WorldWideScience

Sample records for meningitidis induces brain

  1. Mucosal immunization using proteoliposome and cochleate structures from Neisseria meningitidis serogroup B induce mucosal and systemic responses.

    Science.gov (United States)

    Campo, Judith Del; Zayas, Caridad; Romeu, Belkis; Acevedo, Reinaldo; González, Elizabeth; Bracho, Gustavo; Cuello, Maribel; Cabrera, Osmir; Balboa, Julio; Lastre, Miriam

    2009-12-01

    Most pathogens either invade the body or establish infection in mucosal tissues and represent an enormous challenge for vaccine development by the absence of good mucosal adjuvants. A proteoliposome-derived adjuvant from Neisseria meningitidis serogroup B (AFPL1, Adjuvant Finlay Proteoliposome 1) and its derived cochleate form (Co, AFCo1) contain multiple pathogen-associated molecular patterns as immunopotentiators, and can also serve as delivery systems to elicit a Th1-type immune response. The present studies demonstrate the ability of AFPL1and AFCo1 to induce mucosal and systemic immune responses by different mucosal immunizations routes and significant adjuvant activity for antibody responses of both structures: a microparticle and a nanoparticle with a heterologous antigen. Therefore, we used female mice immunized by intragastric, intravaginal, intranasal or intramuscular routes with both structures alone or incorporated with ovalbumin (OVA). High levels of specific IgG antibody were detected in all sera and in vaginal washes, but specific IgA antibody in external secretions was only detected in mucosally immunized mice. Furthermore, antigen specific IgG1 and IgG2a isotypes were all induced. AFPL1 and AFCo1 are capable of inducing IFN-gamma responses, and chemokine secretions, like MIP-1alpha and MIP-1beta. However, AFCo1 is a better alternative to induce immune responses at mucosal level. Even when we use a heterologous antigen, the AFCo1 response was better than with AFPL1 in inducing mucosal and systemic immune responses. These results support the use of AFCo1 as a potent Th1 inducing adjuvant particularly suitable for mucosal immunization.

  2. Riboregulation in Neisseria meningitidis

    NARCIS (Netherlands)

    Huis in 't Veld, R.A.G.

    2017-01-01

    Neisseria meningitidis (the meningococcus) is primarily a commensal of the human oropharynx that sporadically causes septicemia and meningitis. Meningococci adapt to diverse local host conditions that differ in nutrient supply such as the nasopharynx, blood and cerebrospinal fluid by changing

  3. Recombinant Protein Truncation Strategy for Inducing Bactericidal Antibodies to the Macrophage Infectivity Potentiator Protein of Neisseria meningitidis and Circumventing Potential Cross-Reactivity with Human FK506-Binding Proteins

    OpenAIRE

    Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.; Christodoulides, Myron

    2014-01-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human protein...

  4. Environmental survival of Neisseria meningitidis.

    Science.gov (United States)

    Tzeng, Y-L; Martin, L E; Stephens, D S

    2014-01-01

    Neisseria meningitidis is transmitted through the inhalation of large human respiratory droplets, but the risk from contaminated environmental surfaces is controversial. Compared to Streptococcus pneumoniae and Acinetobacter baumanni, meningococcal viability after desiccation on plastic, glass or metal surfaces decreased rapidly, but viable meningococci were present for up to 72 h. Encapsulation did not provide an advantage for meningococcal environmental survival on environmental surfaces.

  5. El ácido siálico N-acetilado es inmunogénico e induce anticuerpos protectores contra Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Gregory R. Moe

    2009-08-01

    Full Text Available Recently, we showed that monoclonal antibodies (mAbs that are reactive with derivatives of polysialic acid containing de-N-acetylated neuraminic acid (Neu residues are protective against N. meningitidis group B strains (Moe et al. 2005, Infect Immun 73:2123; Flitter et al., in preparation. In addition, we found that fully de-N-acetylated PSA (i.e. poly alpha 2,8 Neu conjugated to tetanus toxoid (DeNAc elicits IgM and IgG antibodies of all subclasses in mice that bind to group B strains, activate human complement deposition, are protective in an infant rat model of meningococcal bacteremia and are bactericidal against group C strains (Moe et al, in press. We show here that anti-DeNAc mAbs, DA1 and DA2 (both IgM, are reactive with polysaccharides containing Neu, bind to group B, C, W135 and Y but not X strains grown in chemically defined media (CDM. However, when the group X strain is grown in CDM supplemented with human plasma, DA2 binds. Also both mAbs mediate bactericidal activity against B, C, W135, and X strains with human complement. The esults suggests that N. meningitidis express and/or acquire zwitterionic de-N-acetyl sialic acid antigens that can be the target of protective antibodies.

  6. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  7. Recombinant protein truncation strategy for inducing bactericidal antibodies to the macrophage infectivity potentiator protein of Neisseria meningitidis and circumventing potential cross-reactivity with human FK506-binding proteins.

    Science.gov (United States)

    Bielecka, Magdalena K; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E; Christodoulides, Myron

    2015-02-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (-LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Recombinant Protein Truncation Strategy for Inducing Bactericidal Antibodies to the Macrophage Infectivity Potentiator Protein of Neisseria meningitidis and Circumventing Potential Cross-Reactivity with Human FK506-Binding Proteins

    Science.gov (United States)

    Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.

    2014-01-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (−LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. PMID:25452551

  9. Radiation-induced brain damage in children

    International Nuclear Information System (INIS)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi; Raimondi, A.J.

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author)

  10. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  11. Neisseria meningitidis RTX protein FrpC induced high levels of serum antibodies during invasive disease: polymorphism of frpC alleles and purification of recombinant FrpC

    Czech Academy of Sciences Publication Activity Database

    Osička, Radim; Kalmusová, J.; Křížová, P.; Šebo, Peter

    2001-01-01

    Roč. 69, č. 9 (2001), s. 5509-5519 ISSN 0019-9567 R&D Projects: GA ČR GV310/96/K102; GA MŠk ME 167 Institutional research plan: CEZ:AV0Z5020903 Keywords : Neisseria meningitidis * meningococcal infections Subject RIV: EE - Microbiology, Virology Impact factor: 4.212, year: 2001

  12. Radiation-induced brain injury: A review

    Energy Technology Data Exchange (ETDEWEB)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G. [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Wheeler, Kenneth T. [Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Department of Radiology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Chan, Michael D., E-mail: mrobbins@wakehealth.edu [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States)

    2012-07-19

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  13. Radiation-induced brain injury: A review

    International Nuclear Information System (INIS)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  14. Metabolism and virulence in Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Christoph eSchoen

    2014-08-01

    Full Text Available A longstanding question in infection biology addresses the genetic basis for invasive behaviour in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.

  15. Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity.

    Directory of Open Access Journals (Sweden)

    Michiel Stork

    2013-10-01

    Full Text Available The outer membrane of Gram-negative bacteria functions as a permeability barrier that protects these bacteria against harmful compounds in the environment. Most nutrients pass the outer membrane by passive diffusion via pore-forming proteins known as porins. However, diffusion can only satisfy the growth requirements if the extracellular concentration of the nutrients is high. In the vertebrate host, the sequestration of essential nutrient metals is an important defense mechanism that limits the growth of invading pathogens, a process known as "nutritional immunity." The acquisition of scarce nutrients from the environment is mediated by receptors in the outer membrane in an energy-requiring process. Most characterized receptors are involved in the acquisition of iron. In this study, we characterized a hitherto unknown receptor from Neisseria meningitidis, a causative agent of sepsis and meningitis. Expression of this receptor, designated CbpA, is induced when the bacteria are grown under zinc limitation. We demonstrate that CbpA functions as a receptor for calprotectin, a protein that is massively produced by neutrophils and other cells and that has been shown to limit bacterial growth by chelating Zn²⁺ and Mn²⁺ ions. Expression of CbpA enables N. meningitidis to survive and propagate in the presence of calprotectin and to use calprotectin as a zinc source. Besides CbpA, also the TonB protein, which couples energy of the proton gradient across the inner membrane to receptor-mediated transport across the outer membrane, is required for the process. CbpA was found to be expressed in all N. meningitidis strains examined, consistent with a vital role for the protein when the bacteria reside in the host. Together, our results demonstrate that N. meningitidis is able to subvert an important defense mechanism of the human host and to utilize calprotectin to promote its growth.

  16. Subacute brain atrophy induced by radiation therapy to the malignant brain tumors

    International Nuclear Information System (INIS)

    Asai, Akio; Matsutani, Masao; Takakura, Kintomo.

    1987-01-01

    In order to analyze brain atrophy after radiation therapy to the brain tumors, we calculated a CSF-cranial volume ratio on CT scan as an index of brain atrophy, and estimated dementia-score by Hasegawa's method in 91 post-irradiated patients with malignant brain tumors. Radiation-induced brain atrophy was observed in 51 out of 91 patients (56 %) and dementia in 23 out of 47 patients (49 %). These two conditions were closely related, and observed significantly more often in aged and whole-brain-irradiated patients. As radiation-induced brain atrophy accompanied by dementia appeared 2 - 3 months after the completion of radiation therapy, it should be regarded as a subacute brain injury caused by radiation therapy. (author)

  17. SENSITIVITAS KUMAN NEISSERIA MENINGITIDIS YANG DIISOLASI DARI JAMAAH HAJI INDONESIA TERHADAP BEBERAPA ANTIBIOTIK

    Directory of Open Access Journals (Sweden)

    Muljati Prijanto

    2012-09-01

    Full Text Available The meningitis meningococcal disease caused by Neisseriae meningitidis is an infection of meninges and cerebrospinal fluid (CSF of the brain and the spinal cord. N. meningitidis is classified into 13 serogroups based on the immunologic reactivity of the capsular polysaccharide. Since 1993 the number of cases and carriers of haj pilgrims from Indonesia have increased. In 1996 the carrier rate was 9,4%, and case fatality rate of Indonesian haj pilgrims in Saudi Arabia was 71,4%. The dominant serogroup was serogroup B. The meningitis vaccine of serogroup B is not available yet. Until now there is not enough information of the laboratory results from the hospital in Saudi Arabia, regarding the strain that caused the infection of haj pilgrims from Indonesia. To prevent transmission of the disease among Haj pilgrims, since 1997, chemoprophylaxis with ciprofloxacine has been given to close contact persons of haj pilgrim patient. The objectives of this study are: First, to know the effectiveness of ciprofloxacin in decreasing the carrier rate of meningitis meningococcus in haj pilgrims. Second, to identify the serogroup of N. meningitidis isolated from carrier or patient and thirdly to know the sensitivity of bacteria to several antibiotics recommended by WHO. Nasofaringeal swabs were taken from 914 haj pilgrims from group of contact person of cases or suspected cases and 311 haj pilgrims from control group at embarkation in Jakarta. Ciprofloxacin was given to the study group in Saudi Arabia. Isolation and serogrouping were carried out for serogroup A, B, C. The result shows that the effectiveness of ciprofloxacin to N. meningitidis in the treated group were 98.58% and control were 85.54%, respectively. The serogroup of N. meningitidis is isolated from 13 carriers of treated group 69,23% could not be classified as serogroup A, B, or C. In the control group, 45 isolated strains from carriers consist of serogroup B 40%, serogroup C 28,9%, serogroup A 20

  18. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, David S [Stone Mountain, GA; Gudlavalleti, Seshu K [Kensington, MD; Tzeng, Yih-Ling [Atlanta, GA; Datta, Anup K [San Diego, CA; Carlson, Russell W [Athens, GA

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  19. Two Neisseria meningitidis strains with different ability to stimulate toll-like receptor 4 through the MyD88-independent pathway

    DEFF Research Database (Denmark)

    Mogensen, T.H.; Paludan, Søren Riis; Kilian, Mogens

    2006-01-01

    Neisseria meningitidis causes acute severe diseases, including sepsis and meningitis, and more benign manifestations such as chronic meningococcemia or colonization of the upper respiratory tract. The inflammatory response, which contributes to the pathogenesis of meningococcal disease......, is initiated by pattern recognition receptors, among which Toll-like receptors (TLR)s have been ascribed a particularly important role. We have previously demonstrated that N. meningitidis induce proinflammatory cytokine expression through TLR2 and TLR4. Here we characterize the molecular basis...... for differential activation of the inflammatory response by two N. meningitidis strains. This difference was due to differential ability to activate signal transduction through TLR4, as HEK293 cells expressing TLR4 produced significantly different levels of interleukin-8 in response to these strains. At the level...

  20. Changes of brain response induced by simulated weightlessness

    Science.gov (United States)

    Wei, Jinhe; Yan, Gongdong; Guan, Zhiqiang

    The characteristics change of brain response was studied during 15° head-down tilt (HDT) comparing with 45° head-up tilt (HUT). The brain responses evaluated included the EEG power spectra change at rest and during mental arithmetic, and the event-related potentials (ERPs) of somatosensory, selective attention and mental arithmetic activities. The prominent feature of brain response change during HDT revealed that the brain function was inhibited to some extent. Such inhibition included that the significant increment of "40Hz" activity during HUT arithmetic almost disappeared during HDT arithmetic, and that the positive-potential effect induced by HDT presented in all kinds of ERPs measured, but the slow negative wave reflecting mental arithmetic and memory process was elongated. These data suggest that the brain function be affected profoundly by the simulated weightlessness, therefore, the brain function change during space flight should be studied systematically.

  1. Genomic Characterization of Urethritis-Associated Neisseria meningitidis Shows that a Wide Range of N. meningitidis Strains Can Cause Urethritis.

    Science.gov (United States)

    Ma, Kevin C; Unemo, Magnus; Jeverica, Samo; Kirkcaldy, Robert D; Takahashi, Hideyuki; Ohnishi, Makoto; Grad, Yonatan H

    2017-12-01

    Neisseria meningitidis , typically a resident of the oro- or nasopharynx and the causative agent of meningococcal meningitis and meningococcemia, is capable of invading and colonizing the urogenital tract. This can result in urethritis, akin to the syndrome caused by its sister species, N. gonorrhoeae , the etiologic agent of gonorrhea. Recently, meningococcal strains associated with outbreaks of urethritis were reported to share genetic characteristics with the gonococcus, raising the question of the extent to which these strains contain features that promote adaptation to the genitourinary niche, making them gonococcus-like and distinguishing them from other N. meningitidis strains. Here, we analyzed the genomes of 39 diverse N. meningitidis isolates associated with urethritis, collected independently over a decade and across three continents. In particular, we characterized the diversity of the nitrite reductase gene ( aniA ), the factor H-binding protein gene ( fHbp ), and the capsule biosynthetic locus, all of which are loci previously suggested to be associated with urogenital colonization. We observed notable diversity, including frameshift variants, in aniA and fHbp and the presence of intact, disrupted, and absent capsule biosynthetic genes, indicating that urogenital colonization and urethritis caused by N. meningitidis are possible across a range of meningococcal genotypes. Previously identified allelic patterns in urethritis-associated N. meningitidis strains may reflect genetic diversity in the underlying meningococcal population rather than novel adaptation to the urogenital tract. Copyright © 2017 American Society for Microbiology.

  2. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. D-galactose-induced brain ageing model

    DEFF Research Database (Denmark)

    Sadigh-Eteghad, Saeed; Majdi, Alireza; McCann, Sarah K.

    2017-01-01

    Animal models are commonly used in brain ageing research. Amongst these, models where rodents are exposed to d-galactose are held to recapitulate a number of features of ageing including neurobehavioral and neurochemical changes. However, results from animal studies are often inconsistent...

  4. Host iron binding proteins acting as niche indicators for Neisseria meningitidis.

    Directory of Open Access Journals (Sweden)

    Philip W Jordan

    Full Text Available Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays.Specific transcriptional responses to the different iron sources were observed, including genes that are not part of the response to iron restriction. Comparisons between growth on haemoglobin and either transferrin or lactoferrin identified changes in 124 and 114 genes, respectively, and 33 genes differed between growth on transferrin or lactoferrin. Comparison of gene expression from growth on haemoglobin or ferric iron showed that transcription is also affected by the entry of either haem or ferric iron into the cytoplasm. This is consistent with a model in which N. meningitidis uses the relative availability of host iron donor proteins as niche indicators.Growth in the presence of haemoglobin is associated with a response likely to be adaptive to survival within the bloodstream, which is supported by serum killing assays that indicate growth on haemoglobin significantly increases survival, and the response to lactoferrin is associated with increased expression of epithelial cell adhesins and oxidative stress response molecules. The transferrin receptor is the most highly transcribed receptor and has the fewest genes specifically induced in its presence, suggesting this is the favoured iron source for the bacterium. Most strikingly, the responses to haemoglobin, which is associated with unrestricted growth, indicates a low iron transcriptional profile, associated with an aggressive phenotype that may be adaptive to access host iron sources but which may also

  5. Blood brain barrier and brain tissue injury by Gd-DTPA in uremia-induced rabbits

    International Nuclear Information System (INIS)

    Choi, Sun Seob; Huh, Ki Yeong; Han, Jin Yeong; Lee, Yong Chul; Eun, Choong Gi; Yang, Yeong Il

    1996-01-01

    An experimental study was carried out to evaluate the morphological changes in the blood brain barrier and neighbouring brain tissue caused by Gd-DTPA in uremia-induced rabbits. Bilateral renal arteries and veins of ten rabbits were ligated. Gd-DTPA(0.2mmol/kg) was intravenously injected into seven rabbits immediately after ligation. After MRI, they were sacrificed 2 or 3 days after ligation in order to observe light and electron microscopic changes in the blood brain barrier and brain tissue. MRI findings were normal, except for enhancement of the superior and inferior sagittal sinuses on T1 weighted images in uremia-induced rabbits injected with Gd-DTPA. On light microscopic examination, these rabbits showed perivascular edema and glial fibrillary acidic protein expression: electron microscopic examination showed separation of tight junctions of endothelial cells, duplication/rarefaction of basal lamina, increased lysosomes of neurons with neuronal death, demyelination of myelin, and extravasation of red blood cells. Uremia-induced rabbits injected with Gd-DTPA showed more severe changes than those without Gd-DTPA injection. Injuries to the blood brain barrier and neighbouring brain tissue were aggravated by Gd-DTPA administration in uremia-induced rabbits. These findings appear to be associated with the neurotoxicity of Gd-DTPA

  6. Acupuncture inhibits cue-induced heroin craving and brain activation.

    Science.gov (United States)

    Cai, Xinghui; Song, Xiaoge; Li, Chuanfu; Xu, Chunsheng; Li, Xiliang; Lu, Qi

    2012-11-25

    Previous research using functional MRI has shown that specific brain regions associated with drug dependence and cue-elicited heroin craving are activated by environmental cues. Craving is an important trigger of heroin relapse, and acupuncture may inhibit craving. In this study, we performed functional MRI in heroin addicts and control subjects. We compared differences in brain activation between the two groups during heroin cue exposure, heroin cue exposure plus acupuncture at the Zusanli point (ST36) without twirling of the needle, and heroin cue exposure plus acupuncture at the Zusanli point with twirling of the needle. Heroin cue exposure elicited significant activation in craving-related brain regions mainly in the frontal lobes and callosal gyri. Acupuncture without twirling did not significantly affect the range of brain activation induced by heroin cue exposure, but significantly changed the extent of the activation in the heroin addicts group. Acupuncture at the Zusanli point with twirling of the needle significantly decreased both the range and extent of activation induced by heroin cue exposure compared with heroin cue exposure plus acupuncture without twirling of the needle. These experimental findings indicate that presentation of heroin cues can induce activation in craving-related brain regions, which are involved in reward, learning and memory, cognition and emotion. Acupuncture at the Zusanli point can rapidly suppress the activation of specific brain regions related to craving, supporting its potential as an intervention for drug craving.

  7. Parameter and state estimation in a Neisseria meningitidis model: A study case of Niger

    Science.gov (United States)

    Bowong, S.; Mountaga, L.; Bah, A.; Tewa, J. J.; Kurths, J.

    2016-12-01

    Neisseria meningitidis (Nm) is a major cause of bacterial meningitidis outbreaks in Africa and the Middle East. The availability of yearly reported meningitis cases in the African meningitis belt offers the opportunity to analyze the transmission dynamics and the impact of control strategies. In this paper, we propose a method for the estimation of state variables that are not accessible to measurements and an unknown parameter in a Nm model. We suppose that the yearly number of Nm induced mortality and the total population are known inputs, which can be obtained from data, and the yearly number of new Nm cases is the model output. We also suppose that the Nm transmission rate is an unknown parameter. We first show how the recruitment rate into the population can be estimated using real data of the total population and Nm induced mortality. Then, we use an auxiliary system called observer whose solutions converge exponentially to those of the original model. This observer does not use the unknown infection transmission rate but only uses the known inputs and the model output. This allows us to estimate unmeasured state variables such as the number of carriers that play an important role in the transmission of the infection and the total number of infected individuals within a human community. Finally, we also provide a simple method to estimate the unknown Nm transmission rate. In order to validate the estimation results, numerical simulations are conducted using real data of Niger.

  8. Gender differences in alcohol-induced neurotoxicity and brain damage.

    Science.gov (United States)

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-06

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Zinc movement in the brain under kainate-induced seizures.

    Science.gov (United States)

    Takeda, Atsushi; Hirate, Maki; Tamano, Haruna; Oku, Naoto

    2003-05-01

    On the basis of the evidence that elimination of 65Zn from the brain of epilepsy (EL) mice is facilitated by induction of seizures, zinc movement in the brain was studied in mice injected with kainate (12 mg/kg x 3), which exhibited status epilepticus within 120 min after the last injection of kainate. Zinc concentrations in the brain were determined 24 h after the last injection of kainate. Zinc concentrations in the hippocampus, amygdala and cerebral cortex, in which zinc-containing glutamatergic neuron terminals exist, were significantly decreased by the treatment with kainate, while that in the cerebellum was not decreased. Timm's stain in the brain was extensively attenuated 24 h after the last injection of kainate. These results indicate that zinc homeostasis in the brain is affected by kainate-induced seizures. In the hippocampus of rats injected with kainate (10 mg/kg), furthermore, the release of zinc and glutamate into the extracellular fluid was studied using in vivo microdialysis. The levels of zinc and glutamate in the perfusate were increased along with seizure severity after injection of kainate. It is likely that zinc concentration in the synaptic vesicles is decreased by the excess excitation of glutamatergic neurons. The present study suggests that the excessive release of zinc and glutamate from the neuron terminals under kainate-induced seizures is associated with the loss of zinc from the brain.

  10. MRI-induced heating of deep brain stimulation leads

    International Nuclear Information System (INIS)

    Mohsin, Syed A; Sheikh, Noor M; Saeed, Usman

    2008-01-01

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  11. Can earth's magnetic micropulsations induce brain activities modifications?

    International Nuclear Information System (INIS)

    Assis, Altair Souza de

    2008-01-01

    Full text: We present in this paper preliminary study on which level earth's magnetic micro pulsations might interact with human brain activities. Magnetic micro pulsations are magnetospheric plasma wave Eigenmodes that are generated at the earth's magnetosphere and, via magnetospheric-ionospheric coupling induce ionospheric currents, and this ionospheric current pattern creates surface geomagnetic perturbations, which induce earth's surface electrical currents, and they are easily detected by earth's based magnetometers. These Eigenmodes are basically of Alfven type, and can be generated, for instance, by magnetic storms, situation where they are more intense and, in principle, might be felt by a more sensible human brain. Here, we also show how the modes are generated and present theirs basic physical properties. Finally, we compare the magnetic field level at the brain with the micro pulsation magnetic intensity. (author)

  12. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain

    Directory of Open Access Journals (Sweden)

    Saldanha Colin J

    2011-07-01

    Full Text Available Abstract Background Estrogens from peripheral sources as well as central aromatization are neuroprotective in the vertebrate brain. Under normal conditions, aromatase is only expressed in neurons, however following anoxic/ischemic or mechanical brain injury; aromatase is also found in astroglia. This increased glial aromatization and the consequent estrogen synthesis is neuroprotective and may promote neuronal survival and repair. While the effects of estradiol on neuroprotection are well studied, what induces glial aromatase expression remains unknown. Methods Adult male zebra finches (Taeniopygia guttata were given a penetrating injury to the entopallium. At several timepoints later, expression of aromatase, IL-1β-like, and IL-6-like were examined using immunohisotchemistry. A second set of zebra birds were exposed to phytohemagglutinin (PHA, an inflammatory agent, directly on the dorsal surface of the telencephalon without creating a penetrating injury. Expression of aromatase, IL-1β-like, and IL-6-like were examined using both quantitative real-time polymerase chain reaction to examine mRNA expression and immunohistochemistry to determine cellular expression. Statistical significance was determined using t-test or one-way analysis of variance followed by the Tukey Kramers post hoc test. Results Following injury in the zebra finch brain, cytokine expression occurs prior to aromatase expression. This temporal pattern suggests that cytokines may induce aromatase expression in the damaged zebra finch brain. Furthermore, evoking a neuroinflammatory response characterized by an increase in cytokine expression in the uninjured brain is sufficient to induce glial aromatase expression. Conclusions These studies are among the first to examine a neuroinflammatory response in the songbird brain following mechanical brain injury and to describe a novel neuroimmune signal to initiate aromatase expression in glia.

  13. Modulation of Brain Dead Induced Inflammation by Vagus Nerve Stimulation

    NARCIS (Netherlands)

    Hoeger, S.; Bergstraesser, C.; Selhorst, J.; Fontana, J.; Birck, R.; Waldherr, R.; Beck, G.; Sticht, C.; Seelen, M. A.; van Son, W. J.; Leuvenink, H.; Ploeg, R.; Schnuelle, P.; Yard, B. A.

    Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability

  14. Improved production process for native outer membrane vesicle vaccine against Neisseria meningitidis.

    Directory of Open Access Journals (Sweden)

    Bas van de Waterbeemd

    Full Text Available An improved detergent-free process has been developed to produce vaccine based on native outer membrane vesicles (NOMV against Neisseria meningitidis serogroup B. Performance was evaluated with the NonaMen vaccine concept, which provides broad coverage based on nine distinct PorA antigens. Scalable aseptic equipment was implemented, replacing undesirable steps like ultracentrifugation, inactivation with phenol, and the use of preservatives. The resulting process is more consistent and gives a higher yield than published reference processes, enabling NOMV production at commercial scale. Product quality met preliminary specifications for 9 consecutive batches, and an ongoing study confirmed real-time stability up to 12 months after production. As the NOMV had low endotoxic activity and induced high bactericidal titres in mice, they are expected to be safe and effective in humans. The production process is not limited to NonaMen and may be applicable for other N. meningitidis serogroups and other gram-negative pathogens. The current results therefore facilitate the late-stage development and clinical evaluation of NOMV vaccines.

  15. Investigations of primary blast-induced traumatic brain injury

    Science.gov (United States)

    Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.

    2018-01-01

    The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.

  16. Delayed radiation-induced necrosis of the brain stem

    International Nuclear Information System (INIS)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi; Uozumi, Toru.

    1993-01-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author)

  17. Tumor sterilization dose and radiation induced change of the brain tissue in radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Takano, Shingo

    1987-01-01

    Ninety-seven patients with brain tumors (38 gliomas, 26 brain metastases, 18 sellar tumors, 15 others) were treated by cobalt gamma ray or proton radiotherapy. In this study, normal brain injury due to radiation was analysed in terms of time-dose-fractionation (TDF), nominal standard dose (NSD) by the Ellis formula and NeuNSD by a modification in which the N exponent was -0.44 and the T exponent was -0.06. Their calculated doses were analysed in relationship to the normal brain radiation induced change (RIC) and the tumor sterilization dose. All brain tumors with an exception of many patients with brain metastases were received a surgical extirpation subtotally or partially prior to radiotherapy. And all patients with glioma and brain metastasis received also immuno-chemotherapy in the usual manner during radiotherapy. The calculated dose expressed by NeuNSD and TDF showed a significant relationship between a therapeutic dose and a postradiation time in terms of the appearance of RIC. It was suggested that RIC was caused by a dose over 800 in NeuNSD and a dose over 70 in TDF. Furthermore, it was suggested that an aged patient and a patient who had the vulnerable brain tissue to radiation exposure in the irradiated field had the high risk of RIC. On the other hand, our results suggested that the tumor sterilization dose should be over 1,536 NeuNSD and the irradiated method should be further considered in addition to the radiobiological concepts for various brain tumors. (author)

  18. Effect of atorvastatin on hyperglycemia-induced brain oxidative stress and neuropathy induced by diabetes

    Directory of Open Access Journals (Sweden)

    Nastaran Faghihi

    2015-04-01

    Conclusion: The findings of the present study reveal that atorvastatin is able to prevent hyperglycemia-induced diabetic neuropathy and inhibit brain oxidative stress during diabetes. It is probable that reduction of urea is one of the reasons for atorvastatin prevention of hyperglycemia-induced neuropathy.

  19. Systemic progesterone for modulating electrocautery-induced secondary brain injury.

    Science.gov (United States)

    Un, Ka Chun; Wang, Yue Chun; Wu, Wutian; Leung, Gilberto Ka Kit

    2013-09-01

    Bipolar electrocautery is an effective and commonly used haemostatic technique but it may also cause iatrogenic brain trauma due to thermal injury and secondary inflammatory reactions. Progesterone has anti-inflammatory and neuroprotective actions in traumatic brain injury. However, its potential use in preventing iatrogenic brain trauma has not been explored. We conducted a pilot animal study to investigate the effect of systemic progesterone on brain cellular responses to electrocautery-induced injury. Adult male Sprague-Dawley rats received standardized bipolar electrocautery (40 W for 2 seconds) over the right cerebral cortex. The treatment group received progesterone intraperitoneally 2 hours prior to surgery; the control group received the drug vehicle only. Immunohistochemical studies showed that progesterone could significantly reduce astrocytic hypertrophy on postoperative day 1, 3 and 7, as well as macrophage infiltration on day 3. The number of astrocytes, however, was unaffected. Our findings suggest that progesterone should be further explored as a neuroprotective agent against electrocautery-induced or other forms of iatrogenic trauma during routine neurosurgical procedures. Future studies may focus on different dosing regimens, neuronal survival, functional outcome, and to compare progesterone with other agents such as dexamethasone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Structural, functional and immunogenic insights on Cu,Zn Superoxide Dismutase pathogenic virulence factors from Neisseria meningitidis and Brucella abortus

    Science.gov (United States)

    Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and he...

  1. Laboratory Predictors of Meningococcal Disease And Vaccination in Children: studies on the host immune response against Neisseria meningitidis

    NARCIS (Netherlands)

    C.L. Vermont (Clementien)

    2004-01-01

    markdownabstract__Abstract__ Neisseria meningitidis is a gram-negative diplococcus which was first identified by Anton Weichselbaum in 1887. Strains of N. meningitidis can be classified into serogroups based upon the different composition of its capsular polysaccharide. Thirteen serogroups

  2. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Inaji, Motoki; Ohno, Kikuo; Hiura, Mikio; Ishii, Kenji; Hosoda, Chihiro

    2011-01-01

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18 F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11 C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  3. Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1

    Science.gov (United States)

    2013-01-01

    Background Emerging studies have demonstrated that pretreatment with electroacupuncture (EA) induces significant tolerance to focal cerebral ischemia. The present study seeks to determine the involvement of monocyte chemotactic protein-induced protein 1 (MCPIP1), a recently identified novel modulator of inflammatory reactions, in the cerebral neuroprotection conferred by EA pretreatment in the animal model of focal cerebral ischemia and to elucidate the mechanisms of EA pretreatment-induced ischemic brain tolerance. Methods Twenty-four hours after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 90 minutes in male C57BL/6 mice and MCPIP1 knockout mice. Transcription and expression of MCPIP1 gene was monitored by qRT-PCR, Western blot and immunohistochemistry. The neurobehavioral scores, infarction volumes, proinflammatory cytokines and leukocyte infiltration in brain and NF-κB signaling were evaluated after ischemia/reperfusion. Results MCPIP1 protein and mRNA levels significantly increased specifically in mouse brain undergoing EA pretreatment. EA pretreatment significantly attenuated the infarct volume, neurological deficits, upregulation of proinflammatory cytokines and leukocyte infiltration in the brain of wild-type mice after MCAO compared with that of the non-EA group. MCPIP1-deficient mice failed to evoke EA pretreatment-induced tolerance compared with that of the control MCPIP1 knockout group without EA treatment. Furthermore, the activation of NF-κB signaling was significantly reduced in EA-pretreated wild-type mice after MCAO compared to that of the non-EA control group and MCPIP1-deficient mice failed to confer the EA pretreatment-induced inhibition of NF-κB signaling after MCAO. Conclusions Our data demonstrated that MCPIP1 deficiency caused significant lack of EA pretreatment-induced cerebral protective effects after MCAO compared with the control group and that MCPIP1 is

  4. A virulence-associated filamentous bacteriophage of Neisseria meningitidis increases host-cell colonisation.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Bille

    2017-07-01

    Full Text Available Neisseria meningitidis is a commensal of human nasopharynx. In some circumstances, this bacteria can invade the bloodstream and, after crossing the blood brain barrier, the meninges. A filamentous phage, designated MDAΦ for Meningococcal Disease Associated, has been associated with invasive disease. In this work we show that the prophage is not associated with a higher virulence during the bloodstream phase of the disease. However, looking at the interaction of N. meningitidis with epithelial cells, a step essential for colonization of the nasopharynx, we demonstrate that the presence of the prophage, via the production of viruses, increases colonization of encapsulated meningococci onto monolayers of epithelial cells. The analysis of the biomass covering the epithelial cells revealed that meningococci are bound to the apical surface of host cells by few layers of heavily piliated bacteria, whereas, in the upper layers, bacteria are non-piliated but surrounded by phage particles which (i form bundles of filaments, and/or (ii are in some places associated with bacteria. The latter are likely to correspond to growing bacteriophages during their extrusion through the outer membrane. These data suggest that, as the biomass increases, the loss of piliation in the upper layers of the biomass does not allow type IV pilus bacterial aggregation, but is compensated by a large production of phage particles that promote bacterial aggregation via the formation of bundles of phage filaments linked to the bacterial cell walls. We propose that MDAΦ by increasing bacterial colonization in the mucosa at the site-of-entry, increase the occurrence of diseases.

  5. Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function.

    Science.gov (United States)

    Steeghs, Liana; van Vliet, Sandra J; Uronen-Hansson, Heli; van Mourik, Andries; Engering, Anneke; Sanchez-Hernandez, Martha; Klein, Nigel; Callard, Robin; van Putten, Jos P M; van der Ley, Peter; van Kooyk, Yvette; van de Winkel, Jan G J

    2006-02-01

    Neisseria meningitidis lipopolysaccharide (LPS) has been identified as a major determinant of dendritic cell (DC) function. Here we report that one of a series of meningococcal mutants with defined truncations in the lacto-N-neotetraose outer core of the LPS exhibited unique strong adhesion and internalization properties towards DC. These properties were mediated by interaction of the GlcNAc(beta1-3)-Gal(beta1-4)-Glc-R oligosaccharide outer core of lgtB LPS with the dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) lectin receptor. Activation of DC-SIGN with this novel oligosaccharide ligand skewed T-cell responses driven by DC towards T helper type 1 activity. Thus, the use of lgtB LPS may provide a powerful instrument to selectively induce the desired arm of the immune response and potentially increase vaccine efficacy.

  6. Radiation-induced apoptosis and developmental disturbance of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minoru [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine

    1995-03-01

    The developing mammalian brain is highly susceptible to ionizing radiation. A significant increase in small head size and mental retardation has been noted in prenatally exposed survivors of the atomic bombing, with the highest risk in those exposed during 8-15 weeks after fertilization. This stage corresponds to day 13 of pregnancy for mice and day 15 for rats in terms of brain development. The initial damage produced by radiation at this stage is cell death in the ventricular zone (VZ) of the brain mantle, the radiosensitive germinal cell population. During histogenesis of the cerebellum the external granular layer (EGL) is also radiosensitive. Although extensive cell death results in microcephaly and histological abnormlity, both VZ and EGL have an ability to recover from a considerable cell loss and form the normal structure of the central nervous system. The number of cell deaths to induce tissue abnormalities in adult brain rises in the range of 15-25% of the germinal cell population; and the threshold doses are about 0.3 Gy for cerebral defects and 1 Gy for cerebellar anomalies in both mice and rats. A similar threshold level is suggested in human cases in induction of mental retardation. Radiation-induced cell death in the VZ and EGL has been revealed as apoptosis, by the nuclear and cytoplasmic condensation, transglutaminase activation, required macromolecular synthesis, and internucleosomal DNA cleavage. Apoptosis of the germinal cell is assumed to eliminate acquired genetic damage. Once an abnormality in DNA has been induced and fixed in a germinal cell, it would be greatly amplified during future proliferation. These cells would commit suicide when injured for replacement by healthy cells, rather than undertake DNA repair. In fact they show very slow repair of cellular damage. Thus the high sensitivity of undifferentiated neural cells to the lethal effect of radiation may constitute a biological defense mechanism. (author) 69 refs.

  7. Radiation-induced apoptosis and developmental disturbance of the brain

    International Nuclear Information System (INIS)

    Inouye, Minoru

    1995-01-01

    The developing mammalian brain is highly susceptible to ionizing radiation. A significant increase in small head size and mental retardation has been noted in prenatally exposed survivors of the atomic bombing, with the highest risk in those exposed during 8-15 weeks after fertilization. This stage corresponds to day 13 of pregnancy for mice and day 15 for rats in terms of brain development. The initial damage produced by radiation at this stage is cell death in the ventricular zone (VZ) of the brain mantle, the radiosensitive germinal cell population. During histogenesis of the cerebellum the external granular layer (EGL) is also radiosensitive. Although extensive cell death results in microcephaly and histological abnormlity, both VZ and EGL have an ability to recover from a considerable cell loss and form the normal structure of the central nervous system. The number of cell deaths to induce tissue abnormalities in adult brain rises in the range of 15-25% of the germinal cell population; and the threshold doses are about 0.3 Gy for cerebral defects and 1 Gy for cerebellar anomalies in both mice and rats. A similar threshold level is suggested in human cases in induction of mental retardation. Radiation-induced cell death in the VZ and EGL has been revealed as apoptosis, by the nuclear and cytoplasmic condensation, transglutaminase activation, required macromolecular synthesis, and internucleosomal DNA cleavage. Apoptosis of the germinal cell is assumed to eliminate acquired genetic damage. Once an abnormality in DNA has been induced and fixed in a germinal cell, it would be greatly amplified during future proliferation. These cells would commit suicide when injured for replacement by healthy cells, rather than undertake DNA repair. In fact they show very slow repair of cellular damage. Thus the high sensitivity of undifferentiated neural cells to the lethal effect of radiation may constitute a biological defense mechanism. (author) 69 refs

  8. Neisseria meningitidis ST11 Complex Isolates Associated with Nongonococcal Urethritis, Indiana, USA, 2015-2016.

    Science.gov (United States)

    Toh, Evelyn; Gangaiah, Dharanesh; Batteiger, Byron E; Williams, James A; Arno, Janet N; Tai, Albert; Batteiger, Teresa A; Nelson, David E

    2017-02-01

    At a clinic in Indianapolis, Indiana, USA, we observed an increase in Neisseria gonorrhoeae-negative men with suspected gonococcal urethritis who had urethral cultures positive for N. meningitidis. We describe genomes of 2 of these N. meningitidis sequence type 11 complex urethritis isolates. Clinical evidence suggests these isolates may represent an emerging urethrotropic clade.

  9. Neisseria meningitidis ST11 Complex Isolates Associated with Nongonococcal Urethritis, Indiana, USA, 2015–2016

    Science.gov (United States)

    Toh, Evelyn; Gangaiah, Dharanesh; Batteiger, Byron E.; Williams, James A.; Arno, Janet N.; Tai, Albert; Batteiger, Teresa A.

    2017-01-01

    At a clinic in Indianapolis, Indiana, USA, we observed an increase in Neisseria gonorrhoeae–negative men with suspected gonococcal urethritis who had urethral cultures positive for N. meningitidis. We describe genomes of 2 of these N. meningitidis sequence type 11 complex urethritis isolates. Clinical evidence suggests these isolates may represent an emerging urethrotropic clade. PMID:28098538

  10. Neisseria meningitidis endocarditis: a case report and review of the literature.

    LENUS (Irish Health Repository)

    Ali, Mohammed

    2012-02-01

    Neisseria meningitidis is the leading cause of bacterial meningitis in children and young adults, with an overall mortality rate of up to 25%, but it is a rare cause of infective endocarditis. We present herein a case of N. meningitidis meningitis complicated with infective endocarditis.

  11. Neisseria meningitidis endocarditis: A case report and review of the literature.

    LENUS (Irish Health Repository)

    Ali, Mohammed

    2011-04-08

    Abstract Neisseria meningitidis is the leading cause of bacterial meningitis in children and young adults, with an overall mortality rate of up to 25%, but it is a rare cause of infective endocarditis. We present herein a case of N. meningitidis meningitis complicated with infective endocarditis.

  12. Neisseria meningitidis Infecting a Prosthetic Knee Joint: A New Case of an Unusual Disease

    Directory of Open Access Journals (Sweden)

    Berta Becerril Carral

    2017-01-01

    Full Text Available Primary meningococcal meningitis is an infrequent but known disease. However, the infection of a prosthetic joint with Neisseria meningitidis is rare. We hereby describe the second case of an arthroplasty infected with Neisseria meningitidis that responded favourably to prosthesis retention with surgical debridement, in combination with antibiotics treatment.

  13. Induction by mercury compounds of brain metallothionein in rats: Hg{sup 0} exposure induces long-lived brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira; Nakano, Atsuhiro [Biochemistry Section, National Institute for Minamata Disease, Kumamoto (Japan); Hirayama, Kimiko [Kumamoto University, College of Medical Science (Japan)

    1998-03-01

    Metallothionein (MT) is one of the stress proteins which can easily be induced by various kind of heavy metals. However, MT in the brain is difficult to induce because of blood-brain barrier impermeability to most heavy metals. In this paper, we have attempted to induce brain MT in rats by exposure to methylmercury (MeHg) or metallic mercury vapor, both of which are known to penetrate the blood-brain barrier and cause neurological damage. Rats treated with MeHg (40 {mu}mol/kg per day x 5 days, p.o.) showed brain Hg levels as high as 18 {mu}g/g with slight neurological signs 10 days after final administration, but brain MT levels remained unchanged. However, rats exposed to Hg vapor for 7 days showed 7-8 {mu}g Hg/g brain tissue 24 h after cessation of exposure. At that time brain MT levels were about twice the control levels. Although brain Hg levels fell gradually with a half-life of 26 days, MT levels induced by Hg exposure remained unchanged for >2 weeks. Gel fractionation revealed that most Hg was in the brain cytosol fraction and thus bound to MT. Hybridization analysis showed that, despite a significant increase in MT-I and -II mRNA in brain, MT-III mRNA was less affected. Although significant Hg accumulation and MT induction were observed also in kidney and liver of Hg vapor-exposed rats, these decreased more quickly than in brain. The long-lived MT in brain might at least partly be accounted for by longer half-life of Hg accumulated there. The present results showed that exposure to Hg vapor might be a suitable procedure to provide an in vivo model with enhanced brain MT. (orig.) With 4 figs., 1 tab., 27 refs.

  14. LSD-induced entropic brain activity predicts subsequent personality change.

    Science.gov (United States)

    Lebedev, A V; Kaelen, M; Lövdén, M; Nilsson, J; Feilding, A; Nutt, D J; Carhart-Harris, R L

    2016-09-01

    Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Stefanie Endesfelder

    2017-01-01

    Full Text Available Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6 corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC, promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1, down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB, reduced pro-apoptotic effectors (poly (ADP-ribose polymerase-1 (PARP-1, apoptosis inducing factor (AIF, and caspase-3, and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP 2, and inhibitor of metalloproteinase (TIMP 1/2. Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  16. Aging exacerbates intracerebral hemorrhage-induced brain injury.

    Science.gov (United States)

    Lee, Jae-Chul; Cho, Geum-Sil; Choi, Byung-Ok; Kim, Hyoung Chun; Kim, Won-Ki

    2009-09-01

    Aging may be an important factor affecting brain injury by intracerebral hemorrhage (ICH). In the present study, we investigated the responses of glial cells and monocytes to intracerebral hemorrhage in normal and aged rats. ICH was induced by microinjecting autologous whole blood (15 microL) into the striatum of young (4 month old) and aged (24 month old) Sprague-Dawley rats. Age-dependent relations of brain tissue damage with glial and macrophageal responses were evaluated. Three days after ICH, activated microglia/macrophages with OX42-positive processes and swollen cytoplasm were more abundantly distributed around and inside the hemorrhagic lesions. These were more dramatic in aged versus the young rats. Western blot and immunohistochemistry analyses showed that the expression of interleukin-1beta protein after ICH was greater in aged rats, whereas the expression of GFAP and ciliary neurotrophic factor protein after ICH was significantly lower in aged rats. These results suggest that ICH causes more severe brain injury in aged rats most likely due to overactivation of microglia/macrophages and concomitant repression of reactive astrocytes.

  17. Bacoside A: Role in Cigarette Smoking Induced Changes in Brain

    Directory of Open Access Journals (Sweden)

    G. Vani

    2015-01-01

    Full Text Available Cigarette smoking (CS is a major health hazard that exerts diverse physiologic and biochemical effects mediated by the components present and generated during smoking. Recent experimental studies have shown predisposition to several biological consequences from both active and passive cigarette smoke exposure. In particular, passive smoking is linked to a number of adverse health effects which are equally harmful as active smoking. A pragmatic approach should be considered for designing a pharmacological intervention to combat the adverse effects of passive smoking. This review describes the results from a controlled experimental condition, testing the effect of bacoside A (BA on the causal role of passive/secondhand smoke exposure that caused pathological and neurological changes in rat brain. Chronic exposure to cigarette smoke induced significant changes in rat brain histologically and at the neurotransmitter level, lipid peroxidation states, mitochondrial functions, membrane alterations, and apoptotic damage in rat brain. Bacoside A is a neuroactive agent isolated from Bacopa monnieri. As a neuroactive agent, BA was effective in combating these changes. Future research should examine the effects of BA at molecular level and assess its functional effects on neurobiological and behavioral processes associated with passive smoke.

  18. Biological Functions of the Secretome of Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Jan Tommassen

    2017-06-01

    Full Text Available Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.

  19. Radiation-induced dementia in patients cured of brain metastases

    International Nuclear Information System (INIS)

    DeAngelis, L.M.; Delattre, J.Y.; Posner, J.B.

    1989-01-01

    When a patient with cancer develops a brain metastasis, death is usually imminent, but aggressive treatment in some patients with limited or no systemic disease yields long-term survival. In such patients, delayed deleterious effects of therapy are particularly tragic. We report 12 patients who developed delayed complications of whole brain radiotherapy (WBRT) given as sole treatment (4 patients) or in combination with surgical resection (8 patients). Within 5 to 36 months (median, 14) all patients developed progressive dementia, ataxia, and urinary incontinence causing severe disability in all and leading to death in 7. No patient had tumor recurrence when neurologic symptoms began. Cortical atrophy and hypodense white matter were identified by CT in all. Contrast-enhancing lesions were seen in 3 patients; 2 of the lesions yielded radionecrosis on biopsy. Autopsies on 2 patients revealed diffuse chronic edema of the hemispheric white matter in the absence of tumor recurrence. Corticosteroids and ventriculoperitoneal shunt offered significant but incomplete improvement in some patients. The total dose of WBRT was only 2,500 to 3,900 cGy, but daily fractions of 300 to 600 cGy were employed. We believe that these fractionation schedules, several of which are used commonly, predispose to delayed neurologic toxicity, and that more protracted schedules should be employed for the safe and efficacious treatment of good-risk patients with brain metastases. The incidence of WBRT-induced dementia was only 1.9 to 5.1% in the 2 populations reviewed here; however, this underestimates the incidence because only severely affected patients could be identified from chart review

  20. Brain glucose and lactate levels during ventilator-induced hypo- and hypercapnia

    NARCIS (Netherlands)

    van Hulst, R. A.; Lameris, T. W.; Haitsma, J. J.; Klein, J.; Lachmann, B.

    2004-01-01

    OBJECTIVE: Levels of glucose and lactate were measured in the brain by means of microdialysis in order to evaluate the effects of ventilator-induced hypocapnia and hypercapnia on brain metabolism in healthy non-brain-traumatized animals. DESIGN AND SETTING: Prospective animal study in a university

  1. Signal Transduction Pathways Involved in Brain Death-Induced Renal Injury

    NARCIS (Netherlands)

    Bouma, H. R.; Ploeg, R. J.; Schuurs, T. A.

    Kidneys derived from brain death organ donors show an inferior survival when compared to kidneys derived from living donors. Brain death is known to induce organ injury by evoking an inflammatory response in the donor. Neuronal injury triggers an inflammatory response in the brain, leading to

  2. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  3. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain.

    Science.gov (United States)

    Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman

    2014-03-01

    The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into

  4. Meropenem susceptibility of Neisseria meningitidis and Streptococcus pneumoniae from meningitis patients in The Netherlands

    NARCIS (Netherlands)

    van de Beek, D.; Hensen, E. F.; Spanjaard, L.; de Gans, J.; Enting, R. H.; Dankert, J.

    1997-01-01

    In-vitro susceptibility of 299 Neisseria meningitidis and 157 Streptococcus pneumoniae strains from meningitis patients in The Netherlands in 1993 and 1994 to meropenem was determined using the Etest. Susceptibility to penicillin, ceftriaxone, and chloramphenicol was also determined. Rifampicin

  5. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Directory of Open Access Journals (Sweden)

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  6. Neisseria meningitidis presenting as acute abdomen and recurrent reactive pericarditis

    Directory of Open Access Journals (Sweden)

    Karolina Akinosoglou

    2016-11-01

    Full Text Available Meningococcal meningitis is a well established potential fatal infection characterized by fever, headache, petechial rash, and vomiting in the majority of cases. However, protean manifestations including abdominal pain, sore throat, diarrhea and cough, even though rare, should not be overlooked. Similarly, although disseminated infection could potentially involve various organ-targets, secondary immune related complications including joints or pericardium should be dealt with caution, since they remain unresponsive to appropriate antibiotic regimens. We hereby report the rare case of an otherwise healthy adult female, presenting with acute abdominal pain masking Neisseria meningitidis serotype B meningitis, later complicated with recurrent reactive pericarditis despite appropriate antibiotic treatment. There follows a review of current literature.

  7. Lipoprotein NMB0928 from Neisseria meningitidis serogroup B as a novel vaccine candidate.

    Science.gov (United States)

    Delgado, Maité; Yero, Daniel; Niebla, Olivia; González, Sonia; Climent, Yanet; Pérez, Yusleydis; Cobas, Karem; Caballero, Evelín; García, Darien; Pajón, Rolando

    2007-12-05

    Polysaccharide-based vaccines for serogroup B Neisseria meningitidis have failed to induce protective immunity. As a result, efforts to develop vaccines for serogroup B meningococcal disease have mostly focused on outer membrane proteins (OMP). Vaccine candidates based on meningococcal OMP have emerged in the form of outer membrane vesicles (OMVs) or, more recently, purified recombinant proteins, as alternative strategies for serogroup B vaccine development. In our group, the protein composition of the Cuban OMVs-based vaccine VA-MENGOC-BC was elucidated using two-dimensional gel electrophoresis and mass spectrometry. The proteomic map of this product allowed the identification of new putative protective proteins not previously reported as components of an antimeningococcal vaccine. In the present study, we have determined the immunogenicity and protective capacity of NMB0928, one of those proteins present in the OMVs. The antigen was obtained as a recombinant protein in Escherichia coli, purified and used to immunize mice. The antiserum produced against the protein was capable to recognize the natural protein in different meningococcal strains by whole-cell ELISA and Western blotting. After immunization, recombinant NMB0928 induced bactericidal antibodies, and when the protein was administered inserted into liposomes, the elicited antibodies were protective in the infant rat model. These results suggest that NMB0928 is a novel antigen worth to be included in a broadly protective meningococcal vaccine.

  8. Neisseria meningitidis rifampicin resistant strains: analysis of protein differentially expressed

    Directory of Open Access Journals (Sweden)

    Schininà Maria

    2010-09-01

    Full Text Available Abstract Background Several mutations have been described as responsible for rifampicin resistance in Neisseria meningitidis. However, the intriguing question on why these strains are so rare remains open. The aim of this study was to investigate the protein content and to identify differential expression in specific proteins in two rifampicin resistant and one susceptible meningococci using two-dimensional electrophoresis (2-DE combined with mass spectrometry. Results In our experimental conditions, able to resolve soluble proteins with an isoelectric point between 4 and 7, twenty-three proteins have been found differentially expressed in the two resistant strains compared to the susceptible. Some of them, involved in the main metabolic pathways, showed an increased expression, mainly in the catabolism of pyruvate and in the tricarboxylic acid cycle. A decreased expression of proteins belonging to gene regulation and to those involved in the folding of polypeptides has also been observed. 2-DE analysis showed the presence of four proteins displaying a shift in their isoelectric point in both resistant strains, confirmed by the presence of amino acid changes in the sequence analysis, absent in the susceptible. Conclusions The analysis of differentially expressed proteins suggests that an intricate series of events occurs in N. meningitidis rifampicin resistant strains and the results here reported may be considered a starting point in understanding their decreased invasion capacity. In fact, they support the hypothesis that the presence of more than one protein differentially expressed, having a role in the metabolism of the meningococcus, influences its ability to infect and to spread in the population. Different reports have described and discussed how a drug resistant pathogen shows a high biological cost for survival and that may also explain why, for some pathogens, the rate of resistant organisms is relatively low considering the

  9. Measuring and Inducing Brain Plasticity in Chronic Aphasia

    Science.gov (United States)

    Fridriksson, Julius

    2011-01-01

    Brain plasticity associated with anomia recovery in aphasia is poorly understood. Here, I review four recent studies from my lab that focused on brain modulation associated with long-term anomia outcome, its behavioral treatment, and the use of transcranial brain stimulation to enhance anomia treatment success in individuals with chronic aphasia…

  10. Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases

    International Nuclear Information System (INIS)

    Ohguri, Takayuki; Imada, Hajime; Kohshi, Kiyotaka; Kakeda, Shingo; Ohnari, Norihiro; Morioka, Tomoaki; Nakano, Keita; Konda, Nobuhide; Korogi, Yukunori

    2007-01-01

    Purpose: The purpose of the present study was to evaluate the prophylactic effect of hyperbaric oxygen (HBO) therapy for radiation-induced brain injury in patients with brain metastasis treated with stereotactic radiosurgery (SRS). Methods and Materials: The data of 78 patients presenting with 101 brain metastases treated with SRS between October 1994 and September 2003 were retrospectively analyzed. A total of 32 patients with 47 brain metastases were treated with prophylactic HBO (HBO group), which included all 21 patients who underwent subsequent or prior radiotherapy and 11 patients with common predictors of longer survival, such as inactive extracranial tumors and younger age. The other 46 patients with 54 brain metastases did not undergo HBO (non-HBO group). Radiation-induced brain injuries were divided into two categories, white matter injury (WMI) and radiation necrosis (RN), on the basis of imaging findings. Results: Radiation-induced brain injury occurred in 5 lesions (11%) in the HBO group (2 WMIs and 3 RNs) and in 11 (20%) in the non-HBO group (9 WMIs and 2 RNs). The WMI was less frequent for the HBO group than for the non-HBO group (p = 0.05), although multivariate analysis by logistic regression showed that WMI was not significantly correlated with HBO (p = 0.07). The 1-year actuarial probability of WMI was significantly better for the HBO group (2%) than for the non-HBO group (36%) (p < 0.05). Conclusions: The present study showed a potential value of prophylactic HBO for Radiation-induced WMIs, which justifies further evaluation to confirm its definite benefit

  11. Rapid treatment-induced brain changes in pediatric CRPS.

    Science.gov (United States)

    Erpelding, Nathalie; Simons, Laura; Lebel, Alyssa; Serrano, Paul; Pielech, Melissa; Prabhu, Sanjay; Becerra, Lino; Borsook, David

    2016-03-01

    To date, brain structure and function changes in children with complex regional pain syndrome (CRPS) as a result of disease and treatment remain unknown. Here, we investigated (a) gray matter (GM) differences between patients with CRPS and healthy controls and (b) GM and functional connectivity (FC) changes in patients following intensive interdisciplinary psychophysical pain treatment. Twenty-three patients (13 females, 9 males; average age ± SD = 13.3 ± 2.5 years) and 21 healthy sex- and age-matched controls underwent magnetic resonance imaging. Compared to controls, patients had reduced GM in the primary motor cortex, premotor cortex, supplementary motor area, midcingulate cortex, orbitofrontal cortex, dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex, precuneus, basal ganglia, thalamus, and hippocampus. Following treatment, patients had increased GM in the dlPFC, thalamus, basal ganglia, amygdala, and hippocampus, and enhanced FC between the dlPFC and the periaqueductal gray, two regions involved in descending pain modulation. Accordingly, our results provide novel evidence for GM abnormalities in sensory, motor, emotional, cognitive, and pain modulatory regions in children with CRPS. Furthermore, this is the first study to demonstrate rapid treatment-induced GM and FC changes in areas implicated in sensation, emotion, cognition, and pain modulation.

  12. ECT: its brain enabling effects. A review of electroconvulsive therapy-induced structural brain plasticity

    NARCIS (Netherlands)

    Bouckaert, F.; Sienaert, P.; Obbels, J.; Dols, A.; Vandenbulcke, M.; Stek, M.L.; Bolwig, T.

    2014-01-01

    BACKGROUND: Since the past 2 decades, new evidence for brain plasticity has caused a shift in both preclinical and clinical ECT research from falsifying the "brain damage hypothesis" toward exploring ECT's enabling brain (neuro)plasticity effects. METHODS: By reviewing the available animal and human

  13. Radiation-induced brain disorders in patients with pituitary tumours

    International Nuclear Information System (INIS)

    Bhansali, A.; Chanda, A.; Dash, R.J.; Banerjee, A.K.; Singh, P.; Sharma, S.C.; Mathuriya, S.N.

    2004-01-01

    Radiation-induced brain disorders (RIBD) are uncommon and they are grave sequelae of conventional radiotherapy. In the present report, we describe the clinical spectrum of RIBD in 11 patients who received post-surgery conventional megavoltage irradiation for residual pituitary tumours. Of these 11 patients (nine men, two women), seven had been treated for non-functioning pituitary tumours and four for somatotropinomas. At the time of irradiation the age of these patients ranged from 30 to 59 years (mean, 39.4 ± 8.3; median, 36) with a follow-up period of 696 months (mean, 18.3 ± 26.4; median, 11). The dose of radiation ranged from 45 to 90 Gy (mean, 51.3 ± 13.4; median, 45), which was given in 1530 fractions (mean, 18.6 ± 5.0; median, 15) with 2.8 ± 0.3 Gy (median, 3) per fraction. The biological effective dose calculated for late complications in these patients ranged from 78.7 to 180 Gy (mean, 99.1 ± 27.5; median, 90). The lag time between tumour irradiation and the onset of symptoms ranged from 6 to 168 months (mean, 46.3 ± 57.0; median, 57). The clinical spectrum of RIBD included new-onset visual abnormalities in five, cerebral radionecrosis in the form of altered sensorium in four, generalized seizures in four, cognitive dysfunction in five, dementia in three and motor deficits in two patients. Magnetic resonance imaging (MRI)/CT of the brain was suggestive of radionecrosis in eight, cerebral oedema in three, cerebral atrophy in two and second neoplasia in one patient. Associated hormone deficiencies at presentation were hypogonadism in eight, hypoadrenalism in six, hypothyroidism in four and diabetes insipidus in one patient. Autopsy in two patients showed primitive neuroectodermal tumour (PNET) and brainstem radionecrosis in one, and a cystic lesion in the left frontal lobe following radionecrosis in the other. We conclude that RIBD have distinctive but varying clinical and radiological presentations. Diabetes insipidus and PNET as a second neoplastic

  14. Tunicamycin-induced unfolded protein response in the developing mouse brain

    International Nuclear Information System (INIS)

    Wang, Haiping; Wang, Xin; Ke, Zun-Ji; Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A.; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2015-01-01

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific

  15. Tunicamycin-induced unfolded protein response in the developing mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiping; Wang, Xin [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-Ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203 (China); Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Zhang, Zhuo; Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  16. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential.

    Science.gov (United States)

    Sardiñas, Gretel; Yero, Daniel; Climent, Yanet; Caballero, Evelin; Cobas, Karem; Niebla, Olivia

    2009-02-01

    The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.

  17. Treatment of surgical brain injury by immune tolerance induced by intrathymic and hepatic portal vein injection of brain antigens.

    Science.gov (United States)

    Yang, Weijian; Liu, Yong; Liu, Baolong; Tan, Huajun; Lu, Hao; Wang, Hong; Yan, Hua

    2016-08-24

    Surgical brain injury (SBI) defines complications induced by intracranial surgery, such as cerebral edema and other secondary injuries. In our study, intrathymic and hepatic portal vein injection of allogeneic myelin basic protein (MBP) or autogeneic brain cell suspensions were administered to a standard SBI model. Serum pro-inflammatory IL-2, anti-inflammatory IL-4 concentrations and the CD4(+)T/CD8(+)T ratio were measured at 1, 3, 7, 14 and 21 d after surgery to verify the establishment of immune tolerance. Furthermore, we confirmed neuroprotective effects by evaluating neurological scores at 1, 3, 7, 14 and 21 d after SBI. Anti-Fas ligand (FasL) immunohistochemistry and TUNEL assays of brain sections were tested at 21 d after surgery. Intrathymic injections of MBP or autogeneic brain cell suspensions functioned by both suppressing secondary inflammatory reactions and improving prognoses, whereas hepatic portal vein injections of autogeneic brain cell suspensions exerted a better effect than MBP. Intrathymic and hepatic portal vein injections of MBP had equal effects on reducing secondary inflammation and improving prognoses. Otherwise, hepatic portal vein injections of autogeneic brain cell suspensions had better outcomes than intrathymic injections of autogeneic brain cell suspensions. Moreover, the benefit of injecting antigens into the thymus was outweighed by hepatic portal vein injections.

  18. Extraretinal induced visual sensations during IMRT of the brain.

    Science.gov (United States)

    Wilhelm-Buchstab, Timo; Buchstab, Barbara Myrthe; Leitzen, Christina; Garbe, Stephan; Müdder, Thomas; Oberste-Beulmann, Susanne; Sprinkart, Alois Martin; Simon, Birgit; Nelles, Michael; Block, Wolfgang; Schoroth, Felix; Schild, Hans Heinz; Schüller, Heinrich

    2015-01-01

    We observed visual sensations (VSs) in patients undergoing intensity modulated radiotherapy (IMRT) of the brain without the beam passing through ocular structures. We analyzed this phenomenon especially with regards to reproducibility, and origin. Analyzed were ten consecutive patients (aged 41-71 years) with glioblastoma multiforme who received pulsed IMRT (total dose 60Gy) with helical tomotherapy (TT). A megavolt-CT (MVCT) was performed daily before treatment. VSs were reported and recorded using a triggered event recorder. The frequency of VSs was calculated and VSs were correlated with beam direction and couch position. Subjective patient perception was plotted on an 8x8 visual field (VF) matrix. Distance to the orbital roof (OR) from the first beam causing a VS was calculated from the Dicom radiation therapy data and MVCT data. During 175 treatment sessions (average 17.5 per patient) 5959 VSs were recorded and analyzed. VSs occurred only during the treatment session not during the MVCTs. Plotting events over time revealed patient-specific patterns. The average cranio-caudad extension of VS-inducing area was 63.4mm (range 43.24-92.1mm). The maximum distance between the first VS and the OR was 56.1mm so that direct interaction with the retina is unlikely. Data on subjective visual perception showed that VSs occurred mainly in the upper right and left quadrants of the VF. Within the visual pathways the highest probability for origin of VSs was seen in the optic chiasm and the optic tract (22%). There is clear evidence that interaction of photon irradiation with neuronal structures distant from the eye can lead to VSs.

  19. Extraretinal induced visual sensations during IMRT of the brain.

    Directory of Open Access Journals (Sweden)

    Timo Wilhelm-Buchstab

    Full Text Available We observed visual sensations (VSs in patients undergoing intensity modulated radiotherapy (IMRT of the brain without the beam passing through ocular structures. We analyzed this phenomenon especially with regards to reproducibility, and origin.Analyzed were ten consecutive patients (aged 41-71 years with glioblastoma multiforme who received pulsed IMRT (total dose 60Gy with helical tomotherapy (TT. A megavolt-CT (MVCT was performed daily before treatment. VSs were reported and recorded using a triggered event recorder. The frequency of VSs was calculated and VSs were correlated with beam direction and couch position. Subjective patient perception was plotted on an 8x8 visual field (VF matrix. Distance to the orbital roof (OR from the first beam causing a VS was calculated from the Dicom radiation therapy data and MVCT data. During 175 treatment sessions (average 17.5 per patient 5959 VSs were recorded and analyzed. VSs occurred only during the treatment session not during the MVCTs. Plotting events over time revealed patient-specific patterns. The average cranio-caudad extension of VS-inducing area was 63.4mm (range 43.24-92.1mm. The maximum distance between the first VS and the OR was 56.1mm so that direct interaction with the retina is unlikely. Data on subjective visual perception showed that VSs occurred mainly in the upper right and left quadrants of the VF. Within the visual pathways the highest probability for origin of VSs was seen in the optic chiasm and the optic tract (22%.There is clear evidence that interaction of photon irradiation with neuronal structures distant from the eye can lead to VSs.

  20. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    Science.gov (United States)

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Chronic stress-induced effects of corticosterone on brain: direct and indirect

    NARCIS (Netherlands)

    Dallman, M. F.; Akana, S. F.; Strack, A. M.; Scribner, K. S.; Pecoraro, N.; La Fleur, S. E.; Houshyar, H.; Gomez, F.

    2004-01-01

    Acutely, glucocorticoids act to inhibit stress-induced corticotrophin-releasing factor (CRF) and adrenocorticotrophic hormone (ACTH) secretion through their actions in brain and anterior pituitary (canonical feedback). With chronic stress, glucocorticoid feedback inhibition of ACTH secretion changes

  2. Efficacy of 2-APB (2-Aminoethyldiphenylborate) in Rescuing Neurons After Soman-Induced Brain Injury

    National Research Council Canada - National Science Library

    Ballough, Gerald P; Kan, Robert K; Nicholson, James D; Fath, Denise M; Tompkins, Christina P; Filbert, Margaret G

    2005-01-01

    Soman produces seizures and seizure-related brain damage (SRBD). It is well known that termination of seizures using anticonvulsant drug therapy is the most effective means of preventing soman-induced SRBD...

  3. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional

  4. Influence of radiation-induced apoptosis on development brain in molecular regulation

    International Nuclear Information System (INIS)

    Gu Guixiong

    2000-01-01

    An outline of current status on the influence of radiation on the development brain was given. Some genes as immediate early gene, Bcl-2 family, p53, heat shock protein and AT gene play an important regulation role in ionizing radiation-induced development brain cells apoptosis. And such biological factor as nerve growth factor, interleukin-1, tumor necrosis factor, basic fibroblast growth factor, transforming growth factor and so on have a vital protection function against ionizing radiation-induced cells apoptosis

  5. [Neisseria meningitidis urethritis: Two case reports].

    Science.gov (United States)

    Dubois, C; Liegeon, A-L; Fabbro, C; Truchetet, F

    2017-10-01

    Neisseria meningitidis (NM) is a commensal bacteria present in the oropharyngeal flora that causes invasive infections. There have been rarer reports of presence in the genital region. Herein, we present two cases of acute NM urethritis. Two men aged 30 and 31years, one of whom is homosexual and seropositive for HIV infection, presented urethral discharge which was diagnosed as acute urethritis. The unit through samples indicated the presence of NM of serogroups B and C. One of the antibiotic sensitivity tests revealed intermediate susceptibility to penicillin G and to amoxicillin. The clinical presentation of acute NM urethritis is non-specific, because of which urethral samples should be taken wherever acute urethritis is suspected. NM urethritis is infrequent and primarily affects men who have sex with men (MSM). Its current increase is due to unprotected oral-genital sexual practices. Due to the emergence of resistance to NM, antibiotic susceptibility testing should be carried out routinely to ensure appropriate therapy and prophylaxis. Cases of invasive serogroup C meningococcal infections have been recorded within the MSM population with hypothetical sexual port of entry. Thus, the French High Public Health Authority recommends vaccination against meningitis C in this population. Copyright © 2017. Published by Elsevier Masson SAS.

  6. Antimicrobial drug susceptibility of Neisseria meningitidis strains isolated from carriers

    Directory of Open Access Journals (Sweden)

    Dayamí García

    2000-06-01

    Full Text Available When it is necessary to determine the susceptibility of Neisseria meningitidis (Nm strains to antimicrobial drugs, it is important to consider that it should be analyzed in a double context. One of them related to the use of drugs in a specific medical treatment; and the other; to chemoprophylatic drugs, both with the same purpose: the accurate selection of the “in vivo” antimicrobial agent. This requires the study of the sensitivity and resistance of strains isolated in both carriers and patients. With the aim of further studying the behavior of the strains that currently circulate in Cuba, an antimicrobial drug susceptibility study was conducted in 90 strains isolated from carriers during the first half of 1998. The agar dilution method was used to determine the minimum inhibitory concentrations (MICs to: penicillin, ampicillin, rifampin, sulfadiazine, chloramphenicol, ciprofloxacin, ceftriaxone, cefotaxime. The study of the three latter drugs was done for the first time in our country. The search for β- lactamase-producer strains was also performed. There was a predominance of penicillin sensitive strains (82,2% with an intermediate sensitivity to ampicillin (57,8%, while 70% of the strains were sensitive to sulfadiazine. Regarding the rest of the antimicrobial drugs, 100% of the strains were sensitive. The paper shows the MICs for each drug as well as the phenotypic characteristics of the strains with the penicillin and sulfadiazine sensitivity and resistance patterns. No β-lactamase-producer strains were found.

  7. Albumin extravasation in bicuculline-induced blood-brain barrier dysfunction

    International Nuclear Information System (INIS)

    Persson, L.I.; Rosengren, L.E.; Johansson, B.B.

    1980-01-01

    The extravasation of endogeneous rat albumin and exogeneous 125 I-labeled human serum albumin was compared in rats subjected to bicuculline-induced blood-brain barrier dysfunction. The correlation between rocket immunoelectrophoretic assays of endogeneous rat albumin and 125 I-labeled human serum albumin, assayed by gamma scintillation counting, was good irrespective of whether 125 I-labeled albumin was studied in whole brain tissue or in brain homogenates. The ratio of brain to serum albumin was similar with the two assay methods. (author)

  8. Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling

    DEFF Research Database (Denmark)

    Westberg, Johan A; Serlachius, Martina; Lankila, Petri

    2007-01-01

    BACKGROUND AND PURPOSE: Exposure of animals for a few hours to moderate hypoxia confers relative protection against subsequent ischemic brain damage. This phenomenon, known as hypoxic preconditioning, depends on new RNA and protein synthesis, but its molecular mechanisms are poorly understood...... originally reported expression of mammalian STC-1 in brain neurons and showed that STC-1 guards neurons against hypercalcemic and hypoxic damage. METHODS: We treated neural Paju cells with IL-6 and measured the induction of STC-1 mRNA. In addition, we quantified the effect of hypoxic preconditioning on Stc-1...... mRNA levels in brains of wild-type and IL-6 deficient mice. Furthermore, we monitored the Stc-1 response in brains of wild-type and transgenic mice, overexpressing IL-6 in the astroglia, before and after induced brain injury. RESULTS: Hypoxic preconditioning induced an upregulated expression of Stc...

  9. Epidemiological markers in Neisseria meningitidis: an estimate of the performance of genotyping vs phenotyping

    DEFF Research Database (Denmark)

    Weis, N; Lind, I

    1998-01-01

    In order to estimate the performance of genotypic vs phenotypic characterization of Neisseria meningitidis, 2 methods, DNA fingerprinting and multilocus enzyme electrophoresis (MEE), were assessed as regards applicability, reproducibility and discriminating capacity. 50 serogroup B and 52 serogro......, and as applied in the study MEE was superior to DNA fingerprinting. Clusters of invasive strains were reliably identified by phenotyping alone, whereas determination of identity of carrier strains and an invasive strain required genotyping.......In order to estimate the performance of genotypic vs phenotypic characterization of Neisseria meningitidis, 2 methods, DNA fingerprinting and multilocus enzyme electrophoresis (MEE), were assessed as regards applicability, reproducibility and discriminating capacity. 50 serogroup B and 52 serogroup...... C Neisseria meningitidis strains from 96 patients with meningococcal disease and 22 serogroup C strains from healthy carriers were investigated. Both methods were 100% applicable to meningococcal strains and results of DNA fingerprinting as well as of MEE were reproducible. The number of types...

  10. Reversible brain inactivation induces discontinuous gas exchange in cockroaches.

    Science.gov (United States)

    Matthews, Philip G D; White, Craig R

    2013-06-01

    Many insects at rest breathe discontinuously, alternating between brief bouts of gas exchange and extended periods of breath-holding. The association between discontinuous gas exchange cycles (DGCs) and inactivity has long been recognised, leading to speculation that DGCs lie at one end of a continuum of gas exchange patterns, from continuous to discontinuous, linked to metabolic rate (MR). However, the neural hypothesis posits that it is the downregulation of brain activity and a change in the neural control of gas exchange, rather than low MR per se, which is responsible for the emergence of DGCs during inactivity. To test this, Nauphoeta cinerea cockroaches had their brains inactivated by applying a Peltier-chilled cold probe to the head. Once brain temperature fell to 8°C, cockroaches switched from a continuous to a discontinuous breathing pattern. Re-warming the brain abolished the DGC and re-established a continuous breathing pattern. Chilling the brain did not significantly reduce the cockroaches' MR and there was no association between the gas exchange pattern displayed by the insect and its MR. This demonstrates that DGCs can arise due to a decrease in brain activity and a change in the underlying regulation of gas exchange, and are not necessarily a simple consequence of low respiratory demand.

  11. Dose-dependent neuroprotective effect of enoxaparin on cold-induced traumatic brain injury.

    Science.gov (United States)

    Keskin, Ilknur; Gunal, M Yalcin; Ayturk, Nilufer; Kilic, Ulkan; Ozansoy, Mehmet; Kilic, Ertugrul

    2017-05-01

    Recent evidence exists that enoxaparin can reduce brain injury because of its anticoagulant activity. To investigate the potential therapeutic effect of enoxaparin on cold-induced traumatic brain injury, at 20 minutes after modeling, male BALB/c mouse models of cold-induced traumatic brain injury were intraperitoneally administered 3 and 10 mg/kg enoxaparin or isotonic saline solution. Twenty-four hours later, enoxaparin at 10 mg/kg greatly reduced infarct volume, decreased cell apoptosis in the cortex and obviously increased serum level of total antioxidant status. By contrast, administration of enoxaparin at 3 mg/kg did not lead to these changes. These findings suggest that enoxaparin exhibits neuroprotective effect on cold-induced traumatic brain injury in a dose-dependent manner.

  12. Fluctuations in Brain Temperature Induced by Lypopolysaccharides: Central and Peripheral Contributions

    Directory of Open Access Journals (Sweden)

    Jeremy S. Tang

    2010-01-01

    Full Text Available In this study, we examined changes in central (anterior-preoptic hypothalamus and peripheral (temporal muscle and facial skin temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS at low doses (1 and 10 μg/kg at thermoneutral conditions (28˚C. Recordings were made with high temporal resolution (5-s bin and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/ body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  13. Fluctuations in brain temperature induced by lipopolysaccharides: central and peripheral contributions.

    Science.gov (United States)

    Tang, Jeremy S; Kiyatkin, Eugene A

    2010-01-01

    In this study, we examined changes in central (anterior-preoptic hypothalamus) and peripheral (temporal muscle and facial skin) temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS) at low doses (1 and 10 μg/kg) at thermoneutral conditions (28°C). Recordings were made with high temporal resolution (5-s bin) and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle, and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose, and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min) suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  14. First genome report on novel sequence types of Neisseria meningitidis: ST12777 and ST12778.

    Science.gov (United States)

    Veeraraghavan, Balaji; Lal, Binesh; Devanga Ragupathi, Naveen Kumar; Neeravi, Iyyan Raj; Jeyaraman, Ranjith; Varghese, Rosemol; Paul, Miracle Magdalene; Baskaran, Ashtawarthani; Ranjan, Ranjini

    2018-03-01

    Neisseria meningitidis is an important causative agent of meningitis and/or sepsis with high morbidity and mortality. Baseline genome data on N. meningitidis, especially from developing countries such as India, are lacking. This study aimed to investigate the whole genome sequences of N. meningitidis isolates from a tertiary care centre in India. Whole-genome sequencing was performed using an Ion Torrent™ Personal Genome Machine™ (PGM) with 400-bp chemistry. Data were assembled de novo using SPAdes Genome Assembler v.5.0.0.0. Sequence annotation was performed through PATRIC, RAST and the NCBI PGAAP server. Downstream analysis of the isolates was performed using the Center for Genomic Epidemiology databases for antimicrobial resistance genes and sequence types. Virulence factors and CRISPR were analysed using the PubMLST database and CRISPRFinder, respectively. This study reports the whole genome shotgun sequences of eight N. meningitidis isolates from bloodstream infections. The genome data revealed two novel sequence types (ST12777 and ST12778), along with ST11, ST437 and ST6928. The virulence profile of the isolates matched their sequence types. All isolates were negative for plasmid-mediated resistance genes. To the best of our knowledge, this is the first report of ST11 and ST437 N. meningitidis isolates in India along with two novel sequence types (ST12777 and ST12778). These results indicate that the sequence types circulating in India are diverse and require continuous monitoring. Further studies strengthening the genome data on N. meningitidis are required to understand the prevalence, spread, exact resistance and virulence mechanisms along with serotypes. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  15. Sumoylation of hypoxia-inducible factor-1α ameliorates failure of brain stem cardiovascular regulation in experimental brain death.

    Directory of Open Access Journals (Sweden)

    Julie Y H Chan

    2011-03-01

    Full Text Available One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM. RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death.A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1, Ubc9 (the only known conjugating enzyme for the sumoylation pathway or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase.We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem

  16. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    Science.gov (United States)

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  17. Inhibitory effect of MgSO4 on calcium overload after radiation-induced brain injuries

    International Nuclear Information System (INIS)

    Tu Yu; Zhou Yuying; Wang Lili

    2005-01-01

    Objective: To explore the neuroprotective effect of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: A total of 60 mature Sprague-Dawley rats were randomly divided into 3 groups: blank control group, experimental control group and experimental therapy group. The whole brain of SD rats of experimental control group and experimental therapy group was irradiated to a dose of 20 Gy using 6 MeV electrons. Magnesium sulfate was injected intraperitoneally into the rats of experimental therapy group before and after irradiation for five times. At different time points (24 h, 7 days, 14 days, 30 days after irradiation), the brain tissue was taken. Plasma direct reading spectrography was used to measure the contents of Ca 2+ , Mg 2+ in brain tissue, and the percentage of brain water content was calculated with the wet-dry weight formula. Results: Compared with the blank control group, the percentage of brain water and content of Ca 2+ in brain of the experimental control group increased markedly (P 2+ decreased significantly (P 2+ in brain of the experimental therapy group were significantly lower than those of the experimental control group (P<0.05). Conclusion: Magnesium sulfate used in the early stage after irradiation can inhibit the calcium overload in rat brain , and attenuate brain edema and injuries. (authors)

  18. Brain anomalies induced by gamma irradiation in prenatal period

    International Nuclear Information System (INIS)

    Schmidt, S.L.

    1992-01-01

    Gamma irradiation has been utilized in order to produce cortical and callosal abnormalities. We have also checked for the presence of the aberrant longitudinal bundle in the brains of mice born acallosal due to prenatal irradiation is also checked. Pregnant mice were exposed to gamma irradiation from a 6 0 Co source at 16, 17 and 19 days of gestational age (E 16, E 17 and E 19) with total doses of 2 Gy and 3 Gy. At 60 days postnatal the offspring of irradiated animals were intra cardiac perfused, the brains were removed from the cranio and cut into coronal or para sagittal sections. (author)

  19. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.

    Science.gov (United States)

    Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2017-01-01

    The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.

  20. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    Science.gov (United States)

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  1. Large Cluster of Neisseria meningitidis Urethritis in Columbus, Ohio, 2015.

    Science.gov (United States)

    Bazan, Jose A; Turner, Abigail Norris; Kirkcaldy, Robert D; Retchless, Adam C; Kretz, Cecilia B; Briere, Elizabeth; Tzeng, Yih-Ling; Stephens, David S; Maierhofer, Courtney; Del Rio, Carlos; Abrams, A Jeanine; Trees, David L; Ervin, Melissa; Licon, Denisse B; Fields, Karen S; Roberts, Mysheika Williams; Dennison, Amanda; Wang, Xin

    2017-07-01

    Neisseria meningitidis (Nm) is a Gram-negative diplococcus that normally colonizes the nasopharynx and rarely infects the urogenital tract. On Gram stain of urethral exudates, Nm can be misidentified as the more common sexually transmitted pathogen Neisseria gonorrhoeae. In response to a large increase in cases of Nm urethritis identified among men presenting for screening at a sexually transmitted disease clinic in Columbus, Ohio, we investigated the epidemiologic characteristics of men with Nm urethritis and the molecular and phylogenetic characteristics of their Nm isolates. The study was conducted between 1 January and 18 November 2015. Seventy-five Nm urethritis cases were confirmed by biochemical and polymerase chain reaction testing. Men with Nm urethritis were a median age of 31 years (interquartile range [IQR] = 24-38) and had a median of 2 sex partners in the last 3 months (IQR = 1-3). Nm cases were predominantly black (81%) and heterosexual (99%). Most had urethral discharge (91%), reported oral sex with a female in the last 12 months (96%), and were treated with a ceftriaxone-based regimen (95%). A minority (15%) also had urethral chlamydia coinfection. All urethral Nm isolates were nongroupable, ST-11 clonal complex (cc11), ET-15, and clustered together phylogenetically. Urethral Nm isolates were similar by fine typing (PorA P1.5-1,10-8, PorB 2-2, FetA F3-6), except 2, which had different PorB types (2-78 and 2-52). Between January and November 2015, 75 urethritis cases due to a distinct Nm clade occurred among primarily black, heterosexual men in Columbus, Ohio. Future urogenital Nm infection studies should focus on pathogenesis and modes of sexual transmission. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. Genomic Epidemiology of Hypervirulent Serogroup W, ST-11 Neisseria meningitidis.

    Science.gov (United States)

    Mustapha, Mustapha M; Marsh, Jane W; Krauland, Mary G; Fernandez, Jorge O; de Lemos, Ana Paula S; Dunning Hotopp, Julie C; Wang, Xin; Mayer, Leonard W; Lawrence, Jeffrey G; Hiller, N Luisa; Harrison, Lee H

    2015-10-01

    Neisseria meningitidis is a leading bacterial cause of sepsis and meningitis globally with dynamic strain distribution over time. Beginning with an epidemic among Hajj pilgrims in 2000, serogroup W (W) sequence type (ST) 11 emerged as a leading cause of epidemic meningitis in the African 'meningitis belt' and endemic cases in South America, Europe, Middle East and China. Previous genotyping studies were unable to reliably discriminate sporadic W ST-11 strains in circulation since 1970 from the Hajj outbreak strain (Hajj clone). It is also unclear what proportion of more recent W ST-11 disease clusters are caused by direct descendants of the Hajj clone. Whole genome sequences of 270 meningococcal strains isolated from patients with invasive meningococcal disease globally from 1970 to 2013 were compared using whole genome phylogenetic and major antigen-encoding gene sequence analyses. We found that all W ST-11 strains were descendants of an ancestral strain that had undergone unique capsular switching events. The Hajj clone and its descendants were distinct from other W ST-11 strains in that they shared a common antigen gene profile and had undergone recombination involving virulence genes encoding factor H binding protein, nitric oxide reductase, and nitrite reductase. These data demonstrate that recent acquisition of a distinct antigen-encoding gene profile and variations in meningococcal virulence genes was associated with the emergence of the Hajj clone. Importantly, W ST-11 strains unrelated to the Hajj outbreak contribute a significant proportion of W ST-11 cases globally. This study helps illuminate genomic factors associated with meningococcal strain emergence and evolution.

  3. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results.

  4. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism

    DEFF Research Database (Denmark)

    Tanriverdi, F; Agha, A; Aimaretti, G

    2011-01-01

    Traumatic brain injury (TBI)-induced hypopituitarism remains a relevant medical problem, because it may affect a significant proportion of the population. In the last decade important studies have been published investigating pituitary dysfunction after TBI. Recently, a group of experts gathered...... and revisited the topic of TBI-induced hypopituitarism. During the 2-day meeting, the main issues of this topic were presented and discussed, and current understanding and management of TBI-induced hypopituitarism are summarized here....

  5. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism.

    LENUS (Irish Health Repository)

    Tanriverdi, F

    2011-01-01

    Traumatic brain injury (TBI)-induced hypopituitarism remains a relevant medical problem, because it may affect a significant proportion of the population. In the last decade important studies have been published investigating pituitary dysfunction after TBI. Recently, a group of experts gathered and revisited the topic of TBI-induced hypopituitarism. During the 2-day meeting, the main issues of this topic were presented and discussed, and current understanding and management of TBI-induced hypopituitarism are summarized here.

  6. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    Directory of Open Access Journals (Sweden)

    O’neil W. Guthrie

    2016-01-01

    Full Text Available Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures.

  7. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    Science.gov (United States)

    Guthrie, O'neil W.; Wong, Brian A.; McInturf, Shawn M.; Reboulet, James E.; Ortiz, Pedro A.; Mattie, David R.

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures. PMID:26885406

  8. Changes in reward-induced brain activation in opiate addicts

    NARCIS (Netherlands)

    Martin-Soelch, C; Chevalley, AF; Kunig, G; Missimer, J; Magyar, S; Mino, A; Schultz, W; Leenders, KL

    2001-01-01

    Many studies indicate a role of the cerebral dopaminergic reward system in addiction. Motivated by these findings, we examined in opiate addicts whether brain regions involved in the reward circuitry also react to human prototypical rewards. We measured regional cerebral blood flow (rCBF) with

  9. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction.

    Science.gov (United States)

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures.

  10. Microwave hyperthermia-induced blood-brain barrier alterations

    International Nuclear Information System (INIS)

    Lin, J.C.; Lin, M.F.

    1982-01-01

    We have studied the interaction of microwaves with the blood-brain barrier in Wistar rats. Indwelling catheters were placed in the femoral vein. Evans blue in isotonic saline was used as a visual indicator of barrier permeation. Irradiation with pulsed 2450-MHz microwaves for 20 min at average power densities of 0.5 to 2600 mW/cm 2 , which resulted in average specific absorption rages (SARs) of 0.04 to 200 mW/g in the brain, did not produce staining, except in regions that normally are highly permeable. When the incident power density was increased to 3000 mW/cm 2 (SAR of 240 mW/g), extravasation of Evans blue could be seen in the cortex, hippocampus, and midbrain. The rectal temperature, as monitored by a copper-constantan thermocouple, showed a maximum increase of less than 1.0/sup o/C. the brain temperature recorded in a similar group of animals using a non-field-perturbing thermistor exceeded 43/sup o/C. At the higher power density the extravasation depended on the irradition and euthanization times. In one series of experiments, rats were irradiated at 3000 mW/cm 2 for 5, 10, 15, and 20 min. Immediately after irradiation all except the 5-min animals exhibited increased permeability in some regions of the brain. Brains of rats euthanized 30 min after irradiation were free of Evans blue, while those euthanized 10 and 20 min postirradiation showed significant dye staining but with less intensity than those euthanized immediately after irradiation

  11. Mechanical injury induces brain endothelial-derived microvesicle release: Implications for cerebral vascular injury during traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Allison M. Andrews

    2016-02-01

    Full Text Available It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and mechanotransduction. However, our understanding of vascular remodeling following traumatic brain injury (TBI remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs, such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury. Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB, which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24 and 48 hrs. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 hrs post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing

  12. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    Science.gov (United States)

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  13. Retractor-induced brain shift compensation in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  14. Spontaneous and light-induced photon emission from intact brains of chick embryos

    Institute of Scientific and Technical Information of China (English)

    张锦珠; 于文斗; 孙彤

    1997-01-01

    Photon emission (PE) and light-induced photon emission(LPE) of intact brains isolated from chick embryos have been measured by using the single photon counting device. Experimental results showed that the intensi-ty level of photon emission was detected to be higher from intact brain than from the medium in which the brain was immerged during measuring, and the emission intensity was related to the developmental stages, the healthy situation of the measured embryos, and the freshness of isolated brains as well. After white light illumination, a short-life de-layed emission from intact brains was observed, and its relaxation behavior followed a hyperbolic rather than an expo-nential law. According to the hypothesis of biophoton emission originating from a delocalized coherent electromagnetic field and Frohlich’s idea of coherent long-range interactions in biological systems, discussions were made on the signifi-cance of photon emission in studying cell communication, biological regulation, living system’

  15. Elimination of zinc-65 from the brain under kainate-induced seizures.

    Science.gov (United States)

    Takeda, Atsushi; Hirate, Maki; Oku, Naoto

    2004-04-01

    On the basis of the previous evidence that 65Zn concentrations in the brain of EL (epilepsy) mice was affected by induction of seizures, 65Zn movement in the brain was quantitatively evaluated in ddY mice treated with kainate. Six days after intravenous injection of 65ZnCl2, mice were intraperitoneally injected with kainate (10 mg/kg x 6 times in 2 weeks). Myoclonic jerks were observed during treatment with kainate. Twenty days after 65Zn injection, 65Zn distribution in the brain was compared between the kainite-treated and control mice. 65Zn distribution in the brain of the kainate-treated mice was overall lower than in the control mice. 65Zn concentration was significantly decreased in the frontal cortex, hippocampal CA1, thalamus and hypothalamus by treatment with kainate. These results demonstrate that kainate-induced seizures are linked to decreased zinc concentrations in the brain.

  16. Rapid Laboratory Identification of Neisseria meningitidis Serogroup C as the Cause of an Outbreak - Liberia, 2017.

    Science.gov (United States)

    Patel, Jaymin C; George, Josiah; Vuong, Jeni; Potts, Caelin C; Bozio, Catherine; Clark, Thomas A; Thomas, Jerry; Schier, Joshua; Chang, Arthur; Waller, Jessica L; Diaz, Maureen H; Whaley, Melissa; Jenkins, Laurel T; Fuller, Serena; Williams, Desmond E; Redd, John T; Arthur, Ray R; Taweh, Fahn; Vera Walker, Yatta; Hardy, Patrick; Freeman, Maxwell; Katawera, Victoria; Gwesa, Gulu; Gbanya, Miatta Z; Clement, Peter; Kohar, Henry; Stone, Mardia; Fallah, Mosoka; Nyenswah, Tolbert; Winchell, Jonas M; Wang, Xin; McNamara, Lucy A; Dokubo, E Kainne; Fox, LeAnne M

    2017-10-27

    On April 25, 2017, a cluster of unexplained illness and deaths among persons who had attended a funeral during April 21-22 was reported in Sinoe County, Liberia (1). Using a broad initial case definition, 31 cases were identified, including 13 (42%) deaths. Twenty-seven cases were from Sinoe County (1), and two cases each were from Grand Bassa and Monsterrado counties, respectively. On May 5, 2017, initial multipathogen testing of specimens from four fatal cases using the Taqman Array Card (TAC) assay identified Neisseria meningitidis in all specimens. Subsequent testing using direct real-time polymerase chain reaction (PCR) confirmed N. meningitidis in 14 (58%) of 24 patients with available specimens and identified N. meningitidis serogroup C (NmC) in 13 (54%) patients. N. meningitidis was detected in specimens from 11 of the 13 patients who died; no specimens were available from the other two fatal cases. On May 16, 2017, the National Public Health Institute of Liberia and the Ministry of Health of Liberia issued a press release confirming serogroup C meningococcal disease as the cause of this outbreak in Liberia.

  17. Survivors of septic shock caused by Neisseria meningitidis in childhood: psychosocial outcomes in young adulthood

    NARCIS (Netherlands)

    Vermunt, Lindy C.; Buysse, Corinne M.; Joosten, Koen F.; Duivenvoorden, Hugo J.; Hazelzet, Jan A.; Verhulst, Frank C.; Utens, Elisabeth M.

    2011-01-01

    To investigate long-term psychosocial outcomes in young adults who survived septic shock caused by Neisseria meningitidis (meningococcal septic shock) during childhood. A cross-sectional study. The psychological investigation took place in the department of Child and Adolescent Psychiatry of the

  18. Survivors of septic shock caused by Neisseria meningitidis in childhood : Psychosocial outcomes in young adulthood

    NARCIS (Netherlands)

    Vermunt, Lindy C.; Buysse, Corinne M.; Joosten, Koen F.; Duivenvoorden, Hugo J.; Hazelzet, Jan A.; Verhulst, Frank C.; Utens, Elisabeth M.

    Objective: To investigate long-term psychosocial outcomes in young adults who survived septic shock caused by Neisseria meningitidis (meningococcal septic shock) during childhood. Design: A cross-sectional study. Setting: The psychological investigation took place in the department of Child and

  19. A first meningococcal meningitis case caused by serogroup Ⅹ Neisseria meningitidis strains in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; UANG Ying-chun; ZHANG Tie-gang; HE Jing-guo; WU Jiang; CHEN Li-juan; LIU Jun-feng; PANG Xing-huo; YANG Jie; SHAO Zhu-jun

    2008-01-01

    @@ Neisseria meningitidis is the leading cause of bacterial meningitis and classified into 13 serogroups based on the immunological reactivity of the capsular polysaccharide.1 Serogroups A,B,C,W135 and Y are the most common causes of meningitis.2

  20. Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis

    NARCIS (Netherlands)

    Zhu, P.; van der Ende, A.; Falush, D.; Brieske, N.; Morelli, G.; Linz, B.; Popovic, T.; Schuurman, I. G.; Adegbola, R. A.; Zurth, K.; Gagneux, S.; Platonov, A. E.; Riou, J. Y.; Caugant, D. A.; Nicolas, P.; Achtman, M.

    2001-01-01

    The genetic variability at six polymorphic loci was examined within a global collection of 502 isolates of subgroup III, serogroup A Neisseria meningitidis. Nine "genoclouds" were identified, consisting of genotypes that were isolated repeatedly plus 48 descendent genotypes that were isolated

  1. Comparison of commercial diagnostic tests for identification of serogroup antigens of Neisseria meningitidis

    NARCIS (Netherlands)

    van der Ende, A.; Schuurman, I. G.; Hopman, C. T.; Fijen, C. A.; Dankert, J.

    1995-01-01

    In the study that is described the sensitivities and specificities of three commercial tests and the standard Reference Laboratory test, used since 1961, to identify Neisseria meningitidis serogroups were compared. The tests marketed by Difco, Murex/Wellcome, and Sanofi/Pasteur showed overall

  2. Towards an improved Neisseria meningitidis B vaccine: vesicular PorA formulations

    NARCIS (Netherlands)

    Arigita Maza, C. (Carmen)

    2003-01-01

    There is a great need for vaccines against Neisseria meningitidis serogroup B. This is especially important in Western European countries, were approximately two thirds of the cases of meningococcal disease can be attributed to serogroup B strains. Against this serogroup, traditional vaccines based

  3. Multiple mechanisms of phase variation of PorA in Neisseria meningitidis

    NARCIS (Netherlands)

    van der Ende, A.; Hopman, C. T.; Dankert, J.

    2000-01-01

    Previously, we reported that PorA expression in Neisseria meningitidis is modulated by variation in the length of the homopolymeric tract of guanidine residues between the -35 and -10 regions of the promoter or by deletion of porA. To reveal additional mechanisms of variation in PorA expression, the

  4. Celulitis por Neisseria meningitidis: comunicación de un caso

    OpenAIRE

    Lissarrague, Sabina; Bernstein, Judith Celina; Schell, Celia María; Stagnaro, J. P.; De Luca, María Marta; López, M.; Basualdo Farjat, Juan Ángel; Sparo, Mónica

    2017-01-01

    Objetivo: comunicar un caso de celulitis por Neisseria meningitidis en muslo izquierdo en un lactante atendido en el Hospital de Niños del Municipio de Tandil, Provincia de Buenos Aires e investigar la portación familiar de esta bacteria.

  5. Genome sequence of Neisseria meningitidis serogroup B strain H44/76

    NARCIS (Netherlands)

    Piet, J. R.; Huis in 't Veld, R. A. G.; van Schaik, B. D. C.; van Kampen, A. H. C.; Baas, F.; van de Beek, D.; Pannekoek, Y.; van der Ende, A.

    2011-01-01

    Neisseria meningitidis is an obligate human pathogen. While it is a frequent commensal of the upper respiratory tract, in some individuals the bacterium spreads to the bloodstream, causing meningitis and/or sepsis, which are serious conditions with high morbidity and mortality. Here we report the

  6. The iron-regulated transcriptome and proteome of Neisseria meningitidis serogroup C

    Czech Academy of Sciences Publication Activity Database

    Basler, Marek; Linhartová, Irena; Halada, Petr; Novotná, Jana; Bezoušková, Silvia; Osička, Radim; Weiser, Jaroslav; Vohradský, Jiří; Šebo, Peter

    2006-01-01

    Roč. 6, č. 23 (2006), s. 6194-6206 ISSN 1615-9853 R&D Projects: GA ČR GA310/04/0804; GA MZe 1G46068 Institutional research plan: CEZ:AV0Z50200510 Keywords : iron regulation * Neisseria meningitidis * proteome Subject RIV: EE - Microbiology, Virology Impact factor: 5.735, year: 2006

  7. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    Directory of Open Access Journals (Sweden)

    Hong Sjölinder

    Full Text Available Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  8. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    Science.gov (United States)

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-11-18

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  9. Olfactory Nerve—A Novel Invasion Route of Neisseria meningitidis to Reach the Meninges

    Science.gov (United States)

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-01-01

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival. PMID:21124975

  10. Combined compared to dissociated oral and intestinal sucrose stimuli induce different brain hedonic processes

    Science.gov (United States)

    Clouard, Caroline; Meunier-Salaün, Marie-Christine; Meurice, Paul; Malbert, Charles-Henri; Val-Laillet, David

    2014-01-01

    The characterization of brain networks contributing to the processing of oral and/or intestinal sugar signals in a relevant animal model might help to understand the neural mechanisms related to the control of food intake in humans and suggest potential causes for impaired eating behaviors. This study aimed at comparing the brain responses triggered by oral and/or intestinal sucrose sensing in pigs. Seven animals underwent brain single photon emission computed tomography (99mTc-HMPAO) further to oral stimulation with neutral or sucrose artificial saliva paired with saline or sucrose infusion in the duodenum, the proximal part of the intestine. Oral and/or duodenal sucrose sensing induced differential cerebral blood flow changes in brain regions known to be involved in memory, reward processes and hedonic (i.e., pleasure) evaluation of sensory stimuli, including the dorsal striatum, prefrontal cortex, cingulate cortex, insular cortex, hippocampus, and parahippocampal cortex. Sucrose duodenal infusion only and combined sucrose stimulation induced similar activity patterns in the putamen, ventral anterior cingulate cortex and hippocampus. Some brain deactivations in the prefrontal and insular cortices were only detected in the presence of oral sucrose stimulation. Finally, activation of the right insular cortex was only induced by combined oral and duodenal sucrose stimulation, while specific activity patterns were detected in the hippocampus and parahippocampal cortex with oral sucrose dissociated from caloric load. This study sheds new light on the brain hedonic responses to sugar and has potential implications to unravel the neuropsychological mechanisms underlying food pleasure and motivation. PMID:25147536

  11. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  12. Altered brain network modules induce helplessness in major depressive disorder.

    Science.gov (United States)

    Peng, Daihui; Shi, Feng; Shen, Ting; Peng, Ziwen; Zhang, Chen; Liu, Xiaohua; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Fang, Yiru; Shen, Dinggang

    2014-10-01

    The abnormal brain functional connectivity (FC) has been assumed to be a pathophysiological aspect of major depressive disorder (MDD). However, it is poorly understood, regarding the underlying patterns of global FC network and their relationships with the clinical characteristics of MDD. Resting-state functional magnetic resonance imaging data were acquired from 16 first episode, medication-naïve MDD patients and 16 healthy control subjects. The global FC network was constructed using 90 brain regions. The global topological patterns, e.g., small-worldness and modularity, and their relationships with depressive characteristics were investigated. Furthermore, the participant coefficient and module degree of MDD patients were measured to reflect the regional roles in module network, and the impairment of FC was examined by network based statistic. Small-world property was not altered in MDD. However, MDD patients exhibited 5 atypically reorganized modules compared to the controls. A positive relationship was also found among MDD patients between the intra-module I and helplessness factor evaluated via the Hamilton Depression Scale. Specifically, eight regions exhibited the abnormal participant coefficient or module degree, e.g., left superior orbital frontal cortex and right amygdala. The decreased FC was identified among the sub-network of 24 brain regions, e.g., frontal cortex, supplementary motor area, amygdala, thalamus, and hippocampus. The limited size of MDD samples precluded meaningful study of distinct clinical characteristics in relation to aberrant FC. The results revealed altered patterns of brain module network at the global level in MDD patients, which might contribute to the feelings of helplessness. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Altered functional brain connectivity in patients with visually induced dizziness

    Directory of Open Access Journals (Sweden)

    Angelique Van Ombergen

    2017-01-01

    Conclusions: We found alterations in the visual and vestibular cortical network in VID patients that could underlie the typical VID symptoms such as a worsening of their vestibular symptoms when being exposed to challenging visual stimuli. These preliminary findings provide the first insights into the underlying functional brain connectivity in VID patients. Future studies should extend these findings by employing larger sample sizes, by investigating specific task-based paradigms in these patients and by exploring the implications for treatment.

  14. Recovery of brain abscess-induced stuttering after neurosurgical intervention.

    Science.gov (United States)

    Sudo, Daisuke; Doutake, Youichi; Yokota, Hidenori; Watanabe, Eiju

    2018-05-12

    Stuttering occurs in approximately 5% of all children and 1% of adults. One type, neurogenic stuttering, is usually attributable to strokes or other structural damages to the brain areas that are responsible for language fluency. Here, we present the first case of neurogenic stuttering caused by a brain abscess. The patient was a 60-year-old man admitted for a seizure and administered an anticonvulsant, after which he began stuttering. MRI revealed a brain abscess in the left frontal lobe that extended to the dorsolateral prefrontal cortex (BA (Brodmann's area) 9 and 46), frontal eye field (BA 8) and premotor cortex and supplementary motor area (BA 6). After neurosurgical drainage and antibiotic treatment, the symptoms had resolved. This case is unique in that the therapeutic effects and localisation of the cause of stuttering were rapidly identified, allowing for a more accurate description of the neural circuitry related to stuttering. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    Science.gov (United States)

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Standardization of Neisseria meningitidis Serogroup B Colorimetric Serum Bactericida Assay

    Science.gov (United States)

    Rodríguez, Tamara; Lastre, Miriam; Cedré, Barbara; Campo, Judith del; Bracho, Gustavo; Zayas, Caridad; Taboada, Carlos; Díaz, Miriam; Sierra, Gustavo; Pérez, Oliver

    2002-01-01

    The correlate of protection for serogroup B meningococci is not currently known, but for serogroup C it is believed to be the serum bactericidal assay (SBA). The current SBAs are labor intensive and the variations in protocols among different laboratories make interpretation of results difficult. A colorimetric SBA (cSBA), based on the ability of Neisseria meningitidis serogroup B to consume glucose, leading to acid production, was standardized by using group B strain Cu385-83 as the target. The cSBA results were compared to those obtained for a traditional colony-counting microassay (mSBA). Glucose and bromocresol purple pH indicator were added to the medium in order to estimate growth of cSBA target cell survivors through color change. Different variants of the assay parameters were optimized: growth of target cells (Mueller Hinton agar plates), target cell number (100 CFU/per well), and human complement source used at a final concentration of 25%. After the optimization, three other group B strains (H44/76, 490/91, and 511/91) were used as targets for the cSBA. The selection of the assay parameters and the standardization of cSBA were done with 13 sera from vaccinated volunteers. The titers were determined as the higher serum dilution that totally inhibited the bacterial growth marked by the color invariability of the pH indicator. This was detected visually as well as spectrophotometrically and was closely related to a significant difference in the growth of target cell survivors determined using Student’s t test. Intralaboratory reproducibility was ±1 dilution. The correlation between bactericidal median titers and specific immunoglobulin G serum concentration by enzyme immunoassay was high (r = 0.910, P < 0.01). The bactericidal titers generated by the cSBA and the mSBA were nearly identical, and there was a high correlation between the two assays (r = 0.974, P < 0.01). The standardized cSBA allows easy, fast, and efficient evaluation of samples. PMID

  17. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  18. Thermal dosimetry studies of ultrasonically induced hyperthermia in normal dog brain and in experimental brain tumors

    International Nuclear Information System (INIS)

    Britt, R.H.; Pounds, D.W.; Stuart, J.S.; Lyons, B.E.; Saxer, E.L.

    1984-01-01

    In a series of 16 acute experiments on pentobarbital anesthetized dogs, thermal distributions generated by ultrasonic heating using a 1 MHz PZT transducer were compared with intensity distributions mapped in a test tank. Relatively flat distributions from 1 to 3 cm have been mapped in normal dog brain using ''shaped'' intensity distributions generated from ultrasonic emission patterns which are formed by the interaction between compressional, transverse and flexural modes activated within the crystal. In contrast, these same intensity distributions generated marked temperature variations in 3 malignant brain tumors presumably due to variations in tumor blood flow. The results of this study suggest that a practical clinical system for uniform heating of large tumor volumes with varying volumes and geometries is not an achievable goal. The author's laboratory is developing a scanning ultrasonic rapid hyperthermia treatment system which will be able to sequentially heat small volume of tumor tissue either to temperatures which will sterilize tumor or to a more conventional thermal dose. Time-temperature studies of threshold for thermal damage in normal dog brain are currently in progress

  19. The spreading of focal brain edema induced by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Ferszt, R.; Neu, S.; Cervos-Navarro, J.; Sperner, J.

    1978-01-01

    Focal brain edema limited to one cerebral hemisphere was produced by ultraviolet irradiation of the exposed cortex. Tissue water content was determined by the gravimetric method which allows microsampling. Therefore, the spread of edema around the small necrotic area be mapped more precisely than by determination of dry weight which calls for larger samples. As early as 30 min after irradiation, hyperemia and swelling of the brain are observed under the operating microscope. This correlates with venous stasis, hyperemia, and broadened perivascular spaces around venules and large capillaries accompanied by a marked rise in the specific weigth of the tissue. After 4h an edema front can be observed spreading from the perinerotic zone in which there is a marked rise in endothelial cell vesicular activity. Edema reaches maximum levels in the deep white matter at 48h post irradiation with normalisation of the tissue water content after 96h. The velocity at which the edema front spreads from the cortex to the periventricular area lies in the range of 0.25mm/h. Edema reabsorption coincides with signs of retrograde micropinocytosis in endothelial cells. (orig./AJ) [de

  20. Spreading of focal brain edema induced by ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferszt, R; Neu, S; Cervos-Navarro, J; Sperner, J [Freie Univ. Berlin (Germany, F.R.). Inst. fuer Neuropathologie

    1978-01-01

    Focal brain edema limited to one cerebral hemisphere was produced by ultraviolet irradiation of the exposed cortex. Tissue water content was determined by the gravimetric method which allows microsampling. Therefore, the spread of edema around the small necrotic area be mapped more precisely than by determination of dry weight which calls for larger samples. As early as 30 min after irradiation, hyperemia and swelling of the brain are observed under the operating microscope. This correlates with venous stasis, hyperemia, and broadened perivascular spaces around venules and large capillaries accompanied by a marked rise in the specific weigth of the tissue. After 4h an edema front can be observed spreading from the perinerotic zone in which there is a marked rise in endothelial cell vesicular activity. Edema reaches maximum levels in the deep white matter at 48h post irradiation with normalisation of the tissue water content after 96h. The velocity at which the edema front spreads from the cortex to the periventricular area lies in the range of 0.25mm/h. Edema reabsorption coincides with signs of retrograde micropinocytosis in endothelial cells.

  1. Tartrazine induced neurobiochemical alterations in rat brain sub-regions.

    Science.gov (United States)

    Bhatt, Diksha; Vyas, Krati; Singh, Shakuntala; John, P J; Soni, Inderpal

    2018-03-01

    Tartrazine is a synthetic lemon yellow azo dye primarily used as a food coloring. The present study aimed to screen the neurobiochemical effects of Tartrazine in Wistar rats after administering the Acceptable Daily Intake (ADI) level. Tartrazine (7.5 mg/kg b.w.) was administered to 21 day old weanling rats through oral gavage once daily for 40 consecutive days. On 41st day, the animals were sacrificed and brain sub regions namely, frontal cortex, corpus striatum, hippocampus and cerebellum were used to determine activities of anti-oxidant enzymes viz. Superoxide Dismutase (SOD), Catalase (CAT), Glutathione-Stransferase (GST), Glutathione Reductase (GR) and Glutathione Peroxidase (GPx) and levels of lipid peroxides using Thio-barbituric Acid Reactive Substance (TBARS) assay. Our investigation showed a significant decrease in SOD and CAT activity, whereas there occurred a decline in GST and GR activity with an increase in GPx activity to counteract the oxidative damage caused by significantly increased levels of lipid peroxides. The possible mechanism of this oxidative damage might be attributed to the production of sulphanilc acid as a metabolite in azofission of tartrazine. It may be concluded that the ADI levels of food azo dyes adversely affect and alter biochemical markers of brain tissue and cause oxidative damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Erotic and disgust-inducing pictures--differences in the hemodynamic responses of the brain.

    Science.gov (United States)

    Stark, Rudolf; Schienle, Anne; Girod, Cornelia; Walter, Bertram; Kirsch, Peter; Blecker, Carlo; Ott, Ulrich; Schäfer, Axel; Sammer, Gebhard; Zimmermann, Mark; Vaitl, Dieter

    2005-09-01

    The aim of this fMRI study was to explore brain structures that are involved in the processing of erotic and disgust-inducing pictures. The stimuli were chosen to trigger approach and withdrawal tendencies, respectively. By adding sadomasochistic (SM) scenes to the design and examining 12 subjects with and 12 subjects without sadomasochistic preferences, we introduced a picture category that induced erotic pleasure in one sample and disgust in the other sample. Since we also presented neutral pictures, all subjects viewed pictures of four different categories: neutral, disgust-inducing, erotic, and SM erotic pictures. The analysis indicated that several brain structures are commonly involved in the processing of disgust-inducing and erotic pictures (occipital cortex, hippocampus, thalamus, and the amygdala). The ventral striatum was specifically activated when subjects saw highly sexually arousing pictures. This indicates the involvement of the human reward system during the processing of visual erotica.

  3. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression.

    Science.gov (United States)

    Layé, S; Gheusi, G; Cremona, S; Combe, C; Kelley, K; Dantzer, R; Parnet, P

    2000-07-01

    The present study was designed to determine the role of endogenous brain interleukin (IL)-1 in the anorexic response to lipopolysaccharide (LPS). Intraperitoneal administration of LPS (5-10 microgram/mouse) induced a dramatic, but transient, decrease in food intake, associated with an enhanced expression of proinflammatory cytokine mRNA (IL-1beta, IL-6, and tumor necrosis factor-alpha) in the hypothalamus. This dose of LPS also increased plasma levels of IL-1beta. Intracerebroventricular pretreatment with IL-1 receptor antagonist (4 microgram/mouse) attenuated LPS-induced depression of food intake and totally blocked the LPS-induced enhanced expression of proinflammatory cytokine mRNA measured in the hypothalamus 1 h after treatment. In contrast, LPS-induced increases in plasma levels of IL-1beta were not altered. These findings indicate that endogenous brain IL-1 plays a pivotal role in the development of the hypothalamic cytokine response to a systemic inflammatory stimulus.

  4. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  5. Detection of Neisseria meningitidis in a paediatric patient with septic arthritis using multiplexed diagnostic PCR targeting meningitis/encephalitis (ME).

    LENUS (Irish Health Repository)

    O'Sullivan, Donnchadh

    2018-03-23

    Neisseria meningitidis is associated with meningitis and septicemia. Septic meningococcal arthritis is relatively uncommon and its diagnosis associated with clinical and microbiological challenges. Early recognition and treatment is required to prevent joint destruction.

  6. Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats.

    Science.gov (United States)

    Rakhunde, Purushottam B; Saher, Sana; Ali, Syed Ayaz

    2014-01-01

    Brain stroke is a leading cause of death without effective treatment. Feronia limonia have potent antioxidant activity and can be proved as neuroprotective against ischemia-reperfusion induced brain injury. We studied the effect of methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) and Vitamin E as reference standard drug on 30 min induced ischemia, followed by reperfusion by testing the neurobehavioral tests such as neurodeficit score, rota rod test, hanging wire test, beam walk test and elevated plus maze. The biochemical parameters, which were measured in animals brain were catalase, superoxide dismutase (SOD), malondialdehyde and nitric oxide in control and treated rats. The methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) treated groups showed a statistically significant improvement in the neurobehavioral parameters such as motor performance (neurological status, significant increase in grasping ability, forelimb strength improvement in balance and co-ordination). The biochemical parameters in the brains of rats showed a significant reduction in the total nitrite (P < 0.01) and lipid peroxidation (P < 0.01), also a significant enhanced activity of enzymatic antioxidants such as catalase (P < 0.01) and SOD (P < 0.05). These observations suggest the neuroprotective and antioxidant activity of F. limonia and Vitamin E on ischemia reperfusion induced brain injury and may require further evaluation.

  7. Radiated-induced brain injury: advance of molecular mechanisms and neuroprotection strategies

    International Nuclear Information System (INIS)

    Gao Bo; Wang Xuejian

    2007-01-01

    The underlying mechanisms of radiated-induced brain injury (RBI) remain incompletely clear. Pathophysiological data indicate that the development of RBI involves complex and dynamic interactions between neurons, glia, and vascular endothelial cells within thecentral nervous system (CNS). Radiated-induced injury in the CNS can be modulated by the therapies directed at altering steps in the cascade of events leading to the clinical expression of normal tissue injury. Some neuroprotective strategies are also addressed in the review. (authors)

  8. Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain

    Directory of Open Access Journals (Sweden)

    Marina E. Emborg

    2013-03-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies.

  9. Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis

    OpenAIRE

    SPRATT, BG; ZHANG, QY; JONES, DM; HUTCHISON, A; BRANNIGAN, JA; DOWSON, CG

    1989-01-01

    Non-beta-lactamase-producing, penicillin-resistant strains of Neisseria meningitidis produce altered forms of penicillin-binding protein 2 that have decreased affinity for penicillin. The sequence of the penicillin-binding protein 2 gene (penA) from a penicillin-resistant strain of N. meningitidis was compared to the sequence of the same gene from penicillin-sensitive strains and from penicillin-sensitive and penicillin-resistant strains of Neisseria gonorrhoeae. The penA genes from penicilli...

  10. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization.

    Directory of Open Access Journals (Sweden)

    Daniel Y Joh

    Full Text Available Successful treatment of brain tumors such as glioblastoma multiforme (GBM is limited in large part by the cumulative dose of Radiation Therapy (RT that can be safely given and the blood-brain barrier (BBB, which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs. GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3. Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.

  11. Using non-invasive brain stimulation to augment motor training-induced plasticity

    Directory of Open Access Journals (Sweden)

    Pascual-Leone Alvaro

    2009-03-01

    Full Text Available Abstract Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS. These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date.

  12. Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment with Verapamil.

    Science.gov (United States)

    Jackson, David A; Michael, Trevin; Vieira de Abreu, Adriana; Agrawal, Rahul; Bortolato, Marco; Fisher, Simon J

    2018-05-03

    People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Since calcium influx may mediate brain damage, we tested the hypothesis that the calcium channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Ten-week-old Sprague-Dawley rats were randomly assigned to one of three treatments; 1) control hyperinsulinemic (200 mU.kg -1 min -1 ) euglycemic (80-100mg/dl) clamps (n=14), 2) hyperinsulinemic hypoglycemic (10-15mg/dl) clamps (n=16), or 3) hyperinsulinemic hypoglycemic clamps followed by a single treatment with verapamil (20mg/kg) (n=11). As compared to euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus and cortex, by 16-fold and 14-fold, respectively. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil following severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage. © 2018 by the American Diabetes Association.

  13. Constraint-induced movement therapy for children with acquired brain injury

    DEFF Research Database (Denmark)

    Schmidt Pedersen, Kristina; Pallesen, H.; Kristensen, H. K.

    2016-01-01

    An estimated 125-137 Danish children with acquired brain injury (ABI) require rehabilitation annually, 30-40 of these at a highly specialized level. Constraint-induced movement therapy (CIMT) has shown significant effects in increasing function in children with cerebral palsy. More knowledge of h...

  14. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    El-Akabawy, Gehan; El-Kholy, Wael

    2014-05-01

    Diabetes mellitus results in neuronal damage caused by increased intracellular glucose leading to oxidative stress. Recent evidence revealed the potential of ginger for reducing diabetes-induced oxidative stress markers. The aim of this study is to investigate, for the first time, whether the antioxidant properties of ginger has beneficial effects on the structural brain damage associated with diabetes. We investigated the observable neurodegenerative changes in the frontal cortex, dentate gyrus, and cerebellum after 4, 6, and 8 weeks of streptozotocin (STZ)-induced diabetes in rats and the effect(s) of ginger (500 mg/kg/day). Sections of frontal cortex, dentate gyrus, and cerebellum were stained with hematoxylin and eosin and examined using light microscopy. In addition, quantitative immunohistochemical assessments of the expression of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, caspase-3, glial fibrillary acidic protein (GFAP), acetylcholinesterase (AChE), and Ki67 were performed. Our results revealed a protective role of ginger on the diabetic brain via reducing oxidative stress, apoptosis, and inflammation. In addition, this study revealed that the beneficial effect of ginger was also mediated by modulating the astroglial response to the injury, reducing AChE expression, and improving neurogenesis. These results represent a new insight into the beneficial effects of ginger on the structural alterations of diabetic brain and suggest that ginger might be a potential therapeutic strategy for the treatment of diabetic-induced damage in brain. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Bitter taste stimuli induce differential neural codes in mouse brain.

    Directory of Open Access Journals (Sweden)

    David M Wilson

    Full Text Available A growing literature suggests taste stimuli commonly classified as "bitter" induce heterogeneous neural and perceptual responses. Here, the central processing of bitter stimuli was studied in mice with genetically controlled bitter taste profiles. Using these mice removed genetic heterogeneity as a factor influencing gustatory neural codes for bitter stimuli. Electrophysiological activity (spikes was recorded from single neurons in the nucleus tractus solitarius during oral delivery of taste solutions (26 total, including concentration series of the bitter tastants quinine, denatonium benzoate, cycloheximide, and sucrose octaacetate (SOA, presented to the whole mouth for 5 s. Seventy-nine neurons were sampled; in many cases multiple cells (2 to 5 were recorded from a mouse. Results showed bitter stimuli induced variable gustatory activity. For example, although some neurons responded robustly to quinine and cycloheximide, others displayed concentration-dependent activity (p<0.05 to quinine but not cycloheximide. Differential activity to bitter stimuli was observed across multiple neurons recorded from one animal in several mice. Across all cells, quinine and denatonium induced correlated spatial responses that differed (p<0.05 from those to cycloheximide and SOA. Modeling spatiotemporal neural ensemble activity revealed responses to quinine/denatonium and cycloheximide/SOA diverged during only an early, at least 1 s wide period of the taste response. Our findings highlight how temporal features of sensory processing contribute differences among bitter taste codes and build on data suggesting heterogeneity among "bitter" stimuli, data that challenge a strict monoguesia model for the bitter quality.

  16. Effect of MgSO4 on the contents of Ca2+ in brain cell and NO in brain tissue of rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Yuan Wenjia; Cui Fengmei; Liu Ping; He Chao; Tu Yu; Wang Lili

    2009-01-01

    The work is to explore the protection of magnesium sulfate(MgSO 4 ) on radiation-induced acute brain injury. Thirty six mature Sprague-Dawley(SD) rats were randomly divided into 3 groups of control, experimental control and experimental therapy group. The whole brains of SD rats of experimental control and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. MgSO 4 was injected into the abdomen of experimental therapy rats group 1 day before, immediately and continue for 5 days after irradiation respectively. The brain tissues were taken on 3, 10, 17 and 24 d after irradiation. Ca 2+ content in brain cell was measured by laser scanning confocal microscopy, and the NO content in brain tissue was detected by the method of nitric acid reductase. Compared with the blank control group, the contents of Ca 2+ in brain cell and NO in brain tissue of the experimental control group increase (P 4 used in early stage can inhibit the contents of Ca 2+ in brain cell and NO in brain tissue after radiation-induced acute brain injury. It means that MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  17. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    Science.gov (United States)

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.

  18. Changes in reward-induced brain activation in opiate addicts.

    Science.gov (United States)

    Martin-Soelch, C; Chevalley, A F; Künig, G; Missimer, J; Magyar, S; Mino, A; Schultz, W; Leenders, K L

    2001-10-01

    Many studies indicate a role of the cerebral dopaminergic reward system in addiction. Motivated by these findings, we examined in opiate addicts whether brain regions involved in the reward circuitry also react to human prototypical rewards. We measured regional cerebral blood flow (rCBF) with H(2)(15)O positron emission tomography (PET) during a visuo-spatial recognition task with delayed response in control subjects and in opiate addicts participating in a methadone program. Three conditions were defined by the types of feedback: nonsense feedback; nonmonetary reinforcement; or monetary reward, received by the subjects for a correct response. We found in the control subjects rCBF increases in regions associated with the meso-striatal and meso-corticolimbic circuits in response to both monetary reward and nonmonetary reinforcement. In opiate addicts, these regions were activated only in response to monetary reward. Furthermore, nonmonetary reinforcement elicited rCBF increases in limbic regions of the opiate addicts that were not activated in the control subjects. Because psychoactive drugs serve as rewards and directly affect regions of the dopaminergic system like the striatum, we conclude that the differences in rCBF increases between controls and addicts can be attributed to an adaptive consequence of the addiction process.

  19. Experimental Traumatic Brain Injury Induces Bone Loss in Rats.

    Science.gov (United States)

    Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J

    2016-12-01

    Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.

  20. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat.

    Science.gov (United States)

    Fujikawa, Takahiko; Soya, Hideaki; Tamashiro, Kellie L K; Sakai, Randall R; McEwen, Bruce S; Nakai, Naoya; Ogata, Masato; Suzuki, Ikukatsu; Nakashima, Kunio

    2004-04-01

    Stress causes hypocalcemia and ulcerogenesis in rats. In rats under stressful conditions, a rapid and transient increase in circulating prolactin (PRL) is observed, and this enhanced PRL induces PRL receptors (PRLR) in the choroid plexus of rat brain. In this study we used restraint stress in water to elucidate the mechanism by which PRLR in the rat brain mediate the protective effect of PRL against stress-induced hypocalcemia and ulcerogenesis. We show that rat PRL acts through the long form of PRLR in the hypothalamus. This is followed by an increase in the long form of PRLR mRNA expression in the choroid plexus of the brain, which provides protection against restraint stress in water-induced hypocalcemia and gastric erosions. We also show that PRL induces the expression of PRLR protein and corticotropin-releasing factor mRNA in the paraventricular nucleus. These results suggest that the PRL levels increase in response to stress, and it moves from the circulation to the cerebrospinal fluid to act on the central nervous system and thereby plays an important role in helping to protect against acute stress-induced hypocalcemia and gastric erosions.

  1. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  2. Oxidative stress in immature brain following experimentally-induced seizures

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava

    2013-01-01

    Roč. 62, Suppl.1 (2013), S39-S48 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR(CZ) GA309/08/0292; GA ČR(CZ) GAP303/10/0999; GA ČR(CZ) GAP302/10/0971; GA MŠk(CZ) LL1204 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : immature rats * experimentally-induced seizures * oxidative stress * mitochondrial dysfunction * antioxidant defense Subject RIV: FH - Neurology Impact factor: 1.487, year: 2013

  3. [Expression of aquaporin-4 during brain edema in rats with thioacetamide-induced acute encephalopathy].

    Science.gov (United States)

    Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei

    2011-09-27

    To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.

  4. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Science.gov (United States)

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO2 changes in male C57BL/6 mice (16–20g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO2 to 64%. More importantly, pO2 did not recover fully to control levels even 24 hrs after administration of a single dose of METH. and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO2, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. PMID:24412707

  5. Combined compared to dissociated oral and intestinal sucrose stimuli induce different brain hedonic processes

    Directory of Open Access Journals (Sweden)

    Caroline eClouard

    2014-08-01

    Full Text Available The characterization of brain networks contributing to the processing of oral and/or intestinal sugar signals in a relevant animal model might help to understand the neural mechanisms related to the control of food intake in humans and suggest potential causes for impaired eating behaviors. This study aimed at comparing the brain responses triggered by oral and/or intestinal sucrose sensing in pigs. Seven animals underwent brain single photon emission computed tomography (99mTc-HMPAO further to oral stimulation with neutral or sucrose artificial saliva paired with saline or sucrose infusion in the duodenum, the proximal part of the intestine. Oral and/or duodenal sucrose sensing induced differential cerebral blood flow (CBF changes in brain regions known to be involved in memory, reward processes and hedonic (i.e. pleasure evaluation of sensory stimuli, including the dorsal striatum, prefrontal cortex, cingulate cortex, insular cortex, hippocampus and parahippocampal cortex. Sucrose duodenal infusion only and combined sucrose stimulation induced similar activity patterns in the putamen, ventral anterior cingulate cortex and hippocampus. Some brain deactivations in the prefrontal and insular cortices were only detected in the presence of oral sucrose stimulation. Finally, activation of the right insular cortex was only induced by combined oral and duodenal sucrose stimulation, while specific activity patterns were detected in the hippocampus and parahippocampal cortex with oral sucrose dissociated from caloric load. This study sheds new light on the brain hedonic responses to sugar and has potential implications to unravel the neuropsychological mechanisms underlying food pleasure and motivation.

  6. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  7. Antioxidant potential properties of mushroom extract (Agaricus bisporus) against aluminum-induced neurotoxicity in rat brain.

    Science.gov (United States)

    Waly, Mostafa I; Guizani, Nejib

    2014-09-01

    Aluminum (Al) is an environmental toxin that induces oxidative stress in neuronal cells. Mushroom cultivar extract (MCE) acted as a potent antioxidant agent and protects against cellular oxidative stress in human cultured neuronal cells. This study aimed to investigate the neuroprotective effect of MCE against Al-induced neurotoxicity in rat brain. Forty Sprague-Dawley rats were divided into 4 groups (10 rats per group), control group, MCE-fed group, Al-administered group and MCE/Al-treated group. Animals were continuously fed ad-libitum their specific diets for 4 weeks. At the end of the experiment, all rats were sacrificed and the brain tissues were homogenized and examined for biochemical measurements of neurocellular oxidative stress indices [glutathione (GSH), Total Antioxidant Capacity (TAC), antioxidant enzymes and oxidized dichlorofluorescein (DCF)]. Al-administration caused inhibition of antioxidant enzymes and a significant decrease in GSH and TAC levels, meanwhile it positively increased cellular oxidized DCF level, as well as Al concentration in brain tissues. Feeding animals with MCE had completely offset the Al-induced oxidative stress and significantly restrict the Al accumulation in brain tissues of Al-administered rats. The results obtained suggest that MCE acted as a potent dietary antioxidant and protects against Al-mediated neurotoxicity, by abrogating neuronal oxidative stress.

  8. Chronic exposure to Tributyltin induces brain functional damage in juvenile common carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Li

    Full Text Available The aim of the present study was to investigate the effect of Tributyltin (TBT on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase, Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters. The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.

  9. Chronic Exposure to Tributyltin Induces Brain Functional Damage in Juvenile Common Carp (Cyprinus carpio)

    Science.gov (United States)

    Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao

    2015-01-01

    The aim of the present study was to investigate the effect of Tributyltin (TBT) on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase), Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide) in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters). The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity. PMID:25879203

  10. Chronic exposure to Tributyltin induces brain functional damage in juvenile common carp (Cyprinus carpio).

    Science.gov (United States)

    Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao

    2015-01-01

    The aim of the present study was to investigate the effect of Tributyltin (TBT) on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase), Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide) in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters). The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.

  11. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Pari, Leelavinothan; Murugavel, Ponnusamy

    2007-01-01

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P + K + -ATPase, Mg 2+ -ATPase and Ca 2+ -ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  12. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    Directory of Open Access Journals (Sweden)

    Marco Sifringer

    2015-01-01

    Full Text Available Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable.

  13. Videogame training strategy-induced change in brain function during a complex visuomotor task.

    Science.gov (United States)

    Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F

    2012-07-01

    Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Delayed radiation-induced necrosis of the brain stem; A case report

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi (National Kure Hospital, Hiroshima (Japan)); Uozumi, Toru

    1993-03-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author).

  15. Brain levels of N-acylethanolamine phospholipids in mice during pentylenetetrazol-induced seizure

    DEFF Research Database (Denmark)

    Moesgaard, B.; Hansen, H.H.; Petersen, G.

    2003-01-01

    occur in response to seizure activity. Therefore, we investigated the effect of pentylenetetrazol (PTZ)-induced seizures in PTZ-kindled mice on the level of NAPE in the brain. Male NMRI mice were kindled with PTZ injections 3 times/wk, thereby developing clonic seizures in response to PTZ. Mice were...... killed within 30 min after the clonic seizure on the test day (12th injection) and the brains were collected. Eight species of NAPE were analyzed as the glycerophospho-N-acylethanolamines by high-performance liquid chromatography-coupled electrospray ionization mass spectrometry. No effect of the PTZ...... accumulate during seizure....

  16. Antidepressant effects of insulin in streptozotocin induced diabetic mice: Modulation of brain serotonin system.

    Science.gov (United States)

    Gupta, Deepali; Kurhe, Yeshwant; Radhakrishnan, Mahesh

    2014-04-22

    Diabetes is a persistent metabolic disorder, which often leads to depression as a result of the impaired neurotransmitter function. Insulin is believed to have antidepressant effects in depression associated with diabetes; however, the mechanism underlying the postulated effect is poorly understood. In the present study, it is hypothesized that insulin mediates an antidepressant effect in streptozotocin (STZ) induced diabetes in mice through modulation of the serotonin system in the brain. Therefore, the current study investigated the antidepressant effect of insulin in STZ induced diabetes in mice and insulin mediated modulation in the brain serotonin system. In addition, the possible pathways that lead to altered serotonin levels as a result of insulin administration were examined. Experimentally, Swiss albino mice of either sex were rendered diabetic by a single intraperitoneal (i.p.) injection of STZ. After one week, diabetic mice received a single dose of either insulin or saline or escitalopram for 14days. Thereafter, behavioral studies were conducted to test the behavioral despair effects using forced swim test (FST) and tail suspension test (TST), followed by biochemical estimations of serotonin concentrations and monoamine oxidase (MAO) activity in the whole brain content. The results demonstrated that, STZ treated diabetic mice exhibited an increased duration of immobility in FST and TST as compared to non-diabetic mice, while insulin treatment significantly reversed the effect. Biochemical assays revealed that administration of insulin attenuated STZ treated diabetes induced neurochemical alterations as indicated by elevated serotonin levels and decreased MAO-A and MAO-B activities in the brain. Collectively, the data indicate that insulin exhibits antidepressant effects in depression associated with STZ induced diabetes in mice through the elevation of the brain serotonin levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Fournier’s Gangrene in a Heterosexual Man: A Complication of Neisseria meningitidis Urethritis

    Directory of Open Access Journals (Sweden)

    Tariq A. Khemees

    2012-01-01

    Full Text Available A 55-year-old heterosexual male presented to the emergency department with a symptomatology consistent with urethritis and Fournier’s gangrene. Urethral swab and operative tissue cultures were positive for coagulase-negative Staphylococcus and an intracellular Gram-negative diplococcus. The latter was initially thought to be Neisseria gonorrhea; however, DNA sequencing technique confirmed it to be Neisseria meningitidis. The patient required three separate surgical debridements to control widespread necrotizing infection. Following documentation of sterile wound healing with appropriate antibiotics, four reconstructive surgeries were necessary to manage the resultant wound defects. To our knowledge, Neisseria meningitidis as a causative organism in Fournier’s gangrene has not been reported in the literature.

  18. Epidemiological markers in Neisseria meningitidis: an estimate of the performance of genotyping vs phenotyping

    DEFF Research Database (Denmark)

    Weis, N; Lind, I

    1998-01-01

    In order to estimate the performance of genotypic vs phenotypic characterization of Neisseria meningitidis, 2 methods, DNA fingerprinting and multilocus enzyme electrophoresis (MEE), were assessed as regards applicability, reproducibility and discriminating capacity. 50 serogroup B and 52 serogroup...... C Neisseria meningitidis strains from 96 patients with meningococcal disease and 22 serogroup C strains from healthy carriers were investigated. Both methods were 100% applicable to meningococcal strains and results of DNA fingerprinting as well as of MEE were reproducible. The number of types...... defined by DNA fingerprinting and MEE as compared to that defined by phenotypic characteristics (serogroup, serotype, serosubtype and sulphonamide resistance) was as follows: for serogroup B strains from patients, 11 and 12 vs 8; for serogroup C strains from patients, 10 and 15 vs 8; and for serogroup C...

  19. Resurgence of Neisseria meningitidis serogroup W ST-11 (cc11) in Madagascar, 2015-2016.

    Science.gov (United States)

    Rasoanandrasana, Saïda; Raberahona, Mihaja; Milenkov, Milen; Rakotomahefa Narison, Mbolanirina Lala; Ranaivo Rabetokotany, Felana; Rakotovao, Luc; Randria, Mamy Jean de Dieu; Hong, Eva; Paranhos-Baccalà, Glaucia; Taha, Muhamed-Kheir; Rakoto-Andrianarivelo, Mala

    2017-02-01

    The resurgence of invasive meningococcal disease caused by Neisseria meningitidis serogroup W with sequence type ST-11 (cc11) was observed in Madagascar in 2015-2016. Three cases were investigated in this study. Molecular characterization of the strains suggests the local transmission of a single genotype that may have been circulating for years. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Enhancement of recovery of Neisseria meningitidis by gelatin in blood culture media.

    OpenAIRE

    Pai, C H; Sorger, S

    1981-01-01

    The efficacy of gelatin for the recovery of Neisseria meningitidis from blood cultures was evaluated in a clinical setting. The organism was isolated from seven patients with meningococcal infections in blood culture media containing 1% gelatin. In contrast, only two blood cultures from these patients were positive in media without gelatin (P less than 0.05). Gelatin did not influence the recovery of other organisms isolated during this study. Conventional blood culture media may be supplemen...

  1. Deep sequencing whole transcriptome exploration of the σE regulon in Neisseria meningitidis.

    Directory of Open Access Journals (Sweden)

    Robert Antonius Gerhardus Huis in 't Veld

    Full Text Available Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ(70-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σ(E regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σ(E regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR in which σ(E is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σ(E operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σ(E dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides.

  2. Crystallographic characterization of the outer membrane lipoprotein FrpD from Neisseria meningitidis

    Czech Academy of Sciences Publication Activity Database

    Sviridova, Ekaterina; Bumba, Ladislav; Řezáčová, Pavlína; Veverka, Václav; Šebo, Peter; Kutá-Smatanová, Ivana

    2015-01-01

    Roč. 22, č. 1 (2015), s. 57-58 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] R&D Projects: GA ČR(CZ) GAP207/11/0717; GA MŠk(CZ) LC06010 Institutional support: RVO:61388963 ; RVO:67179843 ; RVO:61388971 Keywords : FrpD * Neisseria meningitidis Subject RIV: CE - Biochemistry

  3. Backbone resonance assignments of the outer membrane lipoprotein FrpD from Neisseria meningitidis

    Czech Academy of Sciences Publication Activity Database

    Bumba, Ladislav; Sviridova, E.; Kutá-Smatanová, Ivana; Řezáčová, Pavlína; Veverka, Václav

    2014-01-01

    Roč. 8, č. 1 (2014), s. 53-55 ISSN 1874-2718 R&D Projects: GA ČR(CZ) GAP207/11/0717; GA MŠk(CZ) LK11205 Institutional support: RVO:61388963 ; RVO:61388971 ; RVO:67179843 Keywords : Neisseria meningitidis * FrpC * FrpD * backbone assignments * NMR * iron-regulated protein Subject RIV: CE - Biochemistry Impact factor: 0.760, year: 2014

  4. The Neisseria meningitidis Outer Membrane Lipoprotein FrpD Binds the RTX Protein FrpC

    Czech Academy of Sciences Publication Activity Database

    Procházková, Kateřina; Osička, Radim; Linhartová, Irena; Halada, Petr; Šulc, Miroslav; Šebo, Peter

    2005-01-01

    Roč. 280, č. 5 (2005), s. 3251-3258 ISSN 0021-9258 R&D Projects: GA ČR GA310/02/1448 Grant - others:Howard Hughes Medical Institute International Research Scholarship Award 55000334 Institutional research plan: CEZ:AV0Z50200510 Keywords : neisseria meningitidis * FrpD * FrpC Subject RIV: EE - Microbiology, Virology Impact factor: 5.854, year: 2005

  5. Hyperbaric Oxygen Therapy Can Induce Angiogenesis and Regeneration of Nerve Fibers in Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Sigal Tal

    2017-10-01

    Full Text Available Background: Recent clinical studies in stroke and traumatic brain injury (TBI victims suffering chronic neurological injury present evidence that hyperbaric oxygen therapy (HBOT can induce neuroplasticity.Objective: To assess the neurotherapeutic effect of HBOT on prolonged post-concussion syndrome (PPCS due to TBI, using brain microstructure imaging.Methods: Fifteen patients afflicted with PPCS were treated with 60 daily HBOT sessions. Imaging evaluation was performed using Dynamic Susceptibility Contrast-Enhanced (DSC and Diffusion Tensor Imaging (DTI MR sequences. Cognitive evaluation was performed by an objective computerized battery (NeuroTrax.Results: HBOT was initiated 6 months to 27 years (10.3 ± 3.2 years from injury. After HBOT, DTI analysis showed significantly increased fractional anisotropy values and decreased mean diffusivity in both white and gray matter structures. In addition, the cerebral blood flow and volume were increased significantly. Clinically, HBOT induced significant improvement in the memory, executive functions, information processing speed and global cognitive scores.Conclusions: The mechanisms by which HBOT induces brain neuroplasticity can be demonstrated by highly sensitive MRI techniques of DSC and DTI. HBOT can induce cerebral angiogenesis and improve both white and gray microstructures indicating regeneration of nerve fibers. The micro structural changes correlate with the neurocognitive improvements.

  6. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    International Nuclear Information System (INIS)

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-01-01

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3β (GSK-3β), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3β, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3β, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways

  7. Nasopharyngeal Carriage Rate and Serogroups of Neisseria meningitidis in Turkish recruits upon entry to the military

    Directory of Open Access Journals (Sweden)

    Ahmet Basustaoglu

    2011-08-01

    Full Text Available Aim: The aim of this study was to determine nasopharyngeal carriage rate and serogroup of Neisseria meningitidis strains isolated from Turkish recruits upon entry to the military. Material and Methods: Nasopharyngeal swab samples were obtained from 1995 soldiers and were inoculated immediately on BBL-modified Thayer-Martin medium plates. The plates were examined for the presence of colonies showing the typical morphology of N. meningitidis. Suspect colonies were screened for oxidase reactivity, and positive colonies were Gram stained. If Gram-negative diplococci were present, a biochemical profile by the API NH system was used for confirmation. Serogrouping of the meningococcal isolates was performed by a slide agglutination technique. Findings: The nasopharyngeal carriage rate of N. meningitidis was found to be 4.2% (n=83. Of these meningococci, 15.6% (n=13 were serogroup Y, 10.8% (n=9 were serogroup W-135, 9.6% (n=8 were serogroup C, 6.1% (n=5 were serogroup B, 2.4% (n=2 were serogroup A. The 46 isolates (55.4% were detected as nonserogroupable. Conclusion: Since serogroup Y and W-135 are predominant in this study population, it was suggest that Turkish recruits should be vaccinated by quadrivalent vaccine (A,C,Y, and W-135 upon the military instead of A+C polysaccharide vaccine and now quadrivalent vaccine has been carried out. [TAF Prev Med Bull 2011; 10(4.000: 447-450

  8. Structural and Biochemical Characterization of the Oxidoreductase NmDsbA3 from Neisseria meningitidis

    Energy Technology Data Exchange (ETDEWEB)

    Vivian, Julian P.; Scoullar, Jessica; Robertson, Amy L.; Bottomley, Stephen P.; Horne, James; Chin, Yanni; Wielens, Jerome; Thompson, Philip E.; Velkov, Tony; Piek, Susannah; Byres, Emma; Beddoe, Travis; Wilce, Matthew C.J.; Kahler, Charlene M.; Rossjohn, Jamie; Scanlon, Martin J. (UWA); (Monash)

    2009-09-02

    DsbA is an enzyme found in the periplasm of Gram-negative bacteria that catalyzes the formation of disulfide bonds in a diverse array of protein substrates, many of which are involved in bacterial pathogenesis. Although most bacteria possess only a single essential DsbA, Neisseria meningitidis is unusual in that it possesses three DsbAs, although the reason for this additional redundancy is unclear. Two of these N. meningitidis enzymes (NmDsbA1 and NmDsbA2) play an important role in meningococcal attachment to human epithelial cells, whereas NmDsbA3 is considered to have a narrow substrate repertoire. To begin to address the role of DsbAs in the pathogenesis of N. meningitidis, we have determined the structure of NmDsbA3 to 2.3-{angstrom} resolution. Although the sequence identity between NmDsbA3 and other DsbAs is low, the NmDsbA3 structure adopted a DsbA-like fold. Consistent with this finding, we demonstrated that NmDsbA3 acts as a thiol-disulfide oxidoreductase in vitro and is reoxidized by Escherichia coli DsbB (EcDsbB). However, pronounced differences in the structures between DsbA3 and EcDsbA, which are clustered around the active site of the enzyme, suggested a structural basis for the unusual substrate specificity that is observed for NmDsbA3.

  9. Cognitive tutoring induces widespread neuroplasticity and remediates brain function in children with mathematical learning disabilities.

    Science.gov (United States)

    Iuculano, Teresa; Rosenberg-Lee, Miriam; Richardson, Jennifer; Tenison, Caitlin; Fuchs, Lynn; Supekar, Kaustubh; Menon, Vinod

    2015-09-30

    Competency with numbers is essential in today's society; yet, up to 20% of children exhibit moderate to severe mathematical learning disabilities (MLD). Behavioural intervention can be effective, but the neurobiological mechanisms underlying successful intervention are unknown. Here we demonstrate that eight weeks of 1:1 cognitive tutoring not only remediates poor performance in children with MLD, but also induces widespread changes in brain activity. Neuroplasticity manifests as normalization of aberrant functional responses in a distributed network of parietal, prefrontal and ventral temporal-occipital areas that support successful numerical problem solving, and is correlated with performance gains. Remarkably, machine learning algorithms show that brain activity patterns in children with MLD are significantly discriminable from neurotypical peers before, but not after, tutoring, suggesting that behavioural gains are not due to compensatory mechanisms. Our study identifies functional brain mechanisms underlying effective intervention in children with MLD and provides novel metrics for assessing response to intervention.

  10. Sequential analysis: manganese, catecholamines, and L-dopa induced dyskinesia. [Cat's brain

    Energy Technology Data Exchange (ETDEWEB)

    Papavasiliou, P S; Miller, S T; Cotzias, G C; Kraner, H W; Hsieh, R S

    1975-01-01

    The paper specifies methodology for the sequential determination of manganese and catecholamines in selfsame brain samples and shows correlations between them. Small samples were obtained from five regions of brain of cats that had received either saline or levodopa. The doses of levodopa were varied so that although all animals reacted, some developed dyskinesia while others did not. Each sample was first analyzed nondestructively for manganese and then destructively for dopa and dopamine; thus errors inherent in analyzing separate samples, due to the structural heterogeneity of the brain, were avoided. Statistically significant correlations were found (1) between levodopa-induced dyskinesia and the concentrations of dopamine and manganese in some of the regions analysed, and (2) between the concentrations of dopamine and of manganese in the caudates of the cats receiving the highest doses of levodopa. (auth)

  11. Bevacizumab for the Treatment of Gammaknife Radiosurgery-Induced Brain Radiation Necrosis.

    Science.gov (United States)

    Ma, Yifang; Zheng, Chutian; Feng, Yiping; Xu, Qingsheng

    2017-09-01

    Radiation necrosis is one of the complications of Gammaknife radiosurgery. The traditional treatment of radiation necrosis carries a high risk of failure, Bevacizumab is an antiangiogenic monoclonal antibody against vascular endothelial growth factor, a known mediator of cerebral edema. It can be used to successfully treat brain radiation necrosis. Two patients with a history of small cell lung cancer presented with metastatic disease to the brain. They underwent Gammaknife radiosurgery to brain metastases. Several months later, magnetic resonance imaging showed radiation necrosis with significant surrounding edema. The patients had a poor response to treatment with dexamethasone. They were eventually treated with bevacizumab (5 mg/kg every 2 weeks, 7.5 mg/kg every 3 weeks, respectively), and the treatment resulted in significant clinical and radiographic improvement. Bevacizumab can be successfully used to treat radiation necrosis induced by Gammaknife radiosurgery in patients with cerebral metastases. It is of particular benefit in patients with poor reaction to corticosteroids and other medications.

  12. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    Science.gov (United States)

    Jo, Janggun; Yang, Xinmai

    2011-09-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  13. Short-term and long-term antibody response by mice after immunization against Neisseria meningitidis B or diphtheria toxoid

    Directory of Open Access Journals (Sweden)

    G.P. Silva

    2013-02-01

    Full Text Available Serogroup B Neisseria meningitidis (MenB is a major cause of invasive disease in early childhood worldwide. The only MenB vaccine available in Brazil was produced in Cuba and has shown unsatisfactory efficacy when used to immunize millions of children in Brazil. In the present study, we compared the specific functional antibody responses evoked by the Cuban MenB vaccine with a standard vaccine against diphtheria (DTP: diphtheria, tetanus, pertussis after primary immunization and boosting of mice. The peak of bactericidal and opsonic antibody titers to MenB and of neutralizing antibodies to diphtheria toxoid (DT was reached after triple immunization with the MenB vaccine or DTP vaccine, respectively. However, 4 months after immunization, protective DT antibody levels were present in all DTP-vaccinated mice but in only 20% of the mice immunized against MenB. After 6 months of primary immunization, about 70% of animals still had protective neutralizing DT antibodies, but none had significant bactericidal antibodies to MenB. The booster doses of DTP or MenB vaccines produced a significant antibody recall response, suggesting that both vaccines were able to generate and maintain memory B cells during the period studied (6 months post-triple immunization. Therefore, due to the short duration of serological memory induced by the MenB vaccine (VA-MENGOC-BC® vaccine, its use should be restricted to outbreaks of meningococcal disease.

  14. Enfermedad por meningococo, Neisseria meningitidis: perspectiva epidemiológica, clínica y preventiva Meningococcal disease caused by Neisseria meningitidis: epidemiological, clinical, and preventive perspectives

    Directory of Open Access Journals (Sweden)

    Lourdes Almeida-González

    2004-10-01

    Full Text Available La meningitis bacteriana continúa siendo uno de los grandes problemas de la salud pública mundial. En particular, la infección por Neisseria meningitidis afecta tanto a países desarrollados como subdesarrollados, y se presenta en formas endémicas y epidémicas. La enfermedad meningocóccica se puede manifestar clínicamente no sólo como meningitis, sino con cuadros fulminantes de meningococcemia. La persistencia de N. meningitidis se debe al gran porcentaje de portadores y a la dinámica de transmisión de la bacteria. Aproximadamente 500 millones de personas en el mundo son portadoras de N. meningitidis en la nasofaringe. Los factores de transmisiblidad identificados han sido el tabaquismo activo o pasivo, la presencia de infecciones virales del tracto respiratorio superior, épocas de sequía, y el hacinamiento. Por lo anterior, se han descrito brotes de enfermedad meningocóccica en cuarteles militares, escuelas, cárceles y dormitorios. Algunos determinantes que permiten la invasión sistémica incluyen daños en la mucosa nasofaríngea de portadores, cepas virulentas con formación de cápsula, ausencia de anticuerpos bactericidas y deficiencias del sistema del complemento. El control de la enfermedad meningocóccica en circunstancias endémicas y epidémicas se logra por el tratamiento de casos con antibióticos adecuados (penicilina, ceftriaxona o cloranfenicol, la quimioprofilaxis de contactos cercanos (ciprofloxacina, rifampicina o ceftriaxona, y la vigilancia clínica de éstos. Sin embargo, es fundamental subrayar que la clave para el control efectivo de la enfermedad meningocóccica es la inmunoprofilaxis. Las vacunas disponibles incluyen las de polisacáridos monovalentes o bivalentes (serogrupos A y C, tetravalentes (A, C, Y, W-135, la conjugada (C o la combinada de proteínas de membrana celular y polisacárido (B y C. Recientemente nos hemos visto forzados a establecer planes nacionales de respuesta que incluyen la

  15. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism.

    Science.gov (United States)

    Riedl, Julia; Preusser, Matthias; Nazari, Pegah Mir Seyed; Posch, Florian; Panzer, Simon; Marosi, Christine; Birner, Peter; Thaler, Johannes; Brostjan, Christine; Lötsch, Daniela; Berger, Walter; Hainfellner, Johannes A; Pabinger, Ingrid; Ay, Cihan

    2017-03-30

    Venous thromboembolism (VTE) is common in patients with brain tumors, and underlying mechanisms are unclear. We hypothesized that podoplanin, a sialomucin-like glycoprotein, increases the risk of VTE in primary brain tumors via its ability to induce platelet aggregation. Immunohistochemical staining against podoplanin and intratumoral platelet aggregates was performed in brain tumor specimens of 213 patients (mostly high-grade gliomas [89%]) included in the Vienna Cancer and Thrombosis Study, a prospective observational cohort study of patients with newly diagnosed cancer or progressive disease aimed at identifying patients at risk of VTE. Platelet aggregation in response to primary human glioblastoma cells was investigated in vitro. During 2-year follow-up, 29 (13.6%) patients developed VTE. One-hundred fifty-one tumor specimens stained positive for podoplanin (33 high expression, 47 medium expression, 71 low expression). Patients with podoplanin-positive tumors had lower peripheral blood platelet counts ( P < .001) and higher D-dimer levels ( P < .001). Podoplanin staining intensity was associated with increasing levels of intravascular platelet aggregates in tumor specimens ( P < .001). High podoplanin expression was associated with an increased risk of VTE (hazard ratio for high vs no podoplanin expression: 5.71; 95% confidence interval, 1.52-21.26; P = 010), independent of age, sex, and tumor type. Podoplanin-positive primary glioblastoma cells induced aggregation of human platelets in vitro, which could be abrogated by an antipodoplanin antibody. In conclusion, high podoplanin expression in primary brain tumors induces platelet aggregation, correlates with hypercoagulability, and is associated with increased risk of VTE. Our data indicate novel insights into the pathogenesis of VTE in primary brain tumors. © 2017 by The American Society of Hematology.

  16. Roles of inflammation and apoptosis in experimental brain death-induced right ventricular failure.

    Science.gov (United States)

    Belhaj, Asmae; Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Galanti, Laurence; Hupkens, Emeline; Sprockeels, Thomas; Dewachter, Céline; Creteur, Jacques; McEntee, Kathleen; Naeije, Robert; Rondelet, Benoît

    2016-12-01

    Right ventricular (RV) dysfunction remains the leading cause of early death after cardiac transplantation. Methylprednisolone is used to improve graft quality; however, evidence for that remains empirical. We sought to determine whether methylprednisolone, acting on inflammation and apoptosis, might prevent brain death-induced RV dysfunction. After randomization to placebo (n = 11) or to methylprednisolone (n = 8; 15 mg/kg), 19 pigs were assigned to a brain-death procedure. The animals underwent hemodynamic evaluation at 1 and 5 hours after Cushing reflex (i.e., hypertension and bradycardia). The animals euthanized, and myocardial tissue was sampled. This was repeated in a control group (n = 8). At 5 hours after the Cushing reflex, brain death resulted in increased pulmonary artery pressure (27 ± 2 vs 18 ± 1 mm Hg) and in a 30% decreased ratio of end-systolic to pulmonary arterial elastances (Ees/Ea). Cardiac output and right atrial pressure did not change. This was prevented by methylprednisolone. Brain death-induced RV dysfunction was associated with increased RV expression of heme oxygenase-1, interleukin (IL)-6, IL-10, IL-1β, tumor necrosis factor (TNF)-α, IL-1 receptor-like (ST)-2, signal transducer and activator of transcription-3, intercellular adhesion molecules-1 and -2, vascular cell adhesion molecule-1, and neutrophil infiltration, whereas IL-33 expression decreased. RV apoptosis was confirmed by terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling staining. Methylprednisolone pre-treatment prevented RV-arterial uncoupling and decreased RV expression of TNF-α, IL-1 receptor-like-2, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and neutrophil infiltration. RV Ees/Ea was inversely correlated to RV TNF-α and IL-6 expression. Brain death-induced RV dysfunction is associated with RV activation of inflammation and apoptosis and is partly limited by methylprednisolone. Copyright © 2016

  17. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    International Nuclear Information System (INIS)

    Cianfoni, A.; Caulo, M.; Cerase, A.; Della Marca, G.; Falcone, C.; Di Lella, G.M.; Gaudino, S.; Edwards, J.; Colosimo, C.

    2013-01-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention

  18. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Cianfoni, A., E-mail: acianfoni@hotmail.com [Neuroradiology, Neurocenter of Italian Switzerland–Ospedale regionale Lugano, Via Tesserete 46, Lugano, 6900, CH (Switzerland); Caulo, M., E-mail: caulo@unich.it [Department of Neuroscience and Imaging, University of Chieti, Via dei Vestini 33, 6610 Chieti. Italy (Italy); Cerase, A., E-mail: alfonsocerase@gmail.com [Unit of Neuroimaging and Neurointervention NINT, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico “Santa Maria alle Scotte”, V.le Bracci 16, Siena (Italy); Della Marca, G., E-mail: dellamarca@rm.unicatt.it [Neurology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Falcone, C., E-mail: carlo_falc@libero.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Di Lella, G.M., E-mail: gdilella@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Gaudino, S., E-mail: sgaudino@sirm.org [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Edwards, J., E-mail: edwardjc@musc.edu [Neuroscience Dept., Medical University of South Carolina, 96J Lucas st, 29425, Charleston, SC (United States); Colosimo, C., E-mail: colosimo@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy)

    2013-11-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention.

  19. Reduction in radiation-induced brain injury by use of pentobarbital or lidocaine protection

    International Nuclear Information System (INIS)

    Oldfield, E.H.; Friedman, R.; Kinsella, T.; Moquin, R.; Olson, J.J.; Orr, K.; DeLuca, A.M.

    1990-01-01

    To determine if barbiturates would protect brain at high doses of radiation, survival rates in rats that received whole-brain x-irradiation during pentobarbital- or lidocaine-induced anesthesia were compared with those of control animals that received no medication and of animals anesthetized with ketamine. The animals were shielded so that respiratory and digestive tissues would not be damaged by the radiation. Survival rates in rats that received whole-brain irradiation as a single 7500-rad dose under pentobarbital- or lidocaine-induced anesthesia was increased from between from 0% and 20% to between 45% and 69% over the 40 days of observation compared with the other two groups (p less than 0.007). Ketamine anesthesia provided no protection. There were no notable differential effects upon non-neural tissues, suggesting that pentobarbital afforded protection through modulation of ambient neural activity during radiation exposure. Neural suppression during high-dose cranial irradiation protects brain from acute and early delayed radiation injury. Further development and application of this knowledge may reduce the incidence of radiation toxicity of the central nervous system (CNS) and may permit the safe use of otherwise unsafe doses of radiation in patients with CNS neoplasms

  20. Blood-ocular and blood-brain barrier function in streptozocin-induced diabetes in rats

    International Nuclear Information System (INIS)

    Maeepea, O.; Karlsson, C.; Alm, A.

    1984-01-01

    Edetic acid labeled with chromium 51 was injected intravenously in normal rats and in rats with streptozocin-induced diabetes. One hour after the injection the animals were killed and the concentrations of edetic acid 51Cr in vitreous body, retina, and brain were determined. No significant difference was observed between the two groups for either tissue. In a second series, a mixture of tritiated 1-glucose and aminohippuric acid tagged with carbon 14 was injected instead of edetic acid. A substantial accumulation of aminohippuric acid 14C compared with tritiated 1-glucose was observed in the vitreous body and the brain of diabetic rats in comparison with the control group. It is concluded that untreated streptozocin-induced diabetes in rats for one to two weeks will not cause a generalized increase in the permeability of the blood-ocular or the blood-brain barriers, but organic acids may accumulate in the vitreous body as well as in the brain as a consequence of reduced outward transport through these barriers

  1. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    Osman, N. N.; Abd El Azime, A.Sh.

    2013-01-01

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  2. Magnetic resonance imaging of cold injury-induced brain edema in rats

    International Nuclear Information System (INIS)

    Houkin, Kiyohiro; Abe, Hiroshi; Hashiguchi, Yuji; Seri, Shigemi.

    1996-01-01

    The chronological changes of blood-brain barrier disruption, and diffusion and absorption of edema fluid were investigated in rats with cold-induced brain injury (vasogenic edema) using magnetic resonance imaging. Contrast medium was administered intravenously at 3 and 24 hours after lesioning as a tracer of edema fluid. Serial T 1 -weighted multiple-slice images were obtained for 180 minutes after contrast administration. Disruption of the blood-brain barrier was more prominent at 24 hours after lesioning than at 3 hours. Contrast medium leaked from the periphery of the injury and gradually diffused to the center of the lesion. Contrast medium diffused into the corpus callosum and the ventricular system (cerebrospinal fluid). Disruption of the blood-brain barrier induced by cold injury was most prominent at the periphery of the vasogenic edema. Edema fluid subsequently extended into the center of the lesion and was also absorbed by the ventricular system. Magnetic resonance imaging is a useful method to assess the efficacy of therapy for vasogenic edema. (author)

  3. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    Science.gov (United States)

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  5. Impairments of astrocytes are involved in the D-galactose-induced brain aging

    International Nuclear Information System (INIS)

    Lei Ming; Hua Xiangdong; Xiao Ming; Ding Jiong; Han Qunying; Hu Gang

    2008-01-01

    Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of D-galactose injection. D-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of D-galactose

  6. Brain atrophy in the visual cortex and thalamus induced by severe stress in animal model.

    Science.gov (United States)

    Yoshii, Takanobu; Oishi, Naoya; Ikoma, Kazuya; Nishimura, Isao; Sakai, Yuki; Matsuda, Kenichi; Yamada, Shunji; Tanaka, Masaki; Kawata, Mitsuhiro; Narumoto, Jin; Fukui, Kenji

    2017-10-06

    Psychological stress induces many diseases including post-traumatic stress disorder (PTSD); however, the causal relationship between stress and brain atrophy has not been clarified. Applying single-prolonged stress (SPS) to explore the global effect of severe stress, we performed brain magnetic resonance imaging (MRI) acquisition and Voxel-based morphometry (VBM). Significant atrophy was detected in the bilateral thalamus and right visual cortex. Fluorescent immunohistochemistry for Iba-1 as the marker of activated microglia indicates regional microglial activation as stress-reaction in these atrophic areas. These data certify the impact of severe psychological stress on the atrophy of the visual cortex and the thalamus. Unexpectedly, these results are similar to chronic neuropathic pain rather than PTSD clinical research. We believe that some sensitisation mechanism from severe stress-induced atrophy in the visual cortex and thalamus, and the functional defect of the visual system may be a potential therapeutic target for stress-related diseases.

  7. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    Energy Technology Data Exchange (ETDEWEB)

    Netopilova, M; Drsata, J [Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, 50005 Hradec Kralove (Czech Republic); Haugvicova, R; Kubova, H; Mares, P [Institute of Physiology, Czech Academy of Sciences, 14220 Prague (Czech Republic)

    1998-07-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using {sup 14}C-carboxyl-labelled glutamate and measurement of {sup 14}CO{sub 2} radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  8. Glutamate decarboxylase activity in rat brain during experimental epileptic seizures induced by pilocarpine

    International Nuclear Information System (INIS)

    Netopilova, M.; Drsata, J.; Haugvicova, R.; Kubova, H.; Mares, P.

    1998-01-01

    Glutamate decarboxylase (GAD) activity was studied rat brain parts in a pilocarpine model of epileptic seizures. An increased enzyme activity was found in hippocampus a cerebellum during the acute phase of seizures, while the cortex and cerebellum showed increased GAD activity in the chronic phase of the process. Systematic administration of pilocarpine to rats induces status epilepticus. The aim of this research was to find out if seizures induced by pilocarpine are connected changes in glutamate decarboxylase activity, the enzyme that catalyzes synthesis of inhibitory neurotransmitter GABA. GAD was assayed by means of radiometric method using 14 C-carboxyl-labelled glutamate and measurement of 14 CO 2 radioactivity. Obtained results suggest that pilocarpine seizures are connected with changes of GAD activity in individual parts of rat brain. (authors)

  9. Combined Cognitive-Psychological-Physical Intervention Induces Reorganization of Intrinsic Functional Brain Architecture in Older Adults

    Directory of Open Access Journals (Sweden)

    Zhiwei Zheng

    2015-01-01

    Full Text Available Mounting evidence suggests that enriched mental, physical, and socially stimulating activities are beneficial for counteracting age-related decreases in brain function and cognition in older adults. Here, we used functional magnetic resonance imaging (fMRI to demonstrate the functional plasticity of brain activity in response to a combined cognitive-psychological-physical intervention and investigated the contribution of the intervention-related brain changes to individual performance in healthy older adults. The intervention was composed of a 6-week program of combined activities including cognitive training, Tai Chi exercise, and group counseling. The results showed improved cognitive performance and reorganized regional homogeneity of spontaneous fluctuations in the blood oxygen level-dependent (BOLD signals in the superior and middle temporal gyri, and the posterior lobe of the cerebellum, in the participants who attended the intervention. Intriguingly, the intervention-induced changes in the coherence of local spontaneous activity correlated with the improvements in individual cognitive performance. Taken together with our previous findings of enhanced resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe regions following a combined intervention program in older adults, we conclude that the functional plasticity of the aging brain is a rather complex process, and an effective cognitive-psychological-physical intervention is helpful for maintaining a healthy brain and comprehensive cognition during old age.

  10. Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A.

    Directory of Open Access Journals (Sweden)

    Fayçal Guedj

    Full Text Available Individuals with partial HSA21 trisomies and mice with partial MMU16 trisomies containing an extra copy of the DYRK1A gene present various alterations in brain morphogenesis. They present also learning impairments modeling those encountered in Down syndrome. Previous MRI and histological analyses of a transgenic mice generated using a human YAC construct that contains five genes including DYRK1A reveal that DYRK1A is involved, during development, in the control of brain volume and cell density of specific brain regions. Gene dosage correction induces a rescue of the brain volume alterations. DYRK1A is also involved in the control of synaptic plasticity and memory consolidation. Increased gene dosage results in brain morphogenesis defects, low BDNF levels and mnemonic deficits in these mice. Epigallocatechin gallate (EGCG - a member of a natural polyphenols family, found in great amount in green tea leaves - is a specific and safe DYRK1A inhibitor. We maintained control and transgenic mice overexpressing DYRK1A on two different polyphenol-based diets, from gestation to adulthood. The major features of the transgenic phenotype were rescued in these mice.

  11. Transcriptomic configuration of mouse brain induced by adolescent exposure to 3,4-methylenedioxymethamphetamine

    International Nuclear Information System (INIS)

    Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon; Jung, Kwang Hwa; Kim, Jeong Kyu; Bae, Hyun Jin; Xie Hongjian; Ryu, Jae Chun; Ahn, Young Min; Min, Jin-Hye; Park, Won Sang; Lee, Jung Young; Rhee, Gyu Seek; Nam, Suk Woo

    2009-01-01

    The amphetamine derivative (±)-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significant gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.

  12. Fingolimod against endotoxin-induced fetal brain injury in a rat model.

    Science.gov (United States)

    Yavuz, And; Sezik, Mekin; Ozmen, Ozlem; Asci, Halil

    2017-11-01

    Fingolimod is a sphingosine-1-phosphate receptor modulator used for multiple sclerosis treatment and acts on cellular processes such as apoptosis, endothelial permeability, and inflammation. We hypothesized that fingolimod has a positive effect on alleviating preterm fetal brain injury. Sixteen pregnant rats were divided into four groups of four rats each. On gestational day 17, i.p. endotoxin was injected to induce fetal brain injury, followed by i.p. fingolimod (4 mg/kg maternal weight). Hysterotomy for preterm delivery was performed 6 h after fingolimod. The study groups included (i) vehicle controls (i.p. normal saline only); (ii) positive controls (endotoxin plus saline); (iii) saline plus fingolimod; and (iv) endotoxin plus fingolimod treatment. Brain tissues of the pups were dissected for evaluation of interleukin (IL)-6, caspase-3, and S100β on immunohistochemistry. Maternal fingolimod treatment attenuated endotoxin-related fetal brain injury and led to lower immunoreactions for IL-6, caspase-3, and S100β compared with endotoxin controls (P < 0.0001 for all comparisons). Antenatal maternal fingolimod therapy had fetal neuroprotective effects by alleviating preterm birth-related fetal brain injury with inhibitory effects on inflammation and apoptosis. © 2017 Japan Society of Obstetrics and Gynecology.

  13. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    Directory of Open Access Journals (Sweden)

    Karsten eMueller

    2015-07-01

    Full Text Available Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM and white matter (WM that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training three days per week over a period of three months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI, reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C, and alterations of serum brain-derived neurotrophic factor (BDNF concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing.

  14. Oscillatory brain activity in spontaneous and induced sleep stages in flies

    OpenAIRE

    Yap, Melvyn H. W.; Grabowska, Martyna J.; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C.; van Alphen, Bart; Shaw, Paul J.; van Swinderen, Bruno

    2017-01-01

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABAA ago...

  15. Additive Manufacturing of Cranial Simulants for Blast Induced Traumatic Brain Injury

    Science.gov (United States)

    2017-08-28

    REPORT TYPE 08/28/2017 Poster 4. TITLE AND SUBTITLE Additive Manufacturing of Cranial Sin1ulants for Blast Induced Traumatic Brain Injut’y 6... manufacturing techniques: Fused deposition modeling: ca sling molds Casting: white and gray matter Polymerization of injected solution...Sandia National Laboratories Conclusion MICHIGAN STAT[ l- I’ll I \\ I R <, I r \\ Additive manufacturrng provrdes a cost effective fabrration

  16. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Andreas Üllen

    Full Text Available Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl formed via the myeloperoxidase (MPO-H2O2-Cl(- system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPS-induced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLP-activated leukocytes and the MPO-H2O2-Cl(- system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H2O2-Cl(- system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuroinflammatory conditions.

  17. Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions.

    Science.gov (United States)

    Sumathi, Thangarajan; Shobana, Chandrasekar; Kumari, Balasubramanian Rathina; Nandhini, Devarajulu Nisha

    2011-12-01

    Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2 mg/kg/day i.p. for 4 weeks. Experimental rats were given C. dactylon extract in two different doses of 300 mg and 750 mg/keg/day orally 1 h prior to the AlCl(3) administration for 4 weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750 mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.

  18. Non-verbal emotion communication training induces specific changes in brain function and structure.

    Science.gov (United States)

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure.

  19. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain.

    Science.gov (United States)

    Emborg, Marina E; Liu, Yan; Xi, Jiajie; Zhang, Xiaoqing; Yin, Yingnan; Lu, Jianfeng; Joers, Valerie; Swanson, Christine; Holden, James E; Zhang, Su-Chun

    2013-03-28

    The generation of induced pluripotent stem cells (iPSCs) opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The Design of New Adjuvants for Mucosal Immunity to Neisseria meningitidis B in Nasally Primed Neonatal Mice for Adult Immune Response

    Directory of Open Access Journals (Sweden)

    Tatiane Ferreira

    2012-01-01

    Full Text Available The aim of this study was to determine the value of detoxified Shiga toxins Stx1 and Stx2 (toxoids of Escherichia coli as mucosal adjuvants in neonatal mice for immunogenicity against the outer membrane proteins (OMPs of Neisseria meningitidis B. Mucosal immunization has been shown to be effective for the induction of antigen-specific immune responses in both the systemic and mucosal compartments. Systemic antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, and IgA and mucosal IgM and IgA were measured by ELISA using an N. meningitidis as an antigen. In addition, IFN-γ and IL-6 production were measured after stimulated proliferation of immune cells. Intranasal administration elicited a higher anti-OMP IgA response in both saliva and vaginal fluids. Our results suggest that both Stx1 and Stx2 toxoids are effective mucosal adjuvants for the induction of Ag-specific IgG, IgM, and IgA antibodies. The toxoids significantly enhanced the IgG and IgM response against OMPs with a potency equivalent to CT, with the response being characterized by both IgG1 and IgG2a isotypes, and increased IFN-gamma production. Additionally, bactericidal activity was induced with IgG and IgM antibodies of high avidity. These results support the use of the new toxoids as potent inducing adjuvants that are particularly suitable for mucosal immunization.

  1. Involvement of brain catalase activity in the acquisition of ethanol-induced conditioned place preference.

    Science.gov (United States)

    Font, Laura; Miquel, Marta; Aragon, Carlos M G

    2008-03-18

    It has been suggested that some of the behavioral effects produced by ethanol are mediated by its first metabolite, acetaldehyde. The present research addressed the hypothesis that catalase-dependent metabolism of ethanol to acetaldehyde in the brain is an important step in the production of ethanol-related affective properties. Firstly, we investigated the contribution of brain catalase in the acquisition of ethanol-induced conditioned place preference (CPP). Secondly, the specificity of the catalase inhibitor 3-amino-1,2,4-triazole (AT) was evaluated with morphine- and cocaine-induced CPP. Finally, to investigate the role of catalase in the process of relapse to ethanol seeking caused by re-exposure to ethanol, after an initial conditioning and extinction, mice were primed with saline and ethanol or AT and ethanol and tested for reinstatement of CPP. Conditioned place preference was blocked in animals treated with AT and ethanol. Morphine and cocaine CPP were unaffected by AT treatment. However, the reinstatement of place preference was not modified by catalase inhibition. Taken together, the results of the present study indicate that the brain catalase-H(2)O(2) system contributes to the acquisition of affective-dependent learning induced by ethanol, and support the involvement of centrally-formed acetaldehyde in the formation of positive affective memories produced by ethanol.

  2. Vitamin-C protect ethanol induced apoptotic neuro degeneration in postnatal rat brain

    International Nuclear Information System (INIS)

    Naseer, M.I.; Najeebullah; Ikramullah; Zubair, H.; Hassan, M.; Yang, B.C.

    2010-01-01

    Objective: To evaluate ethanol effects to induced activation of caspsae-3, and to observe the protective effects of Vitamin C (vit-C) on ethanol-induced apoptotic neuro degeneration in rat cortical area of brain. Methodology: Administration of a single dose of ethanol in 7-d postnatal (P7) rats triggers activation of caspase-3 and widespread apoptotic neuronal death. Western blot analysis, cells counting and Nissl staining were used to elucidate possible protective effect of vit-C against ethanol-induced apoptotic neuro degeneration in brain. Results: The results showed that ethanol significantly increased caspase-3 expression and neuronal apoptosis. Furthermore, the co-treatment of vit-C along with ethanol showed significantly decreased expression of caspase-3 as compare to control group. Conclusion: Our findings indicate that vit-C can prevent some of the deleterious effect of ethanol on developing rat brain when given after ethanol exposure and can be used as an effective protective agent for Fetal Alcohol Syndrome (FAS). (author)

  3. Radiation-induced brain tumours: potential late complications of radiation therapy for brain tumours

    International Nuclear Information System (INIS)

    Nishio, S.; Morioka, T.; Inamura, T.; Takeshita, I.; Fukui, M.; Sasaki, M.; Nakamura, K.; Wakisaka, S.

    1998-01-01

    The development of neoplasms subsequent to therapeutic cranial irradiation is a rare but serious and potentially fatal complication. In this study, we retrospectively reviewed the clinical and pathological aspects of 11 patients who underwent cranial irradiation (range, 24-110 cGy) to treat their primary disease and thereafter developed secondary tumours within a span of 13 years. All tumours arose within the previous radiation fields, and satisfied the widely used criteria for the definition of radiation-induced neoplasms. There was no sex predominance (M: 5, F: 6) and the patients tended to be young at irradiation (1.3 - 42 years; median age: 22 years). The median latency period before the detection of the secondary tumour was 14.5 years (range: 6.5 - 24 years). Meningiomas developed in 5 patients, sarcomas in 4, and malignant gliomas in 2. A pre-operative diagnosis of a secondary tumour was correctly obtained in 10 patients based on the neuro-imaging as well as nuclear medicine findings. All patients underwent a surgical removal of the secondary tumour, 3 underwent additional chemotherapy, and one received stereotactic secondary irradiation therapy. During a median of 2 years of follow-up review after the diagnosis of a secondary tumour, 3 patients died related to the secondary tumours (2 sarcomas, 1 glioblastoma), one died of a recurrent primary glioma, while the remaining 7 have been alive for from 10 months to 12 years after being treated for the secondary tumours (median: 3 years). Based on these data, the clinicopathological characteristics and possible role of treatment for secondary tumours are briefly discussed. (author)

  4. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    International Nuclear Information System (INIS)

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O 2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O 2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO 2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO 2 changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO 2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO 2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO 2 to 64%. More importantly, pO 2 did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO 2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO 2 , which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO 2 in vivo after METH administration by EPR oximetry. • pO 2 was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO 2 did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO 2 may be associated with a decrease in CBF. • Administration of methamphetamine may lead to hypoxic

  5. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, John, E-mail: jmweaver@salud.unm.edu [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Yang, Yirong [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Purvis, Rebecca [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Weatherwax, Theodore [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Rosen, Gerald M. [Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201 (United States); Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201 (United States); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Liu, Ke Jian [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  6. Herpes zoster chronification to postherpetic neuralgia induces brain activity and grey matter volume change

    Science.gov (United States)

    Cao, Song; Qin, Bangyong; Zhang, Yi; Yuan, Jie; Fu, Bao; Xie, Peng; Song, Ganjun; Li, Ying; Yu, Tian

    2018-01-01

    Objective: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), which is a chronic neuropathic pain (NP). Whether the chronification from HZ to PHN induced brain functional or structural change is unknown and no study compared the changes of the same brains of patients who transited from HZ to PHN. We minimized individual differences and observed whether the chronification of HZ to PHN induces functional and pain duration dependent grey matter volume (GMV) change in HZ-PHN patients. Methods: To minimize individual differences induced error, we enrolled 12 patients with a transition from HZ to PHN. The functional and structural changes of their brains between the two states were identified with resting-state functional MRI (rs-fMRI) technique (i.e., the regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) method) and the voxel based morphometry (VBM) technology respectively. The correlations between MRI parameters (i.e., ΔReHo, ΔfALFF and ΔVBM) and Δpain duration were analyzed too. Results: Compared with HZ brains, PHN brains exhibited abnormal ReHo, fALFF and VBM values in pain matrix (the frontal lobe, parietal lobe, thalamus, limbic lobe and cerebellum) as well as the occipital lobe and temporal lobe. Nevertheless, the activity of vast area of cerebellum and frontal lobe significantly increased while that of occipital lobe and limbic lobe showed apparent decrease when HZ developed to PHN. In addition, PHN brain showed decreased GMV in the frontal lobe, the parietal lobe and the occipital lobe but increased in the cerebellum and the temporal lobe. Correlation analyses showed that some of the ReHo, fALFF and VBM differential areas (such as the cerebellum posterior lobe, the thalamus extra-nuclear and the middle temporal gyrus) correlated well with Δpain duration. Conclusions: HZ chronification induced functional and structural change in cerebellum, occipital lobe, temporal lobe, parietal lobe and limbic lobe

  7. Multiple-locus variable-number tandem repeat analysis of Neisseria meningitidis yields groupings similar to those obtained by multilocus sequence typing.

    NARCIS (Netherlands)

    Schouls, Leo M; Ende, Arie van der; Damen, Marjolein; Pol, Ingrid van de

    2006-01-01

    We identified many variable-number tandem repeat (VNTR) loci in the genomes of Neisseria meningitidis serogroups A, B, and C and utilized a number of these loci to develop a multiple-locus variable-number tandem repeat analysis (MLVA). Eighty-five N. meningitidis serogroup B and C isolates obtained

  8. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

    Science.gov (United States)

    Huppert, Jula; Closhen, Dorothea; Croxford, Andrew; White, Robin; Kulig, Paulina; Pietrowski, Eweline; Bechmann, Ingo; Becher, Burkhard; Luhmann, Heiko J; Waisman, Ari; Kuhlmann, Christoph R W

    2010-04-01

    Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

  9. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Eva Bernhart

    2018-05-01

    Full Text Available Peripheral leukocytes induce blood-brain barrier (BBB dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl that is formed via the myeloperoxidase-H2O2-chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA. In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a ‘clickable’ alkyne derivative (2-ClHyA that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER and mitochondria of human BMVEC (hCMEC/D3 cell line. 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL−6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction.

  10. Detection of cysteine protease in Taenia solium-induced brain granulomas in naturally infected pigs

    DEFF Research Database (Denmark)

    Mkupasi, Ernatus Martin; Sikasunge, Chummy Sikalizyo; Ngowi, Helena Aminiel

    2013-01-01

    In order to further characterize the immune response around the viable or degenerating Taenia solium cysts in the pig brain, the involvement of cysteine protease in the immune evasion was assessed. Brain tissues from 30 adult pigs naturally infected with T. solium cysticercosis were subjected...... protease may play a role in inducing immune evasion through apoptosis around viable T. solium cysts....

  11. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    Science.gov (United States)

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    Delayed thrombolytic treatment with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier breakdown after ischaemic stroke and lead to lethal haemorrhagic transformation. The immune system is a dynamic modulator of stroke response, and excessive immune cell accumulation in the cerebral vasculature is associated with compromised integrity of the blood-brain barrier. We previously reported that regulatory T cells, which function to suppress excessive immune responses, ameliorated blood-brain barrier damage after cerebral ischaemia. This study assessed the impact of regulatory T cells in the context of tPA-induced brain haemorrhage and investigated the underlying mechanisms of action. The number of circulating regulatory T cells in stroke patients was dramatically reduced soon after stroke onset (84 acute ischaemic stroke patients with or without intravenous tPA treatment, compared to 115 age and gender-matched healthy controls). Although stroke patients without tPA treatment gradually repopulated the numbers of circulating regulatory T cells within the first 7 days after stroke, post-ischaemic tPA treatment led to sustained suppression of regulatory T cells in the blood. We then used the murine suture and embolic middle cerebral artery occlusion models of stroke to investigate the therapeutic potential of adoptive regulatory T cell transfer against tPA-induced haemorrhagic transformation. Delayed administration of tPA (10 mg/kg) resulted in haemorrhagic transformation in the ischaemic territory 1 day after ischaemia. When regulatory T cells (2 × 106/mouse) were intravenously administered immediately after delayed tPA treatment in ischaemic mice, haemorrhagic transformation was significantly decreased, and this was associated with improved sensorimotor functions. Blood-brain barrier disruption and tight junction damages were observed in the presence of delayed tPA after stroke, but were mitigated by regulatory T cell transfer. Mechanistic

  12. Expression of manganese superoxide dismutase in rat blood, heart and brain during induced systemic hypoxia

    Directory of Open Access Journals (Sweden)

    Septelia I. Wanandi

    2011-02-01

    Full Text Available Background: Hypoxia results in an increased generation of ROS. Until now, little is known about the role of MnSOD - a major endogenous antioxidant enzyme - on the cell adaptation response against hypoxia. The aim of this study was to  determine the MnSOD mRNA expression and levels of specific activity in blood, heart and brain of rats during induced systemic hypoxia.Methods: Twenty-five male Sprague Dawley rats were subjected to systemic hypoxia in an hypoxic chamber (at 8-10% O2 for 0, 1, 7, 14 and 21 days, respectively. The mRNA relative expression of MnSOD was analyzed using Real Time RT-PCR. MnSOD specific activity was determined using xanthine oxidase inhibition assay.Results: The MnSOD mRNA relative expression in rat blood and heart was decreased during early induced systemic hypoxia (day 1 and increased as hypoxia continued, whereas the mRNA expression in brain was increased since day 1 and reached its maximum level at day 7. The result of MnSOD specific activity during early systemic hypoxia was similar to the mRNA expression. Under very late hypoxic condition (day 21, MnSOD specific activity in blood, heart and brain was significantly decreased. We demonstrate a positive correlation between MnSOD mRNA expression and specific activity in these 3 tissues during day 0-14 of induced systemic hypoxia. Furthermore, mRNA expression and specific activity levels in heart strongly correlate with those in blood.Conclusion: The MnSOD expression at early and late phases of induced systemic hypoxia is distinctly regulated. The MnSOD expression in brain differs from that in blood and heart revealing that brain tissue can  possibly survive better from induced systemic hypoxia than heart and blood. The determination of MnSOD expression in blood can be used to describe its expression in heart under systemic hypoxic condition. (Med J Indones 2011; 20:27-33Keywords: MnSOD, mRNA expression, ROS, specific activity, systemic hypoxia

  13. Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain.

    Science.gov (United States)

    Pomierny, Bartosz; Krzyżanowska, Weronika; Niedzielska, Ewa; Broniowska, Żaneta; Budziszewska, Bogusława

    2016-02-01

    Ethylene glycol ethers (EGEs) are compounds widely used in industry and household products, but their potential, adverse effect on brain is poorly understood, so far. The aim of the present study was to determine whether 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE), and 2-ethoxyethanol (EE) induces apoptotic process in the rat hippocampus and frontal cortex, and whether their adverse effect on the brain cells can result from disturbances in the glucose metabolism. Experiments were conducted on 40 rats, exposed to BE, PHE, EE, saline or sunflower oil for 4 weeks. Markers of apoptosis and glucose metabolism were determined in frontal cortex and hippocampus by western blot, ELISA, and fluorescent-based assays. BE and PHE, but not EE, increased expression of the active form of caspase-3 in the examined brain regions. BE and PHE increased caspase-9 level in the cortex and PHE also in the hippocampus. BE and PHE increased the level of pro-apoptotic proteins (Bax, Bak) and/or reduced the concentration of anti-apoptotic proteins (Bcl-2, Bcl-xL); whereas, the effect of BE was observed mainly in the cortex and that of PHE in the hippocampus. It has also been found that PHE increased brain glucose level, and both BE and PHE elevated pyruvate and lactate concentration. It can be concluded that chronic treatment with BE and PHE induced mitochondrial pathway of apoptosis, and disturbed glucose metabolism in the rat brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. SU-F-T-673: Effects of Cardiac Induced Brain Pulsations On Proton Minibeams

    Energy Technology Data Exchange (ETDEWEB)

    Eagle, J; Marsh, S [University of Canterbury, Christchurch, Canterbury (New Zealand); Lee, E; Meyer, J [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: To quantify the dosimetric impact of internal motion within the brain on spatially modulated proton minibeam radiation therapy (pMRT) for small animal research. Methods: The peak-to-valley dose ratio (PVDR) is an essential dosimetric factor for pMRT. Motion of an animal brain caused by cardiac-induced pulsations (CIP) can impact dose deposition. For synchrotron generated high dose rate X-ray microbeams this effect is evaded due to the quasi-instantaneous delivery. By comparison, pMRT potentially suffers increased spread due to lower dose rates. However, for a given dose rate it is less susceptible to beam spread than microbeams, due to the spatial modulation being an order of magnitude larger. Monte Carlo simulations in TOPAS were used to model the beam spread for a 50.5MeV pMRT beam. Motion effects were simulated for a 50mm thick brass collimator with 0.3mm slit width and 1.0mm center-to-center spacing in a water phantom. The maximum motion in a rat brain due to CIP has been reported to be 0.06mm. Motion was simulated with a peak amplitude in the range 0–0.2mm. Results: The impact of 0.06mm peak motion was minimal and reduced the PVDR by about 1% at a depth of 10mm. For 0.2mm peak motion the PVDR was reduced by 16% at a depth of 10mm. Conclusion: For the pMRT beam the magnitude of cardiac-induced brain motion has minimal impact on the PVDR for the investigated collimator geometry. For more narrow beams the effect is likely to be larger. This indicates that delivery of pMRT to small animal brains should not be affected considerably by beamlines with linac compatible dose rates.

  15. Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress.

    Science.gov (United States)

    Ozel Turkcu, Ummuhani; Bilgihan, Ayşe; Biberoglu, Gursel; Mertoglu Caglar, Oznur

    2010-06-01

    Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.

  16. In silico analysis of different generation β lactams antibiotics with penicillin binding protein-2 of Neisseria meningitidis for curing meningococcal disease.

    Science.gov (United States)

    Tripathi, Vijay; Tripathi, Pooja; Srivastava, Navita; Gupta, Dwijendra

    2014-12-01

    Neisseria meningitidis is a gram negative, diplococcic pathogen responsible for the meningococcal disease and fulminant septicemia. Penicillin-binding proteins-2 (PBPs) is crucial for the cell wall biosynthesis during cell proliferation of N. meningitidis and these are the target for β-lactam antibiotics. For many years penicillin has been recognized as the antibiotic for meningococcal disease but the meningococcus has seemed to be antibiotic resistance. In the present work we have verified the molecular interaction of Penicillin binding protein-2 N. meningitidis to different generation of β-lactam antibiotics and concluded that the third generation of β-lactam antibiotics shows efficient binding with Penicillin binding protein-2 of N. meningitidis. On the basis of binding efficiency and inhibition constant, ceftazidime emerged as the most efficient antibiotic amongst the other advanced β-lactam antibiotics against Penicillin-binding protein-2 of N. meningitidis.

  17. Parallel Human and Animal Models of Blast- and Concussion-Induced Tinnitus and Related Traumatic Brain Injury (TBI)

    Science.gov (United States)

    2014-01-01

    Andersson G (2009) The role of anxiety sensitivity and behavioral avoidance in tinnitus disability. IntJAudiol 48:295-299. Hiller W, Goebel G (1999...Parallel Human and Animal Models of Blast- and Concussion-Induced Tinnitus and Related Traumatic Brain Injury (TBI) PRINCIPAL INVESTIGATOR...Induced Tinnitus and Related Traumatic Brain Injury (TBI) 5b. GRANT NUMBER W81XWH-11-2-0031 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  18. Radiation-induced late brain injury and the protective effect of traditional Chinese medicine

    International Nuclear Information System (INIS)

    Yi Junlin; Miao Yanjun; Yang Weizhi; Cai Weiming; Liu Yajie

    2004-01-01

    Objective: To investigate whether radiation-induced late injury of the brain can be ameliorated by traditional Chinese Medicine through blocking the primary events. Methods: This trial included five animal groups: sham irradiation, irradiation only, and three treatment groups. The whole brain of BALB/C mouse was irradiated with 22 Gy by using a 6 MV linear accelerator. Step down method was used to evaluate the study and memory abilities. Mouse weight was also recorded every week before and after irradiation. On D90, all mice alive were euthanized and Glee's silver dye method and Bielschousky silver dye method were used to detect the senile plaque and the neurofibrillary tangle. One-Way ANOVA was used to evaluate the differences among the groups in the various aspects of study and memory abilities as well as quality of life. Kaplan-Meier was used to evaluate the survival. Log-rank was used to detect the differences among the survival groups. Results: 1. There was no significant difference in survival among the treatment groups, even though Salvia Miltiorrhiza (SM) was able to improve the quality of life. As to the cognition function, it was shown that whole brain radiation would make a severe cognition damage with the learning and memorizing ability of the irradiated mice being worse than those of the sham irradiation group. The Traditional Chinese Medicine Salvia Miltiorrhiza possesses the role of a protective agent against cognition function damage induced by irradiation. 2. Glee's silver dye and Bielschousky silver dye show much more senile plaque and the neurofibrillary tangle in brain tissue of R group and R + 654-2 group than those in the R + SM group. Conclusions: Salvia Miltiorrhiza is able to protect the mouse from cognition function damage induced by irradiation and improve the quality of life by ameliorating the primary events, though it does not improve the survival

  19. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Science.gov (United States)

    Banerjee, S; Poddar, M K

    2016-04-05

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Study on developing brain damage of neonatal rats induced by enriched uranium

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Yang Shuqin

    2000-01-01

    Objective: The injurious effects of enriched uranium 235 U on developing brain of neonatal Wistar pure bred rats were studied. Methods: The model of irradiation induced brain damage in vivo was settled. The effects of cerebrum exposure by 235 U on somatic growth and neuro-behavior development of neonatal rats were examined by thirteen index determination of multiple parameters. The dynamic retention of autoradiographic tracks of 235 U in cells of developing brain was observed. The changes of NSE, IL-1β, SOD, and ET in cerebral cortex, hippocampus, diencephalon, cerebellum after expose to 235 U were examined with radioimmunoassay. Results: The somatic growth such as increase of body weight and brain weight was lower significantly. The retardation of development was found such as eye opening, sensuous function as auditory startle, movement and coordination function and activity as swimming, physiological reflexes as negative geotaxis, surface righting, grasping reflex suspension and the tendency behavior. The data showed delayed growth and abnormal neuro-behavior. The micro-autoradiographic tracing showed that the tracks of 235 U were mainly accumulated in the nucleus of developing brain. At the same time only few tracks appeared in the cytoplasm and interval between cells. Experimental study showed that when the dose of 235 U irradiation was increased, the level of NSE was decreased and the IL-1β was increased. However, the results indicated that SOD and ET can be elevated by the low dose irradiation of 235 U, and can be inhibited by the high dose. Conclusion: The behavior of internal irradiation from 235 U on the developing brain damage of neonatal rats were of sensibility and compensation in nervous cells

  1. Development of optical neuroimaging to detect drug-induced brain functional changes in vivo

    Science.gov (United States)

    Du, Congwu; Pan, Yingtian

    2014-03-01

    Deficits in prefrontal function play a crucial role in compulsive cocaine use, which is a hallmark of addiction. Dysfunction of the prefrontal cortex might result from effects of cocaine on neurons as well as from disruption of cerebral blood vessels. However, the mechanisms underlying cocaine's neurotoxic effects are not fully understood, partially due to technical limitations of current imaging techniques (e.g., PET, fMRI) to differentiate vascular from neuronal effects at sufficiently high temporal and spatial resolutions. We have recently developed a multimodal imaging platform which can simultaneously characterize the changes in cerebrovascular hemodynamics, hemoglobin oxygenation and intracellular calcium fluorescence for monitoring the effects of cocaine on the brain. Such a multimodality imaging technique (OFI) provides several uniquely important merits, including: 1) a large field-of-view, 2) high spatiotemporal resolutions, 3) quantitative 3D imaging of the cerebral blood flow (CBF) networks, 4) label-free imaging of hemodynamic changes, 5) separation of vascular compartments (e.g., arterial and venous vessels) and monitoring of cortical brain metabolic changes, 6) discrimination of cellular (neuronal) from vascular responses. These imaging features have been further advanced in combination with microprobes to form micro-OFI that allows quantification of drug effects on subcortical brain. In addition, our ultrahigh-resolution ODT (μODT) enables 3D microangiography and quantitative imaging of capillary CBF networks. These optical strategies have been used to investigate the effects of cocaine on brain physiology to facilitate the studies of brain functional changes induced by addictive substance to provide new insights into neurobiological effects of the drug on the brain.

  2. Music-induced emotions can be predicted from a combination of brain activity and acoustic features.

    Science.gov (United States)

    Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J

    2015-12-01

    It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,pmusic induced emotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01). Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Administration of Protocatechuic Acid Reduces Traumatic Brain Injury-Induced Neuronal Death

    Directory of Open Access Journals (Sweden)

    Sang Hwon Lee

    2017-11-01

    Full Text Available Protocatechuic acid (PCA was first purified from green tea and has shown numerous biological activities, including anti-apoptotic, anti-inflammatory, and anti-atherosclerotic effects. The effect of PCA on traumatic brain injury (TBI-induced neuronal death has not previously been evaluated. TBI is defined as damage to the brain resulting from external mechanical force, such as rapid acceleration or deceleration, impact, blast waves, or penetration by a projectile. TBI causes neuronal death in the hippocampus and cerebral cortex. The present study aimed to evaluate the therapeutic potential of PCA on TBI-induced neuronal death. Here, TBI was induced by a controlled cortical impact model using rats. PCA (30 mg/kg was injected into the intraperitoneal (ip space immediately after TBI. Neuronal death was evaluated with Fluoro Jade-B (FJB staining at 24 h after TBI. Oxidative injury was detected by 4-hydroxy-2-nonenal (4HNE, glutathione (GSH concentration was analyzed by glutathione adduct with N-ethylmaleimide (GS-NEM staining at 24 h after TBI, and microglial activation in the hippocampus was detected by CD11b immunohistochemistry at one week after TBI. We found that the proportion of degenerating neurons, oxidative injury, GSH depletion, and microglia activation in the hippocampus and cortex were all reduced by PCA treatment following TBI. Therefore, our study suggests that PCA may have therapeutic potential in preventing TBI-induced neuronal death.

  4. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  5. A misleading urethral smear with polymorphonuclear leucocytes and intracellular diplococci; case report of urethritis caused by Neisseria meningitidis.

    Science.gov (United States)

    Genders, R E; Spitaels, D; Jansen, C L; van den Akker, Th W; Quint, K D

    2013-12-01

    The primary pathogens found in men with urethritis are Chlamydia trachomatis and Neisseria gonorrhoeae. Rapid diagnosis of N. gonorrhoeae infection can be made based on a Gram- or methylene blue-stained urethral smear. We describe a case of a man with purulent penile discharge, in which microscopic examination led to the presumptive diagnosis of gonorrhoea. A nucleic acid amplification test was negative for N. gonorrhoeae but positive for C. trachomatis. Culture showed Gram-negative diplococci which were identified as Neisseria meningitidis. N. meningitidis can be sporadically pathogenic in the genito-urinary tract and mimicks gonococcal urethritis, and appears identical by microscopy. When a gonococcal urethritis is suspected based on clinical signs and microscopic examination, but investigatory tests cannot confirm the diagnosis, a N. meningitidis infection should be considered.

  6. Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice.

    Science.gov (United States)

    Zhao, Bingxia; Chen, Yihan; Liu, Jinfeng; Zhang, Li; Wang, Jing; Yang, Yali; Lv, Qing; Xie, Mingxing

    2018-01-12

    To investigate the effects of the microbubble (MB) dose, mechanism index (MI) and sonication duration on blood-brain barrier (BBB) disruption induced by diagnostic ultrasound combined with MBs as well as to investigate the potential molecular mechanism. The extent of BBB disruption increased with MB dose, MI and sonication duration. A relatively larger extent of BBB disruption associated with minimal tissue damage was achieved by an appropriate MB dose and ultrasound exposure parameters with diagnostic ultrasound. Decreased expression of ZO-1, occludin and claudin-5 were correlated with disruption of the BBB, as confirmed by paracellular passage of the tracer lanthanum nitrate into the brain parenchyma after BBB disruption. These findings indicated that this technique is a promising tool for promoting brain delivery of diagnostic and therapeutic agents in the diagnosis and treatment of brain diseases. The extent of BBB disruption was qualitatively assessed by Evans blue (EB) staining and quantitatively analyzed by an EB extravasation measurement. A histological examination was performed to evaluate tissue damage. Expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5 was determined by western blotting analysis and immunohistofluorescence. Transmission electron microscopy was performed to observe ultrastructure changes of TJs after BBB disruption.

  7. [Metronidazole-Induced Encephalopathy during Brain Abscess Treatment:Two Case Reports].

    Science.gov (United States)

    Yokoyama, Yuka; Asaoka, Katsuyuki; Sugiyama, Taku; Uchida, Kazuki; Shimbo, Daisuke; Kobayashi, Satoshi; Itamoto, Koji

    2015-10-01

    Metronidazole is a widely used antibiotic against anaerobic bacteria and protozoa. We report two cases of metronidazole-induced encephalopathy(MIE)during treatment of a brain abscess with metronidazole. The patients developed mental disturbance, and brain MRI showed reversible signals on DWI, FLAIR, and T2. Case 1: A 48-year-old woman was admitted to our hospital with a cerebellar abscess. We initiated treatment with oral metronidazole. After taking the medication, she developed mental disturbance, and her brain MRI showed a hyperintensity within the corpus callosum. We suspected metronidazole toxicity and discontinued metronidazole treatment. The symptoms resolved rapidly within a week, and the hyperintensity on the MRI disappeared. Case 2: A 22-year-old man was admitted to our hospital with a brain abscess. We initiated treatment with oral metronidazole. On day 38, he developed mental disturbance, and his MRI showed hyperintensities within the bilateral dentate nuclei and corpus callosum. These symptoms were consistent with MIE. After cessation of metronidazole, his symptoms and abnormal MRI signals completely disappeared.

  8. Oxidative stress induces the decline of brain EPO expression in aging rats.

    Science.gov (United States)

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (paging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (paging could result in the decline of EPO in the hippocampus and oxidative stress might be the main reason for the decline of brain EPO in aging rats, involved with the decrease of HIF-2α stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Noninvasive brain stimulation can induce paradoxical facilitation . Are these neuroenhancements transferable and meaningful to security services?

    Directory of Open Access Journals (Sweden)

    Jean eLevasseur-Moreau

    2013-08-01

    Full Text Available For ages, we have been looking for ways to enhance our physical and cognitive capacities in order to augment our security. One potential way to achieve this goal may be to externally stimulate the brain. Methods of noninvasive brain stimulation (NIBS, such as repetitive transcranial magnetic stimulation and transcranial electrical stimulation, have been recently developed to modulate brain activity. Both techniques are relatively safe and can transiently modify motor and cognitive functions outlasting the stimulation period. The purpose of this paper is to review data suggesting that NIBS can enhance motor and cognitive performance in healthy volunteers. We frame these findings in the context of whether they may serve security purposes. Specifically, we review studies reporting that NIBS induces paradoxical facilitation in motor (precision, speed, strength, acceleration endurance, and execution of daily motor task and cognitive functions (attention, impulsive behaviour, risk-taking, working memory, planning, and deceptive capacities. Although transferability and meaningfulness of these NIBS-induced paradoxical facilitations into real life situations are not clear yet, NIBS may contribute at improving training of motor and cognitive functions relevant for military, civil and forensic security services. This is an enthusiastic perspective that also calls for fair and open debates on the ethics of using NIBS in healthy individuals to enhance normal functions.

  10. Oscillatory brain activity in spontaneous and induced sleep stages in flies.

    Science.gov (United States)

    Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C; van Alphen, Bart; Shaw, Paul J; van Swinderen, Bruno

    2017-11-28

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABA A agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.

  11. A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption.

    Science.gov (United States)

    Sharabi, Shirley; Kos, Bor; Last, David; Guez, David; Daniels, Dianne; Harnof, Sagi; Mardor, Yael; Miklavcic, Damijan

    2016-03-01

    Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r(2) = 0.79; p disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.

  12. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jian-Qin Wang

    2014-01-01

    Full Text Available Objective. Numerous epidemiological studies have linked diabetes mellitus (DM with an increased risk of developing Alzheimer’s disease (AD. However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ- induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC. Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies.

  13. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  14. Behavioral consequences of NMDA antagonist-induced neuroapoptosis in the infant mouse brain.

    Directory of Open Access Journals (Sweden)

    Carla M Yuede

    2010-06-01

    Full Text Available Exposure to NMDA glutamate antagonists during the brain growth spurt period causes widespread neuroapoptosis in the rodent brain. This period in rodents occurs during the first two weeks after birth, and corresponds to the third trimester of pregnancy and several years after birth in humans. The developing human brain may be exposed to NMDA antagonists through drug-abusing mothers or through anesthesia.We evaluated the long-term neurobehavioral effects of mice exposed to a single dose of the NMDA antagonist, phencyclidine (PCP, or saline, on postnatal day 2 (P2 or P7, or on both P2 and P7. PCP treatment on P2 + P7 caused more severe cognitive impairments than either single treatment. Histological examination of acute neuroapoptosis resulting from exposure to PCP indicated that the regional pattern of degeneration induced by PCP in P2 pups was different from that in P7 pups. The extent of damage when evaluated quantitatively on P7 was greater for pups previously treated on P2 compared to pups treated only on P7.These findings signify that PCP induces different patterns of neuroapoptosis depending on the developmental age at the time of exposure, and that exposure at two separate developmental ages causes more severe neuropathological and neurobehavioral consequences than a single treatment.

  15. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin.

    Science.gov (United States)

    Butler, Corwin R; Boychuk, Jeffery A; Smith, Bret N

    2017-01-01

    Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others.

  16. Radiation-induced apoptosis in undifferentiated cells of the developing brain as a biological defense mechanism

    International Nuclear Information System (INIS)

    Inouye, Minioru; Tamaru, Masao.

    1994-01-01

    Undifferentiated neural (UN) cells of the developing mammalian brain are highly sensitive to the lethal effects of ionizing radiation. Nuclear and cytoplasmic condensation, transglutaminase activation, and internucleosomal DNA cleavage reveal radiation-induced cell death in the ventricular zone of the cerebral mantle and external granular layer of the cerebellum to be due to apoptosis. A statistically significant increase of cell mortality can be induced by 0.03 Gy X-irradiation, and the mortality increases linearly with increasing doses. It is not changed by split doses, probably because of the very slow repair of cellular damage and a lack of adaptive response. Although extensive apoptosis in the UN cell population results in microcephaly and mental retardation, it possesses the ability to recover from a considerable cell loss and to form the normal structure of the central nervous system. The number of cell deaths needed to induce tissue adnormalities in the adult murine brain rises in the range of 15-25% of the germinal cell population; with the threshold doses at about 0.3 Gy for cerebral anomalies and 1 Gy for cerebellar abnormalities. Threshold level is similarly suggested in prenatally exposed A-bomb survivors. High radiosensitivity of UN cells is assumed to be a manifestation of the ability of the cell to commit suicide when injured. Repeated replication of DNA and extensive gene expression are required in future proliferation and differentiation. Once an abnormality in DNA was induced and fixed in the UN cell, it would be greatly amplified and prove a danger in producing malformations and tumors. These cells would thus commit suicide for the benefit of the individual to eliminate their acquired genetic abnormalities rather than make DNA repair. UN cells in the developing brain are highly radiosensitive and readily involved in apoptosis. Paradoxically, however, this may be to protect individuals against teratogenesis and tumorigenesis. (J.P.N.)

  17. Radiation-induced apoptosis in undifferentiated cells of the developing brain as a biological defense mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minioru [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine; Tamaru, Masao

    1994-12-31

    Undifferentiated neural (UN) cells of the developing mammalian brain are highly sensitive to the lethal effects of ionizing radiation. Nuclear and cytoplasmic condensation, transglutaminase activation, and internucleosomal DNA cleavage reveal radiation-induced cell death in the ventricular zone of the cerebral mantle and external granular layer of the cerebellum to be due to apoptosis. A statistically significant increase of cell mortality can be induced by 0.03 Gy X-irradiation, and the mortality increases linearly with increasing doses. It is not changed by split doses, probably because of the very slow repair of cellular damage and a lack of adaptive response. Although extensive apoptosis in the UN cell population results in microcephaly and mental retardation, it possesses the ability to recover from a considerable cell loss and to form the normal structure of the central nervous system. The number of cell deaths needed to induce tissue adnormalities in the adult murine brain rises in the range of 15-25% of the germinal cell population; with the threshold doses at about 0.3 Gy for cerebral anomalies and 1 Gy for cerebellar abnormalities. Threshold level is similarly suggested in prenatally exposed A-bomb survivors. High radiosensitivity of UN cells is assumed to be a manifestation of the ability of the cell to commit suicide when injured. Repeated replication of DNA and extensive gene expression are required in future proliferation and differentiation. Once an abnormality in DNA was induced and fixed in the UN cell, it would be greatly amplified and prove a danger in producing malformations and tumors. These cells would thus commit suicide for the benefit of the individual to eliminate their acquired genetic abnormalities rather than make DNA repair. UN cells in the developing brain are highly radiosensitive and readily involved in apoptosis. Paradoxically, however, this may be to protect individuals against teratogenesis and tumorigenesis. (J.P.N.).

  18. Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    Science.gov (United States)

    Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok

    2011-12-01

    Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Detección de cepas de Neisseria meningitidis resistentes a rifampicina en el Uruguay Detection of rifampicin-resistant strains of Neisseria meningitidis in Uruguay

    Directory of Open Access Journals (Sweden)

    Gabriel Pérez Giffoni

    2011-12-01

    Full Text Available El objetivo de este trabajo fue caracterizar fenotípica y genotípicamente dos aislamientos de Neisseria meningitidis resistentes a rifampicina relacionados con dos eventos independientes de transmisión de enfermedad meningocócica grave que se presentaron en septiembre y octubre de 2010 en Montevideo, Uruguay. Se revisó también la base de datos de la vigilancia nacional de resistencia a los antimicrobianos de los últimos 10 años, para estimar la frecuencia de la particularidad de los meningococos caracterizados. La resistencia a rifampicina se estudió por el método epsilométrico. El serotipo y serosubtipo de los aislamientos se determinaron por ELISA y la caracterización genotípica se realizó por digestión del ADN con NheI y electroforesis en gel con campo pulsátil. Ambos aislamientos eran idénticos, B:2a:P1.5, y su fenotipo no figuraba en la colección de 408 cepas de N. meningitidis aisladas en el Uruguay en los últimos 10 años, con la excepción de dos aislamientos sensibles a rifampicina. Los dos aislamientos estudiados también compartían un pulsotipo único, diferente del de otros dos aislamientos resistentes a rifampicina obtenidos en 2003 y 2007. Por lo tanto, ambos eventos de transmisión fueron causados por una única cepa resistente a rifampicina, que podría haberse introducido al país desde otras regiones o haberse originado por un cambio del serogrupo C al B, como producto de la presión selectiva ejercida por vacunas administradas a la población. Es necesario mantener y extremar la vigilancia. No obstante, en vista de que hasta el momento este tipo de hallazgo ha sido esporádico, no se justifica cambiar el fármaco antimicrobiano que se administra a los contactos para la profilaxis, a menos que se identifique un caso secundario.The objective of this study was to characterize the phenotype and genotype of two isolates of rifampicin-resistant Neisseria meningitidis associated with two independent events

  20. Encuesta de portadores de Neisseria meningitidis en el Área de Salud de Gran Canaria

    Directory of Open Access Journals (Sweden)

    García Rojas Amós

    2000-01-01

    Full Text Available FUNDAMENTOS: Se plantea A Conocer la tasa de portadores y los tipos circulantes de Neisseria Meningitidis en la población residente en el área de salud de Gran Canaria. B Conocer el patrón de distribución de estos portadores. MÉTODOS: Se realizó un diseño descriptivo transversal, con un muestreo aleatorio en etapas múltiples y por conglomerados. Se determinó un tamaño muestral mínimo de 707 personas para una prevalencia esperada del 8,6 %, con una confianza del 95,6 % y precisión de 0,02. Asumiendo que un 15 % de las personas no quisieran colaborar, se incrementó el tamaño muestral a 831 personas, distribuidas en cada conglomerado de manera proporcional a la población existente. Este tamaño se distribuyó a su vez, en cuatro grandes grupos de edad y sexo, proporcionalmente a su importancia en cada zona básica de salud seleccionada aleatoriamente. Los individuos de la muestra se identificaban entre los que acudían a las unidades de extracción, y una vez superados los criterios de exclusión se les solicitaba su colaboración voluntaria en el estudio. Si aceptaban, se les cumplimentaba un cuestionario que englobaba diferentes variables de interés epidemiológico y se les realizaba un frotis faríngeo. Al haber seleccionado los equipos de Atención Primaria con muestreo aleatorio simple y seguir el mismo método para elegir los individuos dentro de ellos, la estimación de la prevalencia se realizó mediante estimador no sesgado. RESULTADOS: Se obtuvieron un total de 828 muestras, lo que supuso un 99,6% de las previstas. Salvo tres, todos los individuos seleccionados participaron voluntariamente en el estudio, lo que le confiere una alta representatividad. Todas las cepas obtenidas correspondían a N. Meningitidis Serogrupo B, salvo una identificada como N. Meningitidis Serogrupo C Sero/Subtipo 4:P1.2,5. Las cepas de N. Meningitidis serogrupo B identificadas, correspondían a 25 serosubtipos diferentes. La prevalencia puntual

  1. Regional brain glucose metabolism and blood flow in streptozocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Jakobsen, J.; Nedergaard, M.; Aarslew-Jensen, M.; Diemer, N.H.

    1990-01-01

    Brain regional glucose metabolism and regional blood flow were measured from autoradiographs by the uptake of [ 3 H]-2-deoxy-D-glucose and [ 14 C]iodoantipyrine in streptozocin-induced diabetic (STZ-D) rats. After 2 days of diabetes, glucose metabolism in the neocortex, basal ganglia, and white matter increased by 34, 37, and 8%, respectively, whereas blood flow was unchanged. After 4 mo, glucose metabolism in the same three regions was decreased by 32, 43, and 60%. This reduction was paralleled by a statistically nonsignificant reduction in blood flow in neocortex and basal ganglia. It is suggested that the decrease of brain glucose metabolism in STZ-D reflects increased ketone body oxidation and reduction of electrochemical work

  2. A brain-targeted ampakine compound protects against opioid-induced respiratory depression.

    Science.gov (United States)

    Dai, Wei; Xiao, Dian; Gao, Xiang; Zhou, Xin-Bo; Fang, Tong-Yu; Yong, Zheng; Su, Rui-Bin

    2017-08-15

    The use of opioid drugs for pain relief can induce life-threatening respiratory depression. Although naloxone effectively counteracts opioid-induced respiratory depression, it diminishes the efficacy of analgesia. Our studies indicate that ampakines, in particular, a brain-targeted compound XD-8-17C, are able to reverse respiratory depression without affecting analgesia at relatively low doses. Mice and rats were subcutaneously or intravenously injected with the opioid agonist TH-030418 to induce moderate or severe respiratory depression. XD-8-17C was intravenously administered before or after TH-030418. The effect of XD-8-17C on opioid-induced respiratory depression was evaluated in terms of the opioid-induced acute death rate, arterial blood gas analysis and pulmonary function tests. In addition, the hot-plate test was conducted to investigate whether XD-8-17C influenced opioid-induced analgesia. Pre-treatment with XD-8-17C significantly reduced opioid-induced acute death, and increased the median lethal dose of TH-030418 by 4.7-fold. Blood gas analysis and pulmonary function tests demonstrated that post-treatment with XD-8-17C alleviated respiratory depression, as indicated by restoration of arterial blood gas (pO 2 , sO 2 , cK + ) and lung function parameters (respiratory frequency, minute ventilation) to the normal range. The hot-plate test showed that XD-8-17C had no impact on the antinociceptive efficacy of morphine. The ability of XD-8-17C to reverse opioid-induced respiratory depression has the potential to increase the safety and convenience of opioid treatment. These findings contribute to the discovery of novel therapeutic agents that protect against opioid-induced respiratory depression without loss of analgesia. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Exposures to Conditioned Flavours with Different Hedonic Values Induce Contrasted Behavioural and Brain Responses in Pigs

    Science.gov (United States)

    Clouard, Caroline; Jouhanneau, Mélanie; Meunier-Salaün, Marie-Christine; Malbert, Charles-Henri; Val-Laillet, David

    2012-01-01

    This study investigated the behavioural and brain responses towards conditioned flavours with different hedonic values in juvenile pigs. Twelve 30-kg pigs were given four three-day conditioning sessions: they received three different flavoured meals paired with intraduodenal (i.d.) infusions of 15% glucose (FGlu), lithium chloride (FLiCl), or saline (control treatment, FNaCl). One and five weeks later, the animals were subjected to three two-choice feeding tests without reinforcement to check the acquisition of a conditioned flavour preference or aversion. In between, the anaesthetised pigs were subjected to three 18FDG PET brain imaging coupled with an olfactogustatory stimulation with the conditioned flavours. During conditioning, the pigs spent more time lying inactive, and investigated their environment less after the FLiCl than the FNaCl or FGlu meals. During the two-choice tests performed one and five weeks later, the FNaCl and FGlu foods were significantly preferred over the FLICl food even in the absence of i.d. infusions. Surprisingly, the FNaCl food was also preferred over the FGlu food during the first test only, suggesting that, while LiCl i.d. infusions led to a strong flavour aversion, glucose infusions failed to induce flavour preference. As for brain imaging results, exposure to aversive or less preferred flavours triggered global deactivation of the prefrontal cortex, specific activation of the posterior cingulate cortex, as well as asymmetric brain responses in the basal nuclei and the temporal gyrus. In conclusion, postingestive visceral stimuli can modulate the flavour/food hedonism and further feeding choices. Exposure to flavours with different hedonic values induced metabolism differences in neural circuits known to be involved in humans in the characterization of food palatability, feeding motivation, reward expectation, and more generally in the regulation of food intake. PMID:22685528

  4. Food image-induced brain activation is not diminished by insulin infusion.

    Science.gov (United States)

    Belfort-DeAguiar, R; Seo, D; Naik, S; Hwang, J; Lacadie, C; Schmidt, C; Constable, R T; Sinha, R; Sherwin, R

    2016-11-01

    The obesity epidemic appears to be driven in large part by our modern environment inundated by food cues, which may influence our desire to eat. Although insulin decreases food intake in both animals and humans, the effect of insulin on motivation for food in the presence of food cues is not known. Therefore, the aim of this study was to evaluate the effect of an intravenous insulin infusion on the brain response to visual food cues, hunger and food craving in non-obese human subjects. Thirty-four right-handed healthy non-obese subjects (19F/15M, age: 29±8 years.; BMI: 23.1±2.1 kg m -2 ) were divided in two groups matched by age and BMI; the insulin group (18 subjects) underwent a hyperinsulinemic-euglycemic-clamp, and the control group (16 subjects) received an intravenous saline infusion, while viewing high and low-calorie food and non-food pictures during a functional MRI scan. Motivation for food was determined via analog scales for hunger, wanting and liking ratings. Food images induced brain responses in the hypothalamus, striatum, amygdala, insula, ventromedial prefrontal cortex (PFC), dorsolateral PFC and occipital lobe (whole brain correction, Pinsulin and saline infusion groups. Hunger ratings increased throughout the MRI scan and correlated with preference for high-calorie food pictures (r=0.70; Pbrain activity nor food cravings were affected by hyperinsulinemia or hormonal status (leptin and ghrelin levels) (P=NS). Our data demonstrate that visual food cues induce a strong response in motivation/reward and cognitive-executive control brain regions in non-obese subjects, but that these responses are not diminished by hyperinsulinemia per se. These findings suggest that our modern food cue saturated environment may be sufficient to overpower homeostatic hormonal signals, and thus contribute to the current obesity epidemic.

  5. Possible effects of rosuvastatin on noise-induced oxidative stress in rat brain

    Directory of Open Access Journals (Sweden)

    Alevtina Ersoy

    2014-01-01

    Full Text Available The problem of noise has recently gained more attention as it has become an integral part of our daily lives. However, its influence has yet to be fully elucidated. Other than being an unpleasant stimulus, noise may cause health disorders through annoyance and stress, including oxidative stress. Rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, may possess antioxidant properties. Based on rat models, our project investigates the effect of rosuvastatin on noise-induced oxidative stress in the brain tissue. Thirty-two male Wistar albino rats were used. The rats were divided into four groups: Noise exposure plus rosuvastatin usage, only noise exposure, only rosuvastatin usage, and control. After the data had been collected, oxidant and antioxidant parameters were analyzed in the cerebral cortex, brain stem, and cerebellum. Results indicated that superoxide dismutase values were significantly decreased in the cerebral cortex, while malondialdehyde values in the brainstem and cerebellum were significantly increased in the group with only noise exposure. Superoxide dismutase values in the brainstem were significantly increased, but nitric oxide values in the cerebellum and brainstem and malondialdehyde values in the cerebellum and cerebral cortex were significantly decreased in the group where only rosuvastatin was used. During noise exposure, the use of rosuvastatin caused significantly increased superoxide dismutase values in the cerebral cortex and brainstem, but significantly reduced malondialdehyde values in the brain stem. Consequently, our data show that brain tissue was affected by oxidative stress due to continued exposure to noise. This noise-induced stress decreases with rosuvastatin therapy.

  6. Exposures to conditioned flavours with different hedonic values induce contrasted behavioural and brain responses in pigs.

    Directory of Open Access Journals (Sweden)

    Caroline Clouard

    Full Text Available This study investigated the behavioural and brain responses towards conditioned flavours with different hedonic values in juvenile pigs. Twelve 30-kg pigs were given four three-day conditioning sessions: they received three different flavoured meals paired with intraduodenal (i.d. infusions of 15% glucose (F(Glu, lithium chloride (F(LiCl, or saline (control treatment, F(NaCl. One and five weeks later, the animals were subjected to three two-choice feeding tests without reinforcement to check the acquisition of a conditioned flavour preference or aversion. In between, the anaesthetised pigs were subjected to three (18FDG PET brain imaging coupled with an olfactogustatory stimulation with the conditioned flavours. During conditioning, the pigs spent more time lying inactive, and investigated their environment less after the F(LiCl than the F(NaCl or F(Glu meals. During the two-choice tests performed one and five weeks later, the F(NaCl and F(Glu foods were significantly preferred over the F(LICl food even in the absence of i.d. infusions. Surprisingly, the F(NaCl food was also preferred over the F(Glu food during the first test only, suggesting that, while LiCl i.d. infusions led to a strong flavour aversion, glucose infusions failed to induce flavour preference. As for brain imaging results, exposure to aversive or less preferred flavours triggered global deactivation of the prefrontal cortex, specific activation of the posterior cingulate cortex, as well as asymmetric brain responses in the basal nuclei and the temporal gyrus. In conclusion, postingestive visceral stimuli can modulate the flavour/food hedonism and further feeding choices. Exposure to flavours with different hedonic values induced metabolism differences in neural circuits known to be involved in humans in the characterization of food palatability, feeding motivation, reward expectation, and more generally in the regulation of food intake.

  7. Exposures to conditioned flavours with different hedonic values induce contrasted behavioural and brain responses in pigs.

    Science.gov (United States)

    Clouard, Caroline; Jouhanneau, Mélanie; Meunier-Salaün, Marie-Christine; Malbert, Charles-Henri; Val-Laillet, David

    2012-01-01

    This study investigated the behavioural and brain responses towards conditioned flavours with different hedonic values in juvenile pigs. Twelve 30-kg pigs were given four three-day conditioning sessions: they received three different flavoured meals paired with intraduodenal (i.d.) infusions of 15% glucose (F(Glu)), lithium chloride (F(LiCl)), or saline (control treatment, F(NaCl)). One and five weeks later, the animals were subjected to three two-choice feeding tests without reinforcement to check the acquisition of a conditioned flavour preference or aversion. In between, the anaesthetised pigs were subjected to three (18)FDG PET brain imaging coupled with an olfactogustatory stimulation with the conditioned flavours. During conditioning, the pigs spent more time lying inactive, and investigated their environment less after the F(LiCl) than the F(NaCl) or F(Glu) meals. During the two-choice tests performed one and five weeks later, the F(NaCl) and F(Glu) foods were significantly preferred over the F(LICl) food even in the absence of i.d. infusions. Surprisingly, the F(NaCl) food was also preferred over the F(Glu) food during the first test only, suggesting that, while LiCl i.d. infusions led to a strong flavour aversion, glucose infusions failed to induce flavour preference. As for brain imaging results, exposure to aversive or less preferred flavours triggered global deactivation of the prefrontal cortex, specific activation of the posterior cingulate cortex, as well as asymmetric brain responses in the basal nuclei and the temporal gyrus. In conclusion, postingestive visceral stimuli can modulate the flavour/food hedonism and further feeding choices. Exposure to flavours with different hedonic values induced metabolism differences in neural circuits known to be involved in humans in the characterization of food palatability, feeding motivation, reward expectation, and more generally in the regulation of food intake.

  8. Effects of experimentally-induced maternal hypothyroidism on crucial offspring rat brain enzyme activities.

    Science.gov (United States)

    Koromilas, Christos; Liapi, Charis; Zarros, Apostolos; Stolakis, Vasileios; Tsagianni, Anastasia; Skandali, Nikolina; Al-Humadi, Hussam; Tsakiris, Stylianos

    2014-06-01

    Hypothyroidism is known to exert significant structural and functional changes to the developing central nervous system, and can lead to the establishment of serious mental retardation and neurological problems. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil-induced experimental hypothyroidism on crucial brain enzyme activities of Wistar rat offspring, at two time-points of their lives: at birth (day-1) and at 21 days of age (end of lactation). Under all studied experimental conditions, offspring brain acetylcholinesterase (AChE) activity was found to be significantly decreased due to maternal hypothyroidism, in contrast to the two studied adenosinetriphosphatase (Na(+),K(+)-ATPase and Mg(2+)-ATPase) activities that were only found to be significantly altered right after birth (increased and decreased, respectively, following an exposure to gestational maternal hypothyroidism) and were restored to control levels by the end of lactation. As our findings regarding the pattern of effects that maternal hypothyroidism has on the above-mentioned crucial offspring brain enzyme activities are compared to those reported in the literature, several differences are revealed that could be attributed to both the mode of the experimental simulation approach followed as well as to the time-frames examined. These findings could provide the basis for a debate on the need of a more consistent experimental approach to hypothyroidism during neurodevelopment as well as for a further evaluation of the herein presented and discussed neurochemical (and, ultimately, neurodevelopmental) effects of experimentally-induced maternal hypothyroidism, in a brain region-specific manner. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. Role of penA polymorphisms for penicillin susceptibility in Neisseria lactamica and Neisseria meningitidis.

    Science.gov (United States)

    Karch, André; Vogel, Ulrich; Claus, Heike

    2015-10-01

    In meningococci, reduced penicillin susceptibility is associated with five specific mutations in the transpeptidase region of penicillin binding protein 2 (PBP2). We showed that the same set of mutations was present in 64 of 123 Neisseria lactamica strains obtained from a carriage study (MIC range: 0.125-2.0mg/L). The PBP2 encoding penA alleles in these strains were genetically similar to those found in intermediate resistant meningococci suggesting frequent interspecies genetic exchange. Fifty-six N. lactamica isolates with mostly lower penicillin MICs (range: 0.064-0.38mg/L) exhibited only three of the five mutations. The corresponding penA alleles were unique to N. lactamica and formed a distinct genetic clade. PenA alleles with no mutations on the other hand were unique to meningococci. Under penicillin selective pressure, genetic transformation of N. lactamica penA alleles in meningococci was only possible for alleles encoding five mutations, but not for those encoding three mutations; the transfer resulted in MICs comparable to those of meningococci harboring penA alleles that encoded PBP2 with five mutations, but considerably lower than those of the corresponding N. lactamica donor strains. Due to a transformation barrier the complete N. lactamica penA could not be transformed into N. meningitidis. In summary, penicillin MICs in N. lactamica were associated with the number of mutations in the transpeptidase region of PBP2. Evidence for interspecific genetic transfer was only observed for penA alleles associated with higher MICs, suggesting that alleles encoding only three mutations in the transpeptidase region are biologically not effective in N. meningitidis. Factors other than PBP2 seem to be responsible for the high levels of penicillin resistance in N. lactamica. A reduction of penicillin susceptibility in N. meningitidis by horizontal gene transfer from N. lactamica is unlikely to happen. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Blast-induced electromagnetic fields in the brain from bone piezoelectricity.

    Science.gov (United States)

    Lee, Ka Yan Karen; Nyein, Michelle K; Moore, David F; Joannopoulos, J D; Socrate, Simona; Imholt, Timothy; Radovitzky, Raul; Johnson, Steven G

    2011-01-01

    In this paper, we show that bone piezoelectricity-a phenomenon in which bone polarizes electrically in response to an applied mechanical stress and produces a short-range electric field-may be a source of intense blast-induced electric fields in the brain, with magnitudes and timescales comparable to fields with known neurological effects. We compute the induced charge density in the skull from stress data on the skull from a finite-element full-head model simulation of a typical IED-scale blast wave incident on an unhelmeted human head as well as a human head protected by a kevlar helmet, and estimate the resulting electric fields in the brain in both cases to be on the order of 10 V/m in millisecond pulses. These fields are more than 10 times stronger than the IEEE safety guidelines for controlled environments (IEEE Standards Coordinating Committee 28, 2002) and comparable in strength and timescale to fields from repetitive Transcranial Magnetic Stimulation (rTMS) that are designed to induce neurological effects (Wagner et al., 2006a). They can be easily measured by RF antennas, and may provide the means to design a diagnostic tool that records a quantitative measure of the head's exposure to blast insult. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.

    Science.gov (United States)

    Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei

    2014-09-19

    Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Cofilin Knockdown Attenuates Hemorrhagic Brain Injury-induced Oxidative Stress and Microglial Activation in Mice.

    Science.gov (United States)

    Alhadidi, Qasim; Nash, Kevin M; Alaqel, Saleh; Sayeed, Muhammad Shahdaat Bin; Shah, Zahoor A

    2018-05-08

    Intracerebral hemorrhage (ICH) resulting from the rupture of the blood vessels in the brain is associated with significantly higher mortality and morbidity. Clinical studies focused on alleviating the primary injury, hematoma formation and expansion, were largely ineffective, suggesting that secondary injury-induced inflammation and the formation of reactive species also contribute to the overall injury process. In this study, we explored the effects of cofilin knockdown in a mouse model of ICH. Animals given stereotaxic injections of cofilin siRNA, 72-h prior to induction of ICH by collagenase injection within the area of siRNA administration showed significantly decreased cofilin expression levels and lower hemorrhage volume and edema, and the animals performed significantly better in neurobehavioral tasks i.e., rotarod, grip strength and neurologic deficit scores. Cofilin siRNA knocked-down mice had reduced ICH-induced DNA fragmentation, blood-brain barrier disruption and microglial activation, with a concomitant increase in astrocyte activation. Increased expression of pro-survival proteins and decreased markers of oxidative stress were also observed in cofilin siRNA-treated mice possibly due to the reduced levels of cofilin. Our results suggest that cofilin plays a major role in ICH-induced secondary injury, and could become a potential therapeutic target. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

    Science.gov (United States)

    Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

    2014-01-01

    Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

  14. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea E Tóth

    Full Text Available Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line treated with methylglyoxal.Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.

  15. Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis

    Science.gov (United States)

    Gardell, Alison M.; Yang, Jun; Sacchi, Romina; Fangue, Nann A.; Hammock, Bruce D.; Kültz, Dietmar

    2013-01-01

    SUMMARY This study aimed to determine the regulation of the de novo myo-inositol biosynthetic (MIB) pathway in Mozambique tilapia (Oreochromis mossambicus) brain following acute (25 ppt) and chronic (30, 60 and 90 ppt) salinity acclimations. The MIB pathway plays an important role in accumulating the compatible osmolyte, myo-inositol, in cells in response to hyperosmotic challenge and consists of two enzymes, myo-inositol phosphate synthase and inositol monophosphatase. In tilapia brain, MIB enzyme transcriptional regulation was found to robustly increase in a time (acute acclimation) or dose (chronic acclimation) dependent manner. Blood plasma osmolality and Na+ and Cl− concentrations were also measured and significantly increased in response to both acute and chronic salinity challenges. Interestingly, highly significant positive correlations were found between MIB enzyme mRNA and blood plasma osmolality in both acute and chronic salinity acclimations. Additionally, a mass spectrometry assay was established and used to quantify total myo-inositol concentration in tilapia brain, which closely mirrored the hyperosmotic MIB pathway induction. Thus, myo-inositol is a major compatible osmolyte that is accumulated in brain cells when exposed to acute and chronic hyperosmotic challenge. These data show that the MIB pathway is highly induced in response to environmental salinity challenge in tilapia brain and that this induction is likely prompted by increases in blood plasma osmolality. Because the MIB pathway uses glucose-6-phosphate as a substrate and large amounts of myo-inositol are being synthesized, our data also illustrate that the MIB pathway likely contributes to the high energetic demand posed by salinity challenge. PMID:24072790

  16. Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development

    International Nuclear Information System (INIS)

    Wang Qiang; Luo Wenjing; Zheng Wei; Liu Yiping; Xu Hui; Zheng Gang; Dai Zhongming; Zhang Wenbin; Chen Yaoming; Chen Jingyuan

    2007-01-01

    Children are known to be venerable to lead (Pb) toxicity. The blood-brain barrier (BBB) in immature brain is particularly vulnerable to Pb insults. This study was designed to test the hypothesis that Pb exposure damaged the integrity of the BBB in young animals and iron (Fe) supplement may prevent against Pb-induced BBB disruption. Male weanling Sprague-Dawley rats were divided into four groups. Three groups of rats were exposed to Pb in drinking water containing 342 μg Pb/mL as Pb acetate, among which two groups were concurrently administered by oral gavage once every other day with 7 mg Fe/kg and 14 mg Fe/kg as FeSO 4 solution as the low and high Fe treatment group, respectively, for 6 weeks. The control group received sodium acetate in drinking water. Pb exposure significantly increased Pb concentrations in blood by 6.6-folds (p < 0.05) and brain tissues by 1.5-2.0-folds (p < 0.05) as compared to controls. Under the electron microscope, Pb exposure in young animals caused an extensive extravascular staining of lanthanum nitrate in brain parenchyma, suggesting a leakage of cerebral vasculature. Western blot showed that Pb treatment led to 29-68% reduction (p < 0.05) in the expression of occludin as compared to the controls. Fe supplement among Pb-exposed rats maintained the normal ultra-structure of the BBB and restored the expression of occludin to normal levels. Moreover, the low dose Fe supplement significantly reduced Pb levels in blood and brain tissues. These data suggest that Pb exposure disrupts the structure of the BBB in young animals. The increased BBB permeability may facilitate the accumulation of Pb. Fe supplement appears to protect the integrity of the BBB against Pb insults, a beneficial effect that may have significant clinical implications

  17. A Neisseria meningitidis fbpABC mutant is incapable of using nonheme iron for growth.

    Science.gov (United States)

    Khun, H H; Kirby, S D; Lee, B C

    1998-05-01

    The neisserial fbpABC locus has been proposed to act as an iron-specific ABC transporter system. To confirm this assigned function, we constructed an fbpABC mutant in Neisseria meningitidis by insertional inactivation of fbpABC with a selectable antibiotic marker. The mutant was unable to use iron supplied from human transferrin, human lactoferrin, or iron chelates. However, the use of iron from heme and human hemoglobin was unimpaired. These results support the obligatory participation of fbpABC in neisserial periplasmic iron transport and do not indicate a role for this genetic locus in the heme iron pathway.

  18. fbpABC gene cluster in Neisseria meningitidis is transcribed as an operon.

    Science.gov (United States)

    Khun, H H; Deved, V; Wong, H; Lee, B C

    2000-12-01

    The neisserial fbpABC locus has been proposed to constitute a single transcriptional unit. To confirm this operonic arrangement, transcription assays using reverse transcriptase PCR amplification were conducted with Neisseria meningitidis. The presence of fbpAB and fbpBC transcripts obtained by priming cDNA synthesis with an fbpC-sequence-specific oligonucleotide indicates that fbpABC is organized as a single expression unit. The ratio of fbpA to fbpABC mRNA was approximately between 10- to 20-fold, as determined by real-time quantitative PCR.

  19. Neisseria meningitidis: a neglected cause of infectious haemorrhagic fever in the amazon rainforest.

    Science.gov (United States)

    Barroso, David E; Silva, Luciete A

    2007-12-01

    Neisseria meningitidis has not been seen as a significant cause of infectious haemorrhagic fever in the Amazon inlands; most reported cases are from the city of Manaus, the capital of the State of Amazonas. This picture is sustained by the lack of reliable microbiology laboratories, the perception of the health care workers, and the difficult to reach medical assistance; thus the number of confirmed cases is even lower with no reference of the strains phenotype. We report here the investigation of a case of suspected meningococcemia and his close contacts in a rural community in the Coari Lake, up the Amazon River.

  20. Portadores nasofaríngeos de Neisseria meningitidis en trabajadores con riesgo ocupacional

    Directory of Open Access Journals (Sweden)

    Isabel Martínez

    2010-04-01

    Full Text Available Los portadores de Neisseria meningitidis constituyen la principal fuente de infección y transmisión de la enfermedad meningocócica. Conocer su prevalencia, las características de las cepas aisladas y los factores de riesgos asociados con el estado de portador, aportan datos valiosos al control y vigilancia epidemiológica de esta entidad clínica. Para cumplimentar los objetivos propuestos se realizó un estudio transversal descriptivo de portadores de N. meningitidis en 112 trabajadores de un centro de producción de biofarmacéuticos de La Habana, con edades comprendidas entre 18_60 años. Previo a su realización se cumplió con las exigencias bioéticas requeridas para este tipo de estudio. A todos se les realizó un exudado nasofaríngeo y una encuesta, donde se indagó sobre factores de riesgo (edad, sexo, hacinamiento, hábito de fumar, consumo de bebidas alcohólicas, amigdalectomía y antecedentes de infección respiratoria que favorecen la condición del portador. La identificación de las cepas de N. meningitidis se realizó según métodos convencionales, la clasificación de los serogrupos se hizo por aglutinación en láminas portaobjetos con antisueros comerciales y para la identificación de los serotipos y subtipos se empleó un ensayo inmunoenzimático (ELISA de células enteras con anticuerpos monoclonales. Se detectó un 8% de portadores de N. meningitidis con predominio del serogrupo B (77,8% y el fenotipo más frecuente fue el B:4:P1.4 (33,3%. Al analizar el estado de portador y su asociación con los factores de riesgo, la edad (p = 0,05 y el sexo (p = 0,013 mostraron diferencias significativas. Se demostró la posibilidad del riesgo ocupacional en aquellos individuos que por su profesión están en contacto con microorganismos patógenos

  1. Neisseria meningitidis: a neglected cause of infectious haemorrhagic fever in the amazon rainforest

    Directory of Open Access Journals (Sweden)

    David E. Barroso

    Full Text Available Neisseria meningitidis has not been seen as a significant cause of infectious haemorrhagic fever in the Amazon inlands; most reported cases are from the city of Manaus, the capital of the State of Amazonas. This picture is sustained by the lack of reliable microbiology laboratories, the perception of the health care workers, and the difficult to reach medical assistance; thus the number of confirmed cases is even lower with no reference of the strains phenotype. We report here the investigation of a case of suspected meningococcemia and his close contacts in a rural community in the Coari Lake, up the Amazon River.

  2. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  3. Brain prolactin is involved in stress-induced REM sleep rebound.

    Science.gov (United States)

    Machado, Ricardo Borges; Rocha, Murilo Ramos; Suchecki, Deborah

    2017-03-01

    REM sleep rebound is a common behavioural response to some stressors and represents an adaptive coping strategy. Animals submitted to multiple, intermittent, footshock stress (FS) sessions during 96h of REM sleep deprivation (REMSD) display increased REM sleep rebound (when compared to the only REMSD ones, without FS), which is correlated to high plasma prolactin levels. To investigate whether brain prolactin plays a role in stress-induced REM sleep rebound two experiments were carried out. In experiment 1, rats were either not sleep-deprived (NSD) or submitted to 96h of REMSD associated or not to FS and brains were evaluated for PRL immunoreactivity (PRL-ir) and determination of PRL concentrations in the lateral hypothalamus and dorsal raphe nucleus. In experiment 2, rats were implanted with cannulas in the dorsal raphe nucleus for prolactin infusion and were sleep-recorded. REMSD associated with FS increased PRL-ir and content in the lateral hypothalamus and all manipulations increased prolactin content in the dorsal raphe nucleus compared to the NSD group. Prolactin infusion in the dorsal raphe nucleus increased the time and length of REM sleep episodes 3h after the infusion until the end of the light phase of the day cycle. Based on these results we concluded that brain prolactin is a major mediator of stress-induced REMS. The effect of PRL infusion in the dorsal raphe nucleus is discussed in light of the existence of a bidirectional relationship between this hormone and serotonin as regulators of stress-induced REM sleep rebound. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Moderately delayed post-insult treatment with normobaric hyperoxia reduces excitotoxin-induced neuronal degeneration but increases ischemia-induced brain damage

    Directory of Open Access Journals (Sweden)

    Haelewyn Benoit

    2011-04-01

    Full Text Available Abstract Background The use and benefits of normobaric oxygen (NBO in patients suffering acute ischemic stroke is still controversial. Results Here we show for the first time to the best of our knowledge that NBO reduces both NMDA-induced calcium influxes in vitro and NMDA-induced neuronal degeneration in vivo, but increases oxygen and glucose deprivation-induced cell injury in vitro and ischemia-induced brain damage produced by middle cerebral artery occlusion in vivo. Conclusions Taken together, these results indicate that NBO reduces excitotoxin-induced calcium influx and subsequent neuronal degeneration but favors ischemia-induced brain damage and neuronal death. These findings highlight the complexity of the mechanisms involved by the use of NBO in patients suffering acute ischemic stroke.

  5. Blast-induced traumatic brain injury: a new trend of blast injury research.

    Science.gov (United States)

    Zhao, Yan; Wang, Zheng-Guo

    2015-01-01

    Blast injury has become the major life- and function-threatening injuries in recent warfares. There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI), which has been proved as one of the "signature wounds" in modern battlefield. We reviewed the recent progresses in bTBI-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  6. Constraint-induced movement therapy for children with acquired brain injury

    DEFF Research Database (Denmark)

    Pedersen, Kristina Schmidt; Pallesen, Hanne; Kristensen, Hanne Kaae

    2016-01-01

    An estimated 125–137 Danish children with acquired brain injury (ABI) require rehabilitation annually, 30–40 of these at a highly specialized level. Constraint-induced movement therapy (CIMT) has shown significant effects in increasing function in children with cerebral palsy. More knowledge of how...... CIMT can be adapted for the rehabilitation of children with ABI is needed. The primary purpose of the study was to generate new knowledge about the pedagogical initiatives and frameworks involved in children’s participation in and activities during CIMT. Four children with ABI participated in the 60 h...

  7. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain

    Science.gov (United States)

    Zhu, Meng-Yang; Wang, Wei-Ping; Cai, Zheng-Wei; Regunathan, Soundar; Ordway, Gregory

    2009-01-01

    Agmatine is an endogenous amine derived from decarboxylation of arginine catalysed by arginine decarboxylase. Agmatine is considered a novel neuromodulator and possesses neuroprotective properties in the central nervous system. The present study examined whether agmatine has neuroprotective effects against repeated restraint stress-induced morphological changes in rat medial prefrontal cortex and hippocampus. Sprague-Dawley rats were subjected to 6 h of restraint stress daily for 21 days. Immunohistochemical staining with β-tubulin III showed that repeated restraint stress caused marked morphological alterations in the medial prefrontal cortex and hippocampus. Stress-induced alterations were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Interestingly, endogenous agmatine levels, as measured by high-performance liquid chromatography, in the prefrontal cortex and hippocampus as well as in the striatum and hypothalamus of repeated restraint rats were significantly reduced as compared with the controls. Reduced endogenous agmatine levels in repeated restraint animals were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. Moreover, administration of exogenous agmatine to restrained rats abolished increases of arginine decarboxylase protein levels. Taken together, these results demonstrate that exogenously administered agmatine has neuroprotective effects against repeated restraint-induced structural changes in the medial prefrontal cortex and hippocampus. These findings indicate that stress-induced reductions in endogenous agmatine levels in the rat brain may play a permissive role in neuronal pathology induced by repeated restraint stress. PMID:18364017

  8. Inhibitory effect of magnesium sulfate on reaction of lipid hyperoxidation after radiation-induced acute brain injuries

    International Nuclear Information System (INIS)

    Wang Lili; Zhou Juying; Yu Zhiying; Qin Songbing; Xu Xiaoting; Li Li; Tu Yu

    2007-01-01

    Objective: To explore the protection of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: 60 maturity Sprague-Dawley (SD) rats were randomly divided into 3 groups: blank control group, experimental control group and experimental-therapeutic group. The whole brain of SD rats of experimental control group and experimental-therapeutic group was irradiated to a dose of 20 Gy using 6 MeV electron. MgSO 4 was injected intraperitoneally into the rats of experimental-therapeutic group before and after irradiation for five times. At different time points ranging from the 1 d, 7 d, 14 d, 30 d after irradiation, the brain tissue were taken. The xanthine oxidase and colorimetric examination were used to measure the superoxide dismutase (SOD) and malonyldialdehyde (MDA) respectively in the rat brain respectively. Results: Compared with blank control group, the SOD in brain of experimental control group decreased significantly (P 4 used in early stage can inhibit the lipid peroxidation after radiation-induced acute brain injuries and alleviate the damage induced by free radicals to brain tissue. (authors)

  9. Increased calcineurin expression after pilocarpine-induced status epilepticus is associated with brain focal edema and astrogliosis.

    Science.gov (United States)

    Liu, Jinzhi; Li, Xiaolin; Chen, Liguang; Xue, Ping; Yang, Qianqian; Wang, Aihua

    2015-07-28

    Calcineurin plays an important role in the development of neuronal excitability, modulation of receptor's function and induction of apoptosis in neurons. It has been established in kindling models that status epilepticus induces brain focal edema and astrocyte activation. However, the role of calcineurin in brain focal edema and astrocyte activation in status epilepticus has not been fully understood. In this study, we employed a model of lithium-pilocarpine-induced status epilepticus and detected calcineurin expression in hippocampus by immunoblotting, brain focal edema by non-invasive magnetic resonance imaging (MRI-7T) and astrocyte expression by immunohistochemistry. We found that the brain focal edema was seen at 24 h after status epilepticus, and astrocyte expression was obviously seen at 7 d after status epilepticus. Meanwhile, calcineurin expression was seen at24 h and retained to 7 d after status epilepticus. A FK506, a calcineurin inhibitor, remarkably suppressed the status epilepticus-induced brain focal edema and astrocyte expression. Our data suggested that calcineurin overexpression plays a very important role in brain focal edema and astrocyte expression. Therefore, calcineurin may be a novel candidate for brain focal edema occurring and intracellular trigger of astrogliosis in status epilepticus.

  10. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Science.gov (United States)

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  11. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    International Nuclear Information System (INIS)

    Adibzadeh, F; Verhaart, R F; Rijnen, Z; Franckena, M; Van Rhoon, G C; Paulides, M M; Verduijn, G M; Fortunati, V

    2015-01-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H and N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H and N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR 10g ) in the brains of 16 selected H and N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR 10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF. (paper)

  12. Radiation-induced brain damage in children; Histological analysis of sequential tissue changes in 34 autopsy cases

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi [Kobe Univ. (Japan). School of Medicine; Raimondi, A J

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author).

  13. Ameliorative effects of oleanolic acid on fluoride induced metabolic and oxidative dysfunctions in rat brain: Experimental and biochemical studies.

    Science.gov (United States)

    Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath

    2014-04-01

    Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Molecular targets in radiation-induced blood-brain barrier disruption

    International Nuclear Information System (INIS)

    Nordal, Robert A.; Wong, C. Shun

    2005-01-01

    Disruption of the blood-brain barrier (BBB) is a key feature of radiation injury to the central nervous system. Studies suggest that endothelial cell apoptosis, gene expression changes, and alteration of the microenvironment are important in initiation and progression of injury. Although substantial effort has been directed at understanding the impact of radiation on endothelial cells and oligodendrocytes, growing evidence suggests that other cell types, including astrocytes, are important in responses that include induced gene expression and microenvironmental changes. Endothelial apoptosis is important in early BBB disruption. Hypoxia and oxidative stress in the later period that precedes tissue damage might lead to astrocytic responses that impact cell survival and cell interactions. Cell death, gene expression changes, and a toxic microenvironment can be viewed as interacting elements in a model of radiation-induced disruption of the BBB. These processes implicate particular genes and proteins as targets in potential strategies for neuroprotection

  15. Change in brain network connectivity during PACAP38-induced migraine attacks

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Magon, Stefano

    2016-01-01

    OBJECTIVE: To investigate resting-state functional connectivity in the salience network (SN), the sensorimotor network (SMN), and the default mode network (DMN) during migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38 (PACAP38). METHODS: In a double-blind, randomized...... connectivity with the bilateral opercular part of the inferior frontal gyrus in the SN. In SMN, there was increased connectivity with the right premotor cortex and decreased connectivity with the left visual cortex. Several areas showed increased (left primary auditory, secondary somatosensory, premotor......, and visual cortices) and decreased (right cerebellum and left frontal lobe) connectivity with DMN. We found no resting-state network changes after VIP (n = 15). CONCLUSIONS: PACAP38-induced migraine attack is associated with altered connectivity of several large-scale functional networks of the brain....

  16. Characteristics of brain injury induced by shock wave propagation in solids after underwater explosion in rats

    Directory of Open Access Journals (Sweden)

    Xin-ling LI

    2016-09-01

    Full Text Available Objective  To observe the characteristics of rat brain injury induced by shock wave propagation in solids resulting from underwater explosion and explore the related mechanism. Methods  Explosion source outside the simulated ship cabin underwater was detonated for establishing a model of brain injury in rats by shock wave propagation in solid; 72 male SD rats were randomly divided into normal control group (n=8, injury group 1 (600mg RDX paper particle explosion source, n=32, injury group 2 (800mg RDX paper particle explosion source, n=32. The each injury group was randomly divided into 4 subgroups (n=8, 3, 6, 24 and 72h groups. The division plate as a whole and the head of 8 rats in each injury group were measured for the peak value of the solid shock wave, its rising time and the duration time of shock wave propagation in solid. To observe the physiological changes of animals after injury, plasma samples were collected for determination of brain damage markers, NSE and S-100β. All the animals were sacrificed, the right hemisphere of the brain was taken in each group of animals, weighting after baking, and the brain water content was calculated. Pathological examination was performed for left cerebral hemisphere in 24-h group. The normal pyramidal cells in the hippocampal CA1 region were counted. Results  The peak value, rising time and duration time of shock wave propagation on the division plate and head were 1369.74±91.70g, 0.317±0.037ms and 24.85±2.53ms, 26.83±3.09g, 0.901±0.077ms and 104.21±6.26ms respectively in injury group 1, 1850.11±83.86g, 0.184±0.031ms and 35.61±2.66ms, 39.75±3.14g, 0.607±0.069ms and 132.44±7.17ms in injury group 2 (P<0.01. After the injury, there was no abnormality in the anatomy, and brain damage markers NSE, S-100β increased, reached the peak at 24 h, and they were highest in injury group 2 and lowest in control group with a statistically significant difference (P<0.05. The brain water content

  17. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism.

    Science.gov (United States)

    Shin, Andrew C; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J; Lapworth, Amanda L; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M; Scheja, Ludger; Grove, Kevin L; Smith, Richard D; Qian, Wei-Jun; Lynch, Christopher J; Newgard, Christopher B; Buettner, Christoph

    2014-11-04

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors in mice demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Short-term overfeeding impairs the ability of brain insulin to lower BCAAs in rats. High-fat feeding in nonhuman primates and obesity and/or diabetes in humans is associated with reduced BCKDH protein in liver. These findings support the concept that decreased hepatic BCKDH is a major cause of increased plasma BCAAs and that hypothalamic insulin resistance may account for impaired BCAA metabolism in obesity and diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors

    Science.gov (United States)

    Haziza, Simon; Mohan, Nitin; Loe-Mie, Yann; Lepagnol-Bestel, Aude-Marie; Massou, Sophie; Adam, Marie-Pierre; Le, Xuan Loc; Viard, Julia; Plancon, Christine; Daudin, Rachel; Koebel, Pascale; Dorard, Emilie; Rose, Christiane; Hsieh, Feng-Jen; Wu, Chih-Che; Potier, Brigitte; Herault, Yann; Sala, Carlo; Corvin, Aiden; Allinquant, Bernadette; Chang, Huan-Cheng; Treussart, François; Simonneau, Michel

    2017-05-01

    Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.

  19. Synchrotron microbeam radiation therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain

    International Nuclear Information System (INIS)

    Bouchet, Audrey; Lemasson, Benjamin; Christen, Thomas; Potez, Marine; Rome, Claire; Coquery, Nicolas; Le Clec’h, Céline; Moisan, Anaick; Bräuer-Krisch, Elke; Leduc, Géraldine; Rémy, Chantal; Laissue, Jean A.; Barbier, Emmanuel L.; Brun, Emmanuel; Serduc, Raphaël

    2013-01-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) is an innovative irradiation modality based on spatial fractionation of a high-dose X-ray beam into lattices of microbeams. The increase in lifespan of brain tumor-bearing rats is associated with vascular damage but the physiological consequences of MRT on blood vessels have not been described. In this manuscript, we evaluate the oxygenation changes induced by MRT in an intracerebral 9L gliosarcoma model. Methods: Tissue responses to MRT (two orthogonal arrays (2 × 400 Gy)) were studied using magnetic resonance-based measurements of local blood oxygen saturation (MR S O 2 ) and quantitative immunohistology of RECA-1, Type-IV collagen and GLUT-1, marker of hypoxia. Results: In tumors, MR S O 2 decreased by a factor of 2 in tumor between day 8 and day 45 after MRT. This correlated with tumor vascular remodeling, i.e. decrease in vessel density, increases in half-vessel distances (×5) and GLUT-1 immunoreactivity. Conversely, MRT did not change normal brain MR S O 2 , although vessel inter-distances increased slightly. Conclusion: We provide new evidence for the differential effect of MRT on tumor vasculature, an effect that leads to tumor hypoxia. As hypothesized formerly, the vasculature of the normal brain exposed to MRT remains sufficiently perfused to prevent any hypoxia

  20. Mapping and reconstruction of domoic acid-induced neurodegeneration in the mouse brain.

    Science.gov (United States)

    Colman, J R; Nowocin, K J; Switzer, R C; Trusk, T C; Ramsdell, J S

    2005-01-01

    Domoic acid, a potent neurotoxin and glutamate analog produced by certain species of the marine diatom Pseudonitzschia, is responsible for several human and wildlife intoxication events. The toxin characteristically damages the hippocampus in exposed humans, rodents, and marine mammals. Histochemical studies have identified this, and other regions of neurodegeneration, though none have sought to map all brain regions affected by domoic acid. In this study, mice exposed (i.p.) to 4 mg/kg domoic acid for 72 h exhibited behavioral and pathological signs of neurotoxicity. Brains were fixed by intracardial perfusion and processed for histochemical analysis. Serial coronal sections (50 microm) were stained using the degeneration-sensitive cupric silver staining method of DeOlmos. Degenerated axons, terminals, and cell bodies, which stained black, were identified and the areas of degeneration were mapped onto Paxinos mouse atlas brain plates using Adobe Illustrator CS. The plates were then combined to reconstruct a 3-dimensional image of domoic acid-induced neurodegeneration using Amira 3.1 software. Affected regions included the olfactory bulb, septal area, and limbic system. These findings are consistent with behavioral and pathological studies demonstrating the effects of domoic acid on cognitive function and neurodegeneration in rodents.

  1. Why and how physical activity promotes experience-induced brain plasticity

    Directory of Open Access Journals (Sweden)

    Gerd eKempermann

    2010-12-01

    Full Text Available Adult hippocampal neurogenesis is an unusual case of brain plasticity, since new neurons (and not just neurites and synapses are added to the network in an activity-dependent way. At the behavioral level the plasticity-inducing stimuli include both physical and cognitive activity. In reductionistic animal studies these types of activity can be studied separately in paradigms like voluntary wheel running and environmental enrichment. In both of these, adult neurogenesis is increased but the net effect is primarily due to different mechanisms at the cellular level. Locomotion appears to stimulate the precursor cells, from which adult neurogenesis originates, to increased proliferation and maintenance over time, whereas environmental enrichment, as well as learning, predominantly promotes survival of immature neurons, that is the progeny of the proliferating precursor cells. Surprisingly, these effects are additive: boosting the potential for adult neurogenesis by physical activity increases the recruitment of cells following cognitive stimulation in an enriched environment. Why is that? We argue that locomotion actually serves as an intrinsic feedback mechanism, signaling to the brain, including its neural precursor cells, that the likelihood of cognitive challenges increases. In the wild (other than in front of a TV, no separation of physical and cognitive activity occurs. Physical activity might thus be much more than a generally healthy garnish to leading an active life but an evolutionarily fundamental aspect of activity, which is needed to provide the brain and its systems of plastic adaptation with the appropriate regulatory input and feedback.

  2. The role and dynamics of β-catenin in precondition induced neuroprotection after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Gali Umschweif

    Full Text Available Preconditioning via heat acclimation (34°C 30 d results in neuroprotection from traumatic brain injury due to constitutive as well as dynamic changes triggered by the trauma. Among these changes is Akt phosphorylation, which decreases apoptosis and induces HIF1α. In the present study we investigated the Akt downstream GSK3β/β-catenin pathway and focused on post injury alternations of β catenin and its impact on the cellular response in preconditioned heat acclimated mice. We found that the reduction in motor disability is accompanied with attenuation of depressive like behavior in heat acclimated mice that correlates with the GSK3β phosphorylation state. Concomitantly, a robust β catenin phosphorylation is not followed by its degradation, or by reduced nuclear accumulation. Enhanced tyrosine phosphorylation of β catenin in the injured area weakens the β catenin-N cadherin complex. Membrane β catenin is transiently reduced in heat acclimated mice and its recovery 7 days post TBI is accompanied by induction of the synaptic marker synaptophysin. We suggest a set of cellular events following traumatic brain injury in heat acclimated mice that causes β catenin to participate in cell-cell adhesion alternations rather than in Wnt signaling. These events may contribute to synaptogenesis and the improved motor and cognitive abilities seen heat acclimated mice after traumatic brain injury.

  3. Childhood Music Training Induces Change in Micro and Macroscopic Brain Structure: Results from a Longitudinal Study.

    Science.gov (United States)

    Habibi, Assal; Damasio, Antonio; Ilari, Beatriz; Veiga, Ryan; Joshi, Anand A; Leahy, Richard M; Haldar, Justin P; Varadarajan, Divya; Bhushan, Chitresh; Damasio, Hanna

    2017-11-08

    Several studies comparing adult musicians and nonmusicians have shown that music training is associated with structural brain differences. It is not been established, however, whether such differences result from pre-existing biological traits, lengthy musical training, or an interaction of the two factors, or if comparable changes can be found in children undergoing music training. As part of an ongoing longitudinal study, we investigated the effects of music training on the developmental trajectory of children's brain structure, over two years, beginning at age 6. We compared these children with children of the same socio-economic background but either involved in sports training or not involved in any systematic after school training. We established at the onset that there were no pre-existing structural differences among the groups. Two years later we observed that children in the music group showed (1) a different rate of cortical thickness maturation between the right and left posterior superior temporal gyrus, and (2) higher fractional anisotropy in the corpus callosum, specifically in the crossing pathways connecting superior frontal, sensory, and motor segments. We conclude that music training induces macro and microstructural brain changes in school-age children, and that those changes are not attributable to pre-existing biological traits. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Radiation induced early delayed changes in mice brain: a 1h MRS and behavioral evaluation study

    International Nuclear Information System (INIS)

    Gupta, Mamta; Rana, Poonam; Haridas, Seenu; Manda, Kailash; Hemanth Kumar, B.S.; Khushu, Subash

    2014-01-01

    Radiation induced CNS injury can be classified as acute, early delayed and late delayed. Most of the studies suggest that acute injury is reversible whereas early delayed and late delayed injury is irreversible leading to metabolic and cognitive impairment. Extensive research has been carried out on cranial radiation induced early and late delayed changes, there are no reports on whole body radiation induced early and delayed changes. The present study was designed to observe early delayed effects of radiation during whole body radiation exposure. A total of 20 C57 male mice were divided in two groups of 10 animals each. One group was exposed to a dose of 5 Gy whole body radiation through Tele 60 Co irradiation facility with source operating at 2.496 Gy/min, while other group served as sham irradiated control. Behavioral and MR spectroscopy was carried out 3 months post irradiation. Behavioral parameters such as locomotor activity and working memory were evaluated first then followed by MR spectroscopy at 7T animal MRI system. For MRS, voxel was localised in the cortex-hippocampus region of mouse brain. MR spectra were acquired using PRESS sequence, FID was processed using LC model for quantitation. The data showed impaired cognitive functions and altered metabolite levels during early delayed phase of whole body radiation induced injury. In behavioural experiments, there was a significant impairment in the cognitive as well as exploratory functions at 3 months post irradiation in irradiated group as compared to controls. MRS results explained changes in mI, glutamine and glx levels in irradiated animals compared to controls. Altered mI level has been found to be associated with reduced cognitive abilities in many brain disorders including MCI and Alzheimer's disease. The findings of this study suggest that whole body radiation exposure may have long lasting effect on the cognitive performance. (author)

  5. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ya [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Wang, Guang [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Han, Sha-Sha; He, Mei-Yao [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Cheng, Xin; Ma, Zheng-Lai [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Wu, Xia [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Yang, Xuesong, E-mail: yang_xuesong@126.com [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Liu, Guo-Sheng, E-mail: tlgs@jnu.edu.cn [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China)

    2016-09-10

    Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel{sup +} apoptosis but did not dramatically affect PCNA{sup +} cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. - Highlights: • Typical neurodevelopmental defects could be observed in STZ-treated mouse fetuses. • Nrf2 played a crucial role in hyperglycaemia-induced brain malformations. • The effects of hyperglycaemia on neurons and glia cells were not same.

  6. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model

    International Nuclear Information System (INIS)

    Jin, Ya; Wang, Guang; Han, Sha-Sha; He, Mei-Yao; Cheng, Xin; Ma, Zheng-Lai; Wu, Xia; Yang, Xuesong; Liu, Guo-Sheng

    2016-01-01

    Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel"+ apoptosis but did not dramatically affect PCNA"+ cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. - Highlights: • Typical neurodevelopmental defects could be observed in STZ-treated mouse fetuses. • Nrf2 played a crucial role in hyperglycaemia-induced brain malformations. • The effects of hyperglycaemia on neurons and glia cells were not same.

  7. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain.

    Science.gov (United States)

    Schwabe, Lars; Tegenthoff, Martin; Höffken, Oliver; Wolf, Oliver T

    2013-12-01

    Accumulating evidence suggests that stress may orchestrate the engagement of multiple memory systems in the brain. In particular, stress is thought to favor dorsal striatum-dependent procedural over hippocampus-dependent declarative memory. However, the neuroendocrine mechanisms underlying these modulatory effects of stress remain elusive, especially in humans. Here, we targeted the role of the mineralocorticoid receptor (MR) in the stress-induced modulation of dorsal striatal and hippocampal memory systems in the human brain using a combination of event-related functional magnetic resonance imaging and pharmacologic blockade of the MR. Eighty healthy participants received the MR antagonist spironolactone (300 mg) or a placebo and underwent a stressor or control manipulation before they performed, in the scanner, a classification task that can be supported by the hippocampus and the dorsal striatum. Stress after placebo did not affect learning performance but reduced explicit task knowledge and led to a relative increase in the use of more procedural learning strategies. At the neural level, stress promoted striatum-based learning at the expense of hippocampus-based learning. Functional connectivity analyses showed that this shift was associated with altered coupling of the amygdala with the hippocampus and dorsal striatum. Mineralocorticoid receptor blockade before stress prevented the stress-induced shift toward dorsal striatal procedural learning, same as the stress-induced alterations of amygdala connectivity with hippocampus and dorsal striatum, but resulted in significantly impaired performance. Our findings indicate that the stress-induced shift from hippocampal to dorsal striatal memory systems is mediated by the amygdala, required to preserve performance after stress, and dependent on the MR. © 2013 Society of Biological Psychiatry.

  8. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature.

    Science.gov (United States)

    Carnevale, Daniela; Mascio, Giada; D'Andrea, Ivana; Fardella, Valentina; Bell, Robert D; Branchi, Igor; Pallante, Fabio; Zlokovic, Berislav; Yan, Shirley Shidu; Lembo, Giuseppe

    2012-07-01

    Although epidemiological data associate hypertension with a strong predisposition to develop Alzheimer disease, no mechanistic explanation exists so far. We developed a model of hypertension, obtained by transverse aortic constriction, leading to alterations typical of Alzheimer disease, such as amyloid plaques, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment, shown here for the first time. The aim of this work was to investigate the mechanisms involved in Alzheimer disease of hypertensive mice. We focused on receptor for advanced glycation end products (RAGE) that critically regulates Aβ transport at the blood-brain barrier and could be influenced by vascular factors. The hypertensive challenge had an early and sustained effect on RAGE upregulation in brain vessels of the cortex and hippocampus. Interestingly, RAGE inhibition protected from hypertension-induced Alzheimer pathology, as showed by rescue from cognitive impairment and parenchymal Aβ deposition. The increased RAGE expression in transverse aortic coarctation mice was induced by increased circulating advanced glycation end products and sustained by their later deposition in brain vessels. Interestingly, a daily treatment with an advanced glycation end product inhibitor or antioxidant prevented the development of Alzheimer traits. So far, Alzheimer pathology in experimental animal models has been recognized using only transgenic mice overexpressing amyloid precursor. This is the first study demonstrating that a chronic vascular insult can activate brain vascular RAGE, favoring parenchymal Aβ deposition and the onset of cognitive deterioration. Overall we demonstrate that RAGE activation in brain vessels is a crucial pathogenetic event in hypertension-induced Alzheimer disease, suggesting that inhibiting this target can limit the onset of vascular-related Alzheimer disease.

  9. Refolding, purification and crystallization of the FrpB outer membrane iron transporter from Neisseria meningitidis

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Prince, Stephen M.; Patel, Hema; Chan, Hannah; Feavers, Ian M.; Derrick, Jeremy P.

    2012-01-01

    The refolding, purification and crystallization of FrpB from the meningitis pathogen Neisseria meningitidis is described. FrpB is an integral outer membrane protein from the human pathogen Neisseria meningitidis. It is a member of the TonB-dependent transporter family and promotes the uptake of iron across the outer membrane. There is also evidence that FrpB is an antigen and hence a potential component of a vaccine against meningococcal meningitis. FrpB incorporating a polyhistidine tag was overexpressed in Escherichia coli into inclusion bodies. The protein was then solubilized in urea, refolded and purified to homogeneity. Two separate antigenic variants of FrpB were crystallized by sitting-drop vapour diffusion. Crystals of the F5-1 variant diffracted to 2.4 Å resolution and belonged to space group C2, with unit-cell parameters a = 176.5, b = 79.4, c = 75.9 Å, β = 98.3°. Crystal-packing calculations suggested the presence of a monomer in the asymmetric unit. Crystals of the F3-3 variant also diffracted to 2.4 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 85.3, b = 104.6, c = 269.1 Å. Preliminary analysis suggested the presence of an FrpB trimer in the asymmetric unit

  10. Molecular biology of Neisseria meningitidis class 5 and H. 8 outer membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kawula, T.H.

    1987-01-01

    One of the surface structures responsible for inter- and intrastrain antigenic variability in meningococci is the heat-modifiable class 5 (C.5) protein. Neisseria meningitidis strain FAM18 (a meningococcal disease isolate) expressed two different C.5 proteins (C.5a and C.5b) identifiable by sodium dodecyl sulfate polyacrylamide gel electrophoresis. We generated two monoclonal antibodies (MAbs), each specific for one of the identified C.5 proteins. The MAbs, which were bactericidal for variants expressing the appropriate C.5 protein, were used to study C.5 expression changes in FAM18. The H.8 protein is an antigenically conserved outer membrane protein expressed almost exclusively by the pathogenic Neisseria. We have cloned and sequenced an H.8 gene from N. meningitidis FAM18. The predicted H.8 amino acid sequence indicated that the most probable signal peptide processing site matched the consensus prokaryotic lipoprotein processing/modification sequence. We then showed that the H.8 protein could be labeled with {sup 14}C-palmitic acid, confirming that H.8 was a lipoprotein. Processing of the H.8 protein was inhibited by globomycin in E. coli indicating that H.8 was modified by the described lipoprotein processing/modifying pathway described in both gram negative and gram positive genera.

  11. Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Mikio; Nimigean, Crina M.; Iverson, T.M. (Weill-Med); (Vanderbilt)

    2010-06-25

    PorB is the second most prevalent outer membrane protein in Neisseria meningitidis. PorB is required for neisserial pathogenesis and can elicit a Toll-like receptor mediated host immune response. Here, the x-ray crystal structure of PorB has been determined to 2.3 {angstrom} resolution. Structural analysis and cocrystallization studies identify three putative solute translocation pathways through the channel pore: One pathway transports anions nonselectively, one transports cations nonselectively, and one facilitates the specific uptake of sugars. During infection, PorB likely binds host mitochondrial ATP, and cocrystallization with the ATP analog AMP-PNP suggests that binding of nucleotides regulates these translocation pathways both by partial occlusion of the pore and by restricting the motion of a putative voltage gating loop. PorB is located on the surface of N. meningitidis and can be recognized by receptors of the host innate immune system. Features of PorB suggest that Toll-like receptor mediated recognition outer membrane proteins may be initiated with a nonspecific electrostatic attraction.

  12. Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mushfiquddin Khan

    2017-01-01

    Full Text Available Mild traumatic brain injury (TBI, also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO, the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α, a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.

  13. Programmed Cell Death in the Honey Bee (Apis mellifera) (Hymenoptera: Apidae) Worker Brain Induced by Imidacloprid.

    Science.gov (United States)

    Wu, Yan-Yan; Zhou, Ting; Wang, Qiang; Dai, Ping-Li; Xu, Shu-Fa; Jia, Hui-Ru; Wang, Xing

    2015-08-01

    Honey bees are at an unavoidable risk of exposure to neonicotinoid pesticides, which are used worldwide. Compared with the well-studied roles of these pesticides in nontarget site (including midgut, ovary, or salivary glands), little has been reported in the target sites, the brain. In the current study, laboratory-reared adult worker honey bees (Apis mellifera L.) were treated with sublethal doses of imidacloprid. Neuronal apoptosis was detected using the TUNEL technique for DNA labeling. We observed significantly increased apoptotic markers in dose- and time-dependent manners in brains of bees exposed to imidacloprid. Neuronal activated caspase-3 and mRNA levels of caspase-1, as detected by immunofluorescence and real-time quantitative PCR, respectively, were significantly increased, suggesting that sublethal doses of imidacloprid may induce the caspase-dependent apoptotic pathway. Additionally, the overlap of apoptosis and autophagy in neurons was confirmed by transmission electron microscopy. It further suggests that a relationship exists between neurotoxicity and behavioral changes induced by sublethal doses of imidacloprid, and that there is a need to determine reasonable limits for imidacloprid application in the field to protect pollinators. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    Science.gov (United States)

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  15. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    Science.gov (United States)

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  16. Some positive effects of pine oil on brain tissue in streptozotocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Demir, E.; Keser, S.; Yilmiz, O.

    2016-01-01

    Pine oil has antiseptic, expectorant and antioxidant properties and has been used for treatment of rheumatism, respiratory and urinary system and skin diseases. We aimed to determine protective effects of pine oil (PO) on the lipid-soluble vitamins, cholesterol, GSH, total protein, MDA, fatty acid levels of brain tissue of the streptozotocin-induced diabetic rats. Rats were randomly divided into three groups: Control (C), streptozotocin (STZ), streptozotocin+pine oil (PO) groups. Streptozotocin was injected intraperitoneally single dose (65 mg/kg) to the STZ and PO groups for inducing of diabetes. To the PO group 1 mg/kg dose pine oil was intraperitoneally injected every next day. While the GSH and total protein were significantly decreased in the Streptozotocin (STZ) group, their levels were protected in PO group. MDA level was significantly increased in STZ group, its level significantly decreased in the PO group. Our results showed that PO has a positive effect on the GSH, total protein, and MDA levels in the brain tissue of diabetic rats. The PO and STZ administrations were affected by levels of some important fatty acids. The decrease in the MDA level and observed protecting effects can be attributed to PO extract, because it contains some important phytochemical constituents. (author)

  17. Electro-physiological changes in the brain induced by caffeine or glucose nasal spray.

    Science.gov (United States)

    De Pauw, K; Roelands, B; Van Cutsem, J; Marusic, U; Torbeyns, T; Meeusen, R

    2017-01-01

    A direct link between the mouth cavity and the brain for glucose (GLUC) and caffeine (CAF) has been established. The aim of this study is to determine whether a direct link for both substrates also exist between the nasal cavity and the brain. Ten healthy male subjects (age 22 ± 1 years) performed three experimental trials, separated by at least 2 days. Each trial included a 20-s nasal spray (NAS) period in which solutions placebo (PLAC), GLUC, or CAF were provided in a double-blind, randomized order. During each trial, four cognitive Stroop tasks were performed: two familiarization trials and one pre- and one post-NAS trial. Reaction times and accuracy for different stimuli (neutral, NEUTR; congruent, CON; incongruent INCON) were determined. Electroencephalography was continuously measured throughout the trials. During the Stroop tasks pre- and post-NAS, the P300 was assessed and during NAS, source localization was performed using standardized low-resolution brain electromagnetic tomography (sLORETA). NAS activated the anterior cingulate cortex (ACC). CAF-NAS also increased θ and β activity in frontal cortices. Furthermore, GLUC-NAS increased the β activity within the insula. GLUC-NAS also increased the P300 amplitude with INCON (P = 0.046) and reduced P300 amplitude at F3-F4 and P300 latency at CP1-CP2-Cz with NEUTR (P = 0.001 and P = 0.016, respectively). The existence of nasal bitter and sweet taste receptors possibly induce these brain responses. Greater cognitive efficiency was observed with GLUC-NAS. CAF-NAS activated cingulate, insular, and sensorymotor cortices, whereas GLUC-NAS activated sensory, cingulate, and insular cortices. However, no effect on the Stroop task was found.

  18. Overexpression of extracellular superoxide dismutase protects against brain injury induced by chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Nahla Zaghloul

    Full Text Available Extracellular superoxide dismutase (EC-SOD is an isoform of SOD normally found both intra- and extra-cellularly and accounting for most SOD activity in blood vessels. Here we explored the role of EC-SOD in protecting against brain damage induced by chronic hypoxia. EC-SOD Transgenic mice, were exposed to hypoxia (FiO2.1% for 10 days (H-KI and compared to transgenic animals housed in room air (RA-KI, wild type animals exposed to hypoxia (H-WT or wild type mice housed in room air (RA-WT. Overall brain metabolism evaluated by positron emission tomography (PET showed that H-WT mice had significantly higher uptake of 18FDG in the brain particularly the hippocampus, hypothalamus, and cerebellum. H-KI mice had comparable uptake to the RA-KI and RA-WT groups. To investigate the functional state of the hippocampus, electrophysiological techniques in ex vivo hippocampal slices were performed and showed that H-KI had normal synaptic plasticity, whereas H-WT were severely affected. Markers of oxidative stress, GFAP, IBA1, MIF, and pAMPK showed similar values in the H-KI and RA-WT groups, but were significantly increased in the H-WT group. Caspase-3 assay and histopathological studies showed significant apoptosis/cell damage in the H-WT group, but no significant difference in the H-KI group compared to the RA groups. The data suggest that EC-SOD has potential prophylactic and therapeutic roles in diseases with compromised brain oxygenation.

  19. Air pollution alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression.

    Science.gov (United States)

    Thomson, Errol M; Kumarathasan, Prem; Calderón-Garcidueñas, Lilian; Vincent, Renaud

    2007-10-01

    Recent work suggests that air pollution is a risk factor for cerebrovascular and neurodegenerative disease. Effects of inhaled pollutants on the production of vasoactive factors such as endothelin (ET) and nitric oxide (NO) in the brain may be relevant to disease pathogenesis. Inhaled pollutants increase circulating levels of ET-1 and ET-3, and the pituitary is a potential source of plasma ET, but the effects of pollutants on the expression of ET and NO synthase genes in the brain and pituitary are not known. In the present study, Fischer-344 rats were exposed by nose-only inhalation to particles (0, 5, 50mg/m3 EHC-93), ozone (0, 0.4, 0.8 ppm), or combinations of particles and ozone for 4 h. Real-time reverse transcription polymerase chain reaction was used to measure mRNA levels in the cerebral hemisphere and pituitary 0 and 24 h post-exposure. Ozone inhalation significantly increased preproET-1 but decreased preproET-3 mRNAs in the cerebral hemisphere, while increasing mRNA levels of preproET-1, preproET-3, and the ET-converting enzyme (ECE)-1 in the pituitary. Inducible NO synthase (iNOS) was initially decreased in the cerebral hemisphere after ozone inhalation, but increased 24 h post-exposure. Particles decreased tumour necrosis factor (TNF)-alpha mRNA in the cerebral hemisphere, and both particles and ozone decreased TNF-alpha mRNA in the pituitary. Our results show that ozone and particulate matter rapidly modulate the expression of genes involved in key vasoregulatory pathways in the brain and pituitary, substantiating the notion that inhaled pollutants induce cerebrovascular effects.

  20. Cigarette smoking accelerated brain aging and induced pre-Alzheimer-like neuropathology in rats.

    Directory of Open Access Journals (Sweden)

    Yuen-Shan Ho

    Full Text Available Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD. To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP processing by increasing the production of sAPPβ and accumulation of β-amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia.

  1. Effect of chronic forced swimming stress on whole brain radiation induced cognitive dysfunction and related mechanism

    International Nuclear Information System (INIS)

    Zhang Yuan; Sun Rui; Zhu Yaqun; Zhang Liyuan; Ji Jianfeng; Li Kun; Tian Ye

    2014-01-01

    Objective: To explore whether chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction and possible mechanism. Methods: Thirty-nine one month old male Sprague-Dawley rats were randomized into sham control group(C), swimming group(C-S), radiation group(R), and radiation plus swimming group(R-S). Radiation groups were given a single dose of 20 Gy on whole-brain. Rats in the swimming groups were trained with swimming of 15 min/d, 5 d/w. Rat behavior was performed 3 months after radiation in an order of free activity in an open field and the Morris water maze test including the place navigation and spatial probe tests. Then, the protein expressions of BDNF, P-ERK, T-ERK, P-CREB and T-CREB in the rat hippocampus tissue were assayed by Western blot. Results: On the day 2, in the place navigation test of Morris water maze, the latency of swimming group was significantly shorter than that of sham group, the latency of sham group was significantly shorter than that of radiation group, and the latency of radiation swimming group was significantly shorter than that of radiation group(P 0.05). Western blot assay showed that the expressions of BDNF and its downstream signals including P-ERK and P-CREB were markedly reduced by radiation (P < 0.05), but this reduction was attenuated by the chronic forced swimming stress. Conclusion: The chronic forced swimming stress could improve whole brain radiation induced cognitive dysfunction by up-regulating the expressions of BDNF and its downstream signal molecules of P-ERK and P-CREB in hippocampus. (authors)

  2. Cigarette Smoking Accelerated Brain Aging and Induced Pre-Alzheimer-Like Neuropathology in Rats

    Science.gov (United States)

    Ho, Yuen-Shan; Yang, Xifei; Yeung, Sze-Chun; Chiu, Kin; Lau, Chi-Fai; Tsang, Andrea Wing-Ting; Mak, Judith Choi-Wo; Chang, Raymond Chuen-Chung

    2012-01-01

    Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD). To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD) rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP) processing by increasing the production of sAPPβ and accumulation of β–amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia. PMID:22606286

  3. Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain

    Directory of Open Access Journals (Sweden)

    Praetorius Jeppe

    2010-11-01

    Full Text Available Abstract Background The water channel protein aquaporin-4 (AQP4 is reported to be of possible major importance for accessory cerebrospinal fluid (CSF circulation pathways. We hypothesized that changes in AQP4 expression in specific brain regions correspond to the severity and duration of hydrocephalus. Methods Hydrocephalus was induced in adult rats (~8 weeks by intracisternal kaolin injection and evaluated after two days, one week and two weeks. Using magnetic resonance imaging (MRI we quantified lateral ventricular volume, water diffusion and blood-brain barrier properties in hydrocephalic and control animals. The brains were analysed for AQP4 density by western blotting and localisation by immunohistochemistry. Double fluorescence labelling was used to study cell specific origin of AQP4. Results Lateral ventricular volume was significantly increased over control at all time points after induction and the periventricular apparent diffusion coefficient (ADC value significantly increased after one and two weeks of hydrocephalus. Relative AQP4 density was significantly decreased in both cortex and periventricular region after two days and normalized after one week. After two weeks, periventricular AQP4 expression was significantly increased. Relative periventricular AQP4 density was significantly correlated to lateral ventricular volume. AQP4 immunohistochemical analysis demonstrated the morphological expression pattern of AQP4 in hydrocephalus in astrocytes and ventricular ependyma. AQP4 co-localized with astrocytic glial fibrillary acidic protein (GFAP in glia limitans. In vascular structures, AQP4 co-localized to astroglia but not to microglia or endothelial cells. Conclusions AQP4 levels are significantly altered in a time and region dependent manner in kaolin-induced hydrocephalus. The presented data suggest that AQP4 could play an important neurodefensive role, and may be a promising future pharmaceutical target in hydrocephalus and CSF

  4. Curcumin attenuates collagen-induced inflammatory response through the "gut-brain axis".

    Science.gov (United States)

    Dou, Yannong; Luo, Jinque; Wu, Xin; Wei, Zhifeng; Tong, Bei; Yu, Juntao; Wang, Ting; Zhang, Xinyu; Yang, Yan; Yuan, Xusheng; Zhao, Peng; Xia, Yufeng; Hu, Huijuan; Dai, Yue

    2018-01-06

    Previous studies have demonstrated that oral administration of curcumin exhibited an anti-arthritic effect despite its poor bioavailability. The present study aimed to explore whether the gut-brain axis is involved in the therapeutic effect of curcumin. The collagen-induced arthritis (CIA) rat model was induced by immunization with an emulsion of collagen II and complete Freund's adjuvant. Sympathetic and parasympathetic tones were measured by electrocardiographic recordings. Unilateral cervical vagotomy (VGX) was performed before the induction of CIA. The ChAT, AChE activities, and serum cytokine levels were determined by ELISA. The expression of the high-affinity choline transporter 1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) were determined by real-time PCR and immunohistochemical staining. The neuronal excitability of the vagus nerve was determined by whole-cell patch clamp recording. Oral administration of curcumin restored the imbalance between the sympathetic and parasympathetic tones in CIA rats and increased ChAT activity and expression of ChAT and VAChT in the gut, brain, and synovium. Additionally, VGX eliminated the effects of curcumin on arthritis and ACh biosynthesis and transport. Electrophysiological data showed that curcumin markedly increased neuronal excitability of the vagus nerve. Furthermore, selective α7 nAChR antagonists abolished the effects of curcumin on CIA. Our results demonstrate that curcumin attenuates CIA through the "gut-brain axis" by modulating the function of the cholinergic system. These findings provide a novel approach for mechanistic studies of anti-arthritic compounds with low oral absorption and bioavailability.

  5. NMR assignment of intrinsically disordered self-processing module of the FrpC protein of Neisseria meningitidis

    Czech Academy of Sciences Publication Activity Database

    Kubáň, V.; Nováček, J.; Bumba, Ladislav; Žídek, L.

    2015-01-01

    Roč. 9, č. 2 (2015), s. 435-440 ISSN 1874-2718 R&D Projects: GA ČR(CZ) GAP207/11/0717 Institutional support: RVO:61388971 Keywords : FrpC * Self-processing module * Neisseria meningitidis Subject RIV: EE - Microbiology, Virology Impact factor: 0.687, year: 2015

  6. Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Streefland, M.; Ley, de P.; Zomer, B.; Dijken, van H.; Martens, D.E.; Wijffels, R.H.; Pol, van der L.A.

    2010-01-01

    The use of detergent-extracted outer membrane vesicles (OMVs) is an established approach for development of a multivalent PorA vaccine against N. meningitidis serogroup B. Selective removal of lipopolysaccharide (LPS) decreases toxicity, but promotes aggregation and narrows the immune response.

  7. Meningitis caused by Neisseria Meningitidis, Hemophilus Influenzae Type B and Streptococcus Pneumoniae during 2005–2012 in Turkey

    Science.gov (United States)

    Ceyhan, Mehmet; Gürler, Nezahat; Ozsurekci, Yasemin; Keser, Melike; Aycan, Ahmet Emre; Gurbuz, Venhar; Salman, Nuran; Camcioglu, Yildiz; Dinleyici, Ener Cagri; Ozkan, Sengul; Sensoy, Gulnar; Belet, Nursen; Alhan, Emre; Hacimustafaoglu, Mustafa; Celebi, Solmaz; Uzun, Hakan; Faik Oner, Ahmet; Kurugol, Zafer; Ali Tas, Mehmet; Aygun, Denizmen; Oncel, Eda Karadag; Celik, Melda; Yasa, Olcay; Akin, Fatih; Coşkun, Yavuz

    2014-01-01

    Successful vaccination policies for protection from bacterial meningitis are dependent on determination of the etiology of bacterial meningitis. Cerebrospinal fluid (CSF) samples were obtained prospectively from children from 1 month to ≤ 18 years of age hospitalized with suspected meningitis, in order to determine the etiology of meningitis in Turkey. DNA evidence of Neisseria meningitidis (N. meningitidis), Streptococcus pneumoniae (S. pneumoniae), and Hemophilus influenzae type b (Hib) was detected using multiplex polymerase chain reaction (PCR). In total, 1452 CSF samples were evaluated and bacterial etiology was determined in 645 (44.4%) cases between 2005 and 2012; N. meningitidis was detected in 333 (51.6%), S. pneumoniae in 195 (30.2%), and Hib in 117 (18.1%) of the PCR positive samples. Of the 333 N. meningitidis positive samples 127 (38.1%) were identified as serogroup W-135, 87 (26.1%) serogroup B, 28 (8.4%) serogroup A and 3 (0.9%) serogroup Y; 88 (26.4%) were non-groupable. As vaccines against the most frequent bacterial isolates in this study are available and licensed, these results highlight the need for broad based protection against meningococcal disease in Turkey. PMID:25483487

  8. Deletion of porA by recombination between clusters of repetitive extragenic palindromic sequences in Neisseria meningitidis

    NARCIS (Netherlands)

    van der Ende, A.; Hopman, C. T.; Dankert, J.

    1999-01-01

    PorA is an important component in a vaccine against infection with Neisseria meningitidis. However, porA-negative meningococci were isolated from patients, thereby potentially limiting the role of PorA-mediated immunity. To analyze the mechanism by which the porA deletion occurred, the regions

  9. Representational difference analysis of Neisseria meningitidis identifies sequences that are specific for the hyper-virulent lineage III clone

    NARCIS (Netherlands)

    Bart, A.; Dankert, J.; van der Ende, A.

    2000-01-01

    Neisseria meningitidis may cause meningitis and septicemia. Since the early 1980s, an increased incidence of meningococcal disease has been caused by the lineage III clone in many countries in Europe and in New Zealand. We hypothesized that lineage III meningococci have specific DNA sequences,

  10. NmeSI restriction-modification system identified by representational difference analysis of a hypervirulent Neisseria meningitidis strain

    NARCIS (Netherlands)

    Bart, A.; Pannekoek, Y.; Dankert, J.; van der Ende, A.

    2001-01-01

    Neisseria meningitidis is a gram-negative bacterium that may cause meningitis, sepsis, or both. The increase in the incidence of meningococcal disease in various countries in the past 2 decades is mainly due the genotypically related lineage III meningococci. The chromosomal DNA differences between

  11. Phenotypic and genotypic changes in a new clone complex of Neisseria meningitidis causing disease in The Netherlands, 1958-1990

    NARCIS (Netherlands)

    Scholten, R. J.; Poolman, J. T.; Valkenburg, H. A.; Bijlmer, H. A.; Dankert, J.; Caugant, D. A.

    1994-01-01

    To characterize the phenotypic and genotypic changes that occurred in a new clone lineage of Neisseria meningitidis (lineage III) in the Netherlands, the electrophoretic type (ET) was determined for 79 serogroup B isolates of serotype 4 or subtype P1.4 (or both) obtained between 1958 and 1990 from

  12. Self-esteem in children and adolescents after septic shock caused by Neisseria meningitidis: scars do matter

    NARCIS (Netherlands)

    Vermunt, Lindy C.; Buysse, Corinne M.; Joosten, Koen F.; Oranje, Arnold P.; Hazelzet, Jan A.; Verhulst, Frank C.; Utens, Elisabeth M.

    2008-01-01

    To investigate self-esteem and its relation to scars, amputations, and orthopedic sequelae in children and adolescents long term after meningococcal septic shock (MSS) caused by Neisseria meningitidis. The Dutch versions of the Self-Perception Profile for Children (SPP-C; 8-11 years) and the

  13. Pathological and MRI study on experimental heroin-induced brain damage in rats

    International Nuclear Information System (INIS)

    Long Yu; Kong Xiangquan; Xu Haibo; Liu Dingxi; Yuan Ren; Yu Qun; Xiong Yin; Deng Xianbo

    2005-01-01

    Objective: To study the pathological characteristics of the heroin-induced brain damage in rats, and to assess the diagnostic value of MRI. Methods: A total of 40 adult Wistar rats were studied, 32 rats were used for injecting heroin as heroin group and 8 were used for injecting saline as control group. The heroin dependent rat model was established by administering heroin (ip) in the ascending dosage schedule (0.5 mg/kg), three times a day (at 8:00, 12:00, and 18:00). The control group was established by the same way by injection with saline. The withdrawal scores were evaluated with imp roved criterion in order to estimate the degree of addiction after administering naloxone. Based on the rat model of heroin dependence, the rat model of heroin-induced brain damage was established by the same way with increasing heroin dosage everyday. Two groups were examined by using MRI, light microscope, and electron microscope, respectively in different heroin accumulated dosage (918, 1580, 2686, 3064, 4336, and 4336 mg/kg withdrawal after 2 weeks). Results: There was statistically significant difference (t=9.737, P<0.01) of the withdrawal scores between the heroin dependent group and the saline group (23.0 ± 4.4 and 1.4 ± 0.5, respectively). It suggested that the heroin dependent rat model be established successfully. In different accumulated dosage ( from 1580 mg/kg to 4336 mg/kg), there were degeneration and death of nerve cells in cerebrum and cerebellum of heroin intoxicated rats, and it suggested that the rat model of heroin-induced brain damage was established successfully. The light microscope and electron microscope features of heroin-induced brain damage in rats included: (1) The nerve cells of cerebral cortex degenerated and died. According to the heroin accumulated dosage, there were statistically significant difference of the nerve cell deaths between 4336 mg/kg group and 1580 mg/kg group or control group (P=0.024 and P=0.032, respectively); (2) The main

  14. Brain signaling and behavioral responses induced by exposure to (56)Fe-particle radiation

    Science.gov (United States)

    Denisova, N. A.; Shukitt-Hale, B.; Rabin, B. M.; Joseph, J. A.

    2002-01-01

    Previous experiments have demonstrated that exposure to 56Fe-particle irradiation (1.5 Gy, 1 GeV) produced aging-like accelerations in neuronal and behavioral deficits. Astronauts on long-term space flights will be exposed to similar heavy-particle radiations that might have similar deleterious effects on neuronal signaling and cognitive behavior. Therefore, the present study evaluated whether radiation-induced spatial learning and memory behavioral deficits are associated with region-specific brain signaling deficits by measuring signaling molecules previously found to be essential for behavior [pre-synaptic vesicle proteins, synaptobrevin and synaptophysin, and protein kinases, calcium-dependent PRKCs (also known as PKCs) and PRKA (PRKA RIIbeta)]. The results demonstrated a significant radiation-induced increase in reference memory errors. The increases in reference memory errors were significantly negatively correlated with striatal synaptobrevin and frontal cortical synaptophysin expression. Both synaptophysin and synaptobrevin are synaptic vesicle proteins that are important in cognition. Striatal PRKA, a memory signaling molecule, was also significantly negatively correlated with reference memory errors. Overall, our findings suggest that radiation-induced pre-synaptic facilitation may contribute to some previously reported radiation-induced decrease in striatal dopamine release and for the disruption of the central dopaminergic system integrity and dopamine-mediated behavior.

  15. Minocycline ameliorates cognitive impairment induced by whole-brain irradiation: an animal study

    International Nuclear Information System (INIS)

    Zhang, Liyuan; Li, Kun; Sun, Rui; Zhang, Yuan; Ji, JianFeng; Huang, Peigeng; Yang, Hongying; Tian, Ye

    2014-01-01

    It has been long recognized that cranial irradiation used for the treatment of primary and metastatic brain tumor often causes neurological side-effects such as intellectual impairment, memory loss and dementia, especially in children patients. Our previous study has demonstrated that whole-brain irradiation (WBI) can cause cognitive decline in rats. Minocycline is an antibiotic that has shown neuroprotective properties in a variety of experimental models of neurological diseases. However, whether minocycline can ameliorate cognitive impairment induced by ionizing radiation (IR) has not been tested. Thus this study aimed to demonstrate the potential implication of minocycline in the treatment of WBI-induced cognitive deficits by using a rat model. Sprague Dawley rats were cranial irradiated with electron beams delivered by a linear accelerator with a single dose of 20 Gy. Minocycline was administered via oral gavages directly into the stomach before and after irradiation. The open field test was used to assess the anxiety level of rats. The Morris water maze (MWM) was used to assess the spatial learning and memory of rats. The level of apoptosis in hippocampal neurons was measured using immunohistochemistry for caspase-3 and relative markers for mature neurons (NeuN) or for newborn neurons (Doublecortin (DCX)). Neurogenesis was determined by BrdU incorporation method. Neither WBI nor minocycline affected the locomotor activity and anxiety level of rats. However, compared with the sham-irradiated controls, WBI caused a significant loss of learning and memory manifest as longer latency to reach the hidden platform in the MWM task. Minocycline intervention significantly improved the memory retention of irradiated rats. Although minocycline did not rescue neurogenesis deficit caused by WBI 2 months post-IR, it did significantly decreased WBI-induced apoptosis in the DCX positive neurons, thereby resulting in less newborn neuron depletion 12 h after irradiation

  16. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    OpenAIRE

    Najmeh Kabiri; Mahbubeh Setorki

    2016-01-01

    The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99). Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly hi...

  17. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    Directory of Open Access Journals (Sweden)

    Najmeh Kabiri

    2016-09-01

    Full Text Available The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99. Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly higher than the Sham group, although right hemispheres in all of the treated groups illustrated higher brain water content than the left ones. Brain anti-oxidant capacity elevated in the ischemic rats treated with Kombucha and in the Sham group. Brain and plasma malondialdehyde concentrations significantly decreased in both of the ischemic groups injected with Kombucha. The findings suggest that Kombucha tea could be useful for the prevention of cerebral damage.

  18. Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain

    International Nuclear Information System (INIS)

    Lin, Anya M.Y.; Chao, P.L.; Fang, S.F.; Chi, C.W.; Yang, C.H.

    2007-01-01

    The mechanism underlying sodium arsenite (arsenite)-induced neurotoxicity was investigated in rat brain. Arsenite was locally infused in the substantia nigra (SN) of anesthetized rat. Seven days after infusion, lipid peroxidation in the infused SN was elevated and dopamine level in the ipsilateral striatum was reduced in a concentration-dependent manner (0.3-5 nmol). Furthermore, local infusion of arsenite (5 nmol) decreased GSH content and increased expression of heat shock protein 70 and heme oxygenase-1 in the infused SN. Aggregation of α-synuclein, a putative pathological protein involved in several CNS neurodegenerative diseases, was elevated in the arsenite-infused SN. From the breakdown pattern of α-spectrin, both necrosis and apoptosis were involved in the arsenite-induced neurotoxicity. Pyknotic nuclei, cellular shrinkage and cytoplasmic disintegration, indicating necrosis, and TUNEL-positive cells and DNA ladder, indicating apoptosis was observed in the arsenite-infused SN. Arsenite-induced apoptosis was mediated via two different organelle pathways, mitochondria and endoplasmic reticulum (ER). For mitochondrial activation, cytosolic cytochrome c and caspase-3 levels were elevated in the arsenite-infused SN. In ER pathway, arsenite increased activating transcription factor-4, X-box binding protein 1, C/EBP homologues protein (CHOP) and cytosolic immunoglobulin binding protein levels. Moreover, arsenite reduced procaspase 12 levels, an ER-specific enzyme in the infused SN. Taken together, our study suggests that arsenite is capable of inducing oxidative injury in CNS. In addition to mitochondria, ER stress was involved in the arsenite-induced apoptosis. Arsenite-induced neurotoxicity clinically implies a pathophysiological role of arsenite in CNS neurodegeneration

  19. Recombinant outer membrane secretin PilQ(406-770) as a vaccine candidate for serogroup B Neisseria meningitidis.

    Science.gov (United States)

    Haghi, Fakhri; Peerayeh, Shahin Najar; Siadat, Seyed Davar; Zeighami, Habib

    2012-02-21

    Secretin PilQ is an antigenically conserved outer membrane protein which is present on most meningococci. This protein naturally expressed at high levels and is essential for meningococcal pilus expression at the cell surface. A 1095 bp fragment of C-terminal of secretin pilQ from serogroup B Neisseria meningitidis was cloned into prokaryotic expression vector pET-28a. Recombinant protein was overexpressed with IPTG and affinity-purified by Ni-NTA agarose. BALB/c mice were immunized subcutaneously with purified rPilQ(406-770) mixed with Freund's adjuvant. Serum antibody responses to serogroups A and B N. meningitidis whole cells or purified rPilQ(406-770) and functional activity of antibodies were determined by ELISA and SBA, respectively. The output of rPilQ(406-770) was approximately 50% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with PilQ(406-770) mixed with Freund's adjuvant in comparison with control groups. Antisera produced against rPilQ(406-770) demonstrated strong surface reactivity to serogroups A and B N. meningitidis tested by whole-cell ELISA. Surface reactivity to serogroup B N. meningitidis was higher than serogroup A. The sera from PilQ(406-770) immunized animals were strongly bactericidal against serogroups A and B. These results suggest that rPilQ(406-770) is a potential vaccine candidate for serogroup B N. meningitidis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Antigen sequence typing of outer membrane protein (fetA gene of Neisseria meningitidis serogroup A from Delhi & adjoining areas

    Directory of Open Access Journals (Sweden)

    S Dwivedi

    2014-01-01

    Full Text Available Background & objectives: Meningitis caused by Neisseria meningitidis is a fatal disease. Meningococcal meningitis is an endemic disease in Delhi and irregular pattern of outbreaks has been reported in India. All these outbreaks were associated with serogroup A. Detailed molecular characterization of N. meningitidis is required for the management of this fatal disease. In this study, we characterized antigenic diversity of surface exposed outer membrane protein (OMP FetA antigen of N. meningitidis serogroup A isolates obtained from cases of invasive meningococcal meningitis in Delhi, India. Methods: Eight isolates of N. meningitidis were collected from cerebrospinal fluid during October 2008 to May 2011 from occasional cases of meningococcal meningitis. Seven isolates were from outbreaks of meningococcal meningitis in 2005-2006 in Delhi and its adjoining areas. These were subjected to molecular typing of fetA gene, an outer membrane protein gene. Results: All 15 N. meningitides isolates studied were serogroup A. This surface exposed porin is putatively under immune pressure. Hence as a part of molecular characterization, genotyping was carried out to find out the diversity in outer membrane protein (FetA gene among the circulating isolates of N. meningitidis. All 15 isolates proved to be of the same existing allele type of FetA variable region (VR when matched with global database. The allele found was F3-1 for all the isolates. Interpretation & conclusions: There was no diversity reported in the outer membrane protein FetA in the present study and hence this protein appeared to be a stable molecule. More studies on molecular characterization of FetA antigen are required from different serogroups circulating in different parts of the world.

  1. Comparison of dot-ELISA and standard ELISA for detection of Neisseria meningitidis outer membrane complex-specific antibodies

    Directory of Open Access Journals (Sweden)

    Elza FT Belo

    Full Text Available Dot-ELISA using the outer membrane complex antigens of Neisseria meningitidis as a target was standardized for rapid detection of meningococcal-specific antibodies in human serum. We investigated the level of meningococcal-specific IgG, IgA, and IgM in serum using dot-ELISA with outer membrane antigens prepared from Neisseria meningitidis serotype B:4.19:P1.15,3,7,9 (a strain isolated from a Brazilian epidemic. The dot-ELISA is based on the same principles as the standard ELISA and is useful for detection of anti-N. meningitidis B antibodies in serum of patients with meningococcal infections. For the assay, outer membrane complexes (OMCs were absorbed by nitrocellulose membrane and blocked with a 5% skim milk solution. Serum samples were drawn upon hospital admission and during convalescence from patients with meningococcal septicemia, and single samples were drawn from uninfected controls. We retrospectively examined a total of 57 serum samples: 35 from patients infected with N. meningitidis B, 12 from patients infected with Haemophilus influenzae b, and 10 from health individuals. When performed at room temperature, dot-ELISA took approximately four hours to perform, and the optimum antigen concentration was 0.42 µg per dot. The specificity of IgG, IgM, and IgA demonstrates that dot-ELISA using OMCs from N. meningitidis B as a target is suitable for serologic verification of clinically suspected meningococcal disease in patients and for titer determination of antibodies produced during different phases of natural infection. Furthermore, the sensitivity of dot-ELISA was comparable to that of standard ELISA. Overall, dot-ELISA is simple to perform, rapid, and low cost. Further validation of the test as a screening tool is required.

  2. Sustained NMDA receptor hypofunction induces compromised neural systems integration and schizophrenia-like alterations in functional brain networks.

    Science.gov (United States)

    Dawson, Neil; Xiao, Xiaolin; McDonald, Martin; Higham, Desmond J; Morris, Brian J; Pratt, Judith A

    2014-02-01

    Compromised functional integration between cerebral subsystems and dysfunctional brain network organization may underlie the neurocognitive deficits seen in psychiatric disorders. Applying topological measures from network science to brain imaging data allows the quantification of complex brain network connectivity. While this approach has recently been used to further elucidate the nature of brain dysfunction in schizophrenia, the value of applying this approach in preclinical models of psychiatric disease has not been recognized. For the first time, we apply both established and recently derived algorithms from network science (graph theory) to functional brain imaging data from rats treated subchronically with the N-methyl-D-aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). We show that subchronic PCP treatment induces alterations in the global properties of functional brain networks akin to those reported in schizophrenia. Furthermore, we show that subchronic PCP treatment induces compromised functional integration between distributed neural systems, including between the prefrontal cortex and hippocampus, that have established roles in cognition through, in part, the promotion of thalamic dysconnectivity. We also show that subchronic PCP treatment promotes the functional disintegration of discrete cerebral subsystems and also alters the connectivity of neurotransmitter systems strongly implicated in schizophrenia. Therefore, we propose that sustained NMDA receptor hypofunction contributes to the pathophysiology of dysfunctional brain network organization in schizophrenia.

  3. A Novel Preclinical Model of Moderate Primary Blast-Induced Traumatic Brain Injury.

    Science.gov (United States)

    Divani, Afshin A; Murphy, Amanda J; Meints, Joyce; Sadeghi-Bazargani, Homayoun; Nordberg, Jessica; Monga, Manoj; Low, Walter C; Bhatia, Prerana M; Beilman, Greg J; SantaCruz, Karen S

    2015-07-15

    Blast-induced traumatic brain injury (bTBI) is the "signature" injury of the recent Iraq and Afghanistan wars. Here, we present a novel method to induce bTBI using shock wave (SW) lithotripsy. Using a lithotripsy machine, Wistar rats (N = 70; 408.3 ± 93 g) received five SW pulses to the right side of the frontal cortex at 24 kV and a frequency of 60 Hz. Animals were then randomly divided into three study endpoints: 24 h (n = 25), 72 h (n = 19) and 168 h (n = 26). Neurological and behavioral assessments (Garcia's test, beam walking, Rotarod, and elevated plus maze) were performed at the baseline, and further assessments followed at 3, 6, 24, 72, and 168 h post-injury, if applicable. We performed digital subtraction angiography (DSA) to assess presence of cerebral vasospasm due to induced bTBI. Damage to brain tissue was assessed by an overall histological severity (OHS) score based on depth of injury, area of hemorrhage, and extent of axonal injury. Except for beam walking, OHS was significantly correlated with the other three outcome measures with at least one of their assessments during the first 6 h after the experiment. OHS manifested the highest absolute correlation coefficients with anxiety at the baseline and 6 h post-injury (r(baseline) = -0.75, r(6hrs) = 0.85; p<0.05). Median hemispheric differences for contrast peak values (obtained from DSA studies) for 24, 72, and 168 h endpoints were 3.45%, 3.05% and 0.2%, respectively, with statistically significant differences at 1 versus 7 d (p<0.05) and 3 versus 7 d (p<0.01). In this study, we successfully established a preclinical rat model of bTBI with characteristics similar to those observed in clinical cases. This new method may be useful for future investigations aimed at understanding bTBI pathophysiology.

  4. RESVERATROL PRECONDITIONING INDUCES A NOVEL EXTENDED WINDOW OF ISCHEMIC TOLERANCE IN THE MOUSE BRAIN

    Science.gov (United States)

    Koronowski, Kevin B.; Dave, Kunjan R.; Saul, Isabel; Camarena, Vladimir; Thompson, John W.; Neumann, Jake T.; Young, Juan I.; Perez-Pinzon, Miguel A.

    2015-01-01

    Background and Purpose Prophylactic treatments that afford neuroprotection against stroke may emerge from the field of preconditioning. Resveratrol mimics ischemic preconditioning, reducing ischemic brain injury when administered two days prior to global ischemia in rats. This protection is linked to Sirt1 and enhanced mitochondrial function possibly through its repression of UCP2. BDNF is another neuroprotective protein associated with Sirt1. In this study we sought to identify the conditions of resveratrol preconditioning (RPC) that most robustly induce neuroprotection against focal ischemia in mice. Methods We tested four different RPC paradigms against a middle cerebral artery occlusion (MCAo) model of stroke. Infarct volume and neurological score were calculated 24 hours following MCAo. Sirt1-chromatin binding was evaluated by ChIP-qPCR. Percoll gradients were used to isolate synaptic fractions and changes in protein expression were determined via Western blot analysis. BDNF concentration was measured using a BDNF-specific ELISA assay. Results While repetitive RPC induced neuroprotection from MCAo, strikingly one application of RPC 14 days prior to MCAo showed the most robust protection, reducing infarct volume by 33% and improving neurological score by 28%. Fourteen days following RPC, Sirt1 protein was increased 1.5 fold and differentially bound to the UCP2 and BDNF promoter regions. Accordingly, synaptic UCP2 protein decreased by 23% and cortical BDNF concentration increased 26%. Conclusions RPC induces a novel extended window of ischemic tolerance in the brain that lasts for at least 14 days. Our data suggest that this tolerance may be mediated by Sirt1, through upregulation of BDNF and downregulation of UCP2. PMID:26159789

  5. Oral administration of recombinant Neisseria meningitidis PorA genetically fused to H. pylori HpaA antigen increases antibody levels in mouse serum, suggesting that PorA behaves as a putative adjuvant.

    Science.gov (United States)

    Vasquez, Abel E; Manzo, Ricardo A; Soto, Daniel A; Barrientos, Magaly J; Maldonado, Aurora E; Mosqueira, Macarena; Avila, Anastasia; Touma, Jorge; Bruce, Elsa; Harris, Paul R; Venegas, Alejandro

    2015-01-01

    The Neisseria meningitidis outer membrane protein PorA from a Chilean strain was purified as a recombinant protein. PorA mixed with AbISCO induced bactericidal antibodies against N. meningitidis in mice. When PorA was fused to the Helicobacter pylori HpaA antigen gene, the specific response against H. pylori protein increased. Splenocytes from PorA-immunized mice were stimulated with PorA, and an increase in the secretion of IL-4 was observed compared with that of IFN-γ. Moreover, in an immunoglobulin sub-typing analysis, a substantially higher IgG1 level was found compared with IgG2a levels, suggesting a Th2-type immune response. This study revealed a peculiar behavior of the purified recombinant PorA protein per se in the absence of AbISCO as an adjuvant. Therefore, the resistance of PorA to proteolytic enzymes, such as those in the gastrointestinal tract, was analyzed, because this is an important feature for an oral protein adjuvant. Finally, we found that PorA fused to the H. pylori HpaA antigen, when expressed in Lactococcus lactis and administered orally, could enhance the antibody response against the HpaA antigen approximately 3 fold. These observations strongly suggest that PorA behaves as an effective oral adjuvant.

  6. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    Science.gov (United States)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  7. Diffusion tensor imaging detects ventilation-induced brain injury in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Dhafer M Alahmari

    Full Text Available Injurious mechanical ventilation causes white matter (WM injury in preterm infants through inflammatory and haemodynamic pathways. The relative contribution of each of these pathways is not known. We hypothesised that in vivo magnetic resonance imaging (MRI can detect WM brain injury resulting from mechanical ventilation 24 h after preterm delivery. Further we hypothesised that the combination of inflammatory and haemodynamic pathways, induced by umbilical cord occlusion (UCO increases brain injury at 24 h.Fetuses at 124±2 days gestation were exposed, instrumented and either ventilated for 15 min using a high tidal-volume (VT injurious strategy with the umbilical cord intact (INJ; inflammatory pathway only, or occluded (INJ+UCO; inflammatory and haemodynamic pathway. The ventilation groups were compared to lambs that underwent surgery but were not ventilated (Sham, and lambs that did not undergo surgery (unoperated control; Cont. Fetuses were placed back in utero after the 15 min intervention and ewes recovered. Twenty-four hours later, lambs were delivered, placed on a protective ventilation strategy, and underwent MRI of the brain using structural, diffusion tensor imaging (DTI and magnetic resonance spectroscopy (MRS techniques.Absolute MRS concentrations of creatine and choline were significantly decreased in INJ+UCO compared to Cont lambs (P = 0.03, P = 0.009, respectively; no significant differences were detected between the INJ or Sham groups and the Cont group. Axial diffusivities in the internal capsule and frontal WM were lower in INJ and INJ+UCO compared to Cont lambs (P = 0.05, P = 0.04, respectively. Lambs in the INJ and INJ+UCO groups had lower mean diffusivities in the frontal WM compared to Cont group (P = 0.04. DTI colour mapping revealed lower diffusivity in specific WM regions in the Sham, INJ, and INJ+UCO groups compared to the Cont group, but the differences did not reach significance. INJ+UCO lambs more likely to exhibit

  8. Brain-derived neurotrophic factor exerts neuroprotective actions against amyloid β-induced apoptosis in neuroblastoma cells

    OpenAIRE

    KIM, JIN HEE

    2014-01-01

    Alzheimer’s disease (AD) brains demonstrate decreased levels of brain-derived neurotrophic factor (BDNF) and increased levels of β-amyloid peptide (Aβ), which is neurotoxic. The present study assessed the impact of BDNF on the toxic effects of Aβ25–35-induced apoptosis and the effects on BDNF-mediated signaling using the MTT assay, western blotting and reverse transcription quantitative polymerase chain reaction. Aβ25–35 was found to induce an apoptosis, dose-dependent effect on SH-SY5Y neuro...

  9. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Science.gov (United States)

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  10. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Directory of Open Access Journals (Sweden)

    Shotaro Michinaga

    Full Text Available Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice. Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV administration of BQ788 (ETB antagonist, IRL-2500 (ETB antagonist, or FR139317 (ETA antagonist prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  11. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats.

    Science.gov (United States)

    Choi, Miyeon; Lee, Seung Hoon; Park, Min Hyeop; Kim, Yong-Seok; Son, Hyeon

    2017-08-05

    Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A Pharmacogenetic Discovery: Cystamine Protects Against Haloperidol-Induced Toxicity and Ischemic Brain Injury.

    Science.gov (United States)

    Zhang, Haili; Zheng, Ming; Wu, Manhong; Xu, Dan; Nishimura, Toshihiko; Nishimura, Yuki; Giffard, Rona; Xiong, Xiaoxing; Xu, Li Jun; Clark, J David; Sahbaie, Peyman; Dill, David L; Peltz, Gary

    2016-05-01

    Haloperidol is an effective antipsychotic agent, but it causes Parkinsonian-like extrapyramidal symptoms in the majority of treated subjects. To address this treatment-limiting toxicity, we analyzed a murine genetic model of haloperidol-induced toxicity (HIT). Analysis of a panel of consomic strains indicated that a genetic factor on chromosome 10 had a significant effect on susceptibility to HIT. We analyzed a whole-genome SNP database to identify allelic variants that were uniquely present on chromosome 10 in the strain that was previously shown to exhibit the highest level of susceptibility to HIT. This analysis implicated allelic variation within pantetheinase genes (Vnn1 and Vnn3), which we propose impaired the biosynthesis of cysteamine, could affect susceptibility to HIT. We demonstrate that administration of cystamine, which is rapidly metabolized to cysteamine, could completely prevent HIT in the murine model. Many of the haloperidol-induced gene expression changes in the striatum of the susceptible strain were reversed by cystamine coadministration. Since cystamine administration has previously been shown to have other neuroprotective actions, we investigated whether cystamine administration could have a broader neuroprotective effect. Cystamine administration caused a 23% reduction in infarct volume after experimentally induced cerebral ischemia. Characterization of this novel pharmacogenetic factor for HIT has identified a new approach for preventing the treatment-limiting toxicity of an antipsychotic agent, which could also be used to reduce the extent of brain damage after stroke. Copyright © 2016 by the Genetics Society of America.

  13. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

    Directory of Open Access Journals (Sweden)

    Vinay K Tripathi

    Full Text Available The expression and metabolic profile of cytochrome P450s (CYPs is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y and glial (U373-MG cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC, cyclophosphamide (CPA, ethanol and known neurotoxicant- monocrotophos (MCP, a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against

  14. MDMA, Methylone, and MDPV: Drug-Induced Brain Hyperthermia and Its Modulation by Activity State and Environment.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn E

    2017-01-01

    Psychomotor stimulants are frequently used by humans to intensify the subjective experience of different types of social interactions. Since psychomotor stimulants enhance metabolism and increase body temperatures, their use under conditions of physiological activation and in warm humid environments could result in pathological hyperthermia, a life-threatening symptom of acute drug intoxication. Here, we will describe the brain hyperthermic effects of MDMA, MDPV, and methylone, three structurally related recreational drugs commonly used by young adults during raves and other forms of social gatherings. After a short introduction on brain temperature and basic mechanisms underlying its physiological fluctuations, we will consider how MDMA, MDPV, and methylone affect brain and body temperatures in awake freely moving rats. Here, we will discuss the role of drug-induced heat production in the brain due to metabolic brain activation and diminished heat dissipation due to peripheral vasoconstriction as two primary contributors to the hyperthermic effects of these drugs. Then, we will consider how the hyperthermic effects of these drugs are modulated under conditions that model human drug use (social interaction and warm ambient temperature). Since social interaction results in brain and body heat production, coupled with skin vasoconstriction that impairs heat loss to the external environment, these physiological changes interact with drug-induced changes in heat production and loss, resulting in distinct changes in the hyperthermic effects of each tested drug. Finally, we present our recent data, in which we compared the efficacy of different pharmacological strategies for reversing MDMA-induced hyperthermia in both the brain and body. Specifically, we demonstrate increased efficacy of the centrally acting atypical neuroleptic compound clozapine over the peripherally acting vasodilator drug, carvedilol. These data could be important for understanding the potential

  15. Mechanisms of multiple neurotransmitters in the effects of Lycopene on brain injury induced by Hyperlipidemia.

    Science.gov (United States)

    Yang, Weichun; Shen, Ziyi; Wen, Sixian; Wang, Wei; Hu, Minyu

    2018-02-07

    Lycopene is a kind of carotenoid, with a strong capacity of antioxidation and regulating the bloodlipid. There has been some evidence that lycopene has protective effects on the central nervous system, but few studies have rigorously explored the role of neurotransmitters in it. Therefore, the present study was designed to investigate the effects of several neurotransmitters as lycopene exerts anti-injury effects induced by hyperlipidemia. Eighty adult SD rats, half male and half female, were randomly divided into eight groups on the basis of serum total cholesterol (TC) levels and body weight. There was a control group containing rats fed a standard laboratory rodent chow diet (CD); a hypercholesterolemic diet (rat chow supplemented with 4% cholesterol, 1% cholic acid and 0.5% thiouracil - this is also called a CCT diet) group; a positive group (CCT + F) fed CCT, supplemented with 10 mg·kg·bw - 1 ·d - 1 fluvastatin sodium by gastric perfusion; and lycopene groups at five dose levels (CCT + LYCO) fed with CCT and supplied lycopene at doses of 5, 25, 45, 65, and 85 mg·kg·bw - 1 ·d - 1 . The levels of TC, triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-α), oxidized low density lipoprotein (ox-LDL), low-density lipoprotein receptor (LDLR), nerve growth factor (NGF), glutamic acid (Glu), Gamma aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT), N-methyl-D-aspartate (NMDA1R), GABA A , 5-HT 1 , D 1 , and apoptosis-related proteins Caspase3, bax, and bcl-2 were measured after the experiment. Nissl staining was adopted to observe the morphological changes in neurons. At the end of the experiment, the levels of TC, TG, LDL-C, IL-1, TNF-α, and ox-LDL in the serum and brain as well as the content of Glu, DA, NMDA, and D 1 in the brain of rats in the CCT group were higher than those in the control group (Plycopene (25

  16. THE SECOND BLIND SPOT: SMALL RETINAL VESSEL VASCULOPATHY AFTER VACCINATION AGAINST NEISSERIA MENINGITIDIS AND YELLOW FEVER.

    Science.gov (United States)

    Moysidis, Stavros N; Koulisis, Nicole; Patel, Vivek R; Kashani, Amir H; Rao, Narsing A; Humayun, Mark S; Rodger, Damien C

    2017-01-01

    To describe a case of small retinal vessel vasculopathy postvaccination. We report the case of a 41-year-old white man who presented with a "second blind spot," describing a nasal scotoma in the right eye that started 4 days after vaccinations against Neisseria meningitidis and the yellow fever virus, and after a 2-month period of high stress and decreased sleep. Clinical examination, Humphrey visual field testing, and multimodal imaging with fundus photographs, autofluorescence, fluorescein angiography, and spectral domain optical coherence tomography and angiography were performed. Clinical examination revealed a well-circumscribed, triangular area of retinal graying of about 1-disk diameter in size, located at the border of the temporal macula. This corresponded to a deep scotoma similar in size to the physiologic blind spot on Humphrey visual field 24-2 testing. There was mild hypoautofluoresence of this lesion on autofluorescence, hypofluorescence on fluorescein angiography, and focal attenuation of a small artery just distal to the bifurcation of an artery supplying the involved area. Spectral domain optical coherence tomography through the lesion conveyed hyperreflectivity most prominent in the inner and outer plexiform layers, with extension of the hyperreflectivity into the ganglion cell and inner nuclear layers. Spectral domain optical coherence tomography angiography demonstrated arteriolar and capillary dropout, more pronounced in the superficial retinal layer compared to the deeper retinal layer. At 1-month follow-up, his scotoma improved with monitoring, with reduction from -32 dB to -7 dB on Humphrey visual field testing. There was clinical resolution of the area of graying and decreased hyperreflectivity on spectral domain optical coherence tomography, with atrophy of the inner retina. Spectral domain optical coherence tomography angiography showed progression of arteriolar and capillary dropout, more so in the superficial than in the deep capillary

  17. Prereader to beginning reader: changes induced by reading acquisition in print and speech brain networks.

    Science.gov (United States)

    Chyl, Katarzyna; Kossowski, Bartosz; Dębska, Agnieszka; Łuniewska, Magdalena; Banaszkiewicz, Anna; Żelechowska, Agata; Frost, Stephen J; Mencl, William Einar; Wypych, Marek; Marchewka, Artur; Pugh, Kenneth R; Jednoróg, Katarzyna

    2018-01-01

    Literacy acquisition is a demanding process that induces significant changes in the brain, especially in the spoken and written language networks. Nevertheless, large-scale paediatric fMRI studies are still limited. We analyzed fMRI data to show how individual differences in reading performance correlate with brain activation for speech and print in 111 children attending kindergarten or first grade and examined group differences between a matched subset of emergent-readers and prereaders. Across the entire cohort, individual differences analysis revealed that reading skill was positively correlated with the magnitude of activation difference between words and symbol strings in left superior temporal, inferior frontal and fusiform gyri. Group comparisons of the matched subset of pre- and emergent-readers showed higher activity for emergent-readers in left inferior frontal, precentral, and postcentral gyri. Individual differences in activation for natural versus vocoded speech were also positively correlated with reading skill, primarily in the left temporal cortex. However, in contrast to studies on adult illiterates, group comparisons revealed higher activity in prereaders compared to readers in the frontal lobes. Print-speech coactivation was observed only in readers and individual differences analyses revealed a positive correlation between convergence and reading skill in the left superior temporal sulcus. These results emphasise that a child's brain undergoes several modifications to both visual and oral language systems in the process of learning to read. They also suggest that print-speech convergence is a hallmark of acquiring literacy. © 2017 Association for Child and Adolescent Mental Health.

  18. Hyperthermia-induced disruption of functional connectivity in the human brain network.

    Directory of Open Access Journals (Sweden)

    Gang Sun

    Full Text Available BACKGROUND: Passive hyperthermia is a potential risk factor to human cognitive performance and work behavior in many extreme work environments. Previous studies have demonstrated significant effects of passive hyperthermia on human cognitive performance and work behavior. However, there is a lack of a clear understanding of the exact affected brain regions and inter-regional connectivities. METHODOLOGY AND PRINCIPAL FINDINGS: We simulated 1 hour environmental heat exposure to thirty-six participants under two environmental temperature conditions (25 °C and 50 °C, and collected resting-state functional brain activity. The functional connectivities with a preselected region of interest (ROI in the posterior cingulate cortex and precuneus (PCC/PCu, furthermore, inter-regional connectivities throughout the entire brain using a prior Anatomical Automatic Labeling (AAL atlas were calculated. We identified decreased correlations of a set of regions with the PCC/PCu, including the medial orbitofrontal cortex (mOFC and bilateral medial temporal cortex, as well as increased correlations with the partial orbitofrontal cortex particularly in the bilateral orbital superior frontal gyrus. Compared with the normal control (NC group, the hyperthermia (HT group showed 65 disturbed functional connectivities with 50 of them being decreased and 15 of them being increased. While the decreased correlations mainly involved with the mOFC, temporal lobe and occipital lobe, increased correlations were mainly located within the limbic system. In consideration of physiological system changes, we explored the correlations of the number of significantly altered inter-regional connectivities with differential rectal temperatures and weight loss, but failed to obtain significant correlations. More importantly, during the attention network test (ANT we found that the number of significantly altered functional connectivities was positively correlated with an increase in

  19. Non-invasive brain stimulation of motor cortex induces embodiment when integrated with virtual reality feedback.

    Science.gov (United States)

    Bassolino, M; Franza, M; Bello Ruiz, J; Pinardi, M; Schmidlin, T; Stephan, M A; Solcà, M; Serino, A; Blanke, O

    2018-04-01

    Previous evidence highlighted the multisensory-motor origin of embodiment - that is, the experience of having a body and of being in control of it - and the possibility of experimentally manipulating it. For instance, an illusory feeling of embodiment towards a fake hand can be triggered by providing synchronous visuo-tactile stimulation to the hand of participants and to a fake hand or by asking participants to move their hand and observe a fake hand moving accordingly (rubber hand illusion). Here, we tested whether it is possible to manipulate embodiment not through stimulation of the participant's hand, but by directly tapping into the brain's hand representation via non-invasive brain stimulation. To this aim, we combined transcranial magnetic stimulation (TMS), to activate the hand corticospinal representation, with virtual reality (VR), to provide matching (as contrasted to non-matching) visual feedback, mimicking involuntary hand movements evoked by TMS. We show that the illusory embodiment occurred when TMS pulses were temporally matched with VR feedback, but not when TMS was administered outside primary motor cortex, (over the vertex) or when stimulating motor cortex at a lower intensity (that did not activate peripheral muscles). Behavioural (questionnaires) and neurophysiological (motor-evoked-potentials, TMS-evoked-movements) measures further indicated that embodiment was not explained by stimulation per se, but depended on the temporal coherence between TMS-induced activation of hand corticospinal representation and the virtual bodily feedback. This reveals that non-invasive brain stimulation may replace the application of external tactile hand cues and motor components related to volition, planning and anticipation. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Maren Geissler

    Full Text Available Intraperitoneal transplantation of human umbilical cord blood (hUCB cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.

  1. T1 changes of canine brain in hyponatremic hypoosmosis induced by peritoneal dialysis with water

    International Nuclear Information System (INIS)

    Tsuji, Takayuki; Fujimoto, Toshiro; Fujii, Masatoshi; Nakano, Toshihiko; Shimooki, Susumu.

    1991-01-01

    Changes of canine brain T 1 s measured in right and left white (W-T 1 ) and gray (G-T 1 ) matter, thalamus (T-T 1 ), and caudate nucleus (C-T 1 ) in coronal view with a head coil was studied in anesthesized and automatically ventilated 11 mongrel dogs (9.2±2.2 kg) using 0.1 T MR imager (Mark-J, Siemens-Asahi Meditech) before and every 30 minutes after infusion of distilled water warmed at 37degC into abdominal cavity (192±50 ml/kg) up to 120 minute later. Hemolysis (2→85 mg/dl: before→after 120 min) increased in association with total protein (5.9→8.0 g/dl) while sodium (147→122 mEq/l) and osmolarity (302→263 mOsm/kg) decreased. G-T 1 (388→394 ms) and W-T 1 (287→305 ms) did not change significantly, but T-T 1 prolonged early (331→349 ms) at 60 min (p 1 (356→376 ms) did at 90 min (p 1 (363 ms) and C-T 1 (382 ms) elongated from initial each T 1 significantly (p<0.01) 7% and 6% at 120 min, respectively. Basal nuclei, especially thalamus, in canine brain became edematous at the early stage of hyponatremic hypoosmosis induced by peritoneal dialysis with water. (author)

  2. Soybean and tempeh total isoflvones improved antioxidant activities in normal and scopolamine-induced rat brain

    Directory of Open Access Journals (Sweden)

    Aliya Ahmad

    2015-11-01

    Full Text Available Objective: To highlight the comparative studies between total isoflavone extracts from soybean and tempeh on the neuronal oxidative stress and antioxidant activities. Methods: The total isoflavones were administered orally for 15 days with 3 selected doses (10, 20 and 40 mg/kg. Piracetam (400 mg/kg, p.o. was used as a standard drug while scopolamine (1 mg/kg, i.p. was used as a drug that promoted amnesia in selected groups. The oxidative markers (thiobarbituric acid reactive substances and nitric oxide were measured in brain homogenate. The antioxidant activities evaluated were catalase, superoxide dismutase, glutathione reductase and glutathione. Results: Our results showed that soybean and tempeh isoflavones significantly improved the levels of catalase, superoxide dismutase, glutathione reductase and glutathione while decreased levels of thiobarbituric acid reactive substances and nitric oxide in both the brain of normal as well as scopolamine-induced animals. Conclusions: Our findings suggested that soybean and tempeh isoflavones could be useful in the management and prevention of age-related neurodegenerative changes including Alzheimer’s disease through its antioxidant activities.

  3. Oscillatory brain activity related to control mechanisms during laboratory-induced reactive aggression

    Directory of Open Access Journals (Sweden)

    Ulrike M Krämer

    2009-11-01

    Full Text Available Aggressive behavior is a common reaction in humans after an interpersonal provocation, but little is known about the underlying brain mechanisms. The present study analyzed oscillatory brain activity while participants were involved in an aggressive interaction to examine the neural processes subserving the associated decision and evaluation processes. Participants were selected from a larger sample because of their high scores in trait aggressiveness. We used a competitive reaction time task that induces aggressive behavior through provocation. Each trial is separated in a decision phase, during which the punishment for the opponent is set, and an outcome phase, during which the actual punishment is applied or received. We observed provocation-related differences during the decision phase in the theta band which differed depending on participants’ aggressive behavior: High provocation was associated with an increased frontal theta response in participants refraining from retaliation, but with reduced theta power in those who got back to the opponent. Moreover, more aggressive decisions after being punished were associated with a decrease of frontal theta power. Non-aggressive and aggressive participants differed also in their outcome-related response: Being punished led to an increased frontal theta power compared to win trials in the latter only, pointing to differences in evaluation processes associated with their different behavioral reactions. The data thus support previous evidence for a role of prefrontal areas in the control of reactive aggression and extend behavioral studies on associations between aggression or violence and impaired prefrontal functions.

  4. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Coránguez

    Full Text Available Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  5. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Science.gov (United States)

    Díaz-Coránguez, Mónica; Segovia, José; López-Ornelas, Adolfo; Puerta-Guardo, Henry; Ludert, Juan; Chávez, Bibiana; Meraz-Cruz, Noemi; González-Mariscal, Lorenza

    2013-01-01

    Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  6. High resolution mapping of modafinil induced changes in glutamate level in rat brain.

    Directory of Open Access Journals (Sweden)

    Mohammad Haris

    Full Text Available Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS has been commonly used to detect the glutamate (Glu changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19 ± 4.4% was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction.

  7. Changes in calcium and iron levels in the brains of rats during kainate induced epilepsy

    Science.gov (United States)

    Ren, Min-Qin; Ong, Wei-Yi; Makjanic, Jagoda; Watt, Frank

    1999-10-01

    Epilepsy is a recurrent disorder of cerebral function characterised by sudden brief attacks of altered consciousness, motor activity or sensory phenomena, and affects approximately 1% of the population. Kainic acid injection induces neuronal degeneration in rats, is associated with glial hypertrophy and proliferation in the CA3-CA4 fields of hippocampal complex, and is a model for temporal lobe epilepsy. In this study we have applied Nuclear Microscopy to the investigation of the elemental changes within the hippocampus and the cortex areas of the rat brain following kainate injection. Analyses of unstained freeze dried tissue sections taken at 1 day and 1, 2, 3 and 4 weeks following injection were carried out using the Nuclear Microscopy facility at the Research Centre for Nuclear Microscopy, National University of Singapore. Quantitative analysis and elemental mapping indicates that there are significant changes in the calcium levels and distributions in the hippocampus as early as 1 day following injection. Preliminary results indicate a rapid increase in cellular calcium. High levels of calcium can activate calcium dependent proteins and phospholipases. Activation of phospholipase A 2 can be harmful to surrounding neurons through free radical damage. In addition to observed increases in calcium, there was evidence of increases in iron levels. This is consistent with measurements in other degenerative brain disorders, and may signal a late surge in free radical production.

  8. Changes in calcium and iron levels in the brains of rats during kainate induced epilepsy

    International Nuclear Information System (INIS)

    Ren, M.-Q.; Ong, W.-Y.; Makjanic, Jagoda; Watt, Frank

    1999-01-01

    Epilepsy is a recurrent disorder of cerebral function characterised by sudden brief attacks of altered consciousness, motor activity or sensory phenomena, and affects approximately 1% of the population. Kainic acid injection induces neuronal degeneration in rats, is associated with glial hypertrophy and proliferation in the CA3-CA4 fields of hippocampal complex, and is a model for temporal lobe epilepsy. In this study we have applied Nuclear Microscopy to the investigation of the elemental changes within the hippocampus and the cortex areas of the rat brain following kainate injection. Analyses of unstained freeze dried tissue sections taken at 1 day and 1, 2, 3 and 4 weeks following injection were carried out using the Nuclear Microscopy facility at the Research Centre for Nuclear Microscopy, National University of Singapore. Quantitative analysis and elemental mapping indicates that there are significant changes in the calcium levels and distributions in the hippocampus as early as 1 day following injection. Preliminary results indicate a rapid increase in cellular calcium. High levels of calcium can activate calcium dependent proteins and phospholipases. Activation of phospholipase A 2 can be harmful to surrounding neurons through free radical damage. In addition to observed increases in calcium, there was evidence of increases in iron levels. This is consistent with measurements in other degenerative brain disorders, and may signal a late surge in free radical production

  9. Relationship between trauma-induced coagulopathy and progressive hemorrhagic injury in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jia Liu; Heng-Li Tian

    2016-01-01

    Progressive hemorrhagic injury (PHI) can be divided into coagulopathy-related PHI and normal coagulation PHI.Coagulation disorders after traumatic brain injuries can be included in trauma-induced coagulopathy (TIC).Some studies showed that TIC is associated with PHI and increases the rates of disability and mortality.In this review,we discussed some mechanisms in TIC,which is of great importance in the development of PHI,including tissue factor (TF) hypothesis,protein C pathway and thrombocytopenia.The main mechanism in the relation of TIC to PHI is hypocoagulability.We also reviewed some coagulopathy parameters and proposed some possible risk factors,predictors and therapies.

  10. Macrophage-independent T cell infiltration to the site of injury-induced brain inflammation

    DEFF Research Database (Denmark)

    Fux, Michaela; van Rooijen, Nico; Owens, Trevor

    2008-01-01

    We have addressed the role of macrophages in glial response and T cell entry to the CNS after axonal injury, by using intravenous injection of clodronate-loaded mannosylated liposomes, in C57BL6 mice. As expected, clodronate-liposome treatment resulted in depletion of peripheral macrophages which...... delay in the expansion of CD45(dim) CD11b(+) microglia in clodronate-liposome treated mice, but macrophage depletion had no effect on the percentage of infiltrating T cells in the lesion-reactive hippocampus. Lesion-induced TNFalpha mRNA expression was not affected by macrophage depletion, suggesting...... that activated glial cells are the primary source of this cytokine in the axonal injury-reactive brain. This identifies a potentially important distinction from inflammatory autoimmune infiltration in EAE, where macrophages are a prominent source of TNFalpha and their depletion prevents parenchymal T cell...

  11. Downregulated Brain-Derived Neurotrophic Factor-Induced Oxidative Stress in the Pathophysiology of Diabetic Retinopathy.

    Science.gov (United States)

    Behl, Tapan; Kotwani, Anita

    2017-04-01

    Brain-derived neurotrophic factor (BDNF), a member of neurotrophin growth factor family, physiologically mediates induction of neurogenesis and neuronal differentiation, promotes neuronal growth and survival and maintains synaptic plasticity and neuronal interconnections. Unlike the central nervous system, its secretion in the peripheral nervous system occurs in an activity-dependent manner. BDNF improves neuronal mortality, growth, differentiation and maintenance. It also provides neuroprotection against several noxious stimuli, thereby preventing neuronal damage during pathologic conditions. However, in diabetic retinopathy (a neuromicrovascular disorder involving immense neuronal degeneration), BDNF fails to provide enough neuroprotection against oxidative stress-induced retinal neuronal apoptosis. This review describes the prime reasons for the downregulation of BDNF-mediated neuroprotective actions during hyperglycemia, which renders retinal neurons vulnerable to damaging stimuli, leading to diabetic retinopathy. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  12. Brain mechanisms of abnormal temperature perception in cold allodynia induced by ciguatoxin.

    Science.gov (United States)

    Eisenblätter, Anneka; Lewis, Richard; Dörfler, Arnd; Forster, Clemens; Zimmermann, Katharina

    2017-01-01

    Cold allodynia occurs as a major symptom of neuropathic pain states. It remains poorly treated with current analgesics. Ciguatoxins (CTXs), ichthyosarcotoxins that cause ciguatera, produce a large peripheral sensitization to dynamic cold stimuli in Aδ-fibers by activating sodium channels without producing heat or mechanical allodynia. We used CTXs as a surrogate model of cold allodynia to dissect the framework of cold allodynia-activated central pain pathways. Reversible cold allodynia was induced in healthy male volunteers by shallow intracutaneous injection of low millimolar concentrations of CTX into the dorsal skin of the forefoot. Cold and warm stimuli were delivered to the treated and the control site using a Peltier-driven thermotest device. Functional magnetic resonance imaging (fMRI) scans were acquired with a 3T MRI scanner using a blood oxygen level-dependent (BOLD) protocol. The CTX-induced substantial peripheral sensitization to cooling stimuli in Aδ-fibers is particularly retrieved in BOLD changes due to dynamic temperature changes and less during constant cooling. Brain areas that responded during cold allodynia were almost always located bilaterally and appeared in the medial insula, medial cingulate cortex, secondary somatosensory cortex, frontal areas, and cerebellum. Whereas these areas also produced changes in BOLD signal during the dynamic warming stimulus on the control site, they remained silent during the warming stimuli on the injected site. We describe the defining feature of the cold allodynia pain percept in the human brain and illustrate why ciguatera sufferers often report a perceptual temperature reversal. ANN NEUROL 2017;81:104-116. © 2016 American Neurological Association.

  13. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Individual differences in learning correlate with modulation of brain activity induced by transcranial direct current stimulation

    Science.gov (United States)

    Falcone, Brian; Wada, Atsushi; Parasuraman, Raja

    2018-01-01

    Transcranial direct current stimulation (tDCS) has been shown to enhance cognitive performance on a variety of tasks. It is hypothesized that tDCS enhances performance by affecting task related cortical excitability changes in networks underlying or connected to the site of stimulation facilitating long term potentiation. However, many recent studies have called into question the reliability and efficacy of tDCS to induce modulatory changes in brain activity. In this study, our goal is to investigate the individual differences in tDCS induced modulatory effects on brain activity related to the degree of enhancement in performance, providing insight into this lack of reliability. In accomplishing this goal, we used functional magnetic resonance imaging (fMRI) concurrently with tDCS stimulation (1 mA, 30 minutes duration) using a visual search task simulating real world conditions. The experiment consisted of three fMRI sessions: pre-training (no performance feedback), training (performance feedback which included response accuracy and target location and either real tDCS or sham stimulation given), and post-training (no performance feedback). The right posterior parietal cortex was selected as the site of anodal tDCS based on its known role in visual search and spatial attention processing. Our results identified a region in the right precentral gyrus, known to be involved with visual spatial attention and orienting, that showed tDCS induced task related changes in cortical excitability that were associated with individual differences in improved performance. This same region showed greater activity during the training session for target feedback of incorrect (target-error feedback) over correct trials for the tDCS stim over sham group indicating greater attention to target features during training feedback when trials were incorrect. These results give important insight into the nature of neural excitability induced by tDCS as it relates to variability in

  15. Cold stress-induced brain injury regulates TRPV1 channels and the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Liu, Ying; Liu, Yunen; Jin, Hongxu; Cong, Peifang; Zhang, Yubiao; Tong, Changci; Shi, Xiuyun; Liu, Xuelei; Tong, Zhou; Shi, Lin; Hou, Mingxiao

    2017-09-01

    Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that interacts with several intracellular proteins in vivo, including calmodulin and Phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/Akt). TRPV1 activation has been reported to exert neuroprotective effects. The aim of this study was to examine the impact of cold stress on the mouse brain and the underlying mechanisms of TRPV1 involvement. Adult male C57BL/6 mice were subjected to cold stress (4°C for 8h per day for 2weeks). The behavioral deficits of the mice were then measured using the Morris water maze. Expression levels of brain injury-related proteins and mRNA were measured by western blot, immunofluorescence or RT-PCR analysis. The mice displayed behavioral deficits, inflammation and changes in brain injury markers following cold stress. As expected, upregulated TRPV1 expression levels and changes in PI3K/Akt expression were found. The TRPV1 inhibitor reduced the levels of brain injury-related proteins and inflammation. These data suggest that cold stress can induce brain injury, possibly through TRPV1 activation and the PI3K/Akt signaling pathway. Suppression of inflammation by inhibition of TRPV1 and the PI3K/Akt pathway may be helpful to prevent cold stress-induced brain injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Traumatic Brain Injury Induces Genome-Wide Transcriptomic, Methylomic, and Network Perturbations in Brain and Blood Predicting Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Qingying Meng

    2017-02-01

    Full Text Available The complexity of the traumatic brain injury (TBI pathology, particularly concussive injury, is a serious obstacle for diagnosis, treatment, and long-term prognosis. Here we utilize modern systems biology in a rodent model of concussive injury to gain a thorough view of the impact of TBI on fundamental aspects of gene regulation, which have the potential to drive or alter the course of the TBI pathology. TBI perturbed epigenomic programming, transcriptional activities (expression level and alternative splicing, and the organization of genes in networks centered around genes such as Anax2, Ogn, and Fmod. Transcriptomic signatures in the hippocampus are involved in neuronal signaling, metabolism, inflammation, and blood function, and they overlap with those in leukocytes from peripheral blood. The homology between genomic signatures from blood and brain elicited by TBI provides proof of concept information for development of biomarkers of TBI based on composite genomic patterns. By intersecting with human genome-wide association studies, many TBI signature genes and network regulators identified in our rodent model were causally associated with brain disorders with relevant link to TBI. The overall results show that concussive brain injury reprograms genes which could lead to predisposition to neurological and psychiatric disorders, and that genomic information from peripheral leukocytes has the potential to predict TBI pathogenesis in the brain.

  17. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P pulmonary hypertension.

  18. Electrically induced brain-derived neurotrophic factor release from Schwann cells.

    Science.gov (United States)

    Luo, Beier; Huang, Jinghui; Lu, Lei; Hu, Xueyu; Luo, Zhuojing; Li, Ming

    2014-07-01

    Regulating the production of brain-derived neurotrophic factor (BDNF) in Schwann cells (SCs) is critical for their application in traumatic nerve injury, neurodegenerative disorders, and demyelination disease in both central and peripheral nervous systems. The present study investigated the possibility of using electrical stimulation (ES) to activate SCs to release BDNF. We found that short-term ES was capable of promoting BDNF production from SCs, and the maximal BDNF release was achieved by ES at 6 V (3 Hz, 30 min). We further examined the involvement of intracellular calcium ions ([Ca2+]i) in the ES-induced BDNF production in SCs by pharmacological studies. We found that the ES-induced BDNF release required calcium influx through T-type voltage-gated calcium channel (VGCC) and calcium mobilization from internal calcium stores, including inositol triphosphate-sensitive stores and caffeine/ryanodine-sensitive stores. In addition, calcium-calmodulin dependent protein kinase IV (CaMK IV), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) were found to play important roles in the ES-induced BDNF release from SCs. In conclusion, ES is capable of activating SCs to secrete BDNF, which requires the involvement of calcium influx through T-type VGCC and calcium mobilization from internal calcium stores. In addition, activation of CaMK IV, MAPK, and CREB were also involved in the ES-induced BDNF release. The findings indicate that ES can improve the neurotrophic ability in SCs and raise the possibility of developing electrically stimulated SCs as a source of cell therapy for nerve injury in both peripheral and central nervous systems. Copyright © 2014 Wiley Periodicals, Inc.

  19. Task-induced frequency modulation features for brain-computer interfacing

    Science.gov (United States)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  20. Task-induced frequency modulation features for brain-computer interfacing.

    Science.gov (United States)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  1. Relationship Between Non-invasive Brain Stimulation-induced Plasticity and Capacity for Motor Learning.

    Science.gov (United States)

    López-Alonso, Virginia; Cheeran, Binith; Fernández-del-Olmo, Miguel

    2015-01-01

    Cortical plasticity plays a key role in motor learning (ML). Non-invasive brain stimulation (NIBS) paradigms have been used to modulate plasticity in the human motor cortex in order to facilitate ML. However, little is known about the relationship between NIBS-induced plasticity over M1 and ML capacity. NIBS-induced MEP changes are related to ML capacity. 56 subjects participated in three NIBS (paired associative stimulation, anodal transcranial direct current stimulation and intermittent theta-burst stimulation), and in three lab-based ML task (serial reaction time, visuomotor adaptation and sequential visual isometric pinch task) sessions. After clustering the patterns of response to the different NIBS protocols, we compared the ML variables between the different patterns found. We used regression analysis to explore further the relationship between ML capacity and summary measures of the MEPs change. We ran correlations with the "responders" group only. We found no differences in ML variables between clusters. Greater response to NIBS protocols may be predictive of poor performance within certain blocks of the VAT. "Responders" to AtDCS and to iTBS showed significantly faster reaction times than "non-responders." However, the physiological significance of these results is uncertain. MEP changes induced in M1 by PAS, AtDCS and iTBS appear to have little, if any, association with the ML capacity tested with the SRTT, the VAT and the SVIPT. However, cortical excitability changes induced in M1 by AtDCS and iTBS may be related to reaction time and retention of newly acquired skills in certain motor learning tasks. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Shifts in the Antibiotic Susceptibility, Serogroups, and Clonal Complexes of Neisseria meningitidis in Shanghai, China: A Time Trend Analysis of the Pre-Quinolone and Quinolone Eras.

    Science.gov (United States)

    Chen, Mingliang; Guo, Qinglan; Wang, Ye; Zou, Ying; Wang, Gangyi; Zhang, Xi; Xu, Xiaogang; Zhao, Miao; Hu, Fupin; Qu, Di; Chen, Min; Wang, Minggui

    2015-06-01

    Fluoroquinolones have been used broadly since the end of the 1980s and have been recommended for Neisseria meningitidis prophylaxis since 2005 in China. The aim of this study was to determine whether and how N. meningitidis antimicrobial susceptibility, serogroup prevalence, and clonal complex (CC) prevalence shifted in association with the introduction and expanding use of quinolones in Shanghai, a region with a traditionally high incidence of invasive disease due to N. meningitidis. A total of 374 N. meningitidis isolates collected by the Shanghai Municipal Center for Disease Control and Prevention between 1965 and 2013 were studied. Shifts in the serogroups and CCs were observed, from predominantly serogroup A CC5 (84%) in 1965-1973 to serogroup A CC1 (58%) in 1974-1985, then to serogroup C or B CC4821 (62%) in 2005-2013. The rates of ciprofloxacin nonsusceptibility in N. meningitidis disease isolates increased from 0% in 1965-1985 to 84% (31/37) in 2005-2013 (p convenience isolates from 1965-1985 were available. The increasing prevalence of ciprofloxacin resistance since 2005 in Shanghai was associated with the spread of hypervirulent lineages CC4821 and CC5. Two resistant meningococcal clones ChinaCC4821-R1-C/B and ChinaCC5-R14-A have emerged in Shanghai during the quinolone era. Ciprofloxacin should be utilized with caution for the chemoprophylaxis of N. meningitidis in China.

  3. Kainic acid-induced albumin leak across the blood-brain barrier facilitates epileptiform hyperexcitability in limbic regions.

    Science.gov (United States)

    Noé, Francesco M; Bellistri, Elisa; Colciaghi, Francesca; Cipelletti, Barbara; Battaglia, Giorgio; de Curtis, Marco; Librizzi, Laura

    2016-06-01

    Systemic administration of kainic acid (KA) is a widely used procedure utilized to develop a model of temporal lobe epilepsy (TLE). Despite its ability to induce status epilepticus (SE) in vivo, KA applied to in vitro preparations induces only interictal-like activity and/or isolated ictal discharges. The possibility that extravasation of the serum protein albumin from the vascular compartment enhances KA-induced brain excitability is investigated here. Epileptiform activity was induced by arterial perfusion of 6 μm KA in the in vitro isolated guinea pig brain preparation. Simultaneous field potential recordings were carried out bilaterally from limbic (CA1, dentate gyrus [DG], and entorhinal cortex) and extralimbic regions (piriform cortex and neocortex). Blood-brain barrier (BBB) breakdown associated with KA-induced epileptiform activity was assessed by parenchymal leakage of intravascular fluorescein-isothiocyanate albumin. Seizure-induced brain inflammation was evaluated by western blot analysis of interleukin (IL)-1β expression in brain tissue. KA infusion caused synchronized activity at 15-30 Hz in limbic (but not extralimbic) cortical areas, associated with a brief, single seizure-like event. A second bolus of KA, 60 min after the induction of the first ictal event, did not further enhance excitability. Perfusion of serum albumin between the two administrations of KA enhanced epileptiform discharges and allowed a recurrent ictal event during the second KA infusion. Our data show that arterial KA administration selectively alters the synchronization of limbic networks. However, KA is not sufficient to generate recurrent seizures unless serum albumin is co-perfused during KA administration. These findings suggest a role of serum albumin in facilitating acute seizure generation. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  4. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke.

    Science.gov (United States)

    Wang, Yuechun; Reis, Cesar; Applegate, Richard; Stier, Gary; Martin, Robert; Zhang, John H

    2015-10-01

    In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on

  5. Immunogenicity of recombinant class 1 protein from Neisseria meningitidis refolded into phospholipid vesicles and detergent.

    Science.gov (United States)

    Niebla, O; Alvarez, A; Martín, A; Rodríguez, A; Delgado, M; Falcón, V; Guillén, G

    2001-05-14

    The possibility of eliciting bactericidal antibodies against a recombinant class 1 protein (P1) from Neisseria meningitidis, joined to the first 45 amino acids of the neisserial LpdA protein (PM82), was examined. P1 was produced in Escherichia coli as intracellular inclusion bodies, from which it was purified and reconstituted by (a) inclusion into phospholipid vesicles and detergent and (b) refolding in 0.1% SDS. When Balb/c mice were immunised, high titres of subtype-specific bactericidal antibodies against P1 were obtained in both cases. These results suggest that in spite of being a denaturing agent, it is possible to use SDS to reconstitute the P1 protein in a conformation that exposes the immunodominat regions.

  6. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis

    DEFF Research Database (Denmark)

    Lappann, M.; Claus, H.; van Alen, T.

    2010-01-01

    formation, whereas biofilm formation of cc with low point prevalence (ST-8 cc and ST-11 cc) was eDNA-independent. For initial biofilm formation, a ST-32 cc type strain, but not a ST-11 type strain, utilized eDNA. The release of eDNA was mediated by lytic transglycosylase and cytoplasmic N......-acetylmuramyl-l-alanine amidase genes. In late biofilms, outer membrane phospholipase A-dependent autolysis, which was observed in most cc, but not in ST-8 and ST-11 strains, was required for shear force resistance of microcolonies. Taken together, N. meningitidis evolved two different biofilm formation strategies, an e....... On the contrary, spreaders (ST-11 and ST-8 cc) are unable to use eDNA for biofilm formation and might compensate for poor colonization properties by high transmission rates....

  7. Pneumonia caused by Neisseria meningitidis: report of a case and review of the literature

    International Nuclear Information System (INIS)

    Acosta M, Rafael E; Rada E, Robin A

    2010-01-01

    Pneumonia caused by Neisseria meningitidis, a gram-negative diplococcus affecting only humans, is a rare disease that was first recognized more than 60 years ago. The infection is usually manifested as meningitis and septicemia with cutaneous manifestations. Involvement of the lower respiratory tract is much less frequently diagnosed, partly because this microorganism can be present in the oropharyngeal flora of up to 10% of asymptomatic people. The serotypes most frequently involved in lung infections are: B, Y, and W-135. Serotype Y has been held to be most important. In cases of pneumonia, diagnosis has to be reached by isolation of the microorganism in blood and/or pleural fluid. Mortality is low, and person-to-person transmission, although documented, is rare. Complications such as pulmonary abscess, pleural effusion, and pericarditis are infrequent.

  8. Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease.

    Science.gov (United States)

    Caugant, D A; Frøholm, L O; Bøvre, K; Holten, E; Frasch, C E; Mocca, L F; Zollinger, W D; Selander, R K

    1986-07-01

    Strains of Neisseria meningitidis responsible for an epidemic of meningococcal disease occurring in Norway since the mid-1970s and for recent increases in the incidence of disease in several other parts of Europe have been identified by multilocus enzyme electrophoresis as members of a distinctive group of 22 closely related clones (the ET-5 complex). Clones of this complex have also colonized South Africa, Chile, Cuba, and Florida, where they have been identified as the causative agents of recent outbreaks of meningococcal disease. There is strong circumstantial evidence that outbreaks of disease occurring in Miami in 1981 and 1982 were caused in large part by bacteria that reached Florida via human immigrants from Cuba.

  9. Blood-brain barrier disruption in CCL2 transgenic mice during pertussis toxin-induced brain inflammation

    DEFF Research Database (Denmark)

    Schellenberg, Angela E; Buist, Richard; Del Bigio, Marc R

    2012-01-01

    infiltrate into the brain parenchyma following the administration of pertussis toxin (PTx). METHODS: This study uses contrast-enhanced magnetic resonance imaging (MRI) to quantify the extent of blood-brain barrier (BBB) disruption in this model pre- and post-PTx administration compared to wild type mice....... Contrast-enhanced MR images were obtained before and 1, 3, and 5 days after PTx injection in each animal. After the final imaging session fluorescent dextran tracers were administered intravenously to each mouse and brains were examined histologically for cellular infiltrates, BBB leakage and tight...... junction protein. RESULTS: BBB breakdown, defined as a disruption of both the endothelium and glia limitans, was found only in CCL2 transgenic mice following PTx administration seen on MR images as focal areas of contrast enhancement and histologically as dextrans leaking from blood vessels. No evidence...

  10. Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome.

    Directory of Open Access Journals (Sweden)

    Biju Joseph

    Full Text Available BACKGROUND: Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH and multilocus sequence typing (MLST of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. PRINCIPAL FINDINGS: We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. CONCLUSIONS: Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.

  11. Use of restriction fragment length polymorphisms to investigate strain variation within Neisseria meningitidis

    Energy Technology Data Exchange (ETDEWEB)

    Williams, S.D.

    1989-01-01

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collection of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty-six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P{sup 32} labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analyzed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population.

  12. Use of restriction fragment length polymorphisms to investigate strain variation within Neisseria meningitidis

    International Nuclear Information System (INIS)

    Williams, S.D.

    1989-01-01

    Similarity within bacterial populations is difficult to assess due to the limited number of characters available for evaluation and the heterogeneity of bacterial species. Currently, the preferred method used to evaluate the structure of bacterial populations is multilocus enzyme electrophoresis. However, this method is extremely cumbersome and only offers an indirect measure of genetic similarities. The development of a more direct and less cumbersome method for this purpose is warranted. Restriction fragment length polymorphism analysis was evaluated as a tool for use in the study of bacterial population structures and in the epidemiology and surveillance of infectious disease. A collection of Neisseria meningitidis was available for use in the investigation of this technique. Neisseria meningitidis is the causative agent of epidemic cerebrospinal meningitis and septicemia as well as a variety of other clinical manifestations. Each isolate in the collection was defined in terms of serogroup specificity, clinical history, geographic source, and date of isolation. Forty-six strains were chosen for this study. The DNA from each strain was restricted with Pst1 and EcoR1 and electrophoresed on agarose gels. The DNA was transferred to nylon filters and hybridized with P 32 labeled DNA probes. Two randomly generated probes and a gene-specific probe were used to estimate the genetic similarities between and among the strains in the study population. A total of 28 different restriction fragment migration types were detected by the probes used. Data obtained from the RFLP analysis was analyzed by cluster analysis and multivariate statistical methods. A total of 7 clones groups were detected. Two of these appear to be major clones that comprise 35% of the population

  13. In vivo 1H MR spectroscopic findings in traumatic contusion of ICR mouse brain induced by fluid percussion injury

    International Nuclear Information System (INIS)

    Choi, Chi-Bong; Kim, Hwi-Yool; Han, Duk-Young; Kang, Young-Woon; Han, Young-Min; Jeun, Sin-Soo; Choe, Bo-Young

    2005-01-01

    Purpose: The purpose of this study was to investigate the proton metabolic differences of the right parietal cortex with experimental brain contusions of ICR mouse induced by fluid percussion injury (FPI) compared to normal controls and to test the possibility that 1 H magnetic resonance spectroscopy (MRS) findings could provide neuropathologic criteria in the diagnosis and monitoring of traumatic brain contusions. Materials and methods: A homogeneous group of 20 ICR male mice was used for MRI and in vivo 1 H MRS. Using image-guided, water-suppressed in vivo 1 H MRS with a 4.7 T MRI/MRS system, we evaluated the MRS measurement of the relative proton metabolite ratio between experimental brain contusion of ICR mouse and healthy control subjects. Results: After trauma, NAA/Cr ratio, as a neuronal marker decreased significantly versus controls, indicating neuronal loss. The ratio of NAA/Cr in traumatic brain contusions was 0.90 ± 0.11, while that in normal control subjects was 1.13 ± 0.12 (P = 0.001). The Cho/Cr ratio had a tendency to rise in experimental brain contusions (P = 0.02). The Cho/Cr ratio was 0.91 ± 0.17, while that of the normal control subjects was 0.76 ± 0.15. However, no significant difference of Glx/Cr was established between the experimental traumatic brain injury models and the normal controls. Discussion and conclusions: The present 1 H MRS study shows significant proton metabolic changes of parietal cortex with experimental brain contusions of ICR mouse induced by FPI compared to normal controls. In vivo 1 H MRS may be a useful modality for the clinical evaluation of traumatic contusions and could aid in better understanding the neuropathologic process of traumatic contusions induced by FPI

  14. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice.

    Science.gov (United States)

    Zielinski, Mark R; Dunbrasky, Danielle L; Taishi, Ping; Souza, Gianne; Krueger, James M

    2013-08-01

    Systemic tumor necrosis factor-α (TNF-α) is linked to sleep and sleep altering pathologies in humans. Evidence from animals indicates that systemic and brain TNF-α have a role in regulating sleep. In animals, TNF-α or lipopolysaccharide (LPS) enhance brain pro-inflammatory cytokine expression and sleep after central or peripheral administration. Vagotomy blocks enhanced sleep induced by systemic TNF-α and LPS in rats, suggesting that vagal afferent stimulation by TNF-α enhances pro-inflammatory cytokines in sleep-related brain areas. However, the effects of systemic TNF-α on brain cytokine expression and mouse sleep remain unknown. We investigated the role of vagal afferents on brain cytokines and sleep after systemically applied TNF-α or LPS in mice. Spontaneous sleep was similar in vagotomized and sham-operated controls. Vagotomy attenuated TNF-α- and LPS-enhanced non-rapid eye movement sleep (NREMS); these effects were more evident after lower doses of these substances. Vagotomy did not affect rapid eye movement sleep responses to these substances. NREMS electroencephalogram delta power (0.5-4 Hz range) was suppressed after peripheral TNF-α or LPS injections, although vagotomy did not affect these responses. Compared to sham-operated controls, vagotomy did not affect liver cytokines. However, vagotomy attenuated interleukin-1 beta (IL-1β) and TNF-α mRNA brain levels after TNF-α, but not after LPS, compared to the sham-operated controls. We conclude that vagal afferents mediate peripheral TNF-α-induced brain TNF-α and IL-1β mRNA expressions to affect sleep. We also conclude that vagal afferents alter sleep induced by peripheral pro-inflammatory stimuli in mice similar to those occurring in other species.

  15. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Apaijai, Nattayaporn; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2012-10-05

    Metformin is a first line drug for the treatment of type 2 diabetes mellitus (T2DM). Our previous study reported that high-fat diet (HFD) consumption caused not only peripheral and neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment. However, the effects of metformin on learning behavior and brain mitochondrial functions in HFD-induced insulin resistant rats have never been investigated. Thirty-two male Wistar rats were divided into two groups to receive either a normal diet (ND) or a high-fat diet (HFD) for 12weeks. Then, rats in each group were divided into two treatment groups to receive either vehicle or metformin (15mg/kg BW twice daily) for 21days. All rats were tested for cognitive behaviors using the Morris water maze (MWM) test, and blood samples were collected for the determination of glucose, insulin, and malondialdehyde. At the end of the study, animals were euthanized and the brain was removed for studying brain mitochondrial function and brain oxidative stress. We found that in the HFD group, metformin significantly attenuated the insulin resistant condition by improving metabolic parameters, decreasing peripheral and brain oxidative stress levels, and improving learning behavior, compared to the vehicle-treated group. Furthermore, metformin completely prevented brain mitochondrial dysfunction caused by long-term HFD consumption. Our findings suggest that metformin effectively improves peripheral insulin sensitivity, prevents brain mitochondrial dysfunction, and completely restores learning behavior, which were all impaired by long-term HFD consumption. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior

    Science.gov (United States)

    Wohleb, Eric S.; Powell, Nicole D.

    2013-01-01

    Social stress is associated with altered immunity and higher incidence of anxiety-related disorders. Repeated social defeat (RSD) is a murine stressor that primes peripheral myeloid cells, activates microglia, and induces anxiety-like behavior. Here we show that RSD-induced anxiety-like behavior corresponded with an exposure-dependent increase in circulating monocytes (CD11b+/SSClo/Ly6Chi) and brain macrophages (CD11b+/SSClo/CD45hi). Moreover, RSD-induced anxiety-like behavior corresponded with brain region-dependent cytokine and chemokine responses involved with myeloid cell recruitment. Next, LysM-GFP+ and GFP+ bone marrow (BM)-chimeric mice were used to determine the neuroanatomical distribution of peripheral myeloid cells recruited to the brain during RSD. LysM-GFP+ mice showed that RSD increased recruitment of GFP+ macrophages to the brain and increased their presence within the perivascular space (PVS). In addition, RSD promoted recruitment of GFP+ macrophages into the PVS and parenchyma of the prefrontal cortex, amygdala, and hippocampus of GFP+ BM-chimeric mice. Furthermore, mice deficient in chemokine receptors associated with monocyte trafficking [chemokine receptor-2 knockout (CCR2KO) or fractalkine receptor knockout (CX3CR1KO)] failed to recruit macrophages to the brain and did not develop anxiety-like behavior following RSD. Last, RSD-induced macrophage trafficking was prevented in BM-chimeric mice generated with CCR2KO or CX3CR1KO donor cells. These findings indicate that monocyte recruitment to the brain in response to social stress represents a novel cellular mechanism that contributes to the development of anxiety. PMID:23966702

  17. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons

    Science.gov (United States)

    Murphy, Diane D.; Cole, Nelson B.; Segal, Menahem

    1998-01-01

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons. PMID:9736750

  18. [Changes of the Expression of Brain Derived Neurotrophic Factors in Rats Trachea Induced by Acrolein Exposure].

    Science.gov (United States)

    Yuan, Bing; Yang, Rui-an; Zhao, Wei; Xu, Yan-yan; Dan, Qi-qin; Zhang, Yun-hui

    2015-07-01

    To investigate expressional changes of brain derived neurotrophic factor (BDNF) in the trachea of rats with acrolein inhalation. Twenty two SD rats were divided into 2 groups: the rats in experimental group were subjected to acrolein inhalation for the induce of trachea inflammatory injury, while the rats with saline (NS) inhalation were as control. All the rats were sacrificed in 1,3,6 weeks after acrolein (n = 11 at each time point) or saline inhalation (n = 11 at each time point), the samples of trachea epithelium were harvested. The immunohistochemistry and in situ hybridization was performed to detect the location of BDNF protein and mRNA in trachea. The expression of BDNF mRNA in the trachea tissues were determined by RT-PCR. There are positive cells in epithelium of trachea for BDNF protein and mRNA, with cytoplasm staining. The expression of BDNF mRNA in the trachea was increased at 1 week after acrolein inhalation (P 0.05). The inflammatory injury in trachea induced by acrolein exposure could be associated with the increased expression of BDNF. BDNF may be one of the crucial inflammatory factors in the process of inflammatory reaction in trachea with acrolein stimulation.

  19. Enhanced inositide turnover in brain during bicuculline-induced status epilepticus

    International Nuclear Information System (INIS)

    Van Rooijen, L.A.; Vadnal, R.; Dobard, P.; Bazan, N.G.

    1986-01-01

    Because brain inositides are enriched in the 1-stearoyl-2-arachidonoyl species, they form a likely source for the tetraenoic free fatty acids (FFA) and diacylglycerols (DG) that are accumulated during seizures. To study inositide turnover during bicuculline-induced seizures, rats were injected intraventricularly and bilaterally with 10-20 microCi 32 P, mechanically ventilated and sacrificed by 6.5 KW head-focused microwave irradiation. Seizure activity was recorded by electroencephalography. Bicuculline-induced seizure activity resulted in: a) almost 50% increase in 32 P labeling of phosphatidic acid (PA); phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP2) also increased (24% and 36%, respectively); b) no change in other lipids; and c) water-soluble phosphodiesteratic degradation products, analyzed by high voltage paper electrophoresis, increased 24% in the amount of radiotracer recovered as inositol 1,4-bisphosphate (IP2) and by 44% in the amount recovered as inositol 1,4,5-trisphosphate (IP3). These data indicate that during experimental status epilepticus the cerebral inositide cycle is accelerated: PIP2----(IP3----IP2----IP----I) + DG----PA----PI----PIP----PIP2

  20. Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1 receptors

    Directory of Open Access Journals (Sweden)

    Loría Frida

    2011-08-01

    Full Text Available Abstract Background VCAM-1 represents one of the most important adhesion molecule involved in the transmigration of blood leukocytes across the blood-brain barrier (BBB that is an essential step in the pathogenesis of MS. Several evidences have suggested the potential therapeutic value of cannabinoids (CBs in the treatment of MS and their experimental models. However, the effects of endocannabinoids on VCAM-1 regulation are poorly understood. In the present study we investigated the effects of anandamide (AEA in the regulation of VCAM-1 expression induced by Theiler's virus (TMEV infection of brain endothelial cells using in vitro and in vivo approaches. Methods i in vitro: VCAM-1 was measured by ELISA in supernatants of brain endothelial cells infected with TMEV and subjected to AEA and/or cannabinoid receptors antagonist treatment. To evaluate the functional effect of VCAM-1 modulation we developed a blood brain barrier model based on a system of astrocytes and brain endothelial cells co-culture. ii in vivo: CB1 receptor deficient mice (Cnr1-/- infected with TMEV were treated with the AEA uptake inhibitor UCM-707 for three days. VCAM-1 expression and microglial reactivity were evaluated by immunohistochemistry. Results Anandamide-induced inhibition of VCAM-1 expression in brain endothelial cell cultures was mediated by activation of CB1 receptors. The study of leukocyte transmigration confirmed the functional relevance of VCAM-1 inhibition by AEA. In vivo approaches also showed that the inhibition of AEA uptake reduced the expression of brain VCAM-1 in response to TMEV infection. Although a decreased expression of VCAM-1 by UCM-707 was observed in both, wild type and CB1 receptor deficient mice (Cnr1-/-, the magnitude of VCAM-1 inhibition was significantly higher in the wild type mice. Interestingly, Cnr1-/- mice showed enhanced microglial reactivity and VCAM-1 expression following TMEV infection, indicating that the lack of CB1 receptor

  1. Brain catalase activity inhibition as well as opioid receptor antagonism increases ethanol-induced HPA axis activation.

    Science.gov (United States)

    Pastor, Raúl; Sanchis-Segura, Carles; Aragon, Carlos M G

    2004-12-01

    Growing evidence indicates that brain catalase activity is involved in the psychopharmacological actions of ethanol. Recent data suggest that participation of this enzymatic system in some ethanol effects could be mediated by the endogenous opioid system. The present study assessed whether brain catalase has a role in ethanol-induced activation of the HPA axis, a neuroendocrine system modulated by the endogenous opioid neurotransmission. Swiss male mice received an intraperitoneal injection of the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg), and 0 to 20 hr after this administration, animals received an ethanol (0-4 g/kg; intraperitoneally) challenge. Thirty, 60, or 120 min after ethanol administration, plasma corticosterone levels were determined immunoenzymatically. In addition, we tested the effects of 45 mg/kg of cyanamide (another catalase inhibitor) and 0 to 2 mg/kg of naltrexone (nonselective opioid receptor antagonist) on ethanol-induced enhancement in plasma corticosterone values. The present study revealed that AT boosts ethanol-induced increase in plasma corticosterone levels in a dose- and time-dependent manner. However, it did not affect corticosterone values when measured after administration of saline, cocaine (4 mg/kg, intraperitoneally), or morphine (30 mg/kg, intraperitoneally). The catalase inhibitor cyanamide (45 mg/kg, intraperitoneally) also increased ethanol-related plasma corticosterone levels. These effects of AT and cyanamide on ethanol-induced corticosterone values were observed under treatment conditions that decreased significantly brain catalase activity. Indeed, a significant correlation between effects of catalase manipulations on both variables was found. Finally, we found that the administration of naltrexone enhanced the levels of plasma corticosterone after the administration of saline or ethanol. This study shows that the inhibition of brain catalase increases ethanol-induced plasma corticosterone levels. Results are

  2. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.

    Science.gov (United States)

    Chen, Cherry C; Sheeran, Paul S; Wu, Shih-Ying; Olumolade, Oluyemi O; Dayton, Paul A; Konofagou, Elisa E

    2013-12-28

    Focused ultrasound (FUS) in the presence of systemically administered microbubbles has been shown to locally, transiently and reversibly increase the permeability of the blood-brain barrier (BBB), thus allowing targeted delivery of therapeutic agents in the brain for the treatment of central nervous system diseases. Currently, microbubbles are the only agents that have been used to facilitate the FUS-induced BBB opening. However, they are constrained within the intravascular space due to their micron-size diameters, limiting the delivery effect at or near the microvessels. In the present study, acoustically-activated nanodroplets were used as a new class of contrast agents to mediate FUS-induced BBB opening in order to study the feasibility of utilizing these nanoscale phase-shift particles for targeted drug delivery in the brain. Significant dextran delivery was achieved in the mouse hippocampus using nanodroplets at clinically relevant pressures. Passive cavitation detection was used in the attempt to establish a correlation between the amount of dextran delivered in the brain and the acoustic emission recorded during sonication. Conventional microbubbles with the same lipid shell composition and perfluorobutane core as the nanodroplets were also used to compare the efficiency of an FUS-induced dextran delivery. It was found that nanodroplets had a higher BBB opening pressure threshold but a lower stable cavitation threshold than microbubbles, suggesting that contrast agent-dependent acoustic emission monitoring was needed. A more homogeneous dextran delivery within the targeted hippocampus was achieved using nanodroplets without inducing inertial cavitation or compromising safety. Our results offered a new means of developing the FUS-induced BBB opening technology for potential extravascular targeted drug delivery in the brain, extending the potential drug delivery region beyond the cerebral vasculature. © 2013.

  3. Depletion of macrophages in CD11b diphtheria toxin receptor mice induces brain inflammation and enhances inflammatory signaling during traumatic brain injury.

    Science.gov (United States)

    Frieler, Ryan A; Nadimpalli, Sameera; Boland, Lauren K; Xie, Angela; Kooistra, Laura J; Song, Jianrui; Chung, Yutein; Cho, Kae W; Lumeng, Carey N; Wang, Michael M; Mortensen, Richard M

    2015-10-22

    Immune cells have important roles during disease and are known to contribute to secondary, inflammation-induced injury after traumatic brain injury. To delineate the functional role of macrophages during traumatic brain injury, we depleted macrophages using transgenic CD11b-DTR mice and subjected them to controlled cortical impact. We found that macrophage depletion had no effect on lesion size assessed by T2-weighted MRI scans 28 days after injury. Macrophage depletion resulted in a robust increase in proinflammatory gene expression in both the ipsilateral and contralateral hemispheres after controlled cortical impact. Interestingly, this sizeable increase in inflammation did not affect lesion development. We also showed that macrophage depletion resulted in increased proinflammatory gene expression in the brain and kidney in the absence of injury. These data demonstrate that depletion of macrophages in CD11b-DTR mice can significantly modulate the inflammatory response during brain injury without affecting lesion formation. These data also reveal a potentially confounding inflammatory effect in CD11b-DTR mice that must be considered when interpreting the effects of macrophage depletion in disease models. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Silymarin Ameliorates Diabetes-Induced Proangiogenic Response in Brain Endothelial Cells through a GSK-3β Inhibition-Induced Reduction of VEGF Release

    Directory of Open Access Journals (Sweden)

    Ahmed Alhusban

    2017-01-01

    Full Text Available Diabetes mellitus (DM is a major risk factor for cardiovascular disease. Additionally, it was found to induce a dysfunctional angiogenic response in the brain that was attributed to oxidative stress. Milk thistle seed extract (silymarin has potent antioxidant properties, though its potential use in ameliorating diabetes-induced aberrant brain angiogenesis is unknown. Glycogen synthase kinase-3β is a regulator of angiogenesis that is upregulated by diabetes. Its involvement in diabetes-induced angiogenesis is unknown. To evaluate the potential of silymarin to ameliorate diabetes-induced aberrant angiogenesis, human brain endothelial cells (HBEC-5i were treated with 50 μg/mL advanced glycation end (AGE products in the presence or absence of silymarin (50, 100 μM. The angiogenic potential of HBEC-5i was evaluated in terms of migration and in vitro tube formation capacities. The involvement of GSK-3β was also evaluated. AGE significantly increased the migration and tube formation rates of HBEC-5i by about onefold (p=0.0001. Silymarin reduced AGE-induced migration in a dose-dependent manner where 50 μM reduced migration by about 50%, whereas the 100 μM completely inhibited AGE-induced migration. Similarly, silymarin 50 μg/mL blunted AGE-induced tube formation (p=0.001. This effect was mediated through a GSK-3β-dependent inhibition of VEGF release. In conclusion, silymarin inhibits AGE-induced aberrant angiogenesis in a GSK-3β-mediated inhibition of VEGF release.

  5. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    Science.gov (United States)

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.

    Directory of Open Access Journals (Sweden)

    Costas D Arvanitis

    Full Text Available The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001 larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R(2 = 0.78. Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology.

  7. MR imaging findings of generalized tonic clonic seizure induced brain changes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Ah; Chung, Jin Il; Yonn, Pyeong Ho; Kim, Dong Ik; Chung, Tae Sub; Kim, Joo Hee [College of Medicine, Yonsei Unversity, Seoul (Korea, Republic of)

    2000-03-01

    To evaluate MRI signal changes in the brain induced by generalized tonic clonic seizure. Six patients who underwent MRI within three days of generalized tonic clonic seizure were retrospectively reviewed. Diffusion -weighted images were added in three patients during initial examination, and in six, the follow-up MRI was performed nine days to five months after the onset of seizure. We evaluated the patterns of signal change, location of the lesion and degree of contrast enhancement, and the signal change seen on diffusion weighted images. We also compared the signal changes seen on initial and follow-up MRI. In all six patients, MR images showed focally increased T2 signal intensity, and swelling and increased volume of the involved cortical gyrus. In five, the lesion was mainly located in the cortical gray matter and subcortical white matter; namely, in the bilateral cingulate gyri, and the bilateral parieto-occipital, left parietal, left frontoparietal, and left temporal lobe. In the remaining patient, the lesion was located in the right hippocampus. Two patients showed bilateral lesions and one showed multiple lesions. In four patients, T1-weighted images revealed decreased signal intensity of the same location, and in one, gyral contrast enhancement was noted. On diffusion-weighted images, three patients showed increased signal intensity. Follow-up MRI demonstrated complete resolution of the abnormal signal change (n=3D5), or a decrease (n=3D1). A transient increase in MR signal intensity with increased volume was noted in cortical and subcortical white matter after generalized tonic clonic seizure. This finding reflects the vasogenic and cytotoxic edema induced by seizure and can help exclude etiologic lesions such as tumors, inflammation and demyelinating disease that induce epilepsy. (author)

  8. Forced swimming-induced oxytocin release into blood and brain: Effects of adrenalectomy and corticosterone treatment.

    Science.gov (United States)

    Torner, Luz; Plotsky, Paul M; Neumann, Inga D; de Jong, Trynke R

    2017-03-01

    The oxytocin (OXT) system is functionally linked to the HPA axis in a reciprocal and complex manner. Certain stressors are known to cause the simultaneous release of OXT and adrenocorticotrophic hormone (ACTH) followed by corticosterone (CORT). Furthermore, brain OXT attenuates ACTH and CORT responses. Although there are some indications of CORT influencing OXT neurotransmission, specific effects of CORT on neurohypophyseal or intra-hypothalamic release of OXT have not been studied in detail. In the present set of experiments, adult male rats were adrenalectomized (ADX) or sham-operated and fitted with a jugular vein catheter and/or microdialysis probe targeting the hypothalamic paraventricular nucleus (PVN). Blood samples and dialysates were collected before and after forced swimming (FS) and analyzed for CORT, ACTH and AVP concentrations (in plasma) and OXT concentrations (in plasma and dialysates). Experimental treatments included acute infusion of CORT (70 or 175μg/kg i.v.) 5min prior to FS, or subcutaneous placement of 40% CORT pellets resulting in stable CORT levels in the normal basal range. Although ADX did not alter basal OXT concentrations either in plasma or in microdialysates from the PVN, it did cause an exaggerated peripheral secretion of OXT and a blunted intra-PVN release of OXT in response to FS. CORT pellets did not influence either of these ADX-induced effects, while acute infusion of 175μg/kg CORT rescued the stress-induced rise in OXT release within the PVN and modestly increased peripheral OXT secretion. In conclusion, these results indicate that CORT regulates both peripheral and intracerebral OXT release, but in an independent manner. Whereas the peripheral secretion of OXT occurs simultaneously to HPA axis activation in response to FS and is modestly influenced by CORT, HPA axis activation and circulating CORT strongly contribute to the stress-induced stimulation of OXT release within the PVN. Copyright © 2016 Elsevier Ltd. All rights

  9. MR imaging findings of generalized tonic clonic seizure induced brain changes

    International Nuclear Information System (INIS)

    Kim, Jeong Ah; Chung, Jin Il; Yonn, Pyeong Ho; Kim, Dong Ik; Chung, Tae Sub; Kim, Joo Hee

    2000-01-01

    To evaluate MRI signal changes in the brain induced by generalized tonic clonic seizure. Six patients who underwent MRI within three days of generalized tonic clonic seizure were retrospectively reviewed. Diffusion -weighted images were added in three patients during initial examination, and in six, the follow-up MRI was performed nine days to five months after the onset of seizure. We evaluated the patterns of signal change, location of the lesion and degree of contrast enhancement, and the signal change seen on diffusion weighted images. We also compared the signal changes seen on initial and follow-up MRI. In all six patients, MR images showed focally increased T2 signal intensity, and swelling and increased volume of the involved cortical gyrus. In five, the lesion was mainly located in the cortical gray matter and subcortical white matter; namely, in the bilateral cingulate gyri, and the bilateral parieto-occipital, left parietal, left frontoparietal, and left temporal lobe. In the remaining patient, the lesion was located in the right hippocampus. Two patients showed bilateral lesions and one showed multiple lesions. In four patients, T1-weighted images revealed decreased signal intensity of the same location, and in one, gyral contrast enhancement was noted. On diffusion-weighted images, three patients showed increased signal intensity. Follow-up MRI demonstrated complete resolution of the abnormal signal change (n=3D5), or a decrease (n=3D1). A transient increase in MR signal intensity with increased volume was noted in cortical and subcortical white matter after generalized tonic clonic seizure. This finding reflects the vasogenic and cytotoxic edema induced by seizure and can help exclude etiologic lesions such as tumors, inflammation and demyelinating disease that induce epilepsy. (author)

  10. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures

    DEFF Research Database (Denmark)

    Penkowa, M; Molinero, A; Carrasco, J

    2001-01-01

    and were killed six days later. Morphological damage to the hippocampal field CA1-CA3 was seen after kainic acid treatment. Reactive astrogliosis and microgliosis were prominent in kainic acid-injected normal mice hippocampus, and clear signs of increased oxidative stress were evident. Thus......The role of interleukin-6 in hippocampal tissue damage after injection with kainic acid, a rigid glutamate analogue inducing epileptic seizures, has been studied by means of interleukin-6 null mice. At 35mg/kg, kainic acid induced convulsions in both control (75%) and interleukin-6 null (100%) mice......, and caused a significant mortality (62%) only in the latter mice, indicating that interleukin-6 deficiency increased the susceptibility to kainic acid-induced brain damage. To compare the histopathological damage caused to the brain, control and interleukin-6 null mice were administered 8.75mg/kg kainic acid...

  11. Structure of the cold-shock domain protein from Neisseria meningitidis reveals a strand-exchanged dimer

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jingshan [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Nettleship, Joanne E.; Sainsbury, Sarah [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2008-04-01

    The X-ray crystal structure of the cold-shock domain protein from N. meningitidis reveals a strand-exchanged dimer. The structure of the cold-shock domain protein from Neisseria meningitidis has been solved to 2.6 Å resolution and shown to comprise a dimer formed by the exchange of two β-strands between protein monomers. The overall fold of the monomer closely resembles those of other bacterial cold-shock proteins. The neisserial protein behaved as a monomer in solution and was shown to bind to a hexathymidine oligonucleotide with a stoichiometry of 1:1 and a K{sub d} of 1.25 µM.

  12. Prenatal ionizing radiation-induced apoptosis of the developing murine brain with special references to the expression of some proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Makiko; Itoh, Kyoko; Matsumoto, Akira; Hayashi, Yoshitake; Sasaki, Ryohei; Imai, Yukihiro; Itoh, Hiroshi [Kobe Univ. (Japan). School of Medicine

    2001-04-01

    Apoptosis induced by ionizing irradiation of the developing mouse brain was investigated by using histology, analysis of DNA fragmentation on agarose gel and electron microscopy. A TUNEL-labeled index (L.I.) was calculated from the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay in 4 specific regions, cortical plate, intermediate zone, subependymal zone, and subependymal germinal matrix. The kinetics of apoptosis associated protein was examined by western blotting and immunofluorescence. C57BL/6J mice pregnant on embryonic day 14 (E14) were exposed to a single dose of 1.5-Gy irradiation. Irradiaited fetal brains at E15 and E17 showed extensive apoptosis with morphological characteristics. In all 4 regions, L.I. was greater in irradiated brains than in control brains at E15 and E17. Most of TUNEL-labeled cells expressed a mature neuronal marker (NeuN) and Bax protein, which is up-regulated in irradiation-induced apoptosis. Ionizing radiation moderately enhanced expression of Bax, Bcl-xL, and Cpp32 proteins. Postnatal irradiated mice showed microencephaly as compared to age-matched mice and the weight of whole body including brain decreased moderately. (author)

  13. Prenatal ionizing radiation-induced apoptosis of the developing murine brain with special references to the expression of some proteins

    International Nuclear Information System (INIS)

    Kitamura, Makiko; Itoh, Kyoko; Matsumoto, Akira; Hayashi, Yoshitake; Sasaki, Ryohei; Imai, Yukihiro; Itoh, Hiroshi

    2001-01-01

    Apoptosis induced by ionizing irradiation of the developing mouse brain was investigated by using histology, analysis of DNA fragmentation on agarose gel and electron microscopy. A TUNEL-labeled index (L.I.) was calculated from the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay in 4 specific regions, cortical plate, intermediate zone, subependymal zone, and subependymal germinal matrix. The kinetics of apoptosis associated protein was examined by western blotting and immunofluorescence. C57BL/6J mice pregnant on embryonic day 14 (E14) were exposed to a single dose of 1.5-Gy irradiation. Irradiated fetal brains at E15 and E17 showed extensive apoptosis with morphological characteristics. In all 4 regions, L.I. was greater in irradiated brains than in control brains at E15 and E17. Most of TUNEL-labeled cells expressed a mature neuronal marker (NeuN) and Bax protein, which is up-regulated in irradiation-induced apoptosis. Ionizing radiation moderately enhanced expression of Bax, Bcl-xL, and Cpp32 proteins. Postnatal irradiated mice showed microencephaly as compared to age-matched mice and the weight of whole body including brain decreased moderately. (author)

  14. Concepts and strategies for clinical management of blast-induced traumatic brain injury and posttraumatic stress disorder.

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2013-01-01

    After exposure of the human body to blast, kinetic energy of the blast shock waves might be transferred into hydraulic energy in the cardiovascular system to cause a rapid physical movement or displacement of blood (a volumetric blood surge). The volumetric blood surge moves through blood vessels from the high-pressure body cavity to the low-pressure cranial cavity, causing damage to tiny cerebral blood vessels and the blood-brain barrier (BBB). Large-scale cerebrovascular insults and BBB damage that occur globally throughout the brain may be the main causes of non-impact, blast-induced brain injuries, including the spectrum of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD). The volumetric blood surge may be a major contributor not only to blast-induced brain injuries resulting from physical trauma, but may also be the trigger to psychiatric disorders resulting from emotional and psychological trauma. Clinical imaging technologies, which are able to detect tiny cerebrovascular insults, changes in blood flow, and cerebral edema, may help diagnose both TBI and PTSD in the victims exposed to blasts. Potentially, prompt medical treatment aiming at prevention of secondary neuronal damage may slow down or even block the cascade of events that lead to progressive neuronal damage and subsequent long-term neurological and psychiatric impairment.

  15. Role of Fish Oil against Physiological Disturbances in Rats Brain Induced by Sodium Fluoride and/or Gamma Rays

    International Nuclear Information System (INIS)

    Said, U.Z.; El-Tahawy, N.A.; Ibrahim, F.R.; Kamal, G.M.; EL-Sayed, T.M.

    2015-01-01

    The impacts of environmental and occupational exposure to ionizing radiation and to long-term intake of high levels of fluoride have caused health problems and increasingly alarming in recent years. Fish oil omega-3 (polyunsaturated fatty acids essential fatty acids) is found in the highest concentrations in fish oil, claim a plethora of health benefits. The objective of the present study was to evaluate the role of fish oil rich in omega-3 fatty acids on sodium fluoride (NaF) and or gamma (γ) rays in inducing neurological and biochemical disturbances in rat’s brain cerebral hemispheres. The results revealed that whole body exposure to γ- radiation at 6 Gy applied as fractionated doses (1.5 Gy x 4 times) and/or chronic receipt of NaF solution (0.13 mg/Kg/day) for a period of 28 days, significantly increased brain fluoride and calcium content, decreased level of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) and induced brain oxidative stress which led to neurotransmitters dysfunction. Supplementation of treated rats with fish oil, via gavages, at a dose of 400 mg/kg body wt has significantly modulated oxidative stress and neurotransmitters alterations. It could be concluded that EPA and DHA, found in fish oil, could possibly protect brain from damaging free radicals and consequently minimize the severity of brain biochemical disturbances

  16. Phenobarbital increases monkey in vivo nicotine disposition and induces liver and brain CYP2B6 protein

    Science.gov (United States)

    Lee, Anna M; Miksys, Sharon; Tyndale, Rachel F

    2006-01-01

    CYP2B6 is a drug-metabolizing enzyme expressed in the liver and brain that can metabolize bupropion (Zyban®, a smoking cessation drug), activate tobacco-smoke nitrosamines, and inactivate nicotine. Hepatic CYP2B6 is induced by phenobarbital and induction may affect in vivo nicotine disposition, while brain CYP2B6 induction may affect local levels of centrally acting substrates. We investigated the effect of chronic phenobarbital treatment on induction of in vivo nicotine disposition and CYP2B6 expression in the liver and brain of African Green (Vervet) monkeys. Monkeys were split into two groups (n=6 each) and given oral saccharin daily for 22 days; one group was supplemented with 20 mg kg−1 phenobarbital. Monkeys were given a 0.1 mg kg−1 nicotine dose subcutaneously before and after treatment. Phenobarbital treatment resulted in a significant, 56%, decrease (P=0.04) in the maximum nicotine plasma concentration and a 46% decrease (P=0.003) in the area under the concentration–time curve. Phenobarbital also increased hepatic CYP2B6 protein expression. In monkey brain, significant induction (Pphenobarbital treatment in monkeys resulted in increased in vivo nicotine disposition, and induced hepatic and brain CYP2B6 protein levels and cellular expression. This induction may alter the metabolism of CYP2B6 substrates including peripherally acting drugs such as cyclophosphamide and centrally acting drugs such as bupropion, ecstasy and phencyclidine. PMID:16751792

  17. Moringa oleifera phytochemicals protect the brain against experimental nicotine-induced neurobehavioral disturbances and cerebellar degeneration.

    Science.gov (United States)

    Omotoso, Gabriel Olaiya; Gbadamosi, Ismail Temitayo; Olajide, Olayemi Joseph; Dada-Habeeb, Shakirat Opeyemi; Arogundade, Tolulope Timothy; Yawson, Emmanuel Olusola

    2018-03-01

    Nicotine is a neuro-stimulant that has been implicated in the pathophysiology of many brain diseases. The need to prevent or alleviate the resulting dysfunction is therefore paramount, which has also given way to the use of medicinal plants in the management of brain conditions. This study was designed to determine the histomorphological and neurobehavioural changes in the cerebellum of Wistar rats following nicotine insult and how such injuries respond to Moringa intervention. Twenty-four adult male Wistar rats were divided into 4 groups. Group A and B were orally treated with normal saline and Moringa oleifera respectively for twenty-eight days; Group C was treated with nicotine while group D was treated orally with Moringa oleifera and intraperitoneally with nicotine for twenty-eight days. Animals were subjected to the open field test on the last day of treatment. 24 h after last day treatment, the animals were anesthetized and perfusion fixation was carried out. The cerebellum was excised and post-fixed in 4% paraformaldehyde and thereafter put through routine histological procedures. Results revealed cytoarchitectural distortion and extreme chromatolysis in neuronal cells of the cerebellar cortical layers in the nicotine-treated group. The Purkinje cells of the cerebellum of animals in this group were degenerated. There were also reduced locomotor activities in the group. Moringa was able to prevent the chromatolysis, distortion of the cerebellar cortical cells and neurobehavioural deficit. Our result suggests that Moringa oleifera could prevent nicotine-induced cerebellar injury in Wistar rats, with the possibility of ameliorating the clinical features presented in associated cerebellar pathology. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. T sub 1 changes of canine brain in hyponatremic hypoosmosis induced by peritoneal dialysis with water

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Takayuki; Fujimoto, Toshiro (Tokyo Medical and Dental Univ. (Japan). Inst. for Medical and Dental Engineering); Fujii, Masatoshi; Nakano, Toshihiko; Shimooki, Susumu

    1991-09-01

    Changes of canine brain T{sub 1}s measured in right and left white (W-T{sub 1}) and gray (G-T{sub 1}) matter, thalamus (T-T{sub 1}), and caudate nucleus (C-T{sub 1}) in coronal view with a head coil was studied in anesthesized and automatically ventilated 11 mongrel dogs (9.2{+-}2.2 kg) using 0.1 T MR imager (Mark-J, Siemens-Asahi Meditech) before and every 30 minutes after infusion of distilled water warmed at 37degC into abdominal cavity (192{+-}50 ml/kg) up to 120 minute later. Hemolysis (2{yields}85 mg/dl: before{yields}after 120 min) increased in association with total protein (5.9{yields}8.0 g/dl) while sodium (147{yields}122 mEq/l) and osmolarity (302{yields}263 mOsm/kg) decreased. G-T{sub 1} (388{yields}394 ms) and W-T{sub 1} (287{yields}305 ms) did not change significantly, but T-T{sub 1} prolonged early (331{yields}349 ms) at 60 min (p<0.05) and C-T{sub 1} (356{yields}376 ms) did at 90 min (p<0.05). T-T{sub 1} (363 ms) and C-T{sub 1} (382 ms) elongated from initial each T{sub 1} significantly (p<0.01) 7% and 6% at 120 min, respectively. Basal nuclei, especially thalamus, in canine brain became edematous at the early stage of hyponatremic hypoosmosis induced by peritoneal dialysis with water. (author).

  19. The lazaroid U74389G protects normal brain from stereotactic radiosurgery-induced radiation injury

    International Nuclear Information System (INIS)

    Buatti, John M.; Friedman, William A.; Theele, Daniel P.; Bova, Francis J.; Mendenhall, William M.

    1996-01-01

    Purpose: To test an established model of stereotactic radiosurgery-induced radiation injury with pretreatments of either methylprednisolone or the lazaroid U74389G. Methods and Materials: Nine cats received stereotactic radiosurgery with a linear accelerator using an animal radiosurgery device. Each received a dose of 125.0 Gy prescribed to the 84% isodose shell to the anterior limb of the right internal capsule. One animal received no pretreatment, two received citrate vehicle, three received 30 mg/kg of methylprednisolone, and three received 5 mg/kg of U74389G. After irradiation, the animals had frequent neurologic examinations, and neurologic deficits developed in all of them. Six months after the radiation treatment, the animals were anesthetized, and had gadolinium-enhanced magnetic resonance (MR) scans, followed by Evans blue dye perfusion, euthanasia, and brain fixation. Results: Magnetic resonance scans revealed a decrease in the size of the lesions from a mean volume of 0.45 ± 0.06 cm 3 in the control, vehicle-treated, and methylprednisolone-treated animals to 0.22 ± 0.14 cm 3 in the U74389G-treated group. The scans also suggested the absence of necrosis and ventricular dilatation in the lazaroid-treated group. Gross pathology revealed that lesions produced in the untreated, vehicle-treated, and methylprednisolone-treated cats were similar and were characterized by a peripheral zone of Evans blue dye staining with a central zone of a mature coagulative necrosis and focal hemorrhage. However, in the U74389G-treated animals, the lesions were found to have an area of Evans blue dye staining, but lacked discrete areas of necrosis and hemorrhage. Conclusion: These results suggest that the lazaroid U74389G protects the normal brain from radiation injury produced by stereotactic radiosurgery

  20. Sodium thiosulfate protects brain in rat model of adenine induced vascular calcification.

    Science.gov (United States)

    Subhash, N; Sriram, R; Kurian, Gino A

    2015-11-01

    Vascular bed calcification is a common feature of ends stage renal disease that may lead to a complication in cardiovascular and cerebrovascular beds, which is a promoting cause of myocardial infarction, stroke, dementia and aneurysms. Sodium thiosulfate (STS) due to its multiple properties such as antioxidant and calcium chelation has been reported to prevent vascular calcification in uremic rats, without mentioning its impact on cerebral function. Moreover, the previous studies have not explored the effect of STS on the mitochondrial dysfunction, one of the main pathophysiological features associated with the disease and the main site for STS metabolism. The present study addresses this limitation by using a rat model where 0.75% adenine was administered to induce vascular calcification and 400 mg/kg b wt. of STS was given as preventive and curative agent. The blood and urine chemistries along with histopathology of aorta confirms the renal protective effect of STS in two modes of administration. The brain oxidative stress assessment was made through TBARS level, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, found to be in the near normal level. STS administration not only reduced the mitochondrial oxidative stress (measured by TBARS, SOD, GPx and CAT) but also preserved the mitochondrial respiratory enzyme activities (NADH dehydrogenase, Succinate dehydrogenase and Malate dehydrogenase) and its physiology (measured by P/O ratio and RCR). In fact, the protective effect of STS was prominent, when it was administered as a curative agent, where low H2S and high thiosulfate level was observed along with low cystathionine β synthase activity, confirms thiosulfate mediated renal protection. In conclusion, STS when given after induction of calcification is protective to the brain by preserving its mitochondria, compared to the treatment given concomitantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Expansion of a urethritis-associated Neisseria meningitidis clade in the United States with concurrent acquisition of N. gonorrhoeae alleles.

    Science.gov (United States)

    Retchless, Adam C; Kretz, Cécilia B; Chang, How-Yi; Bazan, Jose A; Abrams, A Jeanine; Norris Turner, Abigail; Jenkins, Laurel T; Trees, David L; Tzeng, Yih-Ling; Stephens, David S; MacNeil, Jessica R; Wang, Xin

    2018-03-02

    Increased reports of Neisseria meningitidis urethritis in multiple U.S. cities during 2015 have been attributed to the emergence of a novel clade of nongroupable N. meningitidis within the ST-11 clonal complex, the "U.S. NmNG urethritis clade". Genetic recombination with N. gonorrhoeae has been proposed to enable efficient sexual transmission by this clade. To understand the evolutionary origin and diversification of the U.S. NmNG urethritis clade, whole-genome phylogenetic analysis was performed to identify its members among the N. meningitidis strain collection from the Centers for Disease Control and Prevention, including 209 urogenital and rectal N. meningitidis isolates submitted by U.S. public health departments in eleven states starting in 2015. The earliest representatives of the U.S. NmNG urethritis clade were identified from cases of invasive disease that occurred in 2013. Among 209 urogenital and rectal isolates submitted from January 2015 to September 2016, the clade accounted for 189/198 male urogenital isolates, 3/4 female urogenital isolates, and 1/7 rectal isolates. In total, members of the clade were isolated in thirteen states between 2013 and 2016, which evolved from a common ancestor that likely existed during 2011. The ancestor contained N. gonorrhoeae-like alleles in three regions of its genome, two of which may facilitate nitrite-dependent anaerobic growth during colonization of urogenital sites. Additional gonococcal-like alleles were acquired as the clade diversified. Notably, one isolate contained a sequence associated with azithromycin resistance in N. gonorrhoeae, but no other gonococcal antimicrobial resistance determinants were detected. Interspecies genetic recombination contributed to the early evolution and subsequent diversification of the U.S. NmNG urethritis clade. Ongoing acquisition of N. gonorrhoeae alleles by the U.S. NmNG urethritis clade may facilitate the expansion of its ecological niche while also increasing the

  2. Increase of Neisseria meningitidis W:cc11 invasive disease in Chile has no correlation with carriage in adolescents.

    Directory of Open Access Journals (Sweden)

    Paulina S Rubilar

    Full Text Available Neisseria meningitidis is a human exclusive pathogen that can lead to invasive meningococcal disease or may be carried in the upper respiratory tract without symptoms. The relationship between carriage and disease remains poorly understood but it is widely accepted that decreasing carriage by immunization should lead to a reduction of invasive cases. Latin America has experienced an increased incidence of serogroup W invasive cases of Neisseria meningitidis in the last decade. Specifically in Chile, despite low total incidence of invasive cases, serogroup W has become predominant since 2011 and has been associated with elevated mortality. Expecting to gain insight into the epidemiology of this disease, this study has used molecular typing schemes to compare Neisseria meningitidis isolates causing invasive disease with those isolates collected from adolescent carriers during the same period in Chile. A lower carriage of the serogroup W clonal complex ST-11/ET37 than expected was found; whereas, the same clonal complex accounted for 66% of total invasive meningococcal disease cases in the country that year. A high diversity of PorA variable regions and fHbp peptides was also ascertained in the carrier isolates compared to the invasive ones. According to the results shown here, the elevated number of serogroup W invasive cases in our country cannot be explained by a rise of carriage of pathogenic isolates. Overall, this study supports the idea that some strains, as W:cc11 found in Chile, possess an enhanced virulence to invade the host. Notwithstanding hypervirulence, this strain has not caused an epidemic in Chile. Finally, as genetic transfer occurs often, close surveillance of Neisseria meningitidis strains causing disease, and particularly hypervirulent W:cc11, should be kept as a priority in our country, in order to prepare the best response to face genetic changes that could lead to enhanced fitness of this pathogen.

  3. Crystal structure of the iron-regulated outer membrane lipoprotein FrpD (NMB0584) from Neisseria meningitidis

    Czech Academy of Sciences Publication Activity Database

    Sviridova, E.; Bumba, Ladislav; Řezáčová, Pavlína; Šebo, Peter; Kutá-Smatanová, Ivana

    2012-01-01

    Roč. 12, č. 1 (2012), s. 49-49 ISSN 1210-8529. [10th Discussions in Structural Molecular Biology. 22.03.2012-24.03.2012, Nové Hrady] R&D Projects: GA ČR(CZ) GAP207/11/0717 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z60870520; CEZ:AV0Z50200510 Keywords : Neisseria meningitidis * FrpD Subject RIV: EE - Microbiology, Virology

  4. Impact of the conjugate vaccine, MenAfriVac, on carriage of serogroup A Neisseria meningitidis and disease transmission

    OpenAIRE

    Kristiansen, Paul Arne

    2013-01-01

    Neisseria meningitidis (Nm), also referred to as meningococcus, is a human commensal colonising the oropharynx, transmittable by close contact between healthy people. The bacterium can act as an opportunistic pathogen and cause bacterial meningitis and septicaemia. Meningococci are classified into 12 serogroups based on the composition of their polysaccharide (Ps) capsule. Six of these serogroups, serogroups A, B, C, W, X and Y cause meningococcal disease worldwide. The populations most affec...

  5. Critical Role of Peripheral Vasoconstriction in Fatal Brain Hyperthermia Induced by MDMA (Ecstasy) under Conditions That Mimic Human Drug Use

    Science.gov (United States)

    Kim, Albert H.; Wakabayashi, Ken T.; Baumann, Michael H.; Shaham, Yavin

    2014-01-01

    MDMA (Ecstasy) is an illicit drug used by young adults at hot, crowed “rave” parties, yet the data on potential health hazards of its abuse remain controversial. Here, we examined the effect of MDMA on temperature homeostasis in male rats under standard laboratory conditions and under conditions that simulate drug use in humans. We chronically implanted thermocouple microsensors in the nucleus accumbens (a brain reward area), temporal muscle, and facial skin to measure temperature continuously from freely moving rats. While focusing on brain hyperthermia, temperature monitoring from the two peripheral locations allowed us to evaluate the physiological mechanisms (i.e., intracerebral heat production and heat loss via skin surfaces) that underlie MDMA-induced brain temperature responses. Our data confirm previous reports on high individual variability and relatively weak brain hyperthermic effects of MDMA under standard control conditions (quiet rest, 22−23°C), but demonstrate dramatic enhancements of drug-induced brain hyperthermia during social interaction (exposure to male conspecific) and in warm environments (29°C). Importantly, we identified peripheral vasoconstriction as a critical mechanism underlying the activity- and state-dependent potentiation of MDMA-induced brain hyperthermia. Through this mechanism, which prevents proper heat dissipation to the external environment, MDMA at a moderate nontoxic dose (9 mg/kg or ∼1/5 of LD50 in rats) can cause fatal hyperthermia under environmental conditions commonly encountered by humans. Our results demonstrate that doses of MDMA that are nontoxic under cool, quiet conditions can become highly dangerous under conditions that mimic recreational use of MDMA at rave parties or other hot, crowded venues. PMID:24899699

  6. Interaction of red pepper (Capsicum annum, Tepin) polyphenols with Fe(II)-induced lipid peroxidation in brain and liver

    Energy Technology Data Exchange (ETDEWEB)

    Oboh, G [Biochemistry Department, Federal University of Technology, Akure, Ondo State (Nigeria); [Departamento de Quimica, Universidade Federal de Santa Maria (UFSM), Campus Universitario - Camobi, Santa Maria RS (Brazil); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: goboh2001@yahoo.com; Rocha, J B.T. [Campus Universitario - Camobi, Santa Maria RS (Brazil)

    2006-03-15

    Polyphenols exhibit a wide range of biological effects because of their antioxidant properties. Several types of polyphenols (phenolic acids, hydrolyzable tannins, and flavonoids) show anticarcinogenic and antimutagenic effects. Comparative studies were carried on the protective ability of free and bound polyphenol extracts of red Capsicum annuum Tepin (CAT) on brain and liver - In vitro. Free polyphenols of red Capsicum annuum Tepin (CAT) were extracted with 80% acetone, while the bound polyphenols were extracted with ethyl acetate from acid and alkaline hydrolysis of the pepper residue from free polyphenols extract. The phenol content, Fe (II) chelating ability, OH radical scavenging ability and protective ability of the extract against Fe (II)-induced lipid peroxidation in brain and liver was subsequently determined. The results of the study revealed that the free polyphenols (218.2mg/100g) content of the pepper were significantly higher than the bound polyphenols (42.5mg/100g). Furthermore, the free polyphenol extract had a significantly higher (<0.05) Fe (II) chelating ability, OH radical scavenging ability than the bound polyphenols. In addition, both extracts significantly inhibited (P<0.05) basal and 25{mu}M Fe (II)- induced lipid peroxidation in Rat's brain and liver in a dose dependent. However, the free polyphenols caused a significantly higher inhibition in the MDA (Malondialdehyde) production in the brain and liver homogenates than the bound phenols. Furthermore, the polyphenols protected the liver more than the brain. In conclusion, free polyphenols from Capsicum annuum protects both the liver and brain from Fe{sup 2+} induced lipid peroxidation, and this is probably due to the higher Fe (II) chelating ability and OH radical scavenging ability of the free polyphenols from the pepper. (author)

  7. Effects of Social Interaction and Warm Ambient Temperature on Brain Hyperthermia Induced by the Designer Drugs Methylone and MDPV

    Science.gov (United States)

    Kiyatkin, Eugene A; Kim, Albert H; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2015-01-01

    3,4-Methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV) are new drugs of abuse that have gained worldwide popularity. These drugs are structurally similar to 3,4-methylenedioxymethamphetamine (MDMA) and share many of its physiological and behavioral effects in humans, including the development of hyperthermia during acute intoxication. Here, we examined the effects of methylone (1–9 mg/kg, s.c.) or MDPV (0.1–1.0 mg/kg, s.c.) on brain temperature homeostasis in rats maintained in a standard laboratory environment (single-housed in a quiet rest at 22 °C) and under conditions that model human drug use (social interaction and 29 °C ambient temperature). By simultaneously monitoring temperatures in the nucleus accumbens, temporal muscle, and facial skin, we assessed the effects of methylone and MDPV on intra-brain heat production and cutaneous vascular tone, two critical factors that control brain temperature responses. Both methylone and MDPV dose-dependently increased brain temperature, but even at high doses that induced robust locomotor activation, hyperthermia was modest in magnitude (up to ∼2 °C). Both drugs also induced dose-dependent peripheral vasoconstriction, which appears to be a primary mechanism determining the brain hyperthermic responses. In contrast to the powerful potentiation of MDMA-induced hyperthermia by social interaction and warm ambient temperature, such potentiation was absent for methylone and minimal for MDPV. Taken together, despite structural similarities to MDMA, exposure to methylone or MDPV under conditions commonly associated with human drug use does not lead to profound elevations in brain temperature and sustained vasoconstriction, two critical factors associated with MDMA toxicity. PMID:25074640

  8. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2015-01-01

    Full Text Available In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  9. Morus alba leaf extract mediates neuroprotection against glyphosate-induced toxicity and biochemical alterations in the brain.

    Science.gov (United States)

    Rebai, Olfa; Belkhir, Manel; Boujelben, Adnen; Fattouch, Sami; Amri, Mohamed

    2017-04-01

    Recent studies demonstrate that glyphosate exposure is associated with oxidative stress and some neurological disorders such as Parkinson's pathology. Therefore, phytochemicals, in particular phenolic compounds, have attracted increasing attention as potential agents for neuroprotection. In the present study, we investigate the impact of glyphosate on the rat brain following i.p. injection and the possible molecular target of neuroprotective activity of the phenolic fraction from Morus alba leaf extract (MALE) and its ability to reduce oxidative damage in the brain. Wistar rats from 180 to 240 g were i.p. treated with a single dose of glyphosate (100 mg kg -1 b.w.) or MALE (100 μg mL -1  kg -1 b.w.) for 2 weeks. Brain homogenates were used to evaluate neurotoxicity induced by the pesticide. For this, biochemical parameters were measured. Data shows that MALE regulated oxidative stress and counteracted glyphosate-induced deleterious effects and oxidative damage in the brain, as it abrogated LDH, protein carbonyls, and malonyldialdehyde. MALE also appears to be able to scavenge H 2 O 2 levels, maintain iron and Ca 2+ homeostasis, and increase SOD activity. Thus, in vivo results showed that mulberry leaf extract is a potent protector against glyphosate-induced toxicity, and its protective effect could result from synergism or antagonism between the various bioactive phenolic compounds in the acetonic fraction from M. alba leaf extract.

  10. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit.

    Science.gov (United States)

    Banks, William A; Gray, Alicia M; Erickson, Michelle A; Salameh, Therese S; Damodarasamy, Mamatha; Sheibani, Nader; Meabon, James S; Wing, Emily E; Morofuji, Yoichi; Cook, David G; Reed, May J

    2015-11-25

    Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using (14)C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to (14)C-sucrose and radioactive albumin. In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with (14)C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and (14)C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is

  11. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study.

    Directory of Open Access Journals (Sweden)

    Kuo-Chen Wei

    Full Text Available The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI-monitored focused ultrasound (FUS-induced blood-brain barrier (BBB disruption to enhance Temozolomide (TMZ delivery for improving Glioblastoma Multiforme (GBM treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF and plasma by LC-MS\\MS. The effects of treatment on tumor progression (by MRI, animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment.

  12. Endothelial ErbB4 deficit induces alterations in exploratory behavior and brain energy metabolism in mice.

    Science.gov (United States)

    Wu, Gang; Liu, Xiu-Xiu; Lu, Nan-Nan; Liu, Qi-Bing; Tian, Yun; Ye, Wei-Feng; Jiang, Guo-Jun; Tao, Rong-Rong; Han, Feng; Lu, Ying-Mei

    2017-06-01

    The receptor tyrosine kinase ErbB4 is present throughout the primate brain and has a distinct functional profile. In this study, we investigate the potential role of endothelial ErbB4 receptor signaling in the brain. Here, we show that the endothelial cell-specific deletion of ErbB4 induces decreased exploratory behavior in adult mice. However, the water maze task for spatial memory and the memory reconsolidation test reveal no changes; additionally, we observe no impairment in CaMKII phosphorylation in Cdh5Cre;ErbB4 f/f mice, which indicates that the endothelial ErbB4 deficit leads to decreased exploratory activity rather than direct memory deficits. Furthermore, decreased brain metabolism, which was measured using micro-positron emission tomography, is observed in the Cdh5Cre;ErbB4 f/f mice. Consistently, the immunoblot data demonstrate the downregulation of brain Glut1, phospho-ULK1 (Ser555), and TIGAR in the endothelial ErbB4 conditional knockout mice. Collectively, our findings suggest that endothelial ErbB4 plays a critical role in regulating brain function, at least in part, through maintaining normal brain energy homeostasis. Targeting ErbB4 or the modulation of endothelial ErbB4 signaling may represent a rational pharmacological approach to treat neurological disorders. © 2017 John Wiley & Sons Ltd.

  13. Neuroprotective effect of Cucumis melo Var. flexuosus leaf extract on the brains of rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Ibrahim, Doaa S

    2017-02-01

    The central nervous system is one of the most vulnerable organs affected by the oxidative stress associated with diabetes mellitus. Healthy food provides an important source for antioxidants. Therefore, the protective effect of Cucumis melo var. flexuosus (C. melo var. flexuosus) leaf extract on the brains of diabetic rats was investigated. Adult male albino rats divided into 5 groups of 6 rats each were assigned into a normal control group and four diabetic groups. Diabetes was induced in rats by a single intraperitoneal injection of streptozotocin (STZ; 60 mg/kg bw). One of the four diabetic groups was left untreated and was considered as a diabetic control group while the three other groups were treated with C. melo var. flexuosus leaf extract at the doses of 30, 60 and 120 mg/kg bw for a period of 30 days. After completion of experimental duration plasma and brains were used for evaluating biochemical changes. The obtained data showed that C. melo var. flexuosus leaf extract treatment lowered blood glucose, glycated hemoglobin, brain tumor necrosis factor-alpha, interleukin levels, brain malondialdehyde content and caspase-3 activity. Furthermore, the treatment resulted in a marked increase in plasma dopamine, melatonin, brain vascular endothelial growth factor-A levels, brain catalase and superoxide dismutase activities. From the present study, it can be concluded that the C. melo var. flexuosus leaf extract exerts a neuroprotective effect against oxidative damage associated with diabetes.

  14. Estradiol receptors mediate estradiol-induced inhibition of mitochondrial Ca^{2+} efflux in rat caudate nucleus and brain stem

    OpenAIRE

    PETROVIC, SNJEZANA; MILOSEVIC, MAJA; RISTIC-MEDIC, DANIJELA; VELICKOVIC, NATASA; DRAKULIC, DUNJA; GRKOVIC, IVANA; HORVAT, ANICA

    2015-01-01

    Our earlier studies found that in vitro estradiol modulates mitochondrial Ca2+ transport in discrete brain regions. The present study examined the role of estradiol receptors (ERs) in estradiol-induced inhibition of Ca^{2+} efflux from synaptosomal mitochondria isolated from rat caudate nuclei and brain stems. Radioactively labeled CaCl_2 (0.6?0.75 µCi ^45CaCl_{2}) was used for Ca^{2+} transport monitoring. The results revealed that in the presence of ER antagonist 7\\alpha,17ß-[9[(4,4,5,5,5-...

  15. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells.

    Science.gov (United States)

    Hollmann, Emma K; Bailey, Amanda K; Potharazu, Archit V; Neely, M Diana; Bowman, Aaron B; Lippmann, Ethan S

    2017-04-13

    Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods. Induced pluripotent stem cells were seeded at defined densities and differentiated to BMECs using defined medium termed E6. Resultant purified BMEC phenotypes were assessed through trans-endothelial electrical resistance (TEER), fluorescein permeability, and P-glycoprotein and MRP family efflux transporter activity. Expression of endothelial markers and their signature tight junction proteins were confirmed using immunocytochemistry. The influence of co-culture with astrocytes and pericytes on purified BMECs was assessed via TEER measurements. The robustness of the differentiation method was confirmed across independent iPSC lines. The use of E6 medium, coupled with updated culture methods, reduced the differentiation time of iPSCs to BMECs from thirteen to 8 days. E6-derived BMECs expressed GLUT-1, claudin-5, occludin, PECAM-1, and VE-cadherin and consistently achieved TEER values exceeding 2500 Ω × cm 2 across multiple iPSC lines, with a maximum TEER value of 4678 ± 49 Ω × cm 2 and fluorescein permeability below 1.95 × 10 -7 cm/s. E6-derived BMECs maintained TEER above 1000 Ω × cm 2 for a minimum of 8 days and showed no statistical difference in efflux transporter activity compared to BMECs differentiated by conventional means. The method was also found to support long-term stability of BMECs harboring biallelic PARK2 mutations associated

  16. Visible light induced changes in the immune response through an eye-brain mechanism (photoneuroimmunology).

    Science.gov (United States)

    Roberts, J E

    1995-07-01

    The immune system is susceptible to a variety of stresses. Recent work in neuroimmunology has begun to define how mood alteration, stress, the seasons, and daily rhythms can have a profound effect on immune response through hormonal modifications. Central to these factors may be light through an eye-brain hormonal modulation. In adult primates, only visible light (400-700 nm) is received by the retina. This photic energy is then transduced and delivered to the visual cortex and by an alternative pathway to the suprachiasmatic nucleus (SCN). The SCN is a part of the hypothalamic region in the brain believed to direct circadian rhythm. Visible light exposure also modulates the pituitary and pineal gland which leads to neuroendocrine changes. Melatonin, norepinephrine and acetylcholine decrease with light activation, while cortisol, serotonin, gaba and dopamine levels increase. The synthesis of vasoactive intestinal polypeptide (VIP), gastrin releasing peptide (GRP) and neuropeptide Y (NPY) in rat SCN has been shown to be modified by light. These induced neuroendocrine changes can lead to alterations in mood and circadian rhythm. All of these neuroendocrine changes can lead to immune modulation. An alternative pathway for immune modulation by light is through the skin. Visible light (400-700 nm) can penetrate epidermal and dermal layers of the skin and may directly interact with circulating lymphocytes to modulate immune function. However, even in the presence of phototoxic agents such as eosin and rose bengal, visible light did not produce suppression of contact hypersensitivity with suppresser cells. In contrast to visible light, in vivo exposure to UV-B (280-320 nm) and UV-A (320-400 nm) radiation can only alter normal human immune function by a skin mediated response. Each UV subgroup (B, A) induces an immunosuppressive response but by differing mechanisms involving the regulation of differing interleukins and growth factors. Some effects observed in humans are

  17. De-coupling of blood flow and metabolism in the rat brain induced by glutamate

    International Nuclear Information System (INIS)

    Hirose, Shinichiro; Momosaki, Sotaro; Sasaki, Kazunari; Hosoi, Rie; Abe, Kohji; Inoue, Osamu; Gee, A.

    2009-01-01

    Glutamate plays an essential role in neuronal cell death in many neurological disorders. In this study, we examined both glucose metabolism and cerebral blood flow in the same rat following infusion of glutamate or ibotenic acid using the dual-tracer technique. The effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptor antagonist, on the changes in the glucose metabolism and cerebral blood flow induced by glutamate were also examined. The rats were microinjected with glutamate (1 μmol/μl, 2 μl) or ibotenic acid (10 μg/μl, 1 μl) into the right striatum, and dual-tracer autoradiograms of [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]iofetamine (IMP) were obtained. MK-801 and NBQX were injected intravenously about 45 and 30 min, respectively, after the infusion of glutamate. De-coupling of blood flow and metabolism was noted in the glutamate-infused hemisphere (as assessed by no alteration of [ 18 F]FDG uptake and significant decrease of [ 14 C]IMP uptake). Pretreatments with MK-801, NBQX, or combined use of MK-801 and NBQX did not affect the de-coupling of the blood flow and metabolism induced by glutamate. A histochemical study revealed that about 20% neuronal cell death had occurred in the striatum at 105 min after the infusion of glutamate. In addition, a significant increase of the [ 18 F]FDG uptake and decrease of [ 14 C]IMP uptake were also seen in the rat brain infused with ibotenic acid. These results indicate that glutamate and ibotenic acid caused a significant de-coupling of blood flow and glucose metabolism in the intact rat brain during the early phase of neurodegeneration. It is necessary to evaluate the relation between metabotropic glutamate receptors and de-coupling of blood flow and metabolism. (author)

  18. Fatty acid amide hydrolase (FAAH) regulates hypercapnia/ischemia-induced increases in n-acylethanolamines in mouse brain.

    Science.gov (United States)

    Lin, Lin; Metherel, Adam H; Jones, Peter J; Bazinet, Richard P

    2017-09-01

    N-acylethanolamines (NAEs) are endogenous lipid ligands for several receptors including cannabinoid receptors and peroxisome proliferator-activated receptor-alpha (PPAR-α), which regulate numerous physiological functions. Fatty acid amide hydrolase (FAAH) is largely responsible for the degradation of NAEs. However, at high concentrations of ethanolamines and unesterified fatty acids, FAAH can also catalyze the reverse reaction, producing NAEs. Several brain insults such as ischemia and hypoxia increase brain unesterified fatty acids. Because FAAH can catalyze the synthesis of NAE, we aimed to test whether FAAH was necessary for CO 2 -induced hypercapnia/ischemia increases in NAE. To test this, we examined levels of NAEs, 1- and 2-arachidonoylglycerols as well as their corresponding fatty acid precursors in wild-type and mice lacking FAAH (FAAH-KO) with three Kill methods: (i) head-focused, high-energy microwave irradiation (microwave), (ii) 5 min CO 2 followed by microwave irradiation (CO 2 + microwave), and (iii) 5 min CO 2 only (CO 2 ). Both CO 2 -induced groups increased, to a similar extent, brain levels of unesterified oleic, arachidonic, and docosahexaenoic acid and 1- and 2-arachidonoylglycerols compared to the microwave group in both wild-type and FAAH-KO mice. Oleoylethanolamide (OEA), arachidonoylethanolamide (AEA), and docosahexaenoylethanolamide (DHEA) levels were about 8-, 7-, and 2.5-fold higher, respectively, in the FAAH-KO mice compared with the wild-type mice. Interestingly, the concentrations of OEA, AEA, and DHEA increased 2.5- to 4-fold in response to both CO 2 -induced groups in wild-type mice, but DHEA increased only in the CO 2 group in FAAH-KO mice. Our study demonstrates that FAAH is necessary for CO 2 - induced increases in OEA and AEA but not DHEA. Targeting brain FAAH could impair the production of NAEs in response to brain injuries. © 2017 International Society for Neurochemistry.

  19. Preliminary crystallographic data of the three homologues of the thiol–disulfide oxidoreductase DsbA in Neisseria meningitidis

    Energy Technology Data Exchange (ETDEWEB)

    Lafaye, Céline [Laboratoire des Protéines Membranaires, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France); Iwena, Thomas; Ferrer, Jean-Luc [Laboratoire de Cristallogénèse et Cristallisation des Protéines, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France); Kroll, J. Simon [Department of Paediatrics, Imperial College London, St Mary’s Hospital Campus, Norfolk Place, London W2 1PG (United Kingdom); Griat, Mickael; Serre, Laurence, E-mail: laurence.serre@ibs.fr [Laboratoire des Protéines Membranaires, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France)

    2008-02-01

    The Neisseria meningitidis genome possesses three genes encoding active DsbAs. To throw light on the reason for this genetic multiplicity, the three enzymes have been purified and crystallized. Bacterial virulence depends on the correct folding of surface-exposed proteins, a process that is catalyzed by the thiol-disulfide oxidoreductase DsbA, which facilitates the synthesis of disulfide bonds in Gram-negative bacteria. Uniquely among bacteria, the Neisseria meningitidis genome possesses three genes encoding active DsbAs: DsbA1, DsbA2 and DsbA3. DsbA1 and DsbA2 have been characterized as lipoproteins involved in natural competence and in host-interactive biology, while the function of DsbA3 remains unknown. In an attempt to shed light on the reason for this multiplicity of dsbA genes, the three enzymes from N. meningitidis have been purified and crystallized in the presence of high concentrations of ammonium sulfate. The best crystals were obtained using DsbA1 and DsbA3; they belong to the orthorhombic and tetragonal systems and diffract to 1.5 and 2.7 Å resolution, respectively.

  20. Circulating MicroRNAs as Potential Biomarkers for Traumatic Brain Injury-Induced Hypopituitarism.

    Science.gov (United States)

    Taheri, Serpil; Tanriverdi, Fatih; Zararsiz, Gokmen; Elbuken, Gulsah; Ulutabanca, Halil; Karaca, Zuleyha; Selcuklu, Ahmet; Unluhizarci, Kursad; Tanriverdi, Kahraman; Kelestimur, Fahrettin

    2016-10-15

    Traumatic brain injury (TBI), a worldwide public health problem, has recently been recognized as a common cause of pituitary dysfunction. Circulating microRNAs (miRNAs) present in the sera are characteristically altered in many pathological conditions and have been used as diagnostic markers for specific diseases. It is with this goal that we planned to study miRNA expression in patients with TBI-induced hypopituitarism. Thirty-eight patients (27 male, 11 female; mean age, 43 ± 18 years) who had been admitted to the neurosurgery intensive care unit due to TBI were included in the acute phase of the study. In the chronic phase, miRNA expression profile blood samples were drawn from 25 patients who had suffered TBI 5 years ago. In the acute phase (on Days 1, 7, and 28), a substantial amount of patients (26%, 40%, and 53%; respectively) had hypopituitarism (acute adrenocorticotropic hormone deficiency). In the chronic phase eight of 25 patients (32%) had TBI-induced-hypopituitarism. Forty-seven age-gender-similar healthy controls (25 male, 22 female, mean age: 41 ± 14 years) were included in the study. In order to identify potential candidate miRNA/miRNAs whose levels had been altered in response to TBI-induced hypopituitarism, 740 miRNA expression analyses were performed in the sera of TBI patients by high throughput real-time polymerase chain reaction. Statistical analyses showed that miRNA-126-3p (miR-126-3p) and miRNA-3610 (miR-3610) were detected in the sera of patients who developed hypopituitarism on the 1st, 7th, and 28th days, and in the 5th year following TBI. In addition, miRNA-3907 showed statistically significant and constant dynamic changes on the 1st, 7th, and 28th days, and in the 5th year in the patients with TBI. Our results indicated that altered expression of miR-126-3p and miR-3610 may play an important role in the development of TBI-induced hypopituitarism.

  1. Brain Metabolism Alterations Induced by Pregnancy Swimming Decreases Neurological Impairments Following Neonatal Hypoxia-Ischemia in Very Immature Rats

    Directory of Open Access Journals (Sweden)

    Eduardo F. Sanches

    2018-06-01

    Full Text Available Introduction: Prematurity, through brain injury and altered development is a major cause of neurological impairments and can result in motor, cognitive and behavioral deficits later in life. Presently, there are no well-established effective therapies for preterm brain injury and the search for new strategies is needed. Intra-uterine environment plays a decisive role in brain maturation and interventions using the gestational window have been shown to influence long-term health in the offspring. In this study, we investigated whether pregnancy swimming can prevent the neurochemical metabolic alterations and damage that result from postnatal hypoxic-ischemic brain injury (HI in very immature rats.Methods: Female pregnant Wistar rats were divided into swimming (SW or sedentary (SE groups. Following a period of adaptation before mating, swimming was performed during the entire gestation. At postnatal day (PND3, rat pups from SW and SE dams had right common carotid artery occluded, followed by systemic hypoxia. At PND4 (24 h after HI, the early neurochemical profile was measured by 1H-magnetic resonance spectroscopy. Astrogliosis, apoptosis and neurotrophins protein expression were assessed in the cortex and hippocampus. From PND45, behavioral testing was performed. Diffusion tensor imaging and neurite orientation dispersion and density imaging were used to evaluate brain microstructure and the levels of proteins were quantified.Results: Pregnancy swimming was able to prevent early metabolic changes induced by HI preserving the energetic balance, decreasing apoptotic cell death and astrogliosis as well as maintaining the levels of neurotrophins. At adult age, swimming preserved brain microstructure and improved the performance in the behavioral tests.Conclusion: Our study points out that swimming during gestation in rats could prevent prematurity related brain damage in progeny with high translational potential and possibly interesting cost

  2. Interactions of proteoliposomes from serogroup B Neisseria meningitidis with bone marrow-derived dendritic cells and macrophages: adjuvant effects and antigen delivery.

    Science.gov (United States)

    Rodríguez, Tamara; Pérez, Oliver; Ménager, Nathalie; Ugrinovic, Sanja; Bracho, Gustavo; Mastroeni, Pietro

    2005-01-26

    Exposure to proteoliposomes from serogroup B Neisseria meningitidis (PL) induced up-regulation of MHC-II, MHC-I, CD40, CD80 and CD86 expression on the surface of murine bone marrow-derived dendritic cells (DC). CD40, CD80 and CD86 were up-regulated on bone marrow-derived macrophages (MPhi) upon stimulation with PL. Both DC and MPhi released TNFalpha, but only DC produced IL12(p70) in response to PL. A small increase in the expression of MHC-II, CD40 and CD86, as well as production of IL12(p70), was observed on the cell surface of DC, but not MPhi from LPS-non-responder C3H/HeJ after exposure to PL. DC, but not MPhi, incubated with PL containing ovalbumin (PL-OVA) presented OVA-specific peptides to CD4+ and CD8+ OVA-specific T-cell hybridomas. These data clearly indicate that PL exert an immunomodulatory effect on DC and MPhi, with some contribution of non-LPS components besides the main role of LPS. The work also shows the potential of PL as a general system to deliver antigens to DC for presentation to CD4+ and CD8+ T-cells.

  3. Combined Effects of Primary and Tertiary Blast on Rat Brain: Characterization of a Model of Blast-induced Mild Traumatic Brain Injury

    Science.gov (United States)

    2013-03-01

    injury in U.S. military personnel. N Engl J Med 364, 2091–2100 (2011) 27. Lu J, Ng KC , Ling GS, Wu J, Poon JF, Kan EM, Tan MH, Wu YJ, Li P...Moochhala S, Yap E, Lee LK, Teo AL, Yeh IB, Ser- gio DM, Chua F, Kumar SD, Ling EA: Effect of blast exposure on the brain structure and cognition in the...12689448] 32. Henderson D, Bielefeld EC, Harris KC , Hu BH. The role of oxidative stress in noise-induced hearing loss. Ear Hear. 2006;27(1):1–19. [PMID

  4. Ketamine differentially restores diverse alterations of neuroligins in brain regions in a rat model of neuropathic pain-induced depression.

    Science.gov (United States)

    Pan, Wei; Zhang, Guang-Fen; Li, Hui-Hui; Ji, Mu-Huo; Zhou, Zhi-Qiang; Li, Kuan-Yu; Yang, Jian-Jun

    2018-07-04

    Depression is present in a large proportion of patients suffering from chronic pain, and yet the underlying mechanisms remain to be elucidated. Neuroligins (NLs), as a family of cell-adhesion proteins, are involved in synaptic formation and have been linked to various neuropsychiatric disorders. Here, we studied the alterations in NL1 and NL2 in the medial prefrontal cortex (mPFC), the anterior cingulate cortex (ACC), and the hippocampus in a rat model of neuropathic pain-induced depression, and whether ketamine, a rapid and robust antidepressant, could restore these abnormalities. In the present study, we found that spared nerve injury induced significant mechanical allodynia and subsequent depressive-like symptoms, along with decreased NL1 and increased NL2 in the mPFC, decreased NL1 in the ACC, and decreased NL2 in the hippocampus. In addition, brain-derived neurotrophic factor (BDNF) was reduced in these brain regions. It is noteworthy that ketamine (10 mg/kg) relieved neuropathic pain-induced depressive behaviors and restored alterations of BDNF and NLs in the mPFC and the hippocampus at 24 h and 72 h after the administration of ketamine, but only restored BDNF in the ACC. In conclusion, NLs showed diverse changes in different brain regions in the rat model of neuropathic pain-induced depression, which could be reversed differentially by the administration of ketamine.

  5. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain.

    Science.gov (United States)

    Swathy, S S; Indira, M

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The optimal dose of Ksheerabala was found from a dose escalation study, wherein it was found that Ksheerabala showed maximum protection against quinolinic acid-induced neurotoxicity at a dose of 15 microL/100 g body weight/day, which was selected for further experiments. Four groups of female albino rats were maintained for 21 days as follows: 1. Control group, 2. Quinolinic acid (55 microg/100 g body weight), 3. Ksheerabala (15 microL/100 g body weight), 4. Ksheerabala (15 microL/100 g body weight) + Quinolinic acid (55 microg/100 g body weight). At the end of the experimental period, levels of lipid peroxidation products, protein carbonyls, and activities of scavenging enzymes were analyzed. The results revealed that quinolinic acid intake caused enhanced lipid and protein peroxidation as evidenced by increased levels of peroxidation products such as malondialdehyde, hydroperoxide, conjugated dienes, and protein carbonyls. On the other hand, the activities of scavenging enzymes such as catalase, superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase as well as the concentration of glutathione were reduced. On coadminstration of Ksheerabala along with quinolinic acid, the levels of all the biochemical parameters were restored to near-normal levels, indicating the protective effect of the drug. These results were reinforced by histopathological studies.

  6. Multivoxel proton MRS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases

    International Nuclear Information System (INIS)

    Chernov, M.F.; Hayashi, Motohiro; Izawa, Masahiro

    2006-01-01

    Multivoxel proton magnetic resonance spectroscopy (MRS) was used for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for intracranial metastases in 33 consecutive cases. All patients presented with enlargement of the treated lesion, increase of perilesional brain edema, and aggravation or appearance of neurological signs and symptoms on average 9.3±4.9 months after primary treatment. Metabolic imaging defined four types of lesions: pure tumor recurrence (11 cases), partial tumor recurrence (11 cases), radiation-induced tumor necrosis (10 cases), and radiation-induced necrosis of the peritumoral brain (1 case). In 1 patient, radiation-induced tumor necrosis was diagnosed 9 months after radiosurgery; however, partial tumor recurrence was identified 6 months later. With the exception of midline shift, which was found to be more typical for radiation-induced necrosis (P<0.01), no one clinical, radiologic, or radiosurgical parameter either at the time of primary treatment or at the time of deterioration showed a statistically significant association with the type of the lesion. Proton MRS-based diagnosis was confirmed histologically in all surgically treated patients (7 cases) and corresponded well to the clinical course in others. In conclusion, multivoxel proton MRS is an effective diagnostic modality for identification of radiation-induced necrosis and tumor recurrence that can be used for monitoring of metabolic changes in intracranial neoplasms after radiosurgical treatment. It can be also helpful for differentiation of radiation-induced necrosis of the tumor and that of the peritumoral brain, which may have important clinical and medicolegal implications. (author)

  7. FEMALE MICE ARE RESISTANT TO Fabp1 GENE ABLATION-INDUCED ALTERATIONS IN BRAIN ENDOCANNABINOID LEVELS

    Science.gov (United States)

    Martin, Gregory G.; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K.; Dangott, Lawrence J.; Peng, Xiaoxue; Kaczocha, Martin; Murphy, Eric J.; Kier, Ann B.; Schroeder, Friedhelm

    2017-01-01

    Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing ECs, i.e arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: i) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; ii) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or iii) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO). PMID:27450559

  8. Air pollutant sulfur dioxide-induced alterations on the levels of lipids, lipid peroxidation and lipase activity in various regions of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Haider, S S; Hasan, M; Khan, N H

    1982-07-01

    The exposure of rats to SO/sub 2/ (10 p.p.m.) for one hour daily for 30 days caused depletion of total lipids in all brain areas. The contents of phospholipid were elevated in cerebellum and brain stem, but were depleted in cerebral hemisphere. Cholesterol levels showed an increase in various brain regions. On the other hand, gangliosides were increased in cerebellum and brain stem, but were decreased in cerebral hemisphere. Interestingly, cholesterol/phospholipid ratio was increased in different regions of the brain. Lipase activity was elevated in cerebral hemisphere. Lipid peroxidation showed marked increment in whole brain and in all the brain areas studied. The results suggest that SO/sub 2/-exposure induces degradation of lipids. Interestingly, the lipid contents are affected differentially in the various parts of the brain.

  9. Changes in brain amino acid content induced by hyposmolar stress and energy deprivation.

    Science.gov (United States)

    Haugstad, T S; Valø, E T; Langmoen, I A

    1995-12-01

    The changes in endogenous amino acids in brain extracellular and intracellular compartments evoked by hyposmotic stress and energy deprivation were compared. Tissue content and release of ten amino acids were measured simultaneously in rat hippocampal slices by means of high performance liquid chromatography. Hyposmotic stress induced a large release of taurine (25568 pmol mg-1 protein), and a smaller release of glutamate, accompanied by an inverse change in tissue content. Adding mannitol to correct osmolarity, blocked these changes. Energy deprivation caused an increase in the release of all amino acids except glutamine. The release was particularly large for glutamate and GABA (31141 and 13282 pmol mg-1, respectively). The intracellular concentrations were generally reduced, but the total amount of the released amino acids increased In contrast to the effect seen during hyposmolar stress, mannitol enhanced the changes due to energy deprivation. The results show that hyposmolar stress and energy deprivation cause different content and release profiles, suggesting that the mechanisms involved in the two situations are either different or modulated in different ways. The intracellular amino acid depletion seen during energy deprivation shows that increased outward transport is probably a primary event, and increased amino acid formation likely secondary to this release.

  10. Cilia induced cerebrospinal fluid flow in the third ventricle of brain

    Science.gov (United States)

    Wang, Yong; Westendorf, Christian; Faubel, Regina; Eichele, Gregor; Bodenschatz, Eberhard

    2016-11-01

    Cerebrospinal fluid (CSF) conveys many physiologically important signaling factors through the ventricles of the mammalian brain. The walls of the ventricles are covered with motile cilia that were thought to generate a laminar flow purely following the curvature of walls. However, we recently discovered that cilia of the ventral third ventricle (v3V) generate a complex flow network along the wall, leading to subdivision of the v3V. The contribution of such cilia induced flow to the overall three dimensional volume flow remains to be investigated by using numerical simulation, arguably the best approach for such investigations. The lattice Boltzmann method is used to study the CFS flow in a reconstructed geometry of the v3V. Simulation of CSF flow neglecting cilia in this geometry confirmed that the previous idea about pure confined flow does not reflect the reality observed in experiment. The experimentally recorded ciliary flow network along the wall was refined with the smoothed particle hydrodynamics and then adapted as boundary condition in simulation. We study the contribution of the ciliary network to overall CSF flow and identify site-specific delivery of CSF constituents with respect to the temporal changes.

  11. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Stirling Emma J

    2010-10-01

    Full Text Available Abstract Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mati