WorldWideScience

Sample records for mems-based formaldehyde gas

  1. Enhanced Sensing Characteristics in MEMS-based Formaldehyde Gas Sensor

    CERN Document Server

    Wang, Yu-Hsiang; Lee, Chia-Yen; Ma, R -H; Chou, Po-Cheng

    2008-01-01

    This study has successfully demonstrated a novel self-heating formaldehyde gas sensor based on a thin film of NiO sensing layer. A new fabrication process has been developed in which the Pt micro heater and electrodes are deposited directly on the substrate and the NiO thin film is deposited above on the micro heater to serve as sensing layer. Pt electrodes are formed below the sensing layer to measure the electrical conductivity changes caused by formaldehyde oxidation at the oxide surface. Furthermore, the upper sensing layer and NiO/Al2O3 co-sputtering significantly increases the sensitivity of the gas sensor, improves its detection limit capability. The microfabricated formaldehyde gas sensor presented in this study is suitable not only for industrial process monitoring, but also for the detection of formaldehyde concentrations in buildings in order to safeguard human health.

  2. Microfabricated Formaldehyde Gas Sensors

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2009-11-01

    Full Text Available Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation.

  3. Miniaturized MEMS-Based Gas Chromatograph for High Inertial Loads Associated with Planetary Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a rugged, miniaturized, low power MEMS-based gas chromatograph (GC) capable of handling the high inertial loads...

  4. A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer

    Directory of Open Access Journals (Sweden)

    Lung-Ming Fu

    2009-04-01

    Full Text Available In the study, a MEMS-based benzene gas sensor is presented, consisting of a quartz substrate, a thin-film WO3 sensing layer, an integrated Pt micro-heater, and Pt interdigitated electrodes (IDEs. When benzene is present in the atmosphere, oxidation occurs on the heated WO3 sensing layer. This causes a change in the electrical conductivity of the WO3 film, and hence changes the resistance between the IDEs. The benzene concentration is then computed from the change in the measured resistance. A specific orientation of the WO3 layer is obtained by optimizing the sputtering process parameters. It is found that the sensitivity of the gas sensor is optimized at a working temperature of 300 °C. At the optimal working temperature, the experimental results show that the sensor has a high degree of sensitivity (1.0 KΩ ppm-1, a low detection limit (0.2 ppm and a rapid response time (35 s.

  5. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection

    Energy Technology Data Exchange (ETDEWEB)

    Loui, A; McCall, S K

    2011-10-24

    The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant concentration ranges and distinguished from other chemical species that may be simultaneously present, is particularly challenging. Aside from the laboratory-based method of gas chromatography-mass spectrometry (GC-MS), where samples may be collected by solid-phase microextraction (SPME) or cryofocusing, the other major approaches for gas-phase detection employ lasers typically operating in the mid-infrared wavelength region. While mass spectrometry can readily detect noble gases - the helium leak detector is an obvious example - laser-based methods such as infrared (IR) or Raman spectroscopy are completely insensitive to them as their monatomic nature precludes a non-zero dipole moment or changes in polarizability upon excitation. Therefore, noble gases can only be detected by one of two methods: (1) atomic emission spectroscopies which require the generation of plasmas through laser-induced breakdown, electrical arcing, or similar means; (2) non-spectroscopic methods which measure one or more physical properties (e.g., mass, thermal conductivity, density). In this report, we present our progress during Fiscal Year 2011 (FY11) in the research and development of a non-spectroscopic method for noble gas detection. During Fiscal Year 2010 (FY10), we demonstrated via proof-of-concept experiments that the combination of thermal conductivity detection (TCD) and coating-free damped resonance detection (CFDRD) using micro-electromechanical systems (MEMS) could provide selective sensing of these inert species. Since the MEMS-based TCD technology was directly adapted from a brassboard prototype commissioned by a previous chemical sensing project, FY11 efforts focused on advancing the state of the newer CFDRD method. This work, guided by observations previously reported in the open literature, has not only

  6. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  7. Ultrafast response sensor to formaldehyde gas based on metal oxide.

    Science.gov (United States)

    Choi, N-J; Lee, H-K; Moon, S E; Kim, J; Yang, W S

    2014-08-01

    Thick film semiconductor gas sensors based on indium oxide were fabricated on Si substrate. The sensing materials on Si substrate were characterized using optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and so on. They were very fine and uniform and we found out that particle sizes were about 20~30 nm through XRD analysis. Gas responses of fabricated sensors were measured in a chamber where gas flow was controlled by mass flow controller (MFC). Their resistance changes were monitored in real time by using data acquisition board and personal computer. Gas response characteristics were examined for formaldehyde (HCHO) gas which was known as the cause of sick building syndrome. Particularly, the sensors showed responses to formaldehyde gas at sub ppm (cf, standard of natural environment in building is about 80 ppb by ministry of environment in Korea), as a function of operating temperatures and gas concentrations. Also, we investigated sensitivity, repetition, selectivity, response speed and reproducibility of the sensors. The lowest detection limit is HCHO 25 ppb and sensitivity at 800 ppb is over 25% at 350 °C operating temperature. The response time (8 s) and recovery time (15 s) to HCHO gas at 200 ppb were very fast compared to other commercial products in flow type measurement condition. Repetition measurement was very good with ±3% in full measurement range. The fabricated metal oxide gas sensor showed good performance to HCHO gas and proved that it could be adaptable to indoor environment in building.

  8. Formaldehyde.

    Science.gov (United States)

    Pontén, Ann; Bruze, Magnus

    2015-01-01

    Formaldehyde is the American Contact Dermatitis Society Contact Allergen of the Year for 2015. The exposure is widespread, and contact allergy might be difficult to suspect in the individual dermatitis patient. The relevance of contact allergy to formaldehyde might also be difficult to evaluate. Recently, however, several studies have been performed aimed at enhancing the patch test technique and evaluating the clinical relevance of contact allergy to formaldehyde. The patch test concentration of formaldehyde has been recommended by the European Environmental Contact Dermatitis Research Group to be 2.0%, that is, the dose of 0.60 mg/cm (wt/vol) instead of 1.0%, which is the concentration previously used for the baseline series in most countries. Without causing any more irritant reactions, the patch test concentration of 2.0% detects twice as many contact allergies and enables the diagnosis of formaldehyde-allergic patients who otherwise would have been missed. The studies that underpin the decision were performed in Europe and partly in the United States. The Finn Chamber patch test system was used. The allergen dose per area was kept uniform with a micropipette. This report describes the background for routinely using formaldehyde 2.0% instead of 1.0% and for using a micropipette when applying the test solution.

  9. Development of gas sensing application for formaldehyde gas detection and characterization of tin dioxide

    Science.gov (United States)

    Zaki, M.; Hashim, U.; Arshad, M. K. Md; Nasir, M.

    2017-03-01

    This paper presents the development of sensor in ultrasensitive detection of formaldehyde gas. The chemical compound, tin dioxide (SnO2) thin film is deposited onto glass insulator. Next, the resistance and voltage of the sensing layer on the interdigitated electrodes (IDE) sensor's substrate is measured. The resistivity of sensor is changed by heat the sensing layer to 150 °C, 175 °C and 200 °C. When formaldehyde gas is supplied inside the test chamber, absorption process occurred at the surface of the heated SnO2 sensing layer. The experimental results show the sensor is capable of high sensitivity sensing of formaldehyde gas at 200 °C, repeatability, and capability detection as low as 11 ppm which produced 0.8 V on electronic reader. Characterization of surface morphological, temperature effect and electrical properties are demonstrated by various measurements.

  10. RF MEMS Based Reconfigurable Antennas

    Science.gov (United States)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  11. Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins.

    Science.gov (United States)

    Kim, Sumin; Kim, Hyun-Joong

    2005-09-01

    Formaldehyde emissions from MDF bonded with urea-formaldehyde resin (UF), melamine-formaldehyde resin (MF) and the co-polycondensation resin of urea-melamine-formaldehyde (UMF) and melamine-formaldehyde, measured by the Japanese standard method of determining formaldehyde emission with a desiccator (JIS A 5908) and the DIN EN 120 (European Committee For Standardization, 1991) method using the perforator value, were used as the typical standard methods. While the UF resin showed a desiccator value of 7.05 ppm and a perforator value of 12.1 mg/100 g panel, the MF resin exhibited a desiccator value of 0.6 ppm and a perforator value of 2.88 mg/100 g panel. According to the Japanese industrial standard and the European standard, the formaldehyde emission level of the MDF panels made with UF resin in this study was E(2) grade. The formaldehyde emission level was dramatically reduced by the addition of MF resin. This is because the addition of formaldehyde to melamine occurs more easily and completely than its addition to urea, even though the condensation reaction of melamine with formaldehyde is similar to that between urea and formaldehyde. These two methods, the desiccator method and the perforator method, produced proportionally equivalent results. Gas chromatography, a more sensitive and advanced method, was also used. The samples used for gas chromatography were gathered during the experiment involving the perforator method. The formaldehyde emission levels obtained from gas chromatography were similar to those obtained from the perforator method. The formaldehyde contents measured by gas chromatography were directly proportional to the perforator values.

  12. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... calibration; particulate, methanol and formaldehyde measurement. 86.120-94 Section 86.120-94 Protection of... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas...

  13. Solid polymer MEMS-based fuel cells

    Science.gov (United States)

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  14. Solid oxide MEMS-based fuel cells

    Science.gov (United States)

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  15. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide.

    Science.gov (United States)

    Liu, Hongmin; Lian, Zhiwei; Ye, Xiaojiang; Shangguan, Wenfeng

    2005-07-01

    Degradation of formaldehyde with different initial concentration over titanium dioxide was carried out in a photocatalytic reactor. Photocatalytic rates were well described by the simplified Langmuir-Hinshelwood model. The kinetic analysis shows that the apparent first-order reaction coefficient is lower and half-life of photocatalysis is longer for low concentration than for high concentration formaldehyde. A network formation model of the photocatalytic products was established. Experimental results and analysis demonstrate that carbon dioxide concentration and carbon monoxide concentration in gas phase vary exponentially with the illumination time and may be even higher than gas-phase formaldehyde concentration if there is much pre-adsorbed formaldehyde in adsorption equilibrium on catalysts before illumination. Carbon monoxide is found to be one of the by-products during formaldehyde photooxidation.

  16. MEMS-based IR-sources

    Science.gov (United States)

    Weise, Sebastian; Steinbach, Bastian; Biermann, Steffen

    2016-03-01

    The series JSIR350 sources are MEMS based infrared emitters. These IR sources are characterized by a high radiation output. Thus, they are excellent for NDIR gas analysis and are ideally suited for using with our pyro-electric or thermopile detectors. The MEMS chips used in Micro-Hybrid's infrared emitters consist of nano-amorphous carbon (NAC). The MEMS chips are produced in the USA. All Micro-Hybrid Emitter are designed and specified to operate up to 850°C. The improvements we have made in the source's packaging enable us to provide IR sources with the best performance on the market. This new technology enables us to seal the housings of infrared radiation sources with soldered infrared filters or windows and thus cause the parts to be impenetrable to gases. Micro-Hybrid provide various ways of adapting our MEMS based infrared emitter JSIR350 to customer specifications, like specific burn-in parameters/characteristic, different industrial standard housings, producible with customized cap, reflector or pin-out.

  17. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... calibration; particulate, methanol, and formaldehyde measurement. 86.1320-90 Section 86.1320-90 Protection of... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to...

  18. RELATION BETWEEN MECHANICAL PROPERTIES AND PYROLYSIS TEMPERATURE OF PHENOL FORMALDEHYDE RESIN FOR GAS SEPARATION MEMBRANES

    Directory of Open Access Journals (Sweden)

    MONIKA ŠUPOVÁ

    2012-03-01

    Full Text Available The aim of this paper has been to characterize the relation between the pyrolysis temperature of phenol-formaldehyde resin, the development of a porous structure, and the mechanical properties for the application of semipermeable membranes for gas separation. No previous study has dealt with this problem in its entirety. Phenol-formaldehyde resin showed an increasing trend toward micropore porosity in the temperature range from 500 till 1000°C, together with closure of mesopores and macropores. Samples cured and pyrolyzed at 1000°C pronounced hysteresis of desorption branch. The ultimate bending strength was measured using a four-point arrangement that is more suitable for measuring of brittle materials. The chevron notch technique was used for determination the fracture toughness. The results for mechanical properties indicated that phenol-formaldehyde resin pyrolyzates behaved similarly to ceramic materials. The data obtained for the material can be used for calculating the technical design of gas separation membranes.

  19. Formaldehyde in Absorption: Tracing Molecular Gas in Early-Type Galaxies

    Science.gov (United States)

    Dollhopf, Niklaus M.; Donovan Meyer, Jennifer

    2016-01-01

    Early-Type Galaxies (ETGs) have been long-classified as the red, ellipsoidal branch of the classic Hubble tuning fork diagram of galactic structure. In part with this classification, ETGs are thought to be molecular and atomic gas-poor with little to no recent star formation. However, recent efforts have questioned this ingrained classification. Most notably, the ATLAS3D survey of 260 ETGs within ~40 Mpc found 22% contain CO, a common tracer for molecular gas. The presence of cold molecular gas also implies the possibility for current star formation within these galaxies. Simulations do not accurately predict the recent observations and further studies are necessary to understand the mechanisms of ETGs.CO traces molecular gas starting at densities of ~102 cm-3, which makes it a good tracer of bulk molecular gas, but does little to constrain the possible locations of star formation within the cores of dense molecular gas clouds. Formaldehyde (H2CO) traces molecular gas on the order of ~104 cm-3, providing a further constraint on the location of star-forming gas, while being simple enough to possibly be abundant in gas-poor ETGs. In cold molecular clouds at or above ~104 cm-3 densities, the structure of formaldehyde enables a phenomenon in which rotational transitions have excitation temperatures driven below the temperature of the cosmic microwave background (CMB), ~2.7 K. Because the CMB radiates isotropically, formaldehyde can be observed in absorption, independent of distance, as a tracer of moderately-dense molecular clouds and star formation.This novel observation technique of formaldehyde was incorporated for observations of twelve CO-detected ETGs from the ATLAS3D sample, including NGC 4710 and PGC 8815, to investigate the presence of cold molecular gas, and possible star formation, in ETGs. We present images from the Very Large Array, used in its C-array configuration, of the J = 11,0 - 11,1 transition of formaldehyde towards these sources. We report our

  20. Bioterrorism: processing contaminated evidence, the effects of formaldehyde gas on the recovery of latent fingermarks.

    Science.gov (United States)

    Hoile, Rebecca; Walsh, Simon J; Roux, Claude

    2007-09-01

    In the present age of heightened emphasis on counter terrorism, law enforcement and forensic science are constantly evolving and adapting to the motivations and capabilities of terrorist groups and individuals. The use of biological agents on a population, such as anthrax spores, presents unique challenges to the forensic investigator, and the processing of contaminated evidence. In this research, a number of porous and non-porous items were contaminated with viable [corrected] spores and marked with latent fingermarks. The test samples were then subjected to a standard formulation of formaldehyde gas. Latent fingermarks were then recovered post decontamination using a range of methods. Standard fumigation, while effective at destroying viable spores, contributed to the degradation of amino acids leading to loss of ridge detail. A new protocol for formaldehyde gas decontamination was developed which allows for the destruction of viable spores and the successful recovery of latent marks, all within a rapid response time of less than 1 h.

  1. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    Science.gov (United States)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  2. Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas.

    Science.gov (United States)

    Jeon, Yoo Sang; Seo, Hyo Won; Kim, Su Hyo; Kim, Young Keun

    2016-05-01

    Owing to their chemical and thermal stability and doping effects on providing electrons to the conduction band, doped ZnO nanowires have generated interest for use in electronic devices. Here we report hydrothermally grown Fe-doped ZnO nanowires and their gas-sensing properties. The synthesized nanowires have a high crystallinity and are 60 nm in diameter and 1.7 μm in length. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are employed to understand the doping effects on the microstructures and gas sensing properties. When the Fe-doped ZnO nanowire arrays were evaluated for gas sensing, responses were recorded through changes in temperature and gas concentration. Gas sensors consisting of ZnO nanowires doped with 3-5 at.% Fe showed optimum formaldehyde (HCHO) sensing performance at each working temperature.

  3. TiO2/Polyester Non-woven Fabrics as a Kind of Photocatalyst for the Degradation of Formaldehyde Gas

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The feasibility of photocatalytic degradation of the formaldehyde gas by titanium dioxide (TiO2)/polyester non-woven fabrics was studied. The effects of parameters such as the concentration of TiO2 solution, pH value, and drying temperature on the photocatalytie degradation of the formaldehyde gas were also studied. The results showed that the photodegradation efficiency of the formaldehyde gas increased rapidly with the increasing of the concentration of TiO2 solution up to 15g/L, but when the concentration was in excess of 15 g/L, the photodegradation efficiency decreased gradually and fluctuated due to light obstruction and disperse state of TiO2. Adjusting the pH value in the solution, the efficiency of photocatalytic degradation of the formaldehyde gas could be improved. The mechanisms of the reaction and the role of the additives were also investigated. After 42hours, TiO2/ polyester non-woven fabric showed no significant loss of the photocatalytic activity. Ke ywords : formaldehyde, photocatal ytic degradation,titanium dioxide, polyester non-voven fabric.

  4. Amperometric Enzyme-based Gas Sensor for Formaldehyde: Impact of Possible Interferences

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2007-02-01

    Full Text Available In this work, cross-sensitivities and environmental influences on the sensitivityand the functionality of an enzyme-based amperometric sensor system for the directdetection of formaldehyde from the gas phase are studied. The sensor shows a linearresponse curve for formaldehyde in the tested range (0 - 15 vppm with a sensitivity of1.9 μA/ppm and a detection limit of about 130 ppb. Cross-sensitivities by environmentalgases like CO2, CO, NO, H2, and vapors of organic solvents like methanol and ethanol areevaluated as well as temperature and humidity influences on the sensor system. The sensorshowed neither significant signal to CO, H2, methanol or ethanol nor to variations in thehumidity of the test gas. As expected, temperature variations had the biggest influence onthe sensor sensitivity with variations in the sensor signal of up to 10 % of the signal for 5vppm CH2O in the range of 25 - 30 °C.

  5. MEMS-BASED OSCILLATORS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Jamilah Karim

    2014-05-01

    Full Text Available ABSTRACT: This paper presents an overview of microelectromechanical (MEMS based oscillators. The accuracy and stability of the reference frequency will normally limit the performance of most wireless communication systems. MEMS technology is the technology of choice due to its compatibility to silicon, leading to integration with circuits and lowering power consumption. MEMS based oscillators also provide the potential of a fully integrated transceiver. The most commonly used topology for MEMS based oscillators are pierce oscillator circuit topology and TIA circuit topology. Both topologies result in very competitive output in terms of phase noise and power consumption.  They can be used for either higher or lower Rx. The major difference between both topologies is the number of transistors used. TIA circuit used more number of transistor compare to pierce circuit. Thus design complexity of the TIA is higher. Pierce circuit is simpler, provide straightforward biasing and easier to design. The highly integratable of MEMS-based oscillators have made them much needed in future multiband wireless system. So that future wireless systems are able to function globally without any problem. ABSTRAK: Kertas kerja ini membentangkan gambaran keseluruhan mikroelektromekanikal (MEMS berdasarkan pengayun.  Ketepatan dan kestabilan frekuensi rujukan sering membataskan perlaksanaan kebanyakan sistem komunikasi tanpa wayar. Teknologi MEMS merupakan teknologi pilihan memandangkan ia serasi dengan silikon; membolehkan integrasi dengan litar dan penggunaan tenaga yang rendah.  Pengayun berdasarkan MEMS juga  berpotensi sebagai integrasi penuh penghantar-terima. Topologi yang sering digunakan untuk pengayun berdasarkan MEMS adalah topologi litar pengayun pencantas dan topologi litar TIA.  Keputusan bagi kedua-dua topologi adalah amat kompetitif dari segi fasa bunyi dan penggunaan tenaga. Ia boleh digunakan untuk meninggikan atau merendahkan Rx. Perbezaan utama

  6. Gas-phase thermolysis reaction of formaldehyde diperoxide. Kinetic study and theoretical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Nelly Lidia [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Av. Las Palmeras 4, 18100 Armilla, Granada (Spain); Area de Quimica Fisica Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Avda. Libertad 5460, 3400 Corrientes (Argentina); Romero, Jorge Marcelo [Area de Quimica Fisica Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Avda. Libertad 5460, 3400 Corrientes (Argentina); Grand, Andre [INAC, SCIB, Laboratoire ' Lesions des Acides Nucleiques' , UMR CEA-UJF E3, CEA-Grenoble, 17 Rue des Martyrs, 38054 Grenoble cedex 9 (France); Hernandez-Laguna, Alfonso, E-mail: ahlaguna@ugr.es [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Av. Las Palmeras 4, 18100 Armilla, Granada (Spain)

    2012-01-17

    Highlights: Black-Right-Pointing-Pointer Kinetic and mechanism of the gas-phase thermolysis of tetroxane were determined. Black-Right-Pointing-Pointer Gas chromatography and computational potential energy surfaces were performed. Black-Right-Pointing-Pointer A mechanism in steps looked like the most probable mechanism. Black-Right-Pointing-Pointer A spin-orbit coupling appeared at the singlet and triple diradical open structures. Black-Right-Pointing-Pointer A non-adiabatic crossing from the singlet to the triplet state occurred. - Abstract: Gas-phase thermolysis reaction of formaldehyde diperoxide (1,2,4,5-tetroxane) was performed in an injection chamber of a gas chromatograph at a range of 463-503 K. The average Arrhenius activation energy and pre-exponential factor were 29.3 {+-} 0.8 kcal/mol and 5.2 Multiplication-Sign 10{sup 13} s{sup -1}, respectively. Critical points and reaction paths of the ground singlet and first triplet potential energy surfaces (PES) were calculated, using DFT method at BHANDHLYP/6-311+G{sup Asterisk-Operator Asterisk-Operator} level of the theory. Also, G3 calculations were performed on the reactant and products. Reaction by the ground-singlet and first-triplet states turned out to be endothermic and exothermic, respectively. The mechanism in three steps seemed to be the most probable one. An electronically non-adiabatic process appeared, in which a crossing, at an open diradical structure, from the singlet to the triplet state PES occurred, due to a spin-orbit coupling, yielding an exothermic reaction. Theoretical kinetic constant coming from the non- adiabatic transition from the singlet to the triplet state agrees with the experimental values.

  7. High-performance formaldehyde gas-sensors based on three dimensional center-hollow ZnO.

    Science.gov (United States)

    Shi, Linqi; Cui, Jiabao; Zhao, Fei; Wang, Dejun; Xie, Tengfeng; Lin, Yanhong

    2015-12-14

    Three dimensional (3D) center-hollow ZnO architectures assembled by nanoparticles have been successfully fabricated on a large scale via a template-free method using an oil bath. The samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area, surface photocurrent and UV-Vis diffuse reflectance spectroscopy. The photoelectric gas-sensing results demonstrated that the 3D porous, center-hollow ZnO structures exhibited excellent sensitivity and good selectivity to formaldehyde under 365 nm light irradiation at room temperature. The gas response to 1 ppm formaldehyde can reach 70%, which is superior to the results reported in the literature, indicating that the 3D center-hollow ZnO architectures are ideal candidate materials for photoelectric gas sensors. The underlying mechanisms responsible for the high sensitivity and selectivity to formaldehyde are discussed, which provide a new pathway for designing novel VOC sensors. Moreover, the facile method presented in this paper has the advantage of low-cost and high-yield, which is suitable for the practical production processes.

  8. Oxidation of methanol to formaldehyde on supported vanadium oxide catalysts compared to gas phase molecules.

    Science.gov (United States)

    Döbler, Jens; Pritzsche, Marc; Sauer, Joachim

    2005-08-10

    The oxidation of methanol to formaldehyde on silica supported vanadium oxide is studied by density functional theory. For isolated vanadium oxide species silsesquioxane-type models are adopted. The first step is dissociative adsorption of methanol yielding CH3O(O=)V(O-)2 surface complexes. This makes the O=V(OCH3)3 molecule a suited model system. The rate-limiting oxidation step involves hydrogen transfer from the methoxy group to the vanadyl oxygen atom. The transition state is biradicaloid and needs to be treated by the broken-symmetry approach. The activation energies for O=V(OCH3)3 and the silsesquioxane surface model are 147 and 154 kJ/mol. In addition, the (O=V(OCH3)3)(2) dimer (a model for polymeric vanadium oxide species) and the O=V(OCH3)3(*+) radical cation are studied. For the latter the barrier is only 80 kJ/mol, indicating a strong effect of the charge on the energy profile of the reaction and questioning the significance of gas-phase cluster studies for understanding the activity of supported oxide catalysts.

  9. Use of a Vortex-Type Contact Condenser in Absorption of Methanol and Formaldehyde from a Contact Gas

    Science.gov (United States)

    Moskalev, L. N.; Ponikarov, S. I.

    2016-09-01

    Consideration has been given to the process of absorption of methanol and formaldehyde from a contact gas in the production of technical formalin. Using computer simulation, the authors set up a model of a standard flow diagram of methanol and formaldehyde absorption of a contact gas. For the process of absorption, use was made of NRTL and Lee-Kesler mathematical models which allow for the heat and mass transfer. Empirical coefficients for these models have been determined. The amount of methanol and formaldehyde has been established in absorption gases utilized by burning with a standard flow diagram and on adding a supplementary stage of condensation. A comparison has been made of experimental and calculated data of the process. A heat- and mass transfer apparatus of the vortex type has been proposed, which will make it possible to remove an environmental burden and to improve energy-resource saving. The conditions of operation of the absorber with an increase of 22% in the output have been considered.

  10. Excellent Formaldehyde Gas-Sensing Properties of Ruptured Nd-Doped In2O3 Porous Nanotubes

    Science.gov (United States)

    Wang, Xuesong; Li, Haiying; Ni, Mucui; Wang, Lianyuan; Liu, Li; Wang, Han; Guo, Xuexin

    2017-01-01

    The ruptured Nd-doped In2O3 porous nanotubes have been successfully synthesized by single-capillary electrospinning method. The morphologies of the as-prepared materials were characterized by scanning electron microscopy and transmission electron microscopy. It can be seen obviously that the surface of the nanotubes are distributed with cracks and pores, which formed such an open nanostructure. The crystal structures and components were determined by x-ray diffraction, energy-dispersive x-ray spectroscopy and x-ray photoelectron spectrometer. The gas-sensing properties of ruptured Nd-doped In2O3 porous nanotubes were studied and the results show the excellent performances of the as-obtained materials. The response of ruptured Nd-doped In2O3 porous nanotubes to 100 ppm of formaldehyde is 46.8 at the optimum temperature of 240°C. The response and recovery times are 8 s and 22 s, respectively. Furthermore, the lowest detection limit of formaldehyde is 100 ppb with the value of 2.4. In addition, the ruptured Nd-doped In2O3 porous nanotubes exhibit good selectivity to formaldehyde and long-term stability.

  11. Investigation of temperature characteristic of MEMS-based optical fiber pressure sensor

    Science.gov (United States)

    Yin, Jinde; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; Zhao, Bofu; Xue, Lei; Mei, Yunqiao; Pu, Yi; Yin, Jishou; Qin, Zunqi; Zou, Shengliang

    2013-12-01

    We fabricated MEMS-based optical fiber pressure sensor with anodic bonding. The vacuum-sealed microcavity with a thin silicon diaphragm is used as sensing element and its deformation characteristics determine the pressure measurement performance. Considering residual gas inside Fabry-Perot cavity and the thermal properties of material, we established a sensor's temperature response mathematical model based on ideal gas equation and elastic theory. Temperature experiment of this sensor was carried out under vacuum. This work will provide a guide of temperature compensation process for achieving high precision pressure measurement.

  12. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2015-08-01

    Full Text Available Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications.

  13. Beyond SHARP-- Primary Formaldehyde from Oil and Gas Exploration and Production in the Gulf of Mexico Region

    Science.gov (United States)

    Olaguer, E. P.

    2010-12-01

    Formaldehyde has been named by the EPA as a hazardous air pollutant that may be carcinogenic and also cause irritation to the eyes, nose, throat and lung. Moreover, it is a powerful radical and ozone precursor. The 2009 Study of Houston Atmospheric Radical Precursors (SHARP) was conceived by the Houston Advanced Research Center (HARC) on behalf of the Texas Environmental Research Consortium (TERC) to examine the relative importance of primary and secondary formaldehyde (HCHO) and nitrous acid (HONO) in ozone formation. SHARP confirmed that primary combustion sources of HCHO, such as flares end engines, may be underestimated (by an order of magnitude or more) in official emission inventories used for the purpose of air quality modeling in highly industrialized areas such as Houston. This presentation provides recently generated modeling and observational evidence that the same may be true in both rural and urban areas with oil and gas exploration and production (E&P) activities, such as the Upper Green River Basin of Wyoming and the Barnett Shale of Texas. Oil and gas E&P is increasing in the Gulf of Mexico region, particularly in the Barnett, Haynesville, Eagle Ford, Cana-Woodford, and Fayetteville shale basins. In the Barnett Shale, E&P activities are moving into urban neighborhoods, and may affect the ability to bring the Dallas-Ft. Worth region into attainment of the federal ozone standard. Data concerning formaldehyde emissions from drill rig and pipeline compressor engines, flares, and glycol or amine reboilers, should be obtained in order to more accurately model air quality in the Gulf of Mexico region.

  14. MEMS-based thermoelectric infrared sensors: A review

    Science.gov (United States)

    Xu, Dehui; Wang, Yuelin; Xiong, Bin; Li, Tie

    2017-06-01

    In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation microstructures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.

  15. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke; Xie, Haifen, E-mail: hfxie@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhao, Xiaojing; Liu, Feng [Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234 (China)

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductive graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.

  16. Characterization of Energetic Porous Silicon for a Microelectromechanical System (MEMS)-Based Solid Propellant Microthruster

    Science.gov (United States)

    2014-09-01

    Characterization of Energetic Porous Silicon for a Microelectromechanical System (MEMS)-Based Solid Propellant Microthruster by Raghav...Energetic Porous Silicon for a Microelectromechanical System (MEMS)-Based Solid Propellant Microthruster Raghav Ramachandran, Wayne Churaman, David...Microelectromechanical System (MEMS)-Based Solid Propellant Microthruster 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  17. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    Science.gov (United States)

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication.

  18. Quantum Cascade Laser-Based Photoacoustic Sensor for Trace Detection of Formaldehyde Gas

    Directory of Open Access Journals (Sweden)

    Pietro Mario Lugarà

    2009-04-01

    Full Text Available We report on the development of a photoacoustic sensor for the detection of formaldehyde (CH2O using a thermoelectrically cooled distributed-feedback quantum cascade laser operating in pulsed mode at 5.6 mm. A resonant photoacoustic cell, equipped with four electret microphones, is excited in its first longitudinal mode at 1,380 Hz. The absorption line at 1,778.9 cm-1 is selected for CH2O detection. A detection limit of 150 parts per billion in volume in nitrogen is achieved using a 10 seconds time constant and 4 mW laser power. Measurements in ambient air will require water vapour filters.

  19. Effect of key parameters on the removal of formaldehyde and methanol in gas-phase biotrickling filters.

    Science.gov (United States)

    Prado, O J; Veiga, M C; Kennes, C

    2006-12-01

    The effect of some important operation parameters, as pH, pollutant load and composition of the nutrient media, on the biodegradation of a mixture of formaldehyde and methanol in a gas-phase biotrickling filter was studied. pH proved to affect the degradation of both compounds at moderately acidic values. Replacing ammonium with nitrate as nitrogen source in the liquid solution led to a slight decrease in performance, though this difference was not really significant. A slight decrease in the elimination rate was also observed when reducing the N-NO(3)(-) concentration to 60% of its original value. No interactions between the two pollutants were found under our working conditions.

  20. MEMS-based Circuits and Systems for Wireless Communication

    CERN Document Server

    Kaiser, Andreas

    2013-01-01

    MEMS-based Circuits and Systems for Wireless Communication provides comprehensive coverage of RF-MEMS technology from device to system level. This edited volume places emphasis on how system performance for radio frequency applications can be leveraged by Micro-Electro-Mechanical Systems (MEMS). Coverage also extends to innovative MEMS-aware radio architectures that push the potential of MEMS technology further ahead.  This work presents a broad overview of the technology from MEMS devices (mainly BAW and Si MEMS resonators) to basic circuits, such as oscillators and filters, and finally complete systems such as ultra-low-power MEMS-based radios. Contributions from leading experts around the world are organized in three parts. Part I introduces RF-MEMS technology, devices and modeling and includes a prospective outlook on ongoing developments towards Nano-Electro-Mechanical Systems (NEMS) and phononic crystals. Device properties and models are presented in a circuit oriented perspective. Part II focusses on ...

  1. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using a mechan......We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using...... a mechanical front side protection of an SOI wafer with screen printed PZT thick film. The fabricated harvester device produces 14.0 μW with an optimal resistive load of 100 kΩ from 1g (g=9.81 m s-2) input acceleration at its resonant frequency of 235 Hz....

  2. Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma.

    Science.gov (United States)

    Liang, Wen-Jun; Li, Jian; Li, Jing-Xin; Zhu, Tao; Jin, Yu-Quan

    2010-03-15

    Destruction of formaldehyde by means of NaNO2 ferro-electric packed bed dielectric barrier discharge plasma in a coaxial cylindrical reactor was carried out at atmospheric pressure and room temperature. The difference among four kinds of NaNO2 ferro-electric reactors was compared in terms of specific energy density (SED), energy yield (EY), and HCHO decomposition. In addition, by-products during the decomposition of HCHO and destruction mechanism were also investigated. The removal efficiency of HCHO increased by means of NaNO2 DBD plasma significantly and enhanced with increasing SED distinctly. More amount of NaNO2 contributed to higher HCHO removal efficiency in the reactors. Reactor C had the highest HCHO removal efficiency among the reactors. As an important by-product, ozone concentration increased with higher SED. The possible main products in the outlet effluent were CO, CO(2) and H(2)O.

  3. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Jonathan Lueke

    2011-01-01

    Full Text Available Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  4. Formaldehyde stress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Formaldehyde,one of the most toxic organic compounds,is produced and processed in human cells.The level of human endogenous formaldehyde is maintained at a low concentration(0.01-0.08 mmol L-1 in blood) under physiological conditions,but the concentration increases during ageing(over 65 years old).Clinical trials have shown that urine formaldehyde concentrations are significantly different between elderly Alzheimer’s patients(n=91) and normal elderly volunteers(n=38)(P<0.001).Abnormally high levels of intrinsic formaldehyde lead to dysfunction in cognition such as learning decline and memory loss.Excess extracellular and intracellular formaldehyde could induce metabolic response and abnormal modifications of cellular proteins such as hydroxymethylation and hyperphosphorylation,protein misfolding,nuclear translocation and even cell death.This cellular response called formaldehyde stress is dependent upon the concentration of formaldehyde.Chronic impairments of the brain resulted from formaldehyde stress could be one of the mechanisms involved in the process of senile dementia during ageing.

  5. Separation and analysis of trace volatile formaldehyde in aquatic products by a MoO₃/polypyrrole intercalative sampling adsorbent with thermal desorption gas chromatography and mass spectrometry.

    Science.gov (United States)

    Ma, Yunjian; Zhao, Cheng; Zhan, Yisen; Li, Jianbin; Zhang, Zhuomin; Li, Gongke

    2015-05-01

    An in situ embedded synthesis strategy was developed for the preparation of a MoO3 /polypyrrole intercalative sampling adsorbent for the separation and analysis of trace volatile formaldehyde in aquatic products. Structural and morphological characteristics of the MoO3 /polypyrrole intercalative adsorbent were investigated by a series of characterization methods. The MoO3 /polypyrrole sampling adsorbent possessed a higher sampling capacity and selectivity for polar formaldehyde than commonly used commercial adsorbent Tenax TA. Finally, the MoO3 /polypyrrole adsorbent was packed in the thermal desorption tube that was directly coupled to gas chromatography with mass spectrometry for the analysis of trace volatile formaldehyde in aquatic products. Trace volatile formaldehyde from real aquatic products could be selectively sampled and quantified to be 0.43-6.6 mg/kg. The detection limit was achieved as 0.004 μg/L by this method. Good recoveries for spiked aquatic products were achieved in range of 75.0-108% with relative standard deviations of 1.2-9.0%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Compact, Ultrasensitive Formaldehyde Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop an ultrasensitive, laser-based formaldehyde gas sensor system for airborne and ground-based...

  7. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    Science.gov (United States)

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  8. Human blood rheology in MEMS-based microneedles

    Science.gov (United States)

    Aggarwal, P.; Johnston, C. R.

    2005-02-01

    MEMS-based microneedles have the potential to revolutionize biomedical/biotechnology applications by providing precise transdermal drug delivery and localized blood sampling. In this paper, we propose a novel theory-based model that predicts drift velocity of blood-flow through the microchannels embedded in the microneedles. The profile of blood flow in the microneedles is determined by solving the conservation of momentum equation of the liquid phase, coupled with the force balance equations at the liquid-air interface. For the first time, this work enables accurate calculation/prediction of the velocity profile of the blood flow through a vertical in-plane microneedle, considering the effect of surface tension forces which are the most prominent forces. In order to withdraw blood samples from capillaries in the dermis layer, the length of our MEMS-based in-plane microneedle has been set at 600 μm with the micro-channel thickness chosen to be 35 μm, to avoid deformation of red blood cells. Blood flow through microneedles has been computed analytically using the proposed formulation. The results are then verified by a commercial finite element simulation tool "ANSYS".

  9. MEMS-based microspectrometer technologies for NIR and MIR wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, Leo P; Milne, Jason S; Dell, John M; Faraone, Lorenzo, E-mail: schuler@ee.uwa.edu.a [Microelectronics Research Group, University of Western Australia, Crawley 6009, WA (Australia)

    2009-07-07

    Commercially manufactured near-infrared (NIR) instruments became available about 50 years ago. While they have been designed for laboratory use in a controlled environment and boast high performance, they are generally bulky, fragile and maintenance intensive, and therefore expensive to purchase and maintain. Micromachining is a powerful technique to fabricate micromechanical parts such as integrated circuits. It was perfected in the 1980s and led to the invention of micro electro mechanical systems (MEMSs). The three characteristic features of MEMS fabrication technologies are miniaturization, multiplicity and microelectronics. Combined, these features allow the batch production of compact and rugged devices with integrated intelligence. In order to build more compact, more rugged and less expensive NIR instruments, MEMS technology has been successfully integrated into a range of new devices. In the first part of this paper we discuss the UWA MEMS-based Fabry-Perot spectrometer, its design and issues to be solved. MEMS-based Fabry-Perot filters primarily isolate certain wavelengths by sweeping across an incident spectrum and the resulting monochromatic signal is detected by a broadband detector. In the second part, we discuss other microspectrometers including other Fabry-Perot spectrometer designs, time multiplexing devices and mixed time/space multiplexing devices. (topical review)

  10. MEMS-based clamp with a passive hold function for precision position retaining of micro manipulators

    NARCIS (Netherlands)

    Brouwer, D.M.; Jong, de B.R.; Boer, de M.J.; Jansen, H.V.; Dijk, van J.; Krijnen, G.J.M.; Soemers, H.M.J.R.

    2009-01-01

    In this paper the design, modeling and fabrication of a precision MEMS-based clamp with a relatively large clamping force are presented. The purpose of the clamp is to mechanically fix a six-degree-of-freedom (DOF) MEMS-based sample manipulator (Brouwer et al J. Int. Soc. Precis. Eng. Nanotechnol. s

  11. MEMS-based clamp with a passive hold function for precision position retaining of micromanipulators

    NARCIS (Netherlands)

    Brouwer, Dannis Michel; de Jong, B.R.; de Boer, Meint J.; Jansen, Henricus V.; van Dijk, Johannes A.G.M.; van Dijk, Johannes; Krijnen, Gijsbertus J.M.; Soemers, Herman

    2009-01-01

    In this paper the design, modeling and fabrication of a precision MEMS-based clamp with arelatively large clamping force are presented. The purpose of the clamp is to mechanically fixa six-degree-of-freedom (DOF) MEMS-based sample manipulator (Brouwer et al J. Int. Soc. Precis. Eng. Nanotechnol. sub

  12. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, Mohammed G.; Hartel, Pieter H.

    2010-01-01

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  13. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  14. Large area MEMS based ultrasound device for cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Wodnicki, Robert, E-mail: wodnicki@research.ge.com [GE Global Research, 1 Research Circle, Niskayuna, NY 12309 (United States); Thomenius, Kai [GE Global Research, 1 Research Circle, Niskayuna, NY 12309 (United States); Ming Hooi, Fong; Sinha, Sumedha P.; Carson, Paul L. [Radiology and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Lin Dersong; Zhuang Xuefeng; Khuri-Yakub, Pierre [Department of Electrical Engineering, Stanford University, Stanford, CA 94309 (United States); Woychik, Charles [GE Global Research, 1 Research Circle, Niskayuna, NY 12309 (United States)

    2011-08-21

    We present image results obtained using a prototype ultrasound array that demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micromachined Ultrasound Transducers (cMUTs) that have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 {mu}m and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to those of production PZT probes; however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  15. MEMS-based extreme adaptive optics for planet detection

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B A; Graham, J R; Oppenheimer, B; Poyneer, L; Sivaramakrishnan, A; Veran, J

    2005-11-18

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today--the realm of ''Extreme'' adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order ''woofer'' mirror), and a fully-functional 48-actuator-diameter aperture.

  16. Microwave Cure of Phenol-Formaldehyde Adhesive

    OpenAIRE

    高谷, 政広; 田平, 英敏; 岡本, 忠

    2006-01-01

    [Synopsis] Phenol-formaldehyde resin has been used as a versatile material for adhesives and coatings of a wide range of adherends because of its excellent performance in water- resistance, strength against abrasion, and so on. However, it has a drawback of slow rate of cure and relevant emission of formaldehyde gas after bonding. We studied the curing performance under irradiation of microwave for the purpose of looking for a way of accelerating the cure rate of phenol formaldehyde resin. Th...

  17. Design, modeling and simulation of MEMS-based silicon Microneedles

    Science.gov (United States)

    Amin, F.; Ahmed, S.

    2013-06-01

    The advancement in semiconductor process engineering and nano-scale fabrication technology has made it convenient to transport specific biological fluid into or out of human skin with minimum discomfort. Fluid transdermal delivery systems such as Microneedle arrays are one such emerging and exciting Micro-Electro Mechanical System (MEMS) application which could lead to a total painless fluid delivery into skin with controllability and desirable yield. In this study, we aimed to revisit the problem with modeling, design and simulations carried out for MEMS based silicon hollow out of plane microneedle arrays for biomedical applications particularly for transdermal drug delivery. An approximate 200 μm length of microneedle with 40 μm diameter of lumen has been successfully shown formed by isotropic and anisotropic etching techniques using MEMS Pro design tool. These microneedles are arranged in size of 2 × 4 matrix array with center to center spacing of 750 μm. Furthermore, comparisons for fluid flow characteristics through these microneedle channels have been modeled with and without the contribution of the gravitational forces using mathematical models derived from Bernoulli Equation. Physical Process simulations have also been performed on TCAD SILVACO to optimize the design of these microneedles aligned with the standard Si-Fabrication lines.

  18. Development of MEMS based pyroelectric thermal energy harvesters

    Science.gov (United States)

    Hunter, Scott R.; Lavrik, Nickolay V.; Bannuru, Thirumalesh; Mostafa, Salwa; Rajic, Slo; Datskos, Panos G.

    2011-06-01

    The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type of high efficiency thermal waste heat energy converter that can be used to actively cool electronic devices, concentrated photovoltaic solar cells, computers and large waste heat producing systems, while generating electricity that can be used to power remote monitoring sensor systems, or recycled to provide electrical power. The energy harvester is a temperature cycled pyroelectric thermal-to-electrical energy harvester that can be used to generate electrical energy from thermal waste streams with temperature gradients of only a few degrees. The approach uses a resonantly driven pyroelectric capacitive bimorph cantilever structure that potentially has energy conversion efficiencies several times those of any previously demonstrated pyroelectric or thermoelectric thermal energy harvesters. The goals of this effort are to demonstrate the feasibility of fabricating high conversion efficiency MEMS based pyroelectric energy converters that can be fabricated into scalable arrays using well known microscale fabrication techniques and materials. These fabrication efforts are supported by detailed modeling studies of the pyroelectric energy converter structures to demonstrate the energy conversion efficiencies and electrical energy generation capabilities of these energy converters. This paper reports on the modeling, fabrication and testing of test structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy harvesters.

  19. A MEMS-based, wireless, biometric-like security system

    Science.gov (United States)

    Cross, Joshua D.; Schneiter, John L.; Leiby, Grant A.; McCarter, Steven; Smith, Jeremiah; Budka, Thomas P.

    2010-04-01

    We present a system for secure identification applications that is based upon biometric-like MEMS chips. The MEMS chips have unique frequency signatures resulting from fabrication process variations. The MEMS chips possess something analogous to a "voiceprint". The chips are vacuum encapsulated, rugged, and suitable for low-cost, highvolume mass production. Furthermore, the fabrication process is fully integrated with standard CMOS fabrication methods. One is able to operate the MEMS-based identification system similarly to a conventional RFID system: the reader (essentially a custom network analyzer) detects the power reflected across a frequency spectrum from a MEMS chip in its vicinity. We demonstrate prototype "tags" - MEMS chips placed on a credit card-like substrate - to show how the system could be used in standard identification or authentication applications. We have integrated power scavenging to provide DC bias for the MEMS chips through the use of a 915 MHz source in the reader and a RF-DC conversion circuit on the tag. The system enables a high level of protection against typical RFID hacking attacks. There is no need for signal encryption, so back-end infrastructure is minimal. We believe this system would make a viable low-cost, high-security system for a variety of identification and authentication applications.

  20. Carbon microelectromechanical systems (C-MEMS) based microsupercapacitors

    KAUST Repository

    Agrawal, Richa

    2015-05-18

    The rapid development in miniaturized electronic devices has led to an ever increasing demand for high-performance rechargeable micropower scources. Microsupercapacitors in particular have gained much attention in recent years owing to their ability to provide high pulse power while maintaining long cycle lives. Carbon microelectromechanical systems (C-MEMS) is a powerful approach to fabricate high aspect ratio carbon microelectrode arrays, which has been proved to hold great promise as a platform for energy storage. C-MEMS is a versatile technique to create carbon structures by pyrolyzing a patterned photoresist. Furthermore, different active materials can be loaded onto these microelectrode platforms for further enhancement of the electrochemical performance of the C-MEMS platform. In this article, different techniques and methods in order to enhance C-MEMS based various electrochemical capacitor systems have been discussed, including electrochemical activation of C-MEMS structures for miniaturized supercapacitor applications, integration of carbon nanostructures like carbon nanotubes onto C-MEMS structures and also integration of pseudocapacitive materials such as polypyrrole onto C-MEMS structures. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  1. Formaldehyde vapor produced from hexamethylenetetramine and pesticide: Simultaneous monitoring of formaldehyde and ozone in chamber experiments by flow-based hybrid micro-gas analyzer.

    Science.gov (United States)

    Yanaga, Akira; Hozumi, Naruto; Ohira, Shin-Ichi; Hasegawa, Asako; Toda, Kei

    2016-02-01

    Simultaneous analysis of HCHO and O3 was performed by the developed flow analysis system to prove that HCHO vapor is produced from solid pesticide in the presence of O3. HCHO is produced in many ways, including as primary emissions from fuel combustion and in secondary production from anthropogenic and biogenic volatile organic compounds by photochemical reactions. In this work, HCHO production from pesticides was investigated for the first time. Commonly pesticide contains surfactant such as hexamethylenetetramine (HMT), which is a heterocyclic compound formed from six molecules of HCHO and four molecules of NH3. HMT can react with gaseous oxidants such as ozone (O3) to produce HCHO. In the present study, a flow analysis system was developed for simultaneous analysis of HCHO and O3, and this system was used to determine if solid pesticides produced HCHO vapor in the presence of O3. HMT or the pesticide jimandaisen, which contains mancozeb as the active ingradient and HMT as a stabilizer was placed at the bottom of a 20-L stainless steel chamber. Air in the chamber was monitored using the developed flow system. Analyte gases were collected into an absorbing solution by a honeycomb-patterned microchannel scrubber that was previously developed for a micro gas analysis system (μGAS). Subsequently, indigotrisulfonate, a blue dye, was added to the absorbing solution to detect O3, which discolored the solution. HCHO was detected after mixing with the Hantzsch reaction reagent. Both gases could be detected at concentrations ranging from parts per billion by volume (ppbv) to 1000 ppbv with good linearity. Both HMT and jimandaisen emitted large amount of HCHO in the presence of O3.

  2. Calibration Method for Formaldehyde Gas Detector Based on Chemical Colorimetric Principle%化学比色原理的甲醛气体检测仪校准方法

    Institute of Scientific and Technical Information of China (English)

    顾玲玲; 舒晓莲; 杨伟浩; 田玉平; 于志强

    2016-01-01

    A method was put forward for verification of formaldehyde gas detector based on chemical colorimetric principle. JJG–2007 was not suitable for verification of formaldehyde gas detector based on chemical colorimetric principle as the unstability on absorption efficiency of bubble absorption tube and formaldehyde gas solubility being affected by the standard gas partial pressure and temperature. A method was established to calibrate drift, sensitivity, linear error, repeatability and stability of the value with formaldehyde reference material. The method is accurate and reliable to realize measurement calibration and quantity traceability.%提出化学比色原理甲醛气体检测仪的一种校准方法。因为气泡吸收管的吸收效率不恒定及甲醛气体的溶解度受标准气体分压及温度影响,JJG 1022–2007不适用于检定化学比色原理甲醛气体检测仪。建立了以水中甲醛标准物质校准仪器零点漂移、灵敏度、线性误差、示值重复性及稳定性的方法。方法准确可靠,可实现计量校准和量值溯源。

  3. A MEMS-Based Flow Rate and Flow Direction Sensing Platform with Integrated Temperature Compensation Scheme

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee

    2009-07-01

    Full Text Available This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD. In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5o error.

  4. A MEMS-Based Flow Rate and Flow Direction Sensing Platform with Integrated Temperature Compensation Scheme.

    Science.gov (United States)

    Ma, Rong-Hua; Wang, Dung-An; Hsueh, Tzu-Han; Lee, Chia-Yen

    2009-01-01

    This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD). In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5° error.

  5. High Resolution Formaldehyde Photochemistry

    Science.gov (United States)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  6. Experimental Study on Photocatalytic Degradation of Indoor Formaldehyde Gas over Copper-doped Titania%Cu掺杂TiO2光催化降解室内甲醛气体的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘秀玉; 朱庆明; 丁厚成; 张浩

    2012-01-01

    TiO2 nanocrystallite photocatalyst doped with Cu by sol-gel method was prepared, the optimal content of Cu in TiO2 was 2.0%(mol). Its photocatalytic activity was determined, and removal effect of formaldehyde investigated by the photocatalytic decomposition of formaldehyde gas in the environmental chamber using a visible lamp. When the dosage of Cu-TiO2 photocatalyst was at 1.5-2.5 g/m3, and initial concentration of formaldehyde gas 1 mg/m3, the degradation of formaldehyde gas in the environmental chamber had the best effect. Compared with a commercially available P25 photocatalyst, the Cu-TiO2 photocatalyst in the visible range had good degradation of formaldehyde, and after repeated use, the photocatalyst was still kept in its good photocatalytic activity.%采用溶胶-凝胶法合成了掺杂Cu的TiO2光催化剂,用环境测试舱模拟可见光下的室内环境,光催化降解其中的甲醛气体,最佳掺杂Cu量为2.0%(mol).Cu-TiO2光催化剂用量为1.5~2.5 g/m3、甲醛气体初始浓度为1 mg/m3时,降解环境测试舱内甲醛气体的效果最佳.与商用P25光催化剂相比,Cu-TiO2光催化剂在可见光区域降解甲醛的效果好,且重复多次使用后仍保持较好的光催化活性.

  7. Thermal degradation and evolved gas analysis: A polymeric blend of urea formaldehyde (UF and epoxy (DGEBA resin

    Directory of Open Access Journals (Sweden)

    Tansir Ahamad

    2014-12-01

    Full Text Available A polymeric blend has been prepared using urea formaldehyde (UF and epoxy (DGEBA resin in 1:1 mass ratio. The thermal degradation of UF/epoxy resin blend (UFE was investigated by using thermogravimetric analyses (TGA, coupled with FTIR and MS. The results of TGA revealed that the pyrolysis process can be divided into three stages: drying process, fast thermal decomposition and cracking of the sample. There were no solid products except ash content for UFE during combustion at high temperature. The total mass loss during pyrolysis at 775 °C is found to be 97.32%, while 54.14% of the original mass was lost in the second stage between 225 °C and 400 °C. It is observed that the activation energy of the second stage degradation during combustion (6.23 × 10−4 J mol−1 is more than that of pyrolysis (5.89 × 10−4 J mol−1. The emissions of CO2, CO, H2O, HCN, HNCO, and NH3 are identified during thermal degradation of UFE.

  8. Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two...

  9. MEMS-Based Quartz Oscillators and Filters for On-Chip Integration

    Science.gov (United States)

    2005-01-01

    frequency RF electronics, and vacuum packaging the resulting chip at wafer level, are not possible with present techniques. Polysilicon surface...and is compatible with MEMS-based wafer-scale vacuum packaging . Fundamental mode operation above 2 GHz has been demonstrated with Q’s of 7,200 in air

  10. A large-stroke planar MEMS-based stage with integrated feedback

    NARCIS (Netherlands)

    Krijnen, B.

    2014-01-01

    Micro-electromechanical systems (MEMS) are all around us nowadays, especially in sensor technology. MEMS-based positioning stages can become favorable in applications where the available volume is small, the response needs to be fast, and the fabrication costs low. This thesis describes the developm

  11. Policies for Probe-Wear Leveling in MEMS-Based Storage Devices

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, P.H.

    2009-01-01

    Probes (or read/write heads) in MEMS-based storage devices are susceptible to wear. We study probe wear, and analyze the causes of probe uneven wear. We show that under real-world traces some probes can wear one order of magnitude faster than other probes leading to premature expiry of some probes.

  12. First results of PRECISE—Development of a MEMS-based monopropellant micro chemical propulsion system

    NARCIS (Netherlands)

    Gauer, Markus; Telitschkin, Dimitri; Gotzig, Ulrich; Batonneau, Yann; Johansson, Hakan; Ivanov, Mikhail; Palmer, Phil; Wiegerink, Remco J.

    2014-01-01

    PRECISE focuses on the research and development of a MEMS-based monopropellant micro chemical propulsion system for highly accurate attitude control of satellites. The availability of such propulsion systems forms the basis for defining new mission concepts such as formation flying and rendezvous ma

  13. Characterization of thermal cross-talk in a MEMS-based thermopile detector array

    NARCIS (Netherlands)

    Wu, H.; Grabarnik, S.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2009-01-01

    The spectral resolution of a MEMS-based IR microspectrometer critically depends on the thermal cross-talk between adjacent TE elements in the detector array. Thermal isolation between elements is realized by using bulk micromachining directly following CMOS processing. This paper reports on the char

  14. Design and modeling of a six DOF's MEMS-based precision manipulators

    NARCIS (Netherlands)

    Brouwer, Dannis Michel; de Jong, B.R.; Soemers, Herman

    2010-01-01

    In this paper a design is presented for a precision MEMS-based six degrees-of-freedom (DOFs) manipulator. The purpose of the manipulator is to position a small sample (10 μm × 20 μm × 0.2 μm) in a transmission electron microscope. A parallel kinematic mechanism with slanted leaf-springs is used to

  15. First results of PRECISE—Development of a MEMS-based monopropellant micro chemical propulsion system

    NARCIS (Netherlands)

    Gauer, Markus; Telitschkin, Dimitri; Gotzig, Ulrich; Batonneau, Yann; Johansson, Hakan; Ivanov, Mikhail; Palmer, Phil; Wiegerink, Remco J.

    PRECISE focuses on the research and development of a MEMS-based monopropellant micro chemical propulsion system for highly accurate attitude control of satellites. The availability of such propulsion systems forms the basis for defining new mission concepts such as formation flying and rendezvous

  16. Detection of low concentration formaldehyde gas by photonic crystal sensor fabricated by nanoimprint process in polymer material

    NARCIS (Netherlands)

    Boersma, A.; Ee, R.J. van; Stevens, R.S.A.; Saalmink, M.; Charlton, M.D.B.; Pollard, M.E.; Chen, R.; Kontturi, V.; Karioja, P.; Alajoki, T.

    2014-01-01

    This paper describes experimental measurement results for photonic crystal sensor devices which have been functionalized for gas sensing applications. The sensor consists of a two dimensional photonic crystal etched into a slab waveguide having a refractive index of 1.7-1.9. Test devices were fabric

  17. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  18. An Accurate Heading Solution using MEMS-based Gyroscope and Magnetometer Integrated System (Preliminary Results)

    Science.gov (United States)

    El-Diasty, M.

    2014-11-01

    An accurate heading solution is required for many applications and it can be achieved by high grade (high cost) gyroscopes (gyros) which may not be suitable for such applications. Micro-Electro Mechanical Systems-based (MEMS) is an emerging technology, which has the potential of providing heading solution using a low cost MEMS-based gyro. However, MEMS-gyro-based heading solution drifts significantly over time. The heading solution can also be estimated using MEMS-based magnetometer by measuring the horizontal components of the Earth magnetic field. The MEMS-magnetometer-based heading solution does not drift over time, but are contaminated by high level of noise and may be disturbed by the presence of magnetic field sources such as metal objects. This paper proposed an accurate heading estimation procedure based on the integration of MEMS-based gyro and magnetometer measurements that correct gyro and magnetometer measurements where gyro angular rates of changes are estimated using magnetometer measurements and then integrated with the measured gyro angular rates of changes with a robust filter to estimate the heading. The proposed integration solution is implemented using two data sets; one was conducted in static mode without magnetic disturbances and the second was conducted in kinematic mode with magnetic disturbances. The results showed that the proposed integrated heading solution provides accurate, smoothed and undisturbed solution when compared with magnetometerbased and gyro-based heading solutions.

  19. Screening of formaldehyde-degrading strains and purification of waste gas containing formaldehyde by using a bio-trickling filter%甲醛降解菌的筛选及生物膜填料塔净化甲醛废气

    Institute of Scientific and Technical Information of China (English)

    李章良; 陈勇; 林小园; 陈祯怀; 曾涛; 林毓明

    2011-01-01

    A strain named JQ-1, which was good at removing formaldehyde, was screened from the collected activated sludge. The strain was preliminary identified as Pseudononas sp. according to its morphology. The strain JQ-1 was inoculated on the packing in the bio-trickling filter, and then system for biological treatment of waste gas containing formaldehyde by using a bio-trickling filter was established. After the system was stably, the experiment of using a bio-trickling filter to treat waste gas containing formaldehyde at low concentrations was performed. The experimental results showed that the removal efficiency of formaldehyde was up to over 93% when inlet formaldehyde concentration was less than 33 mg/m3. If it was over 33 mg/m3, the removal efficiency decreased significantly. As the inlet gas flow was continuously increasing, the removal efficiency was gradually declined. The removal efficiency dropped from 92.5% to 73.4% accompanied with the inlet gas flow increasing from 0.06 m3/h to 0.18 m3/h. The spray liquid flow was also an important factor to affect the removal efficiency of formaldehyde. When the spray liquid flow reached 1.8 L/h, the removal efficiency was the best and up to 92.7%. Based on the experimental data, the related basic theory was discussed.%从采集活性污泥中筛选得到1株具有高效降解甲醛能力的菌株并命名为JQ-1,根据其形态特征,初步判断菌株JQ-1属假单胞菌属.采用菌株JQ-1对生物膜填料塔内填料进行生物挂膜,组成甲醛废气生物处理系统,在系统稳定后进行了生物膜填料塔净化处理低浓度甲醛废气的初步实验研究.实验结果表明:入口甲醛浓度<33mg/m3时,甲醛净化效率维持在93%以上,当超过此值时,净化效率有较大幅度下降;随着进气流量的增加,甲醛净化效率是下降的,当进气流量从0.06 m3/h 增加到0.18 m3/h时,甲醛净化效率则从92.5%下降至73.4%;喷淋流量对甲醛净化效率也

  20. 生物膜填料塔净化含甲醛异味气体的研究%Research on purification of formaldehyde waste gas in biotrickling filter

    Institute of Scientific and Technical Information of China (English)

    任爱玲; 郭斌; 秦慧娟; 刘仁平; 廖宝顺

    2011-01-01

    Because of its superiority on elimination of formaldehyde, biotrickling filter has become a hotspot of research at home and abroad. The effects of four important operation parameters which are gas concentration, retention time, liquid spray volume and volume bad on the biodegradation of formaldehyde in a gas-phase biotrickling filter were studied. The experimental results showed that the biofilms have been manually domesticated by 30 days. There were various types of true mycelium, protozoa and metazos on the surface of biofilms. The dominant cell morphologies were coccus, filamentous fungus and rod-shaped bacteria. The diameter of coccus and hollow porous mesh pellets were 2 - 2.5 μm. The optimum process conditions were obtained through studying the formaldehyde removal efficiency of biotrickling filter. When the concentration of formaldehyde varied between 10-40 mg/m3, the retention efficiency of biotrickling filter was higher. When the concentration of formaldehyde was 28 mg/m3, the removal efficiency of biotrickling filter tower could be maintained above 94% . In the biological purification process, the removal efficiency increased with the increase of residence time. When the residence time varied from 10.8 s to 27 s, the removal efficiency increased from 89.7% to 94.56% . With the increase of liquid spray volume, the removal efficiency of biotrickling filter was enhanced. When the amount of liquid spray was risen from 20 L/h to 40 L/h, the removal efficiency improved from 86% to about 94% . When the purification system volume load of formaldehyde was 1 - 7.5 g/(m3·h), more than 90% of the hazardous compound can be removed . On the other hand, when the volume load was greater than 9 g formaldehyde/(m3 · h), the formaldehyde removal efficiency decreased following the increase of load volume.%采用改进的排泥挂膜方式进行微生物挂膜,扫描电子显微镜观察生物膜表面生物形态,探讨进气速度、停留对间、液体喷淋量、容

  1. Porous Nickel Oxide Film Sensor for Formaldehyde

    Science.gov (United States)

    Cindemir, U.; Topalian, Z.; Österlund, L.; Granqvist, C. G.; Niklasson, G. A.

    2014-11-01

    Formaldehyde is a volatile organic compound and a harmful indoor pollutant contributing to the "sick building syndrome". We used advanced gas deposition to fabricate highly porous nickel oxide (NiO) thin films for formaldehyde sensing. The films were deposited on Al2O3 substrates with prefabricated comb-structured electrodes and a resistive heater at the opposite face. The morphology and structure of the films were investigated with scanning electron microscopy and X-ray diffraction. Porosity was determined by nitrogen adsorption isotherms with the Brunauer-Emmett-Teller method. Gas sensing measurements were performed to demonstrate the resistive response of the sensors with respect to different concentrations of formaldehyde at 150 °C.

  2. Melamine-formaldehyde aerogels

    Science.gov (United States)

    Pekala, Richard W.

    1992-01-01

    Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

  3. The Research of the Degradation Rate Toward Formaldehyde with P25 Based on Gas Sensor Array%气敏元件阵列评定P25光催化降解甲醛效率的研究

    Institute of Scientific and Technical Information of China (English)

    凡陈玲; 张顺平; 李宇骁; 谢长生

    2012-01-01

    Photocatalytic degradation technology is the most promising method for removing formaldehyde. The instruments of detecting the concentration of formaldehyde are almost long analysis cycle, complex operations, expensive, and unable to realize the real-time and on-line test. Besides, they are difficult to integrate with the degradation devices,which could make it to be more practical equipment. In this paper,a photocatalytic combination unit was designed, which consisted of degradation and detection parts, and a new method to predict formaldehyde concentration was presented. The metal oxide semiconductor ( MOS) gas sensor array was applied to assess the degradation rate. Experimental data of degradation formaldehyde with different concentrations by P25 were extracted and the quantitative analysis method of Back Propagation Artificial Neural Network ( BP-ANN ) was used, which realized the prediction of the formaldehyde concentration. And the maximum error between prediction results and actual results was only 4. 33%.%在治理甲醛的方法中,光催化降解技术最具发展前途.而研究过程中测定甲醛浓度的仪器大多分析周期长,操作较繁琐,价格昂贵,无法实现实时在线测试,同时很难与降解装置进行集成,成为更为实用的测试仪器.本文设计一套光催化降解与检测相融合的装置,并提出了一种预测甲醛浓度的新方法.采用金属氧化物半导体(MOS)气敏传感器阵列来评定光催化材料降解甲醛的效率.通过提取10次P25降解不同浓度甲醛的实验数据,采用BP-ANN的定量识别方法进行数据分析,可实现对新样本中甲醛浓度的预测,且预测结果与实际结果间的最大误差仅为4.33%.

  4. Formaldehyde-releasers : relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers

    NARCIS (Netherlands)

    de Groot, Anton C.; Flyvholm, Mari-ann; Lensen, Gerda; Menne, Torkil; Coenraads, Pieter-Jan

    2009-01-01

    This is one of series of review articles on formaldehyde and formaldehyde-releasers (others: formaldehyde in cosmetics, in clothes and in metalworking fluids and miscellaneous). Thirty-five chemicals were identified as being formaldehyde-releasers. Although a further seven are listed in the literatu

  5. Formaldehyde-releasers : relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers

    NARCIS (Netherlands)

    de Groot, Anton C.; Flyvholm, Mari-ann; Lensen, Gerda; Menne, Torkil; Coenraads, Pieter-Jan

    2009-01-01

    This is one of series of review articles on formaldehyde and formaldehyde-releasers (others: formaldehyde in cosmetics, in clothes and in metalworking fluids and miscellaneous). Thirty-five chemicals were identified as being formaldehyde-releasers. Although a further seven are listed in the literatu

  6. Formaldehyde-releasers : relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers

    NARCIS (Netherlands)

    de Groot, Anton C.; Flyvholm, Mari-ann; Lensen, Gerda; Menne, Torkil; Coenraads, Pieter-Jan

    2009-01-01

    This is one of series of review articles on formaldehyde and formaldehyde-releasers (others: formaldehyde in cosmetics, in clothes and in metalworking fluids and miscellaneous). Thirty-five chemicals were identified as being formaldehyde-releasers. Although a further seven are listed in the

  7. MEMS-based system and image processing strategy for epiretinal prosthesis.

    Science.gov (United States)

    Xia, Peng; Hu, Jie; Qi, Jin; Gu, Chaochen; Peng, Yinghong

    2015-01-01

    Retinal prostheses have the potential to restore some level of visual function to the patients suffering from retinal degeneration. In this paper, an epiretinal approach with active stimulation devices is presented. The MEMS-based processing system consists of an external micro-camera, an information processor, an implanted electrical stimulator and a microelectrode array. The image processing strategy combining image clustering and enhancement techniques was proposed and evaluated by psychophysical experiments. The results indicated that the image processing strategy improved the visual performance compared with direct merging pixels to low resolution. The image processing methods assist epiretinal prosthesis for vision restoration.

  8. MEMS-Based Boiler Operation from Low Temperature Heat Transfer and Thermal Scavenging

    Directory of Open Access Journals (Sweden)

    Leland Weiss

    2012-04-01

    Full Text Available Increasing world-wide energy use and growing population growth presents a critical need for enhanced energy efficiency and sustainability. One method to address this issue is via waste heat scavenging. In this approach, thermal energy that is normally expelled to the environment is transferred to a secondary device to produce useful power output. This paper investigates a novel MEMS-based boiler designed to operate as part of a small-scale energy scavenging system. For the first time, fabrication and operation of the boiler is presented. Boiler operation is based on capillary action that drives working fluid from surrounding reservoirs across a heated surface. Pressure is generated as working fluid transitions from liquid to vapor in an integrated steamdome. In a full system application, the steam can be made available to other MEMS-based devices to drive final power output. Capillary channels are formed from silicon substrates with 100 µm widths. Varying depths are studied that range from 57 to 170 µm. Operation of the boiler shows increasing flow-rates with increasing capillary channel depths. Maximum fluid mass transfer rates are 12.26 mg/s from 170 µm channels, an increase of 28% over 57 µm channel devices. Maximum pressures achieved during operation are 229 Pa.

  9. MEMS-based sensing and algorithm development for fall detection and gait analysis

    Science.gov (United States)

    Gupta, Piyush; Ramirez, Gabriel; Lie, Donald Y. C.; Dallas, Tim; Banister, Ron E.; Dentino, Andrew

    2010-02-01

    Falls by the elderly are highly detrimental to health, frequently resulting in injury, high medical costs, and even death. Using a MEMS-based sensing system, algorithms are being developed for detecting falls and monitoring the gait of elderly and disabled persons. In this study, wireless sensors utilize Zigbee protocols were incorporated into planar shoe insoles and a waist mounted device. The insole contains four sensors to measure pressure applied by the foot. A MEMS based tri-axial accelerometer is embedded in the insert and a second one is utilized by the waist mounted device. The primary fall detection algorithm is derived from the waist accelerometer. The differential acceleration is calculated from samples received in 1.5s time intervals. This differential acceleration provides the quantification via an energy index. From this index one may ascertain different gait and identify fall events. Once a pre-determined index threshold is exceeded, the algorithm will classify an event as a fall or a stumble. The secondary algorithm is derived from frequency analysis techniques. The analysis consists of wavelet transforms conducted on the waist accelerometer data. The insole pressure data is then used to underline discrepancies in the transforms, providing more accurate data for classifying gait and/or detecting falls. The range of the transform amplitude in the fourth iteration of a Daubechies-6 transform was found sufficient to detect and classify fall events.

  10. Method of forming a package for MEMS-based fuel cell

    Science.gov (United States)

    Morse, Jeffrey D; Jankowski, Alan F

    2013-05-21

    A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.

  11. Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion

    Directory of Open Access Journals (Sweden)

    S. J. Solomon

    2005-01-01

    Full Text Available A novel atmospheric methanol measurement technique, employing selective gas-phase catalytic conversion of methanol to formaldehyde followed by detection of the formaldehyde product, has been developed and tested. The effects of temperature, gas flow rate, gas composition, reactor-bed length, and reactor-bed composition on the methanol conversion efficiency of a molybdenum-rich, iron-molybdate catalyst [Mo-Fe-O] were studied. Best results were achieved using a 1:4 mixture (w/w of the catalyst in quartz sand. Optimal methanol to formaldehyde conversion (>95% efficiency occurred at a catalyst housing temperature of 345°C and an estimated sample-air/catalyst contact time of <0.2 seconds. Potential interferences arising from conversion of methane and a number of common volatile organic compounds (VOC to formaldehyde were found to be negligible under most atmospheric conditions and catalyst housing temperatures. Using the new technique, atmospheric measurements of methanol were made at the University of Bremen campus from 1 to 15 July 2004. Methanol mixing ratios ranged from 1 to 5 ppb with distinct maxima at night. Formaldehyde mixing ratios, obtained in conjunction with methanol by periodically bypassing the catalytic converter, ranged from 0.2 to 1.6 ppb with maxima during midday. These results suggest that selective, catalytic methanol to formaldehyde conversion, coupled with existing formaldehyde measurement instrumentation, is an inexpensive and effective means for monitoring atmospheric methanol.

  12. Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion

    Directory of Open Access Journals (Sweden)

    S. J. Solomon

    2005-05-01

    Full Text Available A novel atmospheric methanol measurement technique, employing selective gas-phase catalytic conversion of methanol to formaldehyde followed by detection of the formaldehyde product, has been developed and tested. The effects of temperature, gas flow rate, gas composition, reactor-bed length, and reactor-bed composition on the methanol conversion efficiency of a molybdenum-rich, iron-molybdate catalyst [Mo-Fe-O] were studied. Best results were achieved using a 1:4 mixture (w/w of the catalyst in quartz sand. Optimal methanol to formaldehyde conversion (>95% efficiency occurred at a catalyst housing temperature of 345°C and an estimated sample-air/catalyst contact time of <0.2 s. Potential interferences arising from conversion of methane and a number of common volatile organic compounds (VOC to formaldehyde were found to be negligible under most atmospheric conditions and catalyst housing temperatures. Using the new technique, atmospheric measurements of methanol were made at the University of Bremen campus from 1 to 15 July 2004. Methanol mixing ratios ranged from 1 to 5 ppb with distinct maxima at night. Formaldehyde mixing ratios, obtained in conjunction with methanol by periodically bypassing the catalytic converter, ranged from 0.2 to 1.6 ppb with maxima during midday. These results suggest that selective, catalytic methanol to formaldehyde conversion, coupled with existing formaldehyde measurement instrumentation, is an inexpensive and effective means for monitoring atmospheric methanol.

  13. 一种新型甲醛气体清除材料的实验研究%Experimental analysis of a new kind of materials to remove formaldehyde gas

    Institute of Scientific and Technical Information of China (English)

    陈建华; 胡军; 门金凤

    2012-01-01

    A new kind of materials to remove formaldehyde gas was prepared by loading nano-TiO2 on the activated carbon fibre. In process of preparation, the sol-gel method was utilized. Nano-TiO2 was modified by adulterating Fe3+ and sodium dodecyl benzene sulfonate(SDBS). The photocataltic activity of nano-TiO2 was analyzed and the materials'removal ratio of the formaldehyde was tested. The results show that the addition of Fe3+ and SDBS cannot change the crystal structure of nano-TiO2 but improve the light-catalysed activity of nano-TiO2 and that the materials removal ratio of formaldehyde is highest with the addition of 0. 8% Fe3+ and 3% SDBS.%采用溶胶-凝胶法将纳米TiO2负载在活性碳纤维上,制备出一种新型甲醛气体清除材料.在制备中依次掺杂Fe3+和十二烷基苯磺酸钠(SDBS)对纳米TiO2进行改性,研究了纳米TiO2光催化活性的变化,并测试了自制材料的甲醛清除效率.结果表明:Fe3+和SDBS的添加不会改变纳米TiO2的晶型结构,但有利于晶粒的成长和负载膜的光催化活性;添加体积分数分别为0.8%的Fe3+和3%的SDBS时,材料的甲醛清除效率最高.

  14. Formaldehyde-releasers: relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers.

    Science.gov (United States)

    de Groot, Anton C; Flyvholm, Mari-Ann; Lensen, Gerda; Menné, Torkil; Coenraads, Pieter-Jan

    2009-08-01

    This is one of series of review articles on formaldehyde and formaldehyde-releasers (others: formaldehyde in cosmetics, in clothes and in metalworking fluids and miscellaneous). Thirty-five chemicals were identified as being formaldehyde-releasers. Although a further seven are listed in the literature as formaldehyde-releasers, data are inadequate to consider them as such beyond doubt. Several (nomenclature) mistakes and outdated information are discussed. Formaldehyde and formaldehyde allergy are reviewed: applications, exposure scenarios, legislation, patch testing problems, frequency of sensitization, relevance of positive patch test reactions, clinical pattern of allergic contact dermatitis from formaldehyde, prognosis, threshold for elicitation of allergic contact dermatitis, analytical tests to determine formaldehyde in products and frequency of exposure to formaldehyde and releasers. The frequency of contact allergy to formaldehyde is consistently higher in the USA (8-9%) than in Europe (2-3%). Patch testing with formaldehyde is problematic; the currently used 1% solution may result in both false-positive and false-negative (up to 40%) reactions. Determining the relevance of patch test reactions is often challenging. What concentration of formaldehyde is safe for sensitive patients remains unknown. Levels of 200-300 p.p.m. free formaldehyde in cosmetic products have been shown to induce dermatitis from short-term use on normal skin.

  15. Formaldehyde-releasers: relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers

    DEFF Research Database (Denmark)

    de Groot, Anton C; Flyvholm, Mari-Ann; Lensen, Gerda;

    2009-01-01

    This is one of series of review articles on formaldehyde and formaldehyde-releasers (others: formaldehyde in cosmetics, in clothes and in metalworking fluids and miscellaneous). Thirty-five chemicals were identified as being formaldehyde-releasers. Although a further seven are listed in the liter...... reactions is often challenging. What concentration of formaldehyde is safe for sensitive patients remains unknown. Levels of 200-300 p.p.m. free formaldehyde in cosmetic products have been shown to induce dermatitis from short-term use on normal skin....

  16. Miniaturized MEMS-based spectrometric sensor for process control and analysis of carbonated beverages

    Science.gov (United States)

    Kenda, A.; Kraft, M.; Tortschanoff, A.; Wagner, Ch.; Lendl, B.; Sandner, T.; Schenk, H.

    2010-02-01

    With MEMS, it became possible to build pocket-sized spectrometers for various spectral ranges, including the near-IR or mid-IR. These systems are highly rugged and can measure spectral changes at ms time resolution or co-add several hundreds of scans to one spectrum achieving adequate signal-to-noise ratios. Two spectrometer systems a scanning grating based spectrometer and a FT-IR spectrometer both based on a micromechanical scanning mirror technology are presented. Furthermore, the focus of this work is on the development of an analyzer for dissolved CO2 showing the methodology and also first implementation steps towards a sensor solution. CO2(aq) calibration samples were prepared by different NaHCO3 concentrations in solution. Spectra and calibration data acquired with both MEMS based spectrometer prototypes are presented.

  17. Dynamic Tuning of Transmission Wavelength of MEMS-Based Ge Waveguides on a Si Beam

    Directory of Open Access Journals (Sweden)

    Masashi Hirase

    2016-03-01

    Full Text Available Three-dimensional structures of microelectro-mechanical systems (MEMS-based Ge waveguide on a Si beam were fabricated for dynamic tuning of the fundamental absorption edge of Ge by external stressing. The application of various amounts of external forces up to 1 GPa onto the Si beam shows clear red-shifts in the absorption edge of Ge waveguides on the Si beam by ~40 nm. This shift was reproduced by the deformation potential theory, considering that mode of propagation in the Ge waveguide. The wavelength tuning range obtained makes it possible to cover the whole C-band of optical communication, indicating it to be a promising approach to electro-absorption Ge modulators to get them to work with a broader wavelength range than previously reported.

  18. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  19. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...... support materials since only PZT is strained, and thus it has a potential for significantly higher output power. An improved process scheme for the energy harvester resulted in a robust fabrication process with a record high fabrication yield of 98.6%. Moreover, the robust fabrication process allowed...... a high pressure treatment of the screen printed PZT thick films prior to sintering, improving the PZT thick film performance and harvester power output reaches 37.1 μW at 1 g....

  20. Preliminary Performance Evaluation of MEMS-based Piezoelectric Energy Harvesters in Extended Temperature Range

    DEFF Research Database (Denmark)

    Xu, R.; Borregaard, L.M.; Lei, A.

    2012-01-01

    In this work a batch of MEMS-based vibration energy harvesters consisting of a silicon/PZT thick film ntilever with integrated proof mass is characterized. The purpose of a vibration energy harvester is to convert low grade vibrations to useful electrical power. Optimally, the natural frequency...... of the harvester should match the frequency of he ambient vibration. The first step to achieve this is to evaluate the uniformity of the fabricated harvesters and nderstand the effects of temperature on the harvesters during operation. Therefore, the uniformity of 40 energy harvesters from one wafer has been...... evaluated. Thereafter the performance of the energy harvesters operating at emperatures between -30°C to 100°C was measured....

  1. Fabrication and Analysis of Tapered Tip Silicon Microneedles for MEMS based Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Muhammad Waseem Ashraf

    2010-11-01

    Full Text Available In this paper, a novel design of transdermal drug delivery (TDD system is presented. The proposed system consists of controlled electronic circuit and microelectromechanical system (MEMS based devices like microneedles, micropump, flow sensor, and blood pressure sensor. The aim of this project is to develop a system that can eliminate the limitations associated with oral therapy. In this phase tapered tip silicon microneedles have been fabricated using inductively coupled plasma (ICP etching technology. Using ANSYS, simulation of microneedles has been conducted before the fabrication process to test the design suitability for TDD. More over multifield analysis of reservoir integrated with microneedle array using piezoelectric actuator has also been performed. The effects of frequency and voltage on actuator and fluid flow rate through 6×6 microneedle array have been investigated. This work provides envisage data to design suitable devices for TDD.

  2. Homogeneity Analysis of a MEMS-based PZT Thick Film Vibration Energy Harvester Manufacturing Process

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Borregaard, Louise M.

    2012-01-01

    This paper presents a homogeneity analysis of a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibration energy harvesters aimed towards vibration sources with peak vibrations in the range of around 300Hz. A wafer with a yield of 91% (41/45 devices) has been...... indicating that the main variation in open circuit voltage performance is caused by varying quality factor. The average resonant frequency was measured to 333Hz with a standard variation of 9.8Hz and a harvesting bandwidth of 5-10Hz. A maximum power output of 39.3μW was achieved at 1g for the best performing...

  3. Measuring the resonant vibration of a sessile droplet using MEMS based cantilevers

    Science.gov (United States)

    Nguyen, Thanh-Vinh; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-11-01

    We directly measure the normal force distribution on the contact area during the 1st mode resonant vibration of a droplet using an array of MEMS based cantilever. The measurement result shows that the normal force change is the largest at the periphery of the contact area. The ratio between the amplitude of the normal force change at the periphery of the contact area over that at the center of the contact area was approximately 20 times, in the case of 1.8 μL water droplet whose equilibrium contact angle is 140 degrees. We also demonstrate a method to estimate viscosity based on the measurement of the droplet vibration using MEMS cantilevers. The proposed method is able to estimate viscosity using less than 3 μL sample and has a simple operating principle. We believe that this method is suitable for point-of-care testing and characterization of chemical and biological solutions.

  4. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors

    Science.gov (United States)

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-12-01

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (organic MEMS-based sensors.

  5. MEMS-based redundancy ring for low-noise millimeter-wave front-end

    Science.gov (United States)

    Pons, Patrick; Dubuc, David; Flourens, Federic; Saddaoui, Mohammad; Melle, Samuel; Tackacs, Alex; Tao, Junwu; Aubert, Herve; Boukabache, Ali; Paillot, T.; Blondy, Pierre; Vendier, Olivier; Grenier, Katia M.; Plana, Robert

    2004-08-01

    This paper reports on the investigation of the potentialities of the MEMS technologies to develop innovative microsystem for millimetre wave communication essentially for space applications. One main issue deals with the robustness and the reliability of the equipment as it may difficult to replace or to repair them when a satellite has been launched. One solution deals with the development of redundancy rings that are making the front end more robust. Usually, the architecture of such system involves waveguide or diode technologies, which present severe limitations in term of weight, volume and insertion loss. The concept considered in this paper is to replace some key elements of such system by MEMS based devices (Micromachined transmission lines, switches) in order to optimize both the weight and the microwave performance of the module. A specific technological process has been developed consisting in the fabrication of the devices on a dielectric membrane on air suspended in order to improve the insertion loss and the isolation. To prove the concept, building blocks have been already fabricated and measured (i.e micromachined transmission and filter featuring very low insertion loss, single pole double through circuits to address the appropriate path of the redundancy ring). We have to outline that MEMS technology have allowed a simplification of the architecture and a different system partitioning which gives more degree of freedom for the system designer. Furthermore, it has been conducted an exhaustive reliability study in order to identify the failure mechanisms. Again, from the results obtained, we have proposed an original topology for the SPDT circuit that takes into account the reliability behaviour of the MEMS devices and that allow to prevent most of the failure mechanisms reported so far (mainly related to the dielectric charging effect). Finally, the active device (millimetre wave low noise amplifier) will be reported on the MEMS based chip using

  6. MEMS-based LC tank with extended tuning range for multiband applications

    Science.gov (United States)

    Cazzorla, A.; Farinelli, P.; Urbani, L.; Sorrentino, R.; Margesin, B.

    2016-09-01

    This paper presents the modeling, simulations, and measurements of a compact multiband microelectromechanical (MEMS)-based LC tank resonator suitable for low phase noise voltage-controlled oscillators (VCOs). The resonator is based on a high-Q spiral inductor and high capacitance ratio varicap fully integrated in FBK-irst (Fondazione Bruno Kessler) MEMS manufacturing process. The design of the varicap is based on double-actuation mechanism with a mechanical central bond that inhibits the pull-in allowing for a theoretically infinite tuning ratio. The measurements have shown a total not continuous capacitance ratio (Cr) of 5.2 with a continuous variation of the capacitance values in the range 225 fF-600 fF which corresponds to a continuous capacitance ratio (Cr*) of 2.6. The performance repeatability, the power-handling capability, and the stability over time were tested on 10 samples showing a negligible variation of the capacitance values. The spiral inductor consists of a suspended gold membrane thick 5 µm in a circular shape which was modeled in order to optimize the quality factor (Q) in the frequency range 2-4 GHz. The measurement results show a Q of about 55 in the 2-4 GHz frequency band. The LC tank measurements show an overall tuning range better than of 45% in the 3.2-4.9 GHz frequency band, consisting of two continuous tuning ranges of 7.5% and 25%. The LC tank allowed the design of MEMS-based voltage-controlled oscillators (VCOs) with an overall tuning better than 60% in the frequency range 2.15 GHz-3.85 GHz and two separate regions of continuous tuning range. The VCO prototype will be fabricated on Surface Mount Technology on RO4350 laminate. The main figures of merit are presented in comparison with the state of the art.

  7. Laser photochemical reaction dynamics in formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Zughul, M.B.A.

    1978-08-01

    Appearance rate constants of molecular photochemical products were measured following laser photolysis of formaldehyde in the near ultraviolet. The pressure dependence of appearance rates was studied for three formaldehyde isotopic species: H/sub 2/CO, HDCO, and D/sub 2/CO. The effect of added foreign gases on those rates in H/sub 2/CO has been determined for He, Ar, Xe, and NO. The energy dependence of photodissociation rates has been examined following laser photolysis at 354.7 and 299.1 nm and the results compared with earlier data obtained at 337.1 nm. The corresponding appearance rates measured for other carbonyls such as acrolein, propynal, ketene, and cyclobutanone were found to be much faster and greater than gas kinetic, indicating a photodissociation mechanism which is different from that of formaldehyde. The decay rates of CO(v = 1) have been measured for several collision partners including H/sub 2/CO, HDCO, acrolein, ketene, cis-2-butene, and cyclobutanone. Appearance rates for the radical dissociation channel in formaldehyde by monitoring H-atom production were measured using three different techniques: resonance fluorescence, resonance absorption, and two-photon excited fluorescence of Hydrogen Lyman-..cap alpha.. photons. 152 references, 45 figures, 16 tables.

  8. Formaldehyde from GOME-2

    Science.gov (United States)

    Comyn-Platt, Edward; Hewson, Will; Bösch, Hartmut; Barkley, Mike

    2014-05-01

    Isoprene is the most abundant non-methane biogenic volatile organic compound (BVOC) emitted into the atmosphere with emissions roughly equal to global methane emissions from all sources. Isoprene strongly influences the oxidation capacity in the troposphere hence influences levels of methane and tropospheric ozone, and is also a precursor to secondary organic aerosol. Isoprene, therefore, plays a significant role in radiative forcing and determining Earth's climate trends. However, the exact mechanisms of isoprene emission from vegetation are poorly understood and current land-surface models often use different parameterisation and meteorological fields to drive such schemes. Furthermore, isoprene emissions measurements are rare and are difficult to extrapolate to regional and continental scales thus resulting in large uncertainties in the total global emissions. Formaldehyde (HCHO) is formed as an intermediate product during the isoprene oxidation process and can be used as a proxy for isoprene emission. Global satellite observations of formaldehyde are now available from a number of satellite sensors which offer a unique ability to study isoprene emissions over large regions. Here, we use formaldehyde observations from the Global Ozone Monitoring Experiment 2 (GOME-2) instrument retrieved with the University of Leicester retrieval (Hewson et al. 2013) to: 1) test state-of-the-art model calculations using the GEOS-CHEM global transport model; 2) investigate the key drivers for regional year-to-year anomalies in formaldehyde (or isoprene) emissions and 3) assess the ability of current land surface models (MEGAN, JULES) to reproduce the observed anomalies and their dependence on climate variations.

  9. Emission of formaldehyde from furniture

    DEFF Research Database (Denmark)

    Andersen, Helle Vibeke; Klinke, Helene B.; Funch, Lis Winther;

    2014-01-01

    The emission of formaldehyde from a variety of furniture was measured in climate chambers. Most tests show low emission of formaldehyde; however, there are a few exceptions. One product emitted significant amounts of formaldehyde, but according to the Danish Indoor Climate Labelling Criteria...... for furniture the impact on the formaldehyde concentration was low due to a small surface area in the standard room. One product led to a high concentration of formaldehyde in the standard room since both emission and material load were high. Even with a moderate area-specific emission rate of formaldehyde......, furniture with high material load in the standard room, such as bookcases, can have a significant impact on the indoor air. The results showed that furniture on the Danish market may have an emission of formaldehyde resulting in indoor concentrations above the WHO recommended limit of 0.1 mg m-3. Therefore...

  10. Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers

    Science.gov (United States)

    Garcia, A. R.; Volkamer, R.; Molina, L. T.; Molina, M. J.; Samuelson, J.; Mellqvist, J.; Galle, B.; Herndon, S. C.; Kolb, C. E.

    2006-10-01

    Photochemical pollution control strategies require an understanding of photochemical oxidation precursors, making it important to distinguish between primary and secondary sources of HCHO. Estimates for the relative strengths of primary and secondary sources of formaldehyde (HCHO) were obtained using a statistical regression analysis with time series data of carbon monoxide (CO) and glyoxal (CHOCHO) measured in the Mexico City Metropolitan Area (MCMA) during the spring of 2003. Differences between Easter week and more typical weeks are evaluated. The use of CO-CHOCHO as HCHO tracers is more suitable for differentiating primary and secondary sources than CO-O3. The application of the CO-O3 tracer pair to mobile laboratory data suggests a potential in-city source of background HCHO. A significant amount of HCHO observed in the MCMA is associated with primary emissions.

  11. Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers

    Directory of Open Access Journals (Sweden)

    A. R. Garcia

    2006-01-01

    Full Text Available Photochemical pollution control strategies require an understanding of photochemical oxidation precursors, making it important to distinguish between primary and secondary sources of HCHO. Estimates for the relative strengths of primary and secondary sources of formaldehyde (HCHO were obtained using a statistical regression analysis with time series data of carbon monoxide (CO and glyoxal (CHOCHO measured in the Mexico City Metropolitan Area (MCMA during the spring of 2003. Differences between Easter week and more typical weeks are evaluated. The use of CO-CHOCHO as HCHO tracers is more suitable for differentiating primary and secondary sources than CO-O3. The application of the CO-O3 tracer pair to mobile laboratory data suggests a potential in-city source of background HCHO. A significant amount of HCHO observed in the MCMA is associated with primary emissions.

  12. Separation of emitted and photochemical formaldehyde in Mexico City using a statistical analysis and a new pair of gas-phase tracers

    Directory of Open Access Journals (Sweden)

    A. R. García

    2005-11-01

    Full Text Available Photochemical pollution control strategies require an understanding of photochemical oxidation precursors, making it important to distinguish between primary and secondary sources of HCHO. Estimates for the relative strengths of primary and secondary sources of formaldehyde (HCHO were obtained using a statistical regression analysis with time series data of carbon monoxide (CO and glyoxal (CHOCHO measured in the Mexico City Metropolitan Area (MCMA during the spring of 2003. Differences between Easter week and more typical weeks are evaluated. The use of CO-CHOCHO as HCHO tracers is more suitable for differentiating primary and secondary sources than CO-O3. The application of the CO-O3 tracer pair to mobile laboratory data suggests a potential in-city source of background HCHO. A significant amount of HCHO observed in the MCMA is associated with primary emissions.

  13. Determination of particulate-bound formaldehyde from burning incense by solid phase microextraction.

    Science.gov (United States)

    Liou, S W; Chen, C Y; Yang, T T; Lin, J M

    2008-04-01

    This work studied the feasibility of using a solid phase microextraction (SPME) fiber for sampling and analysis of gaseous formaldehyde as well as particulate-bound formaldehyde from burning Chinese incense. The SPME fiber with PDMS/DVB coating were partially coated with o-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride (PFBHA), and used for sampling formaldehyde. The sampling rate for formaldehyde and its dependence on temperature, relative humidity and sampling time were observed. The same PFBHA treated fibers were, in parallel, exposed to incense burning smoke with pre-filtration and without pre- filtration for 0.5-1 min. The NIOSH method 2541 using an XAD-2 tube at a flow rate of 0.1 Lpm was also applied for sampling simultaneously. The results demonstrate that commercially available PDMS/DVB fibers partially coated with PFBHA are capable of sampling the gas phase of formaldehyde as well as particulate-bound formaldehyde. The determined level of formaldehyde was close to the result obtained by the NIOSH method 2541. However, a reduction of the fiber's formaldehyde loading capacity in the aerosol sampling in comparison with gas sampling was noticed. This indicates that the particulate characteristics, and their bound chemicals other than formaldehyde may influence the maximum loading capacity of formaldehyde, and some characteristic particulates in high concentrations may even deteriorate the fiber coating.

  14. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    Science.gov (United States)

    Chang, Jiyoung; Yoon, Sang-Hee; Mofrad, Mohammad R. K.; Lin, Liwei

    2011-05-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm2 and the separation gaps of 2 µm between them. An electrical voltage of -1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions.

  15. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    Science.gov (United States)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  16. Attitude determination using a MEMS-based flight information measurement unit.

    Science.gov (United States)

    Ma, Der-Ming; Shiau, Jaw-Kuen; Wang, I-Chiang; Lin, Yu-Heng

    2012-01-01

    Obtaining precise attitude information is essential for aircraft navigation and control. This paper presents the results of the attitude determination using an in-house designed low-cost MEMS-based flight information measurement unit. This study proposes a quaternion-based extended Kalman filter to integrate the traditional quaternion and gravitational force decomposition methods for attitude determination algorithm. The proposed extended Kalman filter utilizes the evolution of the four elements in the quaternion method for attitude determination as the dynamic model, with the four elements as the states of the filter. The attitude angles obtained from the gravity computations and from the electronic magnetic sensors are regarded as the measurement of the filter. The immeasurable gravity accelerations are deduced from the outputs of the three axes accelerometers, the relative accelerations, and the accelerations due to body rotation. The constraint of the four elements of the quaternion method is treated as a perfect measurement and is integrated into the filter computation. Approximations of the time-varying noise variances of the measured signals are discussed and presented with details through Taylor series expansions. The algorithm is intuitive, easy to implement, and reliable for long-term high dynamic maneuvers. Moreover, a set of flight test data is utilized to demonstrate the success and practicality of the proposed algorithm and the filter design.

  17. Attitude Determination Using a MEMS-Based Flight Information Measurement Unit

    Directory of Open Access Journals (Sweden)

    Yu-Heng Lin

    2011-12-01

    Full Text Available Obtaining precise attitude information is essential for aircraft navigation and control. This paper presents the results of the attitude determination using an in-house designed low-cost MEMS-based flight information measurement unit. This study proposes a quaternion-based extended Kalman filter to integrate the traditional quaternion and gravitational force decomposition methods for attitude determination algorithm. The proposed extended Kalman filter utilizes the evolution of the four elements in the quaternion method for attitude determination as the dynamic model, with the four elements as the states of the filter. The attitude angles obtained from the gravity computations and from the electronic magnetic sensors are regarded as the measurement of the filter. The immeasurable gravity accelerations are deduced from the outputs of the three axes accelerometers, the relative accelerations, and the accelerations due to body rotation. The constraint of the four elements of the quaternion method is treated as a perfect measurement and is integrated into the filter computation. Approximations of the time-varying noise variances of the measured signals are discussed and presented with details through Taylor series expansions. The algorithm is intuitive, easy to implement, and reliable for long-term high dynamic maneuvers. Moreover, a set of flight test data is utilized to demonstrate the success and practicality of the proposed algorithm and the filter design.

  18. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices

    Science.gov (United States)

    Shi, Qiongfeng; Wang, Tao; Lee, Chengkuo

    2016-04-01

    Acoustic energy transfer is a promising energy harvesting technology candidate for implantable biomedical devices. However, it does not show competitive strength for enabling self-powered implantable biomedical devices due to two issues - large size of bulk piezoelectric ultrasound transducers and output power fluctuation with transferred distance due to standing wave. Here we report a microelectromechanical systems (MEMS) based broadband piezoelectric ultrasonic energy harvester (PUEH) to enable self-powered implantable biomedical devices. The PUEH is a microfabricated lead zirconate titanate (PZT) diaphragm array and has wide operation bandwidth. By adjusting frequency of the input ultrasound wave within the operation bandwidth, standing wave effect can be minimized for any given distances. For example, at 1 cm distance, power density can be increased from 0.59 μW/cm2 to 3.75 μW/cm2 at input ultrasound intensity of 1 mW/cm2 when frequency changes from 250 to 240 kHz. Due to the difference of human body and manual surgical process, distance fluctuation for implantable biomedical devices is unavoidable and it strongly affects the coupling efficiency. This issue can be overcome by performing frequency adjustment of the PUEH. The proposed PUEH shows great potential to be integrated on an implanted biomedical device chip as power source for various applications.

  19. A MEMS-based solid propellant microthruster array for space and military applications

    Science.gov (United States)

    Chaalane, A.; Chemam, R.; Houabes, M.; Yahiaoui, R.; Metatla, A.; Ouari, B.; Metatla, N.; Mahi, D.; Dkhissi, A.; Esteve, D.

    2015-12-01

    Since combustion is an easy way to achieve large quantities of energy from a small volume, we developed a MEMS based solid propellant microthruster array for small spacecraft and micro-air-vehicle applications. A thruster is composed of a fuel chamber layer, a top-side igniter with a micromachined nozzle in the same silicon layer. Layers are assembled by adhesive bonding to give final MEMS array. The thrust force is generated by the combustion of propellant stored in a few millimeter cube chamber. The micro-igniter is a polysilicon resistor deposited on a low stress SiO2/SiNx thin membrane to ensure a good heat transfer to the propellant and thus a low electric power consumption. A large range of thrust force is obtained simply by varying chamber and nozzle geometry parameters in one step of Deep Reactive Ion Etching (DRIE). Experimental tests of ignition and combustion employing home made (DB+x%BP) propellant composed of a DoubleBase and Black-Powder. A temperature of 250 °C, enough to propellant initiation, is reached for 40 mW of electric power. A combustion rate of about 3.4 mm/s is measured for DB+20%BP propellant and thrust ranges between 0.1 and 3,5 mN are obtained for BP ratio between 10% and 30% using a microthruster of 100 μm of throat wide.

  20. MEMS Based Broadband Piezoelectric Ultrasonic Energy Harvester (PUEH) for Enabling Self-Powered Implantable Biomedical Devices.

    Science.gov (United States)

    Shi, Qiongfeng; Wang, Tao; Lee, Chengkuo

    2016-04-26

    Acoustic energy transfer is a promising energy harvesting technology candidate for implantable biomedical devices. However, it does not show competitive strength for enabling self-powered implantable biomedical devices due to two issues - large size of bulk piezoelectric ultrasound transducers and output power fluctuation with transferred distance due to standing wave. Here we report a microelectromechanical systems (MEMS) based broadband piezoelectric ultrasonic energy harvester (PUEH) to enable self-powered implantable biomedical devices. The PUEH is a microfabricated lead zirconate titanate (PZT) diaphragm array and has wide operation bandwidth. By adjusting frequency of the input ultrasound wave within the operation bandwidth, standing wave effect can be minimized for any given distances. For example, at 1 cm distance, power density can be increased from 0.59 μW/cm(2) to 3.75 μW/cm(2) at input ultrasound intensity of 1 mW/cm(2) when frequency changes from 250 to 240 kHz. Due to the difference of human body and manual surgical process, distance fluctuation for implantable biomedical devices is unavoidable and it strongly affects the coupling efficiency. This issue can be overcome by performing frequency adjustment of the PUEH. The proposed PUEH shows great potential to be integrated on an implanted biomedical device chip as power source for various applications.

  1. Micro-fabrication considerations for MEMS-based reconfigurable antenna apertures: with emphasis on DC bias network

    Science.gov (United States)

    Moghadas, Hamid; Mousavi, Pedram; Daneshmand, Mojgan

    2016-11-01

    This note addresses the main challenges involved in monolithic micro-fabrication of large capacitive-MEMS-based reconfigurable electromagnetic apertures in antenna applications. The fabrication of a large DC bias line network, and also the metallic features in such apertures, requires special attention and optimization. It is shown that the choice of DC bias network material can impact DC and RF performance of the structure, and a trade-off between switching time and radiation pattern integrity should be considered.

  2. Error and Performance Analysis of MEMS-based Inertial Sensors with a Low-cost GPS Receiver

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-03-01

    Full Text Available Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS, have been widely utilized and their applications are becoming popular, not only in military or commercial applications, but also for everyday life. Although GPS measurements are the essential information for currently developed land vehicle navigation systems (LVNS, GPS signals are often unavailable or unreliable due to signal blockages under certain environments such as urban canyons. This situation must be compensated in order to provide continuous navigation solutions. To overcome the problems of unavailability and unreliability using GPS and to be cost and size effective as well, Micro Electro Mechanical Systems (MEMS based inertial sensor technology has been pushing for the development of low-cost integrated navigation systems for land vehicle navigation and guidance applications. This paper will analyze the characterization of MEMS based inertial sensors and the performance of an integrated system prototype of MEMS based inertial sensors, a low-cost GPS receiver and a digital compass. The influence of the stochastic variation of sensors will be assessed and modeled by two different methods, namely Gauss-Markov (GM and AutoRegressive (AR models, with GPS signal blockage of different lengths. Numerical results from kinematic testing have been used to assess the performance of different modeling schemes.

  3. Sensitive measurements of trace gas of formaldehyde using a mid-infrared laser spectrometer with a compact multi-pass cell

    Science.gov (United States)

    Tanaka, Kotaro; Miyamura, Kai; Akishima, Kazushi; Tonokura, Kenichi; Konno, Mitsuru

    2016-11-01

    A compact multi-pass cell with a pair of cylindrical mirrors for sensitive detection of trace gases in emission from combustion was constructed. The cell path-length was 9.8 m and its volume was 0.13 L. Each mirror shape was a square with a side length of 25.4 mm and the mirrors were placed 100 mm apart. The cell was applied to detection of formaldehyde (HCHO), which is formed during fuel combustion and is harmful to the environment. The direct absorption spectrum in the range 2979.06-2981.2 cm-1 was recorded with a mid-infrared distributed feedback (DFB) interband cascade laser. The recorded spectrum of HCHO was in good agreement with a spectrum simulated using the HITRAN 2012 database. An absorption line at 2979.663 cm-1 (4.26 × 10-21 cm2 molecule-1 cm-1, ν5, 1184-1073), which showed the strongest absorption in the emission frequency range of the DFB interband cascade laser, was selected for HCHO detection. We also confirmed that there were no interferences of absorption peaks of major combustion products in the selected HCHO absorption peaks. At a signal-to-noise ratio of two and 3 kPa using 2f wavelength modulation spectroscopy at less than 1 MHz bandwidth, the limit of detection for HCHO was 73 ppb by volume.

  4. Formaldehyde vapor in mobile homes: a cross sectional survey of concentrations and irritant effects

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, L.P.; Dally, K.A.; Anderson, H.A.; Kanarek, M.S.; Rankin, J.

    1984-09-01

    Sixty-five Wisconsin mobile home households volunteered for an assessment of indoor formaldehyde gas. Sixty-one teenage and adult occupants completed health questionnaires. Formaldehyde concentrations ranged from less than 0.10 to 0.80 ppm, with the risk of ocular discomfort showing a positive dose-response relationship.

  5. System for dosing formaldehyde vapor at the ppb level

    Science.gov (United States)

    Röck, Frank; Barsan, Nicolae; Weimar, Udo

    2010-11-01

    Formaldehyde is one of the most relevant compounds for indoor air pollution. It is toxic, allergenic and carcinogenic and acts already at the ppb level. State-of-the-art detection methods are based on the wet chemical analysis of formaldehyde derivates. This is a complex and time-consuming approach and hinders the collection of real-time data. However, the use of wet chemistry allows for the simple calibration based on formalin solutions. By using gas sensors, online monitoring of indoor air quality is, in principle, possible. To find out whether their performance is good enough, calibration is the first issue to be resolved. Formaldehyde vapor at low concentrations has to be used, and temperature, humidity and flow rate have to be kept constant. This paper discusses the different possibilities of dosing formaldehyde and how to better meet the gas sensor calibration demands. The authors favor the use of an aqueous formaldehyde solution obtained by the depolymerization of paraformaldehyde in combination with a permeation tube used as external reference. Moreover, in the paper it is demonstrated that metal oxide sensors are appropriate detectors to calibrate the system for concentrations even down to 20 ppb. Consequently, the presented system is able to characterize gas sensors and can be used for the development of new devices which monitor indoor air quality.

  6. Biodegradation of benzo[α]pyrene, toluene, and formaldehyde from the gas phase by a consortium of Rhodococcus erythropolis and Fusarium solani.

    Science.gov (United States)

    Morales, Paulina; Cáceres, Manuel; Scott, Felipe; Díaz-Robles, Luis; Aroca, Germán; Vergara-Fernández, Alberto

    2017-07-06

    Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) are important indoor contaminants. Their hydrophobic nature hinders the possibility of biological abatement using biofiltration. Our aim was to establish whether the use of a consortium of Fusarium solani and Rhodococcus erythropolis shows an improved performance (in terms of mineralization rate and extent) towards the degradation of formaldehyde, as a slightly polar VOC; toluene, as hydrophobic VOC; and benzo[α]pyrene (BaP) as PAH at low concentrations compared to a single-species biofilm in serum bottles with vermiculite as solid support to mimic a biofilter and to relate the possible improvements with the surface hydrophobicity and partition coefficient of the biomass at three different temperatures. Results showed that the hydrophobicity of the surface of the biofilms was affected by the hydrophobicity of the carbon source in F. solani but it did not change in R. erythropolis. Similarly, the partition coefficients of toluene and BaP in F. solani biomass (both as pure culture and consortium) show a reduction of up to 38 times compared to its value in water, whereas this reduction was only 1.5 times in presence of R. erythropolis. Despite that increments in the accumulated CO2 and its production rate were found when F. solani or the consortium was used, the mineralization extent of toluene was below 25%. Regarding BaP degradation, the higher CO2 production rates and percent yields were obtained when a consortium of F. solani and R. erythropolis was used, despite a pure culture of R. erythropolis exhibits poor mineralization of BaP.

  7. Formaldehyde Inhibits Sexual Behavior and Expression of Steroidogenic Enzymes in the Testes of Mice.

    Science.gov (United States)

    Zang, Zhi-Jun; Fang, You-Qiang; Ji, Su-Yun; Gao, Yong; Zhu, Yuan-Qiang; Xia, Ting-Ting; Jiang, Mei-Hua; Zhang, Ya-Nan

    2017-09-21

    Formaldehyde, a ubiquitous environmental pollutant, is used extensively and has been proved to impair male reproduction in mammals. However, no trials have explored whether formaldehyde affects sexual function. To evaluate the effect of long-term formaldehyde exposure on sexual behavior and to investigate the potential mechanism. Forty C57BL/6 male mice were randomly allocated to four equally sized groups. Mice were exposed to formaldehyde at a dose of 0 (control), 0.5, 5.0, or 10.0 mg/m(3) by inhalation for 60 days. Sexual behavior, body and reproductive organ weights, testosterone concentration in serum and testicular tissue, expression of steroidogenic enzymes, quality of sperm, and testicular structure were measured. Formaldehyde inhibited sexual behavior and decreased reproductive organ weights in mice. Serum testosterone levels and intratesticular testosterone concentrations were decreased in the formaldehyde-treated groups. Expression levels of steroidogenic enzymes, including steroidogenic acute regulatory protein, cytochrome P450 cholesterol side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase (3β-HSD), also were decreased in the testes of mice exposed to formaldehyde. Moreover, the structure of seminiferous tubules was destroyed and sperm quality decreased after formaldehyde exposure. In addition, the results indicated that the effects of formaldehyde were dose dependent. Efforts should be undertaken to decrease impairment of sexual function caused by formaldehyde exposure. The relatively small sample might have affected the outcomes. Further experiments are needed to study the mechanism of action of formaldehyde. Exposure to formaldehyde gas inhibited sexual behavior, caused reproductive organ atrophy, and impaired spermatogenesis in male mice, which might have been induced by suppressed expression of steroidogenic enzymes in Leydig cells and decreased testosterone synthesis. Zang Z-J, Fang Y-Q, Ji S-Y, et al. Formaldehyde Inhibits Sexual

  8. Optimization of biogas production using MEMS based near infrared inline-sensor

    Science.gov (United States)

    Saupe, Ray; Seider, Thomas; Stock, Volker; Kujawski, Olaf; Otto, Thomas; Gessner, Thomas

    2013-03-01

    Due to climate protection and increasing oil prices, renewable energy is becoming extremely important. Anaerobic digestion is a particular environmental and resource-saving way of heat and power production in biogas plants. These plants can be operated decentralized and independent of weather conditions and allow peak load operation. To maximize energy production, plants should be operated at a high efficiency. That means the entire installed power production capacity (e.g. CHP) and biogas production have to be used. However, current plant utilization in many areas is significantly lower, which is economically and environmentally inefficient, since the biochemical process responds to fluctuations in boundary conditions, e.g. mixing in the conditions and substrate composition. At present only a few easily accessible parameters such as fill level, flow rates and temperature are determined on-line. Monitoring of substrate composition occurs only sporadically with the help of laboratory methods. Direct acquisition of substrate composition combined with a smart control and regulation concept enables significant improvement in plant efficiency. This requires a compact, reliable and cost-efficient sensor. It is for this reason that a MEMS sensor system based on NIR spectroscopy has been developed. Requirements are high accuracy, which is the basic condition for exact chemometric evaluation of the sample as well as optimized MEMS design and packaging in order to work in poor environmental conditions. Another issue is sample presentation, which needs an exact adopted optical-mechanical system. In this paper, the development and application of a MEMS-based analyzer for biogas plants will be explained. The above mentioned problems and challenges will be discussed. Measurement results will be shown to demonstrate its performance.

  9. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology.

    Science.gov (United States)

    Roy, Sukanta; Ramiah, Harikrishnan; Reza, Ahmed Wasif; Lim, Chee Cheow; Ferrer, Eloi Marigo

    2016-01-01

    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator's high motion losses due to the possibility of their 'system-on-chip' integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design's applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications.

  10. Integrated MEMS-based variable optical attenuator and 10Gb/s receiver

    Science.gov (United States)

    Aberson, James; Cusin, Pierre; Fettig, H.; Hickey, Ryan; Wylde, James

    2005-03-01

    MEMS devices can be successfully commercialized in favour of competing technologies only if they offer an advantage to the customer in terms of lower cost or increased functionality. There are limited markets where MEMS can be manufactured cheaper than similar technologies due to large volumes: automotive, printing technology, wireless communications, etc. However, success in the marketplace can also be realized by adding significant value to a system at minimal cost or leverging MEMS technology when other solutions simply will not work. This paper describes a thermally actuated, MEMS based, variable optical attenuator that is co-packaged with existing opto-electronic devices to develop an integrated 10Gb/s SONET/SDH receiver. The configuration of the receiver opto-electronics and relatively low voltage availability (12V max) in optical systems bar the use of LCD, EO, and electro-chromic style attenuators. The device was designed and fabricated using a silicon-on-insulator (SOI) starting material. The design and performance of the device (displacement, power consumption, reliability, physical geometry) was defined by the receiver parameters geometry. This paper will describe how these design parameters (hence final device geometry) were determined in light of both the MEMS device fabrication process and the receiver performance. Reference will be made to the design tools used and the design flow which was a joint effort between the MEMS vendor and the end customer. The SOI technology offered a robust, manufacturable solution that gave the required performance in a cost-effective process. However, the singulation of the devices required the development of a new singulation technique that allowed large volumes of silicon to be removed during fabrication yet still offer high singulation yields.

  11. MEMS-based silicon cantilevers with integrated electrothermal heaters for airborne ultrafine particle sensing

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).

  12. Long-term neural recordings using MEMS based moveable microelectrodes in the brain

    Directory of Open Access Journals (Sweden)

    Nathan Jackson

    2010-06-01

    Full Text Available One of the critical requirements of the emerging class of neural prosthetic devices is to maintain good quality neural recordings over long time periods. We report here a novel (Micro-ElectroMechanical Systems based technology that can move microelectrodes in the event of deterioration in neural signal to sample a new set of neurons. Microscale electro-thermal actuators are used to controllably move microelectrodes post-implantation in steps of approximately 9 µm. In this study, a total of 12 moveable microelectrode chips were individually implanted in adult rats. Two of the 12 moveable microelectrode chips were not moved over a period of 3 weeks and were treated as control experiments. During the first three weeks of implantation, moving the microelectrodes led to an improvement in the average SNR from 14.61 ± 5.21 dB before movement to 18.13 ± 4.99 dB after movement across all microelectrodes and all days. However, the average RMS values of noise amplitudes were similar at 2.98 ± 1.22 µV and 3.01 ± 1.16 µV before and after microelectrode movement. Beyond three weeks, the primary observed failure mode was biological rejection of the PMMA (dental cement based skull mount resulting in the device loosening and eventually falling from the skull. Additionally, the average SNR for functioning devices beyond three weeks was 11.88 ± 2.02 dB before microelectrode movement and was significantly different (p<0.01 from the average SNR of 13.34 ± 0.919 dB after movement. The results of this study demonstrate that MEMS based technologies can move microelectrodes in rodent brains in long-term experiments resulting in improvements in signal quality. Further improvements in packaging and surgical techniques will potentially enable movable microelectrodes to record cortical neuronal activity in chronic experiments.

  13. Integration of GPS Precise Point Positioning and MEMS-Based INS Using Unscented Particle Filter

    Directory of Open Access Journals (Sweden)

    Mahmoud Abd Rabbou

    2015-03-01

    Full Text Available Integration of Global Positioning System (GPS and Inertial Navigation System (INS integrated system involves nonlinear motion state and measurement models. However, the extended Kalman filter (EKF is commonly used as the estimation filter, which might lead to solution divergence. This is usually encountered during GPS outages, when low-cost micro-electro-mechanical sensors (MEMS inertial sensors are used. To enhance the navigation system performance, alternatives to the standard EKF should be considered. Particle filtering (PF is commonly considered as a nonlinear estimation technique to accommodate severe MEMS inertial sensor biases and noise behavior. However, the computation burden of PF limits its use. In this study, an improved version of PF, the unscented particle filter (UPF, is utilized, which combines the unscented Kalman filter (UKF and PF for the integration of GPS precise point positioning and MEMS-based inertial systems. The proposed filter is examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced ionosphere-free linear combinations of pseudorange and carrier-phase measurements are used for PPP. The performance of the UPF is analyzed using a real test scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of samples needed to produce an accurate solution, in comparison with the traditional PF, which in turn reduces the processing time. In addition, UPF enhances the positioning accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters produce comparable results when the GPS measurement updates are available.

  14. The distribution of deuterated formaldehyde within Orion-KL

    CERN Document Server

    Favre, Cecile; Neill, Justin; Crockett, Nathan; Zhang, Qizhou; Lis, Dariusz

    2015-01-01

    We report the first high angular resolution imaging (3.4\\arcsec $\\times$ 3.0\\arcsec) of deuterated formaldehyde (HDCO) toward Orion--KL, carried out with the Submillimeter Array (SMA). We find that the spatial distribution of the formaldehyde emission systematically differs from that of methanol: while methanol is found towards the inner part of the region, HDCO is found in colder gas that wraps around the methanol emission on four sides. The HDCO/H$_2$CO ratios are determined to be 0.003--0.009 within the region, up to an order of magnitude higher than the D/H measured for methanol. These findings strengthen the previously suggested hypothesis that there are differences in the chemical pathways leading to HDCO (via deuterated gas phase chemistry) and deuterated methanol (through conversion of formaldehyde into methanol on the surface of icy grain mantles).

  15. Emission of formaldehyde from furniture

    DEFF Research Database (Denmark)

    Andersen, Helle Vibeke; Klinke, Helene B.; Funch, Lis Winther

    The emission of formaldehyde from 20 pieces of furniture, representing a variety of types, was measured in climate chambers. Most tests show low emissions but certain scenarios of furnishing, including furniture with large surface areas in relation to room volume can emit formaldehyde resulting...

  16. Indoor formaldehyde removal over CMK-3

    Science.gov (United States)

    An, Hyung Bum; Yu, Mi Jin; Kim, Ji Man; Jin, Mingshi; Jeon, Jong-Ki; Park, Sung Hoon; Kim, Seung-Soo; Park, Young-Kwon

    2012-01-01

    The removal of formaldehyde at low concentrations is important in indoor air pollution research. In this study, mesoporous carbon with a large specific surface area was used for the adsorption of low-concentration indoor formaldehyde. A mesoporous carbon material, CMK-3, was synthesized using the nano-replication method. SBA-15 was used as a mesoporous template. The surface of CMK-3 was activated using a 2N H2SO4 solution and NH3 gas to prepare CMK-3-H2SO4 and CMK-3-NH3, respectively. The activated samples were characterized by N2 adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The formaldehyde adsorption performance of the mesoporous carbons was in the order of CMK-3-NH3 > CMK-3-H2SO4 > CMK-3. The difference in the adsorption performance was explained by oxygen and nitrogen functional groups formed during the activation process and by the specific surface area and pore structure of mesoporous carbon.

  17. Chemistry of Phosphorylated Formaldehyde Derivatives. Part I

    Directory of Open Access Journals (Sweden)

    Vasily P. Morgalyuk

    2014-08-01

    Full Text Available The underinvestigated derivatives of unstable phosphorylated formaldehyde acetals and some of the structurally related compounds, such as thioacetals, aminonitriles, aminomethylphosphinoyl compounds, are considered. Separately considered are halogen aminals of phosphorylated formaldehyde, acetals of phosphorylated formaldehyde of H-phosphinate-type and a phosphorylated gem-diol of formaldehyde. Synthetic methods, chemical properties and examples of practical applications are given.

  18. Formaldehyde impairs transepithelial sodium transport

    Science.gov (United States)

    Cui, Yong; Li, Huiming; Wu, Sihui; Zhao, Runzhen; Du, Deyi; Ding, Yan; Nie, Hongguang; Ji, Hong-Long

    2016-01-01

    Unsaturated oxidative formaldehyde is a noxious aldehyde in cigarette smoke that causes edematous acute lung injury. However, the mechanistic effects of formaldehyde on lung fluid transport are still poorly understood. We examined how formaldehyde regulates human epithelial sodium channels (ENaC) in H441 and expressed in Xenopus oocytes and exposed mice in vivo. Our results showed that formaldehyde reduced mouse transalveolar fluid clearance in vivo. Formaldehyde caused a dose-dependent inhibition of amiloride-sensitive short-circuit Na+ currents in H441 monolayers and of αβγ-ENaC channel activity in oocytes. α-ENaC protein was reduced, whereas phosphorylation of the extracellular regulated protein kinases 1 and 2 (ERK1/2) increased significantly post exposure. Moreover, both α- and γ-ENaC transcripts were down-regulated. Reactive oxygen species (ROS) was elevated significantly by formaldehyde in addition to markedly augmented membrane permeability of oocytes. These data suggest that formaldehyde contributes to edematous acute lung injury by reducing transalveolar Na+ transport, through decreased ENaC activity and enhanced membrane depolarization, and by elevating ROS production over long-term exposure. PMID:27762337

  19. Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode.

    Science.gov (United States)

    Qi, Hong; Sun, De-Zhi; Chi, Guo-Qing

    2007-01-01

    The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g., it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84-24 mg/m3 by O3/TiO2/UV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m3 x min) and Langmuir adsorption coefficient K of 0.0268 m3/mg were obtained.

  20. Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode.The effects of humidity,initial formaldehyde concentration,residence time and ozone adding amount on degradation of formaldehyde gas were investigated.The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action,e.g.,it could considerably increase decomposing of formaldehyde.The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84-24 mg/m3 by O3/TiO2/UV process.The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m3.Furthermore.the kinetics of formaldehyde degradation coefficient K of 0.0268 m3/mg were obtained.

  1. Catalytic process for formaldehyde oxidation

    Science.gov (United States)

    Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); D'Ambrosia, Christine M. (Inventor)

    1996-01-01

    Disclosed is a process for oxidizing formaldehyde to carbon dioxide and water without the addition of energy. A mixture of formaldehyde and an oxidizing agent (e.g., ambient air containing formaldehyde) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  2. Induction of formaldehyde contact sensitivity

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Boman, A; Vølund, A

    1985-01-01

    intradermal induction with 0.65% formaldehyde; in Stockholm it was 84% after induction with 0.34%. The data from the two laboratories could be described by parallel displaced dose response curves suggesting that the guinea pig strain used in Stockholm was significantly more susceptible to formaldehyde than......, and formaldehyde 1% and 0.1% was used for challenge. The incidence of contact sensitivity depended on the intradermal, but not on the topical induction dose. Statistical analyses showed a non-monotonous (non-linear) dose response relationship. The estimated maximal sensitization rate in Copenhagen was 80% after...

  3. A Semi-Continuous Analyzer for the Fluorimetric Determination of Atmospheric Formaldehyde

    OpenAIRE

    Sousa,Eliane Teixeira; Oliveira,Fabio Santos de; Alves, Arnaldo Cardoso; Andrade,Jailson B. de

    2009-01-01

    This paper describes a sensitive and selective semi-continuous analyzer (FORMAL-FLU) for the fluorimetric determination of atmospheric formaldehyde. The method is based on the reaction between formaldehyde and Fluoral-P, producing the fluorescent derivative 3,5-diacetyl-1,4-dihydrolutidine (DDL) which, when excited at 410 nm, fluoresces at 510 nm. This analyzer consists of a gas diffusion chamber with a central microporous Teflon tube, with high gas permeability, filled with Fluoral-P solutio...

  4. 反相气相色谱研究金属离子中介甲醛印迹聚合物的气相识别%Investigation on Gas Phase Recognition for Metal-Ion Mediated Formaldehyde Imprinted Polymer by Inversed Phase Gas Chromatography

    Institute of Scientific and Technical Information of China (English)

    李辉; 逯翠梅; 谢凤; 许苗苗; 王素素; 李志平

    2014-01-01

    A Co2+ ion-mediated formaldehyde imprinted polymer ( MIP) was prepared by coordination polymerization method in present work and its surface structure characterized by using IR spectrum and scanning electron microscope ( SEM). Inversed phase gas chromatography ( IGC) technique using this formaldehyde imprinted polymer as stationary phase was utilized to investigate on the retention selectivity, isotherm adsorption and adsorption thermodynamics for this imprint material toward the template and its structural analogue. Also, the ability of this polymer in the removal of formaldehyde from room atmosphere was explored. Results indicated that the capacity of the template on the molecularly imprinted polymers (MIPs) column was much higher than that of aldehyde and the lower column temperature and flow rate of carrier gas was beneficial for the selective retention of imprint material toward the template molecule, possessing a higher capacity factor of 61. 1 for the template and a higher separation factor of 10. 66 for this imprint polymer toward formaldehyde and aldehyde under the optimized chromatographic conditions ( column temperature: 363 K;flow rate of carrier gase: 7. 0 mL/ min; injection volume: 3. 0 μL). An approximate linear adsorption isotherm for the template and a BET Ⅲ one for the analogue on the MIPs was observed. In addition, this molecularly imprinted polymer was shown with higher capability in the removal of formaldehyde from room atmosphere.%采用配位聚合法制备了 Co2+中介的甲醛印迹聚合物,用红外光谱和扫描电镜研究了分子印迹聚合物的表面结构。以甲醛印迹聚合物作为气相色谱固定相,采用反相气相色谱技术研究了印迹材料对模板及其结构相似物的选择保留性能、等温吸附及吸附热力学,并探讨了分子印迹聚合物对室内空气中甲醛的脱除效果。结果表明,在相同色谱条件下,分子印迹柱对模板分子的容量因子均远高于乙醛。

  5. Pressure dependent isotopic fractionation in the photolysis of formaldehyde-d2

    DEFF Research Database (Denmark)

    Nilsson, E.J.K.; Schmidt, Johan Albrecht; Johnson, Matthew Stanley

    2014-01-01

    with altitude in the atmosphere. The mechanism and the extent of this pressure dependency is, however, not adequately described. In the present work D2CO and H2CO were photolyzed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our......The isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions and the δD of atmospheric in situ hydrogen production. A few recent studies have suggested that a pressure dependence in the isotopic fractionation can partly explain enrichment of deuterium...... with results from previous studies. Similarly to what was previously shown for k(H2CO)/k(HDCO), the isotope effect decreased as pressure decreased. In addition, a model was constructed using RRKM theory to calculate the lifetime of excited formaldehyde on the S0 surface, to investigate its...

  6. MEMS-based beam-steerable free-space optical communication link for reconfigurable wireless data center

    Science.gov (United States)

    Deng, Peng; Kavehrad, Mohsen; Lou, Yan

    2017-01-01

    Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.

  7. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Science.gov (United States)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    worship. The waveforms recorded could be promptly used to determine ground-shaking parameters, like peak ground acceleration/velocity/displacement, Arias and Housner intensity, that could be all used to create, few seconds after a strong earthquakes, shaking maps at urban scale. These shaking maps could allow to quickly identify areas of the town center that have had the greatest earthquake resentment. When a strong seismic event occur, the beginning of the ground motion observed at the site could be used to predict the ensuing ground motion at the same site and so to realize a short term earthquake early warning system. The data acquired after a moderate magnitude earthquake, would provide valuable information for the detail seismic microzonation of the area based on direct earthquake shaking observations rather than from a model-based or indirect methods. In this work, we evaluate the feasibility and effectiveness of such seismic network taking in to account both technological, scientific and economic issues. For this purpose, we have simulated the creation of a MEMS based urban seismic network in a medium size city. For the selected town, taking into account the instrumental specifics, the array geometry and the environmental noise, we investigated the ability of the planned network to detect and measure earthquakes of different magnitude generated from realistic near seismogentic sources.

  8. MEMS-based gradiometer for the complete characterization of Martian magnetic environment

    Science.gov (United States)

    Mesa, Jose Luis; Ciudad, David; McHenry, Michael E.; Aroca, Claudio; Díaz-Michelena, Marina

    2013-04-01

    The in-situ determination of the Martian magnetic field is one of the most important and ambitious objectives in Mars exploration, because its implications in paleomagnetism, tectonics and mineral determination. To place sensors on Mars is a complicated task, due to the extreme conditions of the planet surface and also because of the relative low budget devoted to this kind of instrument: low power, mass, volume and the need to operate in a magnetically noise environment. A complete and accurate measurement of the magnetic environment includes the determination of both magnitude and gradient of the magnetic field (B). There are many developments of magnetometers with the characteristics mentioned before [2], but the question about gradient is not that well solved and most gradient sensors are based on a couple of magnetometers separated a certain distance [2, 3]. The aim of this abstract is to introduce a new MEMS based robust gradiometer for the point measurement of the field gradient with the ultimate goal to perform in situ measurement on Mars and shed some light in the magnetic anomalies explanation of the Red Planet. Since in some conditions ?ׯB = 0, we assume knowing six of the nine components is sufficient to reconstruct entirely the magnetic field gradient. The device proposed consists of a set of six cantilevers to measure these six components (with resolution in the order of 1 nT/mm) combined either with another miniaturized and more accurate magnetometer (with resolution below the nT) for the measurement of the field vector. Every component system consists of a cantilever with an appropriate geometry, an excitation coil and a mechanism to generate a field gradient. The cantilevers are made of piezoelectric material (bimorph, with two piezoelectric layers) covered by a soft ferromagnetic material (of Iron-Nickel base). Is explained below the working principle for one component. When the excitation system generates an alternating magnetic field (enough

  9. Removal of formaldehyde by adsorption and plasma treatment of mineral adsorbent

    Science.gov (United States)

    Saulich, K.; Müller, S.

    2013-01-01

    Formaldehyde is a harmful ambient air pollutant which can be produced by incomplete combustion processes, e.g. in power plants or automobiles. In this work a cycled adsorption and discharge process using mineral granulate in a packed bed dielectric barrier discharge plasma reactor was applied for formaldehyde (99 ppm) removal from gas streams. The mineral granulate used consisted of 80% halloysite and showed a good adsorption capacity for formaldehyde. In the discharge step, the adsorbed formaldehyde molecules were decomposed to COx and hydrocarbons in a N2 plasma at a low input discharge power of 2.2 W. The decomposition performance on adsorbed formaldehyde molecules was studied depending on space-time, a specific oxygen fraction of the carrier gas and the influence of temperature. With rising N2 space times in the discharge area, the total amount of decomposed formaldehyde molecules increased and the decomposition reaction mechanism shifted to CO2 formation. An oxygen fraction in the carrier gas further raised the oxidized amount of formaldehyde to CO2. The mineral granulate showed satisfied regeneration ability during the cycled plasma process.

  10. Molecular Dynamics Simulation of Formaldehyde Adsorption and Diffusion in Single-Wall Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    Pin Lv; Zhenan Tang; Jun Yu; Yanbing Xue

    2006-01-01

    For gas sensor application, adsorption and diffusion of formaldehyde gas in single-wall carbon nanotube were investigated by using molecular dynamics simulation. The conformations of formaldehyde molecule adsorbed in carbon nanotube were optimized according to principle of minimum energy. The axis of conformatiot is parallel to the axis of carbon nanotube and about 0.3 nm~0.4 nm away from carbon nanotube wall. The conformation, which is different from that of the formaldehyde molecule in the gas-phase, rotates around carbon nanotube axis. The adsorption energy and diffusivity of formaldehyde molecule in single-wall carbon nanotube is of-56.2 kJ/mol and of 0.2× 10-4 cm2/s, respectively.

  11. Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review

    Directory of Open Access Journals (Sweden)

    W.D.P Rengga

    2012-11-01

    Full Text Available Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that

  12. Design and fabrication of a flexible MEMS-based electro-mechanical sensor array for breast cancer diagnosis

    Science.gov (United States)

    Pandya, Hardik J.; Park, Kihan; Desai, Jaydev P.

    2015-07-01

    The use of flexible micro-electro-mechanical systems (MEMS)-based devices provides a unique opportunity in bio-medical robotics such as the characterization of normal and malignant tissues. This paper reports on the design and development of a flexible MEMS-based sensor array integrating mechanical and electrical sensors on the same platform to enable the study of the change in electro-mechanical properties of benign and cancerous breast tissues. In this work, we present the analysis of the electrical characterization of the tissue specimens and also demonstrate the feasibility of using the sensor for the mechanical characterization of tissue specimens. Eight strain gauges acting as mechanical sensors were fabricated using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) conducting polymer on poly(dimethylsiloxane) (PDMS) as the substrate material. Eight electrical sensors were fabricated using SU-8 pillars on gold (Au) pads which were patterned on the strain gauges separated by a thin insulator (SiO2 1.0 μm). These pillars were coated with gold to make them conducting. The electro-mechanical sensors are integrated on the same substrate. The sensor array covers a 180 μm  ×  180 μm area and the size of the complete device is 20 mm in diameter. The diameter of each breast tissue core used in the present study was 1 mm and the thickness was 8 μm. The region of interest was 200 μm  ×  200 μm. A microindentation technique was used to characterize the mechanical properties of the breast tissues. The sensor is integrated with conducting SU-8 pillars to study the electrical property of the tissue. Through electro-mechanical characterization studies using this MEMS-based sensor, we were able to measure the accuracy of the fabricated device and ascertain the difference between benign and cancers breast tissue specimens.

  13. Homogeneity analysis of high yield manufacturing process of mems-based pzt thick film vibrational energy harvesters

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Pedersen, C.M.

    2011-01-01

    This work presents a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibrational energy harvesters aimed towards vibration sources with peak frequencies in the range of a few hundred Hz. By combining KOH etching with mechanical front side protection, SOI wafer...... to accurately define the thickness of the silicon part of the harvester and a silicon compatible PZT thick film screen-printing technique, we are able to fabricate energy harvesters on wafer scale with a yield higher than 90%. The characterization of the fabricated harvesters is focused towards the full wafer....../mass-production aspect; hence the analysis of uniformity in harvested power and resonant frequency....

  14. Adsorption of formaldehyde on graphene and graphyne

    Science.gov (United States)

    Majidi, R.; Karami, A. R.

    2014-05-01

    The adsorption of formaldehyde on graphene and graphyne was investigated to search high sensitivity sensors for detection of formaldehyde. We have used density functional theory to study the effect of formaldehyde on the electronic properties of graphene and graphyne. It is found that formaldehyde is physisorbed on the graphene and graphyne with small binding energy, large binding distance, and small charge transfer. The calculations also indicate that formaldehyde adsorption modifies the electronic properties of semimetallic graphene, α-graphyne, and β-graphyne and semiconducting γ-graphyne. The graphene and graphyne show semiconducting property in the presence of formaldehyde. The effect of formaldehyde on the electronic properties of graphene and graphyne suggests the potential application of these carbon nanomaterials for formaldehyde detection.

  15. Formaldehyde stress responses in bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Nathan Houqian Chen

    2016-03-01

    Full Text Available Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.

  16. Formaldehyde removal from wastewater applying natural zeolite

    OpenAIRE

    2015-01-01

    Formaldehyde is one of the most chemically active compounds which is discharged with untreated or just partially treated industrial wastewater. It is hazardous for environment and humans. Formaldehyde vapors can strongly irritate skin, can cause damage to eyes and harm respiratory tract. As long as formaldehyde causes a toxic effect on environment and living organisms, it is necessary to remove it from wastewater which is directed to natural water. There are many methods used for formaldehyde...

  17. Formaldehyde in cosmetics in patch tested dermatitis patients with and without contact allergy to formaldehyde.

    Science.gov (United States)

    Hauksson, Inese; Pontén, Ann; Isaksson, Marléne; Hamada, Haneen; Engfeldt, Malin; Bruze, Magnus

    2016-03-01

    Formaldehyde is a well-known contact sensitizer. Formaldehyde releasers are widely used preservatives in cosmetics. To survey the release of formaldehyde in cosmetics brought by patients investigated because of suspected allergic contact dermatitis, to compare it with information given by the manufacturers on the packages, and to investigate whether formaldehyde-allergic patients are potentially exposed to more cosmetics releasing formaldehyde than dermatitis patients without contact allergy to formaldehyde. Cosmetics from 10 formaldehyde-allergic and 30 non-allergic patients (controls) matched for age and sex were investigated with the chromotropic acid spot test, which is a semiquantitative method measuring the release of formaldehyde. Formaldehyde was found in 58 of 245 (23.7%) products. Twenty-six of 126 (20.6%) leave-on products released formaldehyde, and 17 of 26 (65.4%) of these were not declared to contain formaldehyde or formaldehyde releasers. Among the rinse-off products, there were 32 of 119 (26.8%) formaldehyde-releasing products, and nine of 32 (28.0%) of these were not labelled as containing formaldehyde or formaldehyde releasers. Five of 10 formaldehyde-allergic patients brought leave-on products with ≥ 40 ppm formaldehyde, as compared with 4 of 30 in the control group (p = 0.029). Cosmetic products used by formaldehyde-allergic patients that are not declared to contain formaldehyde or formaldehyde-releasing preservatives should be analysed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Study on binder system of CO2-cured phenol-formaldehyde resin used in foundry

    Institute of Scientific and Technical Information of China (English)

    Liu Weihua; Li Yingmin; Qu Xueliang; Liu Xiuling

    2008-01-01

    A new aqueous alkaline resol phenol-formaldehyde resin has been prepared from phenol and formaldehyde using NaOH as catalyst;the optimum synthetic process has been determined.With addition of some cross-linking agents,after passing carbon dioxide gas through the resin bonded sand,high as-gassed strength and 24 h strength are achieved.The bonding bridge of the resin bonded sand fracture has been analyzed by using SEM.

  19. Capture of formaldehyde by adsorption on nanoporous materials.

    Science.gov (United States)

    Bellat, Jean-Pierre; Bezverkhyy, Igor; Weber, Guy; Royer, Sébastien; Averlant, Remy; Giraudon, Jean-Marc; Lamonier, Jean-François

    2015-12-30

    The aim of this work is to assess the capability of a series of nanoporous materials to capture gaseous formaldehyde by adsorption in order to develop air treatment process and gas detection in workspaces or housings. Adsorption-desorption isotherms have been accurately measured at room temperature by TGA under very low pressure (pmesoporous silica (SBA15), activated carbon (AC NORIT RB3) and metal organic framework (MOF, Ga-MIL-53), exhibiting a wide range of pore sizes and surface properties. Results reveal that the NaX, NaY and CuX faujasite (FAU) zeolites are materials which show strong adsorption capacity and high affinity toward formaldehyde. In addition, these materials can be completely regenerated by heating at 200°C under vacuum. These cationic zeolites are therefore promising candidates as adsorbents for the design of air depollution process or gas sensing applications.

  20. Controlling formaldehyde emissions with boiler ash.

    Science.gov (United States)

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  1. A novel derivatization-free method of formaldehyde and propylene glycol determination in hydrogels by liquid chromatography with refractometric detection.

    Science.gov (United States)

    Isakau, Henadz; Robert, Marielle; Shingel, Kirill I

    2009-04-05

    The paper describes the development and validation of a new derivatization-free liquid chromatography method for simultaneous determination of propylene glycol and formaldehyde in the formulations containing formaldehyde-releasing preservative. Highly swollen hydrogel made of poly(ethylene glycol)-protein conjugates was taken as a model formulation for integration of the propylene glycol and the diazolydinyl urea as formaldehyde releaser. The method is shown to be simple and selective and, more importantly, allows determining an existing level of formaldehyde at the moment of analysis instead of all available formaldehyde that might be released during chemical derivatization. After liquid extraction the propylene glycol (PG) and formaldehyde (FA) amounts are determined chromatographically on a Shodex SH 1011 ligand-exchange column using 0.01 M sulfuric acid mobile phase, a flow rate of 1.0 ml/min and RI detection. The assay is validated showing good linearity, precision, and accuracy. The limits of detection of formaldehyde and propylene glycol in the analyzed solutions were estimated to be 25 ng and 87 ng, respectively. This analytical assay is considered useful for product stability studies and in developing new formaldehyde releaser-containing formulations where the concentration of formaldehyde is a presumable subject of labeling requirements. This method can also provide a rapid and convenient alternative to gas chromatography method of propylene glycol quantification.

  2. Deuterium fractionation in formaldehyde photolysis: chamber experiments and RRKM theory

    Directory of Open Access Journals (Sweden)

    E. J. K. Nilsson

    2013-04-01

    Full Text Available While isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions with the δD of atmospheric in situ hydrogen production, the mechanism and the extent of their pressure dependencies is not adequately described. The pressure dependence of the photolysis rates of the mono- and di-deuterated formaldehyde isotopologues HDCO and D2CO relative to the parent isotopologue H2CO was investigated using RRKM theory and experiment. D2CO and H2CO were photolysed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our earlier work with HDCO vs. H2CO. The UV lamps used for photolysis emit light at wavelengths that mainly dissociate formaldehyde into molecular products, CO and H2 or D2. A model was constructed using RRKM theory to calculate the lifetime of excited formaldehyde on the S0 surface to describe the observed pressure dependent photolytic fractionation of deuterium. The effect of deuteration on the RRKM lifetime of the S0 state is not the main cause of the experimentally observed isotope effect. We propose that there is an additional previously unrecognised isotopic fractionation in the rate of transfer of population from the initially excited S1 state onto the S0 surface.

  3. The methods of formaldehyde emission testing of engine: A review

    Science.gov (United States)

    Zhang, Chunhui; Geng, Peng; Cao, Erming; Wei, Lijiang

    2015-12-01

    A number of measurements have been provided to detect formaldehyde in the atmosphere, but there are no clear unified standards in engine exhaust. Nowadays, formaldehyde, an unregulated emission from methanol engine, has been attracting increasing attention by researchers. This paper presents the detection techniques for formaldehyde emitted from the engines applied in recent market, introducing the approaches in terms of unregulated emission tests of formaldehyde, which involved gas chromatography, liquid chromatography, chromatography-mass spectrometry, chromatography-spectrum, Fourier infrared spectroscopy and spectrophotometry. The author also introduces the comparison regarding to the advantages of the existing detection techniques based on the principle, to compare with engine exhaust sampling method, the treatment in advance of detection, obtaining approaches accessing to the qualitative and quantitative analysis of chromatograms or spectra. The accuratest result obtained was chromatography though it cannot be used continuously. It also can be utilized to develop high requirements of emissions and other regulations. Fourier infrared spectroscopy has the advantage of continuous detection for a variety of unregulated emissions and can be applied to the bench in variable condition. However, its accuracy is not as good as chromatography. As the conclusion, a detection technique is chosen based on different requirements.

  4. The Research on Degrading Waste Water Containing Formaldehyde with the Immobilized Microbial in Gas-liquid-solid Three-phases Fluidization Bed Reactor%固定化微生物在三相流化床中降解甲醛废水的研究

    Institute of Scientific and Technical Information of China (English)

    陈飞龙; 陈琼; 刘英; 金洪; 陶科; 侯太平

    2015-01-01

    Paracoccus spp. FD3 is a bacterium degrading formaldehyde. It can quickly degrade waste water of pesticide containing formaldehyde. Immobilized cell technology is able to transform it to a dominant flora so as to extend its operating life and improve the degradation efficiency. This paper studied the effect of the different pH, temperature, aeration and hydraulic retention time (HRT) on the degradation rate of formaldehyde and COD in three pesticides waste water. The results showed that the degradation rates of formaldehyde and COD were 98.2% and 90.5% respectively in the simulative waste water containing formaldehyde, the degradation rates of formaldehyde and COD were 99.2% and 2.8% respectively in the glyphosate waste water and the degradation rates of formaldehyde and COD were 97.6% and 5.2% respectively in the pmida waste water at the optimal treatment of pH 7.0, temperature of 30 °C, input gas rate of 2.0 L/min and HRT of 24 h.%Paracoccus spp. FD3是一种甲醛高效降解菌,可以快速降解甲醛农药废水。采用固定化技术对细胞进行包埋后,能选择地使该菌株成为优势菌群,延长细菌使用时间和提高水质净化效率。本试验以海藻酸钠和聚乙烯醇为载体,二氧化硅和活性炭作为助凝剂包埋甲醛高效菌株P. spp. FD3,研究了不同pH值、温度、曝气量和水力停留时间(HRT)对3种农药废水中甲醛和COD降解率的影响,得出最佳处理条件为:pH为7.0、温度为30℃、曝气量为2.0 L/min和HRT为24 h,模拟甲醛废水中甲醛降解率为98.2%和COD降解率为90.5%;草甘膦废水的甲醛降解率和COD的降解率都分别为99.2%和2.8%;双甘膦废水的甲醛降解率和COD的降解率都分别为97.6%和5.2%。

  5. Formaldehyde biofiltration as affected by spider plant.

    Science.gov (United States)

    Xu, Zhongjun; Qin, Na; Wang, Jinggang; Tong, Hua

    2010-09-01

    The kinetic process of formaldehyde biodegradation in a biofilter packed with a mixture of compost, vermiculite powder and ceramic particles was investigated in this study. The results showed that more than 60% of formaldehyde was removed by the first 5 cm high biofilter bed at 406 Lh(-1) flowrate within the range of 5-207 mgm(-3) inlet concentrations. A macrokinetic model was applied to describe the kinetic process of formaldehyde biodegradation and the experimentally determined elimination capacity for the biofilter agreed well with the model predicted values. The data on the effect of spider plant (Chlorophytum comosum L.) on formaldehyde removal indicated that formaldehyde biofiltration might be stimulated by spider plant since formaldehyde was assimilated by spider plant roots and microbial formaldehyde degradation was enhanced by the root exudates.

  6. DFT modeling of adsorption of formaldehyde and methanediol anion on the (111) face of IB metals

    Science.gov (United States)

    Starodubov, S. S.; Nechaev, I. V.; Vvedenskii, A. V.

    2016-01-01

    Gas-phase adsorption of formaldehyde and gas- and liquid-phase adsorption of the methanediol anion on the (111) face of copper, silver, and gold was modeled in terms of the density functional theory and the cluster model of the metal single-crystal surface. In the gas phase, formaldehyde was found to be physically adsorbed on the metals, while the methanediol anion was found to be chemisorbed. It exists on the surface in two different stable states. In aqueous solution, the H3CO 2 - anion can spontaneously dissociate into the formate ion and two hydrogen atoms.

  7. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    Science.gov (United States)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  8. MEMS-based force-clamp analysis of the role of body stiffness in C. elegans touch sensation.

    Science.gov (United States)

    Petzold, Bryan C; Park, Sung-Jin; Mazzochette, Eileen A; Goodman, Miriam B; Pruitt, Beth L

    2013-06-01

    Touch is enabled by mechanoreceptor neurons in the skin and plays an essential role in our everyday lives, but is among the least understood of our five basic senses. Force applied to the skin deforms these neurons and activates ion channels within them. Despite the importance of the mechanics of the skin in determining mechanoreceptor neuron deformation and ultimately touch sensation, the role of mechanics in touch sensitivity is poorly understood. Here, we use the model organism Caenorhabditis elegans to directly test the hypothesis that body mechanics modulate touch sensitivity. We demonstrate a microelectromechanical system (MEMS)-based force clamp that can apply calibrated forces to freely crawling C. elegans worms and measure touch-evoked avoidance responses. This approach reveals that wild-type animals sense forces <1 μN and indentation depths <1 μm. We use both genetic manipulation of the skin and optogenetic modulation of body wall muscles to alter body mechanics. We find that small changes in body stiffness dramatically affect force sensitivity, while having only modest effects on indentation sensitivity. We investigate the theoretical body deformation predicted under applied force and conclude that local mechanical loads induce inward bending deformation of the skin to drive touch sensation in C. elegans.

  9. A digital output accelerometer using MEMS-based piezoelectric accelerometers and arrayed CMOS inverters with satellite capacitors

    Science.gov (United States)

    Kobayashi, T.; Okada, H.; Masuda, T.; Maeda, R.; Itoh, T.

    2011-06-01

    The present paper describes the development of a digital output accelerometer composed of microelectromechanical systems (MEMS)-based piezoelectric accelerometers and arrayed complementary metal-oxide-semiconductor (CMOS) inverters accompanied by capacitors. The piezoelectric accelerometers were fabricated from multilayers of Pt/Ti/PZT/Pt/Ti/SiO2 deposited on silicon-on-insulator (SOI) wafers. The fabricated piezoelectric accelerometers were connected to arrayed CMOS inverters. Each of the CMOS inverters was accompanied by a capacitor with a different capacitance called a 'satellite capacitor'. We have confirmed that the output voltage generated from the piezoelectric accelerometers can vary the output of the CMOS inverters from a high to a low level; the state of the CMOS inverters has turned from the 'off-state' into the 'on-state' when the output voltage of the piezoelectric accelerometers is larger than the threshold voltage of the CMOS inverters. We have also confirmed that the CMOS inverters accompanied by the larger satellite capacitor have become 'on-state' at a lower acceleration. On increasing the acceleration, the number of on-state CMOS inverters has increased. Assuming that the on-state and off-state of CMOS inverters correspond to logic '0' and '1', the present digital output accelerometers have expressed the accelerations of 2.0, 3.0, 5.0, and 5.5 m s - 2 as digital outputs of 111, 110, 100, and 000, respectively.

  10. Assembly and performance testing of a MEMS-based {mu}PEMFC with the help of a spiral micrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xigui; Zhang, Jian; Li, Xinxin; Xia, Baojia [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Wang, Tao [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Shanghai Institute of Space Power-Sources, Shanghai 200381 (China); Zheng, Dan [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Shanghai Institute of Technology, Shanghai 200233 (China)

    2008-12-15

    In this work, a feasible and simple method of assembling a micro MEMS-based {mu}PEMFC (about 0.35 ml in volume and 0.65 g in weight) with the help of a spiral micrometer was proposed. The micrometer provided a constant pressure between the two flow field plates and MEA in assembling for a short term while a special epoxy resin was applied to seal the cell and provide long term pressure between the above components after removing the micrometer. Tests showed that the as-assembled cell had a reasonable performance, which was proved by the linear polarization and EIS experiments. The long term behavior of the {mu}PEMFC was stable in general except for some fluctuation along time. We concluded that this fluctuation was due to a combined effect of heat produced and water management, which the as-assembled {mu}PEMFC has its own ability to adjust. More importantly, this experiment demonstrated the full feasibility and great promise of assembling {mu}FCs with the help of a spiral micrometer. (author)

  11. Assembly and performance testing of a MEMS-based {mu}PEMFC with the help of a spiral micrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xigui [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China)], E-mail: zhangxigui@mail.sim.ac.cn; Zhang Jian [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Wang Tao [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Shanghai Institute of Space Power-Sources, Shanghai 200381 (China); Zheng Dan [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China); Shanghai Institute of Technology, Shanghai 200233 (China); Li Xinxin; Xia Baojia [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Room 807, 8th Building, 865 Changning Road, Shanghai 200050 (China)

    2008-12-15

    In this work, a feasible and simple method of assembling a micro MEMS-based {mu}PEMFC (about 0.35 ml in volume and 0.65 g in weight) with the help of a spiral micrometer was proposed. The micrometer provided a constant pressure between the two flow field plates and MEA in assembling for a short term while a special epoxy resin was applied to seal the cell and provide long term pressure between the above components after removing the micrometer. Tests showed that the as-assembled cell had a reasonable performance, which was proved by the linear polarization and EIS experiments. The long term behavior of the {mu}PEMFC was stable in general except for some fluctuation along time. We concluded that this fluctuation was due to a combined effect of heat produced and water management, which the as-assembled {mu}PEMFC has its own ability to adjust. More importantly, this experiment demonstrated the full feasibility and great promise of assembling {mu}FCs with the help of a spiral micrometer.

  12. ALLERGIC CONTACT DERMATITIS FROM FORMALDEHYDE EXPOSURE.

    Directory of Open Access Journals (Sweden)

    Maya Lyapina

    2012-10-01

    Full Text Available Formaldehyde is a ubiquitous chemical agent, a part of our outdoor and indoor working and residential environment. Healthcare workers in difficult occupations are among the most affected by formaldehyde exposure. Formaldehyde is an ingredient of some dental materials. Formaldehyde is well-known mucous membrane irritant and a primary skin sensitizing agent associated with both contact dermatitis (Type IV allergy, and immediate, anaphylactic reactions (Type I allergy. Inhalation exposure to formaldehyde was identified as a potential cause of asthma. Quite a few investigations are available concerning health issues for dental students following formaldehyde exposure. Such studies would be beneficial for early diagnosis of hypersensitivity, adequate prophylactic, risk assessment and management of their work.

  13. Phenol-formaldehyde resin substitutes from biomass tars

    Energy Technology Data Exchange (ETDEWEB)

    Himmelblau, D.A. [Biocarbons Corporation, Woburn, MA (United States)

    1995-11-01

    Approximately 320,000 tonnes of phenol and formaldehyde are currently used annually in North America to make adhesive resins that are used to make exterior-grade structural panels. The demand for phenol-formaldehyde (PF) resins is growing faster than the demand for panels, because more adhesive is required to join/coat the surface of wood flakes (for oriented strand board - OSB) than is required to join veneer; OSB is replacing plywood as logs large enough for veneer become scarcer. Also, competitive uses for phenol and methanol (for making formaldehyde) have increased raw materials cost and threatened availability. Production of adhesive resins from biomass to reduce reliance on raw materials derived from commodity petrochemicals and to lower resin cost looks attractive. A simple fluidized-bed reactor system can be used to produce tars that can substitute for a major portion of the phenol and formaldehyde in PF resin adhesives. This can be done in an air-fluidized, single-bed reactor; no inert gas or dual-bed system is required. The key is recognizing that optimum phenolic character in the tar is not produced at the maximum tar yield, but at reactor temperatures around 600{degrees}C and short gas-phase residence times that produce a yield of about 25 to 30 weight percent. A wide range of phenols, aldehydes and other compounds capable of polymerization are produced. Feedstock can be any wood waste larger than sander dust; low cost agricultural wastes such as bagasse are also suitable. Adhesive resin is produced from the entire tar product by shifting the pH from acidic to basic with NaOH, and combining and heating the resulting resole with phenol and formaldehyde, similarly to conventional resins. Approximately half of the phenol and formaldehyde by weight can be replaced with tar. A plant producing 13,865,000 kg (30,566,000 lb) annually from 308 tonnes (340 tons) per day of green wood chips would cost approximately $8,400,000.

  14. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  15. Formaldehyde removal from wastewater applying natural zeolite

    Directory of Open Access Journals (Sweden)

    Dovilė Kulikauskaitė

    2015-10-01

    Full Text Available Formaldehyde is one of the most chemically active compounds which is discharged with untreated or just partially treated industrial wastewater. It is hazardous for environment and humans. Formaldehyde vapors can strongly irritate skin, can cause damage to eyes and harm respiratory tract. As long as formaldehyde causes a toxic effect on environment and living organisms, it is necessary to remove it from wastewater which is directed to natural water. There are many methods used for formaldehyde removal from wastewater: biological method, evaporation, membrane separation method. Most of them have disadvantages. Adsorption method has many advantages: it is fast, cheap, and universal, and can be widely used, therefore it was chosen for this research. Experiment was carried out with natural zeolite in different contact time with different concentration formaldehyde solutions. Concentration of formaldehyde was determined applying the Photocolorimetric Method. Method is based on reaction of formaldehyde with chromotropic acid and determination of formaldehyde concentration. Determined average sorption efficiency was highest when formaldehyde concentration was lowest, e. g. 2 mg/l (45.94% after eight hours of contact time with adsorbent. Sorption efficiency was increasing when the contact time increased, but when the contact time increased to 12 hours, sorption efficiency stayed the same because of the saturation of zeolite.

  16. Measurement of formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave.

    Science.gov (United States)

    Marcos, D; Wiseman, D

    1979-01-01

    A method has been developed for measuring formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave. Data obtained using this method indicate that the concentration of formaldehyde in the chamber atmosphere is not homogeneous and that it decreases rapidly with time. The penetration of formaldehyde vapour into narrow tubes has also been investigated and was shown to be dependent on the length-to-bore ratio of the tubes. The formaldehyde concentration within the tubes could be increased by using a lower vacuum in the air removal stage at the beginning of the cycle. PMID:572833

  17. Optical design of MEMS-based infrared multi-object spectrograph concept for the Gemini South Telescope

    Science.gov (United States)

    Chen, Shaojie; Sivanandam, Suresh; Moon, Dae-Sik

    2016-08-01

    We discuss the optical design of an infrared multi-object spectrograph (MOS) concept that is designed to take advantage of the multi-conjugate adaptive optics (MCAO) corrected field at the Gemini South telescope. This design employs a unique, cryogenic MEMS-based focal plane mask to select target objects for spectroscopy by utilizing the Micro-Shutter Array (MSA) technology originally developed for the Near Infrared Spectrometer (NIRSpec) of the James Webb Space Telescope (JWST). The optical design is based on all spherical refractive optics, which serves both imaging and spectroscopic modes across the wavelength range of 0.9-2.5 μm. The optical system consists of a reimaging system, MSA, collimator, volume phase holographic (VPH) grisms, and spectrograph camera optics. The VPH grisms, which are VPH gratings sandwiched between two prisms, provide high dispersing efficiencies, and a set of several VPH grisms provide the broad spectral coverage at high throughputs. The imaging mode is implemented by removing the MSA and the dispersing unit out of the beam. We optimize both the imaging and spectrographic modes simultaneously, while paying special attention to the performance of the pupil imaging at the cold stop. Our current design provides a 1' ♢ 1' and a 0.5' ♢ 1' field of views for imaging and spectroscopic modes, respectively, on a 2048 × 2048 pixel HAWAII-2RG detector array. The spectrograph's slit width and spectral resolving power are 0.18'' and 3,000, respectively, and spectra of up to 100 objects can be obtained simultaneously. We present the overall results of simulated performance using optical model we designed.

  18. Formaldehyde, aspartame, and migraines: a possible connection.

    Science.gov (United States)

    Jacob, Sharon E; Stechschulte, Sarah

    2008-01-01

    Aspartame is a widely used artificial sweetener that has been linked to pediatric and adolescent migraines. Upon ingestion, aspartame is broken, converted, and oxidized into formaldehyde in various tissues. We present the first case series of aspartame-associated migraines related to clinically relevant positive reactions to formaldehyde on patch testing.

  19. Adaptation and acclimatization to formaldehyde in methylotrophs capable of high-concentration formaldehyde detoxification.

    Science.gov (United States)

    Chongcharoen, Rotsaman; Smith, Thomas J; Flint, Kenneth P; Dalton, Howard

    2005-08-01

    Formaldehyde is a highly toxic chemical common in industrial effluents, and it is also an intermediate in bacterial metabolism of one-carbon growth substrates, although its role as a bacterial growth substrate per se has not been extensively reported. This study investigated two highly formaldehyde-resistant formaldehyde utilizers, strains BIP and ROS1; the former strain has been used for industrial remediation of formaldehyde-containing effluents. The two strains were shown by means of 16S rRNA characterization to be closely related members of the genus Methylobacterium. Both strains were able to use formaldehyde, methanol and a range of multicarbon compounds as their principal growth substrate. Growth on formaldehyde was possible up to a concentration of at least 58 mM, and survival at up to 100 mM was possible after stepwise acclimatization by growth at increasing concentrations of formaldehyde. At such high concentrations of formaldehyde, the cultures underwent a period of formaldehyde removal without growth before the formaldehyde concentration fell below 60 mM, and growth could resume. Two-dimensional electrophoresis and MS characterization of formaldehyde-induced proteins in strain BIP revealed that the pathways of formaldehyde metabolism, and adaptations to methylotrophic growth, were very similar to those seen in the well-characterized methanol-utilizing methylotroph Methylobacterium extorquens AM1. Thus, it appears that many of the changes in protein expression that allow strain BIP to grow using high formaldehyde concentrations are associated with expression of the same enzymes used by M. extorquens AM1 to process formaldehyde as a metabolic intermediate during growth on methanol.

  20. Defect-free functionalized graphene sensor for formaldehyde detection

    Science.gov (United States)

    Tang, Xiaohui; Mager, Nathalie; Vanhorenbeke, Beatrice; Hermans, Sophie; Raskin, Jean-Pierre

    2017-02-01

    Graphene has attracted much attention for sensing applications in recent years. Its largest surface-to-volume ratio makes graphene sensors able to potentially detect a single molecule and its extremely high carrier mobility ensures low electrical noise and energy consumption. However, pristine graphene is chemically inert and weakly adsorbs gas molecules, while defective and/or doped graphene has stronger adsorption ability (high sensitivity). The high sensitivity is related to the increased number of defects or traps in graphene where the gas molecules can be readily grafted, changing the sensor resistance. Nonetheless, similar resistance changes could be induced under exposure to different gases, resulting in a lack of selectivity. Functional groups differ drastically from defects or traps since the former selectively anchor specific molecules. Here, we comparatively investigate three functionalization routes and optimize a defect-free one (2,3,5,6,-Tetrafluorohydroquinone, TFQ molecules) for the fabrication of graphene gas sensors. We use TFQ organic molecules as chemical recognition links between graphene and formaldehyde, the most common indoor pollutant gas. The sensor demonstrates a high response and a good selectivity for formaldehyde compared with interfering organic vapours. Particularly, the sensor has a strong immunity to humidity. Our results highlight that defect-free functionalization based on organic molecules not only increases the sensor’s response but also its selectivity, paving the way to the design of efficient graphene-based sensors.

  1. Simultaneous urea hydrolysis, formaldehyde removal and denitrification in a multifed upflow filter under anoxic and anaerobic conditions.

    Science.gov (United States)

    Garrido, J M; Méndez, R; Lema, J M

    2001-03-01

    A multifed upflow filter (MUF), working under anoxic or anaerobic conditions, coupled with an aerobic biofilm airlift suspension (BAS) reactor was operated in order to treat a wastewater with high formaldehyde (up to 1.5 g L-1) and urea (up to 0.46 g L-1) concentrations. In the MUF, formaldehyde removal, denitrification and urea hydrolysis took place simultaneously. The MUF was operated at 37 degrees C, at a hydraulic retention time (HRT) ranging from 1 to 0.3 d. An organic loading rate (OLR) of 0.5 kg-formaldehyde m-3 d-1 was efficiently eliminated during anaerobic operation and transformed into methane, while a much higher OLR (up to 2 kg-formaldehyde m-3 d-1) was oxidised under anoxic conditions by the nitrite or nitrate from the nitrifying airlift. However, only 80% of urea was hydrolysed to ammonia in an anoxic environment while complete conversion occurred under anaerobic conditions. Moreover, formaldehyde concentrations higher than 50 mg L-1 provoked a loss of efficiency of urea hydrolysis, decreasing to 10% at formaldehyde concentrations above 300 mg L-1. Methane production rate during the anaerobic stage was adversely affected by accumulations of formaldehyde in the reactor causing lower formaldehyde removal efficiency. However, denitrification proceeded properly even at a formaldehyde concentration of 700 mg L-1 in the reactor, although nitrous oxide appears in the off-gas. The COD/N ratios required for complete nitrite and nitrate denitrification with formaldehyde were estimated at 2.1 and 3.5 kg-COD/kg-N, respectively.

  2. [Formaldehyde sediment in incubators following disinfection].

    Science.gov (United States)

    Wartner, R; Kegel, M; Meyer, H D; Schlüter, G; Wegner, J; Werner, E

    1983-12-01

    Measurements in incubators revealed the presence of formaldehyde concentrations involving a health risk for premature and normal newborns kept and cared for in incubators. Prior to measurements, the incubators had been disinfected by means of formaldehyde vapours in an "Aseptor" disinfecting cabinet (Drägerwerk AG, Lübeck) and then ventilated in strict adherence to operating instructions. The elevated formaldehyde concentrations found had been due to residues of paraformaldehyde and urotropin on the surfaces of the disinfected apparatus, liberating formaldehyde by hydrolysis depending on temperature and relative humidity. There should be a basic reconsideration of the present practice of incubator disinfection. From experiments with activated-carbon filters in incubators it would seem that there is a chance of reducing such formaldehyde concentrations.

  3. Formaldehyde concentration in diagnostic patch testing

    DEFF Research Database (Denmark)

    Trattner, A; Johansen, J D; Menné, T

    1998-01-01

    Exposure to formaldehyde is common from both consumer products and industry. The reliability of the patch test is essential for the diagnosis of formaldehyde allergy as it is difficult to suspect from the patient's history. The recommended formaldehyde patch test concentration has been reduced over......% in consecutively patch-tested patients, with respect to frequency of positive patch test reactions, strength of patch test reactions to different formaldehyde test concentrations, irritancy and relevance. The study included 3734 consecutively patch tested patients. 121 gave a positive reaction to 1% and/or 2...... gave few additional positive cases compared to D 3/4. Problems related to relevance are discussed. Based on present knowledge, a 1% patch test concentration for formaldehyde is recommended....

  4. A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere

    OpenAIRE

    M. Cazorla; Wolfe, G. M.; S. A. Bailey; Swanson, A. K.; H. L. Arkinson; Hanisco, T. F.

    2015-01-01

    The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas-phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a stand-alon...

  5. 液相色谱法测定环氧乙烷和乙二醇装置中气体和液体的醛含量%Determination of formaldehyde and acetaldehyde content in the gas and liquid sample in the ethylene oxide and EG equipment with HPLC

    Institute of Scientific and Technical Information of China (English)

    刘殿丽; 孟亚宁; 李华文; 杨丹

    2009-01-01

    Derivation method was combined with HPLC,The sample was mixed with excess 2,4-dinitrophenylhydrazine derivative liquid.Derivative reaction was occured between formaldehyde,acetaldehyde in the sample and dinitrophenylhydrazine separately.The hydrazone derivatives of formaldehyde and acetaldehyde was produced,then separated with HPLC ODS column.The DAD detector was used to measure the peak area under the wavelength of 254 nm,the standard curve external standard method was used to calculate the results.The formadehyde and acetaldhyde content in the sample was determined accurately.The technique problems that respectively quantitative determination of formaldehyde and acetaldehyde content in the outlet gas of ethylene oxide equipment reactor,in ethylene glycol solution and in ethylene oxide and ethylene glycol product were solved.The determination method is efficient,sensitive and accurate%衍生技术与液相色谱法相结合,将样品与过量的2,4-二硝基苯肼衍生液混合,样品中的甲醛、乙醛分别与2,4-二硝基苯肼发生衍生反应,生成甲醛、乙醛的腙衍生物,用高效液相色谱ODS柱分离,采用DAD检测器在254 nm波长下分别测量峰面积,应用标准曲线外标方法计算结果,准确定量测定样品中的甲醛、乙醛含量,解决了环氧乙烷装置反应器出口气中、乙二醇水溶液中以及环氧乙烷和乙二醇产品中的甲醛、乙醛分别定量测定的技术难题,高效、灵敏、准确.

  6. Immobilized formaldehyde-metabolizing enzymes from Hansenula polymorpha for removal and control of airborne formaldehyde.

    Science.gov (United States)

    Sigawi, Sasi; Smutok, Oleh; Demkiv, Olha; Zakalska, Oksana; Gayda, Galina; Nitzan, Yeshayahu; Nisnevitch, Marina; Gonchar, Mykhaylo

    2011-05-20

    Formaldehyde (FA)-containing indoor air has a negative effect on human health and should be removed by intensive ventilation or by catalytic conversion to non-toxic products. FA can be oxidized by alcohol oxidase (AOX) taking part in methanol metabolism of methylotrophic yeasts. In the present work, AOX isolated from a Hansenula polymorpha C-105 mutant (gcr1 catX) overproducing this enzyme in glucose medium, was tested for its ability to oxidize airborne FA. A continuous fluidized bed bioreactor (FBBR) was designed to enable an effective bioconversion of airborne FA by AOX or by permeabilized mutant H. polymorpha C-105 cells immobilized in calcium alginate beads. The immobilized AOX having a specific activity of 6-8 U mg⁻¹ protein was shown to preserve 85-90% of the initial activity. The catalytic parameters of the immobilized enzyme were practically the same as for the free enzyme (k(cat)/K(m) was 2.35×10³ M⁻¹ s⁻¹ vs 2.89×10³ M⁻¹ s⁻¹, respectively). The results showed that upon bubbling of air containing from 0.3 up to 18.5 ppm FA through immobilized AOX in the range of 1.3-26.6 U g⁻¹ of the gel resulted in essential decrease of FA concentration in the outlet gas phase (less than 0.02-0.03 ppm, i.e. 10-fold less than the threshold limit value). It was also demonstrated that a FBBR with immobilized permeabilized C-105 cells provided more than 90% elimination of airborne FA. The process was monitored by a specially constructed enzymatic amperometric biosensor based on FA oxidation by NAD+ and glutathione-dependent formaldehyde dehydrogenase from the recombinant H. polymorpha Tf 11-6 strain.

  7. 40 CFR Appendix A to Subpart Hhhh... - Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced...

    Science.gov (United States)

    2010-07-01

    ...-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced & Cooled) A Appendix A to Subpart HHHH of Part... Appendix A to Subpart HHHH of Part 63—Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins... Development method of determining free-formaldehyde in urea-formaldehyde resins. This method applies...

  8. New approach on the catalytic oxidation of methanol to formaldehyde over MoO3 supported on nano hydroxyapatite catalysts

    Science.gov (United States)

    Said, A. A.; Abd El-Wahab, M. M.; Alian, A. M.

    2014-08-01

    Molybdenum oxide (20 wt. %) supported on nano hydroxyapatite mixed was prepared by impregnation method and calcinated at 400° 500° 600° and 700°C in static air atmosphere. The catalysts were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X-ray diffraction (XRD), Transmission Electron Microscope (TEM) and nitrogen sorption measurements. The gas-phase oxidation of methanol to formaldehyde was carried out in a conventional fixed flow bed reactor. The obtained results clearly revealed that the formation of CaMoO4 spinel nano particles was active and selective catalyst towards the formation of formaldehyde. The maximum yield of formaldehyde was 97% on the catalyst calcined at 400 ° C. Moreover, the yield of formaldehyde was found unaffected by increasing the calcination temperature up to 700° C.

  9. Hollow latex particles functionalized with chitosan for the removal of formaldehyde from indoor air.

    Science.gov (United States)

    Nuasaen, Sukanya; Opaprakasit, Pakorn; Tangboriboonrat, Pramuan

    2014-01-30

    Chitosan and polyethyleneimine (PEI) functionalized hollow latex (HL) particles were conveniently fabricated by coating poly(methyl methacrylate-co-divinyl benzene-co-acrylic acid) (P(MMA/DVB/AA)) HL particles with 5 wt% chitosan or 14 wt% PEI. The materials were used as formaldehyde adsorbent, where their adsorbent activity was examined by Fourier Transform Infrared (FTIR) spectroscopy. The nucleophilic addition of amines to carbonyls generated a carbinolamine intermediate with a characteristic band at 1,020 cm(-1) and Schiff base product at 1650 cm(-1), whose intensity increased with prolonged formaldehyde exposure times. The major products observed in HL-chitosan were carbinolamine and Schiff base, whereas a small amount of Schiff base was obtained in HL-PEI particles, confirming a chemical bond formation without re-emission of formaldehyde. Compared to HL-PEI, HL-chitosan possesses higher formaldehyde adsorption efficiency. Besides providing opacity and whiteness, the multilayer HL-chitosan particles can effectively remove indoor air pollutants, i.e., formaldehyde gas, and, hence, would be useful in special coating applications.

  10. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    OpenAIRE

    2016-01-01

    The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2) than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation), in post-combustion processes (flue gas, CO2-N2) and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory hav...

  11. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase.

    Science.gov (United States)

    Lessmeier, Lennart; Hoefener, Michael; Wendisch, Volker F

    2013-12-01

    Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the actinomycetes, is able to degrade formaldehyde but the enzyme(s) involved in this detoxification process were not known. Acetaldehyde dehydrogenase Ald, which is essential for ethanol utilization, and FadH, characterized here as NAD-linked mycothiol-dependent formaldehyde dehydrogenase, were shown to be responsible for formaldehyde oxidation since a mutant lacking ald and fadH could not oxidize formaldehyde resulting in the inability to grow when formaldehyde was added to the medium. Moreover, C. glutamicum ΔaldΔfadH did not grow with vanillate, a carbon source giving rise to intracellular formaldehyde. FadH from C. glutamicum was purified from recombinant Escherichia coli and shown to be active as a homotetramer. Mycothiol-dependent formaldehyde oxidation revealed Km values of 0.6 mM for mycothiol and 4.3 mM for formaldehyde and a Vmax of 7.7 U mg(-1). FadH from C. glutamicum also possesses zinc-dependent, but mycothiol-independent alcohol dehydrogenase activity with a preference for short chain primary alcohols such as ethanol (Km = 330 mM, Vmax = 9.6 U mg(-1)), 1-propanol (Km = 150 mM, Vmax = 5 U mg(-1)) and 1-butanol (Km = 50 mM, Vmax = 0.8 U mg(-1)). Formaldehyde detoxification system by Ald and mycothiol-dependent FadH is essential for tolerance of C. glutamicum to external stress by free formaldehyde in its habitat and for growth with natural substrates like vanillate, which are metabolized with concomitant release of formaldehyde.

  12. Formaldehyde-releasers : relationship to formaldehyde contact allergy. Metalworking fluids and remainder. Part 1

    NARCIS (Netherlands)

    de Groot, A.C.; Le Coz, C.J.; Lensen, G.J.; Flyvholm, M.A.; Maibach, H.I.; Coenraads, P.J.

    2010-01-01

    This is the second part of a review article on formaldehyde-releasers used as durable press chemical finishes (DPCF) in textiles. The early finishes contained large amounts of free formaldehyde, which led to many cases of allergic contact dermatitis to clothes in the 1950s and 1960s. Currently, most

  13. Updated SAO OMI formaldehyde retrieval

    Directory of Open Access Journals (Sweden)

    G. González Abad

    2014-01-01

    Full Text Available We present and discuss the Smithsonian Astrophysical Observatory (SAO formaldehyde (H2CO retrieval algorithm for the Ozone Monitoring Instrument (OMI which is the operational retrieval for NASA OMI H2CO. The version of the algorithm described here includes relevant changes with respect to the operational one, including differences in the reference spectra for H2CO, the fit of O2-O2 collisional complex, updates in the high resolution solar reference spectrum, the use of a model reference sector over the remote Pacific Ocean to normalize the retrievals, an updated Air Mass Factor (AMF calculation scheme, and the inclusion of scattering weights and vertical H2CO profile in the level 2 products. The theoretical basis of the retrieval is discussed in detail. Typical values for retrieved vertical columns are between 4 × 1015 and 4 × 1016 molecules cm−2 with typical fitting uncertainties ranging between 40% and 100%. In high concentration regions the errors are usually reduced to 30%. The detection limit is estimated at 3 × 1015 molecules cm−2. These updated retrievals are compared with previous ones.

  14. Biodegradation of formaldehyde from contaminated air using a laboratory scale static-bed bioreactor

    Directory of Open Access Journals (Sweden)

    Yaghoub Hajizadeh

    2014-01-01

    Full Text Available Aims: The objective of the present study was to evaluate the performance of an aerobic fixed-bed bioreactor (FBR enriched with microorganisms of sewage sludge in biodegradation of formaldehyde in air stream with various retention times and airflow rates in laboratory scale. Materials and Methods: An aerobic biofilter 60 cm in height and 14 cm internal diameter made of steel was constructed and packed with a mixture of pumice and compost as a medium and utilized in this study. The microorganism′s growth, which is derived from the sludge of a municipal wastewater treatment plant, was initiated by adding nutrient. During the first few days of run, the airflow containing different concentrations of formaldehyde (from 24 ± 3 to 224 ± 5 mg/m 3 was introduced to the reactor to ensure biological adaptation. Sampling was performed through a series of two impingers containing adsorbent, and analyzed by chromotropic acid assay using DR-5000. Results: The maximum removal and elimination capacity of formaldehyde was yielded at 0.48 ± 0.06 g/m 3 /h inlet loading rate and 180 s of empty bed retention time (EBRT. These values for stabilized days were almost 88% and 0.42 g/m 3 /h, respectively. Conclusion: The results showed that by increasing the inlet concentration of formaldehyde and reducing the EBRT, the formaldehyde removal capacity of the system decreases. Aerobic bioreactor with appropriate bed volume and compatible with inlet pollutant mass flow rate in optimum retention time will admissibly degrade and reduce the formaldehyde concentration from contaminated gas phase, such as gases produced in municipal wastewater treatment facilities.

  15. Production of Melamine-Formaldehyde PCM Microcapsules with Ammonia Scavenger used for Residual Formaldehyde Reduction.

    Science.gov (United States)

    Sumiga, Boštjan; Knez, Emil; Vrtačnik, Margareta; Ferk-Savec, Vesna; Starešinič, Marica; Boh, Bojana

    2011-03-01

    Paraffinic phase change materials (PCM) were microencapsulated by in situ polymerization of melamine-formaldehyde prepolymers. Partly methylated trimethylolmelamine was used as an aminoaldehyde prepolymer for the microcapsule wall, a styrene-maleic acid anhydride copolymer as an emulsifier and modifying agent, and ammonia as a scavenger for reducing residual formaldehyde. For the determination of residual formaldehyde in a ppm concentration range, EDANA and malachite green analytical methods were studied, and the EDANA 210.1-99 was applied for the determination of residual formaldehyde in 25 samples of microcapsules, produced in a 200-L reactor. A linear correlation was observed between the added ammonia scavenger concentration and the reduction of residual formaldehyde concentration. Compared with 0.45% (4500 ppm) formaldehyde in a non-treated microcapsule suspension, with ammonia scavenger concentrations 0.80, 0.90 and 1.35%, the concentration of residual formaldehyde dropped to 0.27, 0.20 and 0.09% (i.e. 2700, 2000 and 900 ppm), respectively. Morphological characterisation of microcapsules by SEM and microcapsule wall permeability measurements by gravimetry / mass loss at an elevated temperature (135 °C) suggested that ammonia positively contributed to the wall elasticity / durability, while microcapsules with no ammonia scavenger added tended to have more brittle walls, and were more prone to cracking.

  16. The effect of formaldehyde fixation on RNA: optimization of formaldehyde adduct removal.

    Science.gov (United States)

    Evers, David L; Fowler, Carol B; Cunningham, Brady R; Mason, Jeffrey T; O'Leary, Timothy J

    2011-05-01

    Formalin-fixed, paraffin-embedded tissues generally provide low yields of extractable RNA that exhibit both covalent modification of nucleic acid bases and strand cleavage. This frustrates efforts to perform retrospective analyses of gene expression using archival tissue specimens. A variety of conditions have been reported to demodify formaldehyde-fixed RNA in different model systems. We studied the reversal of formaldehyde fixation of RNA using a 50 base RNA oligonucleotide and total cellular RNA. Formaldehyde-adducted, native, and hydrolyzed RNA species were identified by their bioanalyzer electrophoretic migration patterns and RT-quantitative PCR. Demodification conditions included temperature, time, buffer, and pH. The reversal of formaldehyde-fixed RNA to native species without apparent RNA hydrolysis was most successfully performed in dilute Tris, phosphate, or similar buffers (pH 8) at 70°C for 30 minutes. Amines were not required for efficient formaldehyde demodification. Formaldehyde-fixed RNA was more labile than native RNA to treatment with heat and buffer, suggesting that antigen retrieval methods for proteins may impede RNA hybridization or RNA extraction. Taken together, the data indicate that reliable conditions may be used to remove formaldehyde adducts from RNA to improve the quality of RNA available for molecular studies.

  17. In situ diffuse reflectance infrared Fourier transform spectroscopy study of formaldehyde adsorption and reactions on nano γ-Fe2O3 films

    Science.gov (United States)

    Huang, Kaijin; Kong, Lingcong; Yuan, Fangli; Xie, Changsheng

    2013-04-01

    The nano γ-Fe2O3 films gas sensor was fabricated by the screen printing technology. The phase structures and morphologies of nano γ-Fe2O3 films were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), respectively. The gas sensitivity of the films to 100 ppm formaldehyde was investigated. The surface adsorption and reaction process between nano γ-Fe2O3 films and formaldehyde was studied by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) method at different temperatures. DRIFTS results showed that dioxymethylene, formate ions, polyoxymethylene and molecularly formaldehyde surface species were detected when the nano γ-Fe2O3 films exposed to 100 ppm formaldehyde at different temperatures. A possible mechanism of the reaction process was discussed.

  18. Formaldehyde removal by potted plant-soil systems.

    Science.gov (United States)

    Xu, Zhongjun; Wang, Li; Hou, Haiping

    2011-08-15

    Formaldehyde is a major indoor air pollutant. Formaldehyde removal from indoor air conduces to decrease the health risk for urban inhabitants. In this study, a dynamic chamber technique was employed to investigate formaldehyde removal by potted spider plant (Chlorphytum comosum), aloe (Aloe vera) and golden pothos (Epipremnum aureum) with potted soils. The results showed that the potted plant-soil systems could remove formaldehyde from air in a long time. The spider plant-soil system had the highest formaldehyde removal capacity compared with others. Higher metabolisms in plants and microorganisms in daytime may give a reasonable explanation for higher formaldehyde removal capacities for plant-soil systems in daytime. The order of formaldehyde removal capacity for the three plant species agreed well with the sequence of formaldehyde dehydrogenase activities from plant leaves. Formaldehyde removal by plant may be diffusion-limited rather than reaction-limited since the detached formaldehyde dehydrogenase activities from the leaves of the three plant species were higher than in vivo metabolic capacities. Formaldehyde in air can be largely absorbed and metabolized by the microorganisms in the potted soils indicating that further elevating formaldehyde removal capacity for plant-soil system will be realized by increasing exposed surface of potted soil.

  19. Developing a Reference Material for Formaldehyde Emissions Testing; Final Report

    Science.gov (United States)

    Exposure to formaldehyde has been shown to produce broad and potentially severe adverse human health effects. With ubiquitous formaldehyde sources in the indoor environment, formaldehyde concentrations in indoor air are usually higher than outdoors, ranging from 10 to 4000 μg/m3....

  20. The effect of clothing care activities on textile formaldehyde content.

    Science.gov (United States)

    Novick, Rachel M; Nelson, Mindy L; McKinley, Meg A; Anderson, Grace L; Keenan, James J

    2013-01-01

    Textiles are commonly treated with formaldehyde-based residues that may potentially induce allergic contact dermatitis in sensitive individuals. This study examined the initial formaldehyde content in clothing and resulting changes due to care activities. Twenty clothing articles were examined and 17 of them did not have detectable levels of formaldehyde. One shirt contained a formaldehyde concentration of 3172 ppm, and two pairs of pants had formaldehyde concentrations of 1391 ppm and 86 ppm. The two highest results represent formaldehyde levels that are up to 40-fold greater than international textile regulations. The two items with the greatest formaldehyde content were washed and dried in a manner similar to that used by consumers, including hand and machine washing in hot or cold water followed by air or machine drying. The washing and drying procedures reduced formaldehyde levels to between 26 and 72% of untreated controls. Differences in the temperature or type of washing and drying did not result in a clear trend in the subsequent formaldehyde content. In addition, samples were hot ironed, which did not affect the formaldehyde content as significantly. Understanding the formaldehyde content in clothing and its potential reduction through care activities may be useful for manufacturers and formaldehyde-sensitive individuals.

  1. Conversion and toxicity characteristics of formaldehyde in acetoclastic methanogenic sludge

    NARCIS (Netherlands)

    Gonzalez-Gil, G.; Kleerebezem, R.; Lettinga, G.

    2002-01-01

    An unadapted mixed methanogenic sludge transformed formaldehyde into methanol and formate. The methanol to formate ratio obtained was 1:1. Formaldehyde conversion proceeded without any lag phase, suggesting the constitutive character of the formaldehyde conversion enzymes involved. Because the rate

  2. Problems associated with the use of urea-formaldehyde foam for residential insulation. Part I. The effects of temperature and humidity on formaldehyde release from urea-formaldehyde foam insulation

    Energy Technology Data Exchange (ETDEWEB)

    Long, K.R.; Pierson, D.A.; Brennan, S.T.; Frank, C.W.; Hahne, R.A.

    1979-09-01

    The study is concerned primarily with those properties related to formaldehyde and its application as an ingredient in urea-formaldehyde resins. In particular the effects of temperature and humidity on urea-formaldehyde foam are discussed.

  3. Teratogenic effect of formaldehyde in rabbits

    Directory of Open Access Journals (Sweden)

    A. A. Al–Saraj

    2009-01-01

    Full Text Available Thirty three pregnant rabbits were exposed to vapour of 10% formaldehyde (12 ppm throughout the gestation period to know its effect on newborns. The results showed no abortion or foetal mortality but there were some anomalies (23.8% among the newborns rabbits which includes: meromelia (6.8%, encephalocele (6.1%, Oligodactyly (4.1%, Umbilical hernia (3.4% and Short tail (3.4%; besides that small for date and decrease in the body weight of the newborns were also noticed. These findings suggest that formaldehyde is a teratogenic agent.

  4. Ordered mesoporous NiO with thin pore walls and its enhanced sensing performance for formaldehyde.

    Science.gov (United States)

    Lai, Xiaoyong; Shen, Guoxin; Xue, Ping; Yan, Bingqin; Wang, Hong; Li, Peng; Xia, Weitao; Fang, Junzhuo

    2015-03-07

    A class of formaldehyde (HCHO) gas sensors with a high response were developed based on ordered mesoporous NiO, which were synthesized via the nanocasting route by directly using mesoporous silica as the hard template. A series of mesoporous NiO with different textural parameters such as specific surface area, pore size, pore wall thickness were achieved by selecting mesoporous silica with different pore sizes as templates. The gas sensing properties for formaldehyde (HCHO) of the NiO specimens were examined. The results show that this mesoporous NiO possesses a much higher response to HCHO even at low concentration levels than the bulk NiO, and a larger specific surface area and pore size as well as thinner pore walls would be beneficial for enhancing the sensing properties of NiO.

  5. Formaldehyde removal from air by a biodegradation system.

    Science.gov (United States)

    Xu, Zhongjun; Hou, Haiping

    2010-07-01

    A biodegradation system was used for the treatment of formaldehyde-polluted air. Air pressure dropped 12 mm water in the trickling biofilter during the experiment of about 4 months. In the range 20-300 mg m(-3) influent formaldehyde, this biodegradation system obtained 4.0-40.0 mg h(-1) degradation capacity, with 100%-66.7% degradation efficiency. The amount of formaldehyde degraded by the trickling biofilter was more than that by the activated sludge bioreactor below 200 mg m(-3) influent gaseous formaldehyde while the amount by the trickling biofilter was less than that by the activated sludge bioreactor over 200 mg m(-3) influent gaseous formaldehyde.

  6. The Effect of Formaldehyde Fixation on RNA: Optimization of Formaldehyde Adduct Removal

    OpenAIRE

    2011-01-01

    Formalin-fixed, paraffin-embedded tissues generally provide low yields of extractable RNA that exhibit both covalent modification of nucleic acid bases and strand cleavage. This frustrates efforts to perform retrospective analyses of gene expression using archival tissue specimens. A variety of conditions have been reported to demodify formaldehyde-fixed RNA in different model systems. We studied the reversal of formaldehyde fixation of RNA using a 50 base RNA oligonucleotide and total cellul...

  7. RAPID WAY TO ASSESS THE SAFETY OF PRODUCTS FROM PHENOL-FORMALDEHYDE PLASTICS

    Directory of Open Access Journals (Sweden)

    T. A. Kuchmenko

    2014-01-01

    Full Text Available Summary. An express method for determining of volatile components in the products of phenol-formaldehyde plastics is developed by detecting them in the equilibrium gas phase using the piezosensors array. The sorption of substances-marker vapor which are the main pollutants in the air diffusing from plastic household products has been studied under identical conditions. The array of 8 piezosensors is selected providing minimal impact of water vapor on the microbalance results; maximum sensitivity to one / several classes of organic compounds; identification of phenol / formaldehyde in the mixtures. A method of evaluation the level of emissions of phenol, formaldehyde, toluene, acetone from household plastic products is developed using the piezosensors array. It has been proposed the ranking samples nonfood polymers into groups according to the danger degree based on the total content of volatile organic compounds and the presence of phenol / formaldehyde. Accuracy of the phenol determination in polymers is verified by standard spectrophotometric method with 4-aminoantipyrine, it is shown the results of both methods satisfactorily converge. The proposed method can significantly reduce the economic and time costs on analysis and expand the analytical information about the content of other volatile substances in a single measurement.

  8. Edible carbohydrates from formaldehyde in a spacecraft

    Science.gov (United States)

    Weiss, A. H.

    1975-01-01

    The autocatalytic nature of the base catalyzed condensation of formaldehyde to formose sugars is eliminated by using as a cocatalyst, an aldose, or ketose having an alpha-hydrogen. This is more strongly complexed by base than is formaldehyde and the cocatalyst and sugar products accumulate as catalyst complexes instead of formaldehyde. Because of the presence of alpha-hydrogen atoms in cocatalysts and formose sugars, their removal by cross Cannizzaro reaction of complexed sugars does not occur, so the formose reaction behaves autocatalytically due to this accumulation. It is believed that a given catalytic formose complex is not a discrete complexed sugar, but rather, a scrambled dynamic mixture of sugars having weakened structures. The sugar complexes derive from a common salt-like formaldehyde complex, which, because of the absence of alpha-hydrogen, has a greater tendency to undergo Cannizzaro reaction, rather than formose condensation. Because of this, the Cannizzaro reaction can proceed without measurable formose condensation. The reverse is not possible.

  9. Electrospinning formaldehyde cross-linked zein solutions

    Science.gov (United States)

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  10. Carbohydrate modified phenol-formaldehyde resins

    Science.gov (United States)

    Anthony H. Conner; Linda F. Lorenz

    1986-01-01

    For adhesive self-sufficiency, the wood industry needs new adhesive systems in which all or part of the petroleum-derived phenolic component is replaced by a renewable material without sacrificing high durability or ease of bonding. We tested the bonding of wood veneers, using phenolic resins in which part of the phenol-formaldehyde was replaced with carbohydrates. Our...

  11. Scientific basis for process and catalyst design in the selective oxidation of methane to formaldehyde.

    Science.gov (United States)

    Arena, Francesco; Parmaliana, Adolfo

    2003-12-01

    The mechanism and kinetics of the gas-phase selective oxidation of methane to formaldehyde (MPO) are revised in the general context of catalytic oxidations. In agreement with ab initio calculations of the energy barrier for the activation of methane on transition metal oxide complexes, a formal Langmuir-Hinshelwood kinetic model is proposed which accounts for the "steady-state" conditions and activity-selectivity pattern of MPO catalysts, providing an original support to process design and catalyst development.

  12. Destruction mechanisms for formaldehyde in atmospheric pressure low temperature plasmas

    Science.gov (United States)

    Storch, Daniel G.; Kushner, Mark J.

    1993-01-01

    Formaldehyde (CH2O) is a common pollutant of indoor air in residences and commercial buildings. The removal of CH2O from atmospheric pressure gas streams (N2/O2/H2O/CH2O) using plasmas generated by a dielectric barrier discharge has been theoretically investigated with the goal of cleansing indoor air. The model consists of a full accounting of the electron, ion, and neutral chemical kinetics in contaminated humid air. We find that the destruction of CH2O results dominantly from chemical attack by OH and O radicals, with the primary end products being CO and H2O. The predicted destruction rates for CH2O are typically 2-8 ppm/(mJ cm-3) (parts per million of CH2O in air/energy deposition). The elimination of the unwanted byproducts, CO and NO, using a platinum catalyst is discussed.

  13. A DFT study on the formaldehyde (H2CO and (H2CO)2) monitoring using pristine B12N12 nanocluster

    Science.gov (United States)

    Shakerzadeh, Ehsan

    2016-04-01

    The interaction between formaldehyde monomer (H2CO) as well as dimer ((H2CO)2) and pristine B12N12 nanocluster is investigated at B3LYP/6-311++G(d,p) level of theory. It is found that in contrary to the pristine boron nitride nanotube and nanosheet, formaldehyde adsorption induce considerable variation in the electronic properties of the B12N12 nanocluster. Also it is shown that the pristine B12N12 cluster could adsorb up to four monomer and three dimer of formaldehyde molecules in which the HOMO-LUMO gap decreased about 38-55%. Since the conductivity of the B12N12 nanocluster changes by the adsorption of formaldehyde molecules, the presence of this toxic gas could be detected. The Bader theory of atoms in molecules (AIM) is also applied to analyze the interaction of formaldehyde with nanocluster. It is suggested pristine B12N12 nanocluster could be a promising candidate for detecting formaldehyde molecule. The results indicate that B12N12 may be a promising chemical sensor for detection of formaldehyde molecule.

  14. Co-Adsorption of Ammonia and Formaldehyde on Regenerable Carbon Sorbents for the Primary Life Support System (PLSS)

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique S.

    2016-01-01

    Results are presented on the development of a reversible carbon sorbent for trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is deemed non-regenerable, while the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on concurrent sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, are presented in this paper. A carbon sorbent was fabricated by dry impregnation of a reticulated carbon-foam support with polyvinylidene chloride, followed by carbonization and thermal oxidation in air. Sorbent performance was tested for ammonia and formaldehyde sorption and vacuum regeneration, with and without water present in the gas stream. It was found that humidity in the gas phase enhanced ammonia-sorption capacity by a factor larger than two. Co-adsorption of ammonia and formaldehyde in the presence of water resulted in strong formaldehyde sorption (to the point that it was difficult to saturate the sorbent on the time scales used in this study). In the absence of humidity, adsorption of formaldehyde on the carbon surface was found to impair ammonia sorption in subsequent runs; in the presence of water, however, both ammonia and formaldehyde could be efficiently removed from the gas phase by the sorbent. The efficiency of vacuum regeneration could be enhanced by gentle heating to temperatures below 60 deg.

  15. Effect of varying levels of formaldehyde treatment of mustard oil cake on rumen fermentation, digestibility in wheat straw based total mixed diets in vitro

    Directory of Open Access Journals (Sweden)

    Mahima

    2015-04-01

    Full Text Available Aim: The aim of the current study was to protect the protein in mustard cake by different levels of formaldehyde treatment with a view to optimize the level of formaldehyde. Materials and Methods: Different levels of formaldehyde treatment (0, 1, 1.5 and 2% of crude protein containing concentrate and roughages diet in 40:60 ratio were tested for their effect on nutrients digestibility, in vitro ammonia release, in vitro gas production and change in protein fractions. Non-significant (p≤0.05 effect on pH, microbial biomass, partitioning factor, total gas production (TGP, TGP per g dry matter and TGP per g digestible dry matter (ml/g was observed in almost all the treatments. Results: Total volatile fatty acids at 2% formaldehyde treatment level of mustard cake was lower (p<0.05 as compared to other groups, while in vitro dry matter digestibility and in vitro organic matter digestibility were reported to be low in 1% formaldehyde treated group. Conclusion: On a holistic view, it could be considered that formaldehyde treatment at 1.5% level was optimal for protection of mustard oil cake protein.

  16. Investigation on formaldehyde release from preservatives in cosmetics.

    Science.gov (United States)

    Lv, C; Hou, J; Xie, W; Cheng, H

    2015-10-01

    To understand formaldehyde residue in cosmetics, an investigation on formaldehyde release from eight preservatives (methenamine - MA, paraformaldehyde - PF, poly(p-toluenesulfonamide-co-formaldehyde) -PTSAF, quaternium-15 - QU, imidazolidinyl urea - IU, diazolidinyl urea - DU, dimethyloldimethyl hydantoin - DMDM and bronopol - BP) under various conditions was performed. The concentration of released formaldehyde was determined by high-performance liquid chromatography with photodiode array detection after derivatization with 2,4-dinitrophenylhydrazine. The amounts of formaldehyde release were in the order of PF > DU > DMDM ≈ QU ≈ IU > MA > BP > PTSAF. The releasing amounts of formaldehyde were the highest in the presence of aqueous matrices for the releasers except QU and IU, and the releasing effect was also relative to pH. More formaldehyde was released with longer storage time and higher temperature. Furthermore, all preservatives in cosmetic matrices released fewer amounts of formaldehyde than in pure aqueous or organic matrices, and the formaldehyde-releasing amounts were also cosmetic specific. Formaldehyde release was dependent on the matrix, pH, time and mainly temperature, and the releasing effect was also cosmetic specific. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Removal of formaldehyde, methanol, dimethylether and carbon monoxide from waste gases of synthetic resin-producing industries.

    Science.gov (United States)

    Prado, O J; Veiga, M C; Kennes, C

    2008-02-01

    The removal of mixtures of gas-phase pollutants released from formaldehyde- and formaldehyde resin-producing industries was studied in different bioreactor systems. The waste gases contained formaldehyde, methanol, dimethylether and carbon monoxide. The use of a hybrid two-stage bioreactor, composed of a biotrickling filter and a conventional biofilter connected in series, led to very high elimination capacities and removal efficiencies close to 100% for overall pollutant loads exceeding 600g m(-3)h(-1). The presence of low concentrations of dimethylether in the gaseous mixture did not have a significant effect on the removal of formaldehyde or methanol under our operating conditions, although moderate concentrations of these compounds did negatively affect the biodegradation of dimethylether. When a mixture of all four compounds, at concentrations around 100, 100, 50 and 50mg m(-3) for formaldehyde, methanol, carbon monoxide and dimethylether, respectively, was fed to a conventional biofilter, removal efficiencies higher than 80% were obtained for the first three pollutants at empty bed retention time values above 30s. On the other hand, dimethylether was removed to a lower extent, although its reduced environmental impact allows to conclude that these results were satisfactory.

  18. Plasma regeneration of mineral adsorbents for the precipitation of formaldehyde from exhaust gases of biogas engines; Plasmaregeneration mineralischer Adsorbentien zur Formaldehydabscheidung aus Abgasen von Biogas-Motoren

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Siegfried; Saulich, Katja [Leibniz-Institut fuer Plasmaforschung und Technologie, Greifswald (Germany); Schomburg, Joachim [DURTEC, Neubrandenburg (Germany)

    2013-10-01

    Formaldehyde.is a harmful ambient air pollutant which can be produced by incomplete combustion processes, e.g. in power plants or combustion engines. Adsorbents are widely applied in the area of cleaning as well as enrichment of gas components. In this study, we designed a bench-scale experiment to investigate a gas pollution treatment technique, which integrated the adsorption process and the plasma treatment for formaldehyde removal from gas streams. The mineral granulate used consisted of 80% halloysite and showed a good adsorption capacity for formaldehyde. In the discharge step, the adsorbed formaldehyde molecules were decomposed to CO{sub 2}, CO and hydrocarbons. For the further optimization of the method the influence of the power and the pulse break ratio of sustaining voltage were tested. Further the decomposition performance on adsorbed formaldehyde molecules was studied depending on space-time, a 10% oxygen fraction of the carrier gas, and the influence of temperature. It was shown that with the chosen plasma method the absorber material could be loaded repeatedly and subsequently regenerated at a low input discharge power. (orig.)

  19. In-situ Iberian pig carcass classification using a micro-electro-mechanical system (MEMS)-based near infrared (NIR) spectrometer.

    Science.gov (United States)

    Zamora-Rojas, E; Pérez-Marín, D; De Pedro-Sanz, E; Guerrero-Ginel, J E; Garrido-Varo, A

    2012-03-01

    Iberian pig (IP) products are gourmet foods highly appreciated at international markets, reaching high prices, because of its exquisite flavors. At present, there aren't practical and affordable analytical methods which can authenticate every single piece put on the market. This paper reports on the performance of a handheld micro-electro-mechanical system (MEMS)-based spectrometer (1600-2400nm) for authentication-classification of individual IP carcasses into different commercial categories. Performance (accuracy and instrumental design) of the instrument was compared with that of high-resolution NIRS monochromators (400-2500nm). A total of 300 carcasses of IPs raised under different feeding regimes ("Acorn", "Recebo" and "Feed") were analyzed in three modes (intact fat in the carcass, skin-free subcutaneous fat samples and melted fat samples). The best classification results for the MEMS instrument were: 93.9% "Acorn" carcasses correctly classified, 96.4% "Feed" and 60.6% "Recebo", respectively. Evaluation of model performance confirmed the suitability of the handheld device for individual, fast, non-destructive, low-cost analysis of IP carcasses on the slaughterhouse line.

  20. Design and characterization of a 256 x 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor.

    Science.gov (United States)

    Niclass, Cristiano; Ito, Kota; Soga, Mineki; Matsubara, Hiroyuki; Aoyagi, Isao; Kato, Satoru; Kagami, Manabu

    2012-05-21

    We introduce an optical time-of-flight image sensor taking advantage of a MEMS-based laser scanning device. Unlike previous approaches, our concept benefits from the high timing resolution and the digital signal flexibility of single-photon pixels in CMOS to allow for a nearly ideal cooperation between the image sensor and the scanning device. This technique enables a high signal-to-background light ratio to be obtained, while simultaneously relaxing the constraint on size of the MEMS mirror. These conditions are critical for devising practical and low-cost depth sensors intended to operate in uncontrolled environments, such as outdoors. A proof-of-concept prototype capable of operating in real-time was implemented. This paper focuses on the design and characterization of a 256 x 64-pixel image sensor, which also comprises an event-driven readout circuit, an array of 64 row-level high-throughput time-to-digital converters, and a 16 Gbit/s global readout circuit. Quantitative evaluation of the sensor under 2 klux of background light revealed a repeatability error of 13.5 cm throughout the distance range of 20 meters.

  1. Shock-Resistibility of MEMS-Based Inertial Microswitch under Reverse Directional Ultra-High g Acceleration for IoT Applications

    Science.gov (United States)

    Xu, Qiu; Yang, Zhuoqing; Sun, Yunna; Lai, Liyan; Jin, Zhiyu; Ding, Guifu; Zhao, Xiaolin; Yao, Jinyuan; Wang, Jing

    2017-03-01

    This paper presents a novel MEMS-based inertial microswitch design with multi-directional compact constraint structures for improving the shock-resistibility. Its shock-resistibility in the reverse-sensitive direction to ultra-high g acceleration (~hunderds of thousands) is simulated and analyzed. The dynamic response process indicates that in the designed inertial microswitch the proof mass weight G, the whole system’s stiffness k and the gap x2 between the proof mass and reverse constraint blocks have significant effect on the shock-resistibility. The MEMS inertial microswitch micro-fabricated by surface micromachining has been evaluated using the drop hammer test. The maximum allowable reverse acceleration, which does not cause the spurious trigger, is defined as the reverse acceleration threshold (athr). Test results show that athr increases with the decrease of the gap x2, and the proposed microswitch tends to have a better shock-resistibility under smaller gap. The measured responses of the microswitches with and without constraint structure indicates that the device without constraint structure is prone to spurious trigger, while the designed constraint structures can effectively improve the shock-resistibility. In this paper, the method for improving the shock-resistibility and reducing the spurious trigger has been discussed.

  2. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy.

    Science.gov (United States)

    Cogliati, Andrea; Canavesi, Cristina; Hayes, Adam; Tankam, Patrice; Duma, Virgil-Florin; Santhanam, Anand; Thompson, Kevin P; Rolland, Jannick P

    2016-06-13

    High-speed scanning in optical coherence tomography (OCT) often comes with either compromises in image quality, the requirement for post-processing of the acquired images, or both. We report on distortion-free OCT volumetric imaging with a dual-axis micro-electro-mechanical system (MEMS)-based handheld imaging probe. In the context of an imaging probe with optics located between the 2D MEMS and the sample, we report in this paper on how pre-shaped open-loop input signals with tailored non-linear parts were implemented in a custom control board and, unlike the sinusoidal signals typically used for MEMS, achieved real-time distortion-free imaging without post-processing. The MEMS mirror was integrated into a compact, lightweight handheld probe. The MEMS scanner achieved a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Distortion-free imaging with no post-processing with a Gabor-domain optical coherence microscope (GD-OCM) with 2 μm axial and lateral resolutions over a field of view of 1 × 1 mm2 is demonstrated experimentally through volumetric images of a regular microscopic structure, an excised human cornea, and in vivo human skin.

  3. MEMS-based contact stress field measurements at a rough elastomeric layer: local test of Amontons’ friction law in static and steady sliding regimes

    Directory of Open Access Journals (Sweden)

    Debrégeas G.

    2010-06-01

    Full Text Available We present the results of recent friction experiments in which a MEMS-based sensing device is used to measure both the normal and tangential stress fields at the base of a rough elastomer film in frictional contact with smooth, rigid, glass indentors. We consider successively multicontacts under (i static normal loading by a spherical indentor and (ii frictional steady sliding conditions against a cylindrical indentor, for an increasing normal load. In both cases, the measured fields are compared to elastic calculations assuming (i a smooth interface and (ii Amontons’ friction law. In the static case, significant deviations are observed which decrease with increasing load and which vanish when a lubricant is used. In the steady sliding case, Amontons’ law reproduces rather satisfactorily the experiments provided that the normal/tangential coupling at the contact interface is taken into account. We discuss the origin of the difference between the Amontons fields and the measured ones, in particular the effect of the finite normal and tangential compliances of the multicontact interface.

  4. Shock-Resistibility of MEMS-Based Inertial Microswitch under Reverse Directional Ultra-High g Acceleration for IoT Applications

    Science.gov (United States)

    Xu, Qiu; Yang, Zhuoqing; Sun, Yunna; Lai, Liyan; Jin, Zhiyu; Ding, Guifu; Zhao, Xiaolin; Yao, Jinyuan; Wang, Jing

    2017-01-01

    This paper presents a novel MEMS-based inertial microswitch design with multi-directional compact constraint structures for improving the shock-resistibility. Its shock-resistibility in the reverse-sensitive direction to ultra-high g acceleration (~hunderds of thousands) is simulated and analyzed. The dynamic response process indicates that in the designed inertial microswitch the proof mass weight G, the whole system’s stiffness k and the gap x2 between the proof mass and reverse constraint blocks have significant effect on the shock-resistibility. The MEMS inertial microswitch micro-fabricated by surface micromachining has been evaluated using the drop hammer test. The maximum allowable reverse acceleration, which does not cause the spurious trigger, is defined as the reverse acceleration threshold (athr). Test results show that athr increases with the decrease of the gap x2, and the proposed microswitch tends to have a better shock-resistibility under smaller gap. The measured responses of the microswitches with and without constraint structure indicates that the device without constraint structure is prone to spurious trigger, while the designed constraint structures can effectively improve the shock-resistibility. In this paper, the method for improving the shock-resistibility and reducing the spurious trigger has been discussed. PMID:28361893

  5. Afgivelse af formaldehyd fra byggevarer og forbrugerprodukter

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Gunnarsen, Lars; Funch, Llis Winther

    Rapporten præsenterer resultatet af en undersøgelse af formaldehydafgivelse fra 22 mulige kilder i indeklimaet. Undersøgelsen er gennemført for om muligt at finde årsagen til de høje koncentrationer af formaldehyd i indeluften, der blev fundet i enkelte danske boliger under en foregående undersøg...

  6. Formaldehyde sensor using non-dispersive UV spectroscopy at 340nm

    Science.gov (United States)

    Davenport, J. J.; Hodgkinson, J.; Saffell, J. R.; Tatam, R. P.

    2014-05-01

    Formaldehyde is a volatile organic compound that exists as a gas at room temperature. It is hazardous to human health causing irritation of the eyes, nose and throat, headaches, limited pulmonary function and is a potential human carcinogen. Sources include incomplete combustion, numerous modern building materials and vehicle fumes. Here we describe a simple method for detecting formaldehyde using low resolution non-dispersive UV absorption spectroscopy for the first time. A two channel system has been developed, making use of a strong absorption peak at 339nm and a neighbouring region of negligible absorption at 336nm as a reference. Using a modulated UV LED as a light source and narrowband filters to select the desired spectral bands, a simple detection system was constructed that was specifically targeted at formaldehyde. A minimum detectable absorbance of 4.5 × 10-5 AU was estimated (as ΔI/I0), corresponding to a limit of detection of approximately 6.6 ppm for a 195mm gas cell, with a response time of 20s. However, thermally-induced drift in the LED spectral output caused this to deteriorate over longer time periods to around 30 ppm or 2 × 10-4 AU.

  7. Experimental Study of a Photocatalytic Reactor for Trace Formaldehyde Removal

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-min; LIAN Zhi-wei; YE Xiao-jiang; SHANG-GUAN Wen-feng

    2005-01-01

    Formaldehyde is the key contaminant influencing building occupants' health in indoor environment. In order to reduce occupants' exposures to formaldehyde, a newly designed photocatalytic reactor was applied in a dynamic HVAC(heating, ventilation and air conditioning) system. The experiments were carried out for the removal of formaldehyde present in air at low parts per million (ppm) concentrations.The initial formaldehyde concentrations were set as1.59 ppm and 0.27 ppm respectively, based on the formaldehyde levels in the polluted places. Experimental results show that the photocatalytic reactor is effective on formaldehyde photodegradation, causes a low pressure drop, and does not make the second pollution of ozone. The kinetic analysis indicates that the kinetics for oxidation processes can be fitted well by a pseudo-first-order kinetic model deduced from Langmuir - Hinshelwood (L-H) model.

  8. MEMS冷气推进器的制作及实验研究%Fabrication and experiment of a MEMS based cold gas thruster

    Institute of Scientific and Technical Information of China (English)

    唐飞; 叶雄英; 周兆英

    2003-01-01

    介绍了一种两层结构的MEMS冷气微推进器的设计和制作.并从不同的膨胀比和喉部尺寸的角度,对微推进器的推力和比冲性能进行了实验测量.实验结果表明,所制作的微推进器可以达到的最大推力在3.3~4.9mN之间,比冲在51.0~66.3s.

  9. Fast separation on MEMS-based multicapillary gas chromatographic columns%具有快速分离效果多道微型气相色谱柱

    Institute of Scientific and Technical Information of China (English)

    李臆; 杜晓松; 高超; 郭攀; 程璐婳; 蒋亚东

    2014-01-01

    采用MEMS技术设计了一种多道微型气相色谱柱,运用深槽刻蚀技术(DRIE),对器件刻蚀深400μm,微型色谱柱总长度为50cm,每道宽40μm,4道多道柱.采用静态涂覆法对色谱柱涂覆SE-54固定相.将多道色谱柱与30 m长的安捷伦HP-5毛细管柱多道色谱柱比较,烷烃混合物在两种柱内都被完全分离,混合物在多道柱内的保留时间比在毛细管柱内缩短了两倍,塔板数达到15342 plates/m,是毛细管柱的3倍.多道色谱柱被用于分离苯,甲苯及苯酚致癌组分,所有组分在1min之内被完全分离.在时间上比之前报道的6m长微型色谱柱缩短了3倍,实现了快速分离效果.

  10. Migration Effect of Temperature on Formaldehyde in Porous Building Materials

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiao-zhong; CHEN Zhen-qian

    2009-01-01

    A coupled heat and formaldehyde migration model based on the non-equilibrium thermodynamic theory and molecule movement theory was developed.The effect of temperature on the transport coefficients was simulated,and the simulation results were vaildated with experimental data from the literatures.The calculation shows that air exchange rate larger than 2h-1 should be prevented,if the purpose is only for formaldehyde emis-sions control.The effects of temperature on formaldehyde migration are obvious.

  11. DFT study of formaldehyde adsorption on vacancy defected graphene doped with B, N, and S

    Science.gov (United States)

    Zhou, Qingxiao; Yuan, Lei; Yang, Xi; Fu, Zhibing; Tang, Yongjian; Wang, Chaoyang; Zhang, Hong

    2014-08-01

    The adsorption of formaldehyde (H2CO) on modified graphene sheets, combining vacancy and dopants (B, N, and S), was investigated by employing the density functional theory (DFT). It was found that the vacancy-defected graphene was more sensitive to absorb H2CO molecule compared with the pristine one. Furthermore, the H2CO molecule tended to be chemisorbed on vacancy-defected graphene with dopants, which exhibited larger adsorption energy and net charge transfer than that of one without dopants. The results of partial electronic density of states (PDOS) indicated that the defect-dopant combination effect on the adsorption process was mainly owing to the contribution of the hybridization between dopants and C atoms around the vacancy. We hope our results will be useful for the application of graphene for chemical sensors to detect formaldehyde gas.

  12. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  13. Analysis of Pyrolysates for Phenol Formaldehyde Resin by Py-GC/MS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Pyrolysis of phenol formaldehyde resin has been investigated by Pyrolysis Gas Chromatography- Mass Spectroscopy at the different temperatures from 500℃ to 750℃. Its composition of pyrolysates has been analyzed. Several compounds, especially benzene, toluene, p-xylene could only be formed above 500-550℃. However, peak intensities for some phenol derivatives were decreased at the higher temperature. During pyrolysis,for thermo-setting phenol formaldehyde resins, polymeric chain scissions take place as a successive removal of the monomer units from the polymeric chain. The chain scissions are followed by secondary reactions, which leads to a variety of compounds. Addition reactions can also take place among the double-bond compounds during pyrolysis.

  14. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR)

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N.S. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil); Zaiat, M. [Laboratorio de Processos Biologicos (LPB), Departamento de Hidraulica e Saneamento, Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo - USP, Engenharia Ambiental, Bloco 4-F, Av. Joao Dagnone, 1100 Santa Angelina, 13.563-120 Sao Carlos, SP (Brazil)], E-mail: zaiat@sc.usp.br

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 deg. C with 8 h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m{sup 3} day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6 {+-} 1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3 mg/L h as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  15. Detection of formaldehyde in textiles by chromotropic acid method

    Directory of Open Access Journals (Sweden)

    Rao Sanath

    2004-11-01

    Full Text Available BACKGROUND: The common causes of textile dermatitis are formaldehyde resins and disperse dyes. There are various methods to detect the presence of formaldehyde in clothing. AIM: To detect the presence of formaldehyde in various types of textiles by the chromotropic acid method and to assess the effect of washing on the formaldehyde content. METHODS: Twenty randomly selected textiles from a local cloth store were tested for formaldehyde by the chromotropic acid method. A purple ring indicated a positive reaction. The intensity of the purple ring was graded from 1+ to 3+ and reassessed after washing the clothes. RESULTS: Eleven out of the 20 textiles tested positive for formaldehyde. The fully synthetic clothes were free from formaldehyde. After the first and second washes the majority did not show a reduction in the formaldehyde content. CONCLUSIONS: This is a simple and rapid test which can be used in the practical management of patients with textile allergy. Washing the clothes may not have an effect on the formaldehyde content.

  16. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR).

    Science.gov (United States)

    Pereira, N S; Zaiat, M

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 degrees C with 8h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m(3)day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6+/-1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3mg/Lh as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms.

  17. PILOT STUDY OF CONTACT SENSITIZATION OF FORMALDEHYDE-RELEASERS, FORMALDEHYDE AND GLUTARALDEHYDE IN DENTAL STUDENTS

    Directory of Open Access Journals (Sweden)

    Lyapina Maya

    2016-03-01

    Full Text Available Introduction: Occupational allergic contact sensitization is common in dental personnel. Some of the most common occupational allergens in dental practice are some formaldehyde-releasers, formaldehyde and glutaraldehyde. Aim: The aim of the present study was to evaluate the rate of contact sensitization to formaldehyde, quaternium-15, imidazolidinyl urea, diazolidinyl urea, and to glutaraldehyde in students of dental medicine and dental patients. Material and methods: A total of 50 participants were included in the study: 40 students of dental medicine exposed to formaldehyde-releasers, formaldehyde and glutaraldehyde during the course of their education; 10 dental patients without occupational exposure to the latter substances served as a control group. All of them were patch-tested with the studied allergens. Results: The sensitization rate to formaldehyde was significantly higher in the group of dental patients if compared to the one of dental students (χ2=5.37; p=0.021. Positive skin patch test reactions to quaternium-15 and to imidazolidinyl urea were observed only in the group of dental students. A significantly higher rate of sensitization to diazolidinyl urea, if compared to the one to imidazolidinyl urea (χ2=5.4; p=0.02 and to quaternium-15 (χ2=6.76; p=0.009, as well as to glutaraldehyde, if compared to the one to quaternium-15 (χ2=3.96; p=0.04 for the whole studied population was established. For the whole studied population, significantly increased rate of concomitant sensitization to formaldehyde and glutaraldehyde (χ2=6.18 p=0.013, as well as to diazolidinyl urea and to glutaraldehyde was established (χ2=9.12 p=0.003. Conclusions: We consider the importance of exposure to diazolidinyl urea, quaternium-15, imidazolidinyl urea and glutaraldehyde during the course of practical education in dentistry for the onset of sensitization. The exposure to formaldehyde is ubiquitous and is difficult to distinguish the roles of

  18. Ambient formaldehyde measurements made at a remote marine boundary layer site during the NAMBLEX campaign – a comparison of data from chromatographic and modified Hantzsch techniques

    Directory of Open Access Journals (Sweden)

    T. J. Still

    2006-01-01

    Full Text Available Ambient formaldehyde concentrations are reported from the North Atlantic Marine Boundary Layer Experiment (NAMBLEX campaign at Mace Head on the west coast of Eire during August 2002. The results from two techniques, using direct determination via gas chromatography and the Hantzsch technique, show similar trends but a significant off set in concentrations. For westerly air flows characteristic of the marine boundary layer, formaldehyde concentrations from the gas chromatographic and Hantzsch technique ranged from 0.78–1.15 ppb and 0.13–0.43 ppb, respectively. Possible reasons for the discrepancy have been investigated and are discussed, however, no satisfactory explanation has yet been found. In a subsequent laboratory intercomparison the two techniques were in good agreement. The observed concentrations have been compared with previous formaldehyde measurements in the North Atlantic marine boundary layer and with other measurements from the NAMBLEX campaign. The measurements from the Hantzsch technique and the GC results lie at the lower and upper ends respectively of previous measurements. In contrast to some previous measurements, both techniques show distinct diurnal profiles with day maxima and with an amplitude of approximately 0.15 ppb. Strong correlations were observed with ethanal concentrations measured during NAMBLEX and the ratio of ethanal to formaldehyde determined by the gas chromatographic technique is in good agreement with previous measurements. Some simple box modelling has been undertaken to investigate possible sources of formaldehyde. Such models are not able to predict absolute formaldehyde concentrations as they do not include transport processes, but the results show that oxygenated VOCs such as ethanal and methanol are very significant sources of formaldehyde in the air masses reaching Mace Head.

  19. 高频感应耦合等离子体降解甲醛%Degradation of Formaldehyde Using High-frequency Inductively Coupled Plasma

    Institute of Scientific and Technical Information of China (English)

    熊举坤; 黄海涛

    2011-01-01

    The formaldehyde-containing waste gas was treated using inductively coupled plasma with external electrode discharge. The experimental results show that: The degradation of formaldehyde will benefit from lower initial formaldehyde volume fraction, higher input power and less gas flow; Under the conditions of input power 100 W, gas flow 1 L/min and initial formaldehyde volume fraction 2.55 x 10 -5, the degradation rate of formaldehyde can reach 99.3%.%采用外电极式感应耦合放电等离子体对甲醛废气进行处理.实验结果表明:降低甲醛初始体积分数、增大输入功率、降低气体流量将有利于甲醛的降解;在输入功率为100 W、气体流量为l L/min、甲醛初始体积分数为2.55×10-5的条件下,甲醛降解率可达99.3%.

  20. Two types of MEMS-based oscillating AFM probes%两种基于MEMS谐振器的原子力显微镜探针

    Institute of Scientific and Technical Information of China (English)

    熊壮; Mairiaux E; Walter B; Faucher M; Buchaillot L; Legrand B

    2014-01-01

    目前商用原子力显微镜( AFM)大多使用的微悬臂式探针,力灵敏度可达到pN级别。然而受到工艺水平及检测方法限制,微悬臂谐振频率难以超过3�5 MHz,且Q值较低,制约了AFM的成像速度以及在液体中的成像效果。另外,光杠杆的检测方法无法与探针本身进行片上集成,较小的悬臂也给激光束的聚焦带来困难。基于以上考虑,本文提出两种基于MEMS谐振器的探针,振频率可达11 MHz,Q值为4000,并集成了执行与传感功能以及批量加工纳米针尖的工艺。目前两种探针都已经实现对树脂图案的成像功能,力灵敏度最高可达5pN/√Hz。%Most of the commercial Atomic Force Microscope ( AFM) oscillating probes are based on micro-scale cantilevers enabling measurement with pico-Newton force resolution in vacuum. However, the cantilever probes suffer from a degradation of both resonance frequency and quality factor when operating in liquids. Moreover, the laser-based vibration sensing unit also limits the integration and miniaturization as the cantilever width has to stay above 2 μm to control the diffraction effect. In such a context, two new concepts of MEMS-based atomic force microscope ( AFM) oscillating probes using ring-shaped resonator and I2 shaped resonator are presented. These probes are designed to feature MHz resonance frequencies and high quality factor of several thousands. Thanks to the integrated transduction methods including electrostatic driving/sensing, thermal driving and piezoresistive sensing, the optical detection unit is no longer needed. The probes are fabricated using standard silicon micromachining and the measured resonance frequency can reach up to 11 MHz with a quality factor of 1 500. Both probes are then mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist sample are obtained. The minimum force resolution deduced

  1. Embryo toxicity and teratogenicity of formaldehyde.

    Science.gov (United States)

    Thrasher, J D; Kilburn, K H

    2001-01-01

    C-14 formaldehyde crosses the placenta and enters fetal tissues. The incorporated radioactivity is higher in fetal organs (i.e., brain and liver) than in maternal tissues. The incorporation mechanism has not been studied fully, but formaldehyde enters the single-carbon cycle and is incorporated as a methyl group into nucleic acids and proteins. Also, formaldehyde reacts chemically with organic compounds (e.g., deoxyribonucleic acid, nucleosides, nucleotides, proteins, amino acids) by addition and condensation reactions, thus forming adducts and deoxyribonucleic acid-protein crosslinks. The following questions must be addressed: What adducts (e.g., N-methyl amino acids) are formed in the blood following formaldehyde inhalation? What role do N-methyl-amino adducts play in alkylation of nuclear and mitochondrial deoxyribonucleic acid, as well as mitochondrial peroxidation? The fact that the free formaldehyde pool in blood is not affected following exposure to the chemical does not mean that formaldehyde is not involved in altering cell and deoxyribonucleic acid characteristics beyond the nasal cavity. The teratogenic effect of formaldehyde in the English literature has been sought, beginning on the 6th day of pregnancy (i.e., rodents) (Saillenfait AM, et al. Food Chem Toxicol 1989, pp 545-48; Martin WJ. Reprod Toxicol 1990, pp 237-39; Ulsamer AG, et al. Hazard Assessment of Chemicals; Academic Press, 1984, pp 337-400; and U.S. Department of Health and Human Services. Toxicological Profile of Formaldehyde; ATSDR, 1999 [references 1-4, respectively, herein]). The exposure regimen is critical and may account for the differences in outcomes. Pregnant rats were exposed (a) prior to mating, (b) during mating, (c) or during the entire gestation period. These regimens (a) increased embryo mortality; (b) increased fetal anomalies (i.e., cryptochordism and aberrant ossification centers); (c) decreased concentrations of ascorbic acid; and (d) caused abnormalities in enzymes of

  2. A handheld MEMS-based line-scanned dual-axis confocal microscope for early cancer detection and surgical guidance (Conference Presentation)

    Science.gov (United States)

    Chen, Ye; Yin, Chengbo; Wei, Linpeng; Glaser, Adam K.; Abeytunge, Sanjee; Peterson, Gary; Mandella, Michael J.; Sanai, Nader; Rajadhyaksha, Milind; Liu, Jonathan T.

    2017-02-01

    Considerable efforts have been recently undertaken to develop miniature optical-sectioning microscopes for in vivo microendoscopy and point-of-care pathology. These devices enable in vivo interrogation of disease as a real-time and noninvasive alternative to gold-standard histopathology, and therefore could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Regardless of the specific modality, various trade-offs in size, speed, field of view, resolution, contrast, and sensitivity are necessary to optimize a device for a particular application. Here, a miniature MEMS-based line-scanned dual-axis confocal (LS-DAC) microscope, with a 12-mm diameter distal tip, has been developed for point-of-care pathology. The dual-axis architecture has demonstrated superior rejection of out-of-focus and multiply scattered photons compared to a conventional single-axis confocal configuration. The use of line scanning enables fast frame rates (≥15 frames/sec), which mitigates motion artifacts of a handheld device during clinical use. We have developed a method to actively align the illumination and collection beams in this miniature LS-DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo application, enables the device to achieve an axial and lateral resolution of 2.0 and 1.1 microns, respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate that this high-speed LS-DAC microscope can achieve high-contrast imaging of fluorescently labeled tissues with sufficient sensitivity for applications such as oral cancer detection and guiding brain-tumor resections.

  3. Modeling and simulations of the removal of formaldehyde using silver nano-particles attached to granular activated carbon.

    Science.gov (United States)

    Shin, SeungKyu; Song, JiHyeon

    2011-10-30

    A combined reaction, consisting of granular activated carbon (GAC) adsorption and catalytic oxidation, has been proposed to improve the removal efficiencies of formaldehyde, one of the major indoor air pollutants. In this study, silver nano-particles attached onto the surface of GAC (Ag-GAC) using the sputtering method were evaluated for the simultaneous catalytic oxidation and adsorption of formaldehyde. The evolution of CO(2) from the silver nano-particles indicated that formaldehyde was catalytically oxidized to its final product, with the oxidation kinetics expressed as pseudo-first order. In addition, a packed column test showed that the mass of formaldehyde removed by the Ag-GAC was 2.4 times higher than that by the virgin GAC at a gas retention time of 0.5s. However, a BET analysis showed that the available surface area and micro-pore volume of the Ag-GAC were substantially decreased due to the deposition of the silver nano-particles. To simulate the performance of the Ag-GAC, the homogeneous surface diffusion model (HSDM), developed for the prediction of the GAC column adsorption, was modified to incorporate the catalytic oxidation taking place on the Ag-GAC surface. The modified HSDM demonstrated that numerical simulations were consistent with the experimental data collected from the Ag-GAC column tests. The model predictions implied that the silver nano-particles deposited on the GAC reduced the adsorptive capacity due to decreasing the available surface for the diffusion of formaldehyde into the GAC, but the overall mass of formaldehyde removed by the Ag-GAC was increased due to catalytic oxidation as a function of the ratio of the surface coverage by the nano-particles.

  4. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air

    Science.gov (United States)

    Lui, K. H.; Ho, Steven Sai Hang; Louie, Peter K. K.; Chan, C. S.; Lee, S. C.; Hu, Di; Chan, P. W.; Lee, Jeffrey Chi Wai; Ho, K. F.

    2017-03-01

    Gas-phase formaldehyde (HCHO) is an intermediate and a sensitive indicator for volatile organic compounds (VOCs) oxidation, which drives tropospheric ozone production. Effective photochemical pollution control strategies demand a thorough understanding of photochemical oxidation precursors, making differentiation between sources of primary and secondary generated HCHO inevitable. Spatial and seasonal variations of airborne carbonyls based on two years of measurements (2012-2013), coupled with a correlation-based HCHO source apportionment analysis, were determined for three sampling locations in Hong Kong (denoted HT, TC, and YL). Formaldehyde and acetaldehyde were the two most abundant compounds of the total quantified carbonyls. Pearson's correlation analysis (r > 0.7) implies that formaldehyde and acetaldehyde possibly share similar sources. The total carbonyl concentration trends (HT urban > rural). A regression analysis further quantifies the relative primary HCHO source contributions at HT (∼13%), TC (∼21%), and YL (∼40%), showing more direct vehicular emissions in urban than rural areas. Relative secondary source contributions at YL (∼36%) and TC (∼31%) resemble each other, implying similar urban source contributions. Relative background source contributions at TC could be due to a closed structure microenvironment that favors the trapping of HCHO. Comparable seasonal differences are observed at all stations. The results of this study will aid in the development of a new regional ozone (O3) control policy, as ambient HCHO can enhance O3 production and also be produced from atmospheric VOCs oxidation (secondary HCHO).

  5. Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen

    Science.gov (United States)

    Shan, Junjun; Lucci, Felicia R.; Liu, Jilei; El-Soda, Mostafa; Marcinkowski, Matthew D.; Allard, Lawrence F.; Sykes, E. Charles H.; Flytzani-Stephanopoulos, Maria

    2016-08-01

    The non-oxidative dehydrogenation of methanol to formaldehyde is considered a promising method to produce formaldehyde and clean hydrogen gas. Although Cu-based catalysts have an excellent catalytic activity in the oxidative dehydrogenation of methanol, metallic Cu is commonly believed to be unreactive for the dehydrogenation of methanol in the absence of oxygen adatoms or oxidized copper. Herein we show that metallic Cu can catalyze the dehydrogenation of methanol in the absence of oxygen adatoms by using water as a co-catalyst both under realistic reaction conditions using silica-supported PtCu nanoparticles in a flow reactor system at temperatures below 250 °C, and in ultra-high vacuum using model PtCu(111) catalysts. Adding small amounts of isolated Pt atoms into the Cu surface to form PtCu single atom alloys (SAAs) greatly enhances the dehydrogenation activity of Cu. Under the same reaction conditions, the yields of formaldehyde from PtCu SAA nanoparticles are more than one order of magnitude higher than on the Cu nanoparticles, indicating a significant promotional effect of individual, isolated Pt atoms. Moreover, this study also shows the unexpected role of water in the activation of methanol. Water, a catalyst for methanol dehydrogenation at low temperatures, becomes a reactant in the methanol steam reforming reactions only at higher temperatures over the same metal catalyst.

  6. Brain Formaldehyde is Related to Water Intake behavior

    Science.gov (United States)

    Li, Ting; Su, Tao; He, Yingge; Lu, Jihui; Mo, Weichuan; Wei, Yan; He, Rongqiao

    2016-01-01

    A promising strategy for the prevention of Alzheimer’s disease (AD) is the identification of age-related changes that place the brain at risk for the disease. Additionally, AD is associated with chronic dehydration, and one of the significant changes that are known to result in metabolic dysfunction is an increase in the endogenous formaldehyde (FA) level. Here, we demonstrate that the levels of uric formaldehyde in AD patients were markedly increased compared with normal controls. The brain formaldehyde levels of wild-type C57 BL/6 mice increased with age, and these increases were followed by decreases in their drinking frequency and water intake. The serum arginine vasopressin (AVP) concentrations were also maintained at a high level in the 10-month-old mice. An intravenous injection of AVP into the tail induced decreases in the drinking frequency and water intake in the mice, and these decreases were associated with increases in brain formaldehyde levels. An ELISA assay revealed that the AVP injection increased both the protein level and the enzymatic activity of semicarbazide-sensitive amine oxidase (SSAO), which is an enzyme that produces formaldehyde. In contrast, the intraperitoneal injection of formaldehyde increased the serum AVP level by increasing the angiotensin II (ANG II) level, and this change was associated with a marked decrease in water intake behavior. These data suggest that the interaction between formaldehyde and AVP affects the water intake behaviors of mice. Furthermore, the highest concentration of formaldehyde in vivo was observed in the morning. Regular water intake is conducive to eliminating endogenous formaldehyde from the human body, particularly when water is consumed in the morning. Establishing good water intake habits not only effectively eliminates excess formaldehyde and other metabolic products but is also expected to yield valuable approaches to reducing the risk of AD prior to the onset of the disease. PMID:27699080

  7. Partially-irreversible sorption of formaldehyde in five polymers

    Science.gov (United States)

    Ye, Wei; Cox, Steven S.; Zhao, Xiaomin; Frazier, Charles E.; Little, John C.

    2014-12-01

    Due to its environmental ubiquity and concern over its potential toxicity, the mass-transfer characteristics of formaldehyde are of critical importance to indoor air quality research. Previous studies have suggested that formaldehyde mass transfer in polymer is partially irreversible. In this study, mechanisms that could cause the observed irreversibility were investigated. Polycarbonate and four other polymeric matrices were selected and subjected to formaldehyde sorption/desorption cycles. Mass transfer of formaldehyde was partially irreversible in all cases, and three potential mechanisms were evaluated. First, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis was used to investigate possible formaldehyde polymerization on polymer surfaces. ATR-FTIR showed no detectable paraformaldehyde or formaldehyde on the film surfaces that had been exposed to formaldehyde and air. ATR-FTIR did detect aliphatic acids suggesting oxidation had occurred on film surfaces as a result of exposure to formaldehyde. However, additional study suggested that air is not the primary cause for irreversibility. Second, statistical physics theory was tested as a possible explanation. According to this theory, reversible and irreversible sorption could be taking place simultaneously. The irreversible fraction should be constant during sorption and the fraction could be determined by performing a complete sorption/desorption test. The sorption/desorption data was consistent with this theory. Third, chemisorption was considered as another possible cause for irreversibility. Extraction/fluorimetry testing of post-sorption and post-desorption polymer films showed measurable quantities of formaldehyde suggesting that some of the chemisorbed formaldehyde was reversible at the higher extraction temperature. Further quantitative study on chemical reaction products is needed.

  8. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Science.gov (United States)

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  9. Genotoxic effects in occupational exposure to formaldehyde: A study in anatomy and pathology laboratories and formaldehyde-resins production

    Directory of Open Access Journals (Sweden)

    Viegas Susana

    2010-08-01

    Full Text Available Abstract Background According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Presently, the International Agency for Research on Cancer classifies formaldehyde as carcinogenic to humans (Group 1, based on sufficient evidence in humans and in experimental animals. Manyfold in vitro studies clearly indicated that formaldehyde can induce genotoxic effects in proliferating cultured mammalian cells. Furthermore, some in vivo studies have found changes in epithelial cells and in peripheral blood lymphocytes related to formaldehyde exposure. Methods A study was carried out in Portugal, using 80 workers occupationally exposed to formaldehyde vapours: 30 workers from formaldehyde and formaldehyde-based resins production factory and 50 from 10 pathology and anatomy laboratories. A control group of 85 non-exposed subjects was considered. Exposure assessment was performed by applying simultaneously two techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection equipment with simultaneously video recording. Evaluation of genotoxic effects was performed by application of micronucleus test in exfoliated epithelial cells from buccal mucosa and peripheral blood lymphocytes. Results Time-weighted average concentrations not exceeded the reference value (0.75 ppm in the two occupational settings studied. Ceiling concentrations, on the other hand, were higher than reference value (0.3 ppm in both. The frequency of micronucleus in peripheral blood lymphocytes and in epithelial cells was significantly higher in both exposed groups than in the control group (p p p p Conclusions The population studied is exposed to high peak concentrations of formaldehyde with a long-term exposure. These two aspects, cumulatively, can be the

  10. MEMS-Based Inertial Measurement

    Directory of Open Access Journals (Sweden)

    S. Sabou

    2013-12-01

    Full Text Available Creating an environment for testing and verification of algorithms for navigation and orientation implemented in intelligent embedded systems is an essential step in a project development process. By testing several variants of algorithms, or a combination of the two lead to a reduced numbers of errors, which is one goal of project. A test was performed for navigation algorithm using map matching and a 2-axis accelerometer to determine speed and direction of moving a mobile unit (robot on a small map.

  11. MEMS Based Micro Aerial Vehicles

    Science.gov (United States)

    Joshi, Niranjan; Köhler, Elof; Enoksson, Peter

    2016-10-01

    Designing a flapping wing insect robot requires understanding of insect flight mechanisms, wing kinematics and aerodynamic forces. These subsystems are interconnected and their dependence on one another affects the overall performance. Additionally it requires an artificial muscle like actuator and transmission to power the wings. Several kinds of actuators and mechanisms are candidates for this application with their own strengths and weaknesses. This article provides an overview of the insect scaled flight mechanism along with discussion of various methods to achieve the Micro Aerial Vehicle (MAV) flight. Ongoing projects in Chalmers is aimed at developing a low cost and low manufacturing time MAV. The MAV design considerations and design specifications are mentioned. The wings are manufactured using 3D printed carbon fiber and are under experimental study.

  12. Allergy to formaldehyde: basophil histamine-release test is useful for diagnosis.

    Science.gov (United States)

    Tanaka, Yusuke; Nakase, Yuko; Yamaguchi, Masao; Sugimoto, Naoya; Ohara, Kenshin; Nagase, Hiroyuki; Ohta, Ken

    2014-01-01

    We describe a case of formaldehyde-induced urticaria with a positive test result for serum IgE antibody against this substance. Formaldehyde's slow protein-binding property may explain why basophil histamine-release tests using fresh formaldehyde solutions are not diagnostic, whereas the tests are useful if formaldehyde that had been stored with albumin is used.

  13. Shuttle-like ZnO nano/microrods: Facile synthesis, optical characterization and high formaldehyde sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lexi [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Road 27, Taiyuan 030001, Shanxi (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhao Jianghong, E-mail: zjh_sx@sxicc.ac.cn [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Road 27, Taiyuan 030001, Shanxi (China); Zheng Jianfeng; Li Li [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Road 27, Taiyuan 030001, Shanxi (China); Zhu Zhenping, E-mail: zpzhu@sxicc.ac.cn [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Road 27, Taiyuan 030001, Shanxi (China)

    2011-11-01

    Shuttle-like ZnO nano/microrods were successfully synthesized via a low temperature (80 deg. C), 'green' (without any organic solvent or surfactant) and simple hydrothermal process in the solution of zinc chloride and ammonia water. X-ray diffraction and Raman spectroscopy indicated that the ZnO nano/microrods are a well-crystallized hexagonal wurtzite structure. Yet photoluminescence analysis showed that abundant intrinsic defects (52.97% electron donor defects and 45.49% electron acceptor defects) exist on the surface of ZnO crystals. Gas sensors based on the shuttle-like ZnO nano/microrods exhibited high sensitivity, rapid response-recovery and good selectivity to formaldehyde in the range of 10-1000 ppm at an optimum operating temperature of 400 deg. C. Through applying linear fitting to the plot of sensitivity versus formaldehyde concentration in logarithmic forms, the chemisorbed oxygen species on the ZnO surface were found to be O{sup 2-} (highly active among O{sub 2}, O{sub 2}{sup -} and O{sup -} species). Notably, formaldehyde can be easily distinguished from acetaldehyde with a selectivity of about 3. The high formaldehyde sensitivity is mainly attributed to the synergistic effect of abundant electron donor defects (52.97%) and highly active oxidants (surface adsorbed O{sup 2-} species) co-existed on the surfaces of ZnO.

  14. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    Science.gov (United States)

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  15. Effect of Relative Humidity on Adsorption of Formaldehyde on Modified Activated Carbons%相对湿度对甲醛在改性活性炭上吸附的影响

    Institute of Scientific and Technical Information of China (English)

    李晶; 李忠; 刘冰; 夏启斌; 奚红霞

    2008-01-01

    This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carried out by impregnating activated carbon with organosilane/methanol-containing solutions. The breakthrough curves of formaldehyde in the packed beds of original and modified activated carbons were measured, respectively, at relative humidity of 30%, 60%, and 80%. Temperature-programmed desorption (TPD) experiments were used to estimate the activation energy for desorption of formaldehyde from the activated carbon. Results showed that the relative humidity had strongly influence on breakthrough curves of formaldehyde in the packed beds. The higher the relative humidity of gas mixtures through the packed beds was, the smaller the breakthrough time of formaldehyde became. The use of organosilane compounds to modify surfaces of the activated carbon can enhance the interaction between formaldehyde and the surfaces, and as a result, the breakthrough times of formaldehyde in the packed beds of the modified activated carbon were longer than that in the packed bed of the unmodified activated carbon.

  16. Kinetic temperature of massive star forming molecular clumps measured with formaldehyde

    CERN Document Server

    Tang, X D; Menten, K M; Zheng, X W; Esimbek, J; Zhou, J J; Yeh, C C; König, C; Yuan, Y; He, Y X; Li, D L

    2016-01-01

    For a general understanding of the physics involved in the star formation process, measurements of physical parameters such as temperature and density are indispensable. The chemical and physical properties of dense clumps of molecular clouds are strongly affected by the kinetic temperature. Therefore, this parameter is essential for a better understanding of the interstellar medium. Formaldehyde, a molecule which traces the entire dense molecular gas, appears to be the most reliable tracer to directly measure the gas kinetic temperature.We aim to determine the kinetic temperature with spectral lines from formaldehyde and to compare the results with those obtained from ammonia lines for a large number of massive clumps.Three 218 GHz transitions (JKAKC=303-202, 322-221, and 321-220) of para-H2CO were observed with the 15m James Clerk Maxwell Telescope (JCMT) toward 30 massive clumps of the Galactic disk at various stages of high-mass star formation. Using the RADEX non-LTE model, we derive the gas kinetic temp...

  17. INSTRUCTIONS FOR OPERATING LBL FORMALDEHYDE SAMPLER

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, L.Z.; Allen, J.R.; Miksch, R.R.

    1981-09-01

    The LBL formaldehyde sampler consists of two parts: 1) a pump box and 2) a small refrigerator housing sampling bubblers. The pump box contains two pumps, a timer, a flow controller, an electrical cord, and a ten-foot piece of tubing to connect the refrigerator to the pump box. The small refrigerator contains four columns of bubbler sampling trains attached to a metal plate. Two sampling trains each are plumbed in parallel to two sampling ports on the back of the refrigerator. The two sampling lines supplied are to be attached to these ports to allow two locations to be sampled at once (usually one indoor and one outdoor). The refrigerator also contains a rack for holding bubbler tubes. In the sampling process, air is drawn through a sampling line attached to the fitting at the back of the refrigerator and into a prlmary bubbler containing a trapping solution. This trapping solution can be distilled water or an aqueous solution of some compound that reacts with formaldehyde. From this bubbler the air goes through a second bubbler containing the same trapping solution as the first bubbler. (To maintain sample integrity, all parts that the air sample contacts are made of Teflon, polypropylene, and stainless steel.) The air then goes into the third bubbler, which contains no liquid. This bubbler contains a hypodermic needle that serves as a flow-control orifice. The hypodermic needle, in conjunction with the flow controller in the pump box, ensures a constant a flow rate. The refrigerator contains four columns of these sets of three bubblers. After samples have been collected, the bubbler bottoms are detached and the contents of the first and second bubblers in each column are poured together, capped, and labeled. The use of a refrigerated primary and secondary bubbler whose contents are combined at the end of a sampling period ensures 95% collection efficiency. After the bubbler tubes are capped and labeled, they are stored either in the rack supplied in the

  18. Chromatographic zinc isotope separation by phenol formaldehyde benzo crown resin.

    Science.gov (United States)

    Ding, Xingcheng; Nomura, Masao; Suzuki, Tatsuya; Sugiyama, Yuichi; Kaneshiki, Toshitaka; Fujii, Yasuhiko

    2006-04-28

    New types of phenol formaldehyde resin having benzo crown as a functional group were synthesized and applied to zinc isotope chromatographic operation. Zinc adsorption and isotope separation capacities were dramatically improved by using phenol formaldehyde benzo-15-crown-5 resin. Zinc batch adsorption tests were performed by various dehydrated organic solvents. Separation coefficient, epsilon 8.1 x 10(-4) and height equivalent to a theoretical plate (HETP) 0.105 cm for the isotopic pair of 68Zn/64Zn in phenol formaldehyde benzo-15-crown-5 resin were obtained in the case of acetone as the solvent at 298+/-1K.

  19. Sorption properties of porous melamine formaldehyde resins

    Science.gov (United States)

    Deryło-Marczewska, Anna; Goworek, Jacek; Kusak, Ryszard; Zgrajka, Wojciech

    2002-07-01

    Three types of melamine-formaldehyde porous sorbents were synthesized by using the fumed silica as an inorganic template. The changes in polymerization conditions lead to a differentiation of the porosity and surface area of these materials. This synthesis allowed preparing the materials of narrow pore size distributions with pore sizes over the range 2.8-6.8 nm, and specific surface areas up to 250 m 2/g. The analysis of pore structure was based on the comparison of nitrogen adsorption isotherms on a given porous sorbent and a standard nonporous polymer. Additionally the measurements of thermal stability and swelling of synthesized polymers were made. Adsorption of organic substances from aqueous solutions on porous polymers was also investigated.

  20. Characterisation of GOME-2 formaldehyde retrieval sensitivity

    Directory of Open Access Journals (Sweden)

    W. Hewson

    2012-09-01

    Full Text Available Formaldehyde (HCHO is an important tracer of tropospheric photochemistry, whose slant column abundance can be retrieved from satellite measurements of solar backscattered UV radiation, using differential absorption retrieval techniques. In this work a spectral fitting sensitivity analysis is conducted on HCHO slant columns retrieved from the Global Ozone Monitoring Experiment 2 (GOME-2 instrument. Despite quite different spectral fitting approaches, the retrieved HCHO slant columns have geographic distributions that generally match expected HCHO sources, though the slant column magnitudes and corresponding uncertainties are particularly sensitive to the retrieval set-up. The choice of spectral fitting window, polynomial order, I0 correction, and inclusion of minor absorbers tend to have the largest impact on the fit residuals. However, application of a reference sector correction using observations over the remote Pacific Ocean, is shown to largely homogenise the resulting HCHO vertical columns, thereby largely reducing any systematic erroneous spectral fitting.

  1. Low-power formaldehyde detector for space applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trace contamination of the International Space Station (ISS) by formaldehyde?a known carcinogen? is a significant potential threat to crew health. The spacecraft...

  2. Low-Power Formaldehyde Detector for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trace contamination of the International Space Station (ISS) by formaldehyde -- a known carcinogen -- is a significant threat to crew health. The spacecraft maximum...

  3. Formaldehyde Profiler Using Laser Induced Fluorescence Technique Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Formaldehyde (HCHO) is of great interest to atmospheric scientists in NASA and other research institutions. In this SBIR project, we propose to build an airborne or...

  4. Preparation of phenol formaldehyde resin from phenolated wood

    Institute of Scientific and Technical Information of China (English)

    LIGai-yun; QINTe-fu; TohmuraShin-ichiro; IkedaAtsushi

    2004-01-01

    The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60±2)℃ for lh and then was heated to (85±2)℃ for lh. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.

  5. Formaldehyde Profiler Using Laser Induced Fluorescence Technique Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Formaldehyde (HCHO) is a key trace species that is of great interest to atmospheric scientists in NASA and other research institutions. In this SBIR project, we...

  6. Formaldehyde Surface Distributions and Variability in the Mexico City Basin

    Science.gov (United States)

    Junkermann, W.; Mohr, C.; Steinbrecher, R.; Ruiz Suarez, L.

    2007-05-01

    Formaldehyde ambient air mole fractions were measured throughout the dry season in March at three different locations in the Mexico City basin. The continuously running instruments were operated at Tenago del Aire, a site located in the Chalco valley in the southern venting area of the basin, at the Intituto Mexicano del Petroleo (IMP) in the northern part of the city and about 30 km north of the city at the campus of the Universidad Tecnològica de Tecamac (UTTEC). The technique used is the Hantzsch technology with a time resolution of 2 minutes and a detection limit of 100 ppt. Daily maxima peaked at 35 ppb formaldehyde in the city and about 15 to 20 ppb at the other sites. During night formaldehyde levels dropped to about 5 ppb or less. It is evident that the observed spatial and temporal variability in near surface formaldehyde distributions is strongly affected by local and regional advection processes.

  7. Designing, construction, assessment, and efficiency of local exhaust ventilation in controlling crystalline silica dust and particles, and formaldehyde in a foundry industry plant.

    Science.gov (United States)

    Morteza, Mortezavi Mehrizi; Hossein, Kakooi; Amirhossein, Matin; Naser, Hasheminegad; Gholamhossein, Halvani; Hossein, Fallah

    2013-01-01

    The purpose of the present study was to design and assess the efficiency of a local exhaust ventilation system used in a foundry operation to control inhalable dust and particles, microcrystal particles, and noxious gases and vapours affecting workers during the foundry process. It was designed based on recommendations from the American Conference of Governmental Industrial Hygiene. After designing a local exhaust ventilation system (LEV), we prepared and submitted the implementation plan to the manufacturer. High concentrations of crystalline silica dust and formaldehyde, which are common toxic air pollutants in foundries, were ultimately measured as an indicator for studying the efficiency of this system in controlling inhalable dust and particles as well as other air pollutants. The level of occupational exposure to silica and formaldehyde as major air pollutants was assessed in two modes: first, when the LEV was on, and second, when it was off. Air samples from the exposure area were obtained using a personal sampling pump and analysed using the No. 7601 method for crystal silica and the No. 2541 method for formaldehyde of the National Institute for Occupational Safety and Health (NIOSH). Silica and formaldehyde concentrations were determined by visible absorption spectrophotometry and gas chromatography. The results showed that local exhaust ventilation was successful in preserving the crystal silica particles in the work environment at a level below the NIOSH maximum allowed concentration (0.05 mg m-3). In contrast, formaldehyde exceeded the NIOSH limit (1 ppm or 1.228 mg m-3).

  8. Formaldehyde Five-Day Passive Chemical Dosimeter Badge Validation Study

    Science.gov (United States)

    2012-11-30

    DNPH-cartridges. ............................... 7 Figure 8 Example of commercially available packed granular potassium iodide (KI) ozone scrubber...Example of commercially available packed granular potassium iodide (KI) ozone scrubber. Figure 9 Example of configuration of a single-port carbonyl...formaldehyde vapor stream. Formaldehyde-DNPH at 500 µg/mL (as aldehyde) in acetonitrile was purchased from Cerilliant Corporation, Round Rock, TX. Potassium

  9. Organocatalytic Removal of Formaldehyde Adducts from RNA and DNA Bases

    OpenAIRE

    2015-01-01

    Formaldehyde is universally employed to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffer...

  10. Formaldehyde-releasers in cosmetics : relationship to formaldehyde contact allergy Part 1. Characterization, frequency and relevance of sensitization, and frequency of use in cosmetics

    NARCIS (Netherlands)

    de Groot, Anton C.; White, Ian R.; Flyvholm, Mari-Ann; Lensen, Gerda; Coenraads, Pieter-Jan

    2010-01-01

    In this part of a series of review articles on formaldehyde-releasers and their relationship to formaldehyde contact allergy, formaldehyde-releasers in cosmetics are discussed. In this first part of the article, key data are presented including frequency of sensitization and of their use in cosmetic

  11. Formaldehyde-releasers in cosmetics : relationship to formaldehyde contact allergy Part 1. Characterization, frequency and relevance of sensitization, and frequency of use in cosmetics

    NARCIS (Netherlands)

    de Groot, Anton C.; White, Ian R.; Flyvholm, Mari-Ann; Lensen, Gerda; Coenraads, Pieter-Jan

    2010-01-01

    In this part of a series of review articles on formaldehyde-releasers and their relationship to formaldehyde contact allergy, formaldehyde-releasers in cosmetics are discussed. In this first part of the article, key data are presented including frequency of sensitization and of their use in cosmetic

  12. Formaldehyde-releasers in cosmetics : relationship to formaldehyde contact allergy Part 1. Characterization, frequency and relevance of sensitization, and frequency of use in cosmetics

    NARCIS (Netherlands)

    de Groot, Anton C.; White, Ian R.; Flyvholm, Mari-Ann; Lensen, Gerda; Coenraads, Pieter-Jan

    2010-01-01

    In this part of a series of review articles on formaldehyde-releasers and their relationship to formaldehyde contact allergy, formaldehyde-releasers in cosmetics are discussed. In this first part of the article, key data are presented including frequency of sensitization and of their use in

  13. CAT Activity Changes of Several Gardening Plants under Formaldehyde Stress%甲醛胁迫条件下几种园艺植物过氧化氢酶活性变化的研究

    Institute of Scientific and Technical Information of China (English)

    刘皓; 王立晖; 吕春晖; 安娜

    2015-01-01

    Formaldehyde is one of the main pollutants in indoor air. Long time inhalation of formaldehyde gas would cause conjunctivitis,asthma,bronchitis and allergic diseases. Previous researches indicate that in case of deliquescence by heat,interior decoration materials will release formaldehyde gas. This paper analyzes CAT activity changes of Epipremnum aureum,Chlorophytum,Sansevieria,ivy and aloe under the stress of saturated formaldehyde. In the experiment,the damage mechanism of formaldehyde on plants was explored through saturated formaldehyde fumigation treatment and con-tinuous tracking and determination of CAT activities and change laws under the stress of formaldehyde. The results showed that Epipremnum aureum and Chlorophytum reveal strong tolerance to formaldehyde with CAT activities maintaining a high level.%甲醛是室内空气的主要污染物之一,人体长时间吸入甲醛气体,可以引发结膜炎、咽喉炎、哮喘、支气管炎和变态反应性疾病。经过研究发现,室内装修材料遇热潮解时都会释放出甲醛气体。实验针对绿萝、吊兰、虎皮兰、常春藤和芦荟等植物,在饱和的甲醛胁迫条件下,分析植物 CAT 活性变化,探索甲醛对植物的伤害机理,进行饱和甲醛熏蒸处理,持续跟踪和测定甲醛胁迫下植物 CAT 活性及变化规律。结果表明,绿萝和吊兰对甲醛的耐受性较强,CAT 活性始终维持在较高水平。

  14. Formaldehyde in dentistry: a review of mutagenic and carcinogenic potential

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.B.; Chestner, S.B.

    1981-09-01

    For many years there has been controversy over the value of antimicrobial drugs for intracanal dressings in endodontics. Formocresol, a formaldehyde compound, has evolved as the preferred drug for routine endodontic procedures, as well as pediatric endodontics. The increase in the use of formaldehyde has been complicated by the introduction of paraformaldehyde pastes for filling root canals. Neither of these formulas has ever been standardized. The doses are arbitrary, and the common dose of formocresol has been shown to be many times greater than the minimum dose needed for effect. The efficacy of paraformaldehyde pastes is questionable and remains clouded by inconclusive evidence, conflicting research, inadequate terminology, and a lack of convincing statistical evidence. The clinical use and delivery of formocresol and paraformaldehyde pastes remain arbitrary and unscientific. Formaldehyde has a known toxic mutagenic and carcinogenic potential. Many investigations have been conducted to measure the risk of exposure to formaldehyde; it is clear that formaldehyde poses a carcinogenic risk in humans. There is a need to reevaluate the rationale underlying the use of formaldehyde in dentistry particularly in light of its deleterious effects.

  15. Formaldehyde biodegradation and its effect on the denitrification process.

    Science.gov (United States)

    Eiroa, M; Vilar, A; Kennes, C; Veiga, M C

    2007-09-01

    Simultaneous formaldehyde biodegradation and denitrification in batch assays and in a continuous lab-scale reactor were studied. In batch assays, initial biodegradation rates between 0.7 and 3.3 g CKH2O g VSS(-1) d(-1) were obtained at formaldehyde concentrations between 300 and 2150 mg l(-1). The denitrification process was affected by the presence of formaldehyde. The nitrite accumulation increased with the initial formaldehyde concentration. In the continuous reactor, removal efficiencies above 98.5% were obtained at formaldehyde loading rates between 0.37 and 2.96 kg COD m(-3) d(-1) (625-5000 mg CH2O l(-1)). Formaldehyde removal led to the appearance of methanol and formic acid in the medium. Denitrification process was almost complete (around 99.7%) at nitrogen loading rates up to 0.44 kg N-NO3- m(-3) d(-1). Nitrite occasionally appeared in the effluent at concentrations less than 2.9 mg l(-1). The composition of the biogas indicated that denitrification and methanogenesis occurred simultaneously in the same unit.

  16. Genotoxicity of formaldehyde: Molecular basis of DNA damage and mutation

    Directory of Open Access Journals (Sweden)

    Masanobu eKawanishi

    2014-09-01

    Full Text Available Formaldehyde is commonly used in the chemical industry and is present in the environment, such as vehicle emissions, some building materials, food and tobacco smoke. It also occurs as a natural product in most organisms, the sources of which include a number of metabolic processes. It causes various acute and chronic adverse effects in humans if they inhale its fumes. Among the chronic effects on human health, we summarize data on genotoxicity and carcinogenicity in this review, and we particularly focus on the molecular mechanisms involved in the formaldehyde mutagenesis. Formaldehyde mainly induces N-hydroxymethyl mono-adducts on guanine, adenine and cytosine, and N-methylene crosslinks between adjacent purines in DNA. These crosslinks are types of DNA damage potentially fatal for cell survival if they are not removed by the nucleotide excision repair pathway. In the previous studies, we showed evidence that formaldehyde causes intra-strand crosslinks between purines in DNA using a unique method (Matsuda et al. Nucleic Acids Res. 26, 1769-1774,1998. Using shuttle vector plasmids, we also showed that formaldehyde as well as acetaldehyde induces tandem base substitutions, mainly at 5’-GG and 5’-GA sequences, which would arise from the intra-strand crosslinks. These mutation features are different from those of other aldehydes such as crotonaldehyde, acrolein, glyoxal and methylglyoxal. These findings provide molecular clues to improve our understanding of the genotoxicity and carcinogenicity of formaldehyde.

  17. Optoelectronics and formaldehyde sensing properties of tin-doped ZnO thin films

    Science.gov (United States)

    Prajapati, C. S.; Kushwaha, Ajay; Sahay, P. P.

    2013-11-01

    Sn-doped ZnO thin films were deposited on clean glass substrates using the chemical spray pyrolysis technique. XRD analyses confirm stable ZnO hexagonal wurtzite structure of the films with crystallite size in the range of 20-28 nm. The surface roughness of the films increases on Sn doping, which favors to higher adsorption of oxygen species on the film surface, resulting in higher gas response. Optical studies reveal that the band gap decreases on Sn doping. All the films show near band edge emission, and on Sn doping the luminescence peak intensity has been found to increase. Photocurrent in the 1.5 at.% doped film enhances about three times to that observed in the undoped ZnO film. Among all the films examined, the 1.5 at.% Sn-doped film exhibits the maximum response (˜94.5 %) at the operating temperature of 275 °C for 100 ppm concentration of formaldehyde, which is much higher than the response (˜35 %) in the undoped film. The gas response of the film is attributed to the chemisorption of oxygen on the film surface and the subsequent reaction between the adsorbed oxygen species and the formaldehyde molecules.

  18. Ethylated Urea - Ether - Modified Urea - Formaldehyde Resins,

    Directory of Open Access Journals (Sweden)

    Mathew Obichukwu EDOGA

    2006-07-01

    Full Text Available First, phenol - formaldehyde (PF and urea - formaldehyde (UFII resins were separately conventionally prepared in our laboratory. Also, UF resin synthesized from the acid modified synthesis procedure was synthesized in a purely acid medium of pH 1.0, FU molar ratio of 1.0 and at 50oC (one-stage acid modified-synthesis procedure. Subsequently, the UF resin II was modified during synthesis by incorporating ethylated urea-ether (EUER (i.e. UFIII and glycerol (GLYC (i.e. UFV cured with and without acid curing agent. The structural and physicochemical analyses of the various resin samples were carried out.The results showed that the unmodified UF resin (UF II synthesized in acid medium of pH 1.0, F/U molar ratio 1.0, and at 50oC, cured in absence of acid curing catalyst, showed features in their spectra which are consistent with a tri-, and/or tetra-substituted urea in the reaction to give a 3 - dimensional network cured UF resin. Modification of the UF resin(UF II with ethylated urea-ether and glycerol to produce UF resins III and respectively V prominently increased the absorbance of methylene and ether groups in the spectra which are consistent with increased hydrophobicity and improved hydrolytic stability. For the conventional UF resin (UF I, the only clear distinction between spectra for the UF resin II and UF resins (III/V is the presence of diminished peaks for methylene groups at 2.2 ppm. The relationship between the logarithmic viscosity of cured PF resin with time showed continuos dependence of viscosity with time during cure up to 70 minutes. Similar trends were shown by UF resins (III/V, cured in absence of acid catalyst. In contrast, the conventional UF resins I and UF IV (i.e. UF II cured with NH4CL showed abrupt discontinuity in viscosity with time just after about 20 minutes of cure.

  19. Effect of formaldehyde inactivation on poliovirus.

    Science.gov (United States)

    Wilton, Thomas; Dunn, Glynis; Eastwood, David; Minor, Philip D; Martin, Javier

    2014-10-01

    Inactivated polio vaccines, which have been used in many countries for more than 50 years, are produced by treating live poliovirus (PV) with formaldehyde. However, the molecular mechanisms underlying virus inactivation are not well understood. Infection by PV is initiated by virus binding to specific cell receptors, which results in viral particles undergoing sequential conformational changes that generate altered structural forms (135S and 80S particles) and leads to virus cell entry. We have analyzed the ability of inactivated PV to bind to the human poliovirus receptor (hPVR) using various techniques such as ultracentrifugation, fluorescence-activated cell sorting flow cytometry and real-time reverse transcription-PCR (RT-PCR). The results showed that although retaining the ability to bind to hPVR, inactivated PV bound less efficiently in comparison to live PV. We also found that inactivated PV showed resistance to structural conversion in vitro, as judged by measuring changes in antigenicity, the ability to bind to hPVR, and viral RNA release at high temperature. Furthermore, viral RNA from inactivated PV was shown to be modified, since cDNA yields obtained by RT-PCR amplification were severely reduced and no infectious virus was recovered after RNA transfection into susceptible cells. Importance: This study represents a novel insight into the molecular mechanisms responsible for poliovirus inactivation. We show that inactivation with formaldehyde has an effect on early steps of viral replication as it reduces the ability of PV to bind to hPVR, decreases the sensitivity of PV to convert to 135S particles, and abolishes the infectivity of its viral RNA. These changes are likely responsible for the loss of infectivity shown by PV following inactivation. Techniques used in this study represent new approaches for the characterization of inactivated PV products and could be useful in developing improved methods for the production and quality control testing of

  20. Formaldehyde molecule adsorbed on doped graphene: A first-principles study

    Science.gov (United States)

    Liu, Xu-Ying; Zhang, Jian-Min

    2014-02-01

    Adsorption of formaldehyde (H2CO) on B-, N-, Si-, Al-, Cr-, Mn-, and Au-doped graphene was theoretically studied using first-principles approach based on density functional theory in order to exploit their potential applications as H2CO gas sensors. The electronic and magnetic properties of the graphene-molecule adsorption adducts are strongly dependent on the dopants. H2CO molecule is adsorbed weakly on B- and N-doped graphene; in general, strong chemisorption is observed on Si-, Al-, Cr-, Mn-, and Au-doped graphene. The most stable adsorption geometries, adsorption energies, magnetic moments, charge transfers, and density of states of these systems are thoroughly discussed. This work reveals that the sensitivity of graphene-based chemical gas sensors for H2CO can be drastically improved by introducing appropriate dopant. Al and Mn are found to be the best choices among all the dopants.

  1. Formaldehyde molecule adsorbed on doped graphene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xu-Ying; Zhang, Jian-Min, E-mail: jianm_zhang@yahoo.com

    2014-02-28

    Adsorption of formaldehyde (H{sub 2}CO) on B-, N-, Si-, Al-, Cr-, Mn-, and Au-doped graphene was theoretically studied using first-principles approach based on density functional theory in order to exploit their potential applications as H{sub 2}CO gas sensors. The electronic and magnetic properties of the graphene-molecule adsorption adducts are strongly dependent on the dopants. H{sub 2}CO molecule is adsorbed weakly on B- and N-doped graphene; in general, strong chemisorption is observed on Si-, Al-, Cr-, Mn-, and Au-doped graphene. The most stable adsorption geometries, adsorption energies, magnetic moments, charge transfers, and density of states of these systems are thoroughly discussed. This work reveals that the sensitivity of graphene-based chemical gas sensors for H{sub 2}CO can be drastically improved by introducing appropriate dopant. Al and Mn are found to be the best choices among all the dopants.

  2. THE PHOTODISSOCIATION OF FORMALDEHYDE IN COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Paul D., E-mail: pfeldman@jhu.edu [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States)

    2015-10-20

    Observations of comets in the 905–1180 Å spectral band made with the Far Ultraviolet Spectroscopic Explorer in 2001 and 2004 show unusual features in the fluorescent emissions of CO and H{sub 2}. These include emission from a non-thermal high-J rotational population of CO and solar Lyα induced fluorescence from excited vibrational levels of H{sub 2}, both of which are attributed to the photodissociation of formaldehyde. In this paper we model the large number of observed H{sub 2} lines and demonstrate the dependence of the pumping on the heliocentric velocity of the comet and the solar line profiles. We also derive the rotational and vibrational populations of H{sub 2} and show that they are consistent with the results of laboratory studies of the photodissociation of H{sub 2}CO. In addition to the principal series of H i and O i, the residual spectrum is found to consist mainly of the Rydberg series of C i multiplets from which we derive the mean carbon column abundance in the coma. Fluorescent emissions from N i and N{sub 2} are also searched for.

  3. Characterisation of GOME-2 formaldehyde retrieval sensitivity

    Directory of Open Access Journals (Sweden)

    W. Hewson

    2013-02-01

    Full Text Available Formaldehyde (CH2O is an important tracer of tropospheric photochemistry, whose slant column abundance can be retrieved from satellite measurements of solar backscattered UV radiation, using differential absorption retrieval techniques. In this work a spectral fitting sensitivity analysis is conducted on CH2O slant columns retrieved from the Global Ozone Monitoring Experiment 2 (GOME-2 instrument. Despite quite different spectral fitting approaches, the retrieved CH2O slant columns have geographic distributions that generally match expected CH2O sources, though the slant column magnitudes and corresponding uncertainties are particularly sensitive to the retrieval set-up. The choice of spectral fitting window, polynomial order, I0 correction, and inclusion of minor absorbers tend to result in the largest modulations of retrieved slant column magnitude and fit quality. However, application of a reference sector correction using observations over the remote Pacific Ocean is shown to largely homogenise the resulting CH2O vertical columns obtained with different retrieval settings, thereby largely reducing any systematic error sources from spectral fitting.

  4. Fe/SiO2 catalysts for the selective oxidation of methane to formaldehyde

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Guerrero Fajardo

    2010-04-01

    Full Text Available Selective oxidation of methane to formaldehyde was analysed with iron catalysts supported on silica prepared by the sol-gel method, leading to obtaining a large support surface area facilitating high dispersion of iron on silica’s amorphous surface. Seven catalysts were prepared; one of them corresponded to the silica support and another five having an iron load 0.1-0.5% in weight. Catalyst 7 (0.5% Fe in weight was prepared with neutral pH control and had the most homogeneous characteristics since it did not present isolated iron species, corroborated by SEM and TEM analysis. The highest BET areas were 1,757 and 993 m2.g-1 for 0.5% Fe catalysts, having an average 36% microporosity and 43% mesoporosity. X-ray diffraction confirmed the catalyst’s amorphous structure. Catalytic activity was carried out with catalyser 7 at atmospheric pressure in a quartz reactor using a CH /0 /N =7.5/1/4 reaction mixture at 400-750°C temperature 4 2 2 range. Reaction products were analysed by gas chromatography with TCD. The heterogeneous catalysts displayed greater methane conversion (but with methanol selectivity whereas homogenous catalyst 7 gave better results regarding formaldehyde. The highest conversion percentage (8.60% mol for catalyser 7 was presented at 650°C. Formaldehyde selectivity was 50% mol in the 600-650°C range and maximum yield (0.31g HCH0/Kg catalyst was found in this range; it was thus considered that 650°C for the reaction was thereby the best operating temperature.

  5. Ambient measurement of ammonia and formaldehyde: Open path vs. extractive approach.

    Science.gov (United States)

    Rajamäki, Timo

    2017-04-01

    Ammonia NH3 and formaldehyde CH2O are some of the most critical chemicals for air quality. Reliable online measurement of these gases is one of the key operations for air quality and safety monitoring, in indoor, outdoor and process applications alike. Ammonia and formaldehyde are reactive compounds and they are harmful, even in very low ppb level concentrations. This means challenges for measurement system in all of its critical aspects: sampling, calibration and sensitivity. We are applying techniques so far successfully used to measure reactive inorganic compounds like ammonia NH3 and hydrogen fluoride HF to tackle these challenges. Now a novel setup based on direct laser absorption with cavity enhancement employing fundamental vibration level excitations of ammonia and formaldehyde molecules is constructed in connection with new mechanics and algorithms optimized for gas exchange and sampling in the case of these reactive molecules easily sticking to surfaces. An aberration corrected multipass sample cell in vacuum pressure is used in parallel with an open path multipass setup. The CH2O and NH3 calibration gases necessary for system calibration are dynamically generated using traceable standards and components. We compare these two approaches with special emphasis on the system's response time, robustness, sensitivity, usability in field conditions, maintenance need and long term stability. A further coal is to enable the use of the same setups also for simultaneous measurement of other reactive compounds often encountered in air quality monitoring. This would make possible more comprehensive and also economic monitoring of these compounds with a single device.

  6. On-line gaseous formaldehyde detection by a microfluidic analytical method based on simultaneous uptake and derivatization in a temperature controlled annular flow.

    Science.gov (United States)

    Guglielmino, Maud; Bernhardt, Pierre; Trocquet, Claire; Serra, Christophe A; Le Calvé, Stéphane

    2017-09-01

    This paper is focused on the improvement of a microfluidic analytical method for the detection of low airborne formaldehyde concentrations, based on only two distinct steps permitting to reduce the response time and to improve the compactness of the device. First, gaseous formaldehyde is trapped into an acetylacetone solution at 65°C through an annular liquid/gas flow and reacts immediately to form 3,5-Diacetyl-1,4-dihydrolutidine which is then quantified by colorimetry using a liquid core waveguide (LCW). To obtain an annular flow, 3 different hydrophilic silica capillaries of 320, 450 and 530µm ID were tested and the corresponding phase diagrams were obtained in the ranges of liquid and gas flows of 5-35µLmin(-1) and 5-35mLmin(-1) respectively. Finally, the analytical performances were determined using the lowest flow values of 5µLmin(-1) and 5NmLmin(-1), ensuring an annular flow and increasing the microdevice autonomy. If the uptake yield of gaseous formaldehyde into the solution was close to 100%, only the 530µm ID capillary permits to obtain a reaction time long enough for a full conversion of formaldehyde into 3,5-Diacetyl-1,4-dihydrolutidine. With a LCW pathlength of 5cm, the microdevice response was perfectly linear in the range 0-154µgm(-3) with a detection limit of 1.8µgm(-3). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Removal of indoor formaldehyde over CMK-8 adsorbents.

    Science.gov (United States)

    Yu, Mi Jin; Kim, Ji Man; Park, Sung Hoon; Jeon, Jong-Ki; Park, Joonhong; Park, Young-Kwon

    2013-04-01

    CMK-8, a mesoporous carbon material, was activated using different methods for the adsorption of low-concentration airborne formaldehyde. KOH and ammonia treatments were used to activate CMK-8. A CMK-8 sample was treated with KOH first followed by an ammonia-treatment at 700 degrees C to determine the effect of a combination of the two treatment methods. The adsorbents prepared were characterized by X-ray diffraction, N2 adsorption-desorption and X-ray photoelectron spectroscopy. The KOH treatment increased the concentration of oxygen functional groups, whereas the ammonia-treatment generated a significant amount of nitrogen functional groups. The formaldehyde adsorption efficiency was highest when both KOH- and ammonia-treatments were applied to CMK-8. The ammonia-treated CMK-8 exhibited higher formaldehyde adsorption ability than the KOH-treated one, whereas non-activated CMK-8 showed the lowest formaldehyde adsorption efficiency. The number of nitrogen functional groups and the specific surface area appeared to significantly affect the formaldehyde adsorption capability of the adsorbents, whereas oxygen functional groups played a less important role.

  8. Assessing Satellite Column Observation of Formaldehyde over Continental United States

    Science.gov (United States)

    Pour Biazar, A.; White, A.; Khan, M. N.; McNider, R. T.

    2016-12-01

    The advent of satellite observation of trace gases has provided valuable information for better understanding of chemical atmosphere. One of these products, satellite observation of column formaldehyde, can be especially valuable in air quality studies. Since photochemical production of formaldehyde constitutes a large portion of summertime atmospheric concentration, satellite observations can be used to constraint the uncertainties in primary aldehyde emissions. In particular, isoprene as the major precursor of formaldehyde in most areas during summer, contributes 20-60% of total production. However, the magnitude of this contribution is spatially variable. Therefore, in comparing model column formaldehyde to that of the satellite, environmental factors affecting this variation must agree with observations. In this study, first we correct the radiation field used in the model for estimating emissions of biogenic volatile organic compounds (BVOC). Then by performing photochemical simulations for the summer of 2013, model formaldehyde field will be compared to that of satellite observed. WRF/SMOKE/CMAQ modeling system is being used for these simulations. The model simulations use satellite-based estimates of photosynthetically active radiation (PAR) in BVOC emission estimates produced by the latest version of biogenic emission inventory system (BEIS). The results for the period of August-September 2013 (NASA's Discover-AQ field campaign) will be presented.

  9. Formaldehyde as a basis for residential ventilation rates

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, M.H.; Hodgson, A.T.

    2002-04-28

    Traditionally, houses in the U.S. have been ventilated by passive infiltration in combination with active window opening. However in recent years, the construction quality of residential building envelopes has been improved to reduce infiltration, and the use of windows for ventilation also may have decreased due to a number of factors. Thus, there has been increased interest in engineered ventilation systems for residences. The amount of ventilation provided by an engineered system should be set to protect occupants from unhealthy or objectionable exposures to indoor pollutants, while minimizing energy costs for conditioning incoming air. Determining the correct ventilation rate is a complex task, as there are numerous pollutants of potential concern, each having poorly characterized emission rates, and poorly defined acceptable levels of exposure. One ubiquitous pollutant in residences is formaldehyde. The sources of formaldehyde in new houses are reasonably understood, and there is a large body of literature on human health effects. This report examines the use of formaldehyde as a means of determining ventilation rates and uses existing data on emission rates of formaldehyde in new houses to derive recommended levels. Based on current, widely accepted concentration guidelines for formaldehyde, the minimum and guideline ventilation rates for most new houses are 0.28 and 0.5 air changes per hour, respectively.

  10. Systematic review of the epidemiology literature on formaldehyde and cancers of the upper respiratory tract

    Science.gov (United States)

    Background: EPA is currently drafting a Toxicological Review of formaldehyde. As part of the comprehensive evaluation of potential hazards associated with exposure to formaldehyde, the potential hazards for cancers of the upper respiratory tract are being evaluated. We are aware ...

  11. Systematic review of the epidemiology literature on formaldehyde and lymphohematopoietic cancers

    Science.gov (United States)

    Background: EPA is currently drafting a Toxicological Review of formaldehyde. As part of the comprehensive evaluation of potential hazards associated with exposure to formaldehyde, the potential hazards for lymphohematopoietic cancers are being evaluated. We are aware of multiple...

  12. Satellite measurements of formaldehyde from shipping emissions

    Directory of Open Access Journals (Sweden)

    T. Marbach

    2009-04-01

    Full Text Available International shipping is recognized as a pollution source of growing importance, in particular in the remote marine boundary layer. Nitrogen dioxide originating from ship emissions has previously been detected in satellite measurements. This study presents the first satellite measurements of formaldehyde (HCHO linked to shipping emissions as derived from observations made by the Global Ozone Monitoring Experiment (GOME instrument.

    We analyzed enhanced HCHO tropospheric columns from shipping emissions over the Indian Ocean between Sri Lanka and Sumatra. This region offers good conditions in term of plume detection with the GOME instrument as all ship tracks follow a single narrow track in the same east-west direction as used for the GOME pixel scanning. The HCHO signal alone is weak but could be clearly seen in the high-pass filtered data. The line of enhanced HCHO in the Indian Ocean as seen in the 7-year composite of cloud free GOME observations clearly coincides with the distinct ship track corridor from Sri Lanka to Indonesia. The observed mean HCHO column enhancement over this shipping route is about 2.0×1015 molec/cm2.

    The observed HCHO pattern also agrees qualitatively well with results from the coupled earth system model ECHAM5/MESSy applied to atmospheric chemistry (EMAC. However, the modelled HCHO values over the ship corridor are two times lower than in the GOME high-pass filtered data. This might indicate that the used emission inventories are too low and/or that the in-plume chemistry taking place in the narrow path of the shipping lanes are not well represented at the rather coarse model resolution.

  13. Performance of Aerobic Sequencing Batch reactor (SBR) for Formaldehyde Removal from Synthetic Wastewater

    OpenAIRE

    2013-01-01

    Background and objectives: Formaldehyde is one of the compounds widely used in various industries; hence, its discharge into the effluent is unavoidable. Exposure to formaldehyde has a significant health effects. To prevent these issues, treatment of wastewater containing formaldehyde is necessary. The purpose of this study was to determine the performance of aerobic sequencing batch reactor (SBR) in removing formaldehyde from wastewater. Methods: We used a SBR having a total volume of 6.1...

  14. Preparation and Characterization of Bio-Oil Modified Urea-Formaldehyde Wood Adhesives

    OpenAIRE

    Ben Li; Ji-Zong Zhang; Xue-Yong Ren; Jian-min Chang; Jin-sheng Gou

    2014-01-01

    Wood-derived bio-oil was used to decrease formaldehyde emissions from urea-formaldehyde (UF) resin during the process of making three-layered plywood. The obtained bio-oil urea formaldehyde (BUF) resins were characterized by their physical, chemical, and mechanical properties (e.g., viscosity, solid content, pH value, shelf life, formaldehyde emissions, and bonding strength), analyzed for their specifications, and characterized with Fourier transform infrared spectroscopy and thermogravimetri...

  15. Degradation of Residual Formaldehyde in Fabric by Photo-catalysis

    Institute of Scientific and Technical Information of China (English)

    YAO Yadong; GUO Xiangli; KANG Yunqing; LI Xieji; CHEN Aizheng; YANG Weizhong; YIN Guangfu

    2008-01-01

    The residual formaldehyde (HCHO) in fabric was degraded using photo-catalysis assisted by the compound catalyst of nano-TiO2 and nano-ZnO. The effects of several factors on the degradation,such as the composing of catalyst, irradiation time, pH value and the H2CHO concentration of the immersed solution were investigated. Results showed that H2CHO of the immersed solution had degraded 93% after 5 h irradiation, and the degradation ratio of formaldehyde could be improved and the aging of the fabric can be avoided with the addition of ZnO nanoparticles and pH value of the immersed-fibric solution. The fabric with residual formaldehyde about 1 800 μg/g can be efficiently treated to satisfy the China National Standard(GB/2912.1-1998) with the photo-catalytic degradation.

  16. Formaldehyde: catalytic oxidation as a promising soft way of elimination.

    Science.gov (United States)

    Quiroz Torres, Jhon; Royer, Sébastien; Bellat, Jean-Pierre; Giraudon, Jean-Marc; Lamonier, Jean-François

    2013-04-01

    Compared to other molecules such as benzene, toluene, xylene, and chlorinated compounds, the catalytic oxidation of formaldehyde has been studied rarely. However, standards for the emission level of this pollutant will become more restrictive because of its extreme toxicity even at very low concentrations in air. As a consequence, the development of a highly efficient process for its selective elimination is needed. Complete catalytic oxidation of formaldehyde into CO2 and H2 O using noble-metal-based catalysts is a promising method to convert this pollutant at room temperature, making this process energetically attractive from an industrial point of view. However, the development of a less expensive active phase is required for a large-scale industrial development. Nanomaterials based on oxides of manganese are described as the most promising catalysts. The objective of this Minireview is to present promising recent studies on the removal of formaldehyde through heterogeneous catalysis to stimulate future research in this topic.

  17. Pressure dependence of the deuterium isotope effect in the photolysis of formaldehyde by ultraviolet light

    Directory of Open Access Journals (Sweden)

    E. J. K. Nilsson

    2010-04-01

    Full Text Available The pressure dependence of the relative photolysis rate of HCHO vs. HCDO has been investigated for the first time, using a photochemical reactor at the University of Copenhagen. The dissociation of HCHO vs. HCDO using a UVA lamp was measured at total bath gas pressures of 50, 200, 400, 600 and 1030 mbar. The products of formaldehyde photodissociation are either H2 + CO (molecular channel or HCO + H (radical channel, and a photolysis lamp was chosen to emit light at wavelengths that greatly favor the molecular channel. The isotope effect in the dissociation, kHCHO/kHCDO, was found to depend strongly on pressure, varying from 1.1 + 0.15/−0.1 at 50 mbar to 1.75±0.10 at 1030 mbar. The results can be corrected for radical channel contribution to yield the kinetic isotope effect for the molecular channel; i.e. the KIE in the production of molecular hydrogen. This is done and the results at 1030 mbar are discussed in relation to previous studies at ambient pressure. In the atmosphere the relative importance of the two product channels changes with altitude as a result of changes in pressure and actinic flux. The study demonstrates that the δD of photochemical hydrogen produced from formaldehyde will increase substantially as pressure decreases.

  18. DFT study of formaldehyde adsorption on vacancy defected graphene doped with B, N, and S

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingxiao [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yuan, Lei; Yang, Xi; Fu, Zhibing; Tang, Yongjian; Wang, Chaoyang [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Hong, E-mail: hongzhang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China)

    2014-08-31

    Highlights: • The existence of vacancy in graphene enhanced the adsorption of H{sub 2}CO molecule. • There was chemical bond forming between H{sub 2}CO molecule and dopants (B, N, and S) in modified graphene. • The adsorption of H{sub 2}CO molecule changed the conductivity of B and S doped defected graphene. - Abstract: The adsorption of formaldehyde (H{sub 2}CO) on modified graphene sheets, combining vacancy and dopants (B, N, and S), was investigated by employing the density functional theory (DFT). It was found that the vacancy-defected graphene was more sensitive to absorb H{sub 2}CO molecule compared with the pristine one. Furthermore, the H{sub 2}CO molecule tended to be chemisorbed on vacancy-defected graphene with dopants, which exhibited larger adsorption energy and net charge transfer than that of one without dopants. The results of partial electronic density of states (PDOS) indicated that the defect-dopant combination effect on the adsorption process was mainly owing to the contribution of the hybridization between dopants and C atoms around the vacancy. We hope our results will be useful for the application of graphene for chemical sensors to detect formaldehyde gas.

  19. Detection of protonated formaldehyde in the prestellar core L1689B

    CERN Document Server

    Bacmann, A; Faure, A

    2016-01-01

    Complex organic molecules (COMs) are detected in many regions of the interstellar medium, including prestellar cores. However, their formation mechanisms in cold (~10 K) cores remain to this date poorly understood. The formyl radical HCO is an important candidate precursor for several O-bearing terrestrial COMs in cores, as an abundant building block of many of these molecules. Several chemical routes have been proposed to account for its formation, both on grain surfaces, as an incompletely hydrogenated product of H addition to frozen-out CO molecules, or in the gas phase, either the product of the reaction between H2CO and a radical, or as a product of dissociative recombination of protonated formaldehyde H2COH+. The detection and abundance determination of H2COH+, if present, could provide clues as to whether this latter scenario might apply. We searched for protonated formaldehyde H2COH+ in the prestellar core L1689B using the IRAM 30m telescope. The H2COH+ ion is unambiguously detected, for the first tim...

  20. Relationship between formaldehyde and quaternium-15 contact allergy. Influence of strength of patch test reactions

    NARCIS (Netherlands)

    de Groot, Anton C.; Blok, Janine; Coenraads, Pieter-Jan

    2010-01-01

    Objectives: To test our hypothesis that patients with stronger patch test reactions to formaldehyde are more likely to react to quaternium-15, attesting to the aetiological role for formaldehyde in such co-reactivity. Methods: Retrospective analysis of all patients patch tested with formaldehyde and

  1. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated...

  2. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject...

  3. 21 CFR 177.1900 - Urea-formaldehyde resins in molded articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Urea-formaldehyde resins in molded articles. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1900 Urea-formaldehyde resins in molded articles. Urea-formaldehyde resins may be safely used as the food-contact...

  4. Study on photocatalytic performance of cerium-graphene oxide-titanium dioxide composite film for formaldehyde removal

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia; Zhang, Quan [The Civil Engineering College of Hunan University, Changsha (China); Lai, Alvin C.K. [Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon (China); Zeng, Liping [Department of Building Engineering of Hunan Institute of Engineering, Xiangtan (China)

    2016-12-15

    In order to degrade in-car formaldehyde gas, graphene oxide (GO), cerium (Ce), and TiO{sub 2} were organically combined by one-step sol-gel method. Then the mixed collosol was coated onto the surface of inorganic glass substrates to form Ce-GO-TiO{sub 2} composite film by way of immersion, coating, and calcinations. The morphology and crystal structure of as-prepared Ce-GO-TiO{sub 2} film were studied by a series of detection techniques. The photocatalytic performance of this film was analyzed by the degradation effect of formaldehyde under simulated sunlight. The results showed that the Ce-GO-TiO{sub 2} film had the inbuilt mesoporous structure in the lamellar stacking with particles. When the doping amount of Ce and GO were 0.4 and 0.2% (mass ratio), the composite film can improve effectively the response to the visible light and its degradation rate for low concentration of formaldehyde was up to 83.8% in simulated sunlight for 7 h, which could be attributed to the co-function of Ce and GO. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    Directory of Open Access Journals (Sweden)

    Z. Li

    2011-07-01

    Full Text Available The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS, and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(±2 dyn cm−1 in pure water and 62(±1 dyn cm−1 in AS solutions. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9 % reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  6. Physicochemical studies on the reaction between formaldehyde and DNA.

    Science.gov (United States)

    FREIFELDER, D; DAVISON, P F

    1963-01-01

    The reaction between formaldehyde and phage T7 DNA has been studied by optical absorbance and sedimentation measurements. Through the course of denaturation, OD(200) and s(20, w) rise; after the attainment of full hyperchromicity the s(20, w) falls sharply, suggesting a decrease in molecular weight. Conditions in which formaldehyde causes cross-linking are defined. Some experimental applications of the denaturation technique are given. Evidence which suggests that preformed single-strand interruptions may exist in phage DNA is briefly discussed.

  7. Physicochemical Studies on the Reaction between Formaldehyde and DNA

    Science.gov (United States)

    Freifelder, David; Davison, Peter F.

    1963-01-01

    The reaction between formaldehyde and phage T7 DNA has been studied by optical absorbance and sedimentation measurements. Through the course of denaturation, OD200 and s20, w rise; after the attainment of full hyperchromicity the s20, w falls sharply, suggesting a decrease in molecular weight. Conditions in which formaldehyde causes cross-linking are defined. Some experimental applications of the denaturation technique are given. Evidence which suggests that preformed single-strand interruptions may exist in phage DNA is briefly discussed. PMID:13959526

  8. Injection Seeded Laser for Formaldehyde Differential Fluorescence Lidar

    Directory of Open Access Journals (Sweden)

    Schwemmer G.

    2016-01-01

    Full Text Available We describe the design and development of an injection seeded Nd:YVO4 laser for use in a differential fluorescence lidar for measuring atmospheric formaldehyde profiles. A high repetition rate Q-switched laser is modified to accept injection seed input to spectrally narrow and tune the output. The third harmonic output is used to excite formaldehyde (HCHO fluorescence when tuned to a HCHO absorption line. Spectral confirmation is made with the use of a photoacoustic cell and grating spectrometer.

  9. Chemical and physical basics of routine formaldehyde fixation

    Directory of Open Access Journals (Sweden)

    Rooban Thavarajah

    2012-01-01

    Full Text Available Formaldehyde is the widely employed fixative that has been studied for decades. The chemistry of fixation has been studied widely since the early 20 th century. However, very few studies have been focused on the actual physics/chemistry aspect of process of this fixation. This article attempts to explain the chemistry of formaldehyde fixation and also to study the physical aspects involved in the fixation. The factors involved in the fixation process are discussed using well documented mathematical and physical formulae. The deeper understanding of these factors will enable pathologist to optimize the factors and use them in their favor.

  10. Contact allergic dermatitis from melamine formaldehyde resins in a patient with a negative patch-test reaction to formaldehyde.

    Science.gov (United States)

    García Gavin, Juan; Loureiro Martinez, Manuel; Fernandez-Redondo, Virginia; Seoane, Maria-José; Toribio, Jaime

    2008-01-01

    Melamine paper is a basic material used in the furniture industry for home and office interiors. Contact allergic dermatitis from melamine formaldehyde resins (MFRs) should be considered in patients who work on melamine paper impregnation lines. We report a case of a 28-year-old female plywood worker who developed eczema on the dorsal side of her hands and wrists after 2 years of working on the melamine paper impregnation line. She had a relevant positive patch-test reaction to MFR, with a negative reaction to formaldehyde. Contact dermatitis due to MFR is not common, and it is usually related to products that are not fully cured or to close contact with intermediate products on the assembly line. Formaldehyde release from MFR can explain most of the positive responses. To our knowledge, this is the first report of MFR contact allergic dermatitis in a worker on a melamine paper impregnation line.

  11. Simultaneous removal of formaldehyde and benzene in indoor air with a combination of sorption- and decomposition-type air filters.

    Science.gov (United States)

    Sekine, Yoshika; Fukuda, Mitsuru; Takao, Yosuke; Ozano, Takahiro; Sakuramoto, Hikaru; Wang, Kuan Wei

    2011-12-01

    Urgent measures for indoor air pollution caused by volatile organic compounds are required in urban areas of China. Considering indoor air concentration levels and hazardous properties, formaldehyde and benzene should be given priority for pollution control in China. The authors proposed the use of air-cleaning devices, including stand-alone room air cleaners and in-duct devices. This study aimed to find the best combination of sorption and decomposition filters for the simultaneous removal of formaldehyde and benzene, employing four types of air filter units: an activated charcoal filter (ACF), an ACF impregnated with a trapping agent for acidic gases (ACID), a MnO2 filter (MDF) for oxidative decomposition of formaldehyde at room temperature and a photocatalyst filter (PHOTO) coupled with a parallel beam ultraviolet (UV) irradiation device. The performance of the combined systems under air flow rates of 35-165 m3 h(-1) was evaluated in a test chamber (2 m3) with a constant gas generation system. The experimental results and data analysis using a kinetic approach showed the combined system of ACF, PHOTO and MDF significantly reduced both concentrations of formaldehyde and benzene in air without any unpleasant odours caused by the UV-induced photocatalytic reaction. The system was then evaluated in a full-size laboratory (22 m3). This test proved the practical performance of the system even at full scale, and also suggested that the filters should be arranged in the order of PHOTO/ACF/MDF from upstream to downstream. The proposed system has the potential of being used for improving indoor air quality of houses and buildings in China.

  12. Research Regress on Removal of Formaldehyde by Ornamental Plant%室内观赏植物对甲醛吸收的研究进展

    Institute of Scientific and Technical Information of China (English)

    黄欣; 林茂; 廖美兰; 周修任; 李进华; 杜铃

    2015-01-01

    Formaldehyde is an important member of the indoor harmful gas pollution,whose chemical activity is very lively,and can very quickly enter human and animal tissues. This paper reviewed the study progress of ornamental plants on absorbing formaldehyde,including adding nutrient adsorptionmatrix in the plant rhizosphere,sprayed TiO2 sol on the leaves of the plant,the plant phyllospheric,inoculating microorganism in the rhizosphere could enhance plant to formaldehyde purification effect and ornamental plants ecological effect of formaldehyde.%甲醛是室内有害物质的主要成分,可以迅速渗入到人或动物组织中。该文综述了国内外观赏植物吸收甲醛的研究进展,其中包括在植物根际添加营养型吸附基质,在植物叶面喷洒二氧化钛溶胶,在植物叶际、根际接种微生物等对植物去甲醛效果的影响;以及观赏植物净化甲醛的生态效应研究等。

  13. Sol-gel based sensor for selective formaldehyde determination.

    Science.gov (United States)

    Bunkoed, Opas; Davis, Frank; Kanatharana, Proespichaya; Thavarungkul, Panote; Higson, Séamus P J

    2010-02-01

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with beta-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  14. Further revealing of the photo-dissociation of formaldehyde

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Dr. YIN Hongming with the CAS Dalian Institute of Chemical Physics has discovered two main reaction paths of formaldehyde's photochemical decomposition. His latest research progress, which was published in the first issue of Chinese Science Bulletin in 2008, may shed new light on the reaction mechanism of its radical channel.

  15. Melamine-modified urea formaldehyde resin for bonding particleboards

    Science.gov (United States)

    Chung-Yun Hse; Feng Fu; Hui Pan

    2008-01-01

    For the development of a cost-effective melamine-modified urea formaldehyde resin (MUF), the study evaluated the effects of reaction pH and melamine content on resin properties and bond performance of the MUF resin adhesive systems. Eight resins, each with three replicates, were prepared in a factorial experiment that included two formulation variables: two reaction...

  16. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases

    Science.gov (United States)

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  17. 24 CFR 3280.309 - Health Notice on formaldehyde emissions.

    Science.gov (United States)

    2010-04-01

    ... HOUSING AND URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame... history of asthma, allergies, or lung problems, may be at greater risk. Research is continuing on the possible long-term effects of exposure to formaldehyde. Reduced ventilation resulting from...

  18. Solid-State Microwave Synthesis of Melamine-Formaldehyde Resin

    OpenAIRE

    Subhash Bajia; Rashmi Sharma; Birbal Bajia

    2009-01-01

    An efficient synthesis of melamine-formaldehyde resin has been achieved using conventional as well as microwave irradiations (without and with solid support) in different molar ratio. Resin samples were tested for their chemical as well as physical properties. The structure of all the resin has been supported by their spectral data

  19. Solid-State Microwave Synthesis of Melamine-Formaldehyde Resin

    Directory of Open Access Journals (Sweden)

    Subhash Bajia

    2009-01-01

    Full Text Available An efficient synthesis of melamine-formaldehyde resin has been achieved using conventional as well as microwave irradiations (without and with solid support in different molar ratio. Resin samples were tested for their chemical as well as physical properties. The structure of all the resin has been supported by their spectral data

  20. Formate generated by cellular oxidation of formaldehyde accelerates the glycolytic flux in cultured astrocytes.

    Science.gov (United States)

    Tulpule, Ketki; Dringen, Ralf

    2012-04-01

    Formaldehyde is a neurotoxic compound that can be endogenously generated in the brain. Because astrocytes play a key role in metabolism and detoxification processes in brain, we have investigated the capacity of these cells to metabolize formaldehyde using primary astrocyte-rich cultures as a model system. Application of formaldehyde to these cultures resulted in the appearance of formate in cells and in a time-, concentration- and temperature-dependent disappearance of formaldehyde from the medium that was accompanied by a matching extracellular accumulation of formate. This formaldehyde-oxidizing capacity of astrocyte cultures is likely to be catalyzed by alcohol dehydrogenase 3 and aldehyde dehydrogenase 2, because the cells of the cultures contain the mRNAs of these formaldehyde-oxidizing enzymes. In addition, exposure to formaldehyde increased both glucose consumption and lactate production by the cells. Both the strong increase in the cellular formate content and the increase in glycolytic flux were only observed after application of formaldehyde to the cells, but not after treatment with exogenous methanol or formate. The accelerated lactate production was not additive to that obtained for azide, a known inhibitor of complex IV of the respiratory chain, and persisted after removal of formaldehyde after a formaldehyde exposure for 1.5 h. These data demonstrate that cultured astrocytes efficiently oxidize formaldehyde to formate, which subsequently enhances glycolytic flux, most likely by inhibition of mitochondrial respiration.

  1. Formaldehyde degradation by photocatalytic Ag-doped TiO2 film of glass fiber roving.

    Science.gov (United States)

    Ubolchonlakate, Kornkanok; Sikong, Lek; Tontai, Tienchai

    2010-11-01

    The photocatalytic Ag doped TiO2 porous films were prepared by sol-gel method and dip coated on glass fiber roving. The sol composed of titanium (IV) isopropoxide, triethanolamine, ethanol and nitric acid followed by calcination of the film at 500 degrees C for 1 hour with a heating rate of 3 degrees C/min. The surface morphology and properties of synthesized TiO2 films were characterized by X-ray diffraction, atomic forced microscope and scanning electron microscope. A laboratory photocatalytic reactor was set up to carry out photoactivity of the prepared catalysts. The results show that TiO2-Ag and TiO2-Ag-TEA porous films give highest rate of formaldehyde gas degradation. It can be noted that triethanolamine exhibits two effects on TiO2 composite films; one is its effect on porous film structure and second is a reverse effect of hindrance of anatase growth.

  2. Synthesis of nanosized tungsten carbide from phenol formaldehyde resin coated precursors

    Institute of Scientific and Technical Information of China (English)

    LUO Ji; GUO Zhimeng; GAO Yuxi; LIN Tao

    2008-01-01

    Nanosized tungsten carbide was synthesized from phenol formaldehyde resin (PF) coated tungsten precursors.The process has three steps in which nanosized tungsten particles were first coated with PF,then the precursors were carburized at 950℃,and finally the carburized powders were treated in flowing wet hydrogen atmosphere at 940℃ to remove the uncombined carbon.The obtained powders were characterizedusing X-ray diffraction analysis (XRD),field-emission scanning electron microscopy (FESEM),small angle X-ray scattering (SAXS),andcombustion-gas-volume method.The results indicated that single-phase WC could be synthesized using excessive PF as carburizer at a muchlower temperature compared with using mixed carbon black.After wet hydrogen treating,the mean size of the obtained WC particles was 94.5nm and the total carbon content was 6.18 wt.%.

  3. B36 borophene as an electronic sensor for formaldehyde: Quantum chemical analysis

    Science.gov (United States)

    Shahbazi Kootenaei, Amirhossein; Ansari, Goodarz

    2016-08-01

    Pristine carbon nanotubes and graphene show great sensitivity toward several lethal gases but cannot identify some extremely toxic chemicals such as formaldehyde (HCOH). Recent successful synthesis of all-boron graphene-like sheets attracted strong interest in exploring their possible applications. Herein, we inspected the potential application of B36 borophene sheet as a sensor for HCOH detection, using density functional theory computations. Different theoretical levels including B97D and Minnesota 06 functionals with different basis sets were employed. It was predicted that the electrical conductivity of B36 borophene significantly increases at the presence of HCOH molecules, thereby generating an electrical signal. The electrical signal is increased by increasing the number of adsorbed HCOH molecules, indicating that this sensor is sensitive to the concentration (or pressure) of HCOH gas. These results suggest that the pristine borophene may be used in the HCOH chemical sensors.

  4. PEMBUATAN AYAKAN MOLEKULER BERBASIS KARBON UNTUK PEMISAHAN N2/O2 DARI PIROLISIS RESIN PHENOL FORMALDEHYDE

    Directory of Open Access Journals (Sweden)

    Imam Prasetyo

    2012-02-01

    Full Text Available Proses pemisahan campuran gas dengan menggunakan carbon molecular sieve (CMS atau ayakan molekuler berbasis karbon merupakan teknologi proses pemisahan yang mulai banyak diterapkan di dalam industri kimia. Dalam penelitian ini, CMS untuk pemisahan N2 dari udara dibuat dari pirolisis bahan polimer sintetis yaitu resin phenol formaldehyde (PF. Prekursor yang berupa resin tersebut dipanaskan dalam retort pada suhu 400-950oC selama 0,5-3 jam yang disertai dengan pengaliran gas N2 ke dalam retort dengan laju 100 mL/jam. Dengan proses pirolisis, atom-atom non-karbon penyusun bahan polimer akan terurai dan menguap sehingga hanya menyisakan arang karbon dengan struktur kerangka atom karbon yang sesuai dengan struktur kerangka dasar rantai polimer. Kemudian karbon hasil prolisis tersebut dipanaskan lebih lanjut pada suhu 750-950oC sambil dialiri gas CO2 selama 1 jam. Pada kondisi ini karbon akan mengalami proses gasifikasi parsial sehingga terbentuk karbon dengan porositas tinggi. Melalui rekayasa proses polimerisasi dan karbonisasi dihasilkan material karbon berpori yang mayoritas porinya adalah mikropori dengan ukuran pori efektif < 2 nm yang dapat dikategorikan sebagai CMS yang dapat dipergunakan untuk memisahkan campuran gas N2-O2.  Pada penelitian ini dihasilkan CMS dengan selektifitas kinetis DN2/DO2 sekitar 3.

  5. Eye lrritation caused by Formaldehyde as an Indoor AIr Pollution—A Controlled Human Exposure Experiment

    Institute of Scientific and Technical Information of China (English)

    YANGXU; ZHANGYUN-PING; 等

    2001-01-01

    The present study focuses on health assessment of wood based panels which are widely used in interior decoration practices over the recent years in China.Formaldehyde has been i-dentified as chemical indicator of (IAO) and an indoor air pollutant.To test its health effects experiment was undertaken.Method: A small environmental test chamber(60/L) was used as the genertor of emission gas from new panels,and was operating at a temperature of 22.7±0.6℃ and a humidity of 44.4±2.5% with an air exchange rate of 1.0±0.15h-1.On the three experimental days the values of product lodaing in chamber were 4,2 and 6m2/m3,respectively,Eight people were selected randomly from the students and employees of Wuhan Health and Anti-epidemic Station as subjects,with an average age of 21.9±5.9 years,and a gender ratio of 1:1,and two of them were smokders(one male and one female).The subjects' eyes were exposed to formaldehyde through a pair of googles.Each goggle had its flow inlet and outlet,and connected to chamber exhaust of emission gas and to an exhaust from the room.The exposure time was very short,just 5 minutes and the formaldehyde doses were at 1.65±0.01,2.99±0.07and 4.31±0.02ppm,A6-mm linear visual analogue rating scales was used to measure the intensity of sensory eye irritation and a video tape racorder was used to record eye blinking frequency.Results:the results demonstrated that tests of sensory eye irritation and eye blinking can be used for materials testing,and that a dose-effect as well as a time-variance of the effect can be measured.Conclusion:The tests showed that eye irritation was perceived at all of the three levels.±

  6. Detection of protonated formaldehyde in the prestellar core L1689B

    Science.gov (United States)

    Bacmann, A.; García-García, E.; Faure, A.

    2016-04-01

    Complex organic molecules (COMs) are detected in many regions of the interstellar medium, including prestellar cores. However, their formation mechanisms in cold (~10 K) cores remain to this date poorly understood. The formyl radical HCO is an important candidate precursor for several O-bearing terrestrial COMs in cores, as an abundant building block of many of these molecules. Several chemical routes have been proposed to account for its formation: on grain surfaces, as an incompletely hydrogenated product of H addition to frozen-out CO molecules; and in the gas phase, either as the product of the reaction between H2CO and a radical or as a product of dissociative recombination of protonated formaldehyde H2COH+. The detection and abundance determination of H2COH+, if present, could provide clues as to whether this latter scenario might apply. We searched for protonated formaldehyde H2COH+ in the prestellar core L1689B using the IRAM 30 m telescope. The H2COH+ ion is unambiguously detected, for the first time, in a cold (~10 K) source. The derived abundance agrees with a scenario in which the formation of H2COH+ results from the protonation of formaldehyde. We use this abundance value to constrain the branching ratio of the dissociative recombination of H2COH+ towards the HCO channel to ~10-30%. This value could however be lower if HCO were efficiently formed from neutral-neutral reactions in the gas phase, and we stress the need for laboratory measurements of the rate constants of these reactions at 10 K. Given the experimental difficulties in measuring branching ratios experimentally, observations can place valuable constraints on these values and provide useful input for chemical networks. Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Final IRAM data used in the paper (FITS cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130

  7. Endogenous formaldehyde turnover in humans compared with exogenous contribution from food sources

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2014-02-01

    Full Text Available The FEEDAP Panel received a request to deliver a scientific opinion on the safety and efficacy of formaldehyde used in feed for all animal species based on dossiers submitted by applicants. In parallel, the ANS Panel evaluated the safety of formaldehyde formed from endogenous production and from dietary sources of methanol, including aspartame. In order to support both evaluations, assistance was requested to the SCER unit to evaluate the oral internal dose of formaldehyde in humans from endogenous production, food-derived from target animals exposed to formaldehyde-treated feed and formaldehyde generated from dietary sources of methanol, including from food additives such as aspartame. Endogenous turnover of formaldehyde was estimated to be approximately 0.61-0.91 mg/kg bw per minute and 878-1310 mg/kg bw per day assuming a half life of 1 1.5 min. Compared with formaldehyde turnover and the background levels of formaldehyde from food sources (1.7-1.4 mg/kg b. w per day for a 60-70 kg person, including from dietary methanol, the relative contribution of exogenous formaldehyde from consumption of animal products (milk, meat from target animals exposed to formaldehyde-treated feed was negligible (<0.001 %. Oral exposure to formaldehyde from aspartame involves metabolism to methanol and further oxidation to formaldehyde. At the current ADI of 40 mg/kg bw per day for aspartame, formaldehyde would be approximately 4 mg/kg bw per day and represent only 0.3-0.4 % of the endogenous turnover of formaldehyde.

  8. 吹扫捕集-气相色谱法同时测定水中的乙醛、丙烯醛和甲醛%Determination of Acetaldehyde, Acrolein and Formaldehyde in Water by Gas Chromatography with Purge and Trap

    Institute of Scientific and Technical Information of China (English)

    吕桂宾; 陈勇; 黄龙; 尹辉

    2011-01-01

    研究了吹扫捕集-气相色谱法同时测定水中乙醛、丙烯醛和甲醛的方法并优化了实验条件.实验结果表明,该方法操作简便,灵敏高效,目标化合物的检出限分别为0.037、0.012、0.0006mg/L,相对标准偏差在3.9% ~15.8%之间,实际水样的加标回收率在73.0% ~118%之间,能很好满足《地表水环境质量标准》中相关项目的要求.%Determination of acetaldehyde, acrolein and formaldehyde in water by GC coupled with purge and trap was studied. After working parameters optimizing, experimental results show that the advantages of this method is simple, sensitive and high efficient. DL (detection limit) of the target compounds was 0.037, 0.012 and 0. 0006mg/L, respectively. RSD (Relative standard deviations) was ranged from 3.9% to 15.8% , and the recovery were 73.0% - 118%. This method could meet the monitoring requirement of target compounds in " Environment Quality Standard of Surface Water".

  9. Kinetic temperature of massive star forming molecular clumps measured with formaldehyde

    Science.gov (United States)

    Tang, X. D.; Henkel, C.; Menten, K. M.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.; Yeh, C. C.; König, C.; Yuan, Y.; He, Y. X.; Li, D. L.

    2017-01-01

    Context. For a general understanding of the physics involved in the star formation process, measurements of physical parameters such as temperature and density are indispensable. The chemical and physical properties of dense clumps of molecular clouds are strongly affected by the kinetic temperature. Therefore, this parameter is essential for a better understanding of the interstellar medium. Formaldehyde, a molecule which traces the entire dense molecular gas, appears to be the most reliable tracer to directly measure the gas kinetic temperature. Aims: We aim to determine the kinetic temperature with spectral lines from formaldehyde and to compare the results with those obtained from ammonia lines for a large number of massive clumps. Methods: Three 218 GHz transitions (JKAKC = 303-202, 322-221, and 321-220) of para-H2CO were observed with the 15 m James Clerk Maxwell Telescope (JCMT) toward 30 massive clumps of the Galactic disk at various stages of high-mass star formation. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured para-H2CO 322-221/303-202 and 321-220/303-202 ratios. Results: The gas kinetic temperatures derived from the para-H2CO (321-220/303-202) line ratios range from 30 to 61 K with an average of 46 ± 9 K. A comparison of kinetic temperature derived from para-H2CO, NH3, and the dust emission indicates that in many cases para-H2CO traces a similar kinetic temperature to the NH3 (2, 2)/(1, 1) transitions and the dust associated with the HII regions. Distinctly higher temperatures are probed by para-H2CO in the clumps associated with outflows/shocks. Kinetic temperatures obtained from para-H2CO trace turbulence to a higher degree than NH3 (2, 2)/(1, 1) in the massive clumps. The non-thermal velocity dispersions of para-H2CO lines are positively correlated with the gas kinetic temperature. The massive clumps are significantly influenced by supersonic non-thermal motions. The reduced spectra (FITS files) are only

  10. Emissions Characteristics of Formaldehyde from Block Board%细木工板中甲醛释放特征及规律

    Institute of Scientific and Technical Information of China (English)

    张浩; 钱付平; 朱庆明

    2012-01-01

    Environment testing chamber of HJC-1 type was used to simulate the indoor environment of block board widely used in buildings adopted as the tested material. Formaldehyde concentrations in the chamber at different board structures, air exchange rates, relative humidities and environmental temperatures in a certain period were measured, and analyzed in its diffusion mechanism. Gray-system forecasting model was established to predict the concentration of formaldehyde, after its emission from the board at peak value. The results indicate that the main emission channel of formaldehyde is the side surface of board, it releases 3 times of formaldehyde quantity as the surface of board. Formaldehyde gas diffusion process is divided into three stages, the initial fast release, stable release and long-term slow release. Air exchange rate affects the formaldehyde concentration in the testing chamber, but does not affect its release rate of block board; the formaldehyde concentration increases with the increase of relative humidity and temperature. The predicted data of forecasting model agree well with the experimental data. The average relative error is 3.717%. This method is suitable for long term prediction.%采用环境测试舱模拟室内环境,测量细木工板中甲醛的释放浓度,考察细木工板结构、温度、相对湿度和空气交换率对甲醛释放的影响,分析细木工板中甲醛气体扩散机理,并建立了灰色预测模型对细木工板中甲醛释放峰值后的过程进行模拟.结果表明,细木工板中甲醛散发通道主要为端面,端面的甲醛释放量是平面的3倍;细木工板中甲醛气体扩散过程分为3个阶段(初始快速释放、稳定释放和长期缓速释放);空气交换率对细木工板中甲醛释放率影响不大;相对湿度和温度升高,细木工板中甲醛释放率也增大;预测模型的预测数据与实验数据吻合较好,平均相对误差率仅为3.717%,适合进行长期预测.

  11. Interstellar formaldehyde in Sagittarius B2

    Energy Technology Data Exchange (ETDEWEB)

    Gosachinskii, I.V.; Grachev, V.G.; Egorova, T.M.; Zhelenkov, S.R.; Il' in, G.N.; Komar, N.P.; Kurochkina, E.N.; Prozorov, V.A.; Ryzhkov, N.F.

    1980-11-01

    The 6.2-cm absorption line of the H/sub 2/CO molecule has been observed with the RATAN-600 radio telescope at 0'.8 x 12' resolution. The distribution of H/sub 2/CO optical depth over the radio source Sgr B2 indicates that a gas envelope 11 pc in diameter may be present with a mean radial velocity nearly the same as the recombination-line velocities. The envelope is contracting, at a rate of 20--25 km/sec; it is also rotating at a peripheral velocity of roughly-equal15 km/sec.

  12. A DFT study of formaldehyde adsorption on functionalized graphene nanoribbons

    Science.gov (United States)

    Maaghoul, Zohreh; Fazileh, Farhad; Kakemam, Jamal

    2015-02-01

    Density functional theory (DFT) based ab initio calculations were done to monitor the formaldehyde (CHOH) adsorptive behavior on pristine and Ni-decorated graphene sheet. Structural optimization indicates that the formaldehyde molecule is physisorbed on the pristine sheet via partly weak van der Waals attraction having the adsorption energy of about -15.7 kcal/mol. Metal decorated sheet is able to interact with the CHOH molecule, so that single Ni atoms prefer to bind strongly at the bridge site of graphene and each metal atom bound on sheet may adsorb up to four CHOH. The findings also show that the Ni decoration on graphene surface results in some changes in electronic properties of the sheet and its Eg is remained unchanged after adsorption of CHOH molecules. It is noteworthy to say that no bond cleavage was observed for the adsorption of CHOH on Ni-decorated graphene.

  13. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, Jacob Matthew [Port Jefferson, NY; Schonberger, Matthias [Mains, DE; Schieferstein, Hanno [Aabergen, DE; Fowler, Joanna S [Bellport, NY

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  14. Decomposition of formaldehyde by EPD photocatalyst filters in HVAC

    Institute of Scientific and Technical Information of China (English)

    Chien-Chih Chen; Ching-Song Jwo; Tun-Ping Teng

    2011-01-01

    This study used electrophoretic deposition (EPD) to apply titanium oxide (TiO2) coating on stainless steel filters and investigated the effectiveness of photocatalytic oxidation of formaldehyde by TiO2 under various conditions of heating ventilation air conditioning (HVAC).The results showed photocatalytic efficiency could reach 35.59% at 21 ℃ and 36.39% at 26℃ with 7 photocatalyst filters and 5 UVC lamps,the overall efficiency of formaldehyde removal of 52.37% at 21 ℃,and 56.8% at 26℃.By all experimental data can be found that the temperature for the photocatalytic performance is not obvious in the range of this study.

  15. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM

    Directory of Open Access Journals (Sweden)

    Munawar Hussain

    2016-06-01

    Full Text Available Herein, we report on molecularly imprinted polymers (MIPs for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs, such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb and selectivity as before, but at the real-life conditions of 50% relative humidity.

  16. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization.

    Science.gov (United States)

    Shuai, Li; Amiri, Masoud Talebi; Questell-Santiago, Ydna M; Héroguel, Florent; Li, Yanding; Kim, Hoon; Meilan, Richard; Chapple, Clint; Ralph, John; Luterbacher, Jeremy S

    2016-10-21

    Practical, high-yield lignin depolymerization methods could greatly increase biorefinery productivity and profitability. However, development of these methods is limited by the presence of interunit carbon-carbon bonds within native lignin, and further by formation of such linkages during lignin extraction. We report that adding formaldehyde during biomass pretreatment produces a soluble lignin fraction that can be converted to guaiacyl and syringyl monomers at near theoretical yields during subsequent hydrogenolysis (47 mole % of Klason lignin for beech and 78 mole % for a high-syringyl transgenic poplar). These yields were three to seven times those obtained without formaldehyde, which prevented lignin condensation by forming 1,3-dioxane structures with lignin side-chain hydroxyl groups. By depolymerizing cellulose, hemicelluloses, and lignin separately, monomer yields were between 76 and 90 mole % for these three major biomass fractions. Copyright © 2016, American Association for the Advancement of Science.

  17. Formaldehyde and Glyoxal: New Products in the SCIAMACHY Operational Processor

    Science.gov (United States)

    Hrechanyy, Serhiy; de Smedt, Isabelle; Kretschel, Klaus; Lichtenberg, Günter; Meringer, Markus; Wittrock, Folkard

    In sommer of 2010 version 6 of the SCIAMACHY operational processor is planned to be deliv-ered to ESA. The SCIAMACHY Quality Working Group recommended an implementation of the formalde-hyde (HCHO) and glyoxal (CHOCHO) vertical columns into version 6 of the off-line processor. They are formed during the oxidation of volatile organic compounds (VOCs) emitted by plants, anthropogenic activities, and biomass burning. Due to a rather short lifetime of formaldehyde and glyoxal, their distribution maps, obtained by the SCIAMACHY, represent the emission fields of their precursors, VOCs. The descriptions of reference algorithm as well as all the cross-sections for formaldehyde and glyoxal retrievals were delivered to DLR by the Belgian Institute for Space Aeronomy (BIRA) (I. De Smedt, 2008) and by the IUP (F. Wittrock, 2006), respectively. Both retrievals are based on the DOAS technique. For the formaldehyde retrieval the spectral region of 328.5-346 nm was recommended. The absorption cross-sections of HCHO, O3, NO2, BrO, OClO, a Ring spectrum and a polynomial of the fifth order are included into the fitting procedure. Before conversion to the vertical columns, the slant columns have to be normal-ized by subtracting the slant columns measured over Pacific ocean, where the only source of formaldehyde is methane oxidation. After the conversion to the vertical columns, part of HCHO removed during the previous procedure has to be re-added to the final vertical column by adding of the mean vertical column calculated by the tropospheric chemistry model IMAGES (J.-F. Müller, 1995). This normalization is necessary to compensate for the offset introduced by the solar reference measurements and interferences by other absorbers. For the determination of glyoxal columns, the spectral region 435-457 nm was selected. In this case, the absorption cross-sections of CHOCHO, O3, NO2, H2O, O4, a Ring spectrum and a cubic polynomial are included in the fitting procedure. The normalization of

  18. Investigations on potential co-mutagenic effects of formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Speit, Günter, E-mail: guenter.speit@uni-ulm.de; Linsenmeyer, Regina; Duong, Giang; Bausinger, Julia

    2014-02-15

    Highlights: • A549 cells were exposed to formaldehyde in combination with various mutagens. • Formaldehyde did not affect the induction and removal of DNA damage (comet assay). • Formaldehyde did not affect the induction of micronuclei by the mutagens tested. • The expression of the O{sup 6}-methylguanine-DNA methyltransferase was not affected. - Abstract: The genotoxicity and mutagenicity of formaldehyde (FA) has been well-characterized during the last years. Besides its known direct DNA-damaging and mutagenic activity in sufficiently exposed cells, FA at low concentrations might also enhance the mutagenic and carcinogenic effects of other environmental mutagens by interfering with the repair of DNA lesions induced by these mutagens. To further assess potential co-mutagenic effects of FA, we exposed A549 human lung cells to FA in combination with various mutagens and measured the induction and removal of DNA damage by the comet assay and the production of chromosomal mutations by the cytokinesis-block micronucleus assay (CBMN assay). The mutagens tested were ionizing radiation (IR), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), N-nitroso-N-methylurea (methyl nitrosourea; MNU) and methyl methanesulfonate (MMS). FA (10–75 μM) did not enhance the genotoxic and mutagenic activity of these mutagens under the test conditions applied. FA alone and in combination with MNU or MMS did not affect the expression (mRNA level) of the gene of the O{sup 6}-methylguanine-DNA methyltransferase (MGMT) in A549 cells. The results of these experiments do not support the assumption that low FA concentrations might interfere with the repair of DNA damage induced by other mutagens.

  19. Histopathologic effects of formaldehyde exposure on rat kidney

    Directory of Open Access Journals (Sweden)

    M.J. Golalipour

    2007-01-01

    Full Text Available AbstractBackground and purpose: Formaldehyde is a chemical traditionally used for fixing the cadaver. It is vaporized during dissection and practical studying on cadaver. Studies show that this vapour can cause some clinical sympotms such as throat, eye, skin and nasal irritation.This study was designed to determine the histopathological changes of rat kidney tissue exposed to formaldehyde for 18 weeks.Materials and Methods: This study was performed on 28, 6-7 weeks postnatal albino Wistar rats. The rats were divided into 3 case groups (E1: 4hrs/d, 4d/w; E2: 2hrs/d, 4d/w; E3: 2hrs/d, 2d/w and one control group (C. The kidney specimens were sectioned and stained with H&E technique for histopathological study.Results: In all histopathology sections of groups E1, E2 and E3, the following similar changes were observed: Mild congestion in the glumeroles, focal congestion and vacuolar (hydropic degeneration of tubular cells only mild non-specific congestion in renal vessels. There were no evidences of fibrotic change or inflammatory cells infiltration among interstitial tissue. Also there were no abnormalities in the staining of nucleus and cytoplasm. In Control group (C, no histopathologic changes were observed.Conclusion: The results of this study showed that formaldehyde vapour with a concentrations used in our study, can not induce histopathologic changes which could be detectable by light microscope. Also, there is no direct relationship between the duration of exposure to formaldehyde vapour and the intensity of histopathologic changes in the kidney.

  20. Mechanism of Microencapsulation with Urea-Formaldehyde Polymer

    OpenAIRE

    Rochmadi .; Agus Prasetya; Wahyu Hasokowati

    2010-01-01

    Problem statement: Microcapsule is one of important fine chemical products in the current chemical industries. Better understanding of microencapsulation process is useful to properly design of microcapsule with specific characteristics. The aim of this research is to study the mechanism of Urea-Formaldehyde (UF) microcapsules formation. Approach: Microcapsule was prepared in two steps. The first step was the preparation of oil in water emulsion, which was carried out by mixing of UF pre-poly...

  1. Interference from alpha-amino acid and protein on determination of formaldehyde in food

    Science.gov (United States)

    Lu, Xiumin; Zhang, Xiaofeng; Fu, Yujie; Xiang, Jinxin

    2005-12-01

    The disturbance of alpha-amino acids and proteins on the analysis of formaldehyde content in food was investigated by electrochemical assay. Results show that the pH decreases gradually from 9.91 to 4.36 with increasing aspartic acid concentration. The recovery rate changes from 8% to 100% after different amounts of formaldehyde were added into protein solutions. For edible bamboo shoots, the recovery rate of formaldehyde is 80% to 100%. For shrimp kernel, however, the recovery rate of formaldehyde is 8% to 60%. These results indicate that the consumed quantity of formaldehyde is correlative with the protein concentration in foods. Therefore, the determinate formaldehyde content in food is actually not the totally applied amount, but just the residue after its reaction with the alpha-amino acids or free amino groups on the protein surface.

  2. Inhibition of sulfide generation by dosing formaldehyde and its derivatives in sewage under anaerobic conditions.

    Science.gov (United States)

    Zhang, L; Mendoza, L; Marzorati, M; Verstraete, W

    2008-01-01

    Hydrogen sulfide emission in sewers is associated with toxicity, corrosion, odor nuisance and a lot of costs. The possibility to inhibit sulfide generation by formaldehyde and its derivatives (paraformaldehyde and urea formaldehyde) has been evaluated under anaerobic conditions. The impact of formaldehyde on an activated sludge system and an appraisal of the economic aspects are also presented. The optimum dosage to inhibit sulfide generation in sewage was 12-19 mg L(-1) formaldehyde. The dosages of 32 mg L(-1) paraformaldehyde or 100 mg L(-1) urea formaldehyde were not capable of inhibiting sulfide generation in sewage. The impact of 19 mg L(-1) formaldehyde on activated sludge system was negligible in terms of COD removal, nitrification rate and oxygen uptake rate.

  3. Property of nano-SiO2/urea formaldehyde resin

    Institute of Scientific and Technical Information of China (English)

    Lin Qiaojia; Yang Guidi; Liu Jinghong; Rao Jiuping

    2006-01-01

    In this paper,we discuss the effects of a nanometer silicon dioxide (nano-SiO2) coupling agent,dispersal methods and the amount of nano-SiO2/urea formaldehyde resin.The results of our study indicate that when nano-SiO2,using KH-550 silane as a coupling agent,was added to UF resin by discontinuous ultrasonic vibration its properties improved effectively.When the content of nano-SiO2 was below 1.5%, the amount of free formaldehyde decreased,and the viscosity and bonding strength of resin increased with an increase in the added nano-SiO2,which did not prolong the curing time.The performance indices of plywood,particleboard and medium density fiberboard (MDF),hot-pressed by nano-SiO2 (I%)/UF resin (F/U molar ratio=l.2), exceeded the requirements of the National Standard. Their free formaldehyde emission reached E1 grade.Finally,we analyzed the mechanism of the strengthening effects of nano-SiO2 on UF resin by means of infrared spectrum analysis and X-ray photoelectronic spectrum (XPS).

  4. The oxidation of formaldehyde on high overvoltage DSA type electrodes

    Directory of Open Access Journals (Sweden)

    Motheo Artur J.

    2000-01-01

    Full Text Available The electrochemical oxidation of formaldehyde is studied on dimensionally stable anodes prepared by thermal decomposition of precursors (the corresponding chlorides. The working electrodes used were: Ti/Ir0.3Ti0.7O2, Ti/Ru0.3Ti0.7O2 and Ti/Ir0.2Ru0.2Ti0.6O2. The electrolyses were performed galvanostatically in a filter press cell with 0.5 mol L-1 H2SO4 solutions with initial formaldehyde concentration equal to 100 mmol L-1. The concentration of formaldehyde decreases fast with the electrolysis time, with the ternary anode (Ir + Ru + Ti presenting the best performance for this step. The anode containing only Ir, despite presenting the higher superficial charge, is the one with the lowest electrocatalytic activity. For the formic acid oxidation step, the presence of iridium in the anode composition does not promote the process, the anode containing only ruthenium being the most effective for this step.

  5. Fast fluorometric flow injection analysis of formaldehyde in atmospheric water

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S.; Dasgupta, P.K.

    1987-06-01

    Formaldehyde can be determined in aqueous solution at a rate of 45 samples/h with a small sample requirement (100 ..mu..L). The fluorescence of 3,5-diacetyl-1,4-dihydrolutidine formed upon reaction of formaldehyde with ammonium acetate and 2,4-pentanedione (25 s, 95 /sup 0/C) is monitored with a filter fluorometer. The detection limit is 0.1 ..mu..M (3 ..mu..g/L) or 10 pmol of HCHO. The response is linear up to 3.3 ..mu..M (100 ..mu..g/L), the departure from linearity at 0.33 mM is 21%, but high levels are satisfactorily determined with a second-order calibration equation. Interference from S(IV) has been investigated in detail and completely eliminated by addition of H/sub 2/O/sub 2/ before rendering the sample alkaline. There are no effects from commonly occurring metal ions and anions; the method is very selective to formaldehyde compared to other carbonyl compounds. A S(IV)-containing preservative has been formulated for the stabilization of low concentrations of HCHO. Results are presented for fogwater samples. 8 figures, 41 references.

  6. Expression, purification, and characterization of formaldehyde dehydrogenase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Zhang, Wangluo; Chen, Shuai; Liao, Yuanping; Wang, Dingli; Ding, Jianfeng; Wang, Yingming; Ran, Xiaoyuan; Lu, Daru; Zhu, Huaxing

    2013-12-01

    As a member of zinc-containing medium-chain alcohol dehydrogenase family, formaldehyde dehydrogenase (FDH) can oxidize toxic formaldehyde to less active formate with NAD(+) as a cofactor and exists in both prokaryotes and eukaryotes. Most FDHs are well known to be glutathione-dependent in the catalysis of formaldehyde oxidation, but the enzyme from Pseudomonas putida is an exception, which is independent of glutathione. To identify novel glutathione-independent FDHs from other bacterial strains and facilitate the corresponding structural and enzymatic studies, high-level soluble expression and efficient purification of these enzymes need to be achieved. Here, we present molecular cloning, expression, and purification of the FDH from Pseudomonas aeruginosa, which is a Gram-negative pathogenic bacterium causing opportunistic human infection. The FDH of P. aeruginosa shows high sequence identity (87.97%) with that of P. putida. Our results indicated that coexpression with molecular chaperones GroES, GroEL, and Tig has significantly attenuated inclusion body formation and improved the solubility of the recombinant FDH in Escherichiacoli cells. A purification protocol including three chromatographic steps was also established to isolate the recombinant FDH to homogeneity with a yield of ∼3.2 mg from 1L of cell culture. The recombinant P. aeruginosa FDH was properly folded and biologically functional, as demonstrated by the mass spectrometric, crystallographic, and enzymatic characterizations of the purified proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    OpenAIRE

    2011-01-01

    Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR) and sequencing batch reactors (SBR) were investigated. During all experiments, the efficiency of SBR ...

  8. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway.

    Science.gov (United States)

    Rosado, Ivan V; Langevin, Frédéric; Crossan, Gerry P; Takata, Minoru; Patel, Ketan J

    2011-11-13

    Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival.

  9. On-line detection of atmospheric formaldehyde by a conductometric biosensor.

    Science.gov (United States)

    Vianello, Fabio; Boscolo-Chio, Raffaella; Signorini, Stefano; Rigo, Adelio

    2007-01-15

    Atmospheric formaldehyde (CH(2)O) was detected under continuous flow conditions by an on-line system comprising of a wet scrubber for a continuous transfer of the pollutant to an aqueous solution, a micro-reactor containing immobilized formaldehyde dehydrogenase (FDH) and a conductometric transducer. By this system atmospheric formaldehyde concentrations in the range 0.05-2 ppm were detected with a sensitivity of 20 microS/ppm. In this concentration range the immobilized enzyme oxidized all the sampled formaldehyde molecules to formic acid, avoiding cumbersome calibration procedures. The operational stability of the biosensor was at least 3 months, working continuously 10 h/day at room temperature.

  10. A Formaldehyde Exposure Assessment Tool for Occupants of FEMA Temporary Housing Units

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Srinandini; Spears, Michael; Maddalena, Randy L.; Russell, Marion L; Apte, Michael G.

    2010-10-01

    The report outlines the methodology used to develop a web-based tool to assess the formaldehyde exposure of the occupants of Federal Emergency Management Administration (FEMA) temporary housing units (THUs) after Hurricanes Katrina and Rita in 2005. Linear regression models were built using available data to retrospectively estimate the indoor temperature and relative humidity, formaldehyde emission factors and concentration, and hence the formaldehyde exposures. The interactive web-tool allows the user to define the inputs to the model to evaluate formaldehyde exposures for different scenarios.

  11. Characterization and Application of Urea-Formaldehyde-Furfural Co-condensed Resins as Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Jizhi Zhang

    2014-08-01

    Full Text Available Furfural, as an organic compound derived from biomass materials, was used to partially substitute for formaldehyde in the synthesis of UF resin. Urea-formaldehyde-furfural co-condensed (UFFR resins with different substitute ratios of furfural to formaldehyde (FR/F were prepared. The effects of the FR/F substitute ratio on the performances of UFFR resins were investigated. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS and Fourier transform infrared spectroscopy (FT-IR were applied to characterize the chemical structures of UFFR resins. Plywood bonded by these resins was manufactured, and its bond strength and formaldehyde emission were measured. The results showed that the substitution of furfural in place of formaldehyde could reduce the free formaldehyde content effectively at the expense of prolongation of the curing time. The spectra of MALDI-TOF and FTIR confirmed the co-condensation of urea-formaldehyde-furfural both in uncured and cured resins. Plywood prepared under optimized parameters could yield high bond strength and low formaldehyde emission, which were 0.84 MPa and 0.23 ppm, respectively. The optimized parameters were as follows: a FR/F substitute ratio of 1/3; 1% (NH42S2O8 as the curing agent; and a hot pressing temperature of 130 °C. Hence, it is feasible to substitute partially formaldehyde by furfural to prepare UFFR resins as wood adhesives for plywood.

  12. Formaldehyde degradation in the presence of methanol by photo-Fenton process.

    Science.gov (United States)

    Kajitvichyanukul, Puangrat; Lu, Ming-Chun; Jamroensan, Aditsuda

    2008-02-01

    In this study, the photo-Fenton process for the degradation of formaldehyde was investigated in lab-scale experiments. Results showed that methanol, the additive chemical in a commercial product of formaldehyde, was also decomposed during the formaldehyde oxidation reaction. The oxidation reaction was in three-stages. The first stage was the Fe(2+)/H(2)O(2) reaction in which both formaldehyde and methanol were swiftly decomposed. The second and the third stages exerted a somewhat less rapid degradation of both chemicals. The first stage of the oxidation reaction can be discussed by means of the initial average rate and the third stage or Fe(3+)/H(2)O(2) stage was found to follow the first order reaction rate. The reaction was influenced by the initial pH, the concentration of hydrogen peroxide, the amount of ferrous ions. The initial pH at 2.6 provided the highest removal efficiencies in this system. In addition, the competition between formaldehyde and methanol was investigated and described as r(m)/r(f), where r(m) and r(f) were the initial rates of methanol and formaldehyde, respectively. The addition of methanol exhibited a competitive effect on formaldehyde degradation. The removal of formaldehyde decreased with increasing methanol concentration. At the high concentrations of methanol, the oxidation reaction of formaldehyde was repressed. It appears that all values of r(m)/r(f) obtained from the experiments are lower than the theoretical values.

  13. Urea-formaldehyde resins: production, application, and testing

    Science.gov (United States)

    Nuryawan, A.; Risnasari, I.; Sucipto, T.; Heri Iswanto, A.; Rosmala Dewi, R.

    2017-07-01

    Urea-formaldehyde (UF) resin, one of the most important formaldehyde resin adhesives, is a polymeric condensation product of formaldehyde with urea, and being widely used for the manufacture of wood-based composite panels, such as plywood, particleboard, and fiberboard. In spite of its benefits such as fast curing, good performance in the panels (colorless), and lower cost; formaldehyde emission (FE) originated from either UF resin itself or composite products bonded by UF resins is considered a critical drawback as it affects human health particularly in indoor environment. In order to reduce the FE, lowering formaldehyde/urea (F/U) mole ratio in the synthesis of the UF resin was done. In this study, synthesis of UF resins was carried out following the conventional alkaline-acid two-step reaction with a second addition of urea, resulting in F/U mole ratio around 1.0, namely 0.95; 1.05, and 1.15. The UF resins produced were used as binder for particleboard making. The board was manufactured in the laboratory using shaving type particle of Gmelina wood, 8% UF resin based on oven dry particle, and 1% NH4Cl (20%wt) as hardener for the resin. The target of the thickness was 10 mm and the dimension was 25 cm x 25 cm. The resulted particleboard then was evaluated the physical and the mechanical properties by Japanese Industrial Standard (JIS) A 5908 (2003). Further, the resulted particleboard also was used for the mice cage’s wall in order to mimic the real living environment. After four weeks exposure in the cages, the mice then were evaluated their mucous organs as well as their blood. The experiment results were as follows: 1) It was possible to synthesis UF resins with low F/U mole ratio; 2) However, the particleboard bonded UF resins with low F/U mole ratio showed poor properties, particularly on the thickness swelling and modulus of elasticity; 3) There was no significant differences among the mucous organs of the mice after a month exposure FE originated from

  14. Formaldehyde (HCHO) column measurements from airborne instruments: Comparison with airborne in-situ measurements, model, and satellites

    Science.gov (United States)

    Kwon, Hyeong-Ahn; Park, Rokjin; Nowlan, Caroline; González Abad, Gonzalo; Chance, Kelly; Janz, Scott

    2017-04-01

    Trace gas measurements from airborne instruments are useful to evaluate and improve a retrieval algorithm developed for the Geostationary Environment Monitoring Spectrometer (GEMS). We used radiances measured from two airborne 2D array sensors, the GeoCAPE Airborne Simulator (GCAS) and the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) for DISCOVER-AQ Texas in 2013 and for KORUS-AQ in 2016 to retrieve formaldehyde (HCHO) columns and to evaluate the GEMS retrieval algorithm. In addition, we used simulated aerosol concentrations constrained by airborne LIDAR observations for AMF calculation to convert slant columns to vertical columns. We compared retrieved HCHO columns with vertical columns obtained from in-situ airborne HCHO measurements. Optical properties and distributions of aerosols are found to be important factors, affecting HCHO retrievals. Finally, additional comparisons of retrieved results with model simulations and low-orbiting satellites provides quantitative information for improving bottom-up emission estimates of volatile organic carbon emissions.

  15. Unusual Low Temperature Reactivity of Water. The CH + H2O Reaction as a Source of Interstellar Formaldehyde?

    CERN Document Server

    Hickson, Kevin; Caubet, Philippe

    2013-01-01

    Water is an important reservoir species for oxygen in interstellar space and plays a key role in the physics of star formation through cooling by far-infrared emission. Whilst water vapour is present at high abundances in the outflows of protostars, its contribution to the chemical evolution of these regions is a minor one due to its limited low temperature reactivity in the gas-phase. Here, we performed kinetic experiments on the barrierless CH + H2O reaction in a supersonic flow reactor down to 50 K. The measured rate increases rapidly below room temperature, confirming and extending the predictions of earlier statistical calculations. The open product channels for this reaction suggest that this process could be an important gas-phase route for formaldehyde formation in protostellar envelopes.

  16. Validation of low-temperature steam with formaldehyde sterilization for endoscopes, using validation device.

    Science.gov (United States)

    Kanemitsu, Keiji; Ogawa, Akihisa; Hatori, Tsuruo; Imasaka, Takayuki; Kunishima, Hiroyuki; Inden, Ken; Hatta, Masumitsu; Nakamura, Ichiro; Hirayama, Yoshihiro; Kaku, Mitsuo

    2005-12-01

    Validation of sterilization is an important step before clinical use of medical equipment. Adequate validation of sterilization of the endoscope has not been reported. One reason for this is the lack of suitable devices for validation. The VDES (validation device for endoscope sterilization; Olympus prototype model, Olympus, Tokyo, Japan) was designed in two types (type A and type B) and resembles gastroscopes and duodenoscopes, respectively. Each type consists of inner and outer tubing and a central capsule containing a biological indicator. The device was designed to examine the effectiveness of low-temperature sterilizers, such as ethylene oxide gas, hydrogen peroxide gas plasma, and low-temperature steam with formaldehyde (LTSF) sterilizer. The aim of this study was to validate the sterilization of GI endoscopes by the LTSF sterilizer. Sterilization was assessed using both types of VDES after a 60-min application of LTSF. Culture of the biological indicator confirmed the complete eradication of the bacteria in a total of 10 experiments with each type of VDES after LTSF sterilization. Our results confirm that the LTSF sterilizer may sterilize endoscopes currently distributed by Olympus. Commercialization of VDES will make it possible to evaluate the reliability of sterilization when it is set in the sterilization device with endoscopes.

  17. Formaldehyde induces rapid glutathione export from viable oligodendroglial OLN-93 cells.

    Science.gov (United States)

    Tulpule, Ketki; Schmidt, Maike M; Boecker, Karolin; Goldbaum, Olaf; Richter-Landsberg, Christiane; Dringen, Ralf

    2012-12-01

    Formaldehyde is a neurotoxic environmental pollutant that can also be produced in the body by certain enzymatic reactions. To test for the potential consequences of an exposure of oligodendrocytes to formaldehyde, we used OLN-93 cells as a model system. Treatment with formaldehyde altered the cellular glutathione (GSH) content of these cells by inducing a rapid time- and concentration-dependent export of GSH. Half-maximal effects were observed for a formaldehyde concentration of about 0.2 mM. While the basal GSH efflux from OLN-93 cells was negligible even when the cellular GSH content was doubled by pre-incubation of the cells with cadmium chloride, the formaldehyde-stimulated export increased almost proportionally to the cellular GSH content. In addition, the stimulated GSH export required the presence of formaldehyde and was almost completely abolished after removal of the aldehyde. Analysis of kinetic parameters of the formaldehyde-induced GSH export revealed similar K(m) and V(max) values of around 100 nmol/mg and 40 nmol/(hmg), respectively, for both OLN-93 cells and cultured astrocytes. The transporter responsible for the formaldehyde-induced GSH export from OLN-93 cells is most likely the multidrug resistance protein 1 (Mrp1), since this transporter is expressed in these cells and since the inhibitor MK571 completely prevented the formaldehyde-induced GSH export. The rapid export of GSH from formaldehyde-treated viable oligodendroglial cells is likely to compromise the cellular antioxidative and detoxification potential which may contribute to the known neurotoxicity of formaldehyde.

  18. Preliminary study: Formaldehyde exposure in laboratories of Sharjah university in UAE

    Directory of Open Access Journals (Sweden)

    Hafiz Omer Ahmed

    2011-01-01

    Full Text Available Objectives : Laboratory technicians, students, and instructors are at high risk, because they deal with chemicals including formaldehyde. Thus, this preliminary study was conducted to measure the concentration of formaldehyde in the laboratories of the University of Sharjah in UAE. Materials and Methods: Thirty-two air samples were collected and analyzed for formaldehyde using National Institute for Occupational Safety and Health (NIOSH method 3500. In this method, formaldehyde reacts with chromotropic acid in the presence of sulfuric acid to form a colored solution. The absorbance of the colored solution is read in spectrophotometer at wavelength 580 nm and is proportional to the quantity of the formaldehyde in the solution. Results: For the anatomy laboratory and in the presence of the covered cadaver, the mean concentration of formaldehyde was found to be 0.100 ppm with a range of 0.095-0.105 ppm. Whereas for the other laboratories, the highest mean concentration of formaldehyde was 0.024 ppm in the general microbiology laboratory and the lowest mean concentration of formaldehyde was 0.001 ppm in the environmental health laboratory. The 8-hour (time-weighted average concentration of formaldehyde was found to be ranging between 0.0003 ppm in environmental health laboratory and 0.026 ppm in the anatomy laboratory. Conclusions: The highest level of concentration of formaldehyde in the presence of the covered cadaver in anatomy laboratory exceeded the recommended ceiling standard established by USA-NIOSH which is 0.1 ppm, but below the ceiling standard established by American Conference of Governmental Industrial Hygienists which is 0.3 ppm. Thus, it is recommended that formaldehyde levels should be measured periodically specially during the dissection in the anatomy laboratory, and local exhaust ventilation system should be installed and personal protective equipment such as safety glass and gloves should be available and be used to prevent

  19. Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures

    Directory of Open Access Journals (Sweden)

    Noelia Álvarez-Gutiérrez

    2016-03-01

    Full Text Available The challenge of developing effective separation and purification technologies that leave much smaller energy footprints is greater for carbon dioxide (CO2 than for other gases. In addition to its involvement in climate change, CO2 is present as an impurity in biogas and bio-hydrogen (biological production by dark fermentation, in post-combustion processes (flue gas, CO2-N2 and many other gas streams. Selected phenol-formaldehyde resin-based activated carbons prepared in our laboratory have been evaluated under static conditions (adsorption isotherms as potential adsorbents for CO2 separation at sub-atmospheric pressures, i.e., in post-combustion processes or from biogas and bio-hydrogen streams. CO2, H2, N2, and CH4 adsorption isotherms at 25 °C and up to 100 kPa were obtained using a volumetric equipment and were correlated by applying the Sips model. Adsorption equilibrium was then predicted for multicomponent gas mixtures by extending the multicomponent Sips model and the Ideal Adsorbed Solution Theory (IAST in conjunction with the Sips model. The CO2 uptakes of the resin-derived carbons from CO2-CH4, CO2-H2, and CO2-N2 at atmospheric pressure were greater than those of the reference commercial carbon (Calgon BPL. The performance of the resin-derived carbons in terms of equilibrium of adsorption seems therefore relevant to CO2 separation in post-combustion (flue gas, CO2-N2 and in hydrogen fermentation (CO2-H2, CO2-CH4.

  20. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Science.gov (United States)

    2010-07-01

    ... substituted oxirane, formaldehyde-phenol polymer glycidyl ether, substituted proplyamine and...-phenol polymer glycidyl ether, substituted proplyamine and polyethylenepolyamines (generic). (a) Chemical... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  1. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Science.gov (United States)

    2010-07-01

    ... products with (butoxymethyl) oxirane formaldehyde-phenol polymer glycidyl ether, morpholinepropanamine...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N... products with (butoxymethyl) oxirane formaldehyde-phenol polymer glycidyl ether,...

  2. NMR studies of proton exchange kinetics in aqueous formaldehyde solutions

    Science.gov (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2014-05-01

    Aqueous solutions of formaldehyde, formalin, are commonly used for tissue fixation and preservation. Treatment with formalin is known to shorten the tissue transverse relaxation time T2. Part of this shortening is due to the effect of formalin on the water T2. In the present work we show that the shortening of water T2 is a result of proton exchange between water and the major constituent of aqueous solutions of formaldehyde, methylene glycol. We report the observation of the signal of the hydroxyl protons of methylene glycol at 2 ppm to high frequency of the water signal that can be seen at low temperatures and at pH range of 6.0 ± 1.5 and, at conditions where it cannot be observed by the single pulse experiment, it can be detected indirectly through the water signal by the chemical exchange saturation transfer (CEST) experiment. The above finding made it possible to obtain the exchange rate between the hydroxyl protons of the methylene glycol and water in aqueous formaldehyde solutions, either using the dispersion of the spin-lattice relaxation rate in the rotating frame (1/T1ρ) or, at the slow exchange regime, from the line width hydroxyl protons of methylene glycol. The exchange rate was ∼104 s-1 at pH 7.4 and 37 °C, the activation energy, 50.2 kJ/mol and its pH dependence at 1.1 °C was fitted to: k (s-1) = 520 + 6.5 × 107[H+] + 3.0 × 109[OH-].

  3. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Science.gov (United States)

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  4. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    Science.gov (United States)

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office.

  5. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    Science.gov (United States)

    The paper discusses the measurment and analysis of the patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board, using small environmental chamber tests. The formaldehyde emissions resulted in sharp increase of chamber air...

  6. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Science.gov (United States)

    2010-07-01

    ... Insulation Resins by Hydroxylamine Hydrochloride B Appendix B to Subpart NNN of Part 63 Protection of...—Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride 1. Scope This method was specifically developed for water-soluble phenolic resins that have a relatively high free-formaldehyde...

  7. Direct selective oxygen-assisted acylation of amines driven by metallic silver surfaces: dimethylamine with formaldehyde.

    Science.gov (United States)

    Zhou, Ling; Freyschlag, Cassandra G; Xu, Bingjun; Friend, Cynthia M; Madix, Robert J

    2010-02-07

    Facile, direct acylation of dimethylamine with formaldehyde to N,N-dimethylformamide proceeds with a selectivity approaching 100% at low oxygen concentrations on metallic silver surfaces; the reaction proceeds via nucleophilic attack of adsorbed dimethylamide on formaldehyde with subsequent beta-H elimination from the adsorbed hemiaminal.

  8. Determination of formaldehyde in frozen fish with formaldehyde dehydrogenase using a flow injection system with an incorporated gel-filtration chromatrography column

    DEFF Research Database (Denmark)

    Bechmann, Iben Ell

    1996-01-01

    in a FIA system. The FIA system is furnished with a gel-filtration chromatography column for on-line removal of the proteins from the extract before the enzymatic analysis is performed. Compared with the standard methods for determination of formaldehyde in fish products the present method is much faster......A flow injection analysis (FIA) system for determination of formaldehyde in frozen fish products is described. The system provides a rapid and selective determination of formaldehyde in aqueous fish extracts by the combination of a deproteinization procedure and a stopped-now enzymatic approach...... and less affected by interferences. The limit of detection for the proposed method is 2.5 mg/l of formaldehyde. The sampling frequency is about 10 determinations per hour....

  9. Formaldehyde and methanol deuteration in protostars: fossiles from a past fast high density pre-collapse phase

    CERN Document Server

    Taquet, Vianney; Kahane, Claudine

    2012-01-01

    Extremely high deuteration of several molecules have been observed around low mass protostars since a decade. Among them, formaldehyde and methanol present particularly high deuteration, with observations of abundant doubly and triply deuterated forms. Both species are thought to be mainly formed on interstellar grains during the low temperature and dense pre-collapse phase by H and D atom additions on the iced CO. We present here a theoretical study of the formaldehyde and methanol deuteration obtained with our gas-grain model, GRAINOBLE. This model takes into account the multilayer nature of the mantle and explores the robustness of the results against the uncertainties of poorly constrained chemical and surface model parameters. The comparison of the model predictions with the observations leads to two major results: i) the observed high deuteration is obtained during the last phase of the pre-collapse stage, when the density reaches 5 10^6 cm^-3, and this phase is fast, lasting only several thousands year...

  10. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification.

    Science.gov (United States)

    Wang, Zhiqiang; Pei, Jingjing; Zhang, Jensen S

    2014-09-15

    Botanical filtration has been proved to be effective for indoor gas pollutant removal. To understand the roles of different transport, storage and removal mechanism by a dynamic botanical air filter, a series of experimental investigations were designed and conducted in this paper. Golden Pothos (Epipremnum aureum) plants was selected for test, and its original soil or activated/pebbles root bed was used in different test cases. It was found that flowing air through the root bed with microbes dynamically was essential to obtain meaningful formaldehyde removal efficiency. For static potted plant as normally place in rooms, the clean air delivery rate (CADR), which is often used to quantify the air cleaning ability of portable air cleaners, was only ∼ 5.1m(3)/h per m(2) bed, while when dynamically with air flow through the bed, the CADR increased to ∼ 233 m(3)/h per m(2) bed. The calculated CADR due to microbial activity is ∼ 108 m(3)/h per m(2) bed. Moisture in the root bed also played an important role, both for maintaining a favorable living condition for microbes and for absorbing water-soluble compounds such as formaldehyde. The role of the plant was to introduce and maintain a favorable microbe community which effectively degraded the volatile organic compounds adsorbed or absorbed by the root bed. The presence of the plant increased the removal efficiency by a factor of two based on the results from the bench-scale root bed experiments.

  11. FORMALDEHYDE AND METHANOL DEUTERATION IN PROTOSTARS: FOSSILS FROM A PAST FAST HIGH-DENSITY PRE-COLLAPSE PHASE

    Energy Technology Data Exchange (ETDEWEB)

    Taquet, V.; Ceccarelli, C.; Kahane, C. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, F-38041 Grenoble (France)

    2012-03-20

    Extremely high deuteration of several molecules has been observed around low-mass protostars for a decade. Among them, formaldehyde and methanol present particularly high deuteration, with observations of abundant doubly and triply deuterated forms. Both species are thought to be mainly formed on interstellar grains during the low-temperature and dense pre-collapse phase by H and D atom additions on the iced CO. We present here a theoretical study of the formaldehyde and methanol deuteration obtained with our gas-grain model, GRAINOBLE. This model takes into account the multilayer nature of the mantle and explores the robustness of the results against the uncertainties of poorly constrained chemical and surface model parameters. The comparison of the model predictions with the observations leads to two major results: (1) the observed high deuteration is obtained during the last phase of the pre-collapse stage, when the density reaches {approx}5 Multiplication-Sign 10{sup 6} cm{sup -3}, and this phase is fast, lasting only several thousands years; and (2) D and H abstraction and substitution reactions are crucial in making up the observed deuteration ratios. This work shows the power of chemical composition as a tool to reconstruct the past history of protostars.

  12. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: Surface tension depression and secondary organic products

    CERN Document Server

    Li, Zhi; Sareen, Neha; McNeill, V Faye

    2011-01-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(\\pm2) dyn/cm in pure water and 62(\\pm1) dyn/cm in AS solutions. Surface t...

  13. 40 CFR 721.10054 - Phenol, polymer with formaldehyde, 3-[(2-aminocyclohexyl)amino]-2-hydroxypropyl ethers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phenol, polymer with formaldehyde, 3... Significant New Uses for Specific Chemical Substances § 721.10054 Phenol, polymer with formaldehyde, 3- -2... substance identified generically as a phenol, polymer with formaldehyde, 3- -2-hydroxypropyl ethers (PMN...

  14. Multicenter Patch Testing With a Resol Resin Based on Phenol and Formaldehyde Within the International Contact Dermatitis Research Group

    DEFF Research Database (Denmark)

    Isaksson, M.; Ale, I.; Andersen, Klaus Ejner

    2015-01-01

    Background Contact allergy to phenol-formaldehyde resins (PFRs) based on phenol and formaldehyde is not detected by a p-tertiary-butylphenol-formaldehyde resin included in most baseline patch test series. Objective The aims of this study were to investigate the contact allergy rate to PFR-2...

  15. Graphene/poly(methyl methacrylate) chemiresistor sensor for formaldehyde odor sensing.

    Science.gov (United States)

    Alizadeh, Taher; Soltani, Leyla Hamed

    2013-03-15

    It was demonstrated that a thin film of chemically exfoliated graphene flakes, blended with poly(methyl methacrylate), could be used as a chemiresistor sensor for the sensitive and selective determination of formaldehyde vapor. Formaldehyde adsorption on the sensing film led to an increase in the electrical resistance of the sensing film. It was demonstrated that direct interaction of formaldehyde with graphene flakes was responsible for the observed response. Graphene/polymer ratio was found to be important parameter in defining the dominant sensing mechanism and sensor performance. A reasonable relationship was found between formaldehyde concentration and electrical resistance response of the sensor. The amounts of graphene and polymer in the sensing composite were optimized by using three-level full factorial design in order to acquire higher sensitivity and selectivity. Final sensor response for formaldehyde concentration was linear between 0.05 and 5.0 ppm. The detection limit of this sensing device was calculated equal to 10 ppb.

  16. A new system to reduce formaldehyde levels improves safety conditions during gross veterinary anatomy learning.

    Science.gov (United States)

    Nacher, Víctor; Llombart, Cristina; Carretero, Ana; Navarro, Marc; Ysern, Pere; Calero, Sebastián; Fígols, Enric; Ruberte, Jesús

    2007-01-01

    Dissection is a very useful method of learning veterinary anatomy. However, formaldehyde, which is widely used to preserve cadavers, is an irritant, and it has recently been classified as a carcinogen. In 1997, the Instituto Nacional de Seguridad e Higiene en el Trabajo [National Institute of Workplace Security and Hygiene] found that the levels of formaldehyde in our dissection room were above the threshold limit values. Unfortunately, no optimal substitute for formaldehyde is currently available. Therefore, we designed a new ventilation system that combines slow propulsion of fresh air from above the dissection table and rapid aspiration of polluted air from the perimeter. Formaldehyde measurements performed in 2004, after the introduction of this new system into our dissection laboratory, showed a dramatic reduction (about tenfold, or 0.03 ppm). A suitable propelling/aspirating air system successfully reduces the concentration of formaldehyde in the dissection room, significantly improving safety conditions for students, instructors, and technical staff during gross anatomy learning.

  17. Sinonasal adenoid cystic carcinoma following formaldehyde exposure in the operating theatre.

    Science.gov (United States)

    Sandvik, Anniken; Klingen, Tor Audun; Langård, Sverre

    2014-01-01

    We present a case report of an auxiliary nurse who developed an adenoid cystic carcinoma in her left maxillary sinus following occupational exposure to formaldehyde in the operating theatre. Currently, the epidemiological evidence that formaldehyde can cause cancer in humans is considered to be limited. Previous case-control-studies of formaldehyde and sinonasal cancer have mainly investigated subjects who were concomitantly exposed to wood dust, a known risk factor to the development of sinonasal adenocarcinoma of intestinal type. Our case report presents a patient who has developed an adenoid cystic carcinoma following exposure to formaldehyde. We suggest that the occupational physician remains alert to formaldehyde as an occupational hazard among health care workers.

  18. Decreasing sulfide generation in sewage by dosing formaldehyde and its derivatives under anaerobic conditions.

    Science.gov (United States)

    Zhang, L; De Gusseme, B; De Schryver, P; Mendoza, L; Marzorati, M; Verstraete, W

    2009-01-01

    Hydrogen sulfide emission in sewers is associated with toxicity, corrosion, odour nuisance and high costs. In this study, a new method to inhibit sulfide generation by means of formaldehyde and its derivatives has been evaluated under anaerobic conditions. The possible impact of formaldehyde on an activated sludge system and an appraisal of the economic aspects are presented as well. A dosage of 19 mg L(-1) formaldehyde resulted in a decrease of the sulfide production of 90%. Dosing of 32 mg L(-1) paraformaldehyde and addition of 111 mg L(-1) ureaformaldehyde were not sufficient to inhibit the sulfide generation in sewage to the same extent. The impacts of 19 mg L(-1) formaldehyde on activated sludge, in terms of COD removal, nitrification rate and oxygen uptake rates, were negligible. This suggests that formaldehyde dosage is a feasible technique to abate the sulfide problem in sewers.

  19. Removal of formaldehyde by hydroxyapatite layer biomimetically deposited on polyamide film.

    Science.gov (United States)

    Kawai, Takahiro; Ohtsuki, Chikara; Kamitakahara, Masanobu; Tanihara, Masao; Miyazaki, Toshiki; Sakaguchi, Yoshimitsu; Konagaya, Shigeji

    2006-07-01

    Some harmful volatile organic compounds (VOCs), such as formaldehyde, are regulated atmospheric pollutants. Therefore, development of a material to remove these VOCs is required. We focused on hydroxyapatite, which had been biomimetically coated on a polyamide film, as an adsorbent and found that formaldehyde was successfully removed by this adsorbent. The amount of formaldehyde adsorbed increased with the area of the polyamide film occupied by hydroxyapatite. The amount of adsorbed formaldehyde and its rate of adsorption were larger for hydroxyapatite deposited on polyamide film than for the commercially available calcined hydroxyapatite powder. This high adsorption ability is achieved by the use of nanosized particles of hydroxyapatite with low crystallinity and containing a large number of active surface sites. Therefore, hydroxyapatite biomimetically coated on organic substrates can become a candidate material for removing harmful VOCs such as formaldehyde.

  20. Formaldehyde removal in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1.

    Science.gov (United States)

    Hidalgo, A; Lopategi, A; Prieto, M; Serra, J L; Llama, M J

    2002-02-01

    Rhodococcus erythropolis strain UPV-1 is able to grow on phenol as the only carbon and energy source and to remove formaldehyde completely from both synthetic and industrial wastewater. The rate of formaldehyde removal is independent of either initial biomass or formaldehyde concentration. The presence of viable, intact cells is strictly necessary for this removal to take place. Discontinuous and continuous formaldehyde-feed systems were successfully tested with synthetic wastewater in shaken flasks. Once biodegradation was well established in model synthetic wastewater, a real wastewater sample was obtained from a local phenolic and melamine resin-manufacturing company. Incubation of biomass with this wastewater at subtoxic concentrations of formaldehyde resulted in the complete removal of the pollutant. Parameters, such as chemical oxygen demand and toxicity, were assessed as indicators of wastewater cleanup progress.

  1. The effect of urea pretreatment on the formaldehyde emission and properties of straw particleboard

    Institute of Scientific and Technical Information of China (English)

    Hojat Hematabadi; Rabi Behrooz

    2012-01-01

    For manufacturing low-formaldehyde emission particleboard from wheat straw and urea-formaldehyde (UF) resins using urea treatment for indoor environments,we investigated the influence of urea treatment on the formaldehyde emission,physical and mechanical properties of the manufactured particleboard.Wheat straws were treated at three levels of urea concentration (5%,10%,15%) and 95℃ as holding temperature.Wheat straw particleboards were manufactured using hot press at 180℃ and 3 MPa with two types of UF adhesive (UF-45,UF-91).Then the formaldehyde emission values,physical properties and mechanical properties were considered.The results show that the formaldehyde emission value was decreased by increasing urea concentration.Furthermore,the results indicate that the specimens under urea treatment have better mechanical and physical properties compared with control specimens.Also specimens under urea treatment at 10% concentration and UF-91 type adhesive have the most optimum physical and mechanical strength.

  2. Harmful effects of formaldehyde on the stability of polyacrylamide solutions used in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Catherin, G.; Marchal, J.

    1979-01-01

    In a study of the oxidation of aqueous solutions of the polyacrylamides PAA and HPAA, it was found that formaldehyde is an oxidation product of acrylamide. The presence of formaldehyde in turn causes the production of insoluble derivatives which spoil the rheological properties of polymer solutions. This result reinforces those of previous studies. Examination of the literature showed that the oxidation and addition reactions proposed in these previous studies to account for this effect are not consistent with the known properties of formaldehyde in the media used. A scheme is proposed which more fully accounts for the observed phenomena. It also has been shown that oxido-reduction of formaldehyde initiates the formation of radicals on polyacrylamides. It is concluded that formaldehyde should not be used to protect polyacrylamide solutions against biodegradation in tertiary oil recovery. 40 references.

  3. Transgenic plants of Petunia hybrida harboring the CYP2E1 gene efficiently remove benzene and toluene pollutants and improve resistance to formaldehyde

    Directory of Open Access Journals (Sweden)

    Daoxiang Zhang

    2011-01-01

    Full Text Available The CYP2E1 protein belongs to the P450 enzymes family and plays an important role in the metabolism of small molecular and organic pollutants. In this study we generated CYP2E1 transgenic plants of Petunia using Agrobacterium rhizogenes K599. PCR analysis confirmed that the regenerated plants contained the CYP2E1 transgene and the rolB gene of the Ri plasmid. Southern blotting revealed the presence of multiple copies of CYP2E1 in the genome of transgenic plants. Fluorescent quantitative PCR revealed exogenous CYP2E1 gene expression in CYP2E1 transgenic plants at various levels, whereas no like expression was detected in either GUS transgenic plants or wild-types. The absorption of benzene and toluene by transgenic plants was analyzed through quantitative gas chromatography. Transgenic plants with high CYP2E1 expression showed a significant increase in absorption capacity of environmental benzene and toluene, compared to control GUS transgenic and wild type plants. Furthermore, these plants also presented obvious improved resistance to formaldehyde. This study, besides being the first to reveal that the CYP2E1 gene enhances plant resistance to formaldehyde, also furnishes a new method for reducing pollutants, such as benzene, toluene and formaldehyde, by using transgenic flowering horticultural plants.

  4. Airborne In-Situ Measurements of Formaldehyde Over California: First Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

    Science.gov (United States)

    Marrero, Josette Elizabeth; Saint Clair, Jason; Yates, Emma L.; Gore, Warren; Swanson, Andrew K.; Iraci, Laura T.; Hanisco, Thomas F.

    2016-01-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. Results of the first COFFEE science flights preformed over the California's Central Valley will be presented. Boundary layer measurements and vertical profiles in the tropospheric column will both be included. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  5. Effects of Sodium Selenite on Formaldehyde Induced Renal Toxicity in Mice

    Directory of Open Access Journals (Sweden)

    Shabnam Mohammadi 1,2 * , Maryam Moghimian 3, Hanieh Torabzadeh 4, Mahla Langari 4, Roghayeh Nazeri 4, Zahra Karimi 4, Elham Sangari 4, Najmeh Jagarmi 5, Alireza Mohammad Zadeh 3, Mehdi Karimi 7, Kamyar Tavakkoli 8, Ali Delshad 9, Fatemeh Mohammadzadeh 3, Majid Ghayour-Mobarhan 10

    2016-12-01

    Full Text Available Background: Formaldehyde is widely used for industrial applications. Renal injury is an adverse effect associated with formaldehyde. Few studies have explored the potential benefits of protective factors on formaldehyde induced renal toxicity. This study evaluated the dose dependent effects of sodium selenite on the biochemical and histopathological effects of formaldehyde on murine kidney. Methods: Forty eight adult Balb/c male mice were randomized into six groups: a control group, a formaldehyde group and experimental III-VI groups. Formaldehyde group was injected with 10 mg/kg formaldehyde and groups III-VI received intraperitoneally doses of 0.1, 0.2, 0.4, 0.8 mg/kg selenium. After two weeks, a stereological study was done in accordance with the principle of Cavalieri and serum concentrations of urea and creatinine were measured. Data were analyzed using ANOVA and SPSS software. Results: Glomerosclerosis, necrosis and vacuolization were observed in the convoluted tubules of animals treated with formaldehyde. The biochemical markers, volume and count of glomeruli in the group treated with formaldehyde was significantly difference compared to the control group (P<0.05. The volume of the glomeruli in the group treated with 0.2 and 0.4 mg selenium and urea level in the group treated with 0.4 and 0.1 mg/kg selenium was significantly difference compared to the control group (P <0.05. The count of glomeruli and creatinine level in the selenium group was significantly difference compared to the control group (P ≤ 0.0001. Conclusions: A dose of 0.2 mg/kg of sodium selenite caused partial protective effect on the renal tissue and function in exposed to formaldehyde.

  6. Uric formaldehyde levels are negatively correlated with cognitive abilities in healthy older adults.

    Science.gov (United States)

    Yu, Jing; Su, Tao; Zhou, Ting; He, Yingge; Lu, Jing; Li, Juan; He, Rongqiao

    2014-04-01

    Recent studies have shown that the abnormal accumulation of endogenous formaldehyde could be a critical factor in age-related cognitive decline. The aim of this study was to estimate the correlation between uric formaldehyde and general cognitive abilities in a community-based elderly population, and to measure the extent and direction in which the correlation varied with demographic characteristics. Using a double-blind design, formaldehyde in human urine was analyzed by high-performance liquid chromatography (n = 604), and general cognitive abilities were measured using the Montreal Cognitive Assessment (MoCA). Demographic characteristics, in terms of age, gender, residential region, and education were taken into consideration. We found that uric formaldehyde levels were inversely correlated with the MoCA score, and the concentration varied with demographic features: higher odds of a high formaldehyde level occurred among the less educated and those living in old urban or rural areas. In cytological experiments, the level of cellular formaldehyde released into the medium increased as SH-SY5Y and BV2 cells were incubated for three days. Formaldehyde in excess impaired the processes of N2a cells and neurites of primary cultured rat hippocampal cells. However, removal of formaldehyde markedly rescued and regenerated the processes of N2a cells. These results demonstrated a negative correlation between the endogenous formaldehyde and general cognitive abilities. High formaldehyde levels could be a risk factor for cognitive impairment in older adults, and could be developed as a non-invasive marker for detection and monitoring of age-related cognitive impairment.

  7. Indoor aldehydes concentration and emission rate of formaldehyde in libraries and private reading rooms

    Science.gov (United States)

    Kim, Jeonghoon; Kim, Seojin; Lee, Kiyoung; Yoon, Dongwon; Lee, Jiryang; Ju, DaeYoung

    2013-06-01

    Aldehydes are of particularly interest due to their potential adverse impact on human health. Formaldehyde is one of the most abundant indoor pollutants. To improve indoor air quality, identifying and removing the major emission sources of formaldehyde would be desirable. The purposes of this study were to determine aldehyde concentrations in libraries and reading rooms and to identify emission sources of formaldehyde in private reading rooms. Indoor aldehyde concentrations were quantified at 66 facilities, including public libraries, children's libraries, public reading rooms, and private reading rooms, in the Seoul metropolitan area. Emission fluxes of formaldehyde from the surfaces of desks, chairs, floors, walls, and ceilings in 19 private reading rooms were measured using a passive emission colorimetric sensor. Indoor aldehyde (formaldehyde, acetaldehyde, propioaldehyde, benzaldehyde, and hexaldehyde) levels were significantly higher than outdoor levels. Indoor formaldehyde geometric mean concentrations in private reading rooms (119.3 μg m-3) were significantly higher than in public libraries (29.2 μg m-3), children's libraries (29.3 μg m-3), and public reading rooms (40.8 μg m-3). Indoor formaldehyde levels were associated with relative humidity. In private reading rooms, the emission rates from desks (255.5 ± 214.8 μg h-1) and walls (231.7 ± 192.3 μg h-1) were significantly higher than that from chairs (79.6 ± 88.5 μg h-1). Desks (31%) and walls (29%) were the major emission sources of formaldehyde in 14 facilities in which measurements exceeded the indoor standard of 100 μg m-3. The age of interior materials was a significant factor for indoor formaldehyde emission flux. Controlling the emission rates of desks and walls is recommended to improve formaldehyde concentrations in private reading rooms.

  8. The Design of a Formaldehyde Monitor Based on WIFI%一种WIFI无线甲醛监测器的设计

    Institute of Scientific and Technical Information of China (English)

    黄顺; 张顺平

    2013-01-01

    A WIFI formaldehyde monitor is designed, whose sensor devices are composed of an array of eight metal oxide semiconductor devices. It contains both thermal excitation and light excitation functions. The system achieves the functions of signal acquisition, light and heat control, storage and so on with MCU. It also can achieve wireless communications with PC or smart mobile phone through WIFI. The system uses TiO2 as the sensing material, and excited by ultraviolet, its temperature is controlled at about 75℃ to detect formaldehyde gas. The results show that the response sensitivity of 100ppm formaldehyde achieves 1802.03, showing the design of the formaldehyde monitor is feasible.%设计了一款WIFI无线甲醛监测器,它的传感器器件采用八个金属氧化物半导体材料组成的阵列。它既有热激发也有光激发的功能。本系统通过单片机实现信号获取、光热控制、存储等功能。它还可以通过WIFI与PC或智能手机实现无线通讯。本系统以TiO2作为气敏材料,通过紫外光激发,温度控制在75℃左右对甲醛气体进行测试。结果表明100ppm甲醛的响应灵敏度达1802.03。通过实验证明了该甲醛检测器的设计是可行的。

  9. Mechanisms and kinetics of noncatalytic ether reaction in supercritical water. 2. Proton-transferred fragmentation of dimethyl ether to formaldehyde in competition with hydrolysis.

    Science.gov (United States)

    Nagai, Yasuharu; Matubayasi, Nobuyuki; Nakahara, Masaru

    2005-04-28

    Noncatalytic reaction pathways and rates of dimethyl ether (DME) in supercritical water are determined in a tube reactor made of quartz according to liquid- and gas-phase 1H and 13C NMR observations. The reaction is studied at two concentrations (0.1 and 0.5 M) in supercritical water at 400 degrees C and over a water-density range of 0.1-0.6 g/cm3. The supercritical water reaction is compared with the neat one (in the absence of solvent) at 0.1 M and 400 degrees C. DME is found to decompose through (i) the proton-transferred fragmentation to methane and formaldehyde and (ii) the hydrolysis to methanol. Formaldehyde from reaction (i) is consecutively subjected to four types of redox reactions. Two of them proceed even without solvent: (iii) the unimolecular proton-transferred decarbonylation forming hydrogen and carbon monoxide and (iv) the bimolecular self-disproportionation generating methanol and carbon monoxide. When the solvent water is present, two additional paths are open: (v) the bimolecular self-disproportionation of formaldehyde with reactant water, producing methanol and formic acid, and (vi) the bimolecular cross-disproportionation between formaldehyde and formic acid, yielding methanol and carbonic acid. Methanol is produced through the three types of disproportionations (iv)-(vi) as well as the hydrolysis (ii). The presence of solvent water decelerates the proton-transferred fragmentation of DME; the rate constant is reduced by 40% at 0.5 g/cm3. This is caused by the suppression of low-frequency concerted motion corresponding to the reaction coordinate for the simultaneous C-O bond scission and proton transfer from one methyl carbon to the other. In contrast to the proton-transferred fragmentation, the hydrolysis of DME is markedly accelerated by increasing the water density. The latter becomes more important than the former in supercritical water at densities greater than 0.5 g/cm3.

  10. State-correlated DC slice imaging of formaldehyde photodissociation

    Science.gov (United States)

    Suits, Arthur G.; Chambreau, Steven D.; Lahankar, Sridhar A.

    High-resolution slice imaging methods allow for detection of single product quantum states with sufficient velocity resolution to infer the full correlated product state distribution of the undetected fragment. This is a level of detail not available in previous studies of formaldehyde photodissociation, and in this application it reveals startling new aspects of unimolecular decomposition. The CO rotational distributions from near ultraviolet dissociation of formaldehyde are bimodal, and the imaging experiments allow us to decompose these into two dynamically distinct components: the conventional molecular dissociation over a high exit barrier, and a novel `roaming atom' reaction in which frustrated radical dissociation events lead to intramolecular H abstraction, bypassing the transition state entirely. In probing the dynamics of the conventional molecular dissociation over the barrier, we use the complete vH2-jCO correlation to model the exit channel dynamics in new detail. Furthermore, these state-correlated measurements provide insight into radical-radical reactions and the underlying dynamics and energy dependence of the roaming pathway.

  11. CdS/TiO{sub 2} nanocomposite film and its enhanced photoelectric responses to dry air and formaldehyde induced by visible light at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhijun, E-mail: zjzou@xynu.edu.cn [Key Laboratory of Advanced Micro/Nano Functional Materials, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000 (China); State Key Laboratory of Material Processing and Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Qiu, Yang [Key Laboratory of Advanced Micro/Nano Functional Materials, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000 (China); Xie, Changsheng [State Key Laboratory of Material Processing and Die & Mould Technology, Nanomaterials and Smart Sensors Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xu, Jingjing; Luo, Yongsong; Wang, Chunlei; Yan, Hailong [Key Laboratory of Advanced Micro/Nano Functional Materials, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000 (China)

    2015-10-05

    Highlights: • Photoelectric responses of TiO{sub 2} and CdS/TiO{sub 2} to dry air and formaldehyde were tested. • In contrary to TiO{sub 2}, photoelectric response of CdS/TiO{sub 2} obviously increased. • CdS/TiO{sub 2} nanocomposite device exhibits excellent stability to formaldehyde. • CdS/TiO{sub 2} may be a promising material for developing high performance sensor. - Abstract: Photoelectric responses of pure TiO{sub 2} and CdS/TiO{sub 2} nanocomposite devices to dry air and formaldehyde under visible light irradiation at room temperature were investigated in this work. The pure TiO{sub 2} film was firstly prepared by screen printing and CdS/TiO{sub 2} nanocomposite film by the subsequent SILAR process. XRD, FE-SEM, HR-TEM and UV–vis DRS analysis were employed to examine the fundamental characteristics of as-prepared samples. Photoelectric responses of pure TiO{sub 2} device displayed that no obvious photocurrent was observed upon turning the visible light on either in dry air or in formaldehyde. But in contrary to pure TiO{sub 2} device, the photoelectric response of CdS/TiO{sub 2} nanocomposite device has been obviously enhanced. It is the adding of CdS, which works as a sensitizer, that accounts for the enhanced response and makes the CdS/TiO{sub 2} device sensitive to the visible light. Moreover, the CdS/TiO{sub 2} nanocomposite device exhibits excellent stability to formaldehyde. The present work does not only shed light on the photoelectric gas sensing properties of TiO{sub 2} and CdS/TiO{sub 2}, but also suggests that the CdS/TiO{sub 2} nanocomposite may be a promising material for fabricating visible-light-induced photoelectric gas sensors working at room temperature.

  12. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NO{sub x} in exhaled human breath

    Energy Technology Data Exchange (ETDEWEB)

    Riess, Ulrich; Tegtbur, Uwe [Hannover Medical School, Sports Physiology and Sports Medicine, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Fauck, Christian; Fuhrmann, Frank; Markewitz, Doreen [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54 E, 38108 Braunschweig (Germany); Salthammer, Tunga, E-mail: tunga.salthammer@wki.fraunhofer.de [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54 E, 38108 Braunschweig (Germany)

    2010-06-11

    Different analytical devices were tested and evaluated for their suitability of breath gas analysis by examining the physiological parameters and chemical substances in the exhaled breath of ten healthy probands during light cycling in dependence of methanol-rich nutrition. The probands exercised under normal breathing conditions on a bicycle ergometer. Breath air was exhaled into a glass cylinder and collected under steady-state conditions. Non-invasively measured parameters were pulse rate, breath frequency, temperature, relative humidity, NO{sub x}, total volatile organic compounds (TVOC{sub PAS}), carbon dioxide (CO{sub 2}), formaldehyde, methanol, acetaldehyde, acetone, isoprene and volatile organic compounds (VOCs). Methanol rich food and beverages strongly influenced the concentration of methanol and other organic substances in human breath. On the other hand, nutrition and smoking had no clear effect on the physical conditions of the probands. The proton transfer reaction mass spectrometry (PTR-MS) method was found to be very suitable for the analysis of breath gas but the m/z 31, if assigned to formaldehyde, is sensitive to interferences. The time vs. concentration curves of nitric oxide showed sudden peaks up to 120 ppb in most of the measurements. In one case a strong interference of the NO{sub x} signal was observed. The time resolved analysis of exhaled breath gas is of high capability and significance for different applications if reliable analytical techniques are used. Some compounds like nitric oxide (NO), methanol, different VOCs as well as sum parameters like TVOC{sub PAS} are especially suitable as markers. Formaldehyde, which is rapidly metabolized in the human body, could be measured reliably as a trace component by the acetylacetone (acac) method but not by PTR-MS.

  13. Chemical gas analyzers for proximate analysis of mine atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pochenkova, T.K.; Klassovskaya, N.A.; Zlenko, A.G.; Gus' kova, A.N. (Vsesoyuznyi Nauchno-Issledovatel' skii Institut Gornogo Dela, Donetsk (Ukraine))

    1992-09-01

    Describes a series of chemical gas analyzers developed by the VNIIGD institute for proximate analysis of mine atmosphere in coal mines. The new GKh-4, GKh-5, GKh-6, GKh CO-5 use detector tubes for carbon monoxide and dioxide, nitrogen oxides, sulfur dioxide, oxygen and hydrogen sulfide. These devices allow miners to determine gas concentrations in the mine atmosphere in less than 4 minutes with an accuracy of +/-25%. The series is now complemented by the GKh-M CH[sub 2]O-0.004 gas analyzer for measuring formaldehyde content in mine air during mine rescue operations conducted with the use of carbamide-formaldehyde resins. Key technical data on the gas analyzers are given.

  14. MEMS-Based Waste Vibrational Energy Harvesters

    Science.gov (United States)

    2013-06-01

    7 1. Lead Zirconium Titanate (PZT) .........................................................7 2. Aluminum ...cathode AC (40 kHz) [18] 3. PADMETAL, a metal stack of 20 nm chrome and 1000 nm aluminum , oxide is deposited and etched, as shown in Figure 25f,g...final piezoelectric energy harvester after fabrication. AlN is in blue, Si is grey and buried oxide from the SOI wafer is green

  15. MEMS-based biosensors for environmental monitoring

    Science.gov (United States)

    Endo, Tatsuro; Morita, Yasutaka; Tamiya, Eiichi

    2004-03-01

    Biosensors in connection with enzyme linked immunosorbent assay (ELISA) can be applied in many fields of research. In this paper, the reduction in the size of ELISA utilizing micro-chemical reaction is described in a microchamber array chip, and also a micro-flow antibody chip. The chips were fabricated by micro electromechanical system (MEMS) technology. The quantitative determination of dioxins was performed by using the chips. Glass or polystyrene beads were used for immobilization of an antibody at these chips. The antibody-immobilized beads were introduced into micro-flow channel or microchamber. As a competitive ELISA, sample solution mixed with horseradish peroxidase (HRP)-conjugated antigen, and non-HRP conjugated antigen was allowed to react in the microchamber or flow channel. As a sandwich assay, sample solution and HRP-conjugated antibody were sequentially added to the chamber. After the antigen-antibody reaction, addition of PBS buffer, hydrogen peroxide, and fluorogenic substrate produced the fluorescent dye. The resulting change in the fluorescence intensity was monitored by a fluorescence microscope.

  16. Mems based valveless micropump for biomedical applications

    CSIR Research Space (South Africa)

    Van der Merwe, SW

    2010-01-01

    Full Text Available , is solved numerically using Matlab?s Runge-Kutta initial value problem solver i.e. ode45. As depicted in Figure 2(a), the flow is considered in polar coordinates r and ?, generated by a line source at the origin as presented by White [14]. The flow...), is solved numerically using Mat- lab?s Runge-Kutta solver i.e ode45 as illustrated by [15]. Equation (12) is solved for a range of Re? values. Data from the CFD simulations are compared to the predicted Jeffery-Hamel velocity distri- butions...

  17. MEMS based impedimetric sensing of phthalates

    KAUST Repository

    Zia, Asif I.

    2013-05-01

    Phthalate esters are known ubiquitous teratogenic and carcinogenic environmental and food pollutants. Their detection and quantification is strictly laboratory based, time consuming, expensive and professionally handled procedure. Presented research work describes a real time non-invasive detection technique for phthalates detection in ethanol, water and drinks. The new type of inter-digital sensor design incorporating multiple sensing gold electrodes were fabricated on silicon substrate based on thin film micro-electromechanical system (MEMS) using semiconductor device fabrication technology. A passivation layer of Silicon Nitride (Si3N4) was used to functionalize the sensor. Various concentrations (0.1 to 20ppm) of DINP (di-isononyl phthalates) in ethanol and di (2-ethylhexyl) phthalate (DEHP) in deionized MilliQ water were subjected to the testing system by dip testing method. Electrochemical impedance spectroscopy (EIS) technique was used to obtain impedance spectra in order to determine sample conductance for evaluation of its dielectric properties. The impedance spectra so obtained showed that the sensor was able to detect the presence of phthalates in the samples distinctively. Electrochemical Spectrum Analyser was used to model the experimentally obtained impedance spectra by curve fitting technique to figure out Constant Phase Element (CPE) equivalent circuit. Locally available energy drink and juice was added with phthalates in concentrations of 2, 6 and 10ppm to observe the performance of the sensor in such products. Experimental results showed that the new sensor was able to detect different concentrations of phthalates in energy drinks. © 2013 IEEE.

  18. MEMS based pyroelectric thermal energy harvester

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Scott R; Datskos, Panagiotis G

    2013-08-27

    A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.

  19. MEMS-Based Smart Sensing System (“Smart Dust”)%基于 MEMS 技术的智能传感器系统(“智能灰尘”)

    Institute of Scientific and Technical Information of China (English)

    张紫辰; 董恺琛; 张益源; 王建中; 赵嘉昊; 尤政

    2015-01-01

    基于微机电系统(MEMS)技术的智能传感器系统(“智能灰尘”,Smart Dust)是体积小、能耗低、具备多功能传感与探测、信息处理与存储、双向无线通信、能源自供给与管理等功能的集成系统。它既可以独立工作也可以多系统协同工作。本文首先明确智能灰尘的基本概念及应用领域;随后介绍智能灰尘集成系统的设计方法和结构组成;通过综述智能灰尘技术的发展历程与趋势,以及国内外相关技术的发展现状,最后总结智能灰尘系统关键的技术难点与重点,并明确今后 MEMS 工艺及集成技术突破的可行性方案。%MEMS-based smart sensing system (“Smart Dust”)with ultra small size and low power consumption is integrated by multi-functional sensors including information detection,process and interexchange,it also contains the composite energy system with energy harvesting system and power management programs.Such device therefore is able to work either autonomously or col-laboratively.This paper is to clarify fundamentals and applications of smart dust technology,followed by its architecture design of such device.And then,focus will be given on several critical issues and technical difficulties by the development trajectory and inter-related technologies of smart dust.Finally,the feasibility to achieve such integrated multi-function sensing system with MEMS manu-factory engineering techniques will be addressed.

  20. Simultaneous Elimination of Formaldehyde and Ozone Byproduct Using Noble Metal Modified TiO2 Films in the Gaseous VUV Photocatalysis

    OpenAIRE

    Pingfeng Fu; Pengyi Zhang; Jia Li

    2012-01-01

    Simultaneous removal of low concentration formaldehyde (HCHO) and ozone byproduct was investigated in the gaseous VUV (vacuum ultraviolet) photocatalysis by using noble metal modified TiO2 films. Noble metal (Pt, Au, or Pd) nanoparticles were deposited on TiO2 films with ultrafine particle size and uniform distribution. Under 35 h VUV irradiation, the HCHO gas (ca. 420 ppbv) was dynamically degraded to a level of 10~45 ppbv without catalyst deactivation, and over 50% O3 byproduct was in situ ...

  1. Airship-based observations of formaldehyde in the planetary boundary layer over rural Finland

    Science.gov (United States)

    Thayer, Mitchell; Kaiser, Jennifer; Keutsch, Frank; Bachner, Mathias; Broch, Sebastian; Bohn, Birger; Fuchs, Hendrik; Gomm, Sebastian; Häseler, Rolf; Hofzumahaus, Andreas; Holland, Frank; Jäger, Julia; Li, Xin; Lohse, Insa; Rohrer, Franz; Tillmann, Ralf; Wegener, Robert; Mentel, Thomas; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Formaldehyde (HCHO) is an important tracer for oxidative processes in the atmosphere such as oxidation of volatile organic compounds (VOCs) and production of HO2 radicals (by photolysis or reaction with OH). Products of VOC oxidation and radical cycling, such as aerosols and tropospheric ozone, have direct impacts on human health. During the Pan-European Gas-AeroSOls Climate Interaction Study (PEGASOS), HCHO measurements were obtained together with OH reactivity, OH, HO2, CO, O3, NOx, HONO, HONO, VOCs, and aerosol particle size distribution. HCHO concentration was measured by the Madison FIber Laser-Induced Fluorescence (FILIF) instrument, optimized for flight campaigns to accommodate size and power requirements. Here we present data collected in rural areas near Jämijärvi, Finland in Spring 2013. Finland provides a pristine environment, allowing investigation of primarily biogenic emission and cycles. Measurements were carried out aboard a Zeppelin, which flew vertical profiles ranging in altitude from ~ 200 - 1000 meters. In this way, we studied the height-dependent evolution of the lower atmosphere, in which most VOC oxidation chemistry occurs. Flights were carried out with starting times ranging from sunrise to post-sunset. We present overall trends seen during the campaign of HCHO and related species within the context of VOC oxidation and secondary pollutant production.

  2. Elimination of formaldehyde over Cu-Al2O3 catalyst at room temperature.

    Science.gov (United States)

    Zhang, Chang-Bin; Shi, Xiao-Yan; Gao, Hong-Wei; He, Hong

    2005-01-01

    Catalytic elimination of formaldehyde (HCHO) was investigated over Cu-Al2O3 catalyst at room temperature. The results indicated that no oxidation of HCHO into CO2 occurs at room temperature, but the adsorption of HCHO occurs on the catalyst surface. With the increase of gas hourly space velocity (GHSV) and inlet HCHO concentration, the time to reach saturation was shortened proportionally. The results of the in situ DRIFTS, Density functional theory calculations and temperature programmed desorption(TPD) showed that HCHO was completely oxidized into HCOOH over Cu-Al2O3 at room temperature. With increasing the temperature in a flow of helium, HCOOH was completely decomposed into CO2 over the catalyst surface, and the deactivated Cu-Al2O3 is regenerated at the same time. In addition, although Cu had no obvious influence on the adsorption of HCHO on Al2O3, Cu dramatically lowered the decomposition temperature of HCOOH into CO2. It was shown that Cu-Al2O3 catalyst had a good ability for the removal of HCHO, and appeared to be promising for its application in destroying HCHO at room temperature.

  3. Quinone-formaldehyde polymer as an active material in Li-ion batteries

    Science.gov (United States)

    Pirnat, Klemen; Mali, Gregor; Gaberscek, Miran; Dominko, Robert

    2016-05-01

    A benzoquinone polymer is synthesized by the polymerisation of hydrobenzoquinone and formaldehyde, followed by oxidation process using a hydrogen peroxide to convert hydroquinone to quinone. As prepared materials are characterized with FTIR, 1H-13C CPMAS NMR, pyrolysis coupled with gas chromatography (GC) and mass spectrometer (MS), TGA-MS analysis, EDX, elemental analysis, XRD, SEM and TEM microscopies and BET nitrogen adsorption. The benzoquinone polymer shows an excellent electrochemical performance when used as a positive electrode material in Li-ion secondary batteries. Using an electrolyte consisting 1 M bis(trifluoromethane)-sulfonimide lithium salt dissolved in 1,3-dioxolane and dimethoxyethane in a vol. ratio 1:1 (1 M LiTFSI/DOL + DME = 1:1) a stable capacity close to 150 mAh/g can be obtained. Compared to other electroactive materials based on benzoquinones it has a supreme capacity stability and is prepared by a simple synthesis using easily accessible starting materials. Further improvements in the capacity value (up to the theoretical value of 406 mAh/g) can be foreseen by achieving a higher degree of oxidation and by modification of polymerization process to enhance the electronic and ionic conductivity.

  4. Impact of Formaldehyde Addition on Auto-Ignition in Internal-Combustion Engines

    Science.gov (United States)

    Kuwahara, Kazunari; Ando, Hiromitsu; Furutani, Masahiro; Ohta, Yasuhiko

    By employing a direct-injection diesel engine equipped with a common-rail type of injection system, by adding formaldehyde (CH2O) to the intake air, and by changing the fuel-injection timing, the compression ratio and the intake-air temperature, a mechanism for CH2O as a fuel additive to affect auto-ignition was discussed. Unlike an HCCI type of engine, the diesel engine can expose an air-fuel mixture only to a limited range of the in-cylinder temperature before the ignition, and can separate low- and high-temperature parts of the mechanism. When low-temperature oxidation starts at a temperature above 900K, there are cases that the CH2O advances the ignition timing. Below 900K, to the contrary, it always retards the timing. It is because, above 900K, a part of the CH2O changes into CO together with H2O2 as an ignition promoter. Below 900K, on the other hand, the CH2O itself acts as an OH radical scavenger against cool-flame reaction, from the beginning of low-temperature oxidation. Then, the engine was modified for its extraordinary function as a gasoline-knocking generator, in order that an effect of CH2O on knocking could be discussed. The CH2O retards the onset of auto-ignition of an end gas. Judging from a large degree of the retardation, the ignition is probably triggered below 900K.

  5. Technical Note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    A. Wisthaler

    2007-11-01

    Full Text Available The atmosphere simulation chamber SAPHIR at the Research Centre Jülich was used to test the suitability of state-of-the-art analytical instruments for the measurement of gas-phase formaldehyde (HCHO in air. Five analyzers based on four different sensing principles were deployed: a differential optical absorption spectrometer (DOAS, cartridges for 2,4-dinitro-phenyl-hydrazine (DNPH derivatization followed by off-line high pressure liquid chromatography (HPLC analysis, two different types of commercially available wet chemical sensors based on Hantzsch fluorimetry, and a proton-transfer-reaction mass spectrometer (PTR-MS. A new optimized mode of operation was used for the PTR-MS instrument which significantly enhanced its performance for on-line HCHO detection at low absolute humidities.

    The instruments were challenged with typical ambient levels of HCHO ranging from zero to several ppb. Synthetic air of high purity and particulate-filtered ambient air were used as sample matrices in the atmosphere simulation chamber onto which HCHO was spiked under varying levels of humidity and ozone. Measurements were compared to mixing ratios calculated from the chamber volume and the known amount of HCHO injected into the chamber; measurements were also compared between the different instruments. The formal and blind intercomparison exercise was conducted under the control of an independent referee. A number of analytical problems associated with the experimental set-up and with individual instruments were identified, the overall agreement between the methods was good.

  6. Photoabsorption and photoionization cross sections for formaldehyde in the vacuum-ultraviolet energy range

    Science.gov (United States)

    Tanaka, H. K.; Prudente, F. V.; Medina, A.; Marinho, R. R. T.; Homem, M. G. P.; Machado, L. E.; Fujimoto, M. M.

    2017-03-01

    We report a theoretical-experimental investigation on the interaction of vacuum-ultraviolet radiation with formaldehyde (H2CO) in the gas phase. Experimentally, the absolute photoabsorption cross sections and the photoionization quantum yields were measured in the (11.0-21.5) eV range using the double-ion chamber technique. Also, the absolute photoionization and neutral-decay cross sections were derived from these data. In addition, in the same energy region, the dissociation pattern was obtained with a time-of-flight mass spectrometer using the photoelectron-photoion coincidence technique, and the absolute photoionization cross sections were derived for each ionic fragment observed. Moreover, theoretical photoionization cross sections were calculated for the ionization of the four outermost molecular valence orbitals (2b2, 1b1, 5a1, and 1b2) from the threshold to 35 eV. The calculations were performed using the iterative Schwinger variational method to solve the Lippmann-Schwinger equation in the exact static-exchange level of approximation. In general, there is a good agreement between our experimental and previous data reported in the literature. Our theoretical results show a fair qualitative agreement with the experimental data and with previous theoretical results. Above 20 eV, a better quantitative agreement with the experimental data is also observed.

  7. Elimination of formaldehyde over Cu-Al2O3 catalyst at room temperature

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chang-bin; SHI Xiao-yan; GAO Hong-wei; HE Hong

    2005-01-01

    Catalytic elimination of formaldehyde(HCHO) was investigated over Cu-Al2O3 catalyst at room temperature. The results indicated that no oxidation of HCHO into CO2 occurs at room temperature, but the adsorption of HCHO occurs on the catalyst surface.With the increase of gas hourly space velocity (GHSV) and inlet HCHO concentration, the time to reach saturation was shortened proportionally. The results of the in situ DRIFTS, Density functional theory calculations and temperature programmed desorption(TPD)showed that HCHO was completely oxidized into HCOOH over Cu-Al2 O3 at room temperature. With increasing the temperature in a flow of helium, HCOOH was completely decomposed into CO2 over the catalyst surface, and the deactivated Cu-Al2 O3 is regenerated at the same time. In addition, although Cu had no obvious influence on the adsorption of HCHO on Al2 O3, Cu dramatically lowered the decomposition temperature of HCOOH into CO2. It was shown that Cu-Al2 O3 catalyst had a good ability for the removal of HCHO, and appeared to be promising for its application in destroying HCHO at room temperature.

  8. Trimethylamine oxide, dimethylamine, trimethylamine and formaldehyde levels in main traded fish species in Hong Kong.

    Science.gov (United States)

    Chung, S W C; Chan, B T P

    2009-01-01

    Levels of trimethylamine oxide (TMAO), dimethylamine (DMA), trimethylamine (TMA) and formaldehyde (FA) were studied in 266 different fishes, including fresh/frozen raw whole fishes of 89 different species that traded in Hong Kong, China. Determination of TMAO can confirm the source of DMA and FA if present in the sample. These samples were purchased from different commercial outlets between April and August 2007. All samples of raw whole fish were identified for their species by the Agriculture, Fisheries and Conservation Department. The content of TMAO was determined by high-performance liquid chromatography (HPLC) coupled with a chemiluminescent nitrogen detector. The possible decomposition products of TMAO, DMA and TMA were analysed by headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), while FA was conducted by steam distillation then quantified by a HPLC. The range for TMAO of all samples was <5-3800 mg kg(-1) with median of 970 mg kg(-1), while the endogenous enzymatic cleavage products DMA, TMA and FA were in the range of <2-320, <1-190 and <1-160 mg kg(-1), respectively. These cleavage products were mainly found in three fish species, Harpadon nehereus, Saurida elongata and Saurida tumbil, that belong to the family Synodontidae (Lizardfishes) and subfamily Harpadontinae. Besides, freshwater fish species, namely, Micropterus salmoides, Oreochromis niloticus niloticus and Siniperca chuatsi, were found to contain TMAO in the range of 510-760, 85-720 and 400-640 mg kg(-1), respectively.

  9. Formaldehyde molecule adsorption on the doped monolayer MoS2: A first-principles study

    Science.gov (United States)

    Ma, Dongwei; Ju, Weiwei; Li, Tingxian; Yang, Gui; He, Chaozheng; Ma, Benyuan; Tang, Yanan; Lu, Zhansheng; Yang, Zongxian

    2016-05-01

    Based on first-principles calculations, formaldehyde (H2CO) adsorption on the pristine monolayer MoS2 and that doped with Cl, P, or Si was theoretically studied to explore the potential of the MoS2 sheets as H2CO gas sensors. It is found that under Mo-rich conditions it is viable for Cl to be filled into the S vacancies acting as n-type dopant and for P and Si acting as p-type dopants. The results on the H2CO adsorption on the pristine and the Cl-doped monolayer MoS2 indicate that both are insensitive to H2CO. In contrast, H2CO exhibits strong adsorption on the P or Si-doped monolayer MoS2. And there are large electron transfer from the P or Si-doped monolayer MoS2 to the H2CO and obvious change in the electronic densities of states of both systems induced by the H2CO adsorption. These suggest that P and Si can be appropriate dopants filled into MoS2 sheets for detecting H2CO molecule.

  10. Technical Note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR

    Science.gov (United States)

    Wisthaler, A.; Apel, E. C.; Bossmeyer, J.; Hansel, A.; Junkermann, W.; Koppmann, R.; Meier, R.; Müller, K.; Solomon, S. J.; Steinbrecher, R.; Tillmann, R.; Brauers, T.

    2008-04-01

    The atmosphere simulation chamber SAPHIR at the Research Centre Jülich was used to test the suitability of state-of-the-art analytical instruments for the measurement of gas-phase formaldehyde (HCHO) in air. Five analyzers based on four different sensing principles were deployed: a differential optical absorption spectrometer (DOAS), cartridges for 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by off-line high pressure liquid chromatography (HPLC) analysis, two different types of commercially available wet chemical sensors based on Hantzsch fluorimetry, and a proton-transfer-reaction mass spectrometer (PTR-MS). A new optimized mode of operation was used for the PTR-MS instrument which significantly enhanced its performance for online HCHO detection at low absolute humidities. The instruments were challenged with typical ambient levels of HCHO ranging from zero to several ppb. Synthetic air of high purity and particulate-filtered ambient air were used as sample matrices in the atmosphere simulation chamber onto which HCHO was spiked under varying levels of humidity and ozone. Measurements were compared to mixing ratios calculated from the chamber volume and the known amount of HCHO injected into the chamber; measurements were also compared between the different instruments. The formal and blind intercomparison exercise was conducted under the control of an independent referee. A number of analytical problems associated with the experimental set-up and with individual instruments were identified, the overall agreement between the methods was fair.

  11. Surface modification of a natural graphite/phenol formaldehyde composite plate with expanded graphite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongjie; Wang, Yuxin; Xu, Li; Lu, Jun; Wu, Qian [State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China)

    2008-09-01

    Natural graphite/phenol formaldehyde (NG/PF) resin composite plates modified with thin layers of expanded graphite (EG) are fabricated by mold compression to lower the contact resistance between the plates and gas diffusion layers (GDLs). The modification considerably reduces contact resistance versus bare NG/PF plates. The extent of the decrease in contact resistance is influenced by the expanded volume of EG used. A low contact resistance of 1.42 m{omega} cm{sup 2} persists for the EG (150 ml g{sup -1})-modified NG/PF plates despite the PF content, whereas that of bare plates increases from 3.62 to 17.01 m{omega} cm{sup 2} as PF content changes from 5 wt% to 30 wt%. With increasing EG thickness on the surface of NG/PF plates, contact resistance at first decreases and then approaches a constant value when the NG layer exceeds 40 {mu}m. More importantly, the total electrical resistance, as expressed by volume resistance, can be reduced by applying EG layers to NG/PF composite plates. The reduction of total resistance is more remarkable for the composite plates with high PF content because the bulk resistance of the EG layer can be well compensated by the decrease of contact resistance at a proper range of EG layer thickness. (author)

  12. Colorimetric monitoring of formaldehyde in indoor environment using built-in camera on mobile phone.

    Science.gov (United States)

    Sekine, Yoshika; Katori, Risa; Tsuda, Yuko; Kitahara, Takio

    2016-01-01

    A simple monitoring system of indoor air pollution is proposed by integrating a novel colorimetric detector of formaldehyde (HCHO) and a function of a built-in camera on mobile phone. The colorimetric detector employs a solid phase colorimetric reagent made from 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, ZnO, KIO4 and agar, and changes colour from white to purple by exposure to HCHO gas. The degree of colour changes expressed in Red, Green and Blue model model responded to the HCHO concentration levels both in air and from building materials. Limit of quantitation of the detector with 24 h-exposure resulted in 0.011 mg/m(3) of air concentration which meets a requirement of methodology to detect indoor air quality guideline level of HCHO set by World Health Organization. The detector is also applicable to classify HCHO-emitting materials at least into Type 1, whose emission flux is greater than 120 μg/m(2)/h, and others. Then, variation of the acquired photo images was investigated by using various mobile phones and changing conditions of photography. As a result, the calibration of the measured colour intensity with a colour standard reduced the variation of the results and gave a significant output when the auto-focused images were taken under the condition of common indoor environment.

  13. B{sub 36} borophene as an electronic sensor for formaldehyde: Quantum chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi Kootenaei, Amirhossein, E-mail: a.kootenaei@gmail.com [Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of); Ansari, Goodarz [Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of)

    2016-08-06

    Pristine carbon nanotubes and graphene show great sensitivity toward several lethal gases but cannot identify some extremely toxic chemicals such as formaldehyde (HCOH). Recent successful synthesis of all-boron graphene-like sheets attracted strong interest in exploring their possible applications. Herein, we inspected the potential application of B{sub 36} borophene sheet as a sensor for HCOH detection, using density functional theory computations. Different theoretical levels including B97D and Minnesota 06 functionals with different basis sets were employed. It was predicted that the electrical conductivity of B{sub 36} borophene significantly increases at the presence of HCOH molecules, thereby generating an electrical signal. The electrical signal is increased by increasing the number of adsorbed HCOH molecules, indicating that this sensor is sensitive to the concentration (or pressure) of HCOH gas. These results suggest that the pristine borophene may be used in the HCOH chemical sensors. - Highlights: • B{sub 36} borophene sheet can be used as a chemical sensor for HCOH detection. • The B{sub 36} is sensitive to the concentration of HCOH. • When the B{sub 36} adsorbs HCOH molecules, it is converted to a p-type semiconductor.

  14. Technical Note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    A. Wisthaler

    2008-04-01

    Full Text Available The atmosphere simulation chamber SAPHIR at the Research Centre Jülich was used to test the suitability of state-of-the-art analytical instruments for the measurement of gas-phase formaldehyde (HCHO in air. Five analyzers based on four different sensing principles were deployed: a differential optical absorption spectrometer (DOAS, cartridges for 2,4-dinitro-phenyl-hydrazine (DNPH derivatization followed by off-line high pressure liquid chromatography (HPLC analysis, two different types of commercially available wet chemical sensors based on Hantzsch fluorimetry, and a proton-transfer-reaction mass spectrometer (PTR-MS. A new optimized mode of operation was used for the PTR-MS instrument which significantly enhanced its performance for online HCHO detection at low absolute humidities.

    The instruments were challenged with typical ambient levels of HCHO ranging from zero to several ppb. Synthetic air of high purity and particulate-filtered ambient air were used as sample matrices in the atmosphere simulation chamber onto which HCHO was spiked under varying levels of humidity and ozone. Measurements were compared to mixing ratios calculated from the chamber volume and the known amount of HCHO injected into the chamber; measurements were also compared between the different instruments. The formal and blind intercomparison exercise was conducted under the control of an independent referee. A number of analytical problems associated with the experimental set-up and with individual instruments were identified, the overall agreement between the methods was fair.

  15. Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2015-03-01

    Full Text Available The yield of formaldehyde (HCHO and glyoxal (CHOCHO from oxidation of volatile organic compounds (VOCs depends on precursor VOC structure and the concentration of NOx (NOx = NO +NO2. Previous work has proposed that the ratio of CHOCHO to HCHO (RGF can be used as an indicator of precursor VOC speciation, and absolute concentrations of the oxidation products as indicators of NOx. Because this metric is measurable by satellite, it is potentially useful on a global scale; however, absolute values and trends in RGF have differed between satellite and ground-based observations. To investigate potential causes of previous discrepancies and the usefulness of this ratio, we present measurements of CHOCHO and HCHO over the Southeast United States (SE US from the 2013 SENEX flight campaign and compare these measurements with OMI satellite retrievals. High time-resolution flight measurements show that high RGF is associated with monoterpene emissions, low RGF is associated with isoprene oxidation, and emissions associated with oil and gas production can lead to small-scale variation in regional RGF. During the summertime in the SE US, RGF is not a reliable diagnostic of anthropogenic VOC emissions, as HCHO and CHOCHO production are dominated by isoprene oxidation. Our results show that the new glyoxal retrieval algorithm reduces the previous disagreement between satellite and in situ RGF observations. We conclude that satellite-based observations of RGF can be used alongside other measurements as a global diagnostic of the chemical conditions leading to secondary pollutant formation.

  16. Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements

    Science.gov (United States)

    Kaiser, J.; Li, X.; Tillmann, R.; Acir, I.; Holland, F.; Rohrer, F.; Wegener, R.; Keutsch, F. N.

    2014-06-01

    Two gas-phase formaldehyde (HCHO) measurement techniques, a modified commercial wet-chemical instrument based on Hantzsch fluorimetry and a custom-built instrument based on fiber laser-induced fluorescence (FILIF), were deployed at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) to compare the instruments' performances under a range of conditions. Thermolysis of para-HCHO and ozonolysis of 1-butene were used as HCHO sources, allowing for calculations of theoretical HCHO mixing ratios. Calculated HCHO mixing ratios are compared to measurements, and the two measurements are also compared. Experiments were repeated under dry and humid conditions (RH 60%) to investigate the possibility of a water artifact in the FILIF measurements. The ozonolysis of 1-butene also allowed for the investigation of an ozone artifact seen in some Hantzsch measurements in previous intercomparisons. Results show that under all conditions the two techniques are well correlated (R2 ≥ 0.997), and linear regression statistics show measurements agree with within stated uncertainty (15% FILIF + 5% Hantzsch). No water or ozone artifacts are identified. While a slight curvature is observed in some Hantzsch vs. FILIF regressions, the potential for variable instrument sensitivity cannot be attributed to a single instrument at this time. Measurements at low concentrations highlight the need for a secondary method for testing the purity of air used in instrument zeroing and the need for further FILIF White cell outgassing experiments.

  17. Histological changes in the nasal mucosa in rats after long-term exposure to formaldehyde and wood dust.

    Science.gov (United States)

    Holmström, M; Wilhelmsson, B; Hellquist, H

    1989-01-01

    Wood dust is a well known nasal carcinogen in man, as formaldehyde is in rats. In certain occupational environments, combined exposure to wood dust and formaldehyde is common. Little is known about the effects of this combination. A pilot study was performed on four groups of Sprague-Dawley rats: one exposed to wood dust (25 mg/m3), another to formaldehyde (12.4 ppm) and a third to both wood dust and formaldehyde; the fourth group served a control group. After 104 weeks of exposure the nose and lungs were examined histologically. One well differentiated squamous cell carcinoma was found in the formaldehyde group. Squamous cell metaplasia was found significantly more often among the formaldehyde-exposed rats. Squamous cell metaplasia with dysplasia was most frequently observed, however, in the group exposed to both formaldehyde and wood dust. There were also significantly more rats with pulmonary emphysema in the groups exposed to wood dust than in the other groups.

  18. Determination of carbonyl compounds (acetaldehyde and formaldehyde in polyethylene terephthalate containers designated for water conservation

    Directory of Open Access Journals (Sweden)

    Redžepović Azra S.

    2012-01-01

    Full Text Available Polyethylene terephthalate (PET has in the last several years become the main packaging material for many food products, particularly carbonated beverages and bottled water, as well as for products of chemical industry (packaging of various hygiene maintenance agents, pesticides, solvents, etc.. The strength and permeability properties of PET are very good for packaging of beverages, its resistance to chemicals is high and it has a high degree of transparency. Acetaldehyde and formaldehyde are formed during the thermoforming of PET containers. After cooling, acetaldehyde and formaldehyde remain trapped in the walls of a PET bottle and may migrate into the water after filling and storage. Since there are no migration tests in Serbia prescribed for the determination of acetaldehyde and formaldehyde, the purpose of the paper is to test the quantitative contents of carbonyl compounds (acetaldehyde and formaldehyde in PET containers of different volumes, made by various manufacturers of bottled mineral carbonated and noncarbonated water, and exposed to different temperatures. In this study, the migration of acetaldehyde and formaldehyde from PET bottles into mineral carbonated and noncarbonated water was determined by high performance liquid chromatography. Taking into consideration that formaldehyde and acetaldehyde have no UV active or fluorescent group, the chromatography shall be preceded by derivatization in a closed system (due to a low boiling point of acetaldehyde and formaldehyde, which shall transform carbonyl compounds into UV active compounds.

  19. Role of Moving Bed Biofilm Reactor and Sequencing Batch Reactor in Biological Degradation of Formaldehyde Wastewater

    Directory of Open Access Journals (Sweden)

    B. Ayati

    2011-10-01

    Full Text Available Nowadays formaldehyde is used as raw material in many industries. It has also disinfection applications in some public places. Due to its toxicity for microorganisms, chemical or anaerobic biological methods are applied for treating wastewater containing formaldehyde.In this research, formaldehyde removal efficiencies of aerobic biological treatment systems including moving bed biofilm (MMBR and sequencing batch reactors (SBR were investigated. During all experiments, the efficiency of SBR was more than MBBR, but the difference was not significant statistically. According to the results, the best efficiencies were obtained for influent formaldehyde COD of 200 mg/L in MBBR and SBR which were 93% and 99.4%, respectively. The systems were also capable to treat higher formaldehyde concentrations (up to 2500 mg/L with lower removal efficiency. The reaction kinetics followed the Stover-Kincannon second order model. The gram-positive and gram-negative bacillus and coccus as well as the gram-positive binary bacillus were found to be the most dominant species. The results of 13C-NMR analysis have shown that formaldehyde and urea were converted into N-{[(aminocarbonyl amino] methyl}urea and the residual formaldehyde was polymerized at room temperature.

  20. Formaldehyde and H110a observations towards 6.7 GHz methanol maser sources

    CERN Document Server

    Okoh, Daniel; Zhou, Jian Jun; Tang, Xin Di; Chukwude, Augustine; Urama, Johnson; Okeke, Pius

    2014-01-01

    Intriguing work on observations of 4.83 GHz formaldehyde (H2CO) absorptions and 4.87 GHz H110a radio recombination lines (RRLs) towards 6.7 GHz methanol (CH3OH) maser sources is presented. Methanol masers provide ideal sites to probe the earliest stages of massive star formation, while 4.8 GHz formaldehyde absorptions are accurate probes of physical conditions in dense $(10^{3} - 10^{5} cm^{-3})$ and low temperature molecular clouds towards massive star forming regions. The work is aimed at studying feature similarities between the formaldehyde absorptions and the methanol masers so as to expand knowledge of events and physical conditions in massive star forming regions. A total of 176 methanol maser sources were observed for formaldehyde absorptions, and formaldehyde absorptions were detected 138 of them. 53 of the formaldehyde absorptions were newly detected. We noted a poor correlation between the methanol and formaldehyde intensities, an indication that the signals (though arise from about the same region...

  1. Novel silicone-based polymer containing active methylene designed for the removal of indoor formaldehyde.

    Science.gov (United States)

    Niu, Song; Yan, Hongxia

    2015-04-28

    Indoor air pollution is caused inevitably due to complicated home decoration, in which formaldehyde is one of the most typical pollutants. It will be a convenient, economical and effective strategy to remove indoor formaldehyde if imparting a feature of formaldehyde removal to decorative coatings. We have successfully explored a novel silicone-based polymer containing active methylene used as a formaldehyde absorbent in coatings via a straightforward transesterification process using inexpensive and easily available chemicals. The polymer has been characterized by (13)C NMR, FTIR, GC and GPC. Formaldehyde removal capacity of the coating films containing different contents of the polymer has been investigated. The results indicated that coatings incorporating 4wt% of the polymer could make the coating films exhibit significant improvement on formaldehyde removal including purificatory performance (>85%) and durability of purificatory effect (>60%), compared to those consisting of absorbents without any silicon, and improve yellowing resistance performance, while other properties, such as gloss, adhesion, pencil hardness, flexibility and impact resistance, were kept almost unaffected. The chemical absorption process of the silicone-based polymer filled in interior decorative coatings is demonstrated as a promising technology to purify indoor formaldehyde and thus can reduce the harm to individuals.

  2. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism.

    Science.gov (United States)

    Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi

    2005-01-01

    Methanol is a valuable raw material used in the manufacture of useful chemicals as well as a potential source of energy to replace coal and petroleum. Biotechnological interest in the microbial utilization of methanol has increased because it is an ideal carbon source and can be produced from renewable biomass. Formaldehyde, a cytotoxic compound, is a central metabolic intermediate in methanol metabolism. Therefore, microorganisms utilizing methanol have adopted several metabolic strategies to cope with the toxicity of formaldehyde. Formaldehyde is initially detoxified through trapping by some cofactors, such as glutathione, mycothiol, tetrahydrofolate, and tetrahydromethanopterin, before being oxidized to CO2. Alternatively, free formaldehyde can be trapped by sugar phosphates as the first reaction in the C1 assimilation pathways: the xylulose monophosphate pathway for yeasts and the ribulose monophosphate (RuMP) pathway for bacteria. In yeasts, although formaldehyde generation and consumption takes place in the peroxisome, the cytosolic formaldehyde oxidation pathway also plays a role in formaldehyde detoxification as well as energy formation. The key enzymes of the RuMP pathway are found in a variety of microorganisms including bacteria and archaea. Regulation of the genes encoding these enzymes and their catalytic mechanisms depend on the physiological traits of these organisms during evolution.

  3. Formaldehyde Silhouettes Against the Cosmic Microwave Background: A Mass-Limited, Distance-Independent, Extinction-Free Tracer of Star Formation Across the Epoch of Galaxy Evolution

    CERN Document Server

    Darling, Jeremy

    2012-01-01

    We examine the absorption of cosmic microwave background (CMB) photons by formaldehyde (H2CO) over cosmic time. The K-doublet rotational transitions of H2CO become "refrigerated" - their excitation temperatures are driven below the CMB temperature - via collisional pumping by molecular hydrogen (H2). "Anti-inverted" H2CO line ratios thus provide an accurate measurement of the H2 density in molecular clouds. Using a radiative transfer model, we demonstrate that H2CO centimeter wavelength line excitation and detectability are nearly independent of redshift or gas kinetic temperature. Since the H2CO K-doublet lines absorb CMB light, and since the CMB lies behind every galaxy and provides an exceptionally uniform extended illumination source, H2CO is a distance-independent, extinction-free molecular gas mass-limited tracer of dense gas in galaxies. A Formaldehyde Deep Field could map the history of cosmic star formation in a uniquely unbiased fashion and may be possible with large bandwidth wide-field radio inter...

  4. Eye Irritation Caused by Formaldehyde as an Indoor Air Pollution——A Controlled Human Exposure Experiment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Obejective The present study focuses on health assessment of wood based panels which are widely used in interior decoration practices over the recent years in China. Formaldehyde has been identified as chemical indicator of (IAO) and an indoor air pollutant. To test its health effects experiment was undertaken. Method A small environmental test chamber (60/L) was used as the generator of emission gas from new panels, and was operating at a temperature of 22.7±0.6℃ and a humidity of 44.4±2.5 % with an air exchange rate of 1.0±0.15h-1. On the three experimental days the values of product loading in chamber were 4, 2 and 6 m2/m3, respectively. Eight people were selected randomly from the students and employees of Wuhan Health and Anti-epidemic Station as subjects, with an average age of 21.9±5.9 years, and a gender ratio of 1:1, and two of them were smokers (one male and one female). The subjects' eyes were exposed to formaldehyde through a pair of goggles. Each goggle had its flow inlet and outlet, and connected to chamber exhaust of emission gas and to an exhaust from the room. The exposure time was very short, just 5 minutes and the formaldehyde doses were at 1.65±0.01, 2.99±0.07 and 4.31±0.02 ppm. A 60-mm linear visual analogue rating scales was used to measure the intensity of sensory eye irritation and a video tape recorder was used to record eye blinking frequency. Results The results demonstrated that tests of sensory eye irritation and eye blinking can be used for materials testing, and that a dose-effect as well as a time-variance of the effect can be measured. Conclusion The tests showed that eye irritation was perceived at all of the three levels.

  5. Enhanced formaldehyde-vapor adsorption capacity of polymeric amine-incorporated aminosilicas.

    Science.gov (United States)

    Nomura, Akihiro; Jones, Christopher W

    2014-05-19

    Airborne formaldehyde, which is a highly problematic volatile organic compound (VOC) pollutant, is adsorbed by polymeric amine-incorporated silicas (aminosilicas), and the factors that affect the adsorption performance are systematically investigated. Three different types of polymeric amines 1) poly(ethyleneimine) branched (PEIBR); 2) poly(ethyleneimine) linear (PEILI); and 3) poly(allylamine) (PAA) are impregnated into two types of porous silicas [SBA-15 and mesocellular foam (MCF) silicas] with systematic changes of the amine loadings. The adsorption results demonstrate that the adsorption capacity increases along with the amine loading until the polymeric amines completely fill the silica pores. This results in the MCF silica, which has a larger pore volume and hence can accommodate more polymeric amine before completely filling the pore, giving materials that adsorb more formaldehyde, with the largest adsorption capacity, q, of up to 5.7 mmolHCHO  g(-1) among the samples studied herein. Of the three different types of polymers, PAA, comprised of 100 % primary amines, showed the highest amine efficiency μ (mmolHCHO/mmolN) for capturing formaldehyde. The chemical structures of the adsorbed formaldehyde are analyzed by (13)C cross-polarization magic-angle spinning (CP-MAS) NMR, and it is demonstrated that the adsorbed formaldehyde is chemically attached to the aminosilica surface, forming hemiaminal and imine species. Because the chemical adsorption of formaldehyde forms covalent bonds, it is not desorbed from the aminosilicas below 130 °C based on temperature-programed-desorption (TPD) analysis. The high formaldehyde-adsorption capacity and stability of the trapped formaldehyde on the amine surface in this study reveal the potential utility of aminosilicas as formaldehyde abatement materials.

  6. Quantification of free formaldehyde in carrageenan and processed Eucheuma seaweed using high-performance liquid chromatography.

    Science.gov (United States)

    Hornshøj, Bettina Høj; Kobbelgaard, Sara; Blakemore, William R; Stapelfeldt, Henrik; Bixler, Harris J; Klinger, Markus

    2015-01-01

    In 2010 the European Commission placed a limit on the amount of free formaldehyde in carrageenan and processed Eucheuma seaweed (PES) of 5 mg kg(-1). Formaldehyde is not used in carrageenan and PES processing and accordingly one would not expect free formaldehyde to be present in carrageenan and PES. However, surprisingly high levels up to 10 mg kg(-1) have been found using the generally accepted AOAC and Hach tests. These findings are, per proposed reaction pathways, likely due to the formation of formaldehyde when sulphated galactose, the backbone of carrageenan, is hydrolysed with the strong acid used in these conventional tests. In order to minimise the risk of false-positives, which may lead to regulatory non-compliance, a new high-performance liquid chromatography (HPLC) method has been developed. Initially, carrageenan or PES is extracted with 2-propanol and subsequently reacted with 2,4-dinitrophenylhydrazine (DNPH) to form the chromophore formaldehyde-DNPH, which is finally quantified by reversed-phase HPLC with ultraviolet light detection at 355 nm. This method has been found to have a limit of detection of 0.05 mg kg(-1) and a limit of quantification of 0.2 mg kg(-1). Recoveries from samples spiked with known quantities of formaldehyde were 95-107%. Using this more specific technique, 20 samples of carrageenan and PES were tested for formaldehyde. Only one sample had a detectable content of formaldehyde (0.40 mg kg(-1)), thus demonstrating that the formaldehyde content of commercial carrageenan and PES products are well below the European Commission maximum limit of 5 mg kg(-1).

  7. A High-Temperature, High-Throughput Method for Monitoring Residual Formaldehyde in Vaccine Formulations.

    Science.gov (United States)

    Stallings, Kendra D; Kitchener, Rebecca L; Hentz, Nathaniel G

    2014-06-01

    Formaldehyde has long been used in the chemical inactivation of viral material during vaccine production. Viral inactivation is required so that the vaccine does not infect the patient. Formaldehyde is diluted during the vaccine manufacturing process, but residual quantities of formaldehyde are still present in some current vaccines. Although formaldehyde is considered safe for use in vaccines by the Food and Drug Administration, excessive exposure to this chemical may lead to cancer or other health-related issues. An assay was developed that is capable of detecting levels of residual formaldehyde in influenza vaccine samples. The assay employs incubation of dosage formulation suspensions with hydralazine hydrochloride under mildly acidic conditions and elevated temperatures, where formaldehyde is derivatized to yield fluorescent s-triazolo-[3,4-a]-phthalazine. The assay has been traditionally run by high-performance liquid chromatography, where runtimes of 15 minutes per sample can be expected. Our laboratory has developed a plate-based version that drastically improved the throughput to a runtime of 96 samples per minute. The assay was characterized and validated with respect to reaction temperature, evaporation, stability, and selectivity to monitor residual formaldehyde in various influenza vaccine samples, including in-process samples. Heat transfer and evaporation will be especially considered in this work. Since the assay is plate based, it is automation friendly. The new assay format has attained detection limits of 0.01 µg/mL residual formaldehyde, which is easily able to detect and quantify formaldehyde at levels used in many current vaccine formulations (<5 µg/0.5-mL dose).

  8. Gas evolution and the mechanism of cellulose pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Banyasz, J.L.; Li, S.; Lyons-Hart, J.; Shafer, K.H. [Philip Morris USA, Richmond, VA (United States). Research Development and Engineering

    2001-10-09

    The real time evolution kinetics of formaldehyde, hydroxyacetaldehyde, CO and CO{sub 2} during the pyrolysis of cellulose, Whatman 41, were studied in a fast evolved gas-FTIR apparatus (EGA). The samples were subjected to rapid exponential temperature increases ranging from 400 to 800{degree}C within about one minute. A total of ten compounds were simultaneously detected in the gas phase by FTIR. Four of these: formaldehyde, hydroxyacetaldehyde, CO, and CO{sub 2} were studied in detail as a function of time. The yields of formaldehyde, hydroxyacetaldehyde and CO were found to approximately double with heating rate over the range of experimental temperature profiles while that of CO{sub 2} decreased slightly. The kinetics of formaldehyde and CO formation were analyzed in terms of two competing first order reactions. The rate constants for the formation of formaldehyde and CO were found to have activation energies of 47 kcal/mole each while the competing reactions had activation energies of 35 kcal/mole in both cases. The case of hydroxyacetyaldehyde was found to be more complex, with the same initial reactions as were found for mormaldehyde and CO but requiring a third reaction step subsequent to the 47 kcal/mole reaction. The kinetics for CO{sub 2} were consistent with a single first order reaction with an activation energy of 35 kcal/mole. The results indicate that the formation reactions of formaldehyde, hydroxyacetaldehyde, CO and CO{sub 2} exhibit identical rate limiting steps that involve the major pyrolytic pathways of cellose. 15 refs., 5 figs., 1 tab.

  9. In Situ Airborne Measurement of Formaldehyde with a New Laser Induced Fluorescence Instrument

    Science.gov (United States)

    Arkinson, H.; Hanisco, T. F.; Cazorla, M.; Fried, A.; Walega, J.

    2012-12-01

    Formaldehyde (HCHO) is a highly reactive and ubiquitous compound in the atmosphere that originates from primary emissions and secondary formation by photochemical oxidation of volatile organic compounds. HCHO is an important precursor to the formation of ozone and an ideal tracer for the transport of boundary layer pollutants to higher altitudes. In situ measurements of HCHO are needed to improve understanding of convective transport mechanisms and the effects of lofted pollutants on ozone production and cloud microphysics in the upper troposphere. The Deep Convective Clouds and Chemistry Project (DC3) field campaign addressed the effects of deep, midlatitude continental convective clouds on the upper troposphere by examining vertical transport of fresh emissions and water aloft and by characterizing subsequent changes in composition and chemistry. Observations targeting convective storms were conducted over Colorado, Alabama, and Texas and Oklahoma. We present measurements of the In Situ Airborne Formaldehyde instrument (ISAF), which uses laser induced fluorescence to achieve the high sensitivity and fast time response required to detect low concentrations in the upper troposphere and capture the fine structure characteristic of convective storm outflow. Preliminary results from DC3 indicate that the ISAF is able to resolve concentrations ranging from under 35 ppt to over 35 ppb, spanning three orders of magnitude, in less than a few minutes. Frequent, abrupt changes in HCHO captured by the ISAF are corroborated by similar patterns observed by simultaneous trace gas and aerosol measurements. Primary HCHO emissions are apparent in cases when the DC-8 flew over combustion sources or biomass burning, and secondary HCHO formation is suggested by observations of enhanced HCHO concurrent with other elevated hydrocarbons. Vertical transport of HCHO is indicated by measurements of over 6 ppb from outflow in the upper troposphere. The DC-8 payload also included the

  10. Immunogenicity of formaldehyde and binary ethylenimine inactivated infectious bursal disease virus in broiler chicks

    Institute of Scientific and Technical Information of China (English)

    HABIB Mudasser; HUSSAIN Iftikhar; IRSHAD Hamid; YANG Zong-zhao; SHUAI Jiang-bing; CHEN Ning

    2006-01-01

    Infectious bursal disease virus (IBDV) was inactivated by two different chemicals-formaldehyde and binary ethylenimine (BEI). Formaldehyde was used at 0.1% and 0.2%, while BEI was used at concentrations of 0.001 and 0.002 mol/L.These four vaccines were tested for their efficiency in generating humoral immune response in different groups of broiler chicks.Both BEI-inactivated vaccines gave relatively higher antibody titers and were almost twice as efficient as formaldehyde-inactivated ones.

  11. PRODUCTION OF HIGH DENSITY PARTICLEBOARD USING MELAMINE-UREA-FORMALDEHYDE RESIN

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2005-12-01

    Full Text Available This research was developed aiming to evaluate the effects of board density and melamine-urea-formaldehyde resin onthe properties of particleboard for semi-structural applications. The boards were manufactured with nominal density of 0.65 g/cm³and 0.90 g/cm³ using urea-formaldehyde resin as control and melamine-urea-formaldehyde. The results showed a better dimensionallystability and mechanical properties of the boards manufactured with higher density and MUF resin content. The fine furnish usedfor external layer of particleboard in the industrial process, could be used for high density homogeneous board to semi-strucuturaluses, such as flooring applications.

  12. Preparation and in vitro evaluation of chitosan matrices cross-linked by formaldehyde vapors.

    Science.gov (United States)

    Rao, B S; Murthy, K V

    2000-10-01

    Rifampicin-chitosan matrices were prepared by a chemical cross-linking method to develop a sustained-release form. The effects of cross-linking agent (formaldehyde) on the drug release rate and release kinetics were investigated in this study. Moreover, the kinetics of rifampicin released from chitosan matrices exposed to formaldehyde vapors for predetermined time intervals were analyzed using Ritger and Peppas exponential equation. The in vitro release kinetics exhibited a non-Fickian transport model. Increasing the exposure time to formaldehyde vapors decreased the release rate of rifampicin from chitosan matrices as a result of formation of greater structural strength and tighter texture.

  13. Catalysis of the interphase reaction of. cap alpha. -methylstyrene with formaldehyde by alkylbenzenesulfonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Sharf, V.Z.; Kasymova, K.A.; Litvin, E.F.

    1986-11-10

    Alkylbenzenesulfonic acids accelerate condensation of ..cap alpha..-methylstyrene with formaldehyde (on conversion per acid group) significantly more strongly than sulfuric and oxalic acids. The observed event is due to interphase transfer under conditions of acid catalysts (Prins reaction). Schemes which include transfer of the olefin to the aqueous phase and formaldehyde to the organic phase were proposed. The catalytic cycle includes the formation of an ion pair of the alkylbenzenesulfonic acid with formaldehyde due to the occurrence of the reaction in the organic phase.

  14. Guinea pig maximization tests with formaldehyde releasers. Results from two laboratories

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Boman, A; Hamann, K

    1984-01-01

    The guinea pig maximization test was used to evaluate the sensitizing potential of formaldehyde and 6 formaldehyde releasers (Forcide 78, Germall 115, Grotan BK, Grotan OX, KM 200 and Preventol D2). The tests were carried out in 2 laboratories (Copenhagen and Stockholm), and although we intended...... the procedures to be the same, discrepancies were observed, possibly due to the use of different animal strains, test concentrations and vehicles. The sensitizing potential was in general found to be stronger in Stockholm compared to Copenhagen: formaldehyde sensitized 50% of the guinea pigs in Copenhagen and 95...

  15. Mechanism for the addition of carbenoid CH2ClLi to formaldehyde

    Institute of Scientific and Technical Information of China (English)

    李吉海[1; 孙昌俊[2; 刘少杰[3; 冯圣玉[4; 冯大诚[5

    2000-01-01

    Ab initlo HF/6-31G* calculations have been performed for the addition mechanism of carbenoid CH2CILi with formaldehyde in tetrahydrofuran. An early complex of formaldehyde with CH2CILi is first formed with quite exothermic effect. Only a little activation energy of 14.6 kJ/mol is needed for the complex developing into the product through a transition state with coplanar bicyclic structure. In this process, the eletrophilic attack of carbonyl carbon of formaldehyde is more active than the nucleophilic attack of carbon of carbenoid. The exothermal effect of this addition process is up to 216.5 kJ/mol.

  16. Moisture insensitive adsorption of ammonia on resorcinol-formaldehyde resins.

    Science.gov (United States)

    Seredych, Mykola; Ania, Conchi; Bandosz, Teresa J

    2016-03-15

    Phenolic-formaldehyde resins aged at 85, 90 and 95°C were used as ammonia adsorbents at dynamic conditions in dry and moist air. To avoid pressure drops 10% bentonite was added as a binder. The initial and hybrid materials (before and after ammonia adsorption) were extensively characterized from the point of view of their porosity and surface chemistry. The results showed that the addition of the binder had various effects on materials' properties depending on the chemistry of their surface groups. When the phenolic acidic groups were predominant, the largest increase in surface acidity upon the addition of the binder was found. It was linked to the exfoliation of bentonite by polar moieties of the resins, which made acidic groups from aluminosilicate layers available for ammonia adsorption. On this sample, a relatively high amount of ammonia was strongly adsorbed in dry conditions. Insensitivity to moisture is a significant asset of ammonia adsorbents.

  17. Nanoparticles-based phenol-formaldehyde hybrid resins.

    Science.gov (United States)

    Hernández-Padrón, Genoveva; García-Garduño, Margarita; Canseco, Miguel A; Castaño, Victor M

    2008-06-01

    The synthesis, characterization and corrosion properties of a novel material, produced by the reaction of silica nanoparticles with a functionalized Phenol-Formaldehyde Resin (PFR), are presented. Carboxylic groups were attached in situ to the PFR skeleton to produce a functionalized resin (PFR-SA), which is then reacted with sol-gel-prepared silica nanoparticles, yielding a novel hybrid (organic/inorganic) material (PFR-SA-nanoSiO2). This hybrid material was characterized by FT-IR, FT-Raman, TGA, DSC, SEM and corrosion tests, whose results showed significant improvement of the thermal properties in comparison with the PFR coating. In addition, the new material was efficient and durable against corrosion of metals, with the anticorrosive performance of PFR-SA and PFR-SA/nanoSiO2 coating films being superior to those of the original PFR coating.

  18. REACTIVITY OF RESORCINOL FORMALDEHYDE RESIN WITH NITRIC ACID

    Energy Technology Data Exchange (ETDEWEB)

    King, W; Fernando Fondeur, F; Bill Wilmarth, B; Myra Pettis, M; Shirley Mccollum, S

    2006-06-14

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  19. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-10-25

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material.

  20. Determination of the formaldehyde content in fishery products.

    Science.gov (United States)

    Rehbein, H

    1987-10-01

    The influence of external factors, such as storage temperature and time on the content of free formaldehyde (FA) in fishery products is described. On the basis of the examination of several methods for the determination of free and bound FA, the following procedures are recommended: (1) for measuring free FA, the samples are extracted using 6% perchloric acid at room temperature and the FA content of the extracts is measured by the formation of 3,5-diacetyl-1,4-dihydrolutidine; (2) bound, acid-labile FA is released by steam distillation using 1% sulphuric acid, giving a pH value of about 1. The FA content of the distillates may be determined either by chromotropic acid assay or by the method described for the extracts.

  1. SCIAMACHY formaldehyde observations: constraint for isoprene emission estimates over Europe?

    Directory of Open Access Journals (Sweden)

    G. Dufour

    2009-03-01

    Full Text Available Formaldehyde (HCHO is an important intermediate compound in the degradation of volatile organic compounds (VOCs in the troposphere. Sources of HCHO are largely dominated by its secondary production from VOC oxidation, methane and isoprene being the main precursors in unpolluted areas. As a result of the moderate lifetime of HCHO, its spatial distribution is determined by reactive hydrocarbon emissions. We focus here on Europe and investigate the influence of the different emissions on HCHO tropospheric columns with the CHIMERE chemical transport model in order to interpret the comparisons between SCIAMACHY and simulated HCHO columns. Europe was never specifically studied before for these purposes using satellite observations. The bias between measurements and model is less than 20% on average. The differences are discussed according to the errors on the model and the observations and remaining discrepancies are attributed to a misrepresentation of biogenic emissions. This study requires the characterisation of: (1 the model errors and performances concerning formaldehyde. The errors on the HCHO columns, mainly related to chemistry and mixed emission types, are evaluated to 2×1015 molecule/cm2 and the model performances evaluated using surface measurements are satisfactory (~13%; (2 the observation errors that define the needs in spatial and temporal averaging for meaningful comparisons. Using SCIAMACHY observations as constraint for biogenic isoprene emissions in an inverse modelling scheme reduces their uncertainties by about a factor of two in region of intense emissions. The retrieved correction factors for the isoprene emissions range from a factor of 0.15 (North Africa to a factor of 2 (Poland, the United Kingdom depending on the regions.

  2. Investigations of potential susceptibility toward formaldehyde-induced genotoxicity.

    Science.gov (United States)

    Zeller, Jasmin; Högel, Josef; Linsenmeyer, Regina; Teller, Christopher; Speit, Günter

    2012-09-01

    Blood samples were taken from three groups of volunteers (30 male smokers, 30 female non-smokers, and 30 school children) and tested for ex vivo susceptibility toward formaldehyde (FA)-induced genotoxicity. Blood samples were exposed to 150 μM FA for 2 h, and the induction of DNA-protein crosslinks (DPX) in leukocytes was measured by a modification of the alkaline comet assay (i.e., reduction of γ-irradiation induced DNA migration). Removal of DPX was determined by the abolition of FA-induced reduction in DNA migration within 4 h after the end of the exposure. Induction and persistence of FA-induced DNA lesions was also measured by the sister chromatid exchange (SCE) test with cultured lymphocytes after treatment of whole blood cultures with FA (150 μM). Furthermore, the expression (mRNA level) of the GSH-dependent formaldehyde dehydrogenase (FDH, identical to alcohol dehydrogenase 5; ADH5) was measured in leukocytes by quantitative real-time RT-PCR with TaqMan probes. The subjects were also analyzed for the GSTM1 and GSTT1 metabolic gene polymorphisms and a correlation analysis with the investigated genetic endpoints for FA-induced genotoxicity was performed. The results indicate that there are no biologically relevant differences between the three study groups with regard to the various indicators of cellular sensitivity toward FA-induced genotoxic effects and the expression of FDH. The induced genotoxic effects were not associated with polymorphisms in GSTM1 and GSTT1. None of the study groups showed particular mutagen sensitivity toward FA-induced genotoxicity. These results suggest that a low scaling factor to address possible human inter-individual differences in FA-induced genotoxicity could be reasonable.

  3. Spherical Resorcinol-Formaldehyde Synthesis by Inverse Suspension Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Robert J.; Scrivens, Walter A.; Nash, Charles

    2005-10-21

    Base catalyzed sol-gel polycondensation of resorcinol (1,3-dihydroxybenzene) with formaldehyde by inverse suspension polymerization leads to the formation of uniform, highly cross-linked, translucent, spherical gels, which have increased selectivity and capacity for cesium ion removal from high alkaline solutions. Because of its high selectivity for cesium ion, resorcinol-formaldehyde (R-F) resins are being considered for process scale column radioactive cesium removal by ion-exchange at the Waste Treatment and Immobilization Plant (WTP), which is now under construction at the Hanford site. Other specialty resins such as Superlig{reg_sign} 644 have been ground and sieved and column tested for process scale radioactive cesium removal but show high pressure drops across the resin bed during transition from column regeneration to loading and elution. Furthermore, van Deemter considerations indicate better displacement column chromatography by the use of spherical particle beads rather than irregularly shaped ground or granular particles. In our studies batch contact equilibrium experiments using a high alkaline simulant show a definite increase in cesium loading onto spherical R-F resin. Distribution coefficient (Kd) values ranged from 777 to 429 mL/g in the presence of 0.1M and 0.7M potassium ions, respectively. Though other techniques for making R-F resins have been employed, to our knowledge no one has made spherical R-F resins by inverse suspension polymerization. Moreover, in this study we discuss the data comparisons to known algebraic isotherms used to evaluate ion-exchange resins for WTP plant scale cesium removal operations.

  4. A comparative study of structural and electronic properties of formaldehyde molecule on monolayer honeycomb structures based on vdW-DF prospective

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, M.D., E-mail: ganji_md@yahoo.com [Department of Chemistry, Qaemshahr branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Jameh-Bozorgi, S. [Department of Chemistry, Faculty of Science, Hamedan Branch, Islamic Azad University, Hamedan (Iran, Islamic Republic of); Rezvani, M. [Department of Chemistry, Faculty of Science, Arak branch, Islamic Azad university, Arak (Iran, Islamic Republic of)

    2016-10-30

    Graphical abstract: The adsorption of formaldehyde molecule on the monolayer honeycomb structure was investigated by using first-principles calculations with the vdW-DF method. Display Omitted - Highlights: • The meaningful enhancement in binding energy values and electrical conductivity of h-AlN nanosheet can be potential candidate for detection of formaldehydemolecule. • The adsorption of formaldehyde molecule changed the conductivity of monolayer honeycomb structure especially h-AlN nanosheet. • The favorable adsorption sites of formaldehyde molecule depend on binding energy, HOMO-LUMO gap, Mulliken, Hirshfeld and Voronoi population. - Abstract: In order to develop the potential applications of monolayer sheets as gas sensors, the adsorption of formaldehyde (H{sub 2}CO) molecule on graphene, hexagonal silicon carbide (h-SiC) as well as hexagonal aluminum nitride (h-AlN) monolayer sheets have been investigated. In this work we have used the so-called van der Waals density functional (vdW-DF) method. It was found that H{sub 2}CO molecule adsorption on h-AlN nanosheet had relatively higher adsorption energy and shorter binding distance and finally much more reactive in the adsorption of H{sub 2}CO compared with the h-SiC and graphene sheets. The density of states (DOS) was calculated and the results show that the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap of h-AlN and h-SiC sheets is significantly reduced upon the H{sub 2}CO adsorption compared to the graphene which leads to an enhancement in the electrical conductivity of respective systems. We have evaluated these findings by well-known Mulliken as well as Hirshfeld and Voronoi charges analyses for aforementioned systems. The purpose of this work is to achieve deep insights into the influence of H{sub 2}CO molecule on the electronic properties of h-AlN and h-SiC monolayer sheets, and how these effects could be used to design more sensitive gas sensing

  5. Thermal removal of nitrogen species from wood waste containing urea formaldehyde and melamine formaldehyde resins.

    Science.gov (United States)

    Girods, P; Dufour, A; Rogaume, Y; Rogaume, C; Zoulalian, A

    2008-11-30

    The removal of nitrogen from wood board waste through a low temperature pyrolysis (523-573 K) is investigated with two analytical methods. The kinetic study of the thermal behaviour of wood board and of its components (wood, UF and MF resins) shows the feasibility of removing thermally nitrogen from wood board waste. Indeed, the range of temperatures associated with the degradation of wood is different from the one obtained for the degradation of UF and MF resin. Isothermal conditions enable the determination of a kinetic model for degradation of wood board and of its components and demonstrate that the thermal behaviour of wood board is not the reflection of the sum of its components' behaviour. FTIR analysis of gas products confirms the feasibility removing nitrogen thermally and enables the evaluation of the optimum treatment conditions (temperature/duration). Elementary analysis of the treated samples and study of their low heating value (LHV) enable to quantify the efficiency of the thermal treatment in terms of nitrogen removal and of energy recovery. Results show that around 70% of the initial nitrogen can be removed from the waste, and that the temperature of treatment (between 523 K and 573 K) does not influence the efficiency in terms of nitrogen removal. Nevertheless, the ratio Residual energy/Initial energy (between 76% and 90%) is improved with the lowest temperature of treatment.

  6. 点燃式缸内直喷甲醇发动机甲醛和未燃甲醇排放特性%Formaldehyde and unburned methanol emissions from a spark-ignition direct-injection methanol engine

    Institute of Scientific and Technical Information of China (English)

    宫长明; 张自雷; 贾京龙; 崔峰云; 郑伟

    2012-01-01

    The effects of methanol injection timing, ignition timing and excess air ratio on formaldehyde and unburned methanol emissions from a spark-ignition direct-injection methanol engine under homogenous combustion mode were investigated experimentally by means of a measurement method in which the gas chromatography and the liquid chromatography were used to separate and measure formaldehyde and methanol. The results show that the methanol injection timing, ignition timing and excess air ratio affect significantly the formaldehyde and unburned methanol emissions from a spark- ignition directqnjection methanol engine. The variations in emitted formaldehyde and unburned methanol show opposite tendencies with the variations in the methanol injection timing, ignition timing and excess air ratio. Retarding methanol injection timing, advancing ignition timing and using lean mixture decrease formaldehyde emission.%基于气相色谱和液相色谱相结合的甲醛和甲醇测量方法,试验研究了点燃式缸内直喷甲醇发动机甲醇喷射正时、点火正时和过量空气系数在均质燃烧模式下对甲醛和未燃甲醇排放的影响。试验结果表明,甲醇喷射正时、点火正时和过量空气系数对该发动机甲醛和未燃甲醇排放有显著影响,并且甲醛和未燃甲醇排放随喷射正时、点火正时和过量空气系数的变化呈相反的变化趋势。推迟喷射甲醇、提前点火及采用稀混合气可以降低甲醛排放。

  7. Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts

    DEFF Research Database (Denmark)

    Li, Han-Jung; Lausche, Adam C.; Peterson, Andrew A.

    2015-01-01

    Abstract Direct dehydrogenation of methanol to produce anhydrous formaldehyde is investigated using periodic density functional theory (DFT) and combining the microkinetic model to estimate rates and selectivities on stepped (211) surfaces under a desired reaction condition. Binding energies...

  8. Histopathological Effects of Formaldehyde (CH2O on Rainbow Trout (Oncorhynchus mykiss Walbaum, 1792

    Directory of Open Access Journals (Sweden)

    Cafer BULUT

    2015-04-01

    Full Text Available Formaldehyde is commonly used as a disinfectant and also in a control of fish disease in aquaculture sector. However, this widespread use, can lead to environmental degradation and can cause negative effects on the treated fish with. In this study 250 mg/L (1 hour and 500 mg/L (45 min concentrations of formaldehyde were used. From the results of the histopathological findings degeneration was determined in the epithelial cells and pilar in the gill lamellae, lymphoid infiltration interlamellar necrosis and degeneration of the muscle tissue, dilatation in the liver, congestion in veins, degeneration in hepatocytes, damage in the blood vessels of fish which were treated with formaldehyde. In conclusion; formaldehyde was found to have a negative impact in histological examination in applied rainbow trout. Therefore, it was concluded that it should be used consciously and according the needs in aquaculture.

  9. Direct Enzymatic Assay for Alcohol Oxidase, Alcohol Dehydrogenase, and Formaldehyde Dehydrogenase in Colonies of Hansenula polymorpha

    OpenAIRE

    Eggeling, L; Sahm, H

    1980-01-01

    A procedure is described for the qualitative direct identification of alcohol oxidase, alcohol dehydrogenase, and formaldehyde dehydrogenase in yeast colonies. The method has been applied successfully to isolate mutants of Hansenula polymorpha with altered glucose repression of alcohol oxidase.

  10. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde.

    Science.gov (United States)

    Rong, Haiqin; Ryu, Zhenyu; Zheng, Jingtang; Zhang, Yuanli

    2003-05-15

    The influence of heat treatment of rayon-based activated carbon fibers on the adsorption behavior of formaldehyde was studied. Heat treatment in an inert atmosphere of nitrogen for rayon-based activated carbon fibers (ACFs) resulted in a significant increase in the adsorption capacities and prolongation of breakthrough time on removing of formaldehyde. The effect of different heat-treatment conditions on the adsorption characteristics was investigated. The porous structure parameters of the samples under study were investigated using nitrogen adsorption at the low temperature 77.4 K. The pore size distributions of the samples under study were calculated by density functional theory. With the aid of these analyses, the relationship between structure and adsorption properties of rayon-based ACFs for removing formaldehyde was revealed. Improvement of their performance in terms of adsorption selectivity and adsorption rate for formaldehyde were achieved by heat post-treatment in an inert atmosphere of nitrogen.

  11. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2011-01-01

    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  12. Partial oxidation of methane to formaldehyde on Mo03, Fe203 and ferromolybdenum catalysts

    Directory of Open Access Journals (Sweden)

    José Daniel Del Río

    2010-04-01

    Full Text Available One of the main challenges for catalysis has been direct methane conversion to useful products such as methanol and formaldehyde. Formaldehyde is currently produced by a three-step industrial process with syngas and metha- nol as intermediate products. MoO , Fe O and Fe (MoO catalysts were used with four different Mo/Fe molar 3\t2 3 2 4 3 ratios (0.5, 1, 1.5, 2 in this work. The ferromolybdenum catalyst was prepared by coprecipitation. Pure oxides are more active; however they are not formaldehyde selective, but carbon oxide (CO, CO selective. The ferro- molybdenum catalysts showed better HCHO selectivity at low conversions; the molybdenum oxide content did not show increased in catalytic activity. Increased reaction temperature did not increase formaldehyde selectivity.

  13. Ventilation of indoor formaldehyde and estimation of its emission and air exchange rate

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; ZHAO Qing-liang; LI Wen-pu; LI Yu-hua

    2007-01-01

    Residents living in the cold areas such as Harbin generally experience a residence time of approximately 6 months in chilly winter without frequent natural ventilation. To find out the influence of a short period of ventilation on the indoor formaldehyde concentration inside a new building, an investigation was conducted for the instance of twice ventilation in a day through window opening. The results showed that the initial concentration of formaldehyde was 3.53 - 8.48 times as high as the concentration after 10 min ventilation. After closing the window, the indoor formaldehyde concentration increased with time and followed an exponential equation of C = C0exp( - b * t) + (a + Cw) [ 1 - exp( - b * t) ] with correlation coefficient (R2) of 0. 945 -0. 999, based on the statistical analysis of 14 groups of measurement data. The developed equation can be used to estimate the emission rate of indoor formaldehyde sources and the air exchange rate of the test room simultaneously.

  14. 40 CFR 721.9480 - Resorcinol, formaldehyde substituted carbomonocycle resin (generic).

    Science.gov (United States)

    2010-07-01

    ... carbomonocycle resin (generic). 721.9480 Section 721.9480 Protection of Environment ENVIRONMENTAL PROTECTION... carbomonocycle resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as resorcinol, formaldehyde substituted carbomonocycle resin...

  15. Localization of formaldehyde production during frozen storage of European hake ( Merluccius merluccius )

    DEFF Research Database (Denmark)

    Rey-Mansilla, M.D.; Sotelo, C.G.; Aubourg, S.P.

    2001-01-01

    The formation of dimethylamine and formaldehyde from trimethylamine N-oxide by the enzyme trimethylamine N-oxide demethylase in whole hake during frozen storage was studied. The objective was to check if there were parts of the muscle with a higher production of dimethylamine and formaldehyde...... the viscera, and the tail. The second variable was the temperature of storage, -11 degreesC or -18 degreesC. Finally, the influence of kidneys during storage, comparing fish with and without kidneys, was also evaluated. No differences were found in dimethylamine and formaldehyde production between fish...... with and without kidneys stored at -18 degreesC. However at -11 degreesC the amounts of dimethylamine and formaldehyde detected in fish without kidneys were, in some cases, higher than in those with kidneys. Kidney removal does not have a statistically significant influence on DMA and FA production in frozen...

  16. A theoretical study on the water-mediated asynchronous addition between urea and formaldehyde

    Institute of Scientific and Technical Information of China (English)

    Tao-Hong Li; Xiao-Guang Xie; Guan-Ben Du

    2013-01-01

    The reaction between urea and formaldehyde in water solution was theoretically investigated by using B3LYP and MP2 methods,It was found that the addition of the nitrogen atom in urea to the carbonyl group in formaldehyde precedes the proton transfer and the proton migration from water to the carbonyl group occurs before the proton abstraction from the nitrogen,With one or two water molecules involved in the TS,the activation energy barrier is lowered compared to the TS of the mechanism with no water participation.The energy change along the reaction coordinate clearly shows that a zwitterionic-like intermediate does not exist on the PES.The reaction between urea and formaldehyde occurs in a concerted mechanism but with asynchronous characters.This is different from the stepwise mechanism recently found for the amination reactions of formaldehyde.

  17. Study of changes in bacterial and viral abundance in formaldehyde - Fixed water samples by epifluorescence microscopy

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Radhakrishnan, S.; Sajila, M.P.; Jacob, B.

    Accurate measurement of bacterial and viral abundance in coastal marine environments is important to understand the dynamics of microbial communities in these ecosystems. In this study, the effect of formaldehyde preservation on the abundance...

  18. Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic

    DEFF Research Database (Denmark)

    Lund, K.H.; Petersen, J.H.

    2006-01-01

    Migration of one or both formaldehyde and/or melamine monomers was found in seven of ten tested melamine samples bought on the Danish market. The samples were a bowl, a jug, a mug, a ladle, and different cups and plates. No violation of the European Union-specific migration limits for melamine (30...... mg kg(-1)) and formaldehyde (15 mg kg(-1)) was found after three successive exposures to the food stimulant 3% acetic acid after 2 h at 70 degrees C. To investigate the effects of long-term use, migration tests were performed with two types of cups from a day nursery. Furthermore, medium-term use...... was studied by ten successive exposures of a plate to 3% acetic acid for 30 min at 95 degrees C. The results indicate that continuous migration of formaldehyde and melamine takes place during the lifetime of these articles. The molar ratio of released formaldehyde to melamine was seen to decrease from 12...

  19. Is individual nasal sensitivity related to cellular metabolism of formaldehyde and susceptibility towards formaldehyde-induced genotoxicity?

    Science.gov (United States)

    Zeller, Jasmin; Ulrich, Alexandra; Mueller, Joerg U; Riegert, Clarissa; Neuss, Simone; Bruckner, Thomas; Triebig, Gerhard; Speit, Günter

    2011-07-14

    Forty-one volunteers (male non-smokers, aged 32 ± 9.6yrs) were tested for susceptibility towards unspecific nasal irritation (sensitivity towards CO(2)) in order to define subgroups of hypersensitive and hyposensitive subjects. Blood samples were taken and the expression (mRNA level) of the GSH-dependent formaldehyde dehydrogenase gene (FDH, identical to alcohol dehydrogenase 5, ADH5; EC 1.2.1.46) was measured in leukocytes by quantitative real-time RT-PCR with TaqMan probes. FDH is the most important enzyme for the metabolic inactivation of FA. Blood samples were exposed to 150μM formaldehyde (FA) for 2h and the induction of DNA-protein crosslinks (DPX) in leukocytes was measured by means of a modification of the alkaline comet assay (i.e., by assessing the reduction of DNA migration induced by γ-radiation). Removal of DPX was determined by the abolition of FA-induced reduction in DNA migration within 4h after the end of the exposure. Furthermore, the induction of sister chromatid exchange (SCE) in cultured lymphocytes was studied after treatment of whole blood cultures with FA (150μM). A correlation analysis was performed for all parameters tested for the whole study group and for hypersensitive and hyposensitive subgroups. The results indicate that despite large differences in CO(2)-sensitivity, the susceptibility towards nasal irritation was not related to the induction of genotoxic effects (DPX, SCE) in peripheral blood or to the protection of blood cells against FA-induced effects (expression of FDH, repair capacity for FA-induced DPX). There was no correlation between CO(2)-sensitivity and the expression of FDH. There was also no close correlation between the various indicators of cellular sensitivity towards FA-induced genotoxic effects and no subgroups were identified with particular mutagen sensitivity towards FA.

  20. The Effectors and Sensory Sites of Formaldehyde-responsive Regulator FrmR and Metal-sensing Variant *

    Science.gov (United States)

    Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Sayer, Lucy N.; Usón, Isabel; Huggins, Thomas G.; Robinson, Nigel J.; Pohl, Ehmke

    2016-01-01

    The DUF156 family of DNA-binding transcriptional regulators includes metal sensors that respond to cobalt and/or nickel (RcnR, InrS) or copper (CsoR) plus CstR, which responds to persulfide, and formaldehyde-responsive FrmR. Unexpectedly, the allosteric mechanism of FrmR from Salmonella enterica serovar Typhimurium is triggered by metals in vitro, and variant FrmRE64H gains responsiveness to Zn(II) and cobalt in vivo. Here we establish that the allosteric mechanism of FrmR is triggered directly by formaldehyde in vitro. Sensitivity to formaldehyde requires a cysteine (Cys35 in FrmR) conserved in all DUF156 proteins. A crystal structure of metal- and formaldehyde-sensing FrmRE64H reveals that an FrmR-specific amino-terminal Pro2 is proximal to Cys35, and these residues form the deduced formaldehyde-sensing site. Evidence is presented that implies that residues spatially close to the conserved cysteine tune the sensitivities of DUF156 proteins above or below critical thresholds for different effectors, generating the semblance of specificity within cells. Relative to FrmR, RcnR is less responsive to formaldehyde in vitro, and RcnR does not sense formaldehyde in vivo, but reciprocal mutations FrmRP2S and RcnRS2P, respectively, impair and enhance formaldehyde reactivity in vitro. Formaldehyde detoxification by FrmA requires S-(hydroxymethyl)glutathione, yet glutathione inhibits formaldehyde detection by FrmR in vivo and in vitro. Quantifying the number of FrmR molecules per cell and modeling formaldehyde modification as a function of [formaldehyde] demonstrates that FrmR reactivity is optimized such that FrmR is modified and frmRA is derepressed at lower [formaldehyde] than required to generate S-(hydroxymethyl)glutathione. Expression of FrmA is thereby coordinated with the accumulation of its substrate. PMID:27474740

  1. Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Chun Lai Nie

    Full Text Available Recent studies have shown that neurodegeneration is closely related to misfolding and aggregation of neuronal tau. Our previous results show that neuronal tau aggregates in formaldehyde solution and that aggregated tau induces apoptosis of SH-SY5Y and hippocampal cells. In the present study, based on atomic force microscopy (AFM observation, we have found that formaldehyde at low concentrations induces tau polymerization whilst acetaldehyde does not. Neuronal tau misfolds and aggregates into globular-like polymers in 0.01-0.1% formaldehyde solutions. Apart from globular-like aggregation, no fibril-like polymerization was observed when the protein was incubated with formaldehyde for 15 days. SDS-PAGE results also exhibit tau polymerizing in the presence of formaldehyde. Under the same experimental conditions, polymerization of bovine serum albumin (BSA or alpha-synuclein was not markedly detected. Kinetic study shows that tau significantly misfolds and polymerizes in 60 minutes in 0.1% formaldehyde solution. However, presence of 10% methanol prevents protein tau from polymerization. This suggests that formaldehyde polymerization is involved in tau aggregation. Such aggregation process is probably linked to the tau's special "worm-like" structure, which leaves the epsilon-amino groups of Lys and thiol groups of Cys exposed to the exterior. Such a structure can easily bond to formaldehyde molecules in vitro and in vivo. Polymerizing of formaldehyde itself results in aggregation of protein tau. Immunocytochemistry and thioflavin S staining of both endogenous and exogenous tau in the presence of formaldehyde at low concentrations in the cell culture have shown that formaldehyde can induce tau into amyloid-like aggregates in vivo during apoptosis. The significant protein tau aggregation induced by formaldehyde and the severe toxicity of the aggregated tau to neural cells may suggest that toxicity of methanol and formaldehyde ingestion is related to

  2. Characterization of Substituted Phenol-Formaldehyde Resins Using Solid-State Carbon-13 NMR

    Science.gov (United States)

    1989-05-22

    cashew nut shell liquid , 3-n-pentadecylphenol and phenol with formaldehyde. The resulting resins were crosslinked and then investigated using...should be sent SYNOPSIS Crosslinked substituted phenol-formaldehyde resins were synthesized from cashew nut shell liquid , 3-n-pentadecylphenol and... nut shell liquid (CNSL) and are the basis for binder resins and friction particles in composite friction materials. CNSL is isolated from cashew nut

  3. First principle and ReaxFF molecular dynamics investigations of formaldehyde dissociation on Fe(100) surface.

    Science.gov (United States)

    Yamada, Takahiro; Phelps, Donald K; van Duin, Adri C T

    2013-09-01

    Detailed formaldehyde adsorption and dissociation reactions on Fe(100) surface were studied using first principle calculations and molecular dynamics (MD) simulations, and results were compared with available experimental data. The study includes formaldehyde, formyl radical (HCO), and CO adsorption and dissociation energy calculations on the surface, adsorbate vibrational frequency calculations, density of states analysis of clean and adsorbed surfaces, complete potential energy diagram construction from formaldehyde to atomic carbon (C), hydrogen (H), and oxygen (O), simulation of formaldehyde adsorption and dissociation reaction on the surface using reactive force field, ReaxFF MD, and reaction rate calculations of adsorbates using transition state theory (TST). Formaldehyde and HCO were adsorbed most strongly at the hollow (fourfold) site. Adsorption energies ranged from -22.9 to -33.9 kcal/mol for formaldehyde, and from -44.3 to -66.3 kcal/mol for HCO, depending on adsorption sites and molecular direction. The dissociation energies were investigated for the dissociation paths: formaldehyde → HCO + H, HCO → H + CO, and CO → C + O, and the calculated energies were 11.0, 4.1, and 26.3 kcal/mol, respectively. ReaxFF MD simulation results were compared with experimental surface analysis using high resolution electron energy loss spectrometry (HREELS) and TST based reaction rates. ReaxFF simulation showed less reactivity than HREELS observation at 310 and 523 K. ReaxFF simulation showed more reactivity than the TST based rate for formaldehyde dissociation and less reactivity than TST based rate for HCO dissociation at 523 K. TST-based rates are consistent with HREELS observation.

  4. An Internal Reaction Chamber in Dimethylglycine Oxidase Provides Efficient Protection from Exposure to Toxic Formaldehyde*

    OpenAIRE

    Tralau, Tewes; Lafite, Pierre; Levy, Colin; Combe, John P.; Scrutton, Nigel S.; Leys, David

    2009-01-01

    We report a synthetic biology approach to demonstrate substrate channeling in an unusual bifunctional flavoprotein dimethylglycine oxidase. The catabolism of dimethylglycine through methyl group oxidation can potentially liberate toxic formaldehyde, a problem common to many amine oxidases and dehydrogenases. Using a novel synthetic in vivo reporter system for cellular formaldehyde, we found that the oxidation of dimethylglycine is coupled to the synthesis of 5,10-methylenetetrahydrofolate thr...

  5. Analysis of biomarkers for the cross-linkage of formaldehyde with bovine serum albumin peptides

    Institute of Scientific and Technical Information of China (English)

    AHMAD Waqar; DENG YuLin; LI Bo; LI LiLi; AHAMD Manzoor; IQBAL Zafar; PARVEEN Zahida

    2008-01-01

    Formaldehyde, a well-known environmental toxic hazard, has been found to produce endogenously via semicarbazide-sensitive amine oxidase-catalyzed oxidative deamination of methylamine. In diabetes,the activity of SSAO has been found to increase with a subsequent increase in endogenous formalde-hyde production. It has been postulated that SSAO-induced production of formaldehyde may be in-volved in the alteration of protein structure, which may subsequently cause protein deposition associ-ated with chronic pathological disorders. Formaldehyde has also been found to react (cross-link) withamino group of the N-terminal amino acid residue and with the side-chains of arginine, cysteine, his-tidine and lysine residues. Therefore, formaldehyde may be responsible, at least in part, for protein cross-linkage, oxidative stress and cytotoxicity. The cross-linking of formaldehyde with bovine serum albumin was studied using LC-MS and Mascot database. The peptides sequence for control BSA (un-treated) digested with trypsin was matched in the online database search query by exporting the MS/MS data to online MASCOT database. In this way, a total of twenty-seven peptides were matched in the database search query. These twenty-seven peptides were then searched manually in all of the tryptic BSA samples treated with different concentrations of FA that were incubated in different time intervals.Six formaldehyde-treated BSA peptides (FKDLGEEHFK, HLVDEPQNLIK, KVPQVSTPTLVEVSR,RPCFSALTPDETYVPK, LVNELTEFAK, DAFLGSFLYEYSR) were found to be the possible markers for formaldehyde-protein/peptides adducts.

  6. Adsorption of Chromium(VI) from Aqueous Solutions by Coffee Polyphenol-Formaldehyde/Acetaldehyde Resins

    OpenAIRE

    2013-01-01

    Removal of chromium(VI) from wastewater is essential as it is toxic. Thus, removal of chromium(VI) was performed using coffee polyphenol-formaldehyde/acetaldehyde resins as adsorbents. Adsorbent resins were prepared by condensation of decaffeinated coffee powder with formaldehyde/acetaldehyde and used for the removal of Cr(VI) ions from aqueous solutions. A simple and sensitive solid phase extraction procedure was applied for the determination of chromium at trace levels by spectroscopic meth...

  7. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    OpenAIRE

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation ...

  8. [Critical approach to technics for the disinfection of respirators with formaldehyde].

    Science.gov (United States)

    Laguenie, G; Bavoux, F; Garnier, R; Murat, I; Couturier, C

    1983-03-01

    Method of artificial respirators desinfection by Formaldehyde is studied. Formaldehyde and ammoniac quantitative analysis are performed. Air samples are taken by dry process and by wet process. Two concentrations are in ceiling values for exposure of workers and exceed irritant concentrations during chronic exposition. Particular attention should be paid to perform measurement: air samples must be taken by wet process as artificial ventilation circumstances: indeed in this case air is humidified; potential toxicity is unappreciated in this use. Complementary studies are required.

  9. Determination of formaldehyde in Brazilian alcohol fuels by flow-injection solid phase spectrophotometry

    OpenAIRE

    Teixeira, Leonardo Sena Gomes; Leão, Elsimar S.; Dantas,Alailson Falcão; Pinheiro, Heloísa Lúcia C.; Costa, Antonio Celso Spinola; Andrade,Jailson Bittencourt de

    2004-01-01

    p. 711–715 In thiswork, a solid phase spectrophotometric method in association with flowinjection analysis for formaldehyde determination has been developed with direct measurement of light-absorption in C18 material. The 3,5-diacetyl-1,4-dihydrolutidine produced from the reaction between formaldehyde and fluoral P was quantitatively retained on C18 support and the spectrophotometric detection was performed simultaneously at 412 nm. The retained complex was quickly eluted from C18 mater...

  10. Formaldehyd i tekstil som mulig årsag til arthritis og angioødem

    DEFF Research Database (Denmark)

    Jensen, O C; Bach, B

    1992-01-01

    A case of arthritis and angioedema which developed on occupational exposure to formaldehyde in textiles is described. Possible pathological mechanisms are discussed. The suspicion that an unknown immunological reaction may be the cause is raised.......A case of arthritis and angioedema which developed on occupational exposure to formaldehyde in textiles is described. Possible pathological mechanisms are discussed. The suspicion that an unknown immunological reaction may be the cause is raised....

  11. Formaldehyde removal by common indoor plant species and various growing media

    Science.gov (United States)

    Aydogan, Ahu; Montoya, Lupita D.

    2011-05-01

    Three porous materials (growstone, expanded clay and activated carbon) were evaluated as hydroponic growing media and for their individual ability to remove the indoor volatile organic compound formaldehyde under three conditions: growing medium alone, dry medium in a pot, and wet medium in a pot. The total percent-reduction of formaldehyde by each growing media was evaluated over a 10-h period. In all cases, activated carbon achieved the highest removal under the three conditions studied with average percent reductions measured at about 98%. Four common interior plants: Hedera helix (English ivy), Chrysanthemum morifolium (pot mum), Dieffenbachia compacta (dump cane) and Epipremnum aureum (golden pathos) growing in growstone were then tested for their ability to remove formaldehyde. The removal capacity of the aerial plant parts (AP), the root zone (RZ) and the entire plant (EP) growing in growstone were determined by exposing the relevant parts to gaseous formaldehyde (˜2000 μg m -3) in a closed chamber over a 24-h period. The removal efficiency between species and plant parts were compared by determining the time interval required to decrease about 2/3 of the total formaldehyde concentration reduction, T 2/3. The T 2/3 measured were 23, 30, 34 and 56 min for EP of C. morifolium, E. aureum, D. compacta and H. helix, respectively. The formaldehyde removal by the root zone was found to be more rapid than the removal by the aerial plant parts.

  12. Developing a reference material for diffusion-controlled formaldehyde emissions testing.

    Science.gov (United States)

    Liu, Zhe; Liu, Xiaoyu; Zhao, Xiaomin; Cox, Steven S; Little, John C

    2013-11-19

    Formaldehyde, a known human carcinogen and mucous membrane irritant, is emitted from a variety of building materials and indoor furnishings. The drive to improve building energy efficiency by decreasing ventilation rates increases the need to better understand emissions from indoor products and to identify and develop lower emitting materials. To help meet this need, formaldehyde emissions from indoor materials are typically measured using environmental chambers. However, chamber testing results are frequently inconsistent and provide little insight into the mechanisms governing emissions. This research addresses these problems by (1) developing a reference formaldehyde emissions source that can be used to validate chamber testing methods for characterization of dynamic sources of formaldehyde emissions and (2) demonstrating that emissions from finite formaldehyde sources can be predicted using a fundamental mass-transfer model. Formaldehyde mass-transfer mechanisms are elucidated, providing practical approaches for developing diffusion-controlled reference materials that mimic actual sources. The fundamental understanding of emissions mechanisms can be used to improve emissions testing and guide future risk reduction actions.

  13. Graphene oxide as efficient high-concentration formaldehyde scavenger and reutilization in supercapacitor.

    Science.gov (United States)

    Liang, Hongyu; Bu, Yongfeng; Zhang, Yutian; Zhang, Junyan

    2015-04-15

    Graphene oxide (GO) was investigated as a low-cost and high-efficient scavenger for high-concentration formaldehyde in alkali media. It showed very high removal capacity, 411 mg of formaldehyde per milligram of GO, and strong resistant to temperature changes. Additionally, the used GO can be easily renewed by a simple electrochemical method. By analyzing the componential and electrochemical characterizations of GO before and after use, the results showed that the degradation mechanism of formaldehyde is a collaborative process of chemical oxidation and physical adsorption, and the former dominates the degradation process. With the aid of oxygen-containing groups in GO, most formaldehyde can be easily oxidized by GO in alkaline media (this is equivalent to GO was reduced by formaldehyde). On the other hand, the used GO (reduced GO, noted as rGO) exhibits more ideal electronic double-layer capacitor (EDLC) feature than GO, along with higher rate capacitance (up to 136 F g(-1) at 50 A g(-1)). In short, GO is not only an efficient formaldehyde scavenger, but the used GO (rGO) can serve as promising electrical energy storage material. This study provides new insights for us to reutilize the discarded adsorbents generated from the environmental protection.

  14. Increase of ambient formaldehyde in Beijing and its implication for VOC reactivity

    Institute of Scientific and Technical Information of China (English)

    Qian Zhang; Min Shao; Yang Li; Si Hua Lu; Bin Yuan; Wen Tai Chen

    2012-01-01

    Influencing atmospheric OH radical budget and tropospheric ozone production,ambient formaldehyde (HCHO) is one of the key oxygenated volatile organic compounds (OVOCs).We present the variations on formaldehyde column densities in summertime in Beijing retrieved from ozone monitoring instrument (OMI) between 2005 and 2011.Satellite columns of HCHO correlated well with available ground-based measurements despite some noticeable differences.The orthogonal distance regression (ODR) method was used to estimate the ratio between satellite columns and ground-level concentrations,whereas ordinary least squares (OLS)method was used to fit the trend of ambient formaldehyde.The formaldehyde concentrations derived from HCHO columns were in the range of 7-12 ppbv and steadily increased at an approximate rate of 0.64 ppbv/yr (7.8% at 2005 level) with an uncertainty of 51%.VOC reactivity quantified by means of OH loss rates showed increasing contribution from formaldehyde and acetaldehyde,rising from 35% in 2005 to 40% in 2010,and decreasing contribution from anthropogenic VOCs,dropping from 49% in 2005 to 40% in 2010.More attention should be paid to understanding the net feedback of increasing formaldehyde to ozone formation potential.

  15. Formaldehyde and TVOC emission behavior of laminate flooring by structure of laminate flooring and heating condition.

    Science.gov (United States)

    An, Jae-Yoon; Kim, Sumin; Kim, Hyun-Joong

    2011-03-15

    Formaldehyde was measured with a desiccator, a 20 L chamber and the FLEC method. The formaldehyde emission rate from laminate was the highest at 32 °C using the desiccator, which then decreased with time. The formaldehyde emission using the 20 L small chamber and FLEC showed a similar tendency. There was a strong correlation between the formaldehyde and total volatile organic compounds (TVOCs) with both types of floorings using the two different methods. The formaldehyde emission rate and TVOC results were higher when tested using the FLEC method than with the 20 L small chamber method. The emission rate was affected by the joint edge length in laminate flooring. Toluene, ethylbenzene and xylene were the main VOCs emitted from laminate flooring, and there were more unidentified VOCs emitted than identified VOCs. The samples heated with a floor heating system emitted more formaldehyde than those heated using an air circulation system due to the temperature difference between the bottom panel and flooring. The TVOC emission level of the samples was higher when an air circulation system was used than when a floor heating system was used due to the high ventilation rate.

  16. Performance of optical biosensor using alcohol oxidase enzyme for formaldehyde detection

    Science.gov (United States)

    Sari, A. P.; Rachim, A.; Nurlely, Fauzia, V.

    2017-07-01

    The recent issue in the world is the long exposure of formaldehyde which is can increase the risk of human health, therefore, that is very important to develop a device and method that can be optimized to detect the formaldehyde elements accurately, have a long lifetime and can be fabricated and produced in large quantities. A new and simple prepared optical biosensor for detection of formaldehyde in aqueous solutions using alcohol oxidase (AOX) enzyme was successfully fabricated. The poly-n-butyl acrylic-co-N-acryloxysuccinimide (nBA-NAS) membranes containing chromoionophore ETH5294 were used for immobilization of alcohol oxidase enzyme (AOX). Biosensor response was based on the colour change of chromoionophore as a result of enzymatic oxidation of formaldehyde and correlated with the detection concentration of formaldehyde. The performance of biosensor parameters were measured through the optical absorption value using UV-Vis spectrophotometer including the repeatability, reproducibility, selectivity and lifetime. The results showed that the prepared biosensor has good repeatability (RSD = 1.9 %) and good reproducibility (RSD = 2.1 %). The biosensor was selective formaldehyde with no disturbance by methanol, ethanol, and acetaldehyde, and also stable before 49 days and decrease by 41.77 % after 49 days.

  17. Investigation of formaldehyde pollution of tap water and rain water using a novel visual colorimetry.

    Science.gov (United States)

    Murai, K; Okano, M; Kuramitz, H; Hata, N; Kawakami, T; Taguchi, S

    2008-01-01

    The pollution of tap water and rain water with formaldehyde in Toyama Pref., Japan was investigated by means of a simple, rapid and cost-effective visual colorimetry developed by us. The levels of formaldehyde in three tap waters from different sources of dams on mountainside and a well-water pumped in urban area in Toyama Pref. were lower than 0.01 mg L(-1) that was the detection limit of the colorimetry. On the other hand, rain waters were seriously polluted with formaldehyde. Rain waters were sampled from three different sites (urban area, top of hill and industrial area) in Toyama Pref. from autumn to winter in 2006. The levels of formaldehyde in the rain waters ranged from 0.07 to 0.30 mg L(-1). The analytical results by the visual colorimetry were in good agreement with those obtained by GC-MS method. It was confirmed that the colorimetry is excellent for practical use for the determination of formaldehyde. It must be concerned about the pollution of rainwater with formaldehyde, when rain water is applied for tap water and miscellaneous purpose.

  18. [Removal of formaldehyde with novel packed air purifier and its computational simulation].

    Science.gov (United States)

    Li, Yu-hua; Wang, Kun; Zhao, Qing-liang; Zhang, Li-wei; Yuan, Chung-shin

    2008-09-01

    A novel air purifier was designed for the removal of indoor formaldehyde. The air purifier was filled with glass beads (3 mm) coated with TiO2. The removal efficiency of this air purifier was examined in an airtight room. The results showed that 87.0%-93.8% of the formaldehyde was removed for the initial formaldehyde concentration of 0.727-1.815 mg/m3. The reaction rate equation of the air purifier was developed. The simulation of single device of the air purifier suggested the uniformity of the air flow in the device. Besides, a mathematical model to simulate the variation of formaldehyde in a room was constructed, in which there was continuous formaldehyde emission source and the air purifier was operated. The simulation result was also proved by the experimental data. The results revealed that using the air purifier at intervals could steadily keep the formaldehyde concentration below the National Air Quality Standard of China, i.e. 0.1 mg/m3.

  19. A Case of Recurrent Urticaria Due to Formaldehyde Release from Root-Canal Disinfectant.

    Science.gov (United States)

    Jang, Ji Hoon; Park, Seung Hyun; Jang, Hang Jea; Lee, Sung Geun; Park, Jin Han; Jeong, Jae Won; Park, Chan Sun

    2017-01-01

    Although formaldehyde is well known to cause type 4 hypersensitivity, immunoglobulin E (IgE)-mediated hypersensitivity to formaldehyde is rare. Here, we report a case of recurrent generalized urticaria after endodontic treatment using a para-formaldehyde (PFA)-containing root canal sealant and present a review of previous studies describing cases of immediate hypersensitivity reactions to formaldehyde. A 50-year-old man visited our allergy clinic for recurrent generalized urticaria several hours after endodontic treatment. Prick tests to latex, lidocaine, and formaldehyde showed negative reactions. However, swelling and redness at the prick site continued for several days. The level of formaldehyde-specific IgE was high (class 4). Thus, the patient was deemed to have experienced an IgE-mediated hypersensitivity reaction caused by the PFA used in the root canal disinfectant. Accordingly, we suggest that physicians should pay attention to type I hypersensitivity reactions to root canal disinfectants, even if the symptoms occur several hours after exposure.

  20. Sol-gel synthesis of iron catalysers supported on silica and titanium for selectively oxidising methane to formaldehyde

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Guerrero Fajardo

    2010-07-01

    Full Text Available Iron materials supported on silica were prepared by the sol-gel method for evaluating catalytic activity in selective o-xidation of methane to formaldehyde. Four catalysts were prepared, one corresponding to the silica support (catalyst 1S, another to the titanium support (catalyst 1T and two more having 0.5% weight iron loads, one for the silica su-pport (catalyst 2FS and the last one the titanium support (catalyst 2FT. The higher BET areas were 659 and 850 m2/g for catalysts 1S and 2FS, respectively while catalysts 1T and 2FT displayed areas of 65 and 54 m2/g, respec-tively. Scanning and transmission electronic microscopy displayed an amorphous structure in the silica-supported materials while titanium-supported materials displayed dense materials having defined structure. X-ray diffraction confirmed the silica’s amorphous structure in 1S and 2FS catalysts and displayed the 1T and 2FT catalysts’ anatase structure. The programmed temperature reduction for the 1S and 2FS catalysts did not display reducible species, while displaying hydrogen consumption peaks related to Fe3O4 reduction to α-Fe via FexO route for 1T and 2FT ca-talysts. The electronic spectroscopy X-ray photo confirmed the Fe(III specie as having 710.6 e.V binding energy for both 2FS and 2FT catalysts. Catalytic activity was carried out at atmospheric pressure in a quartz reactor, reaction mixture as CH4/O2/N2 =7.5/1/4 at 400-800°C temperature range. The reaction products were analysed by gas chromatography on Hayesep R and T columns using 5Å molecular screening. The best response for selective oxida-tion of methane to formaldehyde was displayed by the 2FS catalyst with 3.4% mol methane conversion at 650°C, 11.9% mol formaldehyde selectivity and 0.0211 g HCHO/Kg catalyst yield.

  1. A Room-Temperature Operation Formaldehyde Sensing Material Printed Using Blends of Reduced Graphene Oxide and Poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Wen-Yu Chuang

    2015-11-01

    Full Text Available This work demonstrates a printable blending material, i.e., reduced graphene oxide (RGO mixed with poly(methyl methacrylate (PMMA, for formaldehyde sensing. Based on experimental results, 2% RGO/10% PMMA is an optimal ratio for formaldehyde detection, which produced a 30.5% resistance variation in response to 1000 ppm formaldehyde and high selectivity compared to different volatile organic compounds (VOCs, humidity, CO, and NO. The demonstrated detection limit is 100 ppm with 1.51% resistance variation. Characterization of the developed formaldehyde sensing material was performed by Fourier-transform infrared (FTIR spectrometry, scanning electron microscopy (SEM, and Raman spectroscopy. Based on Raman spectroscopy, the basic sensing mechanism is the band distortion of RGO due to blending with PMMA and the adsorption of formaldehyde. This work establishes insights into the formaldehyde sensing mechanism and explores a potential printable sensing material for diverse applications.

  2. A Room-Temperature Operation Formaldehyde Sensing Material Printed Using Blends of Reduced Graphene Oxide and Poly(methyl methacrylate).

    Science.gov (United States)

    Chuang, Wen-Yu; Yang, Sung-Yuan; Wu, Wen-Jong; Lin, Chih-Ting

    2015-11-13

    This work demonstrates a printable blending material, i.e., reduced graphene oxide (RGO) mixed with poly(methyl methacrylate) (PMMA), for formaldehyde sensing. Based on experimental results, 2% RGO/10% PMMA is an optimal ratio for formaldehyde detection, which produced a 30.5% resistance variation in response to 1000 ppm formaldehyde and high selectivity compared to different volatile organic compounds (VOCs), humidity, CO, and NO. The demonstrated detection limit is 100 ppm with 1.51% resistance variation. Characterization of the developed formaldehyde sensing material was performed by Fourier-transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM), and Raman spectroscopy. Based on Raman spectroscopy, the basic sensing mechanism is the band distortion of RGO due to blending with PMMA and the adsorption of formaldehyde. This work establishes insights into the formaldehyde sensing mechanism and explores a potential printable sensing material for diverse applications.

  3. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    Directory of Open Access Journals (Sweden)

    Z. Li

    2011-11-01

    Full Text Available The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS, and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. Acetaldehyde depresses surface tension to 65(±2 dyn cm−1 in pure water (a 10% surface tension reduction from that of pure water and 62(±1 dyn cm−1 in AS solutions (a 20.6% reduction from that of a 3.1 M AS solution. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9% reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  4. Prevalence and Risk Factors of Occupational Contact Dermatitis to Formaldehyde and Glutaraldehyde and their Co-Reactivity in Dental Professionals

    OpenAIRE

    Maya Lyapina¹; Assya Krasteva, PhD¹; Maria Dencheva, PhD¹; Mariana Tzekova, PhD¹; Mariela Deliverska, PhD²; Angelina Kisselova-Yaneva, PhD, ScD¹

    2013-01-01

    Background: In dental practice concomitant exposure to formaldehyde and glutaraldehyde is a common occurrence. The objective of the study is to evaluate the incidence of occupational contact dermatitis to formaldehyde and glutaraldehyde in dental professionals and the manifestation of co-reactivity. Methods and Results: This study involved 78 participants (30 dental professionals and 48 referents). A questionnaire survey as well as skin patch testing with formaldehyde and glutaraldehyde was c...

  5. [Hygienic and immuno-allergologic aspects of the effects of formaldehyde and wood dust in furniture production].

    Science.gov (United States)

    Dueva, L A; Avdeeva, I A; Rodman, L S

    1996-01-01

    The study evaluated effects of threshold sensitizing levels of formaldehyde (and its combination with woody dust) on health of furniture production workers. The results enable to conclude that MAC of formaldehyde (or combined with woody dust) increases danger of symptomatic allergies and considerably alters immune reactivity, causing atopic immune state. Formaldehyde promotes general nonspecific diseases by inducing the hyperergic reactivity that exhausts immune defense mechanisms.

  6. Implications of mechanical deformation and formaldehyde preservation for the identification of stage-specific characteristics of Baltic cod eggs

    DEFF Research Database (Denmark)

    Geldmacher, A.; Wieland, Kai

    1999-01-01

    The identification of developmental stages in fish eggs from plankton samples is often complicated by deformation of the embryos due to mechanical stress during the sampling procedure and by dehydration during formaldehyde fixation. The effects of formaldehyde fixation and mechanical stress on Ba...... mechanically deformed during handling were clearly distinguishable from those that died prior to catching; however, staging was generally less accurate for formaldehyde- preserved eggs when compared with living specimens....

  7. Determination of Very Low Level of Free Formaldehyde in Liquid Detergents and Cosmetic Products Using Photoluminescence Method

    National Research Council Canada - National Science Library

    Gholami, Ali; Mohsenikia, Atefeh; Masoum, Saeed

    2016-01-01

    ... detergents and cosmetic products instead of other preservatives. The hazard of formaldehyde has been reported which found enough evidence for the mutagenicity and carcinogenicity of this compou...

  8. Removal of formaldehyde by a pulsed dielectric barrier discharge in dry air in the 20 °C to 300 °C temperature range

    Science.gov (United States)

    Blin-Simiand, N.; Pasquiers, S.; Magne, L.

    2016-05-01

    The influence of the gas mixture temperature, from 20 °C up to 300 °C, on the removal of formaldehyde, diluted at low concentration (less than 800 ppm) in dry air at atmospheric pressure, by a pulsed dielectric barrier discharge (DBD) is studied by means of Fourier transform infrared spectroscopy and micro gas chromatography. Efficient removal of CH2O is obtained and it is found that the characteristic energy, less than 200 J l-1, is a decreasing function of the temperature over the whole range of concentration values under consideration. Byproducts issued from the removal are identified and quantified (CO, CO2, HCOOH, HNO3). Experimental results are analysed using a zero-dimensional simplified DBD-reactor model in order to gain insights on the chemical processes involved. It is shown that the dissociation of the molecule competes with oxidation reactions at low temperature, whereas at high temperature oxidation processes dominate.

  9. Photochemical reactions among formaldehyde, chlorine, and nitrogen dioxide in air

    Energy Technology Data Exchange (ETDEWEB)

    Hanst, P.L.; Gay, B.W. Jr.

    1977-11-01

    Photochemical reactions among chlorine, nitrogen dioxide, and formaldehyde were studied, using parts-per-million concentrations in 1 atm of air. The reactant mixtures were irradiated by ultraviolet fluorescent lamps and simultaneously analyzed by the Fourier transform infrared technique by use of folded light paths up to 504 m. With an excess of NO/sub 2/ over Cl/sub 2/, the reaction products included O/sub 3/, CO, HNO/sub 3/,N/sub 2/O/sub 5/, HCl, and nitryl chloride (ClNO/sub 2/). When chlorine exceeded NO/sub 2/, the principal product was peroxy nitric acid (HOONO/sub 2/). Peroxy formyl nitrate, nitrous acid, and chlorine nitrate were not seen. The nitryl chloride was stable even with the ultraviolet lights on. The peroxy nitric acid disappeared from the cell with a half-life of about 10 min. Formyl radicals (HCO), unlike acetyl radicals, did not combine with O/sub 2/ and NO/sub 2/ by addition. HCO reacted with O/sub 2/ to yield CO and HO/sub 2/. The HO/sub 2/ will then add to NO/sub 2/ to yield HOONO/sub 2/. If NO is present, the HO/sub 2/ will prefer to react with it, oxidizing it to NO/sub 2/.

  10. Identification of a chemical marker of environmental exposure to formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Carraro, E.; Gasparini, S.; Gilli, G. [Univ. of Turin, (Italy). Dept. of Public Health and Microbiology

    1999-02-01

    Formaldehyde (F) binds human serum albumin (HSA) covalently, giving rise to a molecular adduct F-HSA having the F as hapten. The humoral immune response to the adduct provides a biological marker of F exposure. In order to titrate serum anti-F-HSA antibodies, a new indirect competitive enzyme immunoassay was developed. Two groups of about 90 heterogeneous healthy subjects were examined using two in vitro conjugated F-HSA. Contingency table analysis showed a greater sensitivity and specificity of the test with the 10:1 F-HSA adduct than with the 5:1. Data examination using multivariate analysis of variance revealed that in both groups the smoking variable significantly explains the values of the F exposure marker. A significant association with immunological response was obtained only in male smokers, using 5:1 F-HSA adduct, while with 10:1 ratio, a good association in male and female smokers was found. Results confirm that the immunological assay developed could be a useful method for evaluating F exposure, especially for public health monitoring on a large scale.

  11. Removal of formaldehyde from air using functionalized silica supports.

    Science.gov (United States)

    Ewlad-Ahmed, Abdunaser M; Morris, Michael A; Patwardhan, Siddharth V; Gibson, Lorraine T

    2012-12-18

    This paper demonstrates the use of functionalized meso-silica materials (MCM-41 or SBA-15) as adsorbents for formaldehyde (H₂CO) vapor from contaminated air. Additionally new green nanosilica (GNs) materials were prepared via a bioinspired synthesis route and were assessed for removal of H₂CO from contaminated indoor air. These exciting new materials were prepared via rapid, 15 min, environmentally friendly synthesis routes avoiding any secondary pollution. They provided an excellent platform for functionalization and extraction of H₂CO demonstrating similar performance to the conventional meso-silica materials. To the authors' knowledge this is the first reported practical application of this material type. Prior to trapping, all materials were functionalized with amino-propyl groups which led to chemisorption of H₂CO; removing it permanently from air. No retention of H₂CO was achieved with nonfunctionalized material and it was observed that best extraction performance required a dynamic adsorption setup when compared to passive application. These results demonstrate the first application of GNs as potential adsorbents and functionalized meso-silica for use in remediation of air pollution in indoor air.

  12. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Celzard, Alain [Institut Jean Lamour-UMR CNRS 7198, CNRS-Nancy-Universite-UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces. ENSTIB, 27 rue Philippe Seguin, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, Antonio, E-mail: Alain.Celzard@enstib.uhp-nancy.fr [ENSTIB-LERMAB, Nancy-Universite, 27 rue Philippe Seguin, BP1041, 88051 Epinal cedex 9 (France)

    2011-06-15

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 deg. C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 deg. C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l{sup -1}, and the acid-cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H{sub 3}PO{sub 4}, close to 2200 m{sup 2} g{sup -1} and 0.7 cm{sup 3} g{sup -1}, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l{sup -1} led to authentic bimodal activated carbons, having a surface area as high as 1780 m{sup 2} g{sup -1} and 0.6 cm{sup 3} g{sup -1} of microporous volume easily accessible through a widely developed macroporosity.

  13. Formaldehyde degradation by Ralstonia eutropha in an immobilized cell bioreactor.

    Science.gov (United States)

    Habibi, Alireza; Vahabzadeh, Farzaneh

    2013-01-01

    The formaldehyde (FA) degradation ability of the loofa-immobilized Ralstonia eutropha cells in a packed bed reactor was modeled using a statistically based design of the experiment (DOE) considering application of response surface methodology (RSM). The simultaneous effects of four operative test factors on the cells performance in terms of FA degradation rate and extent of the chemical oxygen demand (COD) removal were monitored. The combination of factors at initial FA concentration of 629.7 mg L(-1)h(-1), recycling substrate flow rate of 4.4 mL min(-1), aeration rate of 1.05 vvm, and the system's temperature of 28.8°C resulted the optimal conditions for the FA biodegradation rate and COD removal efficiency. Loofa porous structure was found to be a protective environment for the cells in exposing to the toxic substances and the scanning electron microscopy (SEM) images revealed extensive cells penetration within this support. Oxygen transfer analysis in the form of evaluating K la value was also carried out and at the optimum conditions of the DOE was equaled to 9.96 h(-1)and oxygen uptake rate was 35.6 mg L(-1)h(-1).

  14. Formaldehyde stimulates Mrp1-mediated glutathione deprivation of cultured astrocytes.

    Science.gov (United States)

    Tulpule, Ketki; Dringen, Ralf

    2011-02-01

    Formaldehyde (Fal) is an environmental neurotoxin that is also endogenously produced in brain. Since the tripeptide glutathione (GSH) plays an important role in detoxification processes in brain cells, we have investigated the consequences of a Fal exposure on the GSH metabolism of brain cells, using astrocyte-rich primary cultures as model system. Treatment of these cultures with Fal resulted in a rapid time- and concentration-dependent depletion of cellular GSH and a matching increase in the extracellular GSH content. Exposure of astrocytes to 1mm Fal for 3h did not compromise cell viability but almost completely deprived the cells of GSH. Half-maximal deprivation of cellular GSH was observed after application of 0.3mm Fal. This effect was rather specific for Fal, since methanol, formate or acetaldehyde did not affect cellular GSH levels. The Fal-stimulated GSH loss from viable astrocytes was completely prevented by semicarbazide-mediated chemical removal of Fal or by the application of MK571, an inhibitor of the multidrug resistance protein 1. These data demonstrate that Fal deprives astrocytes of cellular GSH by a multidrug resistance protein 1-mediated process.

  15. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage.

    Science.gov (United States)

    Ortega-Atienza, Sara; Wong, Victor C; DeLoughery, Zachary; Luczak, Michal W; Zhitkovich, Anatoly

    2016-01-08

    Many carcinogens damage both DNA and protein constituents of chromatin, and it is unclear how cells respond to this compound injury. We examined activation of the main DNA damage-responsive kinase ATM and formation of DNA double-strand breaks (DSB) by formaldehyde (FA) that forms histone adducts and replication-blocking DNA-protein crosslinks (DPC). We found that low FA doses caused a strong and rapid activation of ATM signaling in human cells, which was ATR-independent and restricted to S-phase. High FA doses inactivated ATM via its covalent dimerization and formation of larger crosslinks. FA-induced ATM signaling showed higher CHK2 phosphorylation but much lower phospho-KAP1 relative to DSB inducers. Replication blockage by DPC did not produce damaged forks or detectable amounts of DSB during the main wave of ATM activation, which did not require MRE11. Chromatin-monitoring KAT5 (Tip60) acetyltransferase was responsible for acetylation and activation of ATM by FA. KAT5 and ATM were equally important for triggering of intra-S-phase checkpoint and ATM signaling promoted recovery of normal human cells after low-dose FA. Our results revealed a major role of the KAT5-ATM axis in protection of replicating chromatin against damage by the endogenous carcinogen FA.

  16. Effects of Formaldehyde Inhalation on Lung of Rats

    Institute of Scientific and Technical Information of China (English)

    YU-HUA YANG; ZHU-GE XI; FU-HUAN CHAO; DAN-FENG YANG

    2005-01-01

    Objective To analyze protein changes in the lung of Wistar rats exposed to gaseous formaldehyde (FA) at 32-37 mg/m3 for 4 h/day for 15 days using proteomics technique. Methods Lung samples were solubilized and separated by two-dimensional electrophoresis (2-DE), and gel patterns were scanned and analyzed for detection of differently expressed protein spots. These protein spots were identified by MALDI-TOF-MS and NCBInr protein database searching. Results Four proteins were altered significantly in 32-37 mg/m3 FA group, with 3 proteins up-regulated, 1 protein down-regulated. The 4 proteins were identified as aldose reductase, LIM protein, glyceraldehyde-3-phosphate dehydrogenase, and chloride intracellular channel 3. Conclusion The four proteins are related to cell proliferation induced by FA and defense reaction of anti-oxidation. Proteomics is a powerful tool in research of environmental health, and has prospects in search for protein markers for disease diagnosis and monitoring.

  17. Systematic studies of tannin–formaldehyde aerogels: preparation and properties

    Directory of Open Access Journals (Sweden)

    Gisele Amaral-Labat, Andrzej Szczurek, Vanessa Fierro, Antonio Pizzi and Alain Celzard

    2013-01-01

    Full Text Available Gelation of tannin–formaldehyde (TF solutions was systematically investigated by changing pH and concentration of TF resin in water. In this way we constructed the TF phase diagram, from which chemical hydrogels could be described, and also synthesized thermoreversible tannin-based hydrogels. Conditions of non-gelation were also determined. Hydrogels were dried in supercritical CO2, leading to a broad range of TF aerogels. The latter were investigated for volume shrinkage, total porosity, micro-, meso- and macropore volumes, Brunauer–Emmett–Teller (BET surface area, microscopic texture, mechanical and thermal properties. All these properties are discussed in relation to each other, leading to an accurate and self-consistent description of these bioresource-based highly porous materials. The conditions for obtaining the highest BET surface area or mesopore volume were determined and explained in relation to the preparation conditions. The highest BET surface area, 880 m2 g−1, is remarkably high for organic aerogels derived from a natural resource.

  18. Investigations on potential co-mutagenic effects of formaldehyde.

    Science.gov (United States)

    Speit, Günter; Linsenmeyer, Regina; Duong, Giang; Bausinger, Julia

    2014-02-01

    The genotoxicity and mutagenicity of formaldehyde (FA) has been well-characterized during the last years. Besides its known direct DNA-damaging and mutagenic activity in sufficiently exposed cells, FA at low concentrations might also enhance the mutagenic and carcinogenic effects of other environmental mutagens by interfering with the repair of DNA lesions induced by these mutagens. To further assess potential co-mutagenic effects of FA, we exposed A549 human lung cells to FA in combination with various mutagens and measured the induction and removal of DNA damage by the comet assay and the production of chromosomal mutations by the cytokinesis-block micronucleus assay (CBMN assay). The mutagens tested were ionizing radiation (IR), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), N-nitroso-N-methylurea (methyl nitrosourea; MNU) and methyl methanesulfonate (MMS). FA (10-75μM) did not enhance the genotoxic and mutagenic activity of these mutagens under the test conditions applied. FA alone and in combination with MNU or MMS did not affect the expression (mRNA level) of the gene of the O(6)-methylguanine-DNA methyltransferase (MGMT) in A549 cells. The results of these experiments do not support the assumption that low FA concentrations might interfere with the repair of DNA damage induced by other mutagens.

  19. Interpreting satellite column observations of formaldehyde over tropical South America.

    Science.gov (United States)

    Palmer, Paul I; Barkley, Michael P; Kurosu, Thomas P; Lewis, Alastair C; Saxton, Julie E; Chance, Kelly; Gatti, Luciana V

    2007-07-15

    Space-borne column measurements of formaldehyde (HCHO), a high-yield oxidation product of volatile organic compounds (VOCs), represent important constraints for quantifying net regional fluxes of VOCs. Here, we interpret observed distributions of HCHO columns from the Global Ozone Monitoring Experiment (GOME) over tropical South America during 1997-2001. We present the first comparison of year-long in situ isoprene concentrations and fire-free GOME HCHO columns over a tropical ecosystem. GOME HCHO columns and in situ isoprene concentrations are elevated in the wet and dry seasons, with the highest values in the dry season. Previous analysis of the in situ data highlighted the possible role of drought in determining the elevated concentrations during the dry season, inferring the potential of HCHO columns to provide regional-scale constraints for estimating the role of drought on isoprene emissions. The agreement between the observed annual cycles of GOME HCHO columns and Along-Track Scanning Radiometer firecount data over the Amazon basin (correlations typically greater than 0.75 for a particular year) illustrates the potential of HCHO column to provide quantitative information about biomass burning emissions.

  20. Uptake of gaseous formaldehyde onto soil surfaces: a coated-wall flow tube study

    Science.gov (United States)

    Li, Guo; Su, Hang; Li, Xin; Meusel, Hannah; Kuhn, Uwe; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2015-04-01

    Gaseous formaldehyde (HCHO) is an important intermediate molecule and source of HO2 radicals. However, discrepancies exist between model simulated and observed HCHO concentrations, suggesting missing sources or sinks in the HCHO budget. Multiphase processes on the surface of soil and airborne soil-derived particles have been suggested as an important mechanism for the production/removal of atmospheric trace gases and aerosols. In this work, the uptake of gaseous HCHO on soil surfaces were investigated through coated-wall flow tube experiments with HCHO concentration ranging from 10 to 40 ppbv. The results show that the adsorption of HCHO occurred on soil surfaces, and the uptake coefficient dropped gradually (i.e., by a factor of 5 after 1 hour) as the reactive surface sites were consumed. The HCHO uptake coefficient was found to be affected by the relative humidity (RH), decreasing from (2.4 ± 0.5) × 10-4 at 0% RH to (3.0 ± 0.08) × 10-5 at 70% RH, due to competition of water molecule absorption on the soil surface. A release of HCHO from reacted soil was also detected by applying zero air, suggesting the nature of reversible physical absorption and the existence of an equilibrium at the soil-gas interface. It implies that soil could be either a source or a sink for HCHO, depending on the ambient HCHO concentration. We also develop a Matlab program to calculate the uptake coefficient under laminar flow conditions based on the Cooney-Kim-Davis method.