of liquid meniscus shape in cylindrical micro-channel of the separator unit of condensing/separating system is presented. Moving liquid meniscus in the 10 μm cylindrical microchannel is used as a liquid lock to recover the liquid obtained by condensation from the separators. The main goal of the liquid locks to prevent penetration of a gas phase in the liquid line at the small flow rate of the condensate and because of pressure fluctuations in the vapor-gas-liquid loop. Calculation of the meniscus shape has been performed for liquid FC-72 at different values of pressure difference gas - liquid and under normal and micro gravity conditions.

  17. Evaluation of medial and lateral meniscus thicknesses in early osteoarthritis of the knee with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bamac, B.; Ozdemir, S.; Colak, T.; Ozbek, A.; Sarisoy, Hasan T.; Akansel, G.

    2006-01-01

    To evaluate early changes occurring in both medial and lateral meniscus thickness from the knees of patients with osteoarthritis (Oa). We conducted this study in the Department of Anatomy and Division of Radiology, Faculty of Medicine, Klucel University, Klucel, Turkey during the period 2004 to 2005. In this study, we measured the thickness of the medial and lateral meniscus in a group of 36 (50 knees) consecutive patients with chronic knee pain, and clinical findings of early Oa, and 10 (20 knees) control subjects using MRI. The thickness of the posterior horn of the medial meniscus and anterior horn of the lateral meniscus were significantly higher in the Oa patients compared with the control subjects. This study showed that meniscal degeneration in early stage Oa is not evenly distributed in the knee. Thickening of the menisci in some areas may occur due to their own localization and biomechanics. (author)

  18. Hemi-bucket-handle tears of the meniscus: appearance on MRI and potential surgical implications

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, Bjorn I.; Vinson, Emily N.; Helms, Clyde A. [Duke University Medical Center, Department of Radiology, Box 3808, Durham, NC (United States); Taylor, Dean C.; Garrett, William E. [Duke University Medical Center, Department of Orthopaedics, Box 3810, Durham, NC (United States)

    2012-08-15

    To describe a type of meniscus flap tear resembling a bucket-handle tear, named a ''hemi-bucket-handle'' tear; to compare its imaging features with those of a typical bucket-handle tear; and to discuss the potential therapeutic implications of distinguishing these two types of tears. Five knee MR examinations were encountered with a type of meniscus tear consisting of a flap of tissue from the undersurface of the meniscus displaced toward the intercondylar notch. A retrospective analysis of 100 MR examinations prospectively interpreted as having bucket-handle type tears yielded 10 additional cases with this type of tear. Cases of hemi-bucket-handle tears were reviewed for tear location and orientation, appearance of the superior articular surface of the meniscus, presence and location of displaced meniscal tissue, and presence of several classic signs of bucket-handle tears. A total of 15/15 tears involved the medial meniscus, had tissue displaced toward the notch, and were mainly horizontal in orientation. The superior surface was intact in 11/15 (73.3%). In 1/15 (6.7%) there was an absent-bow-tie sign; 6/15 (40%) had a double-PCL sign; 14/15 (93.3%) had a double-anterior horn sign. We describe a type of undersurface flap tear, named a hemi-bucket-handle tear, which resembles a bucket-handle tear. Surgeons at our institution feel this tear would likely not heal if repaired given its predominantly horizontal orientation, and additionally speculate the tear could be overlooked at arthroscopy. Thus, we feel it is important to distinguish this type of tear from the typical bucket-handle tear. (orig.)

  19. Hemi-bucket-handle tears of the meniscus: appearance on MRI and potential surgical implications

    International Nuclear Information System (INIS)

    Engstrom, Bjorn I.; Vinson, Emily N.; Helms, Clyde A.; Taylor, Dean C.; Garrett, William E.

    2012-01-01

    To describe a type of meniscus flap tear resembling a bucket-handle tear, named a ''hemi-bucket-handle'' tear; to compare its imaging features with those of a typical bucket-handle tear; and to discuss the potential therapeutic implications of distinguishing these two types of tears. Five knee MR examinations were encountered with a type of meniscus tear consisting of a flap of tissue from the undersurface of the meniscus displaced toward the intercondylar notch. A retrospective analysis of 100 MR examinations prospectively interpreted as having bucket-handle type tears yielded 10 additional cases with this type of tear. Cases of hemi-bucket-handle tears were reviewed for tear location and orientation, appearance of the superior articular surface of the meniscus, presence and location of displaced meniscal tissue, and presence of several classic signs of bucket-handle tears. A total of 15/15 tears involved the medial meniscus, had tissue displaced toward the notch, and were mainly horizontal in orientation. The superior surface was intact in 11/15 (73.3%). In 1/15 (6.7%) there was an absent-bow-tie sign; 6/15 (40%) had a double-PCL sign; 14/15 (93.3%) had a double-anterior horn sign. We describe a type of undersurface flap tear, named a hemi-bucket-handle tear, which resembles a bucket-handle tear. Surgeons at our institution feel this tear would likely not heal if repaired given its predominantly horizontal orientation, and additionally speculate the tear could be overlooked at arthroscopy. Thus, we feel it is important to distinguish this type of tear from the typical bucket-handle tear. (orig.)

  20. The influence of a change in the meniscus cross-sectional shape on the medio-lateral translation of the knee joint and meniscal extrusion

    Science.gov (United States)

    Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Ferenc, Tomasz; Baczkowski, Boguslaw

    2018-01-01

    Objective The purpose of this study was to evaluate the influence of a change in the meniscus cross sectional shape on its position and on the biomechanics of a knee joint. Methods One main finite element model of a left knee joint was created on the basis of MRI images. The model consisted of bones, articular cartilages, menisci and ligaments. Eight variants of this model with an increased or decreased meniscus height were then prepared. Nonlinear static analyses with a fixed flexion/extension movement for a compressive load of 1000 N were performed. The additional analyses for those models with a constrained medio-lateral relative bone translation allowed for an evaluation of the influence of this translation on a meniscus external shift. Results It was observed that a decrease in the meniscus height caused a decrease in the contact area, together with a decrease in the contact force between the flattened meniscus and the cartilage. For the models with an increased meniscus height, a maximal value of force acting on the meniscus in a medio-lateral direction was obtained. The results have shown that the meniscus external shift was approximately proportional to the meniscus slope angle, but that relationship was modified by a medio-lateral relative bone translation. It was found that the translation of the femur relative to the tibia may be dependent on the geometry of the menisci. Conclusions The results have suggested that a change in the meniscus geometry in the cross sectional plane can considerably affect not only the meniscal external shift, but also the medio-lateral translation of the knee joint as well as the congruency of the knee joint. PMID:29447236

  1. The influence of a change in the meniscus cross-sectional shape on the medio-lateral translation of the knee joint and meniscal extrusion.

    Science.gov (United States)

    Luczkiewicz, Piotr; Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Ferenc, Tomasz; Baczkowski, Boguslaw

    2018-01-01

    The purpose of this study was to evaluate the influence of a change in the meniscus cross sectional shape on its position and on the biomechanics of a knee joint. One main finite element model of a left knee joint was created on the basis of MRI images. The model consisted of bones, articular cartilages, menisci and ligaments. Eight variants of this model with an increased or decreased meniscus height were then prepared. Nonlinear static analyses with a fixed flexion/extension movement for a compressive load of 1000 N were performed. The additional analyses for those models with a constrained medio-lateral relative bone translation allowed for an evaluation of the influence of this translation on a meniscus external shift. It was observed that a decrease in the meniscus height caused a decrease in the contact area, together with a decrease in the contact force between the flattened meniscus and the cartilage. For the models with an increased meniscus height, a maximal value of force acting on the meniscus in a medio-lateral direction was obtained. The results have shown that the meniscus external shift was approximately proportional to the meniscus slope angle, but that relationship was modified by a medio-lateral relative bone translation. It was found that the translation of the femur relative to the tibia may be dependent on the geometry of the menisci. The results have suggested that a change in the meniscus geometry in the cross sectional plane can considerably affect not only the meniscal external shift, but also the medio-lateral translation of the knee joint as well as the congruency of the knee joint.

  2. Magnetic Resonance Imaging Findings in Symptomatic Patients After Arthroscopic Partial Meniscectomy for Torn Discoid Lateral Meniscus.

    Science.gov (United States)

    Lee, Chang-Rack; Bin, Seong-Il; Kim, Jong-Min; Kim, Nam-Ki

    2016-11-01

    To evaluate the change in the thickness and width of the residual meniscus using magnetic resonance imaging (MRI) in patients who underwent arthroscopic partial meniscectomy for discoid lateral meniscus (DLM), to assess whether the degeneration of the articular cartilage in the lateral compartment of the knee progressed, and to evaluate clinical results. Among the patients who underwent arthroscopic partial meniscectomy for DLM between January 1997 and December 2011, those who were aged 40 or below at surgery were followed up for at least 3 years, and received at least 2 follow-up MRIs that were retrospectively reviewed. MRIs were done in symptomatic knees. Using MRI, the relative thickness and width were measured in the anterior horn, midportion, and posterior horn. To determine whether the degeneration of the lateral compartment would progress, the articular cartilage was graded based on the Outerbridge classification in MRIs. The clinical results were evaluated using the Lysholm score. A total of 20 patients (21 knees) were included. The average follow-up period was 6.8 years. In residual meniscus, the relative thickness of the midportion decreased from 9.0% ± 2.4% to 7.3% ± 2.3% (P meniscus. A progression of degeneration in the lateral compartment was observed. However, the clinical results did not present significant changes. In symptomatic patients after arthroscopic partial meniscectomy for DLM, the thickness and width of the residual meniscus decreases over time. The arthritic change of the lateral compartment of the knee progressed. However, the change in the size of the residual meniscus was of unknown clinical significance. Level IV, therapeutic case series. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  3. Comparison of the insertion of the posterior horn of the lateral meniscus: discoid versus non-discoid.

    Science.gov (United States)

    Choi, Nam-Hong; Yang, Bong-Seok; Lee, Sang-Young; Lee, Chae-Chul; Lee, Chang-Yk; Victoroff, Brian N

    2017-02-01

    The purpose of this study was to compare the insertion sites of the posterior horn between discoid and non-discoid lateral meniscus using magnetic resonance imaging (MRI). Two hundred and twenty-seven patients who had MRI scans before surgery and underwent arthroscopy were enroled in this study. A coronal view showing the narrowest width of the midbody of the lateral meniscus was chosen to measure the widths of the entire tibial plateau and the midbody of the lateral meniscus. Considering the ratio of the meniscal width to the tibial plateau width, the patients were divided into non-discoid, incomplete discoid, and complete discoid groups. On a coronal view accurately showing the insertion of the posterior horn of the lateral meniscus, a distance between the peak of the lateral tibial eminence and the centre of the insertion of the posterior horn, and a width of the lateral tibial plateau between the lateral edge of the tibial plateau and the peak of the lateral tibial eminence were measured. The insertion centre of the posterior horn was located more medially in the incomplete and complete discoid groups than in the non-discoid group (p = 0.003, 0.010, respectively). When individual differences in the knee size were corrected, the insertion centre of the posterior horn in the incomplete discoid and complete discoid groups was located more medially than in the non-discoid group (p = 0.009, 0.003, respectively). The insertion centre of the posterior horn of the lateral meniscus is located more medially to the apex of the lateral tibial eminence in the discoid group than in the non-discoid group. This finding needs to be considered for an accurate position of the posterior horn of lateral meniscus during the lateral meniscal allograft transplantation. IV.

  4. Three-Tesla magnetic resonance imaging of the meniscus of the knee: What about equivocal errors?

    International Nuclear Information System (INIS)

    Dyck, Pieter van; Vanhoenacker, Filip M.; Gielen, Jan L.; Parizel, Paul M.; Dossche, Lieven; Weyler, Joost

    2010-01-01

    Background: The significance of borderline magnetic resonance (MR) findings that are equivocal for a tear of the knee meniscus remains uncertain. Given their higher signal-to-noise ratio (SNR) and greater spatial resolution, these equivocal meniscal tears could be expected to be less frequent using a 3.0T MR system. Purpose: To investigate the prevalence of equivocal meniscal tears using 3.0T MR, and to study their impact on MR accuracy compared with arthroscopy in the detection of meniscal tears. Material and Methods: The medical records of 100 patients who underwent 3.0T MR imaging and subsequent arthroscopy of the knee were retrospectively reviewed. Two observers interpreted MR images in consensus, and menisci were diagnosed as torn (abnormality on two or more images), equivocal for a tear (abnormality on one image), or intact, using arthroscopy as the standard of reference. The prevalence of equivocal meniscal tears was assessed, and MR accuracy was calculated as follows: first, considering both torn menisci and equivocal diagnoses as positive for a tear; and second, considering only torn menisci as positive for a tear. Results: Evidence of meniscal tears on MR images was equivocal in 12 medial (12%) and three lateral (3%) menisci. Of these equivocal MR diagnoses, tears were found at arthroscopy in eight medial and one lateral meniscus. In our study, the specificity and positive predictive value increased for both the medial and lateral meniscus when only menisci with two or more abnormal images were considered to be torn: from 80% and 89% to 91% and 94% for the medial meniscus, and from 91% and 73% to 93% and 78% for the lateral meniscus, respectively. Conclusion: Subtle findings that are equivocal for a tear of the knee meniscus still make MR diagnosis difficult, even at 3.0T. We recommend that radiologists should rather be descriptive in reporting subtle or equivocal MR findings, alerting the clinician of possible meniscal tear

  5. Three-Tesla magnetic resonance imaging of the meniscus of the knee: What about equivocal errors?

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Pieter van; Vanhoenacker, Filip M.; Gielen, Jan L.; Parizel, Paul M. (Dept. of Radiology, Univ. Hospital Antwerp and Univ. of Antwerp, Antwerp (Edegem) (Belgium)), e-mail: pieter.van.dyck@uza.be; Dossche, Lieven (Dept. of Orthopedics, Univ. Hospital Antwerp and Univ. of Antwerp, Antwerp (Edegem) (Belgium)); Weyler, Joost (Dept. of Epidemiology and Social Medicine, Univ. of Antwerp, Antwerp (Wilrijk) (Belgium))

    2010-04-15

    Background: The significance of borderline magnetic resonance (MR) findings that are equivocal for a tear of the knee meniscus remains uncertain. Given their higher signal-to-noise ratio (SNR) and greater spatial resolution, these equivocal meniscal tears could be expected to be less frequent using a 3.0T MR system. Purpose: To investigate the prevalence of equivocal meniscal tears using 3.0T MR, and to study their impact on MR accuracy compared with arthroscopy in the detection of meniscal tears. Material and Methods: The medical records of 100 patients who underwent 3.0T MR imaging and subsequent arthroscopy of the knee were retrospectively reviewed. Two observers interpreted MR images in consensus, and menisci were diagnosed as torn (abnormality on two or more images), equivocal for a tear (abnormality on one image), or intact, using arthroscopy as the standard of reference. The prevalence of equivocal meniscal tears was assessed, and MR accuracy was calculated as follows: first, considering both torn menisci and equivocal diagnoses as positive for a tear; and second, considering only torn menisci as positive for a tear. Results: Evidence of meniscal tears on MR images was equivocal in 12 medial (12%) and three lateral (3%) menisci. Of these equivocal MR diagnoses, tears were found at arthroscopy in eight medial and one lateral meniscus. In our study, the specificity and positive predictive value increased for both the medial and lateral meniscus when only menisci with two or more abnormal images were considered to be torn: from 80% and 89% to 91% and 94% for the medial meniscus, and from 91% and 73% to 93% and 78% for the lateral meniscus, respectively. Conclusion: Subtle findings that are equivocal for a tear of the knee meniscus still make MR diagnosis difficult, even at 3.0T. We recommend that radiologists should rather be descriptive in reporting subtle or equivocal MR findings, alerting the clinician of possible meniscal tear

  6. Effect of radial meniscal tear on in situ forces of meniscus and tibiofemoral relationship.

    Science.gov (United States)

    Tachibana, Yuta; Mae, Tatsuo; Fujie, Hiromichi; Shino, Konsei; Ohori, Tomoki; Yoshikawa, Hideki; Nakata, Ken

    2017-02-01

    To clarify the effect of the radial tear of the lateral meniscus on the in situ meniscus force and the tibiofemoral relationship under axial loads and valgus torques. Ten intact porcine knees were settled to a 6-degree of freedom robotic system, while the force and 3-dimensional path of the knees were recorded via Universal Force Sensor (UFS) during 3 cycles of 250-N axial load and 5-Nm valgus torque at 15°, 30°, 45°, and 60° of knee flexion. The same examination was performed on the following 3 meniscal states sequentially; 33, 66, and 100% width of radial tears at the middle segment of the lateral meniscus, while recording the force and path of the knees via UFS. Finally, all paths were reproduced after total lateral meniscectomy and the in situ force of the lateral meniscus were calculated with the principle of superposition. The radial tear of 100% width significantly decreased the in situ force of the lateral meniscus and caused tibial medial shift and valgus rotation at 30°-60° of knee flexion in both testing protocols. Under a 250-N axial load at 60° of knee flexion, the in situ force decreased to 36 ± 29 N with 100% width of radial tear, which was 122 ± 38 N in the intact state. Additionally, the tibia shifted medially by 2.1 ± 0.9 mm and valgusrotated by 2.5 ± 1.9° with the complete radial tear. However, the radial tear of 33 or 66% width had little effect on either the in situ force or the tibial position. A radial tear of 100% width involving the rim significantly decreased the in situ force of the lateral meniscus and caused medial shift and valgus rotation of the tibia, whereas a radial tear of up to 66% width produced only little change. The clinical relevance is that loss of meniscal functions due to complete radial tear can lead to abnormal stress concentration in a focal area of cartilage and can increase the risk of osteoarthritis in the future.

  7. Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing – data from the Osteoarthritis Initiative

    Science.gov (United States)

    Bloecker, K.; Guermazi, A.; Wirth, W.; Benichou, O.; Kwoh, C.K.; Hunter, D.J.; Englund, M.; Resch, H.; Eckstein, F.

    2013-01-01

    SUMMARY Introduction Meniscal extrusion is thought to be associated with less meniscus coverage of the tibial surface, but the association of radiographic disease stage with quantitative measures of tibial plateau coverage is unknown. We therefore compared quantitative and semi-quantitative measures of meniscus position and morphology in individuals with bilateral painful knees discordant on medial joint space narrowing (mJSN). Methods A sample of 60 participants from the first half (2,678 cases) of the Osteoarthritis Initiative cohort fulfilled the inclusion criteria: bilateral frequent pain, Osteoarthritis Research Society International (OARSI) mJSN grades 1–3 in one, no-JSN in the contra-lateral (CL), and no lateral JSN in either knee (43 unilateral mJSN1; 17 mJSN2/3; 22 men, 38 women, body mass index (BMI) 31.3 ± 3.9 kg/m2). Segmentation and three-dimensional quantitative analysis of the tibial plateau and meniscus, and semi-quantitative evaluation of meniscus damage (magnetic resonance imaging (MRI) osteoarthritis knee score – MOAKS) was performed using coronal 3T MR images (MPR DESSwe and intermediate-weighted turbo spin echo (IW-TSE) images). CL knees were compared using paired t-tests (between-knee, within-person design). Results Medial tibial plateau coverage was 36 ± 9% in mJSN1 vs 45 ± 8% in CL no-JSN knees, and was 31 ± 9% in mJSN2/3 vs 46 ± 6% in no-JSN knees (both P meniscus extrusion and damage (MOAKS), but no significant difference in meniscus volume. No significant differences in lateral tibial coverage, lateral meniscus morphology or position were observed. Conclusions Knees with medial JSN showed substantially less medial tibial plateau coverage by the meniscus. We suggest that the less meniscal coverage, i.e., less mechanical protection may be a reason for greater rates of cartilage loss observed in JSN knees. PMID:23220556

  8. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)

    Science.gov (United States)

    2014-01-01

    Background Impaired stability is a risk factor in knee osteoarthritis (OA), where the whole joint and not only the joint cartilage is affected. The meniscus provides joint stability and is involved in the early pathological progress of OA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been used to identify pre-radiographic changes in the cartilage in OA, but has been used less commonly to examine the meniscus, and then using only a double dose of the contrast agent. The purpose of this study was to enable improved early OA diagnosis by investigate the temporal contrast agent distribution in the meniscus and femoral cartilage simultaneously, in healthy volunteers, using 3D dGEMRIC at two different doses of the contrast agent Gd-DTPA2-. Methods The right knee in 12 asymptomatic volunteers was examined using a 3D Look-Locker sequence on two occasions after an intravenous injection of a double or triple dose of Gd-DTPA2- (0.2 or 0.3 mmol/kg body weight). The relaxation time (T1) and relaxation rate (R1 = 1/T1) were measured in the meniscus and femoral cartilage before, and 60, 90, 120 and 180 minutes after injection, and the change in relaxation rate (ΔR1) was calculated. Paired t-test and Analysis of Variance (ANOVA) were used for statistical evaluation. Results The triple dose yielded higher concentrations of Gd-DTPA2- in the meniscus and cartilage than the double dose, but provided no additional information. The observed patterns of ΔR1 were similar for double and triple doses of the contrast agent. ΔR1 was higher in the meniscus than in femoral cartilage in the corresponding compartments at all time points after injection. ΔR1 increased until 90-180 minutes in both the cartilage and the meniscus (p meniscus at all time points (p meniscus, than in the avascular central part of the posterior medial meniscus during the first 60 minutes (p meniscus and cartilage simultaneously using dGEMRIC, preferably 90 minutes after the injection of a

  9. A very thin light sheet technique used to investigate meniscus shapes by laser induced fluorescence

    International Nuclear Information System (INIS)

    Khan, M.A.

    2003-01-01

    In this paper a light sheet technique is described to accurately (50 μm) measure meniscus profiles in film formation problems. The use of a slit to create the thin (0.1 mm) laser sheet makes the technique easy to implement, and allows tunable sheet thickness. The low light intensity obtained through the slit is compensated by the induced fluorescence of the tested fluid, which provides good picture contrast. After video recording through a microscope, the actual meniscus is recovered by image processing and proper calibration. The efficiency of the technique is demonstrated on a coating flow experiment. Due to its good accuracy and ease of use, this technique is expected to provide useful quantitative information about meniscus problems, in particular for the validation of computational fluid dynamics CFD solutions of coating flows. (author)

  10. Evaluating of Tear Meniscus Parameters with Optical Coherent Tomography in Dry-Eye Patients

    Directory of Open Access Journals (Sweden)

    Gülizar Soyugelen Demirok

    2013-08-01

    Full Text Available Purpose: To evaluate the changes in meniscus parameters with optical coherence tomography (OCT after treatment and consider the correlation between the OCT parameters and dry-eye tests. Material and Method: Thirty-two dry-eye patients and 30 healthy individuals were included. Visual acuities, biomicroscopic evaluation, Schirmer-I test, tear-break-up time (T-BUT, and lower-tear meniscus parameters measured with OCT were evaluated. Ocular surface disease index (OSDI was performed. The measurements were repeated on the 10th day and 1st month of the treatment. Lower tear meniscus height (LTMH, depth (LTMD, area (LTMA and α-angle were measured. The tear meniscus parameters of the dry-eye group were compared with the control group before treatment, and the correlation between the dry-eye tests and OCT measurements were evaluated. The change in the results of the dry-eye tests and OCT measurements with treatment were assessed. Results: There was statistically no significant difference between the age and gender of the patients in groups. Before treatment the mean Schirmer-I test, TBUT and OSDI scores were different. The LTMH and LTMA were higher in the control group. In the dry-eye group before treatment, there was a negative correlation between the OSDI score and OCT parameters, however, no meaningful correlation was observed between any other test and OCT parameters. Although there were no change in LTMD and α-angle with treatment, the 1st month values of LTMH and LTMA were significantly higher from the pre-treatment and 10th day values. Discussion: When diagnosing dry-eye, TBUT and OSDI scores were found to be more effective compared to Schirmer-I test for the diagnosis of dry eye. Although not adequate by itself, tear meniscus parameters measured with OCT, LTMH and LTMA, may be helpful for evaluating the efficacy of treatment, and the correlation of these two parameters with the OSDI score may increase the objectivity while questioning the

  11. Arthroscopic medial meniscus trimming or repair under nerve blocks: Which nerves should be blocked?

    Science.gov (United States)

    Taha, AM; Abd-Elmaksoud, AM

    2016-01-01

    Background: This study aimed to determine the role of the sciatic and obturator nerve blocks (in addition to femoral block) in providing painless arthroscopic medial meniscus trimming/repair. Materials and Methods: One hundred and twenty patients with medial meniscus tear, who had been scheduled to knee arthroscopy, were planned to be included in this controlled prospective double-blind study. The patients were randomly allocated into three equal groups; FSO, FS, and FO. The femoral, sciatic, and obturator nerves were blocked in FSO groups. The femoral and sciatic nerves were blocked in FS group, while the femoral and obturator nerves were blocked in FO group. Intraoperative pain and its causative surgical maneuver were recorded. Results: All the patients (n = 7, 100%) in FO group had intraoperative pain. The research was terminated in this group but completed in FS and FSO groups (40 patients each). During valgus positioning of the knee for surgical management of the medial meniscus tear, the patients in FS group experienced pain more frequently than those in FSO group (P = 0.005). Conclusion: Adding a sciatic nerve block to the femoral nerve block is important for painless knee arthroscopy. Further adding of an obturator nerve block may be needed when a valgus knee position is required to manage the medial meniscus tear. PMID:27375382

  12. Meniscus Dynamics in Bubble Formation. Part I: Experiment

    Czech Academy of Sciences Publication Activity Database

    Růžička, Marek; Bunganič, Radovan; Drahoš, Jiří

    2009-01-01

    Roč. 87, č. 10 (2009), s. 1349-1356 ISSN 0263-8762 R&D Projects: GA ČR GA104/07/1110; GA AV ČR(CZ) IAA200720801 Institutional research plan: CEZ:AV0Z40720504 Keywords : bubble formation * perforated plate * meniscus oscillations Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.223, year: 2009

  13. Meniscus Dynamics in Bubble Formation. Part II: Model

    Czech Academy of Sciences Publication Activity Database

    Růžička, Marek; Bunganič, Radovan; Drahoš, Jiří

    2009-01-01

    Roč. 87, č. 10 (2009), s. 1357-1365 ISSN 0263-8762 R&D Projects: GA ČR GA104/07/1110; GA AV ČR(CZ) IAA200720801 Institutional research plan: CEZ:AV0Z40720504 Keywords : bubble formation * periodic bubbling * meniscus oscillations Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.223, year: 2009

  14. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    Science.gov (United States)

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  15. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    Directory of Open Access Journals (Sweden)

    Rossana Domenis

    Full Text Available A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression, proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs. Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  16. Outside-In Deep Medial Collateral Ligament Release During Arthroscopic Medial Meniscus Surgery.

    Science.gov (United States)

    Todor, Adrian; Caterev, Sergiu; Nistor, Dan Viorel

    2016-08-01

    Arthroscopic partial medial meniscectomy is a very common orthopaedic procedure performed for symptomatic, irreparable meniscus tears. It is usually associated with a very good outcome and minimal complications. In some patients with tight medial compartment, the posterior horn of the medial meniscus can be difficult to visualize, and access in this area with instruments may be challenging. To increase the opening of the medial compartment, after valgus-extension stress position of the knee, different techniques of deep medial collateral ligament release have been described. The outside-in pie-crusting technique shown in this technical note has documented effectiveness and good outcomes with minimal or no morbidity.

  17. Revision 1 size and position of the healthy meniscus, and its correlation with sex, height, weight, and bone area- a cross-sectional study.

    Science.gov (United States)

    Bloecker, Katja; Englund, Martin; Wirth, Wolfgang; Hudelmaier, Martin; Burgkart, Rainer; Frobell, Richard B; Eckstein, Felix

    2011-10-28

    Meniscus extrusion or hypertrophy may occur in knee osteoarthritis (OA). However, currently no data are available on the position and size of the meniscus in asymptomatic men and women with normal meniscus integrity. Three-dimensional coronal DESSwe MRIs were used to segment and quantitatively measure the size and position of the medial and lateral menisci, and their correlation with sex, height, weight, and tibial plateau area. 102 knees (40 male and 62 female) were drawn from the Osteoarthritis Initiative "non-exposed" reference cohort, including subjects without symptoms, radiographic signs, or risk factors for knee OA. Knees with MRI signs of meniscus lesions were excluded. The tibial plateau area was significantly larger (p sexes, and that tibial coverage by the meniscus is similar between men and women.

  18. Simulation of the Plasma Meniscus with and without Space Charge using Triode Extraction System

    International Nuclear Information System (INIS)

    Abdel Rahman, M.M.; EI-Khabeary, H.

    2007-01-01

    In this work simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. Tbe influence of acceleration voltage applied to tbe acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat concave and convex ) without space change at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. Tbe influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V a cc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V a cc = - 2000 volt applied to the acceleration electrode of. the triode extraction system has been studied

  19. Simulation of the plasma meniscus with and without space charge using triode extraction system

    International Nuclear Information System (INIS)

    Rahman, M.M.Abdel; El-Khabeary, H.

    2009-01-01

    In this work, simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. The influence of acceleration voltage applied to the acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes, ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat, concave and convex ) without space charge at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. The influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been studied. (author)

  20. Thermodynamics of Capillary Rise: Why Is the Meniscus Curved?

    Science.gov (United States)

    Henriksson, Ulf; Eriksson, Jan Christer

    2004-01-01

    The thermodynamics of capillary rise is explained as the gravitational elevation of the whole column of liquid caused by the positive connection between the liquid, and the solid wall of the capillary tube. The curvature of the meniscus is ascribed to the maintenance of a physiochemical balance throughout the gravitational column of liquid.

  1. T1rho and T2 relaxation times of the normal adult knee meniscus at 3T: analysis of zonal differences.

    Science.gov (United States)

    Takao, Shoichiro; Nguyen, Tan B; Yu, Hon J; Hagiwara, Shigeo; Kaneko, Yasuhito; Nozaki, Taiki; Iwamoto, Seiji; Otomo, Maki; Schwarzkopf, Ran; Yoshioka, Hiroshi

    2017-05-18

    Prior studies describe histological and immunohistochemical differences in collagen and proteoglycan content in different meniscal zones. The aim of this study is to evaluate horizontal and vertical zonal differentiation of T1rho and T2 relaxation times of the entire meniscus from volunteers without symptom and imaging abnormality. Twenty volunteers age between 19 and 38 who have no knee-related clinical symptoms, and no history of prior knee surgeries were enrolled in this study. Two T1rho mapping (b-FFE T1rho and SPGR T1rho) and T2 mapping images were acquired with a 3.0-T MR scanner. Each meniscus was divided manually into superficial and deep zones for horizontal zonal analysis. The anterior and posterior horns of each meniscus were divided manually into white, red-white and red zones for vertical zonal analysis. Zonal differences of average relaxation times among each zone, and both inter- and intra-observer reproducibility were statistically analyzed. In horizontal zonal analysis, T1rho relaxation times of the superficial zone tended to be higher than those of the deep zone, and this difference was statistically significant in the medial meniscal segments (84.3 ms vs 76.0 ms on b-FFE, p meniscus (88.4 ms vs 77.1 ms on b-FFE, p meniscus, p = 0.011). T2 relaxation times of the white zone were significantly higher than those of the red zone in the medial meniscus posterior horn (96.8 ms vs 84.3 ms, p meniscus anterior horn (104.6 ms vs 84.2 ms, p 0.74) or good (0.60-0.74) in all meniscal segments on both horizontal and vertical zonal analysis, except for inter-class correlation coefficients of the lateral meniscus on SPGR. Compared with SPGR T1rho images, b-FFE T1rho images demonstrated more significant zonal differentiation with higher inter- and intra-observer reproducibility. There are zonal differences in T1rho and T2 relaxation times of the normal meniscus.

  2. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering.

    Science.gov (United States)

    Heo, Jiseung; Koh, Rachel H; Shim, Whuisu; Kim, Hwan D; Yim, Hyun-Gu; Hwang, Nathaniel S

    2016-04-01

    A meniscus tear is a common knee injury, but its regeneration remains a clinical challenge. Recently, collagen-based scaffolds have been applied in meniscus tissue engineering. Despite its prevalence, application of natural collagen scaffold in clinical setting is limited due to its extremely low stiffness and rapid degradation. The purpose of the present study was to increase the mechanical properties and delay degradation rate of a collagen-based scaffold by photo-crosslinking using riboflavin (RF) and UV exposure. RF is a biocompatible vitamin B2 that showed minimal cytotoxicity compared to conventionally utilized photo-initiator. Furthermore, collagen photo-crosslinking with RF improved mechanical properties and delayed enzyme-triggered degradation of collagen scaffolds. RF-induced photo-crosslinked collagen scaffolds encapsulated with fibrochondrocytes resulted in reduced scaffold contraction and enhanced gene expression levels for the collagen II and aggrecan. Additionally, hyaluronic acid (HA) incorporation into photo-crosslinked collagen scaffold showed an increase in its retention. Based on these results, we demonstrate that photo-crosslinked collagen-HA hydrogels can be potentially applied in the scaffold-based meniscus tissue engineering.

  3. Characterization of site-specific biomechanical properties of human meniscus-Importance of collagen and fluid on mechanical nonlinearities.

    Science.gov (United States)

    Danso, E K; Mäkelä, J T A; Tanska, P; Mononen, M E; Honkanen, J T J; Jurvelin, J S; Töyräs, J; Julkunen, P; Korhonen, R K

    2015-06-01

    Meniscus adapts to joint loads by depth- and site-specific variations in its composition and structure. However, site-specific mechanical characteristics of intact meniscus under compression are poorly known. In particular, mechanical nonlinearities caused by different meniscal constituents (collagen and fluid) are not known. In the current study, in situ indentation testing was conducted to determine site-specific elastic, viscoelastic and poroelastic properties of intact human menisci. Lateral and medial menisci (n=26) were harvested from the left knee joint of 13 human cadavers. Indentation tests, using stress-relaxation and dynamic (sinusoidal) loading protocols, were conducted for menisci at different sites (anterior, middle, posterior, n=78). Sample- and site-specific axisymmetric finite element models with fibril-reinforced poroelastic properties were fitted to the corresponding stress-relaxation curves to determine the mechanical parameters. Elastic moduli, especially the instantaneous and dynamic moduli, showed site-specific variation only in the medial meniscus (pmeniscus. The phase angle showed no statistically significant variation between the sites (p>0.05). The values for the strain-dependent fibril network modulus (nonlinear behaviour of collagen) were significantly different (pmeniscus only between the middle and posterior sites. For the strain-dependent permeability coefficient, only anterior and middle sites showed a significant difference (pmeniscus. This parameter demonstrated a significant difference (pmeniscus shows more site-dependent variation in the mechanical properties as compared to lateral meniscus. In particular, anterior horn of medial meniscus was the stiffest and showed the most nonlinear mechanical behaviour. The nonlinearity was related to both collagen fibrils and fluid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study.

    Science.gov (United States)

    Touraine, Sébastien; Bouhadoun, Hamid; Engelke, Klaus; Laredo, Jean Denis; Chappard, Christine

    2017-01-01

    Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals. We assessed the hyaline cartilage, subchondral cortical plate (SCP), and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration). Bone cores harvested from the medial tibial plateau at locations uncovered (central), partially covered (posterior), and completely covered (peripheral) by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3) and thickness (Cart.Th, mm); SCP thickness (SCP.Th, μm) and porosity (SCP.Por, %); bone volume to total volume fraction (BV/TV, %); trabecular thickness (Tb.Th, μm), spacing (Tb.Sp, μm), and number (Tb.N, 1/mm); structure model index (SMI); trabecular pattern factor (Tb.Pf); and degree of anisotropy (DA). Among the 28 specimens studied (18 females) from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1-5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf), a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6-10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly. The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture

  5. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study.

    Directory of Open Access Journals (Sweden)

    Sébastien Touraine

    Full Text Available Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals.We assessed the hyaline cartilage, subchondral cortical plate (SCP, and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration. Bone cores harvested from the medial tibial plateau at locations uncovered (central, partially covered (posterior, and completely covered (peripheral by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3 and thickness (Cart.Th, mm; SCP thickness (SCP.Th, μm and porosity (SCP.Por, %; bone volume to total volume fraction (BV/TV, %; trabecular thickness (Tb.Th, μm, spacing (Tb.Sp, μm, and number (Tb.N, 1/mm; structure model index (SMI; trabecular pattern factor (Tb.Pf; and degree of anisotropy (DA.Among the 28 specimens studied (18 females from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1-5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf, a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6-10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly.The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture

  6. In-vivo evaluation of the kinematic behavior of an artificial medial meniscus implant: A pilot study using open-MRI.

    Science.gov (United States)

    De Coninck, Tineke; Elsner, Jonathan J; Linder-Ganz, Eran; Cromheecke, Michiel; Shemesh, Maoz; Huysse, Wouter; Verdonk, René; Verstraete, Koenraad; Verdonk, Peter

    2014-09-01

    In this pilot study we wanted to evaluate the kinematics of a knee implanted with an artificial polycarbonate-urethane meniscus device, designed for medial meniscus replacement. The static kinematic behavior of the implant was compared to the natural medial meniscus of the non-operated knee. A second goal was to evaluate the motion pattern, the radial displacement and the deformation of the meniscal implant. Three patients with a polycarbonate-urethane implant were included in this prospective study. An open-MRI was used to track the location of the implant during static weight-bearing conditions, within a range of motion of 0° to 120° knee flexion. Knee kinematics were evaluated by measuring the tibiofemoral contact points and femoral roll-back. Meniscus measurements (both natural and artificial) included anterior-posterior meniscal movement, radial displacement, and meniscal height. No difference (P>0.05) was demonstrated in femoral roll-back and tibiofemoral contact points during knee flexion between the implanted and the non-operated knees. Meniscal measurements showed no significant difference in radial displacement and meniscal height (P>0.05) at all flexion angles, in both the implanted and non-operated knees. A significant difference (P ≤ 0.05) in anterior-posterior movement during flexion was observed between the two groups. In this pilot study, the artificial polycarbonate-urethane implant, indicated for medial meniscus replacement, had no influence on femoral roll-back and tibiofemoral contact points, thus suggesting that the joint maintains its static kinematic properties after implantation. Radial displacement and meniscal height were not different, but anterior-posterior movement was slightly different between the implant and the normal meniscus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [The correlations between corneal sensation, tear meniscus volume, and tear film osmolarity after femtosecond laser-assisted LASIK].

    Science.gov (United States)

    Zhang, Luyan; Sun, Xiyu; Yu, Ye; Xiong, Yan; Cui, Yuxin; Wang, Qinmei; Hu, Liang

    2016-01-01

    To investigate the correlations between corneal sensation, tear meniscus volume, and tear film osmolarity after femtosecond laser-assisted LASIK (FS-LASIK) surgery. In this prospective clinical study, 31 patients undergoing FS-LASIK for myopia were recruited. The upper and lower tear meniscus volumes (UTMV and LTMV) were measured by customized anterior segment optical coherence tomography, tear film osmolarity was measured by a TearLab Osmolarity test device, central corneal sensation was measured by a Cochet-Bonner esthesiometer preoperatively, at 1 week, 1 and 3 months postoperatively. Repeated measures analysis of variance was used to evaluate whether the tear film osmolarity, tear meniscus volume, and corneal sensation were changed after surgery. The correlations between these variables were analyzed by the Pearson correlation analysis. The tear film osmolarity was (310.03 ± 16.48) mOsms/L preoperatively, (323.51 ± 15.92) mOsms/L at 1 week, (319.93 ± 14.27) mOsms/L at 1 month, and (314.97±12.91) mOsms/L at 3 months. The UTMV was (0.42±0.15), (0.25± 0.09), (0.30±0.11), and (0.35±0.09) μL, respectively; the LTMV was (0.60±0.21),(0.37±0.08), (0.44± 0.14), and (0.52±0.17) μL, respectively. The tear film osmolarity was significantly higher at 1 week and 1 month postoperatively compared with the baseline (P=0.001, 0.004), and reduced to the preoperative level at 3 months (P=0.573). The UTMV, LTMV, and corneal sensation values presented significant decreases at all postoperative time points (all Psensation at 1 week after surgery (r=0.356,P=0.005). There were significant correlations between the preoperative LTMV and corneal sensation at 1 week, 1 and 3 months (respectively, r=0.422, 0.366, 0.352;P=0.001, 0.004, 0.006). No significant correlations were found between the tear film osmolarity, tear meniscus volume, and corneal sensation after surgery (all P>0.05). The tear film osmolarity, tear meniscus volume, and corneal sensation became aggravated due

  8. Modeling of liquid–gas meniscus for textured surfaces: effects of curvature and local slip length

    International Nuclear Information System (INIS)

    Gaddam, Anvesh; Garg, Mayank; Agrawal, Amit; Joshi, Suhas S

    2015-01-01

    Surface texturing at the micro/nanolevel allows air to be trapped in sufficiently small cavities, thereby reducing the flow resistance over the surface in the laminar regime. The nature of the liquid–gas meniscus plays an important role in defining the boundary condition and it depends on the flow conditions and geometrical properties of textures. In the present work, we employ the unsteady volume of fluid model to investigate the behavior of the liquid–gas meniscus for ridges arranged normal to the flow direction to substantiate the frictional resistance of flow in a microchannel. It is found that the assumption of ‘zero shear stress’ at the liquid–gas interface grossly overpredicts the effective slip length with meniscus curvature and local partial slip length playing the dominant role. Numerical simulations performed in the laminar regime (20  <  Re  <  120) over single layered ridges normal to the flow direction revealed the effect of texture geometry on the reduction in pressure drop. In single layered structures, lotus-like geometries exhibited a greater reduction in drag (more than 30%) when compared to all other texture geometries. It is recognized that the flow experiences expansion and contraction cycles as it flows over the transverse ridges increasing the frictional resistance. Our findings will help to modify the boundary condition at the liquid–gas meniscus for accurate modeling in the laminar regime and to optimize the texture geometry to improve drag reduction. (paper)

  9. In Vivo Tibial Cartilage Strains in Regions of Cartilage-to-Cartilage Contact and Cartilage-to-Meniscus Contact in Response to Walking.

    Science.gov (United States)

    Liu, Betty; Lad, Nimit K; Collins, Amber T; Ganapathy, Pramodh K; Utturkar, Gangadhar M; McNulty, Amy L; Spritzer, Charles E; Moorman, Claude T; Sutter, E Grant; Garrett, William E; DeFrate, Louis E

    2017-10-01

    There are currently limited human in vivo data characterizing the role of the meniscus in load distribution within the tibiofemoral joint. Purpose/Hypothesis: The purpose was to compare the strains experienced in regions of articular cartilage covered by the meniscus to regions of cartilage not covered by the meniscus. It was hypothesized that in response to walking, tibial cartilage covered by the meniscus would experience lower strains than uncovered tibial cartilage. Descriptive laboratory study. Magnetic resonance imaging (MRI) of the knees of 8 healthy volunteers was performed before and after walking on a treadmill. Using MRI-generated 3-dimensional models of the tibia, cartilage, and menisci, cartilage thickness was measured in 4 different regions based on meniscal coverage and compartment: covered medial, uncovered medial, covered lateral, and uncovered lateral. Strain was defined as the normalized change in cartilage thickness before and after activity. Within each compartment, covered cartilage before activity was significantly thinner than uncovered cartilage before activity ( P meniscus experiences lower strains than uncovered cartilage in the medial compartment. These findings provide important baseline information on the relationship between in vivo tibial compressive strain responses and meniscal coverage, which is critical to understanding normal meniscal function.

  10. Optical spectroscopic characterization of human meniscus biomechanical properties

    Science.gov (United States)

    Ala-Myllymäki, Juho; Danso, Elvis K.; Honkanen, Juuso T. J.; Korhonen, Rami K.; Töyräs, Juha; Afara, Isaac O.

    2017-12-01

    This study investigates the capacity of optical spectroscopy in the visible (VIS) and near-infrared (NIR) spectral ranges for estimating the biomechanical properties of human meniscus. Seventy-two samples obtained from the anterior, central, and posterior locations of the medial and lateral menisci of 12 human cadaver joints were used. The samples were subjected to mechanical indentation, then traditional biomechanical parameters (equilibrium and dynamic moduli) were calculated. In addition, strain-dependent fibril network modulus and permeability strain-dependency coefficient were determined via finite-element modeling. Subsequently, absorption spectra were acquired from each location in the VIS (400 to 750 nm) and NIR (750 to 1100 nm) spectral ranges. Partial least squares regression, combined with spectral preprocessing and transformation, was then used to investigate the relationship between the biomechanical properties and spectral response. The NIR spectral region was observed to be optimal for model development (83.0%≤R2≤90.8%). The percentage error of the models are: Eeq (7.1%), Edyn (9.6%), Eɛ (8.4%), and Mk (8.9%). Thus, we conclude that optical spectroscopy in the NIR range is a potential method for rapid and nondestructive evaluation of human meniscus functional integrity and health in real time during arthroscopic surgery.

  11. Loading of the knee during 3.0 T MRI is associated with significantly increased medial meniscus extrusion in mild and moderate osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Stehling, Christoph, E-mail: christoph.stehling@radiology.ucsf.edu [Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (United States); Department of Clinical Radiology, University of Muenster, Muenster (Germany); Souza, Richard B. [Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (United States); Graverand, Marie-Pierre Hellio Le; Wyman, Bradley T. [Pfizer Inc. New London, CT (United States); Li, Xiaojuan; Majumdar, Sharmila; Link, Thomas M. [Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (United States)

    2012-08-15

    Purpose: Standard knee MRI is performed under unloading (ULC) conditions and not much is known about changes of the meniscus, ligaments or cartilage under loading conditions (LC). The aim is to study the influence of loading of different knee structures at 3 Tesla (T) in subjects with osteoarthritis (OA) and normal controls. Materials and methods: 30 subjects, 10 healthy and 20 with radiographic evidence of OA (10 mild and 10 moderate) underwent 3 T MRI under ULC and LC at 50% body weight. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous abnormalities. The changes between ULC and LC were assessed. For meniscus, cartilage and ligaments the changes of lesions, signal and shape were evaluated. In addition, for the meniscus changes in extrusion were examined. A multivariate regression model was used for correlations to correct the data for the impact of age, gender, BMI. A paired T-Test was performed to calculate the differences in meniscus extrusion. Results: Subjects with degenerative knee abnormalities demonstrated significantly increased meniscus extrusion under LC when compared to normal subjects (p = 0.0008-0.0027). Subjects with knee abnormalities and higher KL scores showed significantly more changes in lesion, signal and shape of the meniscus (80% (16/20) vs. 20% (2/10); p = 0.0025), ligaments and cartilage during LC. Conclusion: The study demonstrates that axial loading has an effect on articular cartilage, ligament, and meniscus morphology, which is more significant in subjects with degenerative disease and may serve as an additional diagnostic tool for disease diagnosis and assessing progression in subjects with knee OA.

  12. Loading of the knee during 3.0 T MRI is associated with significantly increased medial meniscus extrusion in mild and moderate osteoarthritis

    International Nuclear Information System (INIS)

    Stehling, Christoph; Souza, Richard B.; Graverand, Marie-Pierre Hellio Le; Wyman, Bradley T.; Li, Xiaojuan; Majumdar, Sharmila; Link, Thomas M.

    2012-01-01

    Purpose: Standard knee MRI is performed under unloading (ULC) conditions and not much is known about changes of the meniscus, ligaments or cartilage under loading conditions (LC). The aim is to study the influence of loading of different knee structures at 3 Tesla (T) in subjects with osteoarthritis (OA) and normal controls. Materials and methods: 30 subjects, 10 healthy and 20 with radiographic evidence of OA (10 mild and 10 moderate) underwent 3 T MRI under ULC and LC at 50% body weight. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous abnormalities. The changes between ULC and LC were assessed. For meniscus, cartilage and ligaments the changes of lesions, signal and shape were evaluated. In addition, for the meniscus changes in extrusion were examined. A multivariate regression model was used for correlations to correct the data for the impact of age, gender, BMI. A paired T-Test was performed to calculate the differences in meniscus extrusion. Results: Subjects with degenerative knee abnormalities demonstrated significantly increased meniscus extrusion under LC when compared to normal subjects (p = 0.0008–0.0027). Subjects with knee abnormalities and higher KL scores showed significantly more changes in lesion, signal and shape of the meniscus (80% (16/20) vs. 20% (2/10); p = 0.0025), ligaments and cartilage during LC. Conclusion: The study demonstrates that axial loading has an effect on articular cartilage, ligament, and meniscus morphology, which is more significant in subjects with degenerative disease and may serve as an additional diagnostic tool for disease diagnosis and assessing progression in subjects with knee OA.

  13. Electrochemical renewal of stationary mercury drop or meniscus electrodes

    Czech Academy of Sciences Publication Activity Database

    Polášková, P.; Novotný, L.; Ostatná, Veronika; Paleček, Emil

    2009-01-01

    Roč. 21, 3-5 (2009), s. 625-630 ISSN 1040-0397 R&D Projects: GA MŠk(CZ) LC06035; GA AV ČR(CZ) KAN400310651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : mercury electrode electrochemical renewal * meniscus electrode * 2-aminoanthraquinone Subject RIV: BO - Biophysics Impact factor: 2.630, year: 2009

  14. Physical Therapy to Treat Torn Meniscus Comparable to Surgery for Many Patients

    Science.gov (United States)

    ... to Surgery for Many Patients Spotlight on Research Physical Therapy to Treat Torn Meniscus Comparable to Surgery ... to avoid surgery and achieve comparable relief from physical therapy, according to a recent, multisite study funded ...

  15. Effect of meniscus replacement fixation technique on restoration of knee contact mechanics and stability.

    Science.gov (United States)

    D'Lima, D D; Chen, P C; Kessler, O; Hoenecke, H R; Colwell, C W

    2011-06-01

    The menisci are important biomechanical components of the knee. We developed and validated a finite element model of meniscal replacement to assess the effect of surgical fixation technique on contact behavior and knee stability. The geometry of femoral and tibial articular cartilage and menisci was segmented from magnetic resonance images of a normal cadaver knee using MIMICS (Materialise, Leuven, Belgium). A finite element mesh was generated using HyperWorks (Altair Inc, Santa Ana, CA). A finite element solver (Abaqus v6.9, Simulia, Providence, RI) was used to compute contact area and stresses under axial loading and to assess stability (reaction force generated during anteroposterior translation of the femur). The natural and surgical attachments of the meniscal horns and peripheral rim were simulated using springs. After total meniscectomy, femoral contact area decreased by 26% with a concomitant increase in average contact stresses (36%) and peak contact stresses (33%). Replacing the meniscus without suturing the horns did little to restore femoral contact area. Suturing the horns increased contact area and reduced peak contact stresses. Increasing suture stiffness correlated with increased meniscal contact stresses as a greater proportion of tibiofemoral load was transferred to the meniscus. A small incremental benefit was seen of simulated bone plug fixation over the suture construct with the highest stiffness (50 N/mm). Suturing the rim did little to change contact conditions. The nominal anteroposterior stiffness reduced by 3.1 N/mm after meniscectomy. In contrast to contact area and stress, stiffness of the horn fixation sutures had a smaller effect on anteroposterior stability. On the other hand suturing the rim of the meniscus affected anteroposterior stability to a much larger degree. This model emphasizes the importance of the meniscus in knee biomechanics. Appropriate meniscal replacement fixation techniques are likely to be critical to the clinical

  16. Delayed gadolinium-enhanced MRI of the meniscus (dGEMRIM) in patients with knee osteoarthritis: relation with meniscal degeneration on conventional MRI, reproducibility, and correlation with dGEMRIC

    International Nuclear Information System (INIS)

    Tiel, Jasper van; Kotek, Gyula; Krestin, Gabriel P.; Oei, Edwin H.G.; Reijman, Max; Bos, Pieter K.; Verhaar, Jan A.N.; Bron, Esther E.; Klein, Stefan; Weinans, Harrie

    2014-01-01

    To assess (1) whether normal and degenerated menisci exhibit different T1 GD on delayed gadolinium-enhanced MRI of the meniscus (dGEMRIM), (2) the reproducibility of dGEMRIM and (3) the correlation between meniscus and cartilage T1 GD in knee osteoarthritis (OA) patients. In 17 OA patients who underwent dGEMRIM twice within 7 days, meniscus and cartilage T1 GD was calculated. Meniscus pathology was evaluated on conventional MRI. T1 GD in normal and degenerated menisci were compared using a Student's t-test. Reproducibility was assessed using ICCs. Pearson's correlation was calculated between meniscus and cartilage T1 GD . A trend towards lower T1 GD in degenerated menisci (mean: 402 ms; 95 % CI: 359-444 ms) compared to normal menisci (mean: 448 ms; 95 % CI: 423-473 ms) was observed (p = 0.05). Meniscus T1 GD ICCs were 0.85-0.90. The correlation between meniscus and cartilage T1 GD was moderate in the lateral (r = 0.52-0.75) and strong in the medial compartment (r = 0.78-0.94). Our results show that degenerated menisci have a clear trend towards lower T1 GD compared to normal menisci. Since these results are highly reproducible, meniscus degeneration may be assessed within one delayed gadolinium-enhanced MRI simultaneously with cartilage. The strong correlation between meniscus and cartilage T1 GD suggests concomitant degeneration in both tissues in OA, but also suggests that dGEMRIC may not be regarded entirely as sulphated glycosaminoglycan specific. (orig.)

  17. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe; Frøbert, Ole; Holst-Hansen, Claus

    2014-01-01

    Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...... grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were...

  18. Development of a fast curing tissue adhesive for meniscus tear repair.

    Science.gov (United States)

    Bochyńska, Agnieszka Izabela; Hannink, Gerjon; Janssen, Dennis; Buma, Pieter; Grijpma, Dirk W

    2017-01-01

    Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2-3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives.

  19. Do Cartilage Repair Procedures Prevent Degenerative Meniscus Changes? Longitudinal T1ρ and Morphological Evaluation at 3.0T

    Science.gov (United States)

    Jungmann, Pia M.; Li, Xiaojuan; Nardo, Lorenzo; Subburaj, Karupppasamy; Lin, Wilson; Ma, C. Benjamin; Majumdar, Sharmila; Link, Thomas M.

    2014-01-01

    Background Cartilage repair (CR) procedures are widely accepted for treatment of isolated cartilage defects at the knee joint. However, it is not well known whether these procedures prevent degenerative joint disease. Hypothesis/Purpose CR procedures prevent accelerated qualitative and quantitative progression of meniscus degeneration in individuals with focal cartilage defects. Study Design Cohort Study; Level of evidence 2b Methods A total of 94 subjects were studied. CR procedures were performed on 34 patients (n=16 osteochondral transplantation, n=18 microfracture); 34 controls were matched. An additional 13 patients received CR and anterior cruciate ligament (ACL) reconstruction (CR&ACL) and 13 patients received only ACL reconstruction. 3.0T MRI with T1ρ mapping and sagittal fat-saturated intermediate-weighted fast spin echo (FSE) sequences was performed to analyze menisci quantitatively and qualitatively (Whole-Organ Magnetic Resonance Imaging Score, WORMS). CR and CR&ACL patients were examined 4 months (n=34; n=13), 1 (n=21; n=8) and 2 (n=9; n=5) years post CR. Control subjects were scanned at baseline and after 1 and 2 years, ACL patients after 1 and 2 years. Results At baseline, global meniscus T1ρ values were higher in individuals with CR (14.2±0.6ms; P=0.004) and in individuals with CR&ACL (17.1±0.9ms; Pmeniscus above cartilage defects (16.4±1.0ms) and T1ρ of the subgroup of control knees without cartilage defects (12.1±0.8ms; Pmeniscus tears at the overlying meniscus; 10% of CR subjects showed an increase of WORMS meniscus score within the first year, none progressed in the second year. Control subjects with (without) cartilage defects showed meniscus tears in 30% (5%) at baseline; 38% (19%) increased within the first, and 15% (10%) within the second year. Conclusions This study identified more severe meniscus degeneration after CR surgery compared to controls. However, progression of T1ρ values was not observed from 1 to 2 years after surgery

  20. Induced pluripotent stem cells-derived myeloid-derived suppressor cells regulate the CD8+ T cell response

    Directory of Open Access Journals (Sweden)

    Daniel Joyce

    2018-05-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are markedly increased in cancer patients and tumor-bearing mice and promote tumor growth and survival by inhibiting host innate and adaptive immunity. In this study, we generated and characterized MDSCs from murine-induced pluripotent stem cells (iPSCs. The iPSCs were co-cultured with OP9 cells, stimulated with GM-CSF, and became morphologically heterologous under co-culturing with hepatic stellate cells. Allogeneic and OVA-specific antigen stimulation demonstrated that iPS-MDSCs have a T-cell regulatory function. Furthermore, a popliteal lymph node assay and autoimmune hepatitis model showed that iPS-MDSCs also regulate immune responsiveness in vivo and have a therapeutic effect against hepatitis. Taken together, our results demonstrated a method of generating functional MDSCs from iPSCs and highlighted the potential of iPS-MDSCs as a key cell therapy resource for transplantation and autoimmune diseases. Keywords: Myeloid-derived suppressor cells, Induced pluripotent stem cells, T cell response

  1. An osteophyte in the tibial plateau is a risk factor for allograft extrusion after meniscus allograft transplantation.

    Science.gov (United States)

    Jeon, Byeongsam; Kim, Jong-Min; Kim, Jong-Min; Lee, Chang-Rack; Kim, Kyung-Ah; Bin, Seong-Il

    2015-05-01

    Osteophytes can be observed on the tibial plateau during meniscus allograft transplantation (MAT). However, no studies to date have evaluated the effect of these osteophytes on meniscus allograft extrusion. Osteophyte excision in the tibial plateau could reduce extrusion of the transplanted meniscus and improve short-term clinical outcomes with meniscus allograft transplantation. Cohort study; Level of evidence, 3. Between October 2004 and July 2012, a total of 323 patients underwent MAT at a single institution. Of these, 88 patients had a peripheral osteophyte in their tibial plateau, and they were enrolled in the study retrospectively. The mean age of the patients was 35.3 years (range, 15-56 years); there were 57 male and 31 female patients. Forty-four patients underwent osteophyte excision concomitantly with MAT and 44 patients underwent MAT only. The 2 groups showed no difference in terms of age, body mass index, time after meniscectomy, and preoperative knee scores. A medial meniscus allograft was transplanted in 13 cases (15%) and a lateral meniscus in 75 (85%). The absolute extrusion and relative percentage of extrusion were measured to evaluate allograft extrusion 12 months after MAT. The modified Lysholm scoring system and the Hospital for Special Surgery score at 2 years after MAT were used to evaluate clinical outcomes. The mean absolute extrusions at 1 year postoperatively in the excision and nonexcision groups were 3.5±1.5 and 5.5±1.6 mm, respectively. The mean relative percentages of extrusion were 34.1%±15.9% and 54.7%±20.7%, respectively. The rates of allograft extrusion (>3 mm) were 28 of 44 (63.6%) and 41 of 44 (93.2%) in the excision and nonexcision groups, respectively. The intergroup differences in absolute extrusion, relative percentage of extrusion, and rate of allograft extrusion were statistically significant (P<.001 for all 3 parameters). There were no significant differences in the clinical outcomes (modified Lysholm or Hospital of

  2. Delayed gadolinium-enhanced MRI of the meniscus (dGEMRIM) in patients with knee osteoarthritis: relation with meniscal degeneration on conventional MRI, reproducibility, and correlation with dGEMRIC

    Energy Technology Data Exchange (ETDEWEB)

    Tiel, Jasper van [University Medical Center, Department of Orthopaedic Surgery, Erasmus MC, Rotterdam (Netherlands); University Medical Center, Department of Radiology, Erasmus MC, P.O. Box 2040, Rotterdam (Netherlands); Kotek, Gyula; Krestin, Gabriel P.; Oei, Edwin H.G. [University Medical Center, Department of Radiology, Erasmus MC, P.O. Box 2040, Rotterdam (Netherlands); Reijman, Max; Bos, Pieter K.; Verhaar, Jan A.N. [University Medical Center, Department of Orthopaedic Surgery, Erasmus MC, Rotterdam (Netherlands); Bron, Esther E.; Klein, Stefan [University Medical Center, Department of Radiology, Erasmus MC, P.O. Box 2040, Rotterdam (Netherlands); University Medical Center, Department of Medical Informatics, Erasmus MC, Rotterdam (Netherlands); Weinans, Harrie [University Medical Center, Department of Orthopaedic Surgery, Erasmus MC, Rotterdam (Netherlands); Delft University of Technology, Department of Biomechanical Engineering, Delft (Netherlands); University Medical Center, Department of Orthopaedic Surgery, Utrecht (Netherlands); University Medical Center, Department of Rheumatology, Utrecht (Netherlands)

    2014-09-15

    To assess (1) whether normal and degenerated menisci exhibit different T1{sub GD} on delayed gadolinium-enhanced MRI of the meniscus (dGEMRIM), (2) the reproducibility of dGEMRIM and (3) the correlation between meniscus and cartilage T1{sub GD} in knee osteoarthritis (OA) patients. In 17 OA patients who underwent dGEMRIM twice within 7 days, meniscus and cartilage T1{sub GD} was calculated. Meniscus pathology was evaluated on conventional MRI. T1{sub GD} in normal and degenerated menisci were compared using a Student's t-test. Reproducibility was assessed using ICCs. Pearson's correlation was calculated between meniscus and cartilage T1{sub GD}. A trend towards lower T1{sub GD} in degenerated menisci (mean: 402 ms; 95 % CI: 359-444 ms) compared to normal menisci (mean: 448 ms; 95 % CI: 423-473 ms) was observed (p = 0.05). Meniscus T1{sub GD} ICCs were 0.85-0.90. The correlation between meniscus and cartilage T1{sub GD} was moderate in the lateral (r = 0.52-0.75) and strong in the medial compartment (r = 0.78-0.94). Our results show that degenerated menisci have a clear trend towards lower T1{sub GD} compared to normal menisci. Since these results are highly reproducible, meniscus degeneration may be assessed within one delayed gadolinium-enhanced MRI simultaneously with cartilage. The strong correlation between meniscus and cartilage T1{sub GD} suggests concomitant degeneration in both tissues in OA, but also suggests that dGEMRIC may not be regarded entirely as sulphated glycosaminoglycan specific. (orig.)

  3. Meniscus Dynamics in Bubble Formation: A Parametric Study

    Czech Academy of Sciences Publication Activity Database

    Stanovský, Petr; Růžička, Marek; Martins, A.; Teixeira, J.A.

    2011-01-01

    Roč. 66, č. 14 (2011), s. 3258-3267 ISSN 0009-2509. [International Conference on Gas–Liquid and Gas–Liquid–Solid Reactor Engineering /10./. Braga, 26.06.2011-29.06.2011] R&D Projects: GA ČR GA104/07/1110; GA AV ČR KJB200720901 Institutional research plan: CEZ:AV0Z40720504 Keywords : bubble formation * transparent perforated plate * meniscus oscillations Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.431, year: 2011

  4. The significance of arthrography and arthroscopy in the diagnosis of meniscus injury

    International Nuclear Information System (INIS)

    Eckel, H.; Linder, J.; Petzold, M.V.; Meyne, K.; Doerges, J.; Evangelisches Krankenhaus Goettingen

    1981-01-01

    The article reports on 364 double-contrast arthrographics and 185 arthroscopies.The results obtained in 126 patients in whom both arthrography and arthroscopy had been conducted, were compared. It became evident that arthrography is of high informative value in the diagnosis of lesions of the meniscus, so that preference may well be given to this method in non-specific knee-joint complaints where meniscopathy is suspected. Arthroscopies are indicated in cases of clinico-arthrographic coubt. Trial arthrotomy for clarifying doubtful meniscus lesions without previous exploitation of all arthrographic/arthroscopic possibilities is no longer justified and should be abandoned. Arthroscopy is definitely superior to arthrography in the diagnosis of, in particular, cartilage structures, of the synovia and of the retropatellar space. It is here where arthrography has its narrow limitations - now and in the future - for methodical reasons. (orig.) [de

  5. Ultrasound assessment of the meniscus complex formation in health children and with the 1st stage of longitudinal platypodia ones

    Directory of Open Access Journals (Sweden)

    Alexei Ivantsov

    2013-04-01

    Full Text Available Objectives: Foot arch reduces the exposure of weight and buf load due to its bufer function. in longitudinal platypodia foot looses this function and articular menisci have to take the role of the bufers (shock absorbers. Materials and Methods: Ultrasound assessment of meniscus thickness was performed on the joint space level. Results: varus type (43.4% of the meniscus complex adaptation was dominant in 5-7 years old patients with the 1st stage longitudinal platypodia; symmetric type (51.9% – in 8-12 years old patients; valgus type (56% – in 13-17 years old ones. Healthy children showed the valgus type in all age periods. Conclusions: in our opinion the dominance of the varus type of the meniscus complex in 5-7 aged children and its further conversion into the valgus type in case of the 1st stage longitudinal platypodia refects the reduction of the lower extremities transformation processes from the varus into the most functional convenient valgus position at the age of 13-17. Keywords: meniscus, children, ultrasound investigation.

  6. A Special Tear Pattern of Anterior Horn of the Lateral Meniscus: Macerated Tear.

    Science.gov (United States)

    Zheng, Jiapeng; Zhai, Wenliang; Li, Qiang; Jia, Qianxin; Lin, Dasheng

    2017-01-01

    We describe a special, interesting phenomenon found in the anterior horn of the lateral meniscus (AHLM): most tear patterns in the AHLM are distinctive, with loose fibers in injured region and circumferential fiber bundles were separated. We name it as macerated tear. The goal of this study was to bring forward a new type of meniscal tear in the AHLM and investigate its clinical value. AHLM tears underwent arthroscopic surgery from January 2012 to December 2014 were included. Data regarding the integrity of AHLM were prospectively recorded in a data registry. Tear morphology and treatment received were subsequently extracted by 2 independent reviewers from operative notes and arthroscopic surgical photos. A total of 60 AHLM tears in 60 patients (mean age 27.1 years) were grouped into horizontal tears (n = 15, 25%), vertical tears (n = 14, 23%), complex tears (n = 6, 10%), and macerated tears (n = 25, 42%). There were 6 patients with AHLM cysts in macerated tear group and one patient in vertical tear group. 60 patients were performed arthroscopic meniscus repairs and were followed-up with averaged 18.7 months. Each group had significant postoperative improvement in Lysholm and IKDC scores (p 0.05). This study demonstrated that the macerated tear is common in the tear pattern of AHLM. However, feasibility of the treatment of this type of meniscal tear, especially the meniscus repairs still requires further study.

  7. Analysis of heat transfer in the water meniscus at the tip-sample contact in scanning thermal microscopy

    International Nuclear Information System (INIS)

    Assy, Ali; Lefèvre, Stéphane; Chapuis, Pierre-Olivier; Gomès, Séverine

    2014-01-01

    Quantitative measurements of local nanometer-scale thermal measurements are difficult to achieve because heat flux may be transferred from the heated sensor to the cold sample through various elusive mixed thermal channels. This paper addresses one of these channels, the water meniscus at the nano-contact between a heated atomic force microscopy probe and a hydrophilic sample. This heat transfer mechanism is found to depend strongly on the probe temperature. The analysis of the pull-off forces as a function of temperature indicates that the water film almost vanishes above a probe mean temperature between 120 and 150 ºC. In particular, a methodology that allows for correlating the thermal conductance of the water meniscus to the capillary forces is applied. In the case of the standard scanning thermal microscopy Wollaston probe, values of this thermal conductance show that the water meniscus mechanism is not dominant in the thermal interaction between the probe and the sample, regardless of probe temperature. (fast track communication)

  8. Validation of a semi-automatic protocol for the assessment of the tear meniscus central area based on open-source software

    Science.gov (United States)

    Pena-Verdeal, Hugo; Garcia-Resua, Carlos; Yebra-Pimentel, Eva; Giraldez, Maria J.

    2017-08-01

    Purpose: Different lower tear meniscus parameters can be clinical assessed on dry eye diagnosis. The aim of this study was to propose and analyse the variability of a semi-automatic method for measuring lower tear meniscus central area (TMCA) by using open source software. Material and methods: On a group of 105 subjects, one video of the lower tear meniscus after fluorescein instillation was generated by a digital camera attached to a slit-lamp. A short light beam (3x5 mm) with moderate illumination in the central portion of the meniscus (6 o'clock) was used. Images were extracted from each video by a masked observer. By using an open source software based on Java (NIH ImageJ), a further observer measured in a masked and randomized order the TMCA in the short light beam illuminated area by two methods: (1) manual method, where TMCA images was "manually" measured; (2) semi-automatic method, where TMCA images were transformed in an 8-bit-binary image, then holes inside this shape were filled and on the isolated shape, the area size was obtained. Finally, both measurements, manual and semi-automatic, were compared. Results: Paired t-test showed no statistical difference between both techniques results (p = 0.102). Pearson correlation between techniques show a significant positive near to perfect correlation (r = 0.99; p Conclusions: This study showed a useful tool to objectively measure the frontal central area of the meniscus in photography by free open source software.

  9. Magnetic resonance imaging of the menisci of the knee. Normal images. Pitfalls. Meniscus degeneration. Anatomical correlation

    International Nuclear Information System (INIS)

    Helenon, O.; Laval-Jeantet, M.; Bastian, D.

    1989-01-01

    The results of a study on 5 knees of fresh corpses explored with magnetic resonance imaging are reported, including 1 examined before and after intraarticular contrast injection, and on 15 asymptomatic subjects examined with the same procedure. A very thorough study of the menisci and of their attachment, ie. The tibial insertion of the menisceal horns, the transverse ligament, and the meniscofemoral ligament, is possible with T1-weighted MR sequences. The T2-weighted sequences, either following intraarticular contrast injection or in cases of articular effusion, allow analyzing the capsular attachments of the posterior horn of the lateral meniscus and its relationships with the tendon of the popliteal muscle. Five misleading images must be known for the exploration of the menisci, in order to avoid a number of interpretation problems. Images of type I and II initial meniscus degeneration are observed in 47% of all cases (control group). One case of menisceal cyst developing in the anterior horn of the lateral meniscus, with anatomical correlation, is also reported [fr

  10. What tissue bankers should know about the use of allograft meniscus in orthopaedics.

    Science.gov (United States)

    McDermott, Ian D

    2010-02-01

    The menisci of the knee are two crescent shaped cartilage shock absorbers sitting between the femur and the tibia, which act as load sharers and shock absorbers. Loss of a meniscus leads to a significant increase in the risk of developing arthritis in the knee. Replacement of a missing meniscus with allograft tissue can reduce symptoms and may potentially reduce the risk of future arthritis. Meniscal allograft transplantation is a complex surgical procedure with many outstanding issues, including 'what techniques should be used for processing and storing grafts?', 'how should the allografts be sized?' and 'what surgical implantation techniques might be most appropriate?' Further clinical research is needed and close collaboration between the users (surgeons) and the suppliers (tissue banks) is essential. This review explores the above subject in detail.

  11. Mechanical function near defects in an aligned nanofiber composite is preserved by inclusion of disorganized layers: Insight into meniscus structure and function.

    Science.gov (United States)

    Bansal, Sonia; Mandalapu, Sai; Aeppli, Céline; Qu, Feini; Szczesny, Spencer E; Mauck, Robert L; Zgonis, Miltiadis H

    2017-07-01

    The meniscus is comprised of circumferentially aligned fibers that resist the tensile forces within the meniscus (i.e., hoop stress) that develop during loading of the knee. Although these circumferential fibers are severed by radial meniscal tears, tibial contact stresses do not increase until the tear reaches ∼90% of the meniscus width, suggesting that the severed circumferential fibers still bear load and maintain the mechanical functionality of the meniscus. Recent data demonstrates that the interfibrillar matrix can transfer strain energy to disconnected fibrils in tendon fascicles. In the meniscus, interdigitating radial tie fibers, which function to stabilize and bind the circumferential fibers together, are hypothesized to function in a similar manner by transmitting load to severed circumferential fibers near a radial tear. To test this hypothesis, we developed an engineered fibrous analog of the knee meniscus using poly(ε-caprolactone) to create aligned scaffolds with variable amounts of non-aligned elements embedded within the scaffold. We show that the tensile properties of these scaffolds are a function of the ratio of aligned to non-aligned elements, and change in a predictable fashion following a simple mixture model. When measuring the loss of mechanical function in scaffolds with a radial tear, compared to intact scaffolds, the decrease in apparent linear modulus was reduced in scaffolds containing non-aligned layers compared to purely aligned scaffolds. Increased strains in areas adjacent to the defect were also noted in composite scaffolds. These findings indicate that non-aligned (disorganized) elements interspersed within an aligned network can improve overall mechanical function by promoting strain transfer to nearby disconnected fibers. This finding supports the notion that radial tie fibers may similarly promote tear tolerance in the knee meniscus, and will direct changes in clinical practice and provide guidance for tissue engineering

  12. Cartilage Delamination Flap Mimicking a Torn Medial Meniscus

    Directory of Open Access Journals (Sweden)

    Gan Zhi-Wei Jonathan

    2016-01-01

    Full Text Available We report a case of a chondral delamination lesion due to medial parapatellar plica friction syndrome involving the medial femoral condyle. This mimicked a torn medial meniscus in clinical and radiological presentation. Arthroscopy revealed a chondral delamination flap, which was debrided. Diagnosis of chondral lesions in the knee can be challenging. Clinical examination and MRI have good accuracy for diagnosis and should be used in tandem. Early diagnosis and treatment of chondral lesions are important to prevent progression to early osteoarthritis.

  13. The Fate of Meniscus Tears Left in situ at the time of Anterior Cruciate Ligament Reconstruction: A 6-year Follow-up Study from the MOON Cohort

    Science.gov (United States)

    Duchman, Kyle R.; Westermann, Robert W.; Spindler, Kurt P.; Reinke, Emily K.; Huston, Laura J.; Amendola, Annunziato; Wolf, Brian R.

    2016-01-01

    Background The management of meniscus tears identified at the time of primary ACL reconstruction is highly variable and includes repair, meniscectomy, and non-treatment. Hypothesis/Purpose The purpose of this study is to determine the reoperation rate for meniscus tears left untreated at the time of ACL reconstruction with minimum follow-up of 6 years. We hypothesize that small, peripheral tears identified at the time of ACL reconstruction managed with “no treatment” will have successful clinical outcomes. Study Design Retrospective study of a prospective cohort; Level of Evidence, 3 Methods Patients with meniscus tears left untreated at the time of primary ACL reconstruction were identified from a multicenter study group with minimum 6-year follow-up. Patient, tear, and reoperation data were obtained for analysis. Need for reoperation was used as the primary endpoint, with analysis performed to determine patient and tear characteristics associated with reoperation. Results There were 194 patients with 208 meniscus tears (71 medial; 137 lateral) left in situ without treatment with complete follow-up for analysis. Of these, 97.8% of lateral and 94.4% of medial untreated tears required no reoperation. Sixteen tears (7.7%) left in situ without treatment underwent subsequent reoperation: 9 tears (4.3%) underwent reoperation in the setting of revision ACL reconstruction and 7 tears (3.4%) underwent reoperation for isolated meniscus pathology. Patient age was significantly lower in patients requiring reoperation, while tears measuring ≥ 10 mm more frequently required reoperation. Conclusions Lateral and medial meniscus tears left in situ at the time of ACL reconstruction did not require reoperation at minimum 6-year follow-up for 97.8% and 94.4% of tears, respectively. These findings reemphasize the low reoperation rate following non-treatment of small, peripheral lateral meniscus tears while noting less predictable results for medial meniscus tears left without

  14. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-01-01

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  15. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  16. Effect of interference of capillary length on evaporation at meniscus

    Science.gov (United States)

    Soma, Shu; Kunugi, Tomoaki; Yokomine, Takehiko; Kawara, Zensaku

    2017-11-01

    In this study, the experimental results on the evaporation characteristics of meniscus in various geometrical configurations which enable to vary a perimeter of liquid-vapor interface and a meniscus curvature were obtained, and the main factor in evaporation process was clarified. As the experimental conditions, the perimeter was adjusted from 1mm to 100mm order, and the curvature from the inverse of capillary length, κ( 0.4mm-1) , to about 10mm-1 . Measuring devices for evaporation rate, which consisted of a test section on an electric balance, was set to a reduced pressure environment for making the purified water in the test section evaporate. There is no heater in the test section and system was set to be isolated from outside environment. It was found that the evaporation rate and flux could be organized by the perimeter if the curvature is constant at κ. On the other hand, when the curvature is larger than κ, it was found that the curvature is the dominant factor in the evaporation process. It can be considered that an interference of capillary length is a key to understand these results.

  17. The Evaluation of Changes in The Knee Meniscus in vivo at 3T MRI Scanner

    Directory of Open Access Journals (Sweden)

    Lenka Horňáková

    2015-08-01

    Full Text Available Noninvasive imagining of the knee meniscus without the use of the contrast agents is more difficult compared to articular cartilage. Despite the lower signal intensity of the knee meniscus, MRI is considered the best non-invasive imaging method. Thanks to the lower water content in the meniscus compared to the surrounding tissues, it can be distinguished from the environment, but the determination of the boundaries is more complicated than in articular cartilage. There are many studies dealing with the MR imaging of the loaded and also unloaded knee, but they have mainly observed quantitative and geometric changes (movement or deformation of tissue, not targeted qualitative changes in the extracellular matrix (ECM. These changes can be evaluated with T2 relaxation times, which are more sensitive to the interaction of water molecules and the concentration of macromolecules and structures of the ECM, especially in the interaction based on the content, orientation and anisotropy of collagen fibers. Fluid and tissues with the higher water content level have long relaxation time T2. In the healthy meniscus these times are shorter; the reason is a highly organized structure of collagen and lower content of proteoglycans. To quantitatively detect changes, it is necessary to assure a sufficiently high resolution of images throughout choosing appropriate pulse sequences. After that, the acquired data can be processed to produce the T2 maps, to portray non-invasive collagen content, architecture of the ROI, changes in the water content (distribution of interstitial water in the solid matrix and the spatial variation in depth. The aim of this work is firstly to introduce the meaning of T2 relaxation and methods for calculating T2 relaxation times. Further, the aim of this work is to give a brief description of the current pulse sequences used to display menisci.

  18. Measuring contact angle and meniscus shape with a reflected laser beam.

    Science.gov (United States)

    Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K

    2014-01-01

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.

  19. Bone marrow-derived stromal cells are more beneficial cell sources for tooth regeneration compared with adipose-derived stromal cells.

    Science.gov (United States)

    Ye, Lanfeng; Chen, Lin; Feng, Fan; Cui, Junhui; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-10-01

    Tooth loss is presently a global epidemic and tooth regeneration is thought to be a feasible and ideal treatment approach. Choice of cell source is a primary concern in tooth regeneration. In this study, the odontogenic differentiation potential of two non-dental-derived stem cells, adipose-derived stromal cells (ADSCs) and bone marrow-derived stromal cells (BMSCs), were evaluated both in vitro and in vivo. ADSCs and BMSCs were induced in vitro in the presence of tooth germ cell-conditioned medium (TGC-CM) prior to implantation into the omentum majus of rats, in combination with inactivated dentin matrix (IDM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of odontogenic-related genes. Immunofluorescence and immunohistochemical assays were used to detect the protein levels of odontogenic-specific genes, such as DSP and DMP-1 both in vitro and in vivo. The results suggest that both ADSCs and BMSCs have odontogenic differentiation potential. However, the odontogenic potential of BMSCs was greater compared with ADSCs, showing that BMSCs are a more appropriate cell source for tooth regeneration. © 2015 International Federation for Cell Biology.

  20. Magnetic resonance tomography (MRT) of the knee joint: Meniscus, cruciate ligaments and hyaline cartilage. Magnetresonanztomographie (MRT) des Kniegelenks: Meniskus, Kreuzbaender und hyaliner Gelenkknorpel

    Energy Technology Data Exchange (ETDEWEB)

    Hodler, J. (Radiologie, Universitaetsspital, Zurich (Switzerland) Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland). Radiologische Abt.); Buess, E. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland)); Rodriguez, M. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland)); Imhoff, A. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland))

    1993-08-01

    The use of MRT for diagnosing injury to the meniscus, the cruciate ligaments and hyaline cartilage was evaluated retrospectively in 82 knee joints without any knowledge of operative findings. In 49 cases the results were verified by arthroscopy and in 33 cases by arthrotomy. Sensitivity, specificity and diagnostic accuracy of MRT for meniscus lesions was 73.9%, 96.9%, and 94.6%. Corresponding values for lesions of the anterior cruciate ligament were 88.9%, 96.6%, and 94.7%, and for lesions of the hyaline cartilage 62.6%, 96.1%, and 87.9%, respectively. In addition to its high specificity, MRT proved accurate in excluding lesions of the meniscus (97.1%) of the anterior cruciate ligament (96.6%) and of hyaline cartilage (88.8%). A negative finding on MRT therefore makes the presence of a lesion of the meniscus, cruciate ligaments of cartilage unlikely. In such cases one is justified in delaying the use of arthroscopy or arthrotomy. (orig.)

  1. A Case Report of Intra-articular Bee Venom Pharmacopuncture combining with oriental medical treatment for Acute Traumatic Partial Tear of Meniscus.

    Directory of Open Access Journals (Sweden)

    Lee Jae-Hoon

    2010-12-01

    Full Text Available This case was report of intra-articular bee venom pharmacopuncture injection on the patient with Acute Traumatic Partial tear of meniscus. We used intra-articular bee venom pharmacopuncture injection to Acute Traumatic Partial tear of meniscus diagnosed by symptoms and MR imaging. Be under treatment if necessary we prescribed herbal medication and physiotherapy. The state of patient was measured by Visual Analog Scale(VAS and Walking time and Western Ontario and McMaster Universities(WOMAC Index score. After several times of treatments, noticeable reduction of pain was measured and increased time of walking on floor and decreased WOMAC score. This results suggest that intra-articular bee venom pharmacopuncture injection are effective to treatments of Acute Traumatic Partial tear of meniscus.

  2. Sequential change in T2* values of cartilage, meniscus, and subchondral bone marrow in a rat model of knee osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Ping-Huei Tsai

    Full Text Available BACKGROUND: There is an emerging interest in using magnetic resonance imaging (MRI T2* measurement for the evaluation of degenerative cartilage in osteoarthritis (OA. However, relatively few studies have addressed OA-related changes in adjacent knee structures. This study used MRI T2* measurement to investigate sequential changes in knee cartilage, meniscus, and subchondral bone marrow in a rat OA model induced by anterior cruciate ligament transection (ACLX. MATERIALS AND METHODS: Eighteen male Sprague Dawley rats were randomly separated into three groups (n = 6 each group. Group 1 was the normal control group. Groups 2 and 3 received ACLX and sham-ACLX, respectively, of the right knee. T2* values were measured in the knee cartilage, the meniscus, and femoral subchondral bone marrow of all rats at 0, 4, 13, and 18 weeks after surgery. RESULTS: Cartilage T2* values were significantly higher at 4, 13, and 18 weeks postoperatively in rats of the ACLX group than in rats of the control and sham groups (p<0.001. In the ACLX group (compared to the sham and control groups, T2* values increased significantly first in the posterior horn of the medial meniscus at 4 weeks (p = 0.001, then in the anterior horn of the medial meniscus at 13 weeks (p<0.001, and began to increase significantly in the femoral subchondral bone marrow at 13 weeks (p = 0.043. CONCLUSION: Quantitative MR T2* measurements of OA-related tissues are feasible. Sequential change in T2* over time in cartilage, meniscus, and subchondral bone marrow were documented. This information could be potentially useful for in vivo monitoring of disease progression.

  3. Skin appendage-derived stem cells: cell biology and potential for wound repair

    OpenAIRE

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundament...

  4. Anterior cruciate ligament-derived cells have high chondrogenic potential.

    Science.gov (United States)

    Furumatsu, Takayuki; Hachioji, Motomi; Saiga, Kenta; Takata, Naoki; Yokoyama, Yusuke; Ozaki, Toshifumi

    2010-01-01

    Anterior cruciate ligament (ACL)-derived cells have a character different from medial collateral ligament (MCL)-derived cells. However, the critical difference between ACL and MCL is still unclear in their healing potential and cellular response. The objective of this study was to investigate the mesenchymal differentiation property of each ligament-derived cell. Both ligament-derived cells differentiated into adipogenic, osteogenic, and chondrogenic lineages. In chondrogenesis, ACL-derived cells had the higher chondrogenic property than MCL-derived cells. The chondrogenic marker genes, Sox9 and alpha1(II) collagen (Col2a1), were induced faster in ACL-derived pellets than in MCL-derived pellets. Sox9 expression preceded the increase of Col2a1 in both pellet-cultured cells. However, the expression level of Sox9 and a ligament/tendon transcription factor Scleraxis did not parallel the increase of Col2a1 expression along with chondrogenic induction. The present study demonstrates that the balance between Sox9 and Scleraxis have an important role in the chondrogenic differentiation of ligament-derived cells. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Characterization Of Bovine Adipose-Derived Stem Cells

    OpenAIRE

    Daniel Cebo

    2017-01-01

    Bovine adipose-derived stem cells were obtained from the subcutaneous abdominal adipose tissue. The cells were cultured by the modified tissue-explants method developed in our laboratory and then analyzed using optical microscopy and flow cytometry. These cells were able to replicate in our cell culture conditions. cell Flow cytometry showed that bovine adipose-derived stem cells expressed mesenchymal stem cell markers CD73 and CD90. Meanwhile haematopoietic markers CD45 and CD34 are absent f...

  6. Characterization of goat inner cell mass derived cells in double kinase inhibition condition

    International Nuclear Information System (INIS)

    Wei, Qiang; Xi, Qihui; Liu, Xiaokun; Meng, Kai; Zhao, Xiaoe; Ma, Baohua

    2017-01-01

    The identification of small molecular inhibitors, which were reported to promote the derivation of mouse and human embryonic stem cells (ESCs), provides a potential strategy for the derivation of domesticated ungulate ESCs. In present study, goat inner cell mass (ICM) derived cells in the double inhibition (2i) condition, in which, mitogen-activated protein kinase kinase (MAP2K) and glycogen synthase kinase 3 (GSK3) were inhibited by PD0325901 and BIO respectively, were characterized. The results showed that goat ICM derived cells in 2i medium adding leukaemia inhibitor factor (LIF) possessed a mouse ES-like morphology. But these cells had much compromised proliferation capacity, resulting in difficulty in expansion. In 2i alone medium, goat ICM derived cells possessed primate ES-like morphology. These cells expressed pluripotent markers and could differentiate into derivatives of three germ layers in vitro. However, these cells could not be proliferated in long-term (persisted for 15 passages) because of spontaneously neural differentiation. Additionally, goat ICM derived cells could be inducing differentiated into neural lineage in vitro. Although goat ESCs could not be established in PD0325901 and BIO alone medium, this derivation condition provides a useful research system to find signaling molecular those regulate early embryonic development and pluripotency in goat. - Highlights: • Goat inner cell mass derived cells possessed finite pluripotency in 2i condition. • These cells could not be proliferated in long-term in 2i condition. • These cells could spontaneously and inductively differentiate into neural lineage.

  7. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  8. Meniscus effect in microgravity materials processing

    Science.gov (United States)

    1998-01-01

    While the microgravity environment of orbit eliminates a number of effects that impede the formation of materials on Earth, the change can also cause new, unwanted effects. A mysterious phenomenon, known as detached solidification, apparently stems from a small hydrostatic force that turns out to be pervasive. The contact of the solid with the ampoule transfers stress to the growing crystal and causing unwanted dislocations and twins. William Wilcox and Liya Regel of Clarkson University theorize that the melt is in contact with the ampoule wall, while the solid is not, and the melt and solid are cornected by a meniscus. Their work is sponsored by NASA's Office of Biological and Physical Researcxh, and builds on earlier work by Dr. David Larson of the State University of New York at Stony Brook.

  9. Discrimination of meniscal cell phenotypes using gene expression profiles

    Directory of Open Access Journals (Sweden)

    M Son

    2012-03-01

    Full Text Available The lack of quantitative and objective metrics to assess cartilage and meniscus cell phenotypes contributes to the challenges in fibrocartilage tissue engineering. Although functional assessment of the final resulting tissue is essential, initial characterization of cell sources and quantitative description of their progression towards the natural, desired cell phenotype would provide an effective tool in optimizing cell-based tissue engineering strategies. The purpose of this study was to identify quantifiable characteristics of meniscal cells and thereby find phenotypical markers that could effectively categorize cells based on their tissue of origin (cartilage, inner, middle, and outer meniscus. The combination of gene expression ratios collagen VI/collagen II, ADAMTS-5/collagen II, and collagen I/collagen II was the most effective indicator of variation among different tissue regions. We additionally demonstrate a possible application of these quantifiable metrics in evaluating the use of serially passaged chondrocytes as a possible cell source in fibrocartilage engineering. Comparing the ratios of the passaged chondrocytes and the native meniscal cells may provide direction to optimize towards the desired cell phenotype. We have thus shown that measurable markers defining the characteristics of the native meniscus can establish a standard by which different tissue engineering strategies can be objectively assessed. Such metrics could additionally be useful in exploring the different stages of meniscal degradation in osteoarthritis and provide some insight in the disease progression.

  10. Is the pull-out force of the Meniscus Arrow in bone affected by the inward curling of the barbs during biodegradation? An in vitro study

    NARCIS (Netherlands)

    Wouters, Diederick B.; Burgerhof, Johannes G. M.; de Hosson, Jeff T. M.; Bos, Rudolf R. M.

    Background: Inward curling of the barbs of Meniscus Arrows during degradation was observed in a previous study, in which swelling, distention, and water uptake by Meniscus Arrows was evaluated. This change of configuration could have consequences with respect to anchorage capacity in bone.

  11. The meniscus tear. State of the art of rehabilitation protocols related to surgical procedures.

    Science.gov (United States)

    Frizziero, Antonio; Ferrari, Raffaello; Giannotti, Erika; Ferroni, Costanza; Poli, Patrizia; Masiero, Stefano

    2012-10-01

    Meniscal injuries represent one of the most frequent lesions in sport practicing and in particular in soccer players and skiers. Pain, functional limitation and swelling are typical symptoms associated with meniscal tears. Epidemiological studies showed that all meniscal lesions, in different sports athletes, involves 24% of medial meniscus, while 8% of lateral meniscus and about 20-30% of meniscal lesions are associated with other ligament injuries. Meniscal tears can be treated conservatively or surgically. Surgery leads in many cases to complete resolution of symptoms and allows the return to sport activity. However many studies show that this treatment can induce more frequently the development of degenerative conditions if not correctly associated to a specific rehabilitation protocol. The aim of this article is to compare different timing in specific rehabilitation programs related to the most actual surgical options.

  12. A meta-analysis of clinical and radiographic outcomes of posterior horn medial meniscus root repairs.

    Science.gov (United States)

    Chung, Kyu Sung; Ha, Jeong Ku; Ra, Ho Jong; Kim, Jin Goo

    2016-05-01

    Although interest in medial meniscus posterior root tear (MMPRT) repair has increased, few case series have been reported. This meta-analysis aimed to examine the clinical and radiological effects of MMPRT repair by pooling pre- and post-operative data from case-series reports. A literature search was performed using MEDLINE/PubMed, the Cochrane Central Register of Controlled Trials, and EMBASE databases. Pre- and post-operative data were pooled to investigate the effects of MMPRT repair, including the Lysholm score improvement, meniscal extrusion (mm) reduction, progression of the Kellgren-Lawrence (K-L) grade, and cartilage status according to the Outerbridge classification. Treatment effects included paired standardized mean differences (difference in the pre- and post-operative mean outcomes divided by the standard deviation) for the Lysholm score and meniscal extrusion, as well as the pooled event rates of progression of K-L grade and cartilage status. As treatment effects, the Lysholm score increased by as much as 3.675 (P meniscus extrusion was not reduced (n.s.). The overall pooled event rates of progression of K-L grade and cartilage status were 10.6 and 17.3 % (P meniscus extrusion was not reduced. Considering the occurrence of progression of K-L grade and cartilage status, it did not prevent the progression of arthrosis completely. Based on these results, repair results in favourable outcomes for MMPRT. Meta-analysis, Level IV.

  13. Attenuated synovial fluid ghrelin levels are linked with cartilage damage, meniscus injury, and clinical symptoms in patients with knee anterior cruciate ligament deficiency.

    Science.gov (United States)

    Zou, Yu-Cong; Chen, Liang-Hua; Ye, Yong-Liang; Yang, Guang-Gang; Mao, Zheng; Liu, Dan-Dan; Chen, Jun-Qi; Chen, Jing-Jie; Liu, Gang

    2016-12-01

    The meniscus injury and post-traumatic knee osteoarthritis (PTOA) following anterior cruciate ligament (ACL) lesions often cause great burdens to patients. Ghrelin, a recently identified 28-amino-acid peptide, has been shown to inhibit inflammation and perform as a growth factor for chondrocyte. This study was aimed at investigating ghrelin concentration in synovial fluid and its association with the degree of meniscus injury, articular degeneration, and clinical severity in patients suffering from anterior cruciate ligament (ACL) deficiency. 61 ACL deficiency patients admitted to our hospital were drafted in the current study. The Noyes scale and Mankin scores were used to assess articular cartilage damage arthroscopically and histopathologically, respectively. The Lysholm scores and International Knee Documentation Committee (IKDC) subjective scores were utilized to evaluate the clinical severity. The radiological severity of meniscus injury was assessed by MR imaging. Serum and synovial fluid ghrelin levels were determined using enzyme linked immunosorbent assay (ELISA). The cartilage degradation markers collagen type II C-telopeptide (CTX-II) and cartilage oligomeric matrix protein (COMP) in addition to inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were also examined. Receiver operating characteristic (ROC) curve was performed and the area under curve (AUC) was calculated to assess the diagnostic value of ghrelin levels for the prediction of the MRI grading for meniscus injury by comparing with other biomarkers. SF ghrelin levels were positively related to Lysholm and IKDC scores. PTOA patients with grade 3 showed significantly decreased levels of ghrelin in SF compared with those with grade 2. The ghrelin levels in SF were negatively related to MRI signal grades for meniscus injury. SF ghrelin levels were also inversely associated with Noyes scale and Mankin scores, and levels of inflammation markers IL-6, TNF-α, and

  14. Is the pull-out force of the Meniscus Arrow in bone affected by the inward curling of the barbs during biodegradation? An in vitro study.

    Science.gov (United States)

    Wouters, Diederick B; Burgerhof, Johannes G M; de Hosson, Jeff T M; Bos, Rudolf R M

    2009-04-01

    Inward curling of the barbs of Meniscus Arrows during degradation was observed in a previous study, in which swelling, distention, and water uptake by Meniscus Arrows was evaluated. This change of configuration could have consequences with respect to anchorage capacity in bone. Eight non-degraded Meniscus Arrows in the original configuration were pulled out of thawed, fresh-frozen human femoral condyle, and pull-out force was measured and compared with that of 6 Meniscus Arrows after 31 days of degradation under controlled conditions. No significant difference was found between the 2 groups with respect to the required pull-out force (t test), the distribution of the data, or the interaction between degradation and location, as evaluated by Mann-Whitney test, and no significant difference was found between the 2 groups with respect to the degradation state or position in the condyles, as evaluated by 2-way analysis of variance. Our results indicate that the decrease in barb-barb diameter during the first month of degradation of the Meniscus Arrows has no significant effect on the tensile pull-out force required for removal from human femur condyle. Further research should be undertaken to examine whether the same is true for other biodegradable devices with barbs.

  15. Sutura de menisco com implantes absorvíveis Meniscus suture with absorbable implants

    Directory of Open Access Journals (Sweden)

    Arnaldo José Hernandez

    2006-01-01

    Full Text Available Os autores avaliam clinicamente 19 pacientes (19 joelhos - 15 meniscos mediais e 5 laterais submetidos à sutura de menisco, utilizando 2 tipos de implantes absorvíveis (ácido polilático Arrow® e Clear fix®. O estudo compõe-se de 15 homens e 4 mulheres com idades entre 16 e 44 anos, com média de 26,8 anos. O tempo de seguimento médio foi de 24 meses, com mínimo de 18 e máximo de 32 meses. A técnica operatória constituiu-se da sutura de um ou ambos os meniscos (1 caso, via artroscópica com Arrow® em 15 pacientes e Clear fix® em 4. Dos 19 indivíduos, 6 foram submetidos à sutura meniscal isolada, 11 associada à reconstrução do LCA e 2 à reconstrução do LCA com osteotomia valgizante da tíbia. Os resultados foram avaliados segundo exame físico incluindo as manobras de Appley e Mc Murray. A avaliação funcional pré e pós-operatória do joelho foi realizada pela escala de Lysholm modificada. Todos os pacientes tiveram suas manobras meniscais negativadas no pós-operatório. A pontuação média pré-operatória segundo a escala de Lysholm foi de 39,8 subindo para 91,5 no pós-operatório. Os autores concluem que a sutura de menisco, utilizando implantes absorvíveis, tem se mostrado eficiente até o momento, e que tecnicamente ela é mais simples que a sutura convencional.The authors clinically assessed 19 patients (19 knees - 15 medial meniscus and 5 lateral meniscus submitted to meniscus suture using 2 kinds of absorbable implants (polylactic acid Arrow® and Clear fix®. The study is composed of 15 males and 4 females, ages ranging 16 - 44 years old (average = 26.8 years old. The mean follow-up time was 24 months, ranging from 18 to 32 months, at most. The surgical technique was constituted of a suture in one or both meniscus (1 case, through arthroscopy with Arrow® in 15 patients and Clear fix® in 4. From the 19 individuals, 6 were submitted to isolated meniscal suture, 11 combined to ACL reconstruction and 2 to ACL

  16. O the Electrohydrodynamics of Drop Extraction from a Conductive Liquid Meniscus

    Science.gov (United States)

    Wright, Graham Scott

    This thesis is concerned with the use of an electric field in the extraction of liquid drops from a capillary orifice or nozzle. The motivating application is ink jet printing. Current drop-on-demand ink jets use pressure pulses to eject drops. Literature on electrostatic spraying suggests that by using an electric field, drops could be produced with a wider range of sizes and speeds than is possible with pressure ejection. Previous efforts to apply electric spraying to printing or similar selective coating tasks have taken an experimental approach based on steady or periodic spraying phenomena, without attempting cycle -by-cycle drop control. The centerpiece of this thesis is a simulation tool developed to explore such possibilities. A simplified analytic model is developed as a preliminary step, yielding formulas for force and time scales that provide an appropriate basis for nondimensionalization of the governing differential equations; important dimensionless parameters are identified. The complete self-consistent model permits simulation of meniscus behavior under time -varying applied voltage or pressure, with the electric field solution continually updated as the surface changes shape. The model uses a quasi-one-dimensional hydrodynamic formulation and a two-dimensional axisymmetric boundary element solution for the electric field. The simulation is checked against experimental results for meniscus stability, resonant modes, and drop emission under electric field. The simulation faithfully captures important qualitative aspects of meniscus behavior and gives reasonable quantitative agreement within the limitations of the model. Insights gained in simulation point the way to a successful laboratory demonstration of drop extraction using a shaped voltage pulse. Drop size control is pursued in simulation using pressure and voltage pulses both alone and in combination, for both light and viscous liquids. Combining pressure and field pulses is shown to be

  17. Retropatellar chondromalacia associated with medial osteoarthritis after meniscus injury. One year of observations in sheep.

    Science.gov (United States)

    Burger, C; Kabir, K; Mueller, M; Rangger, C; Minor, T; Tolba, R H

    2006-01-01

    In an ovine meniscal repair model, the patellofemoral (PF) osteoarthritis due to a non-sutured tear or failed repair was investigated. A radial meniscus tear was either sutured with polydioxanone (PDS), with a slow degrading polylactide long-term suture(LTS) or left without treatment. Knee joint cartilage in the PF and medial compartment was evaluated compared to normal knees (healthy controls). Retropatellar osteoarthritis in the non-sutured and sutured animals was intense in contrast to the control knees after 6 months in all groups (p < 0.001), and after 12 months in the PDS group (p < 0.001), LTS group and non-sutured animals (p < 0.05). Non-sutured meniscus tears and failed repair lead fast to intense PF osteoarthritis corresponding with tibial damage of the injured compartment.

  18. Contribution of regional 3D meniscus and cartilage morphometry by MRI to joint space width in fixed flexion knee radiography—A between-knee comparison in subjects with unilateral joint space narrowing

    International Nuclear Information System (INIS)

    Bloecker, K.; Wirth, W.; Hunter, D.J.; Duryea, J.; Guermazi, A.; Kwoh, C.K.; Resch, H.; Eckstein, F.

    2013-01-01

    Background: Radiographic joint space width (JSW) is considered the reference standard for demonstrating structural therapeutic benefits in knee osteoarthritis. Our objective was to determine the proportion by which 3D (regional) meniscus and cartilage measures explain between-knee differences of JSW in the fixed flexion radiographs. Methods: Segmentation of the medial meniscus and tibial and femoral cartilage was performed in double echo steady state (DESS) images. Quantitative measures of meniscus size and position, femorotibial cartilage thickness, and radiographic JSW (minimum, and fixed locations) were compared between both knees of 60 participants of the Osteoarthritis Initiative, with strictly unilateral medial joint space narrowing (JSN). Statistical analyses (between-knee, within-person comparison) were performed using regression analysis. Results: A strong relationship with side-differences in minimum and a central fixed location JSW was observed for percent tibial plateau coverage by the meniscus (r = .59 and .47; p < .01) and central femoral cartilage thickness (r = .69 and .75; p < .01); other meniscus and cartilage measures displayed lower coefficients. The correlation of central femoral cartilage thickness with JSW (but not that of meniscus measures) was greater (r = .78 and .85; p < .01) when excluding knees with non-optimal alignment between the tibia and X-ray beam. Conclusion: 3D measures of meniscus and cartilage provide significant, independent information in explaining side-differences in radiographic JSW in fixed flexion radiographs. Tibial coverage by the meniscus and central femoral cartilage explained two thirds of the variability in minimum and fixed location JSW. JSW provides a better representation of (central) femorotibial cartilage thickness, when optimal positioning of the fixed flexion radiographs is achieved

  19. Contribution of regional 3D meniscus and cartilage morphometry by MRI to joint space width in fixed flexion knee radiography—A between-knee comparison in subjects with unilateral joint space narrowing

    Energy Technology Data Exchange (ETDEWEB)

    Bloecker, K., E-mail: katja.bloecker@pmu.ac.at [Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg (Austria); Department of Traumatology and Sports Medicine, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg (Austria); Wirth, W., E-mail: wolfgang.wirth@pmu.ac.at [Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg (Austria); Chondrometrics GmbH, Ulrichshöglerstrasse 23, 83404 Ainring (Germany); Hunter, D.J., E-mail: david.hunter@sydney.edu.au [Royal North Shore Hospital and Kolling Institute, University of Sydney, Pacific Highway, St Leonards, Sydney, NSW 2065 (Australia); Duryea, J., E-mail: jduryea@bwh.harvard.edu [Brigham and Women' s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA (United States); Guermazi, A., E-mail: Ali.Guermazi@bmc.org [Boston University School of Medicine, Department of Radiology, 820 Harrison Avenue, FGH Building 3rd Floor, Boston, MA (United States); Boston Imaging Core Lab (BICL), 601 Albany Street, Boston, MA (United States); Kwoh, C.K., E-mail: kwoh@pitt.edu [Division of Rheumatology and Clinical Immunology, University of Arizona, Tucson, AZ (United States); Division of Rheumatology and Clinical Immunology, University of Pittsburgh and VA, Pittsburgh Healthcare System, 3500 Terrace Street, Biomedical Science Tower South 702, Pittsburgh, PA 15261 (United States); Resch, H., E-mail: Herbert.resch@salk.at [Department of Traumatology and Sports Medicine, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg (Austria); Eckstein, F. [Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg (Austria); Chondrometrics GmbH, Ulrichshöglerstrasse 23, 83404 Ainring (Germany)

    2013-12-01

    Background: Radiographic joint space width (JSW) is considered the reference standard for demonstrating structural therapeutic benefits in knee osteoarthritis. Our objective was to determine the proportion by which 3D (regional) meniscus and cartilage measures explain between-knee differences of JSW in the fixed flexion radiographs. Methods: Segmentation of the medial meniscus and tibial and femoral cartilage was performed in double echo steady state (DESS) images. Quantitative measures of meniscus size and position, femorotibial cartilage thickness, and radiographic JSW (minimum, and fixed locations) were compared between both knees of 60 participants of the Osteoarthritis Initiative, with strictly unilateral medial joint space narrowing (JSN). Statistical analyses (between-knee, within-person comparison) were performed using regression analysis. Results: A strong relationship with side-differences in minimum and a central fixed location JSW was observed for percent tibial plateau coverage by the meniscus (r = .59 and .47; p < .01) and central femoral cartilage thickness (r = .69 and .75; p < .01); other meniscus and cartilage measures displayed lower coefficients. The correlation of central femoral cartilage thickness with JSW (but not that of meniscus measures) was greater (r = .78 and .85; p < .01) when excluding knees with non-optimal alignment between the tibia and X-ray beam. Conclusion: 3D measures of meniscus and cartilage provide significant, independent information in explaining side-differences in radiographic JSW in fixed flexion radiographs. Tibial coverage by the meniscus and central femoral cartilage explained two thirds of the variability in minimum and fixed location JSW. JSW provides a better representation of (central) femorotibial cartilage thickness, when optimal positioning of the fixed flexion radiographs is achieved.

  20. Anamnestic prediction of bucket handle compared to other tear patterns of the medial meniscus in stable knees.

    Science.gov (United States)

    Haviv, Barak; Bronak, Shlomo; Kosashvili, Yona; Thein, Rafael

    2016-12-01

    The aim of this study was to analyze and compare the preoperative anamnestic details between patients with an arthroscopic diagnosis of bucket handle and other tear patterns of the medial meniscus in stable knees. A total of 204 patients (mean age 49.3 ± 13 years) were included in the study. The mean age was 49.3 ± 13 years. The study group included 65 patients (63 males, 2 females) with an arthroscopic diagnosis of bucket handle tear and the control group included 139 patients (90 males, 49 females) with non-bucket handle tear patterns. The preoperative clinical assessments of the two groups were analyzed retrospectively. Anamnestic prediction for the diagnosis of a bucket handle tear was based upon various medical history parameters. Multivariate logistic regression was carried out to identify independent anamnestic factors for predicting isolated bucket handle tears of the medial meniscus compared to non-bucket handle tears. Analysis of the multivariate logistic regression yielded 3 statistically significant independent anamnestic risk factors for predicting isolated bucket handle tears of the medial meniscus: male gender (OR, 9.7; 95% CI, 1.1-37.6), locking events (OR, 4.6; 95% CI, 1.8-11.3) and pain in extension (OR, 6.9; 95% CI, 2.5-23.7). Other preoperative variables such as age, BMI, activity level, comorbidities, duration of symptoms, pain location, preceding injury and its mechanism had no significant effect on tear pattern. Preoperative strong clues for bucket handle tears of the medial meniscus in stable knees are male gender, locking events and limitation in extension. Level III, Diagnostic study. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  1. Effects of dwell time of excitation waveform on meniscus movements for a tubular piezoelectric print-head: experiments and model

    Science.gov (United States)

    Chang, Jiaqing; Liu, Yaxin; Huang, Bo

    2017-07-01

    In inkjet applications, it is normal to search for an optimal drive waveform when dispensing a fresh fluid or adjusting a newly fabricated print-head. To test trial waveforms with different dwell times, a camera and a strobe light were used to image the protruding or retracting liquid tongues without ejecting any droplets. An edge detection method was used to calculate the lengths of the liquid tongues to draw the meniscus movement curves. The meniscus movement is determined by the time-domain response of the acoustic pressure at the nozzle of the print-head. Starting at the inverse piezoelectric effect, a mathematical model which considers the liquid viscosity in acoustic propagation is constructed to study the acoustic pressure response at the nozzle of the print-head. The liquid viscosity retards the propagation speed and dampens the harmonic amplitude. The pressure response, which is the combined effect of the acoustic pressures generated during the rising time and the falling time and after their propagations and reflections, explains the meniscus movements well. Finally, the optimal dwell time for droplet ejections is discussed.

  2. Effects of dwell time of excitation waveform on meniscus movements for a tubular piezoelectric print-head: experiments and model

    International Nuclear Information System (INIS)

    Chang, Jiaqing; Liu, Yaxin; Huang, Bo

    2017-01-01

    In inkjet applications, it is normal to search for an optimal drive waveform when dispensing a fresh fluid or adjusting a newly fabricated print-head. To test trial waveforms with different dwell times, a camera and a strobe light were used to image the protruding or retracting liquid tongues without ejecting any droplets. An edge detection method was used to calculate the lengths of the liquid tongues to draw the meniscus movement curves. The meniscus movement is determined by the time-domain response of the acoustic pressure at the nozzle of the print-head. Starting at the inverse piezoelectric effect, a mathematical model which considers the liquid viscosity in acoustic propagation is constructed to study the acoustic pressure response at the nozzle of the print-head. The liquid viscosity retards the propagation speed and dampens the harmonic amplitude. The pressure response, which is the combined effect of the acoustic pressures generated during the rising time and the falling time and after their propagations and reflections, explains the meniscus movements well. Finally, the optimal dwell time for droplet ejections is discussed. (paper)

  3. Novel technique for repairing posterior medial meniscus root tears using porcine knees and biomechanical study.

    Directory of Open Access Journals (Sweden)

    Jia-Lin Wu

    Full Text Available Transtibial pullout suture (TPS repair of posterior medial meniscus root (PMMR tears was shown to achieve good clinical outcomes. The purpose of this study was to compare biomechanically, a novel technique designed to repair PMMR tears using tendon graft (TG and conventional TPS repair. Twelve porcine tibiae (n = 6 each TG group: flexor digitorum profundus tendon was passed through an incision in the root area, created 5 mm postero-medially along the edge of the attachment area. TPS group: a modified Mason-Allen suture was created using no. 2 FiberWire. The tendon grafts and sutures were threaded through the bone tunnel and then fixed to the anterolateral cortex of the tibia. The two groups underwent cyclic loading followed by a load-to-failure test. Displacements of the constructs after 100, 500, and 1000 loading cycles, and the maximum load, stiffness, and elongation at failure were recorded. The TG technique had significantly lower elongation and higher stiffness compared with the TPS. The maximum load of the TG group was significantly lower than that of the TPS group. Failure modes for all specimens were caused by the suture or graft cutting through the meniscus. Lesser elongation and higher stiffness of the constructs in TG technique over those in the standard TPS technique might be beneficial for postoperative biological healing between the meniscus and tibial plateau. However, a slower rehabilitation program might be necessary due to its relatively lower maximum failure load.

  4. Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells.

    Science.gov (United States)

    Park, Yong-Beom; Seo, Sinji; Kim, Jin-A; Heo, Jin-Chul; Lim, Young-Cheol; Ha, Chul-Won

    2015-06-24

    The extracellular matrix (ECM) surrounding cells contains a variety of proteins that provide structural support and regulate cellular functions. Previous studies have shown that decellularized ECM isolated from tissues or cultured cells can be used to improve cell differentiation in tissue engineering applications. In this study we evaluated the effect of decellularized chondrocyte-derived ECM (CDECM) on the chondrogenesis of human placenta-derived mesenchymal stem cells (hPDMSCs) in a pellet culture system. After incubation with or without chondrocyte-derived ECM in chondrogenic medium for 1 or 3 weeks, the sizes and wet masses of the cell pellets were compared with untreated controls (hPDMSCs incubated in chondrogenic medium without chondrocyte-derived ECM). In addition, histologic analysis of the cell pellets (Safranin O and collagen type II staining) and quantitative reverse transcription-PCR analysis of chondrogenic markers (aggrecan, collagen type II, and SOX9) were carried out. Our results showed that the sizes and masses of hPDMSC pellets incubated with chondrocyte-derived ECM were significantly higher than those of untreated controls. Differentiation of hPDMSCs (both with and without chondrocyte-derived ECM) was confirmed by Safranin O and collagen type II staining. Chondrogenic marker expression and glycosaminoglycan (GAG) levels were significantly higher in hPDMSC pellets incubated with chondrocyte-derived ECM compared with untreated controls, especially in cells precultured with chondrocyte-derived ECM for 7 d. Taken together, these results demonstrate that chondrocyte-derived ECM enhances the chondrogenesis of hPDMSCs, and this effect is further increased by preculture with chondrocyte-derived ECM. This preculture method for hPDMSC chondrogenesis represents a promising approach for cartilage tissue engineering.

  5. Whole meniscus regeneration using polymer scaffolds loaded with fibrochondrocytes

    Directory of Open Access Journals (Sweden)

    LU Hua-ding

    2012-02-01

    Full Text Available 【Abstract】Objective: To study the feasibility of regenerating a whole menisci using poly- (3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV scaffolds loaded with meniscal cells in rabbits undergoing total meniscectomy, and to explore its protective effect on cartilage degeneration. Methods: A solvent casting and particulate leaching technique was employed to fabricate biodegradable PHBV scaffolds into a meniscal shape. The proliferated meniscal cells were seeded onto the polymer scaffolds, transplanted into rabbit knee joints whose lateral menisci had been removed. Eight to 18 weeks after transplantation, the regenerated neomenisci were evaluated by gross and histological observations. Cartilage degeneration was assessed by Mankin score. Results: Eighteen weeks after transplantation, the implants formed neomenisci. Hematoxylin and eosin (HE staining of the neomenisci sections revealed regeneration of fibrocartilage. Type I collagen in the neomenisci was also proved similar to normal meniscal tissue by immunohistochemical analysis and Sirius scarlet trinitrophenol staining. Articular cartilage degeneration was observed 8 weeks after implantation. It was less severe as compared with that in total meniscectomy controls and no further degeneration was observed at 18 weeks. At that time, the regenerated neomenisci strongly resembled normal meniscal fibrocartilage in gross and histological appearance, and its mechani- cal property was also close to that of normal meniscus. Conclusions: The present study demonstrates the feasibility of tissue-engineering a whole meniscal structure in total meniscectomy rabbit models using biodegradable PHBV scaffolds together with cultured allogeneic meniscal cells. Cartilage degeneration is decreased. But long-term in vivo investigations on the histological structure and cartilage degeneration of the neomenisci regenerated by this method are still necessary to determine the clinical potential of this tissue

  6. The frequency of cartilage lesions in non-injured knees with symptomatic meniscus tears: results from an arthroscopic and NIR- (near-infrared) spectroscopic investigation.

    Science.gov (United States)

    Spahn, Gunter; Plettenberg, Holger; Hoffmann, Martin; Klemm, Holm-Torsten; Brochhausen-Delius, Christoph; Hofmann, Gunther O

    2017-06-01

    Are symptomatic tear injuries to the menisci of the knee frequently or always associated with cartilage damage to the corresponding articular surfaces and other joint surfaces, respectively? A total of 137 patients (medial n = 127; lateral n = 10) underwent a meniscus resection. These patients showed no signs of a clear radiographic arthrosis and no MRI-detectable cartilage lesions > grade II. Traumatic injury was ruled out with a thorough medical history. The indication for operation was made exclusively on the basis of distinct, clinically apparent meniscus signs. In addition to the ICRS classification, all articular surfaces were examined spectroscopically (NIRS, near-infrared spectroscopy). In 76.6% (n = 105) of all knees examined, clear cartilage damage (ICRS-grade III/IV) was found. For 43.8%, these were in the area of the patella, while for 34.3% they were in the area of the medial femur, and for 17.5%, in the area of the medial tibial plateau. More rarely, this damage was localized to the area of the trochlea (8.8%) or the lateral joint compartment (femoral 2.2%, tibial 15.3%). There were no significant differences between patients with medial or lateral meniscus lesions with respect to the distribution pattern of the joint injuries. During spectroscopic examination, pathological values were demonstrated (objective evidence of cartilage degeneration) in at least one of the examined articular surfaces (media n = 6, range 1-6). Through our investigations, a high, if not complete, concomitance of degenerative cartilage lesions and degenerative meniscus damage was demonstrated. From this it can be concluded that the entity of "isolated degenerative meniscus damage" clearly does not exist in practice. It is therefore highly probable that degenerative meniscus lesions, as a part of general joint degeneration, are to be interpreted in the context of the development of arthrosis. The practical consequences still are unclear. Patients after partial

  7. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    Science.gov (United States)

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  8. International Meniscus Reconstruction Experts Forum (IMREF) 2015 Consensus Statement on the Practice of Meniscal Allograft Transplantation.

    Science.gov (United States)

    Getgood, Alan; LaPrade, Robert F; Verdonk, Peter; Gersoff, Wayne; Cole, Brian; Spalding, Tim

    2016-08-25

    Meniscal allograft transplantation (MAT) has become relatively commonplace in specialized sport medicine practice for the treatment of patients with a symptomatic knee after the loss of a functional meniscus. The technique has evolved since the 1980s, and long-term results continue to improve. However, there still remains significant variation in how MAT is performed, and as such, there remains opportunity for outcome and graft survivorship to be optimized. The purpose of this article was to develop a consensus statement on the practice of MAT from key opinion leaders who are members of the International Meniscus Reconstruction Experts Forum so that a more standardized approach to the indications, surgical technique, and postoperative care could be outlined with the goal of ultimately improving patient outcomes. © 2016 The Author(s).

  9. Porous polymers for repair and replacement of the knee joint meniscus and articular cartilage

    NARCIS (Netherlands)

    Klompmaker, Jan

    1992-01-01

    The studies presented here were initiated to answer a variety of questions concerning firstly the repair and replacement of the knee joint meniscus and, secondly, the repair of full-thickness defects of articular cartilage. AIMS OF THE STUDIES I To assess the effect of implantation of a porous

  10. ES-cell derived hematopoietic cells induce transplantation tolerance.

    Directory of Open Access Journals (Sweden)

    Sabrina Bonde

    Full Text Available BACKGROUND: Bone marrow cells induce stable mixed chimerism under appropriate conditioning of the host, mediating the induction of transplantation tolerance. However, their strong immunogenicity precludes routine use in clinical transplantation due to the need for harsh preconditioning and the requirement for toxic immunosuppression to prevent rejection and graft-versus-host disease. Alternatively, embryonic stem (ES cells have emerged as a potential source of less immunogenic hematopoietic progenitor cells (HPCs. Up till now, however, it has been difficult to generate stable hematopoietic cells from ES cells. METHODOLOGY/PRINCIPAL FINDINGS: Here, we derived CD45(+ HPCs from HOXB4-transduced ES cells and showed that they poorly express MHC antigens. This property allowed their long-term engraftment in sublethally irradiated recipients across MHC barriers without the need for immunosuppressive agents. Although donor cells declined in peripheral blood over 2 months, low level chimerism was maintained in the bone marrow of these mice over 100 days. More importantly, chimeric animals were protected from rejection of donor-type cardiac allografts. CONCLUSIONS: Our data show, for the first time, the efficacy of ES-derived CD45(+ HPCs to engraft in allogenic recipients without the use of immunosuppressive agents, there by protecting cardiac allografts from rejection.

  11. Low antigenicity of hematopoietic progenitor cells derived from human ES cells

    Directory of Open Access Journals (Sweden)

    Eun-Mi Kim

    2010-02-01

    Full Text Available Eun-Mi Kim1, Nicholas Zavazava1,21Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa, USA; 2Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USAAbstract: Human embryonic stem (hES cells are essential for improved understanding of diseases and our ability to probe new therapies for use in humans. Currently, bone marrow cells and cord blood cells are used for transplantation into patients with hematopoietic malignancies, immunodeficiencies and in some cases for the treatment of autoimmune diseases. However, due to the high immunogenicity of these hematopoietic cells, toxic regimens of drugs are required for preconditioning and prevention of rejection. Here, we investigated the efficiency of deriving hematopoietic progenitor cells (HPCs from the hES cell line H13, after co-culturing with the murine stromal cell line OP9. We show that HPCs derived from the H13 ES cells poorly express major histocompatibility complex (MHC class I and no detectable class II antigens (HLA-DR. These characteristics make hES cell-derived hematopoietic cells (HPCs ideal candidates for transplantation across MHC barriers under minimal immunosuppression.Keywords: human embryonic stem cells, H13, hematopoiesis, OP9 stromal cells, immunogenicity

  12. On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration

    NARCIS (Netherlands)

    Wonders, A.H.; Housmans, T.H.M.; Rosca, V.; Koper, M.T.M.

    2006-01-01

    We present the construction and some first applications of an On-line electrochemical mass spectrometry system for detecting volatile products formed during electrochemical reactions at a single-crystal electrode in hanging meniscus configuration. The system is based on a small inlet tip made of

  13. Negative Outcomes of Poly(l-Lactic Acid) Fiber-Reinforced Scaffolds in an Ovine Total Meniscus Replacement Model.

    Science.gov (United States)

    Patel, Jay M; Merriam, Aaron R; Kohn, Joachim; Gatt, Charles J; Dunn, Michael G

    2016-09-01

    Our objective was to test the efficacy of collagen-hyaluronan scaffolds reinforced with poly(l-lactic acid) (PLLA) fibers in an ovine total meniscus replacement model. Scaffolds were implanted into 9 sheep (n = 1 at 8 weeks, n = 2 at 16 weeks, n = 3 at both 24, 32 weeks) following total medial meniscectomy. From 16 weeks on, explants were characterized by confined compression creep, histological, and biochemical analyses. Articular surfaces were observed macroscopically and damage was ranked histologically using the Mankin score. At sacrifice, three of the nine PLLA scaffolds had completely ruptured, and the intact scaffolds experienced progressive shape changes and severe narrowing in the body region at 16, 24, and 32 weeks. Aggregate compressive modulus and permeability did not improve with time. Histological and biochemical analyses showed significantly less extracellular matrix and less matrix organization compared to native tissue. Osteophytes, bone erosion, and cartilage damage were observed, increasing with time postimplantation. A buildup of lactic acid and/or the rapid loss of scaffold mechanical integrity due to PLLA degradation are probable causes for the joint abnormalities observed in this study. These results are in sharp contrast to those of our previous successful total meniscus replacement studies using polyarylate [p(DTD DD)] fiber-reinforced scaffolds. This suggests that PLLA fiber as produced in this study cannot be used as reinforcement for a meniscus replacement scaffold.

  14. Atypically thick and high location of the Wrisberg ligament in patients with a complete lateral discoid meniscus

    International Nuclear Information System (INIS)

    Kim, Eun Young; Choi, Sang-Hee; Kwon, Jong Won; Ahn, Jin Hwan

    2008-01-01

    The purpose of this study was to document the relationship between a discoid lateral meniscus and a thickened Wrisberg ligament with a higher location on the medial femoral condyle. Between July 2002 and February 2006, 100 consecutive patients who had a complete lateral discoid meniscus and another 100 patients without a discoid lateral meniscus (control group) were included. Two radiologists retrospectively reviewed all of the magnetic resonance images, paying particular attention to the presence and thickness of the Wrisberg ligament and the location of the attachment of the Wrisberg ligament to the medial femoral condyle (types I, II, or III). We assumed that type I Wrisberg ligaments had a higher location. All 141 patients had a Wrisberg ligament (71%). There were 73 patients (73%) in the discoid group and 68 patients (68%) in the non-discoid group. The mean thickness of the Wrisberg ligament in the patients in the discoid and non-discoid groups was 2.1 mm (range, 0.4-4.7 mm; median, 2.1 mm) and 1.6 mm (range, 0.4-4.5 mm; median, 1.3 mm), respectively. The Wrisberg ligaments of the discoid group were thicker than the non-discoid group (p=0.0002). The Wrisberg ligament was attached to the upper part of the medial femoral condyle in the discoid group more often than in the non-discoid group (p<0.0001). (orig.)

  15. Correlation of histological examination of meniscus with MR images; Focused on high signal intensity of the meniscus not caused by definite meniscal tear and impact on MR diagnosis of tears

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun Ai; Kim, Min Ki; Kim, In Hwan; Lee, Ju Hong; Jang, Kyu Yun; Lee, Sang Yong [Chonbuk National University Hospital, Chonbuk National University College of Medicine, Jeonju (Korea, Republic of)

    2013-12-15

    To document the causes of high signal intensity of the meniscus which is not caused by definite meniscal tears on MR imaging, through correlation with histological examination. For the correlation between the MR image and histology, we obtained prospectively 31 meniscal specimens from 21 patients. Proton density-weighted turbo spin-echo MR images were used. Minimal tear, thinning of the lamellar layer, degeneration of the central layer, and radial tie fibers were detected upon histological examination, and were correlated with the corresponding MR images. Minimal tear of the lamellar layer was seen in 60 zones out of 100 slides. On MR images, 29 (48.3%) of these 60 zones had high signal intensity. Thinning of the lamellar layer was seen in 24 zones, with 7 (29.2%) having high signal intensity. 57 central zones showed degenerative change in the central layer and high signal intensity on all corresponding MR images. Radial tie fibers in the central layer appeared as high signal intensity areas. Minimal tear and thinning of the lamellar layer, degeneration and radial tie fibers of the central layer of the meniscus cause high signal intensity on MR images.

  16. A Novel Repair Method for Radial Tears of the Medial Meniscus: Biomechanical Comparison of Transtibial 2-Tunnel and Double Horizontal Mattress Suture Techniques Under Cyclic Loading.

    Science.gov (United States)

    Bhatia, Sanjeev; Civitarese, David M; Turnbull, Travis Lee; LaPrade, Christopher M; Nitri, Marco; Wijdicks, Coen A; LaPrade, Robert F

    2016-03-01

    Complete radial tears of the medial meniscus have been reported to be functionally similar to a total meniscectomy. At present, there is no consensus on an ideal technique for repair of radial midbody tears of the medial meniscus. Prior attempts at repair with double horizontal mattress suture techniques have led to a reportedly high rate of incomplete healing or healing in a nonanatomic (gapped) position, which compromises the ability of the meniscus to withstand hoop stresses. A newly proposed 2-tunnel radial meniscal repair method will result in decreased gapping and increased ultimate failure loads compared with the double horizontal mattress suture repair technique under cyclic loading. Controlled laboratory study. Ten matched pairs of male human cadaveric knees (average age, 58.6 years; range, 48-66 years) were used. A complete radial medial meniscal tear was made at the junction of the posterior one-third and middle third of the meniscus. One knee underwent a horizontal mattress inside-out repair, while the contralateral knee underwent a radial meniscal repair entailing the same technique with a concurrent novel 2-tunnel repair. Specimens were potted and mounted on a universal testing machine. Each specimen was cyclically loaded 1000 times with loads between 5 and 20 N before experiencing a load to failure. Gap distances at the tear site and failure load were measured. The 2-tunnel repairs exhibited a significantly stronger ultimate failure load (median, 196 N; range, 163-212 N) than did the double horizontal mattress suture repairs (median, 106 N; range, 63-229 N) (P = .004). In addition, the 2-tunnel repairs demonstrated decreased gapping at all testing states (P meniscus significantly decrease the ability of the meniscus to dissipate tibiofemoral loads, predisposing patients to early osteoarthritis. Improving the ability to repair medial meniscal radial tears in a way that withstands cyclic loads and heals in an anatomic position could significantly

  17. Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density.

    Science.gov (United States)

    Pfeffer, Bruce A; Xu, Libin; Porter, Ned A; Rao, Sriganesh Ramachandra; Fliesler, Steven J

    2016-04-01

    Tissue accumulation of 7-dehydrocholesterol (7DHC) is a hallmark of Smith-Lemli-Opitz Syndrome (SLOS), a human inborn error of the cholesterol (CHOL) synthesis pathway. Retinal 7DHC-derived oxysterol formation occurs in the AY9944-induced rat model of SLOS, which exhibits a retinal degeneration characterized by selective loss of photoreceptors and associated functional deficits, Müller cell hypertrophy, and engorgement of the retinal pigment epithelium (RPE) with phagocytic inclusions. We evaluated the relative effects of four 7DHC-derived oxysterols on three retina-derived cell types in culture, with respect to changes in cellular morphology and viability. 661W (photoreceptor-derived) cells, rMC-1 (Müller glia-derived) cells, and normal diploid monkey RPE (mRPE) cells were incubated for 24 h with dose ranges of either 7-ketocholesterol (7kCHOL), 5,9-endoperoxy-cholest-7-en-3β,6α-diol (EPCD), 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), or 4β-hydroxy-7-dehydrocholesterol (4HDHC); CHOL served as a negative control (same dose range), along with appropriate vehicle controls, while staurosporine (Stsp) was used as a positive cytotoxic control. For 661W cells, the rank order of oxysterol potency was: EPCD > 7kCHOL > DHCEO > 4HDHC ≈ CHOL. EC50 values were higher for confluent vs. subconfluent cultures. 661W cells exhibited much higher sensitivity to EPCD and 7kCHOL than either rMC-1 or mRPE cells, with the latter being the most robust when challenged, either at confluence or in sub-confluent cultures. When tested on rMC-1 and mRPE cells, EPCD was again an order of magnitude more potent than 7kCHOL in compromising cellular viability. Hence, 7DHC-derived oxysterols elicit differential cytotoxicity that is dose-, cell type-, and cell density-dependent. These results are consistent with the observed progressive, photoreceptor-specific retinal degeneration in the rat SLOS model, and support the hypothesis that 7DHC-derived oxysterols are causally linked to that

  18. Adipose-derived mesenchymal stem cells and regenerative medicine.

    Science.gov (United States)

    Konno, Masamitsu; Hamabe, Atsushi; Hasegawa, Shinichiro; Ogawa, Hisataka; Fukusumi, Takahito; Nishikawa, Shimpei; Ohta, Katsuya; Kano, Yoshihiro; Ozaki, Miyuki; Noguchi, Yuko; Sakai, Daisuke; Kudoh, Toshihiro; Kawamoto, Koichi; Eguchi, Hidetoshi; Satoh, Taroh; Tanemura, Masahiro; Nagano, Hiroaki; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2013-04-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  19. The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint.

    Science.gov (United States)

    Valiyaveettil, Manojkumar; Mort, John S; McDevitt, Cahir A

    2005-01-01

    The concentration, spatial distribution, and gene expression of aggrecan in meniscus, articular cartilage, and the anterior and posterior cruciate ligaments (ACL and PCL) was determined in the knee joints of five mature dogs. An anti-serum against peptide sequences specific to the G1 domain of aggrecan was employed in competitive-inhibition ELISA of guanidine HCl extracts and immunofluorescence microscopy. Gene expression was determined by Taqman real-time PCR. The concentration of aggrecan in articular cartilage (240.1 +/- 32 nMol/g dry weight) was higher than that in meniscus (medial meniscus: 33.4 +/- 4.3 nMol/g) and ligaments (ACL: 6.8 +/- 0.9 nMol/g). Aggrecan was more concentrated in the inner than the outer zone of the meniscus. Aggrecan in meniscus showed an organized, spatial network, in contrast to its diffuse distribution in articular cartilage. Thus, differences in the concentration, gene expression, and spatial distribution of aggrecan constitute another molecular distinction between hyaline cartilage and fibrocartilage of the knee.

  20. The niche-derived glial cell line-derived neurotrophic factor (GDNF induces migration of mouse spermatogonial stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Lisa Dovere

    Full Text Available In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF, a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.

  1. Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.

    Science.gov (United States)

    Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara

    2017-03-01

    To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier

  2. Development of a Micronized Meniscus Extracellular Matrix Scaffold for Potential Augmentation of Meniscal Repair and Regeneration.

    Science.gov (United States)

    Monibi, Farrah A; Bozynski, Chantelle C; Kuroki, Keiichi; Stoker, Aaron M; Pfeiffer, Ferris M; Sherman, Seth L; Cook, James L

    2016-12-01

    Decellularized scaffolds composed of extracellular matrix (ECM) hold promise for repair and regeneration of the meniscus, given the potential for ECM-based biomaterials to aid in stem cell recruitment, infiltration, and differentiation. The objectives of this study were to decellularize canine menisci to fabricate a micronized, ECM-derived scaffold and to determine the cytocompatibility and repair potential of the scaffold ex vivo. Menisci were decellularized with a combination of physical agitation and chemical treatments. For scaffold fabrication, decellularized menisci were cryoground into a powder and the size and morphology of the ECM particles were evaluated using scanning electron microscopy. Histologic and biochemical analyses of the scaffold confirmed effective decellularization with loss of proteoglycan from the tissue but no significant reduction in collagen content. When washed effectively, the decellularized scaffold was cytocompatible to meniscal fibrochondrocytes, synoviocytes, and whole meniscal tissue based on the resazurin reduction assay and histologic evaluation. In an ex vivo model for meniscal repair, radial tears were augmented with the scaffold delivered with platelet-rich plasma as a carrier, and compared to nonaugmented (standard-of-care) suture techniques. Histologically, there was no evidence of cellular migration or proliferation noted in any of the untreated or standard-of-care treatment groups after 40 days of culture. Conversely, cellular infiltration and proliferation were noted in scaffold-augmented repairs. These data suggest the potential for the scaffold to promote cellular survival, migration, and proliferation ex vivo. Further investigations are necessary to examine the potential for the scaffold to induce cellular differentiation and functional meniscal fibrochondrogenesis.

  3. Structural phenotyping of stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Pasqualini, Francesco Silvio; Sheehy, Sean Paul; Agarwal, Ashutosh; Aratyn-Schaus, Yvonne; Parker, Kevin Kit

    2015-03-10

    Structural phenotyping based on classical image feature detection has been adopted to elucidate the molecular mechanisms behind genetically or pharmacologically induced changes in cell morphology. Here, we developed a set of 11 metrics to capture the increasing sarcomere organization that occurs intracellularly during striated muscle cell development. To test our metrics, we analyzed the localization of the contractile protein α-actinin in a variety of primary and stem-cell derived cardiomyocytes. Further, we combined these metrics with data mining algorithms to unbiasedly score the phenotypic maturity of human-induced pluripotent stem cell-derived cardiomyocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  5. Usefulness of meniscal width to transverse diameter ratio on coronal MRI in the diagnosis of incomplete discoid lateral meniscus

    International Nuclear Information System (INIS)

    Park, H.J.; Lee, S.Y.; Park, N.-H.; Chung, E.C.; Park, J.Y.; Kim, M.S.; Lee, E.J.

    2014-01-01

    Aim: To evaluate the clinical utility of the meniscal width to transverse diameter ratio (L/M ratio) of the lateral meniscus in the diagnosis of incomplete discoid lateral meniscus (IDLM) as compared with the arthroscopic diagnosis, meniscal width to tibial diameter ratio (L/T ratio) and conventional lateral meniscus width criteria. Materials and methods: This retrospective study sample included 41 patients with IDLM who underwent knee magnetic resonance imaging (MRI) and arthroscopy, as well as 50 controls with normal lateral menisci. MRI examinations were interpreted independently by two radiologists, both of whom were blinded to clinical information and radiological reports. Assessment of meniscal width (L), maximal transverse diameter of the lateral meniscus (M), and transverse diameter of the tibia (T) was carried out on central coronal sections that were observed to pass through the medial collateral ligament. L/M and L/T ratios were calculated. These results were correlated with arthroscopic findings and analysed statistically using categorical regression analysis and non-parametric correlation analysis. Using arthroscopic findings as the standard of reference, sensitivity and specificity were calculated for: (1) 12, 13, 14, and 15 mm meniscal width thresholds; (2) 40%, 50%, 60%, and 70% L/M ratio thresholds; and (3) 15%, 18%, 20%, and 25% L/T ratio thresholds. Results: The mean L/M ratio of the IDLM was approximately 67% and was statistically significantly higher than the control (44%). The best diagnostic discrimination was achieved using a threshold of 50%. The mean L/T ratio of the IDLM was approximately 23% and was statistically significant. The best diagnostic discrimination was achieved using a threshold of 18%. The threshold of 13 mm of meniscal width also showed high sensitivity and high specificity. Conclusion: The use of the L/M ratio or L/T ratio in combination with meniscal width criteria may be a useful method for evaluating IDLM

  6. Benzoxazole derivatives suppress lipopolysaccharide-induced mast cell activation.

    Science.gov (United States)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Choo, Hea-Young Park; Lee, Kyung Ho

    2018-05-01

    Mast cells are central regulators of allergic inflammation that function by releasing various proallergic inflammatory mediators, including histamine, eicosanoids and proinflammatory cytokines. Occasionally, bacterial infections may initiate or worsen allergic inflammation. A number of studies have indicated that activation of lipoxygenase in mast cells positive regulates allergic inflammatory responses by generating leukotrienes and proinflammatory cytokines. In the present study, the effects of benzoxazole derivatives on the lipopolysaccharide (LPS)‑induced expression of proinflammatory cytokines, production of histamine and surface expression of co‑stimulatory molecules on bone marrow-derived mast cells (BMMCs) were studied. The benzoxazole derivatives significantly reduced the expression of interleukin (IL)‑1β, IL‑6, IL‑13, tumor necrosis factor‑α, perilipin (PLIN) 2, and PLIN3 in BMMCs treated with LPS. Furthermore, histamine production was suppressed in BMMCs treated with LPS, or treated with phorbol-12-myristate-13-acetate/ionomycin. Benzoxazole derivatives marginally affected the surface expression of cluster of differentiation (CD)80 and CD86 on BMMCs in the presence of LPS, although LPS alone did not increase the expression of those proteins. Therefore, benzoxazole derivatives inhibited the secretion of proinflammatory cytokines in mast cells and may be potential candidate anti‑allergic agents to suppress mast cell activation.

  7. A Contact Pressure Analysis Comparing an All-Inside and Inside-Out Surgical Repair Technique for Bucket-Handle Medial Meniscus Tears.

    Science.gov (United States)

    Marchetti, Daniel Cole; Phelps, Brian M; Dahl, Kimi D; Slette, Erik L; Mikula, Jacob D; Dornan, Grant J; Bucci, Gabriella; Turnbull, Travis Lee; Singleton, Steven B

    2017-10-01

    To directly compare effectiveness of the inside-out and all-inside medial meniscal repair techniques in restoring native contact area and contact pressure across the medial tibial plateau at multiple knee flexion angles. Twelve male, nonpaired (n = 12), fresh-frozen human cadaveric knees underwent a series of 5 consecutive states: (1) intact medial meniscus, (2) MCL tear and repair, (3) simulated bucket-handle longitudinal tear of the medial meniscus, (4) inside-out meniscal repair, and (5) all-inside meniscal repair. Knees were loaded with a 1,000-N axial compressive force at 5 knee flexion angles (0°, 30°, 45°, 60°, 90°), and contact area, mean contact pressure, and peak contact pressure were calculated using thin film pressure sensors. No significant differences were observed between the inside-out and all-inside repair techniques at any flexion angle for contact area, mean contact pressure, and peak contact pressure (all P > .791). Compared with the torn meniscus state, inside-out and all-inside repair techniques resulted in increased contact area at all flexion angles (all P contact pressure at all flexion angles (all P contact pressure at all flexion angles (all P contact area and peak contact pressure between the intact state and inside-out technique at angles ≥45° (all P contact area at 60° and 90° and peak contact pressure at 90° (both P contact area, mean contact pressure, and peak contact pressure over the tested flexion angles ranged from 498 to 561 mm 2 , 786 to 997 N/mm 2 , and 1,990 to 2,215 N/mm 2 , respectively. Contact area, mean contact pressure, and peak contact pressure were not significantly different between the all-inside and inside-out repair techniques at any tested flexion angle. Both techniques adequately restored native meniscus biomechanics near an intact level. An all-inside repair technique provided similar, native-state-restoring contact mechanics compared with an inside-out repair technique for the treatment of

  8. Meniscus Stability in Rotating Systems

    Science.gov (United States)

    Reichel, Yvonne; Dreyer, Michael

    2013-11-01

    In this study, the stability of free surfaces of fluid between two rotating coaxial, circular disks is examined. Radially mounted baffles are used to form menisci of equal size. To the center of the upper disk, a tube is connected in which a separate meniscus is formed. Assuming solid-body rotation and ignoring dynamic effects, it is observed that the free surfaces between the disks fail to remain stable once the rotation speed exceeds a critical value. In other words, Rayleigh-Taylor instability ensues when the capillary forces fail to balance centrifugal forces. Dimensionless critical rotation speeds are studied by means of the Surface Evolver via SE-FIT for varied number of baffles, the normalized distance between the disks, and the normalized central tube radius. Drop tower tests are performed to confirm some of the numerical results. The computation also reveals that there are different modes of instability as a function of the relevant parameters. This study was funded by the space agency of the German Aerospace Center with resources of the Federal Ministry of Economics and Technology on the basis of a resolution of the German Bundestag under grant number 50 RL 1320.

  9. Embryonic stem cell-like cells derived from adult human testis

    NARCIS (Netherlands)

    Mizrak, S. C.; Chikhovskaya, J. V.; Sadri-Ardekani, H.; van Daalen, S.; Korver, C. M.; Hovingh, S. E.; Roepers-Gajadien, H. L.; Raya, A.; Fluiter, K.; de Reijke, Th M.; de la Rosette, J. J. M. C. H.; Knegt, A. C.; Belmonte, J. C.; van der Veen, F.; de rooij, D. G.; Repping, S.; van Pelt, A. M. M.

    2010-01-01

    Given the significant drawbacks of using human embryonic stem (hES) cells for regenerative medicine, the search for alternative sources of multipotent cells is ongoing. Studies in mice have shown that multipotent ES-like cells can be derived from neonatal and adult testis. Here we report the

  10. Adipose-derived stem cells for treatment of chronic ulcers

    DEFF Research Database (Denmark)

    Holm, Jens Selch; Toyserkani, Navid Mohamadpour; Sorensen, Jens Ahm

    2018-01-01

    Chronic ulcers remain a difficult challenge in healthcare systems. While treatment options are limited, stem cells may be a novel alternative. Adipose-derived stem cells (ADSC) have become increasingly popular compared with bone marrow-derived stem cells as they are far easier to harvest...

  11. Potential roles of cell-derived microparticles in ischemic brain disease.

    Science.gov (United States)

    Horstman, Lawrence L; Jy, Wenche; Bidot, Carlos J; Nordberg, Mary L; Minagar, Alireza; Alexander, J Steven; Kelley, Roger E; Ahn, Yeon S

    2009-10-01

    The objective of this study is to review the role of cell-derived microparticles in ischemic cerebrovascular diseases. An extensive PubMed search of literature pertaining to this study was performed in April 2009 using specific keyword search terms related to cell-derived microparticles and ischemic stroke. Some references are not cited here as it is not possible to be all inclusive or due to space limitation. Cell-derived microparticles are small membranous vesicles released from the plasma membranes of platelets, leukocytes, red cells and endothelial cells in response to diverse biochemical agents or mechanical stresses. They are the main carriers of circulating tissue factor, the principal initiator of intravascular thrombosis, and are implicated in a variety of thrombotic and inflammatory disorders. This review outlines evidence suggesting that cell-derived microparticles are involved predominantly with microvascular, as opposed to macrovascular, thrombosis. More specifically, cell-derived microparticles may substantially contribute to ischemic brain disease in several settings, as well as to neuroinflammatory conditions. If further work confirms this hypothesis, novel therapeutic strategies for minimizing cell-derived microparticles-mediated ischemia are available or can be developed, as discussed.

  12. Magnetic Resonance of the Knee: Beyond Simple Ligament or Meniscus Ruptures

    International Nuclear Information System (INIS)

    Llano, Juan Fernando; Estrada, Mauricio; Delgado, Jorge Andres

    2008-01-01

    Knee injuries, both acute and chronic are a frequent cause of consultation in the general population and athletes. In addition to ligamentary and meniscus injuries, there is a large number of diseases that produce knee pain or functional limitation, which are treated differently or may modify the initial treatment. MRI is a very effective method for the study and diagnosis of these pathologies. We describe in this article some of these pathologies found on studies performed at Instituto de Alta Tecnologia Medica de Antioquia (IATM ).

  13. Exosomes Derived From Pancreatic Stellate Cells: MicroRNA Signature and Effects on Pancreatic Cancer Cells.

    Science.gov (United States)

    Takikawa, Tetsuya; Masamune, Atsushi; Yoshida, Naoki; Hamada, Shin; Kogure, Takayuki; Shimosegawa, Tooru

    2017-01-01

    Pancreatic stellate cells (PSCs) interact with pancreatic cancer cells in the tumor microenvironment. Cell constituents including microRNAs may be exported from cells within membranous nanovesicles termed exosomes. Exosomes might play a pivotal role in intercellular communication. This study aimed to clarify the microRNA signature of PSC-derived exosomes and their effects on pancreatic cancer cells. Exosomes were prepared from the conditioned medium of immortalized human PSCs. MicroRNAs were prepared from the exosomes and their source PSCs, and the microRNA expression profiles were compared by microarray. The effects of PSC-derived exosomes on proliferation, migration, and the mRNA expression profiles were examined in pancreatic cancer cells. Pancreatic stellate cell-derived exosomes contained a variety of microRNAs including miR-21-5p. Several microRNAs such as miR-451a were enriched in exosomes compared to their source PSCs. Pancreatic stellate cell-derived exosomes stimulated the proliferation, migration and expression of mRNAs for chemokine (C - X - C motif) ligands 1 and 2 in pancreatic cancer cells. The stimulation of proliferation, migration, and chemokine gene expression by the conditioned medium of PSCs was suppressed by GW4869, an exosome inhibitor. We clarified the microRNA expression profile in PSC-derived exosomes. Pancreatic stellate cell-derived exosomes might play a role in the interactions between PSCs and pancreatic cancer cells.

  14. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    Science.gov (United States)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.

    2014-10-01

    The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions

  15. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  16. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    International Nuclear Information System (INIS)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T.; Jhaveri, Hiral M.; Mishra, Gyan C.; Wani, Mohan R.

    2010-01-01

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  17. Foetal stem cell derivation & characterization for osteogenic lineage

    Directory of Open Access Journals (Sweden)

    A Mangala Gowri

    2013-01-01

    Full Text Available Background & objectives: Mesencymal stem cells (MSCs derived from foetal tissues present a multipotent progenitor cell source for application in tissue engineering and regenerative medicine. The present study was carried out to derive foetal mesenchymal stem cells from ovine source and analyze their differentiation to osteogenic linage to serve as an animal model to predict human applications. Methods: Isolation and culture of sheep foetal bone marrow cells were done and uniform clonally derived MSC population was collected. The cells were characterized using cytochemical, immunophenotyping, biochemical and molecular analyses. The cells with defined characteristics were differentiated into osteogenic lineages and analysis for differentiated cell types was done. The cells were analyzed for cell surface marker expression and the gene expression in undifferentiated and differentiated osteoblast was checked by reverse transcriptase PCR (RT PCR analysis and confirmed by sequencing using genetic analyzer. Results: Ovine foetal samples were processed to obtain mononuclear (MNC cells which on culture showed spindle morphology, a characteristic oval body with the flattened ends. MSC population CD45 - /CD14 - was cultured by limiting dilution to arrive at uniform spindle morphology cells and colony forming units. The cells were shown to be positive for surface markers such as CD44, CD54, integrinβ1, and intracellular collagen type I/III and fibronectin. The osteogenically induced MSCs were analyzed for alkaline phosphatase (ALP activity and mineral deposition. The undifferentiated MSCs expressed RAB3B, candidate marker for stemness in MSCs. The osteogenically induced and uninduced MSCs expressed collagen type I and MMP13 gene in osteogenic induced cells. Interpretation & conclusions: The protocol for isolation of ovine foetal bone marrow derived MSCs was simple to perform, and the cultural method of obtaining pure spindle morphology cells was established

  18. A combination of biomolecules enhances expression of E-cadherin and peroxisome proliferator-activated receptor gene leading to increased cell proliferation in primary human meniscal cells: an in vitro study.

    Science.gov (United States)

    Pillai, Mamatha M; Elakkiya, V; Gopinathan, J; Sabarinath, C; Shanthakumari, S; Sahanand, K Santosh; Dinakar Rai, B K; Bhattacharyya, Amitava; Selvakumar, R

    2016-10-01

    The present study investigates the impact of biomolecules (biotin, glucose, chondroitin sulphate, proline) as supplement, (individual and in combination) on primary human meniscus cell proliferation. Primary human meniscus cells isolated from patients undergoing meniscectomy were maintained in Dulbecco's Modified Eagle's Medium (DMEM). The isolated cells were treated with above mentioned biomolecules as individual (0-100 µg/ml) and in combinations, as a supplement to DMEM. Based on the individual biomolecule study, a unique combination of biomolecules (UCM) was finalized using one way ANOVA analysis. With the addition of UCM as supplement to DMEM, meniscal cells reached 100 % confluency within 4 days in 60 mm culture plate; whereas the cells in medium devoid of UCM, required 36 days for reaching confluency. The impact of UCM on cell viability, doubling time, histology, gene expression, biomarkers expression, extra cellular matrix synthesis, meniscus cell proliferation with respect to passages and donor's age were investigated. The gene expression studies for E-cadherin and peroxisome proliferator-activated receptor (PPAR∆) using RT-qPCR and immunohistochemical analysis for Ki67, CD34 and Vimentin confirmed that UCM has significant impact on cell proliferation. The extracellular collagen and glycosaminoglycan secretion in cells supplemented with UCM were found to increase by 31 and 37 fold respectively, when compared to control on the 4th day. The cell doubling time was reduced significantly when supplemented with UCM. The addition of UCM showed positive influence on different passages and age groups. Hence, this optimized UCM can be used as an effective supplement for meniscal tissue engineering.

  19. Effect of Exercise Therapy Compared with Arthroscopic Surgery on Knee Muscle Strength and Functional Performance in Middle-Aged Patients with Degenerative Meniscus Tears

    DEFF Research Database (Denmark)

    Stensrud, Silje; Risberg, May Arna; Roos, Ewa M.

    2015-01-01

    OBJECTIVE: The aim of this study was to compare the effect of a 12-wk exercise therapy program and arthroscopic partial meniscectomy on knee strength and functional performance in middle-aged patients with degenerative meniscus tears. DESIGN: A total of 82 patients (mean age, 49 yrs; 35% women......) with a symptomatic, unilateral, magnetic resonance imaging-verified degenerative meniscus tear and no or mild radiographic osteoarthritis were randomly assigned to a supervised neuromuscular and strength exercise program or arthroscopic partial meniscectomy. Outcomes assessed 3 mos after intervention initiation were...

  20. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  1. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  2. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing; Wang, Zehua

    2015-01-01

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  3. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    Science.gov (United States)

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696

  4. Balancing Ethical Pros and Cons of Stem Cell Derived Gametes.

    Science.gov (United States)

    Segers, Seppe; Mertes, Heidi; de Wert, Guido; Dondorp, Wybo; Pennings, Guido

    2017-07-01

    In this review we aim to provide an overview of the most important ethical pros and cons of stem cell derived gametes (SCD-gametes), as a contribution to the debate about reproductive tissue engineering. Derivation of gametes from stem cells holds promising applications both for research and for clinical use in assisted reproduction. We explore the ethical issues connected to gametes derived from embryonic stem cells (both patient specific and non-patient specific) as well as those related to gametes derived from induced pluripotent stem cells. The technology of SCD-gametes raises moral concerns of how reproductive autonomy relates to issues of embryo destruction, safety, access, and applications beyond clinical infertility.

  5. Radiological classification of meniscocapsular tears of the anterolateral portion of the lateral meniscus of the knee

    International Nuclear Information System (INIS)

    George, J.; Packya, N.; Tan, A.H.; Paul, G.

    2000-01-01

    In an arthroscopic-MRI correlation study of acute injuries to the knee it was found that anterolateral meniscocapsular separations of the lateral aspect of the knee were missed on MRI reporting. Eighty sports-related injuries of the knee were seen by experienced orthopaedic surgeons at the University of Malaya Medical Centre and at the National Sports Centre, Malaysia from January 1996 to July 1997. Fifty of the patients were suspected to have meniscal tears that were either lateral or medial on clinical examination and they were sent for MRI. Many of these patients were tertiary referrals. Magnetic resonance imaging examinations in 27 of the 50 patients were reported as not showing any intrasubstance or obvious meniscocapsular tears, but arthroscopy performed on them revealed anterolateral meniscocapsular tears of the lateral meniscus of varying degrees in nine of these patients. In retrospect the tears could be seen on MRI, and a pattern to the tears was noted and classified as follows. Type 0, normal; type 1, torn inferior or superior meniscocapsular attachment; type 2, both meniscofemoral and meniscotibial ligaments torn but with minimal separation of meniscus and capsule by fluid or synovitis; and type 3, marked separation of meniscus and capsule by fluid (> 3 mm). Ten patients who did not undergo arthroscopy for various personal and financial reasons underwent MRI which showed type 1 and type 2 tears, and were treated conservatively. These patients were all asymptomatic after 4-6 weeks with regard to clinical signs, suggesting a lateral meniscal tear. Magnetic resonance imaging therefore does reveal minor degrees of meniscocapsular tears anterolaterally when one understands the normal anatomy in this region. Copyright (1999) Blackwell Science Pty Ltd

  6. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  7. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    International Nuclear Information System (INIS)

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2014-01-01

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa

  8. Generation of induced pluripotent stem cell-derived mice by reprogramming of a mature NKT cell.

    Science.gov (United States)

    Ren, Yue; Dashtsoodol, Nyambayar; Watarai, Hiroshi; Koseki, Haruhiko; Quan, Chengshi; Taniguchi, Masaru

    2014-10-01

    NKT cells are characterized by their expression of an NKT-cell-specific invariant antigen-receptor α chain encoded by Vα14Jα18 gene segments. These NKT cells bridge the innate and acquired immune systems to mediate effective and augmented responses; however, the limited number of NKT cells in vivo hampers their analysis. Here, two lines of induced pluripotent stem cell-derived mice (NKT-iPSC-derived mice) were generated by reprogramming of mature NKT cells, where one harbors both rearranged Vα14Jα18 and Vβ7 genes and the other carries rearranged Vα14Jα18 on both alleles but germline Vβ loci. The analysis of NKT-iPSC-derived mice showed a significant increase in NKT cell numbers with relatively normal frequencies of functional subsets, but significantly enhanced in some cases, and acquired functional NKT cell maturation in peripheral lymphoid organs. NKT-iPSC-derived mice also showed normal development of other immune cells except for the absence of γδT cells and disturbed development of conventional CD4 αβT cells. These results suggest that the NKT-iPSC-derived mice are a better model for NKT cell development and function study rather than transgenic mouse models reported previously and also that the presence of a pre-rearranged Vα14Jα18 in the natural chromosomal context favors the developmental fate of NKT cells. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society for Immunology.

  9. Umbilical Cord-Derived Mesenchymal Stem Cells for Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Yu-Hua Chao

    2012-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is becoming an effective therapeutic modality for a variety of diseases. Mesenchymal stem cells (MSCs can be used to enhance hematopoietic engraftment, accelerate lymphocyte recovery, reduce the risk of graft failure, prevent and treat graft-versus-host disease, and repair tissue damage in patients receiving HSCT. Till now, most MSCs for human clinical application have been derived from bone marrow. However, acquiring bone-marrow-derived MSCs involves an invasive procedure. Umbilical cord is rich with MSCs. Compared to bone-marrow-derived MSCs, umbilical cord-derived MSCs (UCMSCs are easier to obtain without harm to the donor and can proliferate faster. No severe adverse effects were noted in our previous clinical application of UCMSCs in HSCT. Accordingly, application of UCMSCs in humans appears to be feasible and safe. Further studies are warranted.

  10. Biomaterials in search of a meniscus substitute.

    Science.gov (United States)

    Rongen, Jan J; van Tienen, Tony G; van Bochove, Bas; Grijpma, Dirk W; Buma, Pieter

    2014-04-01

    The menisci fulfill key biomechanical functions in the tibiofemoral (knee) joint. Unfortunately meniscal injuries are quite common and most often treated by (partial) meniscectomy. However, some patients experience enduring symptoms, and, more importantly, it leads to an increased risk for symptomatic osteoarthritis. Over the past decades, researchers have put effort in developing a meniscal substitute able to prevent osteoarthritis and treat enduring clinical symptoms. Grossly, two categories of substitutes are observed: First, a resorbable scaffold mimicking biomechanical function which slowly degrades while tissue regeneration and organization is promoted. Second, a non resorbable, permanent implant which mimics the biomechanical function of the native meniscus. Numerous biomaterials with different (material) properties have been used in order to provide such a substitute. Nevertheless, a clinically applicable cartilage protecting material is not yet emerged. In the current review we provide an overview, and discuss, these different materials and extract recommendations regarding material properties for future developmental research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry

    NARCIS (Netherlands)

    Danov, Krassimir D.; Stanimirova, Rumyana D.; Kralchevsky, Peter A.; Marinova, Krastanka G.; Stoyanov, Simeon D.; Blijdenstein, Theodorus B.J.; Cox, Andrew R.; Pelan, Eddie G.

    2016-01-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are

  12. Role of bone marrow-derived stem cells, renal progenitor cells and ...

    African Journals Online (AJOL)

    It remains the leading cause of late allograft loss. Bone marrow derived stem cells are undifferentiated cells typically characterized by their capacity for self renewal, ability to give rise to multiple differentiated cellular population, including hematopoietic (HSCs) and mesenchymal stem cells (MSCs). Characterization of HSCs ...

  13. Adipose-Derived Stem Cells and Application Areas

    Directory of Open Access Journals (Sweden)

    Mujde Kivanc

    2015-09-01

    Full Text Available The use of stem cells derived from adipose tissue as an autologous and self-replenishing source for a variety of differentiated cell phenotypes, provides a great deal of promise for reconstructive surgery. The secret of the human body, stem cells are reserved. Stem cells are undifferentiated cells found in the human body placed in any body tissue characteristics that differentiate and win ever known to cross the tissue instead of more than 200 diseases and thus improve and, rejuvenates the tissues. So far, the cord blood of newborn babies are used as a source of stem cells, bone marrow, and twenty years after tooth stem cells in human adipose tissue, scientists studied more than other sources of stem cells in adipose tissue and discovered that. Increase in number of in vitro studies on adult stem cells, depending on many variables is that the stem cells directly to the desired soybean optimization can be performed.. We will conclude by assessing potential avenues for developing this incredibly promising field. The aim of this paper is to review the existing literature on applications of harvest, purification, characterization and cryopreservation of adipose-derived stem cells (ASCs. [Cukurova Med J 2015; 40(3.000: 399-408

  14. Autologous Pluripotent Stem Cell-Derived β-Like Cells for Diabetes Cellular Therapy.

    Science.gov (United States)

    Millman, Jeffrey R; Pagliuca, Felicia W

    2017-05-01

    Development of stem cell technologies for cell replacement therapy has progressed rapidly in recent years. Diabetes has long been seen as one of the first applications for stem cell-derived cells because of the loss of only a single cell type-the insulin-producing β-cell. Recent reports have detailed strategies that overcome prior hurdles to generate functional β-like cells from human pluripotent stem cells in vitro, including from human induced pluripotent stem cells (hiPSCs). Even with this accomplishment, addressing immunological barriers to transplantation remains a major challenge for the field. The development of clinically relevant hiPSC derivation methods from patients and demonstration that these cells can be differentiated into β-like cells presents a new opportunity to treat diabetes without immunosuppression or immunoprotective encapsulation or with only targeted protection from autoimmunity. This review focuses on the current status in generating and transplanting autologous β-cells for diabetes cell therapy, highlighting the unique advantages and challenges of this approach. © 2017 by the American Diabetes Association.

  15. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Kyle J Hewitt

    2011-02-01

    Full Text Available Human induced pluripotent stem (hiPS cells offer a novel source of patient-specific cells for regenerative medicine. However, the biological potential of iPS-derived cells and their similarities to cells differentiated from human embryonic stem (hES cells remain unclear. We derived fibroblast-like cells from two hiPS cell lines and show that their phenotypic properties and patterns of DNA methylation were similar to that of mature fibroblasts and to fibroblasts derived from hES cells. iPS-derived fibroblasts (iPDK and their hES-derived counterparts (EDK showed similar cell morphology throughout differentiation, and patterns of gene expression and cell surface markers were characteristic of mature fibroblasts. Array-based methylation analysis was performed for EDK, iPDK and their parental hES and iPS cell lines, and hierarchical clustering revealed that EDK and iPDK had closely-related methylation profiles. DNA methylation analysis of promoter regions associated with extracellular matrix (ECM-production (COL1A1 by iPS- and hESC-derived fibroblasts and fibroblast lineage commitment (PDGFRβ, revealed promoter demethylation linked to their expression, and patterns of transcription and methylation of genes related to the functional properties of mature stromal cells were seen in both hiPS- and hES-derived fibroblasts. iPDK cells also showed functional properties analogous to those of hES-derived and mature fibroblasts, as seen by their capacity to direct the morphogenesis of engineered human skin equivalents. Characterization of the functional behavior of ES- and iPS-derived fibroblasts in engineered 3D tissues demonstrates the utility of this tissue platform to predict the capacity of iPS-derived cells before their therapeutic application.

  16. The Potential for Synovium-derived Stem Cells in Cartilage Repair

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Lang, Gernot Michael; Fürst, David

    2018-01-01

    for the treatment of large, isolated, full thickness cartilage defects. Several disadvantages such as the need for two surgical procedures or hypertrophic regenerative cartilage, underline the need for alternative cell sources. OBJECTIVE: Mesenchymal stem cells, particularly synovium-derived mesenchymal stem cells......, represent a promising cell source. Synovium-derived mesenchymal stem cells have attracted considerable attention since they display great chondrogenic potential and less hypertrophic differentiation than mesenchymal stem cells derived from bone marrow. The aim of this review was to summarize the current...... knowledge on the chondrogenic potential for synovial stem cells in regard to cartilage repair purposes. RESULTS: A literature search was carried out identifying 260 articles in the databases up to January 2017. Several in vitro and initial animal in vivo studies of cartilage repair using synovia stem cell...

  17. Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, So-Yeon; Kim, Ye-Ryung; Park, Woo-Jae; Kim, Han Su; Jung, Sung-Chul; Woo, So-Youn; Jo, Inho; Ryu, Kyung-Ha; Park, Joo-Won

    2015-01-01

    Tonsil-derived (T-) mesenchymal stem cells (MSCs) display mutilineage differentiation potential and self-renewal capacity and have potential as a banking source. Diabetes mellitus is a prevalent disease in modern society, and the transplantation of pancreatic progenitor cells or various stem cell-derived insulin-secreting cells has been suggested as a novel therapy for diabetes. The potential of T-MSCs to trans-differentiate into pancreatic progenitor cells or insulin-secreting cells has not yet been investigated. We examined the potential of human T-MSCs to trans-differentiate into pancreatic islet cells using two different methods based on β-mercaptoethanol and insulin-transferin-selenium, respectively. First, we compared the efficacy of the two methods for inducing differentiation into insulin-producing cells. We demonstrated that the insulin-transferin-selenium method is more efficient for inducing differentiation into insulin-secreting cells regardless of the source of the MSCs. Second, we compared the differentiation potential of two different MSC types: T-MSCs and adipose-derived MSCs (A-MSCs). T-MSCs had a differentiation capacity similar to that of A-MSCs and were capable of secreting insulin in response to glucose concentration. Islet-like clusters differentiated from T-MSCs had lower synaptotagmin-3, -5, -7, and -8 levels, and consequently lower secreted insulin levels than cells differentiated from A-MSCs. These results imply that T-MSCs can differentiate into functional pancreatic islet-like cells and could provide a novel, alternative cell therapy for diabetes mellitus. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  18. Isolation and expansion of adipose-derived stem cells for tissue engineering

    DEFF Research Database (Denmark)

    Fink, Trine; Rasmussen, Jeppe Grøndahl; Lund, Pia

    2011-01-01

    For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs for subseq......For treatment of cardiac failure with bone marrow-derived mesenchymal stem cells, several clinical trials are ongoing. However, more attention is gathering on the use of adipose tissue-derived stem cells (ASCs). This paper describes the optimization of isolation and propagation of ASCs...

  19. The arthroscopic treatment of displaced tibial spine fractures in children and adolescents using Meniscus Arrows(A (R))

    NARCIS (Netherlands)

    Wouters, Diederick B.; de Graaf, Joost S.; Hemmer, Patrick H.; Burgerhof, Johannes G. M.; Kramer, William L. M.

    This article summarises the results of a newly developed technique that utilises Meniscus Arrows(A (R)) for the arthroscopic fixation of displaced tibial spine fractures in children and adolescents. Twelve tibial spine fractures in the knees of eleven children between 6 and 15 years old, with an

  20. Cells derived from young bone marrow alleviate renal aging.

    Science.gov (United States)

    Yang, Hai-Chun; Rossini, Michele; Ma, Li-Jun; Zuo, Yiqin; Ma, Ji; Fogo, Agnes B

    2011-11-01

    Bone marrow-derived stem cells may modulate renal injury, but the effects may depend on the age of the stem cells. Here we investigated whether bone marrow from young mice attenuates renal aging in old mice. We radiated female 12-mo-old 129SvJ mice and reconstituted them with bone marrow cells (BMC) from either 8-wk-old (young-to-old) or 12-mo-old (old-to-old) male mice. Transfer of young BMC resulted in markedly decreased deposition of collagen IV in the mesangium and less β-galactosidase staining, an indicator of cell senescence. These changes paralleled reduced expression of plasminogen activator inhibitor-1 (PAI-1), PDGF-B (PDGF-B), the transdifferentiation marker fibroblast-specific protein-1 (FSP-1), and senescence-associated p16 and p21. Tubulointerstitial and glomerular cells derived from the transplanted BMC did not show β-galactosidase activity, but after 6 mo, there were more FSP-1-expressing bone marrow-derived cells in old-to-old mice compared with young-to-old mice. Young-to-old mice also exhibited higher expression of the anti-aging gene Klotho and less phosphorylation of IGF-1 receptor β. Taken together, these data suggest that young bone marrow-derived cells can alleviate renal aging in old mice. Direct parenchymal reconstitution by stem cells, paracrine effects from adjacent cells, and circulating anti-aging molecules may mediate the aging of the kidney.

  1. Hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity in oral squamous cell carcinoma derived cells.

    Science.gov (United States)

    Chaudhari, Pratik Rajeev; Charles, Silvania Emlit; D'Souza, Zinia Charlotte; Vaidya, Milind Murlidhar

    2017-11-15

    BPAG1e and Plectin are hemidesmosomal linker proteins which anchor intermediate filament proteins to the cell surface through β4 integrin. Recent reports indicate that these proteins play a role in various cellular processes apart from their known anchoring function. However, the available literature is inconsistent. Further, the previous study from our laboratory suggested that Keratin8/18 pair promotes cell motility and tumor progression by deregulating β4 integrin signaling in oral squamous cell carcinoma (OSCC) derived cells. Based on these findings, we hypothesized that linker proteins may have a role in neoplastic progression of OSCC. Downregulation of hemidesmosomal linker proteins in OSCC derived cells resulted in reduced cell migration accompanied by alterations in actin organization. Further, decreased MMP9 activity led to reduced cell invasion in linker proteins knockdown cells. Moreover, loss of these proteins resulted in reduced tumorigenic potential. SWATH analysis demonstrated upregulation of N-Myc downstream regulated gene 1 (NDRG1) in linker proteins downregulated cells as compared to vector control cells. Further, the defects in phenotype upon linker proteins ablation were rescued upon loss of NDRG1 in linker proteins knockdown background. These data together indicate that hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity possibly through NDRG1 in OSCC derived cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Immune surveillance properties of human NK cell-derived exosomes.

    Science.gov (United States)

    Lugini, Luana; Cecchetti, Serena; Huber, Veronica; Luciani, Francesca; Macchia, Gianfranco; Spadaro, Francesca; Paris, Luisa; Abalsamo, Laura; Colone, Marisa; Molinari, Agnese; Podo, Franca; Rivoltini, Licia; Ramoni, Carlo; Fais, Stefano

    2012-09-15

    Exosomes are nanovesicles released by normal and tumor cells, which are detectable in cell culture supernatant and human biological fluids, such as plasma. Functions of exosomes released by "normal" cells are not well understood. In fact, several studies have been carried out on exosomes derived from hematopoietic cells, but very little is known about NK cell exosomes, despite the importance of these cells in innate and adaptive immunity. In this paper, we report that resting and activated NK cells, freshly isolated from blood of healthy donors, release exosomes expressing typical protein markers of NK cells and containing killer proteins (i.e., Fas ligand and perforin molecules). These nanovesicles display cytotoxic activity against several tumor cell lines and activated, but not resting, immune cells. We also show that NK-derived exosomes undergo uptake by tumor target cells but not by resting PBMC. Exosomes purified from plasma of healthy donors express NK cell markers, including CD56+ and perforin, and exert cytotoxic activity against different human tumor target cells and activated immune cells as well. The results of this study propose an important role of NK cell-derived exosomes in immune surveillance and homeostasis. Moreover, this study supports the use of exosomes as an almost perfect example of biomimetic nanovesicles possibly useful in future therapeutic approaches against various diseases, including tumors.

  3. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    Science.gov (United States)

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic

  4. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    International Nuclear Information System (INIS)

    Mochalskyy, S; Wünderlich, D; Ruf, B; Fantz, U; Franzen, P; Minea, T

    2014-01-01

    The development of a large area (A source,ITER  = 0.9 × 2 m 2 ) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (A source,BATMAN  ≈ 0.32 × 0.59 m 2 ) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child–Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion–ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated

  5. Coelomic epithelium-derived cells in visceral morphogenesis.

    Science.gov (United States)

    Ariza, Laura; Carmona, Rita; Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón

    2016-03-01

    Coelomic cavities of vertebrates are lined by a mesothelium which develops from the lateral plate mesoderm. During development, the coelomic epithelium is a highly active cell layer, which locally is able to supply mesenchymal cells that contribute to the mesodermal elements of many organs and provide signals which are necessary for their development. The relevance of this process of mesenchymal cell supply to the developing organs is becoming clearer because genetic lineage tracing techniques have been developed in recent years. Body wall, heart, liver, lungs, gonads, and gastrointestinal tract are populated by cells derived from the coelomic epithelium which contribute to their connective and vascular tissues, and sometimes to specialized cell types such as the stellate cells of the liver, the Cajal interstitial cells of the gut or the Sertoli cells of the testicle. In this review we collect information about the contribution of coelomic epithelium derived cells to visceral development, their developmental fates and signaling functions. The common features displayed by all these processes suggest that the epithelial-mesenchymal transition of the embryonic coelomic epithelium is an underestimated but key event of vertebrate development, and probably it is shared by all the coelomate metazoans. © 2015 Wiley Periodicals, Inc.

  6. Vertical tears of the cranial horn of the meniscus and its cranial ligament in the equine femorotibial joint: 7 cases and their treatment by arthroscopic surgery.

    Science.gov (United States)

    Walmsley, J P

    1995-01-01

    Five horses with a vertical tear in the cranial horn and cranial ligament of the medial meniscus and 2 horses with a similar injury in the lateral meniscus were diagnosed from a series of 126 horses which were examined arthroscopically for stifle lameness. All the lesions had similar characteristics. The tear was about 1 cm from the axial border of the meniscus and its ligament and, in all but one case in which it was incomplete, much of the torn tissue was loosely attached in the axial part of the joint from where it was removed. The remaining meniscus, abaxial to the tear, was displaced cranially and abaxially and its torn edges were debrided. Radiographically, 6 cases had proliferative new bone on the cranial aspect of the intercondylar eminence of the tibia and 3 had calcified soft tissue densities in the cranial, medial or lateral femorotibial joint. Following surgery and a 6 month period of rest and controlled exercise, 3 horses returned to full competition work, one was usable for hacking, 2 are convalescing and one is lame after one year. It is postulated that this could be a characteristic meniscal injury in horses which can benefit from arthroscopic surgery. Better techniques for accessing the body and caudal pole of the menisci are needed if a more complete diagnosis and treatment of meniscal injuries are to be achieved.

  7. Vertical tears of the cranial horn of the meniscus and its cranial ligament in the equine femorotibial joint: 7 cases and their treatment by arthroscopic surgery

    International Nuclear Information System (INIS)

    Walmsley, J.P.

    1995-01-01

    Five horses with a vertical tear in the cranial horn and cranial ligament of the medial meniscus and 2 horses with a similar injury in the lateral meniscus were diagnosed from a series of 126 horses which were examined arthroscopically for stifle lameness. All the lesions had similar characteristics. The tear was about 1 cm from the axial border of the meniscus and its ligament and, in all but one case in which it was incomplete, much of the torn tissue was loosely attached in the axial part of the joint from where it was removed. The remaining meniscus, abaxial to the tear, was displaced cranially and abaxially and its torn edges were debrided. Radiographically, 6 cases had proliferative new bone on the cranial aspect of the intercondylar eminence of the tibia and 3 had calcified soft tissue densities in the cranial, medial or lateral femorotibial joint. Following surgery and a 6 month period of rest and controlled exercise, 3 horses returned to full competition work, one was usable for hacking, 2 are convalescing and one is lame after one year. It is postulated that this could be a characteristic meniscal injury in horses which can benefit from arthroscopic surgery. Better techniques for accessing the body and caudal pole of the menisci are needed if a more complete diagnosis and treatment of meniscal injuries are to be achieved

  8. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    Science.gov (United States)

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  9. Tumorigenicity studies for human pluripotent stem cell-derived products.

    Science.gov (United States)

    Kuroda, Takuya; Yasuda, Satoshi; Sato, Yoji

    2013-01-01

    Human pluripotent stem cells (hPSCs), i.e. human embryonic stem cells and human induced pluripotent stem cells, are able to self-renew and differentiate into multiple cell types. Because of these abilities, numerous attempts have been made to utilize hPSCs in regenerative medicine/cell therapy. hPSCs are, however, also tumorigenic, that is, they can give rise to the progressive growth of tumor nodules in immunologically unresponsive animals. Therefore, assessing and managing the tumorigenicity of all final products is essential in order to prevent ectopic tissue formation, tumor development, and/or malignant transformation elicited by residual pluripotent stem cells after implantation. No detailed guideline for the tumorigenicity testing of hPSC-derived products has yet been issued for regenerative medicine/cell therapy, despite the urgent necessity. Here, we describe the current situations and issues related to the tumorigenicity testing of hPSC-derived products and we review the advantages and disadvantages of several types of tumorigenicity-associated tests. We also refer to important considerations in the execution and design of specific studies to monitor the tumorigenicity of hPSC-derived products.

  10. Stem Cell-Derived Exosome in Cardiovascular Diseases: Macro Roles of Micro Particles.

    Science.gov (United States)

    Yuan, Ye; Du, Weijie; Liu, Jiaqi; Ma, Wenya; Zhang, Lai; Du, Zhimin; Cai, Benzhi

    2018-01-01

    The stem cell-based therapy has emerged as the promising therapeutic strategies for cardiovascular diseases (CVDs). Recently, increasing evidence suggest stem cell-derived active exosomes are important communicators among cells in the heart via delivering specific substances to the adjacent/distant target cells. These exosomes and their contents such as certain proteins, miRNAs and lncRNAs exhibit huge beneficial effects on preventing heart damage and promoting cardiac repair. More importantly, stem cell-derived exosomes are more effective and safer than stem cell transplantation. Therefore, administration of stem cell-derived exosomes will expectantly be an alternative stem cell-based therapy for the treatment of CVDs. Furthermore, modification of stem cell-derived exosomes or artificial synthesis of exosomes will be the new therapeutic tools for CVDs in the future. In addition, stem cell-derived exosomes also have been implicated in the diagnosis and prognosis of CVDs. In this review, we summarize the current advances of stem cell-derived exosome-based treatment and prognosis for CVDs, including their potential benefits, underlying mechanisms and limitations, which will provide novel insights of exosomes as a new tool in clinical therapeutic translation in the future.

  11. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor; Kong, Say Li; Sengupta, Debarka; Tan, Iain B; Phyo, Wai Min; Lee, Daniel; Hu, Min; Iliescu, Ciprian; Alexander, Irina; Goh, Wei Lin; Rahmani, Mehran; Suhaimi, Nur-Afidah Mohamed; Vo, Jess H; Tai, Joyce A; Tan, Joanna H; Chua, Clarinda; Ten, Rachel; Lim, Wan Jun; Chew, Min Hoe; Hauser, Charlotte; van Dam, Rob M; Lim, Wei-Yen; Prabhakar, Shyam; Lim, Bing; Koh, Poh Koon; Robson, Paul; Ying, Jackie Y; Hillmer, Axel M; Tan, Min-Han

    2016-01-01

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  12. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  13. History of myeloid-derived suppressor cells.

    Science.gov (United States)

    Talmadge, James E; Gabrilovich, Dmitry I

    2013-10-01

    Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies have revealed that this hyperplasia is associated with populations of multipotent progenitor cells that have been identified as myeloid-derived suppressor cells (MDSCs). The study of MDSCs has provided a wealth of information regarding tumour pathobiology, has extended our understanding of neoplastic progression and has modified our approaches to immune adjuvant therapy. In this Timeline article, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs and the host macroenvironment.

  14. Circulating red cell-derived microparticles in human malaria.

    Science.gov (United States)

    Nantakomol, Duangdao; Dondorp, Arjen M; Krudsood, Srivicha; Udomsangpetch, Rachanee; Pattanapanyasat, Kovit; Combes, Valery; Grau, Georges E; White, Nicholas J; Viriyavejakul, Parnpen; Day, Nicholas P J; Chotivanich, Kesinee

    2011-03-01

    In patients with falciparum malaria, plasma concentrations of cell-derived microparticles correlate with disease severity. Using flow cytometry, we quantified red blood cell-derived microparticles (RMPs) in patients with malaria and identified the source and the factors associated with production. RMP concentrations were increased in patients with Plasmodium falciparum (n = 29; median, 457 RMPs/μL [range, 13-4,342 RMPs/μL]), Plasmodium vivax (n = 5; median, 409 RMPs/μL [range, 281-503/μL]), and Plasmodium malariae (n = 2; median, 163 RMPs/μL [range, 127-200 RMPs/μL]) compared with those in healthy subjects (n = 11; median, 8 RMPs/μL [range, 3-166 RMPs/μL]; P = .01). RMP concentrations were highest in patients with severe falciparum malaria (P = .01). Parasitized red cells produced >10 times more RMPs than did unparasitized cells, but the overall majority of RMPs still derived from uninfected red blood cells (URBCs). In cultures, RMP production increased as the parasites matured. Hemin and parasite products induced RMP production in URBCs, which was inhibited by N-acetylcysteine, suggesting heme-mediated oxidative stress as a pathway for the generation of RMPs.

  15. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients.

    Science.gov (United States)

    Verneuil, Laurence; Leboeuf, Christophe; Bousquet, Guilhem; Brugiere, Charlotte; Elbouchtaoui, Morad; Plassa, Louis-François; Peraldi, Marie-Noelle; Lebbé, Celeste; Ratajczak, Philippe; Janin, Anne

    2015-12-08

    Skin squamous-cell-carcinoma (SCC), is the main complication in long-term kidney-transplant recipients, and it can include donor-derived cells. Preclinical models demonstrated the involvement of epithelial mesenchymal transition (EMT) in the progression of skin SCC, and the role of Snail, an EMT transcription factor, in cancer stem-cell survival and expansion.Here, we studied stem-cells and EMT expression in SCCs and concomitant actinic keratoses (AK) in kidney-transplant recipients. In SCC and AK in 3 female recipients of male kidney-transplants, donor-derived Y chromosome in epidermal stem cells was assessed using combined XY-FISH/CD133 immunostaining, and digital-droplet-PCR on laser-microdissected CD133 expressing epidermal cells.For EMT study, double immunostainings of CD133 with vimentin or snail and slug, electron microscopy and immunostainings of keratinocytes junctions were performed. Digital droplet PCR was used to check CDH1 (E-cadherin) expression level in laser-microdissected cells co-expressing CD133 and vimentin or snail and slug.The numbers of Y-chromosome were assessed using digital droplet PCR in laser-microdissected cells co-expressing CD133 and vimentin, or snail and slug, and in CD133 positive cells not expressing any EMT maker. We identified donor-derived stem-cells in basal layers and invasive areas in all skin SCCs and in concomitant AKs, but not in surrounding normal skin.The donor-derived stem-cells expressed the EMT markers, vimentin, snail and slug in SCCs but not in AKs. The expression of the EMT transcription factor, SNAI1, was higher in stem-cells when they expressed vimentin. They were located in invasive areas of SCCs. In these areas, the expressions of claudin-1 and desmoglein 1 were reduced or absent, and within the basal layer there were features of basal membrane disappearance.Donor-derived stem cells were in larger numbers in stem cells co-expressing vimentin or snail and slug than in stem cells not expressing any EMT marker

  16. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  17. Isolation of Mature (Peritoneum-Derived Mast Cells and Immature (Bone Marrow-Derived Mast Cell Precursors from Mice.

    Directory of Open Access Journals (Sweden)

    Steffen K Meurer

    Full Text Available Mast cells (MCs are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC or mucosal (MMC type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs and immature MC precursors from the bone marrow (BM. The latter are differentiated in vitro to yield BM-derived MCs (BMMC. These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research.

  18. Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Li, Hong; Chen, Shuang; Tao, Hongyue; Chen, Shiyi

    2015-04-01

    Associated meniscal injury is well recognized at anterior cruciate ligament (ACL) reconstruction, and it is a known risk factor for osteoarthritis. To evaluate and characterize the postoperative appearance of articular cartilage after different meniscal treatment in ACL-reconstructed knees using T2 relaxation time evaluation on MRI. Cohort study; Level of evidence, 3. A total of 62 consecutive patients who under ACL reconstruction were recruited in this study, including 23 patients undergoing partial meniscectomy (MS group), 21 patients undergoing meniscal repair (MR group), and 18 patients with intact menisci (MI group) at time of surgery. Clinical evaluation, including subjective functional scores and physical examination, was performed on the same day as the MRI examination and at follow-up times ranging from 2 to 4.2 years. The MRI multiecho sagittal images were segmented to determine the T2 relaxation time value of each meniscus and articular cartilage plate. Differences in each measurement were compared among groups. No patient had joint-line tenderness or reported pain or clicking on McMurray test or instability. There were also no statistically significant differences in functional scores or medial or lateral meniscus T2 values among the 3 groups (P > .05 for both). There was a significantly higher articular cartilage T2 value in the medial femorotibial articular cartilage for the MS group (P T2 value between the MS and MR groups (P > .05) in each articular cartilage plate. The medial tibial articular cartilage T2 value had a significant positive correlation with medial meniscus T2 value (r = 0.287; P = .024) CONCLUSION: This study demonstrates that knees with meniscectomy or meniscal repair had articular cartilage degeneration at 2 to 4 years postoperatively, with higher articular cartilage T2 relaxation time values compared with the knees with an intact meniscus. © 2015 The Author(s).

  19. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells

    DEFF Research Database (Denmark)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya

    2017-01-01

    patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide...... the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models....

  20. Sex Differences in Maturation of Human Embryonic Stem Cell-Derived β Cells in Mice.

    Science.gov (United States)

    Saber, Nelly; Bruin, Jennifer E; O'Dwyer, Shannon; Schuster, Hellen; Rezania, Alireza; Kieffer, Timothy J

    2018-04-01

    Pancreatic progenitors derived from human embryonic stem cells (hESCs) are now in clinical trials for insulin replacement in patients with type 1 diabetes. Animal studies indicate that pancreatic progenitor cells can mature into a mixed population of endocrine cells, including glucose-responsive β cells several months after implantion. However, it remains unclear how conditions in the recipient may influence the maturation and ultimately the function of these hESC-derived cells. Here, we investigated the effects of (1) pregnancy on the maturation of human stage 4 (S4) pancreatic progenitor cells and (2) the impact of host sex on both S4 cells and more mature stage 7 (S7) pancreatic endocrine cells implanted under the kidney capsule of immunodeficient SCID-beige mice. Pregnancy led to increased proliferation of endogenous pancreatic β cells, but did not appear to affect proliferation or maturation of S4 cells at midgestation. Interestingly, S4 and S7 cells both acquired glucose-stimulated C-peptide secretion in females before males. Moreover, S4 cells lowered fasting blood glucose levels in females sooner than in males, whereas the responses with S7 cells were similar. These data indicate that the host sex may impact the maturation of hESC-derived cells in vivo and that this effect can be minimized by more advanced differentiation of the cells before implantation.

  1. Arthroscopic all-inside meniscal repair - Does the meniscus heal? A clinical and radiological follow-up examination to verify meniscal healing using a 3-T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hoffelner, Thomas; Resch, Herbert; Mayer, Michael; Tauber, Mark [Department of Traumatology and Sports Injuries, Salzburg (Austria); Forstner, Rosemarie [University Hospital of Salzburg, Department of Radiology, Salzburg (Austria); Minnich, Bernd [University of Salzburg, Department of Organismic Biology, Salzburg (Austria)

    2011-02-15

    The purpose of this study was to correlate clinical and radiological results using a 3-T MRI to verify meniscal healing after arthroscopic all-inside meniscus repair. We selected 27 patients (14 men and 13 women) with an average age of 31 {+-} 9 years and retrospective clinical examinations and radiological assessments using a 3-T MRI after all-inside arthroscopic meniscal repair were conducted. Repair of the medial meniscus was performed in 19 patients and of the lateral meniscus in eight. In 17 patients (63%), we performed concomitant anterior cruciate ligament reconstruction. The mean follow-up period was 4.5 {+-} 1.7 years. The Lysholm score and Tegner activity index were used for clinical evaluation. Four grades were used to classify the radiological signal alterations within the meniscus: central globular (grade 1); linear horizontal or band-like (grade 2); intrameniscal alterations and linear signal alterations communicating with the articular surface (grade 3); and complex tears (grade 4). At follow-up, the average Lysholm score was 76 {+-} 15 points, with ten of the patients placed in group 6 based on the Tegner activity index. MRI examinations revealed no signal alteration in three patients, grade 1 in 0, grade 2 in five, grade 3 in 13, and grade 4 in six. The MRI findings correlated positively with the clinical scores in 21 patients (78%). Correlation of clinical and radiological examination was performed using 3-T MRI. In spite of satisfactory clinical outcomes at follow-up, a radiological signal alteration may still be visible on MRI, which was believed to be scar tissue, but could not be proven definitively. Imaging with a 3-Tesla MRI after meniscal suture surgery provides good but no definitive reliability on meniscus healing and therefore gives no advantage compared to 1.5-T MRI, with good clinical outcome using an all-inside arthroscopic meniscal repair. 3T-MRI can not substitute diagnostic arthroscopy in patients with persistent complaints after

  2. Arthroscopic all-inside meniscal repair - Does the meniscus heal? A clinical and radiological follow-up examination to verify meniscal healing using a 3-T MRI

    International Nuclear Information System (INIS)

    Hoffelner, Thomas; Resch, Herbert; Mayer, Michael; Tauber, Mark; Forstner, Rosemarie; Minnich, Bernd

    2011-01-01

    The purpose of this study was to correlate clinical and radiological results using a 3-T MRI to verify meniscal healing after arthroscopic all-inside meniscus repair. We selected 27 patients (14 men and 13 women) with an average age of 31 ± 9 years and retrospective clinical examinations and radiological assessments using a 3-T MRI after all-inside arthroscopic meniscal repair were conducted. Repair of the medial meniscus was performed in 19 patients and of the lateral meniscus in eight. In 17 patients (63%), we performed concomitant anterior cruciate ligament reconstruction. The mean follow-up period was 4.5 ± 1.7 years. The Lysholm score and Tegner activity index were used for clinical evaluation. Four grades were used to classify the radiological signal alterations within the meniscus: central globular (grade 1); linear horizontal or band-like (grade 2); intrameniscal alterations and linear signal alterations communicating with the articular surface (grade 3); and complex tears (grade 4). At follow-up, the average Lysholm score was 76 ± 15 points, with ten of the patients placed in group 6 based on the Tegner activity index. MRI examinations revealed no signal alteration in three patients, grade 1 in 0, grade 2 in five, grade 3 in 13, and grade 4 in six. The MRI findings correlated positively with the clinical scores in 21 patients (78%). Correlation of clinical and radiological examination was performed using 3-T MRI. In spite of satisfactory clinical outcomes at follow-up, a radiological signal alteration may still be visible on MRI, which was believed to be scar tissue, but could not be proven definitively. Imaging with a 3-Tesla MRI after meniscal suture surgery provides good but no definitive reliability on meniscus healing and therefore gives no advantage compared to 1.5-T MRI, with good clinical outcome using an all-inside arthroscopic meniscal repair. 3T-MRI can not substitute diagnostic arthroscopy in patients with persistent complaints after

  3. Evaluation of a dental pulp-derived cell sheet cultured on amniotic membrane substrate.

    Science.gov (United States)

    Honjo, Ken-ichi; Yamamoto, Toshiro; Adachi, Tetsuya; Amemiya, Takeshi; Mazda, Osam; Kanamura, Narisato; Kita, Masakazu

    2015-01-01

    Mesenchymal stem cells (MSC) are transplanted for periodontal tissue regeneration, and the periodontal ligament (PDL) is regenerated using a cultured cell sheet. This cultured cell sheet is prepared using PDL-derived cells, growth factors, and amniotic membrane (AM). Dental pulp (DP)-derived cells can be easily obtained from extracted wisdom teeth, proliferate rapidly, and are less susceptible to bacterial infection than PDL-derived cells. Thus, to prepare a novel cell sheet, DP-derived cells were cultured on AM as a culture substrate for immunohistochemical examination. Wisdom teeth extracted from three adults were cut along the cement-enamel border. DP tissue was collected, minced, and primarily cultured. After three or four passage cultures, DP-derived cells were cultured on AM, followed by hematoxylin-eosin (H-E) and immunofluorescence staining. DP-derived cells cultured on AM formed a layered structure. Cells positive for vimentin, Ki-67, ZO-1, desmoplakin, CD29, 44, 105 or 146, STRO-1, collagen IV or VII or laminin 5 or α5 chain were localized. DP-derived cells proliferated on AM, while retaining the properties of DP, which allowed the cultured cell sheet to be prepared. In addition, the cultured cell sheet contained MSC, which suggests its potential application in periodontal tissue regeneration.

  4. Senescence and quiescence in adipose-derived stromal cells

    DEFF Research Database (Denmark)

    Søndergaard, Rebekka Harary; Follin, Bjarke; Lund, Lisbeth Drozd

    2017-01-01

    Background aims. Adipose-derived stromal cells (ASCs) are attractive sources for cell-based therapies. The hypoxic niche of ASCs in vivo implies that cells will benefit from hypoxia during in vitro expansion. Human platelet lysate (hPL) enhances ASC proliferation rates, compared with fetal bovine...

  5. Differentiation and Application of Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Maguire, Eithne Margaret; Xiao, Qingzhong; Xu, Qingbo

    2017-11-01

    Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell-derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell-derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell-derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease. © 2017 American Heart Association, Inc.

  6. Efficient derivation of multipotent neural stem/progenitor cells from non-human primate embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hiroko Shimada

    Full Text Available The common marmoset (Callithrix jacchus is a small New World primate that has been used as a non-human primate model for various biomedical studies. We previously demonstrated that transplantation of neural stem/progenitor cells (NS/PCs derived from mouse and human embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs promote functional locomotor recovery of mouse spinal cord injury models. However, for the clinical application of such a therapeutic approach, we need to evaluate the efficacy and safety of pluripotent stem cell-derived NS/PCs not only by xenotransplantation, but also allotransplantation using non-human primate models to assess immunological rejection and tumorigenicity. In the present study, we established a culture method to efficiently derive NS/PCs as neurospheres from common marmoset ESCs. Marmoset ESC-derived neurospheres could be passaged repeatedly and showed sequential generation of neurons and astrocytes, similar to that of mouse ESC-derived NS/PCs, and gave rise to functional neurons as indicated by calcium imaging. Although marmoset ESC-derived NS/PCs could not differentiate into oligodendrocytes under default culture conditions, these cells could abundantly generate oligodendrocytes by incorporating additional signals that recapitulate in vivo neural development. Moreover, principal component analysis of microarray data demonstrated that marmoset ESC-derived NS/PCs acquired similar gene expression profiles to those of fetal brain-derived NS/PCs by repeated passaging. Therefore, marmoset ESC-derived NS/PCs may be useful not only for accurate evaluation by allotransplantation of NS/PCs into non-human primate models, but are also applicable to analysis of iPSCs established from transgenic disease model marmosets.

  7. Technical Challenges in the Derivation of Human Pluripotent Cells

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2011-01-01

    Full Text Available It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs. These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT, cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology.

  8. Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chung Hyung-Min

    2009-08-01

    Full Text Available Abstract Background Studies have provided important findings about the roles of Notch signaling in neural development. Unfortunately, however, most of these studies have investigated the neural stem cells (NSCs of mice or other laboratory animals rather than humans, mainly owing to the difficulties associated with obtaining human brain samples. It prompted us to focus on neuroectodermal spheres (NESs which are derived from human embryonic stem cell (hESC and densely inhabited by NSCs. We here investigated the role of Notch signaling with the hESC-derived NESs. Results From hESCs, we derived NESs, the in-vitro version of brain-derived neurospheres. NES formation was confirmed by increased levels of various NSC marker genes and the emergence of rosette structures in which neuroprogenitors are known to reside. We found that Notch signaling, which maintains stem cell characteristics of in-vivo-derived neuroprogenitors, is active in these hESC-derived NESs, similar to their in-vivo counterpart. Expression levels of Notch signaling molecules such as NICD, DLLs, JAG1, HES1 and HES5 were increased in the NESs. Inhibition of the Notch signaling by a γ-secretase inhibitor reduced rosette structures, expression levels of NSC marker genes and proliferation potential in the NESs, and, if combined with withdrawal of growth factors, triggered differentiation toward neurons. Conclusion Our results indicate that the hESC-derived NESs, which share biochemical features with brain-derived neurospheres, maintain stem cell characteristics mainly through Notch signaling, which suggests that the hESC-derived NESs could be an in-vitro model for in-vivo neurogenesis.

  9. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    International Nuclear Information System (INIS)

    Wei, Yan; Li, Yuan; Chen, Chao; Stoelzel, Katharina; Kaufmann, Andreas M.; Albers, Andreas E.

    2011-01-01

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  10. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Ji, S.Q.; Cao, J.; Zhang, Q.Y.; Li, Y.Y.; Yan, Y.Q.; Yu, F.X.

    2013-01-01

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  11. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  12. Typing of MRI in medial meniscus degeneration in relation to radiological grade in medial compartmental osteoarthritis of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Nobuhito; Koshino, Tomihisa; Saito, Tomoyuki; Sakai, Naotaka; Takagi, Toshitaka; Takeuchi, Ryohei [Yokohama City Univ. (Japan). School of Medicine

    1998-10-01

    The advancement of degeneration of 50 medial menisci in patients with medial compartmental osteoarthritic knees (OA) were evaluated with magnetic resonance imaging (MRI). The average age of the patients was 66.6 years (range, 39 to 86). According to a radiographical grading system, 6 knees were classified as Grade 1, 24 as Grade 2, 16 as Grade 3, and 4 as Grade 4. The extent and the location of a high intensity region in MRI were observed in 3 parts of the meniscus, namely, the anterior, middle and posterior part. In Grade 1, no high intensity region was observed in 3 knees, and a high intensity region was observed only in the posterior part in 2 knees. A high intensity region was observed from the medial to the posterior part in 13 knees, and only in the posterior part in 10 knees of Grade 2; from the medial to the posterior part in 12 knees, and only in the posterior part in 3 knees of Grade 3, and from the anterior to the posterior part in 2 knees of Grade 4. The shape of the high intensity region in the medial meniscus was classified into 5 types, as follows: Type 1, there was no high intensity region; Type 2, the high intensity region was observed to be restricted within the meniscus; Type 3, the high intensity region resembled a horizontal tear; Type 4, the high intensity region was observed as all of the medial joint space without a marginal area; Type 5, the high intensity region was observed as all of the medial joint space. In Grade 1, 3 knees were classified as Type 1, and 2 knees as Type 2; in Grade 2, 7 knees as Type 2, and 13 knees as Type 3, and 4 knees into Type 4; in Grade 3, 6 knees as Type 3, and 7 knees as Type 4; and in Grade 4, 2 knees as Type 4, and 2 knees as Type 5. These findings might suggest that the degeneration of medial meniscus in the medial type of OA was accelerated by mechanical stress due to varus deformity. (author)

  13. Typing of MRI in medial meniscus degeneration in relation to radiological grade in medial compartmental osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Nagata, Nobuhito; Koshino, Tomihisa; Saito, Tomoyuki; Sakai, Naotaka; Takagi, Toshitaka; Takeuchi, Ryohei

    1998-01-01

    The advancement of degeneration of 50 medial menisci in patients with medial compartmental osteoarthritic knees (OA) were evaluated with magnetic resonance imaging (MRI). The average age of the patients was 66.6 years (range, 39 to 86). According to a radiographical grading system, 6 knees were classified as Grade 1, 24 as Grade 2, 16 as Grade 3, and 4 as Grade 4. The extent and the location of a high intensity region in MRI were observed in 3 parts of the meniscus, namely, the anterior, middle and posterior part. In Grade 1, no high intensity region was observed in 3 knees, and a high intensity region was observed only in the posterior part in 2 knees. A high intensity region was observed from the medial to the posterior part in 13 knees, and only in the posterior part in 10 knees of Grade 2; from the medial to the posterior part in 12 knees, and only in the posterior part in 3 knees of Grade 3, and from the anterior to the posterior part in 2 knees of Grade 4. The shape of the high intensity region in the medial meniscus was classified into 5 types, as follows: Type 1, there was no high intensity region; Type 2, the high intensity region was observed to be restricted within the meniscus; Type 3, the high intensity region resembled a horizontal tear; Type 4, the high intensity region was observed as all of the medial joint space without a marginal area; Type 5, the high intensity region was observed as all of the medial joint space. In Grade 1, 3 knees were classified as Type 1, and 2 knees as Type 2; in Grade 2, 7 knees as Type 2, and 13 knees as Type 3, and 4 knees into Type 4; in Grade 3, 6 knees as Type 3, and 7 knees as Type 4; and in Grade 4, 2 knees as Type 4, and 2 knees as Type 5. These findings might suggest that the degeneration of medial meniscus in the medial type of OA was accelerated by mechanical stress due to varus deformity. (author)

  14. Isolation and Osteogenic Differentiation of Rat Periosteum-derived Cells

    OpenAIRE

    Declercq, Heidi Andrea; De Ridder, Leo Isabelle; Cornelissen, Maria Jozefa

    2005-01-01

    Selection of appropriate cultures having an osteogenic potential is a necessity if cell/biomaterial interactions are studied in long-term cultures. Osteoblastic cells derived from rat long bones or calvaria have the disadvantage of being in an advanced differentiation stage which results in terminal differentiation within 21 days. In this regard, less differentiated periosteum-derived osteoprogenitors could be more suitable.

  15. The chemokine receptor CCR1 is identified in mast cell-derived exosomes.

    Science.gov (United States)

    Liang, Yuting; Qiao, Longwei; Peng, Xia; Cui, Zelin; Yin, Yue; Liao, Huanjin; Jiang, Min; Li, Li

    2018-01-01

    Mast cells are important effector cells of the immune system, and mast cell-derived exosomes carrying RNAs play a role in immune regulation. However, the molecular function of mast cell-derived exosomes is currently unknown, and here, we identify differentially expressed genes (DEGs) in mast cells and exosomes. We isolated mast cells derived exosomes through differential centrifugation and screened the DEGs from mast cell-derived exosomes, using the GSE25330 array dataset downloaded from the Gene Expression Omnibus database. Biochemical pathways were analyzed by Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the online tool DAVID. DEGs-associated protein-protein interaction networks (PPIs) were constructed using the STRING database and Cytoscape software. The genes identified from these bioinformatics analyses were verified by qRT-PCR and Western blot in mast cells and exosomes. We identified 2121 DEGs (843 up and 1278 down-regulated genes) in HMC-1 cell-derived exosomes and HMC-1 cells. The up-regulated DEGs were classified into two significant modules. The chemokine receptor CCR1 was screened as a hub gene and enriched in cytokine-mediated signaling pathway in module one. Seven genes, including CCR1, CD9, KIT, TGFBR1, TLR9, TPSAB1 and TPSB2 were screened and validated through qRT-PCR analysis. We have achieved a comprehensive view of the pivotal genes and pathways in mast cells and exosomes and identified CCR1 as a hub gene in mast cell-derived exosomes. Our results provide novel clues with respect to the biological processes through which mast cell-derived exosomes modulate immune responses.

  16. Cell-derived microparticles in haemostasis and vascular medicine.

    Science.gov (United States)

    Burnier, Laurent; Fontana, Pierre; Kwak, Brenda R; Angelillo-Scherrer, Anne

    2009-03-01

    Considerable interest for cell-derived microparticles has emerged, pointing out their essential role in haemostatic response and their potential as disease markers, but also their implication in a wide range of physiological and pathological processes. They derive from different cell types including platelets - the main source of microparticles - but also from red blood cells, leukocytes and endothelial cells, and they circulate in blood. Despite difficulties encountered in analyzing them and disparities of results obtained with a wide range of methods, microparticle generation processes are now better understood. However, a generally admitted definition of microparticles is currently lacking. For all these reasons we decided to review the literature regarding microparticles in their widest definition, including ectosomes and exosomes, and to focus mainly on their role in haemostasis and vascular medicine.

  17. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guneta, Vipra [Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Nguan Soon [School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); KK Research Centre, KK Women' s and Children Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore); Institute of Molecular and Cell Biology, Agency for Science Technology & Research - A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673 (Singapore); Chan, Soon Kiat Jeremy [School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Tanavde, Vivek [Bioinformatics Institute, Agency for Science Technology & Research - A*STAR, 30 Biopolis Street, Matrix, Singapore 138671 (Singapore); Lim, Thiam Chye [Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Hospital (NUH) and National University of Singapore (NUS), Kent Ridge Wing, Singapore 119074 (Singapore); Wong, Thien Chong Marcus [Plastic, Reconstructive and Aesthetic Surgery Section, Tan Tock Seng Hospital (TTSH), 11, Jalan Tan Tock Seng, Singapore 308433 (Singapore); Choong, Cleo, E-mail: cleochoong@ntu.edu.sg [Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); KK Research Centre, KK Women' s and Children Hospital, 100 Bukit Timah Road, Singapore 229899 (Singapore)

    2016-11-01

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP) and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.

  18. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    International Nuclear Information System (INIS)

    Guneta, Vipra; Tan, Nguan Soon; Chan, Soon Kiat Jeremy; Tanavde, Vivek; Lim, Thiam Chye; Wong, Thien Chong Marcus; Choong, Cleo

    2016-01-01

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP) and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.

  19. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  20. Comparison of Tibiofemoral Contact Mechanics After Various Transtibial and All-Inside Fixation Techniques for Medial Meniscus Posterior Root Radial Tears in a Porcine Model.

    Science.gov (United States)

    Chung, Kyu Sung; Choi, Choong Hyeok; Bae, Tae Soo; Ha, Jeong Ku; Jun, Dal Jae; Wang, Joon Ho; Kim, Jin Goo

    2018-04-01

    To compare tibiofemoral contact mechanics after fixation for medial meniscus posterior root radial tears (MMPRTs). Seven fresh knees from mature pigs were used. Each knee was tested under 5 conditions: normal knee, MMPRT, pullout fixation with simple sutures, fixation with modified Mason-Allen sutures, and all-inside fixation using Fastfix 360. The peak contact pressure and contact surface area were evaluated using a capacitive sensor positioned between the meniscus and tibial plateau, under a 1,000-N compression force, at different flexion angles (0°, 30°, 60°, and 90°). The peak contact pressure was significantly higher in MMPRTs than in normal knees (P = .018). Although the peak contact pressure decreased significantly after fixation at all flexion angles (P = .031), it never recovered to the values noted in the normal meniscus. No difference was observed among fixation groups (P = .054). The contact surface area was significantly lower in MMPRTs than in the normal meniscus (P = .018) and increased significantly after fixation at all flexion angles (P = .018) but did not recover to within normal limits. For all flexion angles except 60°, the contact surface area was significantly higher for fixation with Mason-Allen sutures than for fixation with simple sutures or all-inside fixation (P = .027). At 90° of flexion, the contact surface area was significantly better for fixation with simple sutures than for all-inside fixation (P = .031). The peak contact pressure and contact surface area improved significantly after fixation, regardless of the fixation method, but did not recover to the levels noted in the normal meniscus after any type of fixation. Among the fixation methods evaluated in this time 0 study, fixation using modified Mason-Allen sutures provided a superior contact surface area compared with that noted after fixation using simple sutures or all-inside fixation, except at 60° of flexion. However, this study had insufficient power to

  1. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial)

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Haack-Sørensen, Mandana; Mathiasen, Anders Bruun

    2012-01-01

    Adipose tissue represents an abundant, accessible source of multipotent adipose-derived stromal cells (ADSCs). Animal studies have suggested that ADSCs have the potential to differentiate in vivo into endothelial cells and cardiomyocytes. This makes ADSCs a promising new cell source...... for regenerative therapy to replace injured tissue by creating new blood vessels and cardiomyocytes in patients with chronic ischemic heart disease. The aim of this special report is to review the present preclinical data leading to clinical stem cell therapy using ADSCs in patients with ischemic heart disease....... In addition, we give an introduction to the first-in-man clinical trial, MyStromalCell Trial, which is a prospective, randomized, double-blind, placebo-controlled study using culture-expanded ADSCs obtained from adipose-derived cells from abdominal adipose tissue and stimulated with VEGF-A(165) the week...

  2. One-step derivation of mesenchymal stem cell (MSC-like cells from human pluripotent stem cells on a fibrillar collagen coating.

    Directory of Open Access Journals (Sweden)

    Yongxing Liu

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs into cells that resemble adult mesenchymal stem cells (MSCs is an attractive approach to obtain a readily available source of progenitor cells for tissue engineering. The present study reports a new method to rapidly derive MSC-like cells from hESCs and hiPSCs, in one step, based on culturing the cells on thin, fibrillar, type I collagen coatings that mimic the structure of physiological collagen. Human H9 ESCs and HDFa-YK26 iPSCs were singly dissociated in the presence of ROCK inhibitor Y-27632, plated onto fibrillar collagen coated plates and cultured in alpha minimum essential medium (alpha-MEM supplemented with 10% fetal bovine serum, 50 uM magnesium L-ascorbic acid phosphate and 100 nM dexamethasone. While fewer cells attached on the collagen surface initially than standard tissue culture plastic, after culturing for 10 days, resilient colonies of homogenous spindle-shaped cells were obtained. Flow cytometric analysis showed that a high percentage of the derived cells expressed typical MSC surface markers including CD73, CD90, CD105, CD146 and CD166 and were negative as expected for hematopoietic markers CD34 and CD45. The MSC-like cells derived from pluripotent cells were successfully differentiated in vitro into three different lineages: osteogenic, chondrogenic, and adipogenic. Both H9 hES and YK26 iPS cells displayed similar morphological changes during the derivation process and yielded MSC-like cells with similar properties. In conclusion, this study demonstrates that bioimimetic, fibrillar, type I collagen coatings applied to cell culture plates can be used to guide a rapid, efficient derivation of MSC-like cells from both human ES and iPS cells.

  3. Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells.

    Science.gov (United States)

    Peng, Shao-Yu; Chou, Chien-Wen; Kuo, Yu-Hsuan; Shen, Perng-Chih; Shaw, S W Steven

    2017-06-01

    Type 1 diabetes is an autoimmune disease that destroys islet cells and results in insufficient insulin secretion by pancreatic β-cells. Islet transplantation from donors is an approach used for treating patients with diabetes; however, this therapy is difficult to implement because of the lack of donors. Nevertheless, several stem cells have the potential to differentiate from islet-like cells and enable insulin secretion for treating diabetes in animal models. For example, placenta is considered a waste material and can be harvested noninvasively during delivery without ethical or moral concerns. To date, the differentiation of islet-like cells from cow-derived placental stem cells (CPSCs) has yet to be demonstrated. The investigation of potential differentiation of islet-like cells from CPSCs was conducted by supplementation with nicotinamide, exendin-4, glucose, and poly-d-lysine and was detected through reverse transcription polymerase chain reaction, dithizone staining, and immunocytochemical methods. Our results indicated that CPSCs are established and express mesenchymal stem cell surface antigen markers, such as CD73, CD166, β-integrin, and Oct-4, but not hematopoietic stem cell surface antigen markers, such as CD45. After induction, the CPSCs successfully differentiated into islet-like cells. The CPSC-derived islet-like cells expressed islet cell development-related genes, such as insulin, glucagon, pax-4, Nkx6.1, pax-6, and Fox. Moreover, CPSC-derived islet-like cells can be stained with zinc ions, which are widely distributed in the islet cells and enable insulin secretion. Altogether, islet-like cells have the potential to be differentiated from CPSCs without gene manipulation, and can be used in diabetic animal models in the future for preclinical and drug testing trial investigations. Copyright © 2017. Published by Elsevier B.V.

  4. Total resection of any segment of the lateral meniscus may cause early cartilage degeneration: Evaluation by magnetic resonance imaging using T2 mapping.

    Science.gov (United States)

    Murakami, Koji; Arai, Yuji; Ikoma, Kazuya; Kato, Kammei; Inoue, Hiroaki; Nakagawa, Shuji; Fujii, Yuta; Ueshima, Keiichiro; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2018-06-01

    The aim of this study was to perform quantitative evaluation of degeneration of joint cartilage using T2 mapping in magnetic resonance imaging (MRI) after arthroscopic partial resection of the lateral meniscus.The subjects were 21 patients (23 knees) treated with arthroscopic partial resection of the lateral meniscus. MRI was performed for all knees before surgery and 6 months after surgery to evaluate the center of the lateral condyle of the femur in sagittal images for T2 mapping. Ten regions of interest (ROIs) on the articular cartilage were established at 10-degree intervals, from the point at which the femur shaft crossed the lateral femoral condyle joint to the articular cartilage 90° relative to the femur shaft. Preoperative and postoperative T2 values were evaluated at each ROI. Age, sex, body mass index, femorotibial angle, Tegner score, and amount of meniscal resection were evaluated when the T2 value increased more than 6% at 30°.T2 values at approximately 10 °, 20 °, 30 °, 40 °, 50 °, and 60 ° degrees relative to the anatomical axis of the femur were significantly greater postoperatively (3.1, 3.6, 5.5, 4.4, 5.0, 6.4%, respectively) than preoperatively. A >6% increase at 30° was associated with total resection of any segment of the meniscus.Degeneration of the articular cartilage, as shown by the disorganization of collagen arrays at positions approximately 10 °, 20 °, 30 °, 40 °, 50 °, and 60 ° relative to the anatomical axis of the femur, may start soon after arthroscopic lateral meniscectomy. Total resection of any segment of the lateral meniscus may cause T2 elevation of articular cartilage of lateral femoral condyle.

  5. Application of stem cell derived neuronal cells to evaluate neurotoxic chemotherapy

    Directory of Open Access Journals (Sweden)

    Claudia Wing

    2017-07-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs and differentiation to cells composing major organs has opened up the possibility for a new model system to study adverse toxicities associated with chemotherapy. Therefore, we used human iPSC-derived neurons to study peripheral neuropathy, one of the most common adverse effects of chemotherapy and cause for dose reduction. To determine the utility of these neurons in investigating the effects of neurotoxic chemotherapy, we measured morphological differences in neurite outgrowth, cell viability as determined by ATP levels and apoptosis through measures of caspase 3/7 activation following treatment with clinically relevant concentrations of platinating agents (cisplatin, oxaliplatin and carboplatin, taxanes (paclitaxel, docetaxel and nab-paclitaxel, a targeted proteasome inhibitor (bortezomib, an antiangiogenic compound (thalidomide, and 5-fluorouracil, a chemotherapeutic that does not cause neuropathy. We demonstrate differential sensitivity of neurons to mechanistically distinct classes of chemotherapeutics. We also show a dose-dependent reduction of electrical activity as measured by mean firing rate of the neurons following treatment with paclitaxel. We compared neurite outgrowth and cell viability of iPSC-derived cortical (iCell® Neurons and peripheral (Peri.4U neurons to cisplatin, paclitaxel and vincristine. Goshajinkigan, a Japanese herbal neuroprotectant medicine, was protective against paclitaxel-induced neurotoxicity but not oxaliplatin as measured by morphological phenotypes. Thus, we have demonstrated the utility of human iPSC-derived neurons as a useful model to distinguish drug class differences and for studies of a potential neuroprotectant for the prevention of chemotherapy-induced peripheral neuropathy.

  6. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential

    Directory of Open Access Journals (Sweden)

    Ana Marote

    2016-08-01

    Full Text Available Exosomes are membrane-enclosed nanovesicles (30-150 nm that shuttle active cargoes between different cells. These tiny extracellular vesicles have been recently isolated from mesenchymal stem cells (MSCs conditioned medium, a population of multipotent cells identified in several adult tissues. MSCs paracrine activity has been already shown to be the key mediator of their elicited regenerative effects. On the other hand, the individual contribution of MSCs-derived exosomes for these effects is only now being unraveled. The administration of MSCs-derived exosomes has been demonstrated to restore tissue function in multiple diseases/injury models and to induce beneficial in vitro effects, mainly mediated by exosomal-enclosed miRNAs. Additionally, the source and the culture conditions of MSCs have been shown to influence the regenerative responses induced by exosomes. Therefore, these studies reveal that MSCs-derived exosomes hold a great potential for cell-free therapies that are safer and easier to manipulate than cell-based products. Nevertheless, this is an emerging research field and hence, further studies are required to understand the full dimension of this complex intercellular communication system and how it can be optimized to take full advantage of its therapeutic effects. In this mini-review, we summarize the most significant new advances in the regenerative properties of MSCs-derived exosomes and discuss the molecular mechanisms underlying these effects.

  7. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Hajmousa, Ghazaleh; Vogelaar, Pieter; Brouwer, Linda A.; Graaf, Adrianus Cornelis van der; Henning, Robert H.; Krenning, Guido

    Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their

  8. Adipose Derived Mesenchymal Stem Cells In Wound Healing: A Clinical Review

    Directory of Open Access Journals (Sweden)

    Gunalp Uzun

    2014-08-01

    Full Text Available The aim of this article is to review clinical studies on the use of adipose derived mesenchymal stem cells in the treatment of chronic wounds. A search on PubMed was performed on April 30th, 2014 to identify the relevant clinical studies. We reviewed 13 articles that reported the use adipose derived stem cells in the treatment of different types of wounds. Adipose derived stem cells have the potential to be used in the treatment of chronic wounds. However, standard methods for isolation, storage and application of these cells are needed. New materials to transfer these stem cells to injured tissues should be investigated. [Dis Mol Med 2014; 2(4.000: 57-64

  9. Arthroscopic Treatment of Discoid Lateral Meniscus Tears in Children With Achondroplasia.

    Science.gov (United States)

    Atanda, Alfred; Wallace, Maegen; Bober, Michael B; Mackenzie, William

    2016-01-01

    Achondroplasia is the most common form of skeletal dysplasia that presents to the pediatric orthopaedist. More than half of achondroplasia patients are affected with knee pain. It is thought that the majority of this pain may be due to spinal stenosis, hip pathology, or knee malalignment. Discoid menisci can be a source of lateral knee joint pain in skeletally immature patients in general. We present the first case series of patients with achondroplasia who had symptomatic discoid lateral menisci treated with arthroscopic knee surgery. The charts of 6 patients (8 knees) with achondroplasia who underwent arthroscopic knee surgery for symptomatic discoid lateral menisci were collected. History and physical examination data, magnetic resonance imaging findings, and operative reports were reviewed. Meniscal tear configuration and treatment type (meniscectomy vs. repair) were noted. Each patient was found to have a tear of the discoid meniscus. All menisci were treated with saucerization. In addition, meniscal repair was performed in 2 cases, partial meniscectomy in 3 cases, and subtotal meniscectomy in 3 cases. Two patients had bilateral discoid meniscal tears which were treated. Average follow-up was 2.4 years (range, 1 to 4.5 y) and the average pediatric International Knee Documentation Committee (pedi-IKDC) score was 85.3% (range, 75% to 95.4%). At final follow-up, all patients were pain free and able to return to full activities. Discoid meniscus tears may be a source of lateral joint line pain in patients with achondroplasia. These injuries can be successfully treated with arthroscopic surgery in this patient population. Future studies need to be done to determine the exact incidence of discoid menisci in achondroplasia patients and also to determine whether there is a genetic relationship between the 2 conditions. Level IV-case series.

  10. Identification of rabbit annulus fibrosus-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Chen Liu

    Full Text Available Annulus fibrosus (AF injuries can lead to substantial deterioration of intervertebral disc (IVD which characterizes degenerative disc disease (DDD. However, treatments for AF repair/regeneration remain challenging due to the intrinsic heterogeneity of AF tissue at cellular, biochemical, and biomechanical levels. In this study, we isolated and characterized a sub-population of cells from rabbit AF tissue which formed colonies in vitro and could self-renew. These cells showed gene expression of typical surface antigen molecules characterizing mesenchymal stem cells (MSCs, including CD29, CD44, and CD166. Meanwhile, they did not express negative markers of MSCs such as CD4, CD8, and CD14. They also expressed Oct-4, nucleostemin, and SSEA-4 proteins. Upon induced differentiation they showed typical osteogenesis, chondrogenesis, and adipogenesis potential. Together, these AF-derived colony-forming cells possessed clonogenicity, self-renewal, and multi-potential differentiation capability, the three criteria characterizing MSCs. Such AF-derived stem cells may potentially be an ideal candidate for DDD treatments using cell therapies or tissue engineering approaches.

  11. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells.

    Science.gov (United States)

    Prabakar, Kamalaveni R; Domínguez-Bendala, Juan; Molano, R Damaris; Pileggi, Antonello; Villate, Susana; Ricordi, Camillo; Inverardi, Luca

    2012-01-01

    We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.

  12. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    OpenAIRE

    Engela, Anja; Baan, Carla; Peeters, Anna; Weimar, Willem; Hoogduijn, Martin

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We investigated the interaction between both cell types using perirenal adipose tissue-derived MSCs (ASCs) from kidney donors and Tregs from blood bank donors or kidney recipients 6 months after transplant...

  13. Extracellular matrix-derived hydrogels for dental stem cell delivery.

    Science.gov (United States)

    Viswanath, Aiswarya; Vanacker, Julie; Germain, Loïc; Leprince, Julian G; Diogenes, Anibal; Shakesheff, Kevin M; White, Lisa J; des Rieux, Anne

    2017-01-01

    Decellularized mammalian extracellular matrices (ECM) have been widely accepted as an ideal substrate for repair and remodelling of numerous tissues in clinical and pre-clinical studies. Recent studies have demonstrated the ability of ECM scaffolds derived from site-specific homologous tissues to direct cell differentiation. The present study investigated the suitability of hydrogels derived from different source tissues: bone, spinal cord and dentine, as suitable carriers to deliver human apical papilla derived mesenchymal stem cells (SCAP) for spinal cord regeneration. Bone, spinal cord, and dentine ECM hydrogels exhibited distinct structural, mechanical, and biological characteristics. All three hydrogels supported SCAP viability and proliferation. However, only spinal cord and bone derived hydrogels promoted the expression of neural lineage markers. The specific environment of ECM scaffolds significantly affected the differentiation of SCAP to a neural lineage, with stronger responses observed with spinal cord ECM hydrogels, suggesting that site-specific tissues are more likely to facilitate optimal stem cell behavior for constructive spinal cord regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 319-328, 2017. © 2016 Wiley Periodicals, Inc.

  14. Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    Full Text Available There are no effective agents to prevent or treat chemotherapy-induced peripheral neuropathy (CIPN, the most common non-hematologic toxicity of chemotherapy. Therefore, we sought to evaluate the utility of human neuron-like cells derived from induced pluripotent stem cells (iPSCs as a means to study CIPN. We used high content imaging measurements of neurite outgrowth phenotypes to compare the changes that occur to iPSC-derived neuronal cells among drugs and among individuals in response to several classes of chemotherapeutics. Upon treatment of these neuronal cells with the neurotoxic drug paclitaxel, vincristine or cisplatin, we identified significant differences in five morphological phenotypes among drugs, including total outgrowth, mean/median/maximum process length, and mean outgrowth intensity (P < 0.05. The differences in damage among drugs reflect differences in their mechanisms of action and clinical CIPN manifestations. We show the potential of the model for gene perturbation studies by demonstrating decreased expression of TUBB2A results in significantly increased sensitivity of neurons to paclitaxel (0.23 ± 0.06 decrease in total neurite outgrowth, P = 0.011. The variance in several neurite outgrowth and apoptotic phenotypes upon treatment with one of the neurotoxic drugs is significantly greater between than within neurons derived from four different individuals (P < 0.05, demonstrating the potential of iPSC-derived neurons as a genetically diverse model for CIPN. The human neuron model will allow both for mechanistic studies of specific genes and genetic variants discovered in clinical studies and for screening of new drugs to prevent or treat CIPN.

  15. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    Science.gov (United States)

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  16. Exosomes derived from pancreatic cancer cells induce activation and profibrogenic activities in pancreatic stellate cells.

    Science.gov (United States)

    Masamune, Atsushi; Yoshida, Naoki; Hamada, Shin; Takikawa, Tetsuya; Nabeshima, Tatsuhide; Shimosegawa, Tooru

    2018-01-01

    Pancreatic cancer cells (PCCs) interact with pancreatic stellate cells (PSCs), which play a pivotal role in pancreatic fibrogenesis, to develop the cancer-conditioned tumor microenvironment. Exosomes are membrane-enclosed nanovesicles, and have been increasingly recognized as important mediators of cell-to-cell communications. The aim of this study was to clarify the effects of PCC-derived exosomes on cell functions in PSCs. Exosomes were isolated from the conditioned medium of Panc-1 and SUIT-2 PCCs. Human primary PSCs were treated with PCC-derived exosomes. PCC-derived exosomes stimulated the proliferation, migration, activation of ERK and Akt, the mRNA expression of α-smooth muscle actin (ACTA2) and fibrosis-related genes, and procollagen type I C-peptide production in PSCs. Ingenuity pathway analysis of the microarray data identified transforming growth factor β1 and tumor necrosis factor as top upstream regulators. PCCs increased the expression of miR-1246 and miR-1290, abundantly contained in PCC-derived exosomes, in PSCs. Overexpression of miR-1290 induced the expression of ACTA2 and fibrosis-related genes in PSCs. In conclusion, PCC-derived exosomes stimulate activation and profibrogenic activities in PSCs. Exosome-mediated interactions between PSCs and PCCs might play a role in the development of the tumor microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Proliferative activity of vervet monkey bone marrow-derived adherent cells

    International Nuclear Information System (INIS)

    Kramvis, A.; Garnett, H.M.

    1987-01-01

    Vervet monkey bone marrow-derived adherent cell population cultured in Fischer's medium supplemented with 12.5% fetal calf serum and 12.5% horse serum consists of two cell shapes: fusiform (type I) and polygonal (type II). Limiting-dilution cloning of the cells suggested that the two morphologically distinct cell types belong to the same cellular system even though they differ in their proliferative capabilities. The labeling index of type II cells, as measured by autoradiography, was found to be consistently lower than that of type I cells. It is probable that these two phenotypes represent different stages of differentiation, where progenitor type I gives rise to type II cells. The bone marrow-derived adherent cells were found to be cytokinetically at rest in vivo, using the thymidine suicide test, and relatively radioresistant with a D0 = 2.1 Gy and n = 2.36 at the time of explantation from the bone. Furthermore, in culture these cells are characterized by a relatively long cell cycle of 60 h, where the length of the S phase is 30 h, G2 is 12 h, M is 6 h, and G1 is 12 h. Thus, the vervet monkey bone marrow-derived adherent cells represent a cell population with a low turnover rate both in vivo and in vitro

  18. CULTIVATION OF HUMAN LIVER CELLS AND ADIPOSE-DERIVED MESENCHYMAL STROMAL CELLS IN PERFUSION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    Yu. В. Basok

    2018-01-01

    Full Text Available Aim: to show the progress of the experiment of cultivation of human liver cells and adipose-derived mesenchymal stromal cells in perfusion bioreactor.Materials and methods. The cultivation of a cell-engineered construct, consisting of a biopolymer microstructured collagen-containing hydrogel, human liver cells, adipose-derived mesenchymal stromal cells, and William’s E Medium, was performed in a perfusion bioreactor.Results. On the 7th day large cells with hepatocyte morphology – of a polygonal shape and a centrally located round nucleus, – were present in the culture chambers of the bioreactor. The metabolic activity of hepatocytes in cell-engineered constructs was confi rmed by the presence of urea in the culture medium on the seventh day of cultivation in the bioreactor and by the resorption of a biopolymer microstructured collagen-containing hydrogel.

  19. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    International Nuclear Information System (INIS)

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae; Uhm, Sang Jun; Lee, Hoon Taek

    2010-01-01

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  20. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae [Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Uhm, Sang Jun [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Hoon Taek, E-mail: htl3675@konkuk.ac.kr [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2010-07-09

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  1. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Directory of Open Access Journals (Sweden)

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  2. Stem-cell-derived products: an FDA update.

    Science.gov (United States)

    Moos, Malcolm

    2008-12-01

    The therapeutic potential of products derived from stem cells of various types has prompted increasing research and development and public attention. Initiation of human clinical trials in the not-too-distant future is now a realistic possibility. It is, therefore, important to weigh the potential benefits against known, theoretical and totally unsuspected risks in light of current knowledge to ensure that subjects participating in these trials are afforded the most reasonable balance possible between potential risks and potential benefits. There are no apparent differences in fundamental, qualitative biological characteristics between stem-cell-derived products and other cellular therapies regulated by the United States Food and Drug Administration (FDA). Existing authorities can, therefore, be applied. Nevertheless, these products do have properties that require careful evaluation.

  3. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children' s Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  4. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Yang, Yingbin; Cai, Shaoxi; Yang, Li; Yu, Shuhui; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul

    2010-01-01

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  5. IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Daniela Lehnen

    2017-10-01

    Full Text Available Human pluripotent stem cell (hPSC-derived mesencephalic dopaminergic (mesDA neurons can relieve motor deficits in animal models of Parkinson's disease (PD. Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP+ mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA neurons in vitro. Intrastriatal transplantation of IAP+ cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP+ mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies.

  6. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM deficient blastocysts.

    Directory of Open Access Journals (Sweden)

    Duancheng Wen

    Full Text Available Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs by injection of diploid (2n ESCs into tetraploid (4n blastocysts (ESC-derived mice. This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS cells. However, the underlying mechanism(s of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM. We designate these as type a (presence of ICM at blastocyst stage or type b (absence of ICM. ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.

  7. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.

    Science.gov (United States)

    Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W

    2017-11-01

    Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.

  8. Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 undergo the stochastic cardiomyogenic fate and behave like transient amplifying cells

    International Nuclear Information System (INIS)

    Yamada, Yoji; Sakurada, Kazuhiro; Takeda, Yukiji; Gojo, Satoshi; Umezawa, Akihiro

    2007-01-01

    Bone marrow-derived stromal cells can give rise to cardiomyocytes as well as adipocytes, osteocytes, and chondrocytes in vitro. The existence of mesenchymal stem cells has been proposed, but it remains unclear if a single-cell-derived stem cell stochastically commits toward a cardiac lineage. By single-cell marking, we performed a follow-up study of individual cells during the differentiation of 9-15c mesenchymal stromal cells derived from bone marrow cells. Three types of cells, i.e., cardiac myoblasts, cardiac progenitors and multipotent stem cells were differentiated from a single cell, implying that cardiomyocytes are generated stochastically from a single-cell-derived stem cell. We also demonstrated that overexpression of Csx/Nkx2.5 and GATA4, precardiac mesodermal transcription factors, enhanced cardiomyogenic differentiation of 9-15c cells, and the frequency of cardiomyogenic differentiation was increased by co-culturing with fetal cardiomyocytes. Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 behaved like cardiac transient amplifying cells, and still retained their plasticity in vivo

  9. Therapeutic effect of adipose-derived mesenchymal stem cells on radiation enteritis

    International Nuclear Information System (INIS)

    Chang Pengyu; Cui Shuang; Luo Jinghua; Qu Chao; Jiang Xin; Qu Yaqin; Dong Lihua

    2014-01-01

    Objective: To evaluate the therapeutic effect of adipose-derived mesenchymal stem cells on radiation enteritis. Methods: A total of 52 male Sprague-Dawley rats were used in the present study. Herein, 46 rats were randomly selected and irradiated with a dose of 15 Gy at their abdomens. Two hours post-irradiation, 23 rats were randomly selected and infused intraperitoneally with adipose-derived mesenchymal stem cells in passage 6 from young-female donor. The other 23 rats were intraperitoneally infused with PBS. The rest 6 rats were set as normal control. During the first 10 days post-irradiation, peripheral blood-samples from irradiated rats were harvested for testing the levels of IL-10 in serum using ELISA assay. Additionally, after isolating the thymic cells and peripheral blood mononuclear cells, the percentages of CD4/CD25/Foxp(3)-positive regulatory T cells in thymus and peripheral blood were tested by flow-cytometry. Finally, infiltration of inflammatory cells and deposition of collagens within irradiated small intestine were analyzed by H&E staining and Masson Trichrome staining, respectively. Based on the MPO-immunohistochemistry staining, the type of infiltrated cells was identified. The Kaplan-Meier method was used for analyzing the survival rate of irradiated rats. Results: During a period of 30 days post-irradiation, the irradiated rats receiving adipose-derived mesenchymal stem cells survived longer than those receiving PBS (t = 4.53, P < 0.05). Compared to the irradiated rats with PBS-treatment, adipose-derived mesenchymal stem cells could elevate the level of IL-10 in serum (7 d: t = 13.93, P < 0.05) and increase the percentages of CD4/CD25/Foxp(3)-positive regulatory T cells in both peripheral blood (3.5 d: t = 7.72, 7 d: t = 11.11, 10 d: t = 6.99, P < 0.05) and thymus (7 d: t = 16.17, 10 d: t = 12.12, P < 0.05). Moreover, infiltration of inflammatory cells and deposition of collagens within irradiated small intestine were mitigated by adipose-derived

  10. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts.

    Science.gov (United States)

    Streckfuss-Bömeke, Katrin; Wolf, Frieder; Azizian, Azadeh; Stauske, Michael; Tiburcy, Malte; Wagner, Stefan; Hübscher, Daniela; Dressel, Ralf; Chen, Simin; Jende, Jörg; Wulf, Gerald; Lorenz, Verena; Schön, Michael P; Maier, Lars S; Zimmermann, Wolfram H; Hasenfuss, Gerd; Guan, Kaomei

    2013-09-01

    Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n = 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca2+ transients and Ca2+ sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell

  11. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.

    Science.gov (United States)

    Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair

    2017-08-01

    Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.

  12. Predictive Model for the Meniscus-Guided Coating of High-Quality Organic Single-Crystalline Thin Films.

    Science.gov (United States)

    Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2016-09-01

    A model that describes solvent evaporation dynamics in meniscus-guided coating techniques is developed. In combination with a single fitting parameter, it is shown that this formula can accurately predict a processing window for various coating conditions. Organic thin-film transistors (OTFTs), fabricated by a zone-casting setup, indeed show the best performance at the predicted coating speeds with mobilities reaching 7 cm 2 V -1 s -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Translational applications of adult stem cell-derived organoids

    NARCIS (Netherlands)

    Drost, Jarno; Clevers, Hans

    2017-01-01

    Adult stem cells from a variety of organs can be expanded long-term in vitro as three-dimensional organotypic structures termed organoids. These adult stem cell-derived organoids retain their organ identity and remain genetically stable over long periods of time. The ability to grow organoids from

  14. Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells.

    Science.gov (United States)

    Chow, Lyndah; Johnson, Valerie; Regan, Dan; Wheat, William; Webb, Saiphone; Koch, Peter; Dow, Steven

    2017-12-01

    Mesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC); as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC), including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders. Copyright © 2017. Published by Elsevier B.V.

  15. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong

    2013-10-01

    Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.

  16. Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells.

    Directory of Open Access Journals (Sweden)

    Leonardo D'Aiuto

    Full Text Available Human cytomegalovirus (HCMV infection is one of the leading prenatal causes of congenital mental retardation and deformities world-wide. Access to cultured human neuronal lineages, necessary to understand the species specific pathogenic effects of HCMV, has been limited by difficulties in sustaining primary human neuronal cultures. Human induced pluripotent stem (iPS cells now provide an opportunity for such research. We derived iPS cells from human adult fibroblasts and induced neural lineages to investigate their susceptibility to infection with HCMV strain Ad169. Analysis of iPS cells, iPS-derived neural stem cells (NSCs, neural progenitor cells (NPCs and neurons suggests that (i iPS cells are not permissive to HCMV infection, i.e., they do not permit a full viral replication cycle; (ii Neural stem cells have impaired differentiation when infected by HCMV; (iii NPCs are fully permissive for HCMV infection; altered expression of genes related to neural metabolism or neuronal differentiation is also observed; (iv most iPS-derived neurons are not permissive to HCMV infection; and (v infected neurons have impaired calcium influx in response to glutamate.

  17. Cardiotoxicity evaluation using human embryonic stem cells and induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Zhao, Qi; Wang, Xijie; Wang, Shuyan; Song, Zheng; Wang, Jiaxian; Ma, Jing

    2017-03-09

    Cardiotoxicity remains an important concern in drug discovery. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate cardiotoxicity. However, the consistency between human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in prediction of cardiotoxicity has yet to be elucidated. Here we screened the toxicities of four representative drugs (E-4031, isoprenaline, quinidine, and haloperidol) using both hESC-CMs and hiPSC-CMs, combined with an impedance-based bioanalytical method. It showed that both hESC-CMs and hiPSC-CMs can recapitulate cardiotoxicity and identify the effects of well-characterized compounds. The combined platform of hPSC-CMs and an impedance-based bioanalytical method could improve preclinical cardiotoxicity screening, holding great potential for increasing drug development accuracy.

  18. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    International Nuclear Information System (INIS)

    Hoshiba, Takashi; Tanaka, Masaru

    2013-01-01

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression

  19. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    Energy Technology Data Exchange (ETDEWEB)

    Hoshiba, Takashi [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tanaka, Masaru, E-mail: tanaka@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)

    2013-09-20

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  20. Electrophysiological properties of neurosensory progenitors derived from human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Karina Needham

    2014-01-01

    Full Text Available In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, stem cell-derived neurons may provide a potential source of replacement cells. The success of such a therapy relies upon producing a population of functional neurons from stem cells, to enable precise encoding of sound information to the brainstem. Using our established differentiation assay to produce sensory neurons from human stem cells, patch-clamp recordings indicated that all neurons examined generated action potentials and displayed both transient sodium and sustained potassium currents. Stem cell-derived neurons reliably entrained to stimuli up to 20 pulses per second (pps, with 50% entrainment at 50 pps. A comparison with cultured primary auditory neurons indicated similar firing precision during low-frequency stimuli, but significant differences after 50 pps due to differences in action potential latency and width. The firing properties of stem cell-derived neurons were also considered relative to time in culture (31–56 days and revealed no change in resting membrane potential, threshold or firing latency over time. Thus, while stem cell-derived neurons did not entrain to high frequency stimulation as effectively as mammalian auditory neurons, their electrical phenotype was stable in culture and consistent with that reported for embryonic auditory neurons.

  1. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM : Bone marrow derived cell in GBM

    NARCIS (Netherlands)

    Boer, Jennifer C.; Walenkamp, Annemiek M. E.; den Dunnen, Wilfred F. A.

    2014-01-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for

  2. In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds

    Directory of Open Access Journals (Sweden)

    Hyeon Joo Kim

    2012-12-01

    Full Text Available Human adipose-derived stem cells have shown chondrogenic differentiation potential in cartilage tissue engineering in combination with natural and synthetic biomaterials. In the present study, we hypothesized that porous aqueous-derived silk protein scaffolds would be suitable for chondrogenic differentiation of human adipose-derived stem cells. Human adipose-derived stem cells were cultured up to 6 weeks, and cell proliferation and chondrogenic differentiation were investigated and compared with those in conventional micromass culture. Cell proliferation, glycosaminoglycan, and collagen levels in aqueous-derived silk scaffolds were significantly higher than in micromass culture. Transcript levels of SOX9 and type II collagen were also upregulated in the cell–silk constructs at 6 weeks. Histological examination revealed that the pores of the silk scaffolds were filled with cells uniformly distributed. In addition, chondrocyte-specific lacunae formation was evident and distributed in the both groups. The results suggest the biodegradable and biocompatible three-dimensional aqueous-derived silk scaffolds provided an improved environment for chondrogenic differentiation compared to micromass culture.

  3. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  4. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance.

    Science.gov (United States)

    Lobb, Richard J; van Amerongen, Rosa; Wiegmans, Adrian; Ham, Sunyoung; Larsen, Jill E; Möller, Andreas

    2017-08-01

    Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes. © 2017 UICC.

  5. A Current Review of the Meniscus Imaging: Proposition of a Useful Tool for Its Radiologic Analysis

    Directory of Open Access Journals (Sweden)

    Nicolas Lefevre

    2016-01-01

    Full Text Available The main objective of this review was to present a synthesis of the current literature in order to provide a useful tool to clinician in radiologic analysis of the meniscus. All anatomical descriptions were clearly illustrated by MRI, arthroscopy, and/or drawings. The value of standard radiography is extremely limited for the assessment of meniscal injuries but may be indicated to obtain a differential diagnosis such as osteoarthritis. Ultrasound is rarely used as a diagnostic tool for meniscal pathologies and its accuracy is operator-dependent. CT arthrography with multiplanar reconstructions can detect meniscus tears that are not visible on MRI. This technique is also useful in case of MRI contraindications, in postoperative assessment of meniscal sutures and the condition of cartilage covering the articular surfaces. MRI is the most accurate and less invasive method for diagnosing meniscal lesions. MRI allows confirming and characterizing the meniscal lesion, the type, the extension, its association with a cyst, the meniscal extrusion, and assessing cartilage and subchondral bone. New 3D-MRI in three dimensions with isotropic resolution allows the creation of multiplanar reformatted images to obtain from an acquisition in one sectional plane reconstructions in other spatial planes. 3D MRI should further improve the diagnosis of meniscal tears.

  6. A Current Review of the Meniscus Imaging: Proposition of a Useful Tool for Its Radiologic Analysis

    Science.gov (United States)

    Lefevre, Nicolas; Naouri, Jean Francois; Herman, Serge; Gerometta, Antoine; Klouche, Shahnaz; Bohu, Yoann

    2016-01-01

    The main objective of this review was to present a synthesis of the current literature in order to provide a useful tool to clinician in radiologic analysis of the meniscus. All anatomical descriptions were clearly illustrated by MRI, arthroscopy, and/or drawings. The value of standard radiography is extremely limited for the assessment of meniscal injuries but may be indicated to obtain a differential diagnosis such as osteoarthritis. Ultrasound is rarely used as a diagnostic tool for meniscal pathologies and its accuracy is operator-dependent. CT arthrography with multiplanar reconstructions can detect meniscus tears that are not visible on MRI. This technique is also useful in case of MRI contraindications, in postoperative assessment of meniscal sutures and the condition of cartilage covering the articular surfaces. MRI is the most accurate and less invasive method for diagnosing meniscal lesions. MRI allows confirming and characterizing the meniscal lesion, the type, the extension, its association with a cyst, the meniscal extrusion, and assessing cartilage and subchondral bone. New 3D-MRI in three dimensions with isotropic resolution allows the creation of multiplanar reformatted images to obtain from an acquisition in one sectional plane reconstructions in other spatial planes. 3D MRI should further improve the diagnosis of meniscal tears. PMID:27057352

  7. Fat-suppressed volume isotropic turbo spin echo acquisition (VISTA) MR imaging in evaluating radial and root tears of the meniscus: Focusing on reader-defined axial reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Daekeon; Lee, Young Han; Kim, Sungjun; Song, Ho-Taek; Suh, Jin-Suck, E-mail: jss@yuhs.ac

    2013-12-01

    Objective: To assess the diagnostic value of fat-suppressed (FS) three-dimensional (3D) volume isotropic turbo spin echo acquisition (VISTA) imaging in detecting radial and root tears of the meniscus, including the reader-defined reformatted axial (RDA) plane. Materials and methods: Twenty-three patients with arthroscopically confirmed radial or root tears of the meniscus underwent magnetic resonance imaging (MRI) with 2D and FS 3D VISTA sequences. MRIs were reviewed independently by two musculoskeletal radiologists blinded to the arthroscopic findings. Sensitivity, specificity, accuracy, and interobserver agreement were calculated for radial and root tears. Both radiologists reported confidence scale for the presence of meniscal tears in 2D axial imaging, 3D axial imaging, and RDA imaging, based on a five-point scale. Wilcoxon's signed rank test was used to compare confidence scale. Results: The sensitivity, specificity, and accuracy of FS 3D VISTA MR imaging versus 2D MR imaging were as follows: 96%, 96%, and 96% versus 91%, 91%, and 91%, respectively in reader 1, and 96%, 96%, and 96% versus 83%, 91%, and 87%, respectively, in reader 2. Interobserver agreement for detecting meniscal tears was excellent (κ = 1) with FS 3D VISTA. The confidence scale was significantly higher for 3D axial images than 2D imaging (p = 0.03) and significantly higher in RDA images than 3D axial image in detecting radial and root tears. Conclusions: FS 3D VISTA had a better diagnostic performance in evaluating radial and root tears of the meniscus. The reader-defined reformatted axial plane obtained from FS 3D VISTA MR imaging is useful in detecting radial and root tears of the meniscus.

  8. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    Science.gov (United States)

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  9. [Cell-derived microparticles unveil their fibrinolytic and proteolytic function].

    Science.gov (United States)

    Doeuvre, Loïc; Angles-Cano, Eduardo

    2009-01-01

    Cell-derived microparticles (MP) are membrane microvesicles, 0.1-1 microm in size, shed by cells following activation or during apoptosis in a variety of pathological conditions. MPs released by blood cells or by vascular endothelial cells display molecular signatures that allow their identification and functional characterization. In addition, they provide tissue factor (TF) and a procoagulant phospholipid surface. Therefore, at present, the most strongly established applied research on MPs is their procoagulant activity as a determinant of thrombotic risk in various clinical conditions. Previous studies have indicated that MPs derived from malignant cells express matrix metalloproteinases, urokinase and its receptor (uPA/uPAR) that, in the presence of plasminogen, may act in concert to degrade extracellular matrix proteins. Recently, it was shown that MPs from TNFa-stimulated endothelial cells served as a surface for interaction with plasminogen and its conversion into plasmin by the uPA/uPAR system expressed at their surface. This capacity of MPs to promote plasmin generation confers them a new profibrinolytic and proteolytic function that may be of relevance in fibrinolysis, cell migration, angiogenesis, dissemination of malignant cells, cell detachment and apoptosis.

  10. Preclinical Studies of Induced Pluripotent Stem Cell-Derived Astrocyte Transplantation in ALS

    Science.gov (United States)

    2012-10-01

    Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS PRINCIPAL INVESTIGATOR: Nicholas J. Maragakis, M.D...Pluripotent Stem Cell -Derived Astrocyte Transplantation in ALS 5b. GRANT NUMBER W81XWH-10-1-0520 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...into astrocytes following transplantation. 15. SUBJECT TERMS Stem Cells , iPS cells, astrocytes, familial ALS 16. SECURITY CLASSIFICATION OF

  11. Purification of human induced pluripotent stem cell-derived neural precursors using magnetic activated cell sorting.

    Science.gov (United States)

    Rodrigues, Gonçalo M C; Fernandes, Tiago G; Rodrigues, Carlos A V; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-01-01

    Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs), and their neuronal progeny, will play an important role in disease modeling, drug screening tests, central nervous system development studies, and may even become valuable for regenerative medicine treatments. Nonetheless, it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs, and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here, we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days, and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS), leaving the NP population nearly free of PSCs.

  12. IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Lehnen, Daniela; Barral, Serena; Cardoso, Tiago; Grealish, Shane; Heuer, Andreas; Smiyakin, Andrej; Kirkeby, Agnete; Kollet, Jutta; Cremer, Harold; Parmar, Malin; Bosio, Andreas; Knöbel, Sebastian

    2017-10-10

    Human pluripotent stem cell (hPSC)-derived mesencephalic dopaminergic (mesDA) neurons can relieve motor deficits in animal models of Parkinson's disease (PD). Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP) is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP + mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA) neurons in vitro. Intrastriatal transplantation of IAP + cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP + mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies. Copyright © 2017 Miltenyi Biotec GmbH. Published by Elsevier Inc. All rights reserved.

  13. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro.

    Directory of Open Access Journals (Sweden)

    Chengqun Ju

    Full Text Available The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC to differentiate to functional corneal endothelial cell (CEC-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na(+/K(+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet's membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.

  14. Circulating cell-derived microparticles in women with pregnancy loss.

    Science.gov (United States)

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Farran-Codina, Immaculada; Zarzoso, Cristina; Cabero-Roura, Luis; Vilardell-Tarres, Miquel

    2011-09-01

    To analyze cell-derived microparticles (cMP) in pregnancy loss (PL), both recurrent miscarriages (RM) and unexplained fetal loss (UFL). Non-matched case-control study was performed at Vall d'Hebron Hospital. Cell-derived microparticles of 53 PL cases, 30 with RM, 16 with UFL, and 7 (RM + UFL), were compared to 38 healthy pregnant women. Twenty healthy non-pregnant women act as controls. Cell-derived microparticles were analyzed through flow cytometry. Results are given as total annexin (A5+), endothelial-(CD144+/CD31+ CD41-), platelet-(CD41+), leukocyte-(CD45+) and CD41- c-MP/μL of plasma. Antiphospholipid antibodies (aPLA) were analyzed according to established methods. Comparing PL versus healthy pregnant, we observed a significant endothelial cMP decrease in PL. When comparing RM subgroup with controls, we observed significant decreases in endothelial cMP. When comparing the PL positive for aPLA versus PL-aPLA-negative, no cMP numbering differences were seen. Pregnancy loss seems to be related to endothelial cell activation and/or consumption. A relationship between aPLA and cMP could not be demonstrated. © 2011 John Wiley & Sons A/S.

  15. Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells

    Science.gov (United States)

    Zou, Li; Kidwai, Fahad K.; Kopher, Ross A.; Motl, Jason; Kellum, Cory A.; Westendorf, Jennifer J.; Kaufman, Dan S.

    2015-01-01

    Summary We generated a RUNX2-yellow fluorescent protein (YFP) reporter system to study osteogenic development from human embryonic stem cells (hESCs). Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development. PMID:25680477

  16. Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Zou

    2015-02-01

    Full Text Available We generated a RUNX2-yellow fluorescent protein (YFP reporter system to study osteogenic development from human embryonic stem cells (hESCs. Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development.

  17. The hematopoietic chemokine CXCL12 promotes integration of human endothelial colony forming cell-derived cells into immature vessel networks.

    Science.gov (United States)

    Newey, Sarah E; Tsaknakis, Grigorios; Khoo, Cheen P; Athanassopoulos, Thanassi; Camicia, Rosalba; Zhang, Youyi; Grabowska, Rita; Harris, Adrian L; Roubelakis, Maria G; Watt, Suzanne M

    2014-11-15

    Proangiogenic factors, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) prime endothelial cells to respond to "hematopoietic" chemokines and cytokines by inducing/upregulating expression of the respective chemokine/cytokine receptors. Coculture of human endothelial colony forming cell (ECFC)-derived cells with human stromal cells in the presence of VEGF and FGF-2 for 14 days resulted in upregulation of the "hematopoietic" chemokine CXCL12 and its CXCR4 receptor by day 3 of coculture. Chronic exposure to the CXCR4 antagonist AMD3100 in this vasculo/angiogenesis assay significantly reduced vascular tubule formation, an observation recapitulated by delayed AMD3100 addition. While AMD3100 did not affect ECFC-derived cell proliferation, it did demonstrate a dual action. First, over the later stages of the 14-day cocultures, AMD3100 delayed tubule organization into maturing vessel networks, resulting in enhanced endothelial cell retraction and loss of complexity as defined by live cell imaging. Second, at earlier stages of cocultures, we observed that AMD3100 significantly inhibited the integration of exogenous ECFC-derived cells into established, but immature, vascular networks. Comparative proteome profiler array analyses of ECFC-derived cells treated with AMD3100 identified changes in expression of potential candidate molecules involved in adhesion and/or migration. Blocking antibodies to CD31, but not CD146 or CD166, reduced the ECFC-derived cell integration into these extant vascular networks. Thus, CXCL12 plays a key role not only in endothelial cell sensing and guidance, but also in promoting the integration of ECFC-derived cells into developing vascular networks.

  18. The differentiation potential of adipose tissue-derived mesenchymal stem cells into cell lineage related to male germ cells

    Directory of Open Access Journals (Sweden)

    P. Bräunig

    Full Text Available ABSTRACT The adipose tissue is a reliable source of Mesenchymal stem cells (MSCs showing a higher plasticity and transdifferentiation potential into multilineage cells. In the present study, adipose tissue-derived mesenchymal stem cells (AT-MSCs were isolated from mice omentum and epididymis fat depots. The AT-MSCs were initially compared based on stem cell surface markers and on the mesodermal trilineage differentiation potential. Additionally, AT-MSCs, from both sources, were cultured with differentiation media containing retinoic acid (RA and/or testicular cell-conditioned medium (TCC. The AT-MSCs expressed mesenchymal surface markers and differentiated into adipogenic, chondrogenic and osteogenic lineages. Only omentum-derived AT-MSCs expressed one important gene marker related to male germ cell lineages, after the differentiation treatment with RA. These findings reaffirm the importance of adipose tissue as a source of multipotent stromal-stem cells, as well as, MSCs source regarding differentiation purpose.

  19. Induced Pluripotent Stem Cell-Derived Red Blood Cells and Platelet Concentrates: From Bench to Bedside.

    Science.gov (United States)

    Focosi, Daniele; Amabile, Giovanni

    2017-12-27

    Red blood cells and platelets are anucleate blood components indispensable for oxygen delivery and hemostasis, respectively. Derivation of these blood elements from induced pluripotent stem (iPS) cells has the potential to develop blood donor-independent and genetic manipulation-prone products to complement or replace current transfusion banking, also minimizing the risk of alloimmunization. While the production of erythrocytes from iPS cells has challenges to overcome, such as differentiation into adult-type phenotype that functions properly after transfusion, platelet products are qualitatively and quantitatively approaching a clinically-applicable level owing to advances in expandable megakaryocyte (MK) lines, platelet-producing bioreactors, and novel reagents. Guidelines that assure the quality of iPS cells-derived blood products for clinical application represent a novel challenge for regulatory agencies. Considering the minimal risk of tumorigenicity and the expected significant demand of such products, ex vivo production of iPS-derived blood components can pave the way for iPS translation into the clinic.

  20. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-02-27

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.

  1. T cell-derived Lymphotoxin is Essential for anti-HSV-1 Humoral Immune Response.

    Science.gov (United States)

    Yang, Kaiting; Liang, Yong; Sun, Zhichen; Xue, Diyuan; Xu, Hairong; Zhu, Mingzhao; Fu, Yang-Xin; Peng, Hua

    2018-05-09

    B cell-derived lymphotoxin (LT) is required for the development of follicular dendritic cell clusters for the formation of primary and secondary lymphoid follicles, but the role of T cell-derived LT in antibody response has not been well demonstrated. We observed that lymphotoxin-β-receptor (LTβR) signaling is essential for optimal humoral immune response and protection against an acute HSV-1 infection. Blocking the LTβR pathway caused poor maintenance of germinal center B (GC-B) cells and follicular helper T (Tfh) cells. Using bone marrow chimeric mice and adoptive transplantation, we determined that T cell-derived LT played an indispensable role in the humoral immune response to HSV-1. Up-regulation of IFNγ by the LTβR-Ig blockade impairs the sustainability of Tfh-like cells, thus leading to an impaired humoral immune response. Our findings have identified a novel role of T cell-derived LT in the humoral immune response against HSV-1 infection. IMPORTANCE Immunocompromised people are susceptible for HSV-1 infection and lethal recurrence, which could be inhibited by anti-HSV-1 humoral immune response in the host. This study sought to explore the role of T cell-derived LT in the anti-HSV-1 humoral immune response using LT-LTβR signaling deficient mice and the LTβR-Ig blockade. The data indicate that the T cell-derived LT may play an essential role in sustaining Tfh-like cells and ensure Tfh-like cells' migration into primary or secondary follicles for further maturation. This study provides insights for vaccine development against infectious diseases. Copyright © 2018 American Society for Microbiology.

  2. Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Hiroki eSakai

    2013-09-01

    Full Text Available AbstractIn Bombyx mori, polar body nuclei are observed until 9h after egg lying, however, the fate of polar body nuclei remains unclear. To examine the fate of polar body nuclei, we employed a mutation of serosal cell pigmentation, pink-eyed white egg (pe. The heterozygous pe/+pe females produced black serosal cells in white eggs, while pe/pe females did not produce black serosal cells in white eggs. These results suggest that the appearance of black serosal cells in white eggs depends on the genotype (pe/ +pe of the mother. Because the polar body nuclei had +pe genes in the white eggs laid by a pe/ +pe female, polar body nuclei participate in development and differentiate into functional cell (serosal cells. Analyses of serosal cells pigmentation indicated that approximately 30% of the eggs contained polar-body-nucleus-derived cells. These results demonstrate that polar-body-nucleus-derived cells appeared at a high frequency under natural conditions. Approximately 80% of polar-body-nucleus-derived cells appeared near the anterior pole and the dorsal side, which is opposite to where embryogenesis occurs. The number of cells derived from the polar body nuclei was very low. Approximately 26 % of these eggs contained only one black serosal cell. PCR-based analysis revealed that the polar-body-nucleus-derived cells disappeared in late embryonic stages (stage 25. Overall, polar-body-nuclei-derived cells were unlikely to contribute to embryos.

  3. Functional neuromuscular junctions formed by embryonic stem cell-derived motor neurons.

    Directory of Open Access Journals (Sweden)

    Joy A Umbach

    Full Text Available A key objective of stem cell biology is to create physiologically relevant cells suitable for modeling disease pathologies in vitro. Much progress towards this goal has been made in the area of motor neuron (MN disease through the development of methods to direct spinal MN formation from both embryonic and induced pluripotent stem cells. Previous studies have characterized these neurons with respect to their molecular and intrinsic functional properties. However, the synaptic activity of stem cell-derived MNs remains less well defined. In this study, we report the development of low-density co-culture conditions that encourage the formation of active neuromuscular synapses between stem cell-derived MNs and muscle cells in vitro. Fluorescence microscopy reveals the expression of numerous synaptic proteins at these contacts, while dual patch clamp recording detects both spontaneous and multi-quantal evoked synaptic responses similar to those observed in vivo. Together, these findings demonstrate that stem cell-derived MNs innervate muscle cells in a functionally relevant manner. This dual recording approach further offers a sensitive and quantitative assay platform to probe disorders of synaptic dysfunction associated with MN disease.

  4. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor restores erectile function after cavernous nerve injury.

    Science.gov (United States)

    May, Florian; Buchner, Alexander; Schlenker, Boris; Gratzke, Christian; Arndt, Christian; Stief, Christian; Weidner, Norbert; Matiasek, Kaspar

    2013-03-01

    To evaluate the time-course of functional recovery after cavernous nerve injury using glial cell line-derived neurotrophic factor-transduced Schwann cell-seeded silicon tubes. Sections of the cavernous nerves were excised bilaterally (5 mm), followed by immediate bilateral surgical repair. A total of 20 study nerves per group were reconstructed by interposition of empty silicon tubes and silicon tubes seeded with either glial cell line-derived neurotrophic factor-overexpressing or green fluorescent protein-expressing Schwann cells. Control groups were either sham-operated or received bilateral nerve transection without nerve reconstruction. Erectile function was evaluated by relaparotomy, electrical nerve stimulation and intracavernous pressure recording after 2, 4, 6, 8 and 10 weeks. The animals underwent re-exploration only once, and were killed afterwards. The nerve grafts were investigated for the maturation state of regenerating nerve fibers and the fascular composition. Recovery of erectile function took at least 4 weeks in the current model. Glial cell line-derived neurotrophic factor-transduced Schwann cell grafts restored erectile function better than green fluorescent protein-transduced controls and unseeded conduits. Glial cell line-derived neurotrophic factor-transduced grafts promoted an intact erectile response (4/4) at 4, 6, 8 and 10 weeks that was overall significantly superior to negative controls (P cell line-derived neurotrophic factor-transduced grafts compared with negative controls (P = 0.018) and unseeded tubes (P = 0.034). Return of function was associated with the electron microscopic evidence of preganglionic myelinated nerve fibers and postganglionic unmyelinated axons. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor presents a viable approach for the treatment of erectile dysfunction after cavernous nerve injury. © 2013 The Japanese Urological Association.

  5. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions

    International Nuclear Information System (INIS)

    Alexanian, Arshak R.

    2005-01-01

    Several recent reports suggest that there is far more plasticity that previously believed in the developmental potential of bone-marrow-derived cells (BMCs) that can be induced by extracellular developmental signals of other lineages whose nature is still largely unknown. In this study, we demonstrate that bone-marrow-derived mesenchymal stem cells (MSCs) co-cultured with mouse proliferating or fixed (by paraformaldehyde or methanol) neural stem cells (NSCs) generate neural stem cell-like cells with a higher expression of Sox-2 and nestin when grown in NS-A medium supplemented with N2, NSC conditioned medium (NSCcm) and bFGF. These neurally induced MSCs eventually differentiate into β-III-tubulin and GFAP expressing cells with neuronal and glial morphology when grown an additional week in Neurobasal/B27 without bFGF. We conclude that juxtacrine interaction between NSCs and MSCs combined with soluble factors released from NSCs are important for generation of neural-like cells from bone-marrow-derived adherent MSCs

  6. Cell-derived microparticles promote coagulation after moderate exercise.

    Science.gov (United States)

    Sossdorf, Maik; Otto, Gordon P; Claus, Ralf A; Gabriel, Holger H W; Lösche, Wolfgang

    2011-07-01

    Cell-derived procoagulant microparticles (MP) might be able to contribute to exercise-induced changes in blood hemostasis. This study aimed to examine (i) the concentration and procoagulant activity of cell-derived MP after a moderate endurance exercise and (ii) the differences in the release, clearance, and activity of MP before and after exercise between trained and untrained individuals. All subjects performed a single bout of physical exercise on a bicycle ergometer for 90 min at 80% of their individual anaerobic threshold. MP were identified and quantified by flow cytometry measurements. Procoagulant activity of MP was measured by a prothrombinase activity assay as well as tissue factor-induced fibrin formation in MP-containing plasma. At baseline, no differences were observed for the absolute number and procoagulant activities of MP between trained and untrained subjects. However, trained individuals had a lower number of tissue factor-positive monocyte-derived MP compared with untrained individuals. In trained subjects, exercise induced a significant increase in the number of MP derived from platelets, monocytes, and endothelial cells, with maximum values at 45 min after exercise and returned to basal levels at 2 h after exercise. Untrained subjects revealed a similar increase in platelet-derived MP, but their level was still increased at 2 h after exercise, indicating a reduced clearance compared with trained individuals. Procoagulant activities of MP were increased immediately after exercise and remained elevated up to 2 h after exercise. We conclude that increased levels of MP were found in healthy individuals after an acute bout of exercise, that the amount of circulating MP contributes to an exercise-induced increase of hemostatic potential, and that there were differences in kinetic and dynamic characteristics between trained and untrained individuals.

  7. Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function

    Science.gov (United States)

    Osterman, Carlos J. Diaz; Lynch, James C.; Leaf, Patrick; Gonda, Amber; Ferguson Bennit, Heather R.; Griffiths, Duncan; Wall, Nathan R.

    2015-01-01

    Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin’s effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through

  8. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    International Nuclear Information System (INIS)

    López, Jacqueline; Poitevin, Adela; Mendoza-Martínez, Veverly; Pérez-Plasencia, Carlos; García-Carrancá, Alejandro

    2012-01-01

    Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 10 3 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 10 5 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). We characterized a self-renewing subpopulation of CICs found among four well known human cancer-derived cell lines (HeLa, Si

  9. Adipose-Derived Stem Cells Promote Peripheral Nerve Regeneration In Vivo without Differentiation into Schwann-Like Lineage.

    Science.gov (United States)

    Sowa, Yoshihiro; Kishida, Tsunao; Imura, Tetsuya; Numajiri, Toshiaki; Nishino, Kenichi; Tabata, Yasuhiko; Mazda, Osam

    2016-02-01

    During recent decades, multipotent stem cells were found to reside in the adipose tissue, and these adipose-derived stem cells were shown to play beneficial roles, like those of Schwann cells, in peripheral nerve regeneration. However, it has not been well established whether adipose-derived stem cells offer beneficial effects to peripheral nerve injuries in vivo as Schwann cells do. Furthermore, the in situ survival and differentiation of adipose-derived stem cells after transplantation at the injured peripheral nerve tissue remain to be fully elucidated. Adipose-derived stem cells and Schwann cells were transplanted with gelatin hydrogel tubes at the artificially blunted sciatic nerve lesion in mice. Neuroregenerative abilities of them were comparably estimated. Cre-loxP-mediated fate tracking was performed to visualize survival in vivo of transplanted adipose-derived stem cells and to investigate whether they differentiated into Schwann linage cells at the peripheral nerve injury site. The transplantation of adipose-derived stem cells promoted regeneration of axons, formation of myelin, and restoration of denervation muscle atrophy to levels comparable to those achieved by Schwann cell transplantation. The adipose-derived stem cells survived for at least 4 weeks after transplantation without differentiating into Schwann cells. Transplanted adipose-derived stem cells did not differentiate into Schwann cells but promoted peripheral nerve regeneration at the injured site. The neuroregenerative ability was comparable to that of Schwann cells. Adipose-derived stem cells at an undifferentiated stage may be used as an alternative cell source for autologous cell therapy for patients with peripheral nerve injury.

  10. Functional Differences in Engineered Myocardium from Embryonic Stem Cell-Derived versus Neonatal Cardiomyocytes

    NARCIS (Netherlands)

    Feinberg, Adam W.; Ripplinger, Crystal M.; van der Meer, Peter; Sheehy, Sean P.; Domian, Ibrahim; Chien, Kenneth R.; Parker, Kevin Kit

    2013-01-01

    Stem cell-derived cardiomyocytes represent unique tools for cell-and tissue-based regenerative therapies, drug discovery and safety, and studies of fundamental heart-failure mechanisms. However, the degree to which stem cell-derived cardiomyocytes compare to mature cardiomyocytes is often debated.

  11. File list: Unc.PSC.05.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.mESC_derived_pancreatic_cells mm9 Unclassified Pluripotent stem cell mESC derived panc...reatic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.05.AllAg.mESC_derived_pancreatic_cells.bed ...

  12. File list: Unc.PSC.50.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.50.AllAg.mESC_derived_pancreatic_cells mm9 Unclassified Pluripotent stem cell mESC derived panc...reatic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.50.AllAg.mESC_derived_pancreatic_cells.bed ...

  13. File list: Unc.PSC.10.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.10.AllAg.mESC_derived_pancreatic_cells mm9 Unclassified Pluripotent stem cell mESC derived panc...reatic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.10.AllAg.mESC_derived_pancreatic_cells.bed ...

  14. File list: Unc.PSC.20.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.AllAg.mESC_derived_pancreatic_cells mm9 Unclassified Pluripotent stem cell mESC derived panc...reatic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.20.AllAg.mESC_derived_pancreatic_cells.bed ...

  15. File list: Pol.PSC.05.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.iPS_derived_neural_cells hg19 RNA polymerase Pluripotent stem cell iPS derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.05.AllAg.iPS_derived_neural_cells.bed ...

  16. File list: Unc.PSC.50.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.50.AllAg.iPS_derived_neural_cells hg19 Unclassified Pluripotent stem cell iPS derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.50.AllAg.iPS_derived_neural_cells.bed ...

  17. File list: DNS.PSC.50.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.mESC_derived_neural_cells mm9 DNase-seq Pluripotent stem cell mESC derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.mESC_derived_neural_cells.bed ...

  18. File list: DNS.PSC.20.AllAg.mESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.mESC_derived_neural_cells mm9 DNase-seq Pluripotent stem cell mESC derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.mESC_derived_neural_cells.bed ...

  19. File list: DNS.PSC.10.AllAg.iPS_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.iPS_derived_neural_cells hg19 DNase-seq Pluripotent stem cell iPS derived neural... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.PSC.10.AllAg.iPS_derived_neural_cells.bed ...

  20. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Deepak A Lamba

    2010-01-01

    Full Text Available Inherited and acquired retinal degenerations are frequent causes of visual impairment and photoreceptor cell replacement therapy may restore visual function to these individuals. To provide a source of new retinal neurons for cell based therapies, we developed methods to derive retinal progenitors from human ES cells.In this report we have used a similar method to direct induced pluripotent stem cells (iPS from human fibroblasts to a retinal progenitor fate, competent to generate photoreceptors. We also found we could purify the photoreceptors derived from the iPS cells using fluorescence activated cell sorting (FACS after labeling photoreceptors with a lentivirus driving GFP from the IRBP cis-regulatory sequences. Moreover, we found that when we transplanted the FACS purified iPSC derived photoreceptors, they were able to integrate into a normal mouse retina and express photoreceptor markers.This report provides evidence that enriched populations of human photoreceptors can be derived from iPS cells.

  1. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  2. A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes without Growth Factor Stimulation

    Science.gov (United States)

    2011-01-01

    A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes Without Growth Factor Stimulation...Ph.D.3 This work describes the differentiation of adipose-derived mesenchymal stem cells (ASC) in a composite hy- drogel for use as a vascularized...tissue from a single population of ASC. This work underscores the importance of the extracellular matrix in controlling stem cell phenotype. It is our

  3. Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools

    Directory of Open Access Journals (Sweden)

    Ivana Acimovic

    2014-01-01

    Full Text Available Human pluripotent stem cells (hPSCs, namely, embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, with their ability of indefinite self-renewal and capability to differentiate into cell types derivatives of all three germ layers, represent a powerful research tool in developmental biology, for drug screening, disease modelling, and potentially cell replacement therapy. Efficient differentiation protocols that would result in the cell type of our interest are needed for maximal exploitation of these cells. In the present work, we aim at focusing on the protocols for differentiation of hPSCs into functional cardiomyocytes in vitro as well as achievements in the heart disease modelling and drug testing on the patient-specific iPSC-derived cardiomyocytes (iPSC-CMs.

  4. File list: Pol.PSC.10.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.mESC_derived_pancreatic_cells mm9 RNA polymerase Pluripotent stem cell mESC derived panc...reatic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.10.AllAg.mESC_derived_pancreatic_cells.bed ...

  5. File list: Pol.PSC.05.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.mESC_derived_pancreatic_cells mm9 RNA polymerase Pluripotent stem cell mESC derived panc...reatic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.05.AllAg.mESC_derived_pancreatic_cells.bed ...

  6. File list: Oth.PSC.20.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.AllAg.mESC_derived_pancreatic_cells mm9 TFs and others Pluripotent stem cell mESC derived panc...reatic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.AllAg.mESC_derived_pancreatic_cells.bed ...

  7. File list: Oth.PSC.05.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.AllAg.mESC_derived_pancreatic_cells mm9 TFs and others Pluripotent stem cell mESC derived panc...reatic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.05.AllAg.mESC_derived_pancreatic_cells.bed ...

  8. File list: Oth.PSC.10.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.AllAg.mESC_derived_pancreatic_cells mm9 TFs and others Pluripotent stem cell mESC derived panc...reatic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.10.AllAg.mESC_derived_pancreatic_cells.bed ...

  9. File list: Pol.PSC.50.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.AllAg.mESC_derived_pancreatic_cells mm9 RNA polymerase Pluripotent stem cell mESC derived panc...reatic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.50.AllAg.mESC_derived_pancreatic_cells.bed ...

  10. File list: Unc.PSC.05.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.hESC_derived_neural_cells hg19 Unclassified Pluripotent stem cell hESC derived neural... cells SRX378284 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.05.AllAg.hESC_derived_neural_cells.bed ...

  11. File list: Pol.PSC.05.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.hESC_derived_neural_cells hg19 RNA polymerase Pluripotent stem cell hESC derived neural... cells SRX190259 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.05.AllAg.hESC_derived_neural_cells.bed ...

  12. File list: Pol.PSC.10.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.hESC_derived_neural_cells hg19 RNA polymerase Pluripotent stem cell hESC derived neural... cells SRX190259 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.10.AllAg.hESC_derived_neural_cells.bed ...

  13. File list: Pol.PSC.50.AllAg.hESC_derived_neural_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.AllAg.hESC_derived_neural_cells hg19 RNA polymerase Pluripotent stem cell hESC derived neural... cells SRX190259 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.50.AllAg.hESC_derived_neural_cells.bed ...

  14. Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Jacobsen, J.; Gunnarsson, A.

    2011-01-01

    Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis......Production of hemizygous and homozygous embryonic stem cell-derived neural progenitor cells from the transgenic alszheimer göttingen minipis...

  15. File list: DNS.PSC.50.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.mESC_derived_pancreatic_cells mm9 DNase-seq Pluripotent stem cell mESC derived panc...reatic cells SRX404487 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.mESC_derived_pancreatic_cells.bed ...

  16. File list: His.PSC.50.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.AllAg.mESC_derived_pancreatic_cells mm9 Histone Pluripotent stem cell mESC derived panc...reatic cells SRX146012,SRX146011 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.50.AllAg.mESC_derived_pancreatic_cells.bed ...

  17. File list: His.PSC.05.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.AllAg.mESC_derived_pancreatic_cells mm9 Histone Pluripotent stem cell mESC derived panc...reatic cells SRX146012,SRX146011 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.05.AllAg.mESC_derived_pancreatic_cells.bed ...

  18. File list: His.PSC.10.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.AllAg.mESC_derived_pancreatic_cells mm9 Histone Pluripotent stem cell mESC derived panc...reatic cells SRX146012,SRX146011 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.10.AllAg.mESC_derived_pancreatic_cells.bed ...

  19. File list: DNS.PSC.10.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.mESC_derived_pancreatic_cells mm9 DNase-seq Pluripotent stem cell mESC derived panc...reatic cells SRX404487 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.10.AllAg.mESC_derived_pancreatic_cells.bed ...

  20. File list: DNS.PSC.20.AllAg.mESC_derived_pancreatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.mESC_derived_pancreatic_cells mm9 DNase-seq Pluripotent stem cell mESC derived panc...reatic cells SRX404487 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.mESC_derived_pancreatic_cells.bed ...