WorldWideScience

Sample records for memory polymer micro-actuators

  1. Micro-actuators; Microactionneurs

    Energy Technology Data Exchange (ETDEWEB)

    Ballandras, S.; Gagnepain, J.J. [Laboratoire de Physique et Metrologie des Oscillateurs du Centre National de la Recherche Scientifique (CNRS), 25 - Besancon (France); Froelicher, M. [Centre Technique de l`Industrie Horlogere, 25 - Besancon (France); Lepaul, G. [Laboratoire de Conception Systematique des Produits, Institut Polytechnique de Sevanans, 25 - Besancon (France); Minotti, P. [Laboratoire de Mecanique Appliquee, Universite de Franche-Comte,associe au CNRS, 25 - Besancon (France)

    1992-03-01

    The new mechanical technologies developed by the electronic industry has permitted the extreme miniaturization of mechanical devices which has led to the manufacturing of micro-actuators and micro-motors of a millimetric overall size but with internal elementary parts of micrometric size. The movement inside these systems uses different kind of forces: electrostatic, piezoelectric, magnetostrictive, superconductive etc.. The principal material used is the silicon which can fully integrate both the mechanical and electronic functions. The realization of a 2 or 3 dimensions structure requires a chemical or ionic machining and the use of composite materials with different combinations of silicon, nitrides, silica or poly-silicon for the anisotropic and selective removal of matter. The reduction of size changes the mechanical properties of materials and the response time and power required to obtain the motion. This chapter describes the main types of micro-actuators and their functioning principles: electrostatic motors (linear and rotative), piezoelectric motors (stationary waves and progressive waves motors, mode conversion and multi-modes motors, hybrid transducer motors), magnetostrictive and levitation actuators, electromagnetic motors (clock-type motors and electromagnetic actuators), thermal actuators (dilatation-type, thermodynamic motors, shape memory alloys-type). (J.S.) 90 refs.

  2. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  3. Levitating Micro-Actuators: A Review

    Directory of Open Access Journals (Sweden)

    Kirill V. Poletkin

    2018-04-01

    Full Text Available Through remote forces, levitating micro-actuators completely eliminate mechanical attachment between the stationary and moving parts of a micro-actuator, thus providing a fundamental solution to overcoming the domination of friction over inertial forces at the micro-scale. Eliminating the usual mechanical constraints promises micro-actuators with increased operational capabilities and low dissipation energy. Further reduction of friction and hence dissipation by means of vacuum leads to dramatic increases of performance when compared to mechanically tethered counterparts. In order to efficiently employ the benefits provided by levitation, micro-actuators are classified according to their physical principles as well as by their combinations. Different operating principles, structures, materials and fabrication methods are considered. A detailed analysis of the significant achievements in the technology of micro-optics, micro-magnets and micro-coil fabrication, along with the development of new magnetic materials during recent decades, which has driven the creation of new application domains for levitating micro-actuators is performed.

  4. Shape memory polymer medical device

    Science.gov (United States)

    Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  5. Optical nano and micro actuator technology

    CERN Document Server

    Knopf, George K

    2012-01-01

    In Optical Nano and Micro Actuator Technology, leading engineers, material scientists, chemists, physicists, laser scientists, and manufacturing specialists offer an in-depth, wide-ranging look at the fundamental and unique characteristics of light-driven optical actuators. They discuss how light can initiate physical movement and control a variety of mechanisms that perform mechanical work at the micro- and nanoscale. The book begins with the scientific background necessary for understanding light-driven systems, discussing the nature of light and the interaction between light and NEMS/MEMS d

  6. Biomedical Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    SHEN Xue-lin

    2017-07-01

    Full Text Available Shape memory polymers(SMPs are a class of functional "smart" materials that have shown bright prospects in the area of biomedical applications. The novel smart materials with multifunction of biodegradability and biocompatibility can be designed based on their general principle, composition and structure. In this review, the latest process of three typical biodegradable SMPs(poly(lactide acide, poly(ε-caprolactone, polyurethane was summarized. These three SMPs were classified in different structures and discussed, and shape-memory mechanism, recovery rate and fixed rate, response speed was analysed in detail, also, some biomedical applications were presented. Finally, the future development and applications of SMPs are prospected: two-way SMPs and body temperature induced SMPs will be the focus attension by researchers.

  7. Surface shape memory in polymers

    Science.gov (United States)

    Mather, Patrick

    2012-02-01

    Many crosslinked polymers exhibit a shape memory effect wherein a permanent shape can be prescribed during crosslinking and arbitrary temporary shapes may be set through network chain immobilization. Researchers have extensively investigated such shape memory polymers in bulk form (bars, films, foams), revealing a multitude of approaches. Applications abound for such materials and a significant fraction of the studies in this area concern application-specific characterization. Recently, we have turned our attention to surface shape memory in polymers as a means to miniaturization of the effect, largely motivated to study the interaction of biological cells with shape memory polymers. In this presentation, attention will be given to several approaches we have taken to prepare and study surface shape memory phenomenon. First, a reversible embossing study involving a glassy, crosslinked shape memory material will be presented. Here, the permanent shape was flat while the temporary state consisted of embossed parallel groves. Further the fixing mechanism was vitrification, with Tg adjusted to accommodate experiments with cells. We observed that the orientation and spreading of adherent cells could be triggered to change by the topographical switch from grooved to flat. Second, a functionally graded shape memory polymer will be presented, the grading being a variation in glass transition temperature in one direction along the length of films. Characterization of the shape fixing and recovery of such films utilized an indentation technique that, along with polarizing microscopy, allowed visualization of stress distribution in proximity to the indentations. Finally, very recent research concerning shape memory induced wrinkle formation on polymer surfaces will be presented. A transformation from smooth to wrinkled surfaces at physiological temperatures has been observed to have a dramatic effect on the behavior of adherent cells. A look to the future in research and

  8. Shape-Memory Polymer Composites

    Science.gov (United States)

    Madbouly, Samy A.; Lendlein, Andreas

    The development of shape-memory polymer composites (SMPCs) enables high recovery stress levels as well as novel functions such as electrical conductivity, magnetism, and biofunctionality. In this review chapter the substantial enhancement in mechanical properties of shape-memory polymers (SMPs) by incorporating small amounts of stiff fillers will be highlighted exemplarily for clay and polyhedral oligomeric silsesquioxanes (POSS). Three different functions resulting from adding functional fillers to SMP-matrices will be introduced and discussed: magnetic SMPCs with different types of magnetic nanoparticles, conductive SMPCs based on carbon nanotubes (CNTs), carbon black (CB), short carbon fiber (SCF), and biofunctional SMPCs containing hydroxyapatite (HA). Indirect induction of the shape-memory effect (SME) was realized for magnetic and conductive SMPCs either by exposure to an alternating magnetic field or by application of electrical current. Major challenges in design and fundamental understanding of polymer composites are the complexity of the composite structure, and the relationship between structural parameters and properties/functions, which is essential for tailoring SMPCs for specific applications. Therefore the novel functions and enhanced properties of SMPCs will be described considering the micro-/nanostructural parameters, such as dimension, shape, distribution, volume fraction, and alignment of fillers as well as interfacial interaction between the polymer matrix and dispersed fillers. Finally, an outlook is given describing the future challenges of this exciting research field as well as potential applications including automotive, aerospace, sensors, and biomedical applications.

  9. Post polymerization cure shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  10. Post polymerization cure shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  11. Shape memory polymer actuator and catheter

    Science.gov (United States)

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2004-05-25

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  12. Shape memory polymer actuator and catheter

    Energy Technology Data Exchange (ETDEWEB)

    Maitland, Duncan J. (Pleasant Hill, CA); Lee, Abraham P. (Walnut Creek, CA); Schumann, Daniel L. (Concord, CA); Matthews, Dennis L. (Moss Beach, CA); Decker, Derek E. (Byron, CA); Jungreis, Charles A. (Pittsburgh, PA)

    2007-11-06

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  13. Nanoparticle Netpoints for Shape-Memory Polymers

    KAUST Repository

    Agarwal, Praveen

    2011-08-02

    Forget-me-not: Nanoparticle fillers in shape-memory polymers usually improve mechanical properties at the expense of shape-memory performance. A new approach overcomes these drawbacks by cross-linking the functionalized poly(ethylene glycol) tethers on silica nanoparticles (see picture). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biodegradable Shape Memory Polymers in Medicine.

    Science.gov (United States)

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L

    2017-11-01

    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hybrid microcircuit metallization system for the SLL micro actuator

    International Nuclear Information System (INIS)

    Hampy, R.E.; Knauss, G.L.; Komarek, E.E.; Kramer, D.K.; Villaueva, J.

    1976-03-01

    A thin film technique developed for the SLL Micro Actuator in which both gold and aluminum can be incorporated on sapphire or fine grained alumina substrates in a two-level metallization system is described. Tungsten is used as a lateral transition metal permitting electrical contact between the gold and aluminum without the two metals coming in physical contact. Silicon dioxide serves as an insulator between the tungsten and aluminum for crossover purposes, and vias through the silicon dioxide permit interconnections where desired. Tungsten-gold is the first level conductor except at crossovers where tungsten only is used and aluminum is the second level conductor. Sheet resistances of the two levels can be as low as 0.01 ohm/square. Line widths and spaces as small as 0.025 mm can be attained. A second layer of silicon dioxide is deposited over the metallization and opened for all gold and aluminum bonding areas. The metallization system permits effective interconnection of a mixture of devices having both gold and aluminum terminations without creating undesirable gold-aluminum interfaces. Processing temperatures up to 400 0 C can be tolerated for short times without effect on bondability, conductor, and insulator characteristics, thus permitting silicon-gold eutectic die attachment, component soldering, and higher temperatures during gold lead bonding. Tests conducted on special test pattern circuits indicate good stability over the temperature range -55 to +150 0 C. Aging studies indicate no degradation in characteristics in tests of 500 h duration at 150 0 C

  16. Dynamic properties of a metal photo-thermal micro-actuator.

    Science.gov (United States)

    Shi, B; Zhang, H J; Wang, B; Yi, F T; Jiang, J Z; Zhang, D X

    2015-02-20

    This work presents the design, modeling, simulation, and characterization of a metal bent-beam photo-thermal micro-actuator. The mechanism of actuation is based on the thermal expansion of the micro-actuator which is irradiated by a laser, achieving noncontact control of the power supply. Models for micro-actuators were established and finite-element simulations were carried out to investigate the effects of various parameters on actuation properties. It is found that the thermal expansion coefficient, thermal conductivity, and the geometry size largely affected actuation behavior whereas heat capacity, density, and Young's modulus did not. Experiments demonstrated the dynamic properties of a Ni micro-actuator fabricated via LIGA technology with 1100/30/100 μm (long/wide/thick) arms. The tip displacement of the micro-actuator could achieve up to 42 μm driven by a laser beam (1064 nm wavelength, 1.2 W power, and a driving frequency of 1 HZ). It is found that the tip displacement decreases with increasing laser driving frequency. For 8 Hz driving frequency, 17 μm (peak-valley value) can be still reached, which is large enough for the application as micro-electro-mechanical systems. Metal photo-thermal micro actuators have advantages such as large displacement, simple structure, and large temperature tolerance, and therefore they will be promising in the fields of micro/nanotechnology.

  17. Polymer Ferroelectric Memory for Flexible Electronics

    KAUST Repository

    Khan, Mohd Adnan

    2013-11-01

    With the projected growth of the flexible and plastic electronics industry, there is renewed interest in the research community to develop high performance all-polymeric memory which will be an essential component of any electronic circuit. Some of the efforts in polymer memories are based on different mechanisms such as filamentary conduction, charge trapping effects, dipole alignment, and reduction-oxidation to name a few. Among these the leading candidate are those based on the mechanism of ferroelectricity. Polymer ferroelectric memory can be used in niche applications like smart cards, RFID tags, sensors etc. This dissertation will focus on novel material and device engineering to fabricate high performance low temperature polymeric ferroelectric memory for flexible electronics. We address and find solutions to some fundamental problems affecting all polymer ferroelectric memory like high coercive fields, fatigue and thermal stability issues, poor breakdown strength and poor p-type hole mobilities. Some of the strategies adopted in this dissertation are: Use of different flexible substrates, electrode engineering to improve charge injection and fatigue properties of ferroelectric polymers, large area ink jet printing of ferroelectric memory devices, use of polymer blends to improve insulating properties of ferroelectric polymers and use of oxide semiconductors to fabricate high mobility p-type ferroelectric memory. During the course of this dissertation we have fabricated: the first all-polymer ferroelectric capacitors with solvent modified highly conducting polymeric poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) [PEDOT:PSS] electrodes on plastic substrates with performance as good as devices with metallic Platinum-Gold electrodes on silicon substrates; the first all-polymer high performance ferroelectric memory on banknotes for security applications; novel ferroelectric capacitors based on blends of ferroelectric poly(vinylidene fluoride

  18. Rapid manufacture of monolithic micro-actuated forceps inspired by echinoderm pedicellariae.

    Science.gov (United States)

    Leigh, S J; Bowen, J; Purssell, C P; Covington, J A; Billson, D R; Hutchins, D A

    2012-12-01

    The concept of biomimetics and bioinspiration has been used to enhance the function of materials and devices in fields ranging from healthcare to renewable energy. By developing advanced design and manufacturing processes, researchers are rapidly accelerating their ability to mimic natural systems. In this paper we show how micro-actuated forceps inspired by echinoderm pedicellarie have been produced using the rapid manufacturing technology of micro-stereolithography. The manufactured monolithic devices are composed of sets of jaws on the surface of thin polymer resin membranes, which serve as musculature for the jaws. The membranes are suspended above a pneumatic chamber with the jaws opened and closed through pneumatic pressure changes exerted by a simple syringe. The forceps can be used for tasks such as grasping of microparticles. Furthermore, when an object is placed in the centre of the membrane, the membrane flexes and the jaws of the device close and grasp the object in a responsive manner. When uncured liquid photopolymer is used to actuate the devices hydraulically instead of pneumatically, the devices exhibit self-healing behaviour, sealing the damaged regions and maintaining hydraulic integrity. The manufactured devices present exciting possibilities in fields such as micromanipulation and micro-robotics for healthcare.

  19. Rapid manufacture of monolithic micro-actuated forceps inspired by echinoderm pedicellariae

    International Nuclear Information System (INIS)

    Leigh, S J; Purssell, C P; Covington, J A; Billson, D R; Hutchins, D A; Bowen, J

    2012-01-01

    The concept of biomimetics and bioinspiration has been used to enhance the function of materials and devices in fields ranging from healthcare to renewable energy. By developing advanced design and manufacturing processes, researchers are rapidly accelerating their ability to mimic natural systems. In this paper we show how micro-actuated forceps inspired by echinoderm pedicellarie have been produced using the rapid manufacturing technology of micro-stereolithography. The manufactured monolithic devices are composed of sets of jaws on the surface of thin polymer resin membranes, which serve as musculature for the jaws. The membranes are suspended above a pneumatic chamber with the jaws opened and closed through pneumatic pressure changes exerted by a simple syringe. The forceps can be used for tasks such as grasping of microparticles. Furthermore, when an object is placed in the centre of the membrane, the membrane flexes and the jaws of the device close and grasp the object in a responsive manner. When uncured liquid photopolymer is used to actuate the devices hydraulically instead of pneumatically, the devices exhibit self-healing behaviour, sealing the damaged regions and maintaining hydraulic integrity. The manufactured devices present exciting possibilities in fields such as micromanipulation and micro-robotics for healthcare. (communication)

  20. Multilevel information storage in ferroelectric polymer memories

    NARCIS (Netherlands)

    Tripathi, A.K.; Breemen, A.J.J.M. van; Shen, J.; Gao, Q.; Ivan, M.G.; Reimann, K.; Meinders, E.R.; Gelinck, G.H.

    2011-01-01

    Multibit memory devices based on the ferroelectric copolymer P(VDF-TrFE) (poly-(vinylidenefluoride-trifluoroethylene)) are presented. Multilevel microstructures are fabricated by thermal imprinting of spin-coated ferroelectric polymer film using a rigid Si template. Multibit storage in capacitors

  1. Temperature and electrical memory of polymer fibers

    International Nuclear Information System (INIS)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-01-01

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities

  2. Modeling the shape memory effect of shape memory polymer

    Science.gov (United States)

    Zhou, Bo; Liu, Yanju; Wang, Zhenqing; Leng, Jin-Song

    2009-07-01

    Dynamic mechanical analysis (DMA) tests are conducted on the styrene-based shape memory polymer (SMP) to investigate its state transition behaviors. Tensile tests at various constant temperatures are carried out to reveal the stressstrain- temperature relationship of the styrene-based SMP. A new mechanical constitutive equation is developed to describe the stress-strain-temperature relationship of the styrene-based SMP. Numerical calculations illustrate the proposed theory well describes the thermo-mechanical cycle of shape memory of styrene-based SMP, such as deformation at high temperature, shape fixity, unloading at low temperature and shape recovery.

  3. Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer

    International Nuclear Information System (INIS)

    Chen, Jianguo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-01-01

    There are various applications for shape memory polymer (SMP) in the smart materials and structures field due to its large recoverable strain and controllable driving method. The mechanical shape memory deformation mechanism is so obscure that many samples and test schemes have to be tried in order to verify a final design proposal for a smart structure system. This paper proposes a simple and very useful method to unambiguously analyze the thermoviscoelastic shape memory behavior of SMP smart structures. First, experiments under different temperature and loading conditions are performed to characterize the large deformation and thermoviscoelastic behavior of epoxy-SMP. Then, a rheological constitutive model, which is composed of a revised standard linear solid (SLS) element and a thermal expansion element, is proposed for epoxy-SMP. The thermomechanical coupling effect and nonlinear viscous flowing rules are considered in the model. Then, the model is used to predict the measured rubbery and time-dependent response of the material, and different thermomechanical loading histories are adopted to verify the shape memory behavior of the model. The results of the calculation agree with experiments satisfactorily. The proposed shape memory model is practical for the design of SMP smart structures. (paper)

  4. Tunable and processable shape memory composites based on degradable polymers

    NARCIS (Netherlands)

    Zhang, Xi; Geven, Mike A.; Grijpma, Dirk W.; Peijs, Ton; Gautrot, Julien E.

    2017-01-01

    Biodegradable shape memory polymers are attractive materials for the design of biomedical scaffolds as they allow deploying implants remotely with minimal intervention, whilst allowing degradation and tissue repair. However, shape memory properties are difficult to design from common degradable

  5. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  6. Simplified formulae to investigate flexural vibration characteristics of piezoelectric tubes in ultrasonic micro-actuators.

    Science.gov (United States)

    Zhang, Hui; Zhang, Shu-Yi; Fan, Li

    2010-03-01

    Based on the Rayleigh energy theory combining with Timoshenko beam model, the flexural vibration characteristics of piezoelectric tubes in ultrasonic micro-actuators are investigated. Additionally, the simplified formulae are derived to study the fundamental flexural resonance frequencies of the piezoelectric tubes with free-free ends and cantilevers. By changing the sizes of the tubes and the mass loads at the free ends, the variations of the flexural resonance frequencies of the piezoelectric tubes and cantilevers are calculated theoretically. To verify accuracy of the simplified formulae, by changing the lengths of the tubes and the mass loads the flexural resonance frequencies of the piezoelectric tube with free-free ends are measured experimentally. The theoretical results agree well with the experimental measurements, which demonstrate that the simplified formulae are accurate and effective for analyzing the flexural vibration characteristics of the piezoelectric tubes in the ultrasonic micro-actuators. 2009 Elsevier B.V. All rights reserved.

  7. Gentle dry etching of P(VDF-TrFE) multilayer micro actuator structures by use of an inductive coupled plasma

    International Nuclear Information System (INIS)

    Edqvist, E; Snis, N; Johansson, S

    2008-01-01

    To fully utilize the actuator properties of poly(vinylidenefluoride) (P(VDF))-based polymers, the electric field has to be rather high and one way to accomplish this, in particular with low voltage drive signals, is to build multilayered structures. This paper focuses on how to structure poly(vinylidenefluoride-trifluoroethylene) P(VDF-TrFE) by presenting an etch method to create multilayered miniaturized actuators, with intermediate aluminium electrodes. To create inter-connect areas for the multilayer electrodes, a modified Bosch process in an inductive couple plasma (ICP) etcher is used to remove all P(VDF-TrFE) not covered by the electrodes. Since each electrode mask is slightly different from the others, the result is a staircase-like inter-electrode contact area that is connected from above using a conductive adhesive. The developed ICP etch results in high selective etching and a good agreement between theoretical and measured capacitance values. The manufactured cantilevers, consisting of a multilayer on top of a flexible printed circuit (FPC) board, were tested and the resonant stroke was confirmed to agree with expected values. The successful establishment of interlayer connections between the electrodes open up the possibility for batch fabrication of cheap low voltage micro actuators built on a standard substrate used in millions of commercial products

  8. Photopolymerized Thiol-Ene Systems as Shape Memory Polymers

    Science.gov (United States)

    Nair, Devatha P.; Cramer, Neil B.; Scott, Timothy F.; Bowman, Christopher N.; Shandas, Robin

    2010-01-01

    In this study we introduce the use of thiol-ene photopolymers as shape memory polymer systems. The thiol-ene polymer networks are compared to a commonly utilized acrylic shape memory polymer and shown to have significantly improved properties for two different thiol-ene based polymer formulations. Using thermomechanical and mechanical analysis, we demonstrate that thiol-ene based shape memory polymer systems have comparable thermomechanical properties while also exhibiting a number of advantageous properties due to the thiol-ene polymerization mechanism which results in the formation of a homogenous polymer network with low shrinkage stress and negligible oxygen inhibition. The resulting thiol-ene shape memory polymer systems are tough and flexible as compared to the acrylic counterparts. The polymers evaluated in this study were engineered to have a glass transition temperature between 30 and 40 °C, exhibited free strain recovery of greater than 96% and constrained stress recovery of 100%. The thiol-ene polymers exhibited excellent shape fixity and a rapid and distinct shape memory actuation response. PMID:21072253

  9. Metal complex modified azo polymers for multilevel organic memories

    Science.gov (United States)

    Ma, Yong; Chen, Hong-Xia; Zhou, Feng; Li, Hua; Dong, Huilong; Li, You-Yong; Hu, Zhi-Jun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-04-01

    Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage.Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00871a

  10. Development of Morphing Structures for Aircraft Using Shape Memory Polymers

    National Research Council Canada - National Science Library

    Khan, Fazeel J

    2008-01-01

    ...), aerospace structures. In particular, shape memory polymers (SMP) in filled and unfilled form have been investigated with particular emphasis on the recovery time and force as the materials undergo transformation...

  11. Ag-In transient liquid phase bonding for high temperature stainless steel micro actuators

    OpenAIRE

    Andersson, Martin

    2013-01-01

    A stainless steel, high temperature, phase change micro actuator has been demonstrated using the solid-liquid phase transition of mannitol at 168°C and In-Ag transient liquid phase diffusion bonding. Joints created with this bonding technique can sustain temperatures up to 695°C, while being bonded at only 180°C, and have thicknesses between 1.4 to 6.0 μm. Physical vapour deposition, inkjet printing and electroplating have been evaluated as deposition methods for bond layers. For actuation, c...

  12. Electrostatic micro-actuator with a pre-charged series capacitor: modeling, design, and demonstration

    International Nuclear Information System (INIS)

    Yang, Hyun-Ho; Han, Chang-Hoon; Lee, Jeong Oen; Yoon, Jun-Bo

    2014-01-01

    As a powerful method to reduce actuation voltage in an electrostatic micro-actuator, we propose and investigate an electrostatic micro-actuator with a pre-charged series capacitor. In contrast to a conventional electrostatic actuator, the injected pre-charges into the series capacitor can freely modulate the pull-in voltage of the proposed actuator even after the completion of fabrication. The static characteristics of the proposed actuator were investigated by first developing analytical models based on a parallel-plate capacitor model. We then successfully designed and demonstrated a micro-switch with a pre-charged series capacitor. The pull-in voltage of the fabricated micro-switch was reduced from 65.4 to 0.6 V when pre-charged with 46.3 V. The on-resistance of the fabricated micro-switch was almost the same as the initial one, even when the device was pre-charged, which was demonstrated for the first time. All results from the analytical models, finite element method simulations, and measurements were in good agreement with deviations of less than 10%. This work can be favorably adapted to electrostatic micro-switches which need a low actuation voltage without noticeable degradation of performance. (paper)

  13. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  14. Shape memory polymer foams for endovascular therapies

    Science.gov (United States)

    Wilson, Thomas S [Castro Valley, CA; Maitland, Duncan J [Pleasant Hill, CA

    2012-03-13

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  15. Shape memory polymer foams for endovascular therapies

    Science.gov (United States)

    Wilson, Thomas S.; Maitland, Duncan J.

    2015-05-26

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  16. Shape-memory polymer foam device for treating aneurysms

    Science.gov (United States)

    Ortega, Jason M.; Benett, William J.; Small, Ward; Wilson, Thomas S.; Maitland, Duncan J; Hartman, Jonathan

    2017-05-30

    A system for treating an aneurysm in a blood vessel or vein, wherein the aneurysm has a dome, an interior, and a neck. The system includes a shape memory polymer foam in the interior of the aneurysm between the dome and the neck. The shape memory polymer foam has pores that include a first multiplicity of pores having a first pore size and a second multiplicity of pores having a second pore size. The second pore size is larger than said first pore size. The first multiplicity of pores are located in the neck of the aneurysm. The second multiplicity of pores are located in the dome of the aneurysm.

  17. Characterization of Additively Manufactured Shape Memory Polymer Composites (Preprint)

    Science.gov (United States)

    2017-10-17

    Report Distribution Statement A. Approved for public release: distribution unlimited. (STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS...material was filled with milled carbon fiber and milled glass in a ratio that allowed for the materials to be electrostatic discharge (ESD) compliant...deposition modeling, shape memory polymer, fixity, recovery 1 Distribution A. Approved for public release (PA): distribution unlimited. 1

  18. Fabrication of 3D electro-thermal micro actuators in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Li, Qichao; Shan, Chao; Yang, Qing; Chen, Feng; Bian, Hao; Hou, Xun

    2017-02-01

    This paper demonstrates a novel electro-thermal micro actuator's design, fabrication and device tests which combine microfluidic technology and microsolidics process. A three-dimensional solenoid microchannel with high aspect ratio is fabricated inside the silica glass by an improved femtosecond laser wet etch (FLWE) technology, and the diameter of the spiral coil is only 200 μm. Molten alloy (Bi/In/Sn/Pb) with high melting point is injected into the three-dimensional solenoid microchannel inside the silica glass , then it solidifys and forms an electro-thermal micro actuator. The device is capable of achieving precise temperature control and quick response, and can also be easily integrated into MEMS, sensors and `lab on a chip' (LOC) platform inside the fused silica substrate.

  19. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species

    International Nuclear Information System (INIS)

    Fulcrand, R; Jugieu, D; Escriba, C; Bancaud, A; Bourrier, D; Boukabache, A; Gué, A M

    2009-01-01

    A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules

  20. Magnetic nanoparticle-loaded alginate beads for local micro-actuation of in vitro tissue constructs.

    Science.gov (United States)

    Alshehri, Awatef M; Wilson, Otto C; Dahal, Bishnu; Philip, John; Luo, Xiaolong; Raub, Christopher B

    2017-11-01

    Magnetic nanoparticles (MNPs) self-align and transduce magnetic force, two properties which lead to promising applications in cell and tissue engineering. However, the toxicity of MNPs to cells which uptake them is a major impediment to applications in engineered tissue constructs. To address this problem, MNPs were embedded in millimeter-scale alginate beads, coated with glutaraldehyde cross-linked chitosan, and loaded in acellular and MDA-MB-231 cancer cell-seeded collagen hydrogels, providing local micro-actuation under an external magnetic field. Brightfield microscopy was used to assess nanoparticle diffusion from the bead. Phase contrast microscopy and digital image correlation were used to track collagen matrix displacement and estimate intratissue strain under magnetic actuation. Coating the magnetic alginate beads with glutaraldehyde-chitosan prevents bulk diffusion of nanoparticles into the surrounding microenvironment. Further, the beads exert force on the surrounding collagen gel and cells, resulting in intratissue strains of 0-10% tunable with bead dimensions, collagen density, and distance from the bead. Cells seeded adjacent to the embedded beads are subjected to strain gradients without loss of cell viability over two days culture. This study describes a simple way to fabricate crosslinked magnetic alginate beads to load in a collagen tissue construct without direct exposure of the construct to nanoparticles. The findings are significant to in vitro studies of mechanobiology in enabling precise control over dynamic mechanical loading of tissue constructs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Biomedical Applications of Thermally Activated Shape Memory Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  2. Fabrication of nylon/fullerene polymer memory

    Science.gov (United States)

    Jayan, Manuvel; Davis, Rosemary; Karthik, M. P.; Devika, K.; Kumar, G. Vijay; Sriraj, B.; Predeep, P.

    2017-06-01

    Two terminal Organic memories in passive matrix array form with device structure, Al/Nylon/ (Nylon+C60)/Nylon/ Al are fabricated. The current-voltage measurements showed hysteresis and the devices are thoroughly characterized for write-read-erase-read cycles. The control over the dispersion concentration, capacity of fullerene to readily accept electrons and the constant diameter of fullerene made possible uniform device fabrication with reproducible results. Scanning electron micrographs indicated that the device thickness remained uniform in the range of 19 micrometers.

  3. Redox- and glucose-induced shape-memory polymers.

    Science.gov (United States)

    Dong, Zhen-Qiang; Cao, Ya; Yuan, Qi-Juan; Wang, Yi-Fu; Li, Jian-Hu; Li, Bang-Jing; Zhang, Sheng

    2013-05-27

    A novel redox-induced shape-memory polymer (SMP) is prepared by crosslinking β-cyclodextrin modified chitosan (β-CD-CS) and ferrocene modified branched ethylene imine polymer (Fc-PEI). The resulting β-CD-CS/Fc-PEI contains two crosslinks: reversible redox-sensitive β-CD-Fc inclusion complexes serving as reversible phases, and covalent crosslinks serving as fixing phases. It is shown that this material can be processed into temporary shapes as needed in the reduced state and recovers its initial shape after oxidation. The recovery ratio and the fixity ratio are both above 70%. Furthermore, after entrapping glucose oxidase (GOD) in the system, the material shows a shape memory effect in response to glucose. The recovery ratio and the fixity ratio are also above 70%. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thermomechanical constitutive modeling of polyurethane-series shape memory polymer

    Energy Technology Data Exchange (ETDEWEB)

    Tobushi, H.; Ito, N.; Takata, K. [Aichi Inst. of Technol., Nagoya (Japan). Dept. of Mech. Eng.; Hayashi, S. [Nagoya Research and Development Center, Mitsubishi Heavy Industries, Ltd., Nagoya (Japan)

    2000-07-01

    In order to describe the thermomechanical properties in shape memory polymer of polyurethane series, a thermomechanical constitutive model was developed. In order to describe the variation in mechanical properties due to the glass transition, coefficients in the model were expressed by a single exponential function of temperature. The proposed theory expressed well the thermomechanical properties of the material, such as shape fixity and shape recovery. (orig.)

  5. Shape memory polymers based on uniform aliphatic urethane networks

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  6. Strategic design and fabrication of acrylic shape memory polymers

    Science.gov (United States)

    Park, Ju Hyuk; Kim, Hansu; Ryoun Youn, Jae; Song, Young Seok

    2017-08-01

    Modulation of thermomechanics nature is a critical issue for an optimized use of shape memory polymers (SMPs). In this study, a strategic approach was proposed to control the transition temperature of SMPs. Free radical vinyl polymerization was employed for tailoring and preparing acrylic SMPs. Transition temperatures of the shape memory tri-copolymers were tuned by changing the composition of monomers. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses were carried out to evaluate the chemical structures and compositions of the synthesized SMPs. The thermomechanical properties and shape memory performance of the SMPs were also examined by performing dynamic mechanical thermal analysis. Numerical simulation based on a finite element method provided consistent results with experimental cyclic shape memory tests of the specimens. Transient shape recovery tests were conducted and optical transparence of the samples was identified. We envision that the materials proposed in this study can help develop a new type of shape-memory devices in biomedical and aerospace engineering applications.

  7. Multiple-shape memory polymers from benzoxazine-urethane copolymers

    Science.gov (United States)

    Prathumrat, Peerawat; Tiptipakorn, Sunan; Rimdusit, Sarawut

    2017-06-01

    In this research, multiple-shape memory polymers were prepared from benzoxazine (BA-a) resin and a urethane prepolymer (PU). The effects of BA-a resin content on the thermal, mechanical and multiple-shape memory properties were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, dynamic mechanical analysis, a flexural test and a multiple-shape memory test. The results revealed that the suitable curing conversions of BA-a:PU resin mixtures affect the shape memory behaviors. The BA-a/PU copolymers demonstrated an increase in flexural strength and flexural modulus at various deformation temperatures with an increase in the BA-a mass ratio from 55%-80%, whereas the thermal properties of these binary systems, i.e. glass transition temperature (T g), degradation temperature (T d) and char yield, were also found to increase with an increase in BA-a content. In addition, the two-step bending test was carried out using a universal testing machine to evaluate the multiple-shape memory properties. The results revealed that the BA-a/PU samples exhibited high values of shape fixity (70%-96% for the first temporary shape and 83%-99% for the second temporary shape) and shape recovery (88%-96% for the first temporary shape and 97%-99% for the original shape).

  8. Electronic polymer memory devices-Easy to fabricate, difficult to understand

    International Nuclear Information System (INIS)

    Paul, Shashi; Salaoru, Iulia

    2010-01-01

    There has been a number reports on polymer memory devices for the last one decade. Polymer memory devices are fabricated by depositing a blend (an admixture of organic polymer, small organic molecules and nanoparticles) between two metal electrodes. These devices show two electrical conductance states ('1' and '0') when voltage is applied, thus rendering the structures suitable for data retention. These two states can be viewed as the realisation of memory devices. However, polymer memory devices reported so far suffer from multiple drawbacks that render their industrial implementation premature. There is a large discrepancy in the results reported by different groups. This article attempts to answer some of the questions.

  9. Infrared thermographic analysis of shape memory polymer during cyclic loading

    International Nuclear Information System (INIS)

    Staszczak, Maria; Pieczyska, Elżbieta A; Maj, Michał; Kukla, Dominik; Tobushi, Hisaaki

    2016-01-01

    In this paper we present the effects of thermomechanical couplings occurring in polyurethane shape memory polymer subjected to cyclic tensile loadings conducted at various strain rates. Stress–strain characteristics were elaborated using a quasistatic testing machine, whereas the specimen temperature changes accompanying the deformation process were obtained with an infrared camera. We demonstrate a tight correlation between the mechanical and thermal results within the initial loading stage. The polymer thermomechanical behaviour in four subsequent loading-unloading cycles and the influence of the strain rate on the stress and the related temperature changes were also examined. In the range of elastic deformation the specimen temperature drops below the initial level due to thermoelastic effect whereas at the higher strains the temperature always increased, due to the dissipative deformation mechanisms. The difference in the characteristics of the specimen temperature has been applied to determine a limit of the polymer reversible deformation and analyzed for various strain rates. It was shown that at the higher strain rates higher values of the stress and temperature changes are obtained, which are related to higher values of the polymer yield points. During the cyclic loading a significant difference between the first and the second cycle was observed. The subsequent loading-unloading cycles demonstrated similar sharply shaped stress and temperature profiles and gradually decrease in values. (paper)

  10. Thermomechanical properties of polyurethane shape-memory polymer foam

    Energy Technology Data Exchange (ETDEWEB)

    Tobushi, H.; Okumura, K.; Endo, M. [Aichi Inst. of Tech., Toyota (Japan). Dept. of Mechanical Engineering; Hayashi, S. [Mitsubishi Heavy Industries Ltd., Nagoya (Japan). Nagoya Research and Development Center

    2002-07-01

    The thermomechanical properties of polyurethane-shape memory polymer foam were investigated by the compression tests. The results are summarized as follows. (1) The material contracts uniformly in the axial direction with the ratio of lateral strain to axial strain 0.4 in the early stage but about 0.15 thereafter. (2) The deformation resistance is large at low temperature and at high strain rate. (3) In the case of thermomechanical loading, strain is recovered at temperatures in the vicinity of T{sub g}. The rate of strain recovery is 99%. The rate of strain fixity is 100%. (orig.)

  11. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers

    Science.gov (United States)

    Yu, Kai; Ge, Qi; Qi, H. Jerry

    2014-01-01

    Shape memory polymers are at the forefront of recent materials research. Although the basic concept has been known for decades, recent advances in the research of shape memory polymers demand a unified approach to predict the shape memory performance under different thermo-temporal conditions. Here we report such an approach to predict the shape fixity and free recovery of thermo-rheologically simple shape memory polymers. The results show that the influence of programming conditions to free recovery can be unified by a reduced programming time that uniquely determines shape fixity, which consequently uniquely determines the shape recovery with a reduced recovery time. Furthermore, using the time-temperature superposition principle, shape recoveries under different thermo-temporal conditions can be extracted from the shape recovery under the reduced recovery time. Finally, a shape memory performance map is constructed based on a few simple standard polymer rheology tests to characterize the shape memory performance of the polymer.

  12. Field-effect transistor memories based on ferroelectric polymers

    Science.gov (United States)

    Zhang, Yujia; Wang, Haiyang; Zhang, Lei; Chen, Xiaomeng; Guo, Yu; Sun, Huabin; Li, Yun

    2017-11-01

    Field-effect transistors based on ferroelectrics have attracted intensive interests, because of their non-volatile data retention, rewritability, and non-destructive read-out. In particular, polymeric materials that possess ferroelectric properties are promising for the fabrications of memory devices with high performance, low cost, and large-area manufacturing, by virtue of their good solubility, low-temperature processability, and good chemical stability. In this review, we discuss the material characteristics of ferroelectric polymers, providing an update on the current development of ferroelectric field-effect transistors (Fe-FETs) in non-volatile memory applications. Program supported partially by the NSFC (Nos. 61574074, 61774080), NSFJS (No. BK20170075), and the Open Partnership Joint Projects of NSFC-JSPS Bilateral Joint Research Projects (No. 61511140098).

  13. Thermomechanical behavior of fiber reinforced shape memory polymer composite

    Science.gov (United States)

    Lan, Xin; Liu, Yanju; Leng, Jinsong; Du, Shanyi

    2007-07-01

    Carbon fiber fabric reinforced shape memory polymer composite (SMPC) is studied in this paper. The shape memory polymer (SMP) is a thermoset styrene-based resin. In order to discuss the basic thermomechanical properties of SMPC, the investigation is conducted with the following methods: dynamic mechanical analyzer (DMA), three-point bending test, shape recovery tests and scanning electron microscope (SEM). Results indicate that SMPC exhibits a higher glass transition temperature (T g) and a higher storage modulus than pure SMP. SMPC shows high bending modulus before the glass transition in SMP, while exhibits low bending modulus within the range of glass transition in SMP. Moreover, shape recovery velocity and ratio rise remarkably with the increase of shape recovery temperature, while they increase in a weak trend with the increase of pre-deformation temperature. In addition, electrically conductive SMPC shows favorable recovery performances during the thermomechanical cycles. In the end, under the bending deformation, all the buckled fibers in inner surface break at the same time, which make it regular for the fracture section of buckled fiber tow. However, the cross sections of these buckled fibers are relatively rough and located in 45°C direction along fiber. By contrast, the tensile fibers in outer surface break unorderly, which make it irregular for the fracture section of tensile fiber tow. But the cross sections of these tensile fibers are relatively smooth and vertical to fiber.

  14. Interfacial durability and electrical properties of CNT or ITO/PVDF nanocomposites for self-sensor and micro actuator applications

    International Nuclear Information System (INIS)

    Park, Joung-Man; Gu, Ga-Young; Wang, Zuo-Jia; Kwon, Dong-Jun; DeVries, K. Lawrence

    2013-01-01

    Interfacial durability and electrical properties of CNT (carbon nanotube) or ITO (indium tin oxide) coated PVDF (poly(vinylidene fluoride)) nanocomposites were investigated for self-sensor and micro-actuator applications. The electrical resistivity of nanocomposites and the durability of interfacial adhesion were measured using a four points method during cyclic fatigue loading. Although the CNT/PVDF nanocomposites exhibited lower electrical resistivity due to the inherently low resistivity of CNT, both composite types showed good self-sensing performance. The durability of the adhesion at the interface was also good for both CNT and ITO/PVDF nanocomposites. Static contact angle, surface energy, work of adhesion, and spreading coefficient between either CNT or ITO and PVDF were determined as checks to verify the durability of the interfacial adhesion. The actuation performance of CNT or ITO coated PVDF specimens was determined through measurements of the induced displacement using a laser displacement sensor, while both the frequency and voltage were changed. The displacement of these actuated nanocomposites increased with increasing voltage and decreased with increasing frequency. CNT/PVDF nanocomposites exhibited better performance as self-sensors and micro-actuators than did ITO/PVDF nanocomposites.

  15. Morphological and mechanical analysis of electrospun shape memory polymer fibers

    Energy Technology Data Exchange (ETDEWEB)

    Budun, Sinem [Institute of Pure and Applied Science, Marmara University, 34722 Istanbul (Turkey); İşgören, Erkan [Textile Technology, Technical Education Faculty, Marmara University, 34722 Istanbul (Turkey); Erdem, Ramazan, E-mail: ramazanerdem@akdeniz.edu.tr [Textile Technologies, Serik G-S. Sural Vocational School of Higher Education, Akdeniz University, 07500 Antalya (Turkey); Yüksek, Metin [Textile Engineering, Technology Faculty, Marmara University, 34722 Istanbul (Turkey)

    2016-09-01

    Highlights: • Fiber morphology of PU based shape memory fibers varied especially with polymer concentration and applied voltage. • The smallest diameter (381 ± 165 nm) and almost uniform (without bead) fibers were belonged to the sample Y10K30 with a feeding rate of 1 ml/h and an applied voltage of 30 kV at 24.5 cm distance. • All calculated shape fixity results were above 80% and the best value (92 ± 4%) was obtained for Y10K30. • All gained shape recovery results were determined above 100% and the highest measurement (130 ± 4%) was belonged to Y15K39. • The greatest tensile property was obtained for Y10K30 (14.7 ± 3.2 MPa) in machine direction and for Y10K39 (12.9 ± 0.8 MPa) in transverse direction. Y15K39 (411 ± 24%) and Y20K30 (402 ± 34%) possessed the highest elongation results compared with the other electrospun webs. - Abstract: Shape memory block co-polymer Polyurethane (PU) fibers were fabricated by electrospinning technique. Four different solution concentrations (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%) were prepared by using Tetrahydrofuran (THF)/N,N-dimethylformamide (DMF) (50:50, v/v) as solvents, and three different voltages (30 kV, 35 kV and 38.9 kV) were determined for the electrospinning process. Solution properties were explored in terms of viscosity and electrical conductivity. It was observed that as the polymer concentration increased in the solution, the conductivity declined. Morphological characteristics of the obtained fibers were analyzed through Scanning Electron Microscopy (SEM) measurements. Findings indicated that fiber morphology varied especially with polymer concentration and applied voltage. Obtained fiber diameter ranged from 112 ± 34 nm to 2046 ± 654 nm, respectively. DSC analysis presented that chain orientation of the polymer increased after electrospinning process. Shape fixity and shape recovery calculations were realized. The best shape fixity value (92 ± 4%) was obtained for Y10K30 and the highest shape

  16. Shape memory and actuation behavior of semicrystalline polymer networks

    International Nuclear Information System (INIS)

    Bothe, Martin

    2014-01-01

    Shape memory polymers (SMPs) can change their shape on application of a suitable stimulus. To enable such behavior, a 'programming' procedure fixes a deformation, yielding a stable temporary shape. In thermoresponsive SMPs, subsequent heating triggers entropy-elastic recovery of the initial shape. An additional shape change on cooling, i.e. thermoreversible two-way actuation, can be stimulated by a crystallization phenomenon. In this thesis, cyclic thermomechanical measurements systematically determined (1) the shape memory and (2) the actuation behavior under constant load as well as under stress-free conditions. Chemically cross-linked, star-shaped polyhedral oligomeric silsesquioxane polyurethane (SPOSS-PU) hybrid polymer networks and physically cross-linked poly(ester urethane) (PEU) block copolymers were investigated around the melting and crystallization temperatures of their polyester soft segments. (1) The SPOSS-PUs showed excellent shape fixities and recoverabilities of almost 100% at high cross-linking density, while PEUs exhibited pronounced shape memory properties at increased soft segment content. Furthermore, two-fold programmed SPOSS-PU specimens were able to recover their initial shape in two thermally separated events. Even a neck, which formed during deformation of SPOSS-PUs with high soft segment content, was reversed. (2) In PEUs, globally oriented crystallization on cooling drove expansion of the sample, in particular at high soft segment content and after application of a strong deformation. Melting reversed that orientation; the PEU sample contracted and thereby completed the thermoreversible actuation cycle. Under load, multiple polymorphic phase transitions enabled two successive expansion and contraction steps, while under stress-free conditions various geometric shape changes, including the increase and decrease of PEU sample length and thickness as well as twisting and untwisting could be experimentally witnessed. Such actuation

  17. Shape memory polymers from benzoxazine-modified epoxy

    Science.gov (United States)

    Rimdusit, Sarawut; Lohwerathama, Montha; Hemvichian, Kasinee; Kasemsiri, Pornnapa; Dueramae, Isala

    2013-07-01

    Novel shape memory polymers (SMPs) were prepared from benzoxazine-modified epoxy resin. Specimens consisting of aromatic epoxy (E), aliphatic epoxy (N), Jeffamine D230 (D) and BA-a benzoxazine monomer (B) were evaluated. The mole ratio of D/B was used as a mixed curing agent for an epoxy system with a fixed E/N. The effects of BA-a content on the thermal, mechanical and shape memory properties of epoxy-based shape memory polymers (SMPs) were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), flexural test and shape recovery test. The results revealed that the obtained SMPs exhibited a higher flexural strength and flexural modulus than those of the unmodified epoxy-based SMP at room temperature and at 20 ° C above glass transition temperature (Tg). The presence of 1 mol BA-a as a curing agent provided the specimen with the highest Tg, i.e. about 72 ° C higher than that of epoxy-based SMP cured by Jeffamine D230. All SMP samples needed only a few minutes to fully recover to their original shape. The samples exhibited high shape fixity (98-99%) and shape recovery ratio (90-100%). In addition, the recovery stress values increased with increasing BA-a mole ratio from 20 to 38 kPa, when BA-a up to 1 mol ratio was added. All of the SMP samples exhibited only minimum change in their flexural strength at the end of a 100 recovery cycles test.

  18. Crossbar arrays of nonvolatile, rewritable polymer ferroelectric diode memories on plastic substrates

    NARCIS (Netherlands)

    Breemen, A.J.J.M. van; Steen, J.L. van der; Heck, G. van; Wang, R.; Khiklovskyi, V.; Kemerink, M.; Gelinck, G.H.

    2014-01-01

    In this paper, we demonstrate a scalable and low-cost memory technology using a phase separated blend of a ferroelectric polymer and a semiconducting polymer as data storage medium on thin, flexible polyester foils of only 25μm thickness. By sandwiching this polymer blend film between rows and

  19. An Internally Heated Shape Memory Polymer Dry Adhesive

    Directory of Open Access Journals (Sweden)

    Jeffrey Eisenhaure

    2014-08-01

    Full Text Available A conductive epoxy-based shape memory polymer (SMP is demonstrated using carbon black (CB as a dopant for the purpose of creating an SMP dry adhesive system which can internally generate the heat required for activation. The electrical and mechanical properties of the CB/SMP blends for varying dopant concentrations are characterized. A composite adhesive is created to minimize surface contact resistance to conductive tape acting as electrodes, while maintaining bulk resistivity required for heat generation due to current flow. The final adhesive can function on flat or curved surfaces. As a demonstration, a 25 mm wide by 45 mm long dry adhesive strip is shown to heat evenly from an applied voltage, and can easily hold a mass in excess of 6 kg when bonded to a spherical concave glass surface using light pressure at 75 °C.

  20. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  1. Shape memory polymers: three-dimensional isotropic modeling

    Science.gov (United States)

    Balogun, Olaniyi; Mo, Changki

    2014-04-01

    This paper presents a comprehensive three-dimensional isotropic numerical simulation for a thermo-mechanical constitutive model of shape memory polymers (SMPs). In order to predict the thermo-mechanical behavior of SMPs, a one-dimensional rheological thermo-mechanical constitutive model is adopted, translated into a three-dimensional form and a time discrete form of the three-dimensional model is then presented. Numerical simulation of this model was developed using the UMAT subroutine capabilities of the finite element software ABAQUS. Evolution of the analysis was conducted by making use of the backward difference scheme, which was applied to all quantities within the model, including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermo-mechanical properties of the material which include shape fixity, shape recovery, and recovery stress. Finally, a prediction for the transverse and shear directions of the material is presented.

  2. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system

    Science.gov (United States)

    Rahman, Md. Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  3. Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer

    International Nuclear Information System (INIS)

    Tobushi, Hisaaki; Ejiri, Yoshihiro; Hayashi, Syunichi; Hoshio, Kazumasa

    2008-01-01

    In shape-memory polymers, large strain can be fixed at a low temperature and thereafter recovered at a high temperature. If the shape-memory polymer is held at a high temperature for a long time, the irrecoverable strain can attain a new intermediate shape between the shape under the maximum stress and the primary shape. Irrecoverable strain control can be applied to the fabrication of a shape-memory polymer element with a complex shape in a simple method. In the present study, the influence of the strain-holding conditions on the shape recovery and the irrecoverable strain control in polyurethane shape-memory polymer is investigated by tension test of a film and three-point bending test of a sheet. The higher the shape-holding temperature and the longer the shape-holding time, the higher the irrecoverable strain rate. The equation that expresses the characteristics of the irrecoverable strain control is formulated

  4. Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer

    Directory of Open Access Journals (Sweden)

    Hisaaki Tobushi et al

    2008-01-01

    Full Text Available In shape-memory polymers, large strain can be fixed at a low temperature and thereafter recovered at a high temperature. If the shape-memory polymer is held at a high temperature for a long time, the irrecoverable strain can attain a new intermediate shape between the shape under the maximum stress and the primary shape. Irrecoverable strain control can be applied to the fabrication of a shape-memory polymer element with a complex shape in a simple method. In the present study, the influence of the strain-holding conditions on the shape recovery and the irrecoverable strain control in polyurethane shape-memory polymer is investigated by tension test of a film and three-point bending test of a sheet. The higher the shape-holding temperature and the longer the shape-holding time, the higher the irrecoverable strain rate. The equation that expresses the characteristics of the irrecoverable strain control is formulated.

  5. Interventional Application of Shape Memory Polymer Foam Final Report CRADA No. TC-02067-03

    Energy Technology Data Exchange (ETDEWEB)

    Maitland, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Metzger, M. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Sierra Interventions, LLC, to develop shape memory polymer foam devices for treating hemorrhagic stroke.

  6. Component assembly with shape memory polymer fastener for microrobots

    International Nuclear Information System (INIS)

    Kim, Ji-Suk; Lee, Dae-Young; Koh, Je-Sung; Jung, Gwang-Pil; Cho, Kyu-Jin

    2014-01-01

    Adhesives are generally used for the assembly of microrobots, whereas bolts, screws, or rivets are used for larger robots. Although adhesives are easy to apply, lightweight, and small, they cannot be used for repeated assembly and disassembly of parts. In this paper, we present a novel microfastener composed of a polyurethane-based shape memory polymer (SMP) that is lightweight and small but that is easily detached for disassembly. This was achieved by using the shape recovery and modulus change of the SMP. A sheet of macromolded SMP was laser machined into an I-beam-shaped rivet, and notches were added to the structure to prevent stress concentration. Pull-off tests showed that, as the notch radius increased, the disengagement strength of the rivet fastener decreased and the reusability increased. Through the elastoplastic model, a single SMP rivet was calculated to have maximum disengagement strength of 150 N cm −2 in the elastic range, depending on the notch radius. The fasteners were applied to a jumping microrobot. The legs and body were assembled with ten fasteners, which showed no permanent deformation after impact during jumping movements. The legs were easily replaced with ones of different stiffness by heating the engaged sites to make the fasteners compliant and detachable. The proposed detachable SMP microfasteners are particularly useful for testing the isolated performance of microrobot components to determine the optimal designs for these components. (paper)

  7. Component assembly with shape memory polymer fastener for microrobots

    Science.gov (United States)

    Kim, Ji-Suk; Lee, Dae-Young; Koh, Je-Sung; Jung, Gwang-Pil; Cho, Kyu-Jin

    2014-01-01

    Adhesives are generally used for the assembly of microrobots, whereas bolts, screws, or rivets are used for larger robots. Although adhesives are easy to apply, lightweight, and small, they cannot be used for repeated assembly and disassembly of parts. In this paper, we present a novel microfastener composed of a polyurethane-based shape memory polymer (SMP) that is lightweight and small but that is easily detached for disassembly. This was achieved by using the shape recovery and modulus change of the SMP. A sheet of macromolded SMP was laser machined into an I-beam-shaped rivet, and notches were added to the structure to prevent stress concentration. Pull-off tests showed that, as the notch radius increased, the disengagement strength of the rivet fastener decreased and the reusability increased. Through the elastoplastic model, a single SMP rivet was calculated to have maximum disengagement strength of 150 N cm-2 in the elastic range, depending on the notch radius. The fasteners were applied to a jumping microrobot. The legs and body were assembled with ten fasteners, which showed no permanent deformation after impact during jumping movements. The legs were easily replaced with ones of different stiffness by heating the engaged sites to make the fasteners compliant and detachable. The proposed detachable SMP microfasteners are particularly useful for testing the isolated performance of microrobot components to determine the optimal designs for these components.

  8. Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

    Science.gov (United States)

    Ortega, J.M.; Hartman, J.; Rodriguez, J.N.; Maitland, D.J.

    2013-01-01

    Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam. PMID:23329002

  9. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices.

    Science.gov (United States)

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    The formation of 3D objects composed of shape memory polymers for flexible electronics is described. Layer-by-layer photopolymerization of methacrylated semicrystalline molten macromonomers by a 3D digital light processing printer enables rapid fabrication of complex objects and imparts shape memory functionality for electrical circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    Science.gov (United States)

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  11. Design and Analysis of a Fibre-Shaped Micro-Actuator for Robotic Gripping

    Directory of Open Access Journals (Sweden)

    Alberto Borboni

    2013-03-01

    Full Text Available A prototype of an automatic micropositioning system was developed. This prototype uses a shape memory alloy (SMA actuator, a dedicated PI controller and a piece of software to command a desired motion profile for the actuator. The proposed micropositioning system is characterized by a 4 mm stroke, a 1 μm resolution and a 70 g nominal force and can be commanded directly from a personal computer and without human retroaction. The closed loop positioning resolution (1 μm is obtained in spite of inaccurate system behaviour during its movement.

  12. Air-stable memory array of bistable rectifying diodes based on ferroelectric-semiconductor polymer blends

    Science.gov (United States)

    Kumar, Manasvi; Sharifi Dehsari, Hamed; Anwar, Saleem; Asadi, Kamal

    2018-03-01

    Organic bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers have emerged as promising candidates for non-volatile information storage for low-cost solution processable electronics. One of the bottlenecks impeding upscaling is stability and reliable operation of the array in air. Here, we present a memory array fabricated with an air-stable amine-based semiconducting polymer. Memory diode fabrication and full electrical characterizations were carried out in atmospheric conditions (23 °C and 45% relative humidity). The memory diodes showed on/off ratios greater than 100 and further exhibited robust and stable performance upon continuous write-read-erase-read cycles. Moreover, we demonstrate a 4-bit memory array that is free from cross-talk with a shelf-life of several months. Demonstration of the stability and reliable air operation further strengthens the feasibility of the resistance switching in ferroelectric memory diodes for low-cost applications.

  13. Programmable and self-demolding microstructured molds fabricated from shape-memory polymers

    International Nuclear Information System (INIS)

    Meier, Tobias; Bur, Julia; Reinhard, Maximilian; Schneider, Marc; Kolew, Alexander; Worgull, Matthias; Hölscher, Hendrik

    2015-01-01

    We introduce shape memory polymers as materials to augment molds with programmable switching between different micro and nanostructures as functional features of the mold and self-demolding properties. These polymer molds can be used for hot embossing (or nanoimprinting) and casting. Furthermore, they enable the replication of nano- and microstructures on curved surfaces as well as embedded structures like on the inside walls of a microfluidic channel. The shape memory polymer molds can be replicated from master molds fabricated by conventional techniques. We tested their durability for microfabrication processes and demonstrated the advantages of shape memory molds for hot embossing and casting by replicating microstructures with high aspect ratios and optical grade surface quality. (paper)

  14. Constitutive model for a stress- and thermal-induced phase transition in a shape memory polymer

    International Nuclear Information System (INIS)

    Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong

    2014-01-01

    Recently, increasing applications of shape memory polymers have pushed forward the development of appropriate constitutive models for smart materials such as the shape memory polymer. During the heating process, the phase transition, which is a continuous time-dependent process, happens in the shape memory polymer, and various individual phases will form at different configuration temperatures. In addition, these phases can generally be divided into two parts: the frozen and active phase (Liu Y et al 2006 Int. J. Plast. 22 279–313). During the heating or cooling process, the strain will be stored or released with the occurring phase transition between these two parts. Therefore, a shape memory effect emerges. In this paper, a new type of model was developed to characterize the variation of the volume fraction in a shape memory polymer during the phase transition. In addition to the temperature variation, the applied stress was also taken as a significant influence factor on the phase transition. Based on the experimental results, an exponential equation was proposed to describe the relationship between the stress and phase transition temperature. For the sake of describing the mechanical behaviors of the shape memory polymer, a three-dimensional constitutive model was established. Also, the storage strain, which was the key factor of the shape memory effect, was also discussed in detail. Similar to previous works, we first explored the effect of applied stress on storage strain. Through comparisons with the DMA and the creep experimental results, the rationality and accuracy of the new phase transition and constitutive model were finally verified. (paper)

  15. Influence of strain rates on the mechanical behaviors of shape memory polymer

    International Nuclear Information System (INIS)

    Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong

    2015-01-01

    In the last few decades, shape memory polymers have demonstrated their major advantages of extremely high recovery strain, low density and low cost. Generally, the mechanical behavior of shape memory polymers is strongly dependent on the loading strain rates. Uniaxial tensile experiments were conducted on one kind of typical shape memory polymer (epoxy) at several different temperatures (348 K, 358 K, 368 K and 378 K) and true strain rates (0.25% s −1 , 1.25% s −1 and 2.5% s −1 ). Thus, the influence of strain rate and temperature on the mechanical behavior of epoxy, in particular on the post yield stresses and the strain hardening behavior, were investigated through this experimental study. Based on our previous work Guo (2014 Smart Mater. Struct. 23 105019), a simplified model which can explain the shape memory effect of epoxy was proposed to predict the strain hardening behavior of the shape memory polymer. Based on the suggestion of Rault (1998 J. Non-Cryst. Solids 235–7 737–41), a linear compensation model was introduced to indicate the change in yield stresses with the increase of strain rate and temperature. Finally, the new model predictions for the true strain and stress behavior of epoxy were compared with the experimental results. (paper)

  16. Systematic Development Strategy for Smart Devices Based on Shape-Memory Polymers

    Directory of Open Access Journals (Sweden)

    Andrés Díaz Lantada

    2017-10-01

    Full Text Available Shape-memory polymers are outstanding “smart” materials, which can perform important geometrical changes, when activated by several types of external stimuli, and which can be applied to several emerging engineering fields, from aerospace applications, to the development of biomedical devices. The fact that several shape-memory polymers can be structured in an additive way is an especially noteworthy advantage, as the development of advanced actuators with complex geometries for improved performance can be achieved, if adequate design and manufacturing considerations are taken into consideration. Present study presents a review of challenges and good practices, leading to a straightforward methodology (or integration of strategies, for the development of “smart” actuators based on shape-memory polymers. The combination of computer-aided design, computer-aided engineering and additive manufacturing technologies is analyzed and applied to the complete development of interesting shape-memory polymer-based actuators. Aspects such as geometrical design and optimization, development of the activation system, selection of the adequate materials and related manufacturing technologies, training of the shape-memory effect, final integration and testing are considered, as key processes of the methodology. Current trends, including the use of low-cost 3D and 4D printing, and main challenges, including process eco-efficiency and biocompatibility, are also discussed and their impact on the proposed methodology is considered.

  17. Crosslinking of Semiaromatic Polyesters toward High-Temperature Shape Memory Polymers with Full Recovery.

    Science.gov (United States)

    Raidt, Thomas; Schmidt, Martin; Tiller, Joerg C; Katzenberg, Frank

    2018-01-17

    In this work, high-temperature shape memory polymers are realized by end-group crosslinking of the semiaromatic polyesters polyethylene terephthalate as well as polybutylene terephthalate. Both networks exhibit trigger temperatures distinctly higher than 200 °C and excellent shape memory properties such as storable strains of 200%, full fixity of the applied strain in the temporary shape, and full recovery of the permanent shape. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.

    Science.gov (United States)

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-14

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  19. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure

    International Nuclear Information System (INIS)

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-01

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 μm 2 to 200 x 200 nm 2 . From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I ON /I OFF ∼10 4 ), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10 000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  20. Ferroelectric polymer-gated graphene memory with high speed conductivity modulation

    Science.gov (United States)

    Hwang, Hyeon Jun; Yang, Jin Ho; Lee, Young Gon; Cho, Chunhum; Kang, Chang Goo; Kang, Soo Cheol; Park, Woojin; Lee, Byoung Hun

    2013-05-01

    The feasibility of a high speed ferroelectric graphene memory device using a ferroelectric polymer (PVDF-TrFE)/graphene stack has been demonstrated. The conductivity of this metal-ferroelectric-graphene (MFG) device could be modulated up to 775% with a very fast programming speed down to 10 ns. Also, programmed states were maintained up to 1000 s with endurance over 1000 cycles. In addition to demonstrating a single memory device, the array-level integration and cell write/read functionality of a 4 × 4 MFG array adopting a graphene bit line has also been confirmed to show the feasibility of MFG memory.

  1. Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer

    Science.gov (United States)

    Liu, Ruoxuan; Li, Yunxin; Liu, Zishun

    2018-01-01

    The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.

  2. Drug-releasing shape-memory polymers - the role of morphology, processing effects, and matrix degradation.

    Science.gov (United States)

    Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2013-09-01

    Shape-memory polymers (SMPs) have gained interest for temporary drug-release systems that should be anchored in the body by self-sufficient active movements of the polymeric matrix. Based on the so far published scientific literature, this review highlights three aspects that require particular attention when combining SMPs with drug molecules: i) the defined polymer morphology as required for the shape-memory function, ii) the strong effects that processing conditions such as drug-loading methodologies can have on the drug-release pattern from SMPs, and iii) the independent control of drug release and degradation by their timely separation. The combination of SMPs with a drug-release functionality leads to multifunctional carriers that are an interesting technology for pharmaceutical sciences and can be further expanded by new materials such as thermoplastic SMPs or temperature-memory polymers. Experimental studies should include relevant molecules as (model) drugs and provide a thermomechanical characterization also in an aqueous environment, report on the potential effect of drug type and loading levels on the shape-memory functionality, and explore the potential correlation of polymer degradation and drug release.

  3. Thermal-Mechanical Properties of Polyurethane-Clay Shape Memory Polymer Nanocomposites

    NARCIS (Netherlands)

    Xu, Bin; Fu, Yong Qing; Huang, Wei Min; Pei, Yu Tao; Chen, Zhenguo; Hosson, Jeff T.M. De; Kraft, Arno; Reuben, R.L.

    Shape memory nanocomposites of polyurethane (PU)-clay were fabricated by melt mixing of PU and nano-clay. Based on nano-indentation and microhardness tests, the strength of the nanocomposites increased dramatically as a function of clay content, which is attributed to the enhanced nanoclay-polymer

  4. Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories

    Science.gov (United States)

    Möller, Sven; Forrest, Stephen R.; Perlov, Craig; Jackson, Warren; Taussig, Carl

    2003-12-01

    We demonstrate a nonvolatile, write-once-read-many-times (WORM) memory device employing a hybrid organic/inorganic semiconductor architecture consisting of thin film p-i-n silicon diode on a stainless steel substrate integrated in series with a conductive polymer fuse. The nonlinearity of the silicon diodes enables a passive matrix memory architecture, while the conductive polyethylenedioxythiophene:polystyrene sulfonic acid polymer serves as a reliable switch with fuse-like behavior for data storage. The polymer can be switched at ˜2 μs, resulting in a permanent decrease of conductivity of the memory pixel by up to a factor of 103. The switching mechanism is primarily due to a current and thermally dependent redox reaction in the polymer, limited by the double injection of both holes and electrons. The switched device performance does not degrade after many thousand read cycles in ambient at room temperature. Our results suggest that low cost, organic/inorganic WORM memories are feasible for light weight, high density, robust, and fast archival storage applications.

  5. COMMUNICATION: Toward a self-deploying shape memory polymer neuronal electrode

    Science.gov (United States)

    Sharp, Andrew A.; Panchawagh, Hrishikesh V.; Ortega, Alicia; Artale, Ryan; Richardson-Burns, Sarah; Finch, Dudley S.; Gall, Ken; Mahajan, Roop L.; Restrepo, Diego

    2006-12-01

    The widespread application of neuronal probes for chronic recording of brain activity and functional stimulation has been slow to develop partially due to long-term biocompatibility problems with existing metallic and ceramic probes and the tissue damage caused during probe insertion. Stiff probes are easily inserted into soft brain tissue but cause astrocytic scars that become insulating sheaths between electrodes and neurons. In this communication, we explore the feasibility of a new approach to the composition and implantation of chronic electrode arrays. We demonstrate that softer polymer-based probes can be inserted into the olfactory bulb of a mouse and that slow insertion of the probes reduces astrocytic scarring. We further present the development of a micromachined shape memory polymer probe, which provides a vehicle to self-deploy an electrode at suitably slow rates and which can provide sufficient force to penetrate the brain. The deployment rate and composition of shape memory polymer probes can be tailored by polymer chemistry and actuator design. We conclude that it is feasible to fabricate shape memory polymer-based electrodes that would slowly self-implant compliant conductors into the brain, and both decrease initial trauma resulting from implantation and enhance long-term biocompatibility for long-term neuronal measurement and stimulation.

  6. Shape Memory as a Process: Optimizing Polymer Design for Shape Recovery

    Science.gov (United States)

    Vaia, Richard; Koerner, Hilmar; Lee, Kyungmin; Strong, Robert; Smith, Mattew; Wang, Huabin; White, Tim; Tan, Loon-Seng

    2012-02-01

    Shape memory is a process that enables the reversible storage and recovery of mechanical energy through a change in shape. Polymers provide a unique alternative to kinematic designs and other materials (e.g. metallic alloys) for applications requiring large deformation and novel control options. The effect control of storage and relaxation of strain energy associated with chain deformation depends on the nonlinear visco-elasitc behavior and glassy dynamics of the polymer network. Considering the molecular understanding of rubbery elasticity, chain entanglements in concentrated polymer liquids, affine deformation of networks, and glass fragility, heuristic guidelines can be formulated to optimize the molecular design of a polymer for shape memory. These are applied to the development of a polymer system for shape memory processes at high-temperature (200^oC). The low-crosslink density polyimide exhibits very rapid shape recovery, excellent fixity, high creep resistance, and good cyclability. Furthermore, the molecular design affords a very narrow temperature range for programming and triggering shape change that can also be accessed by photo-isomerization of the cross-link nodes.

  7. Investigation of interfacial shear stresses, shape fixity, and actuation strain in composites incorporating shape memory polymers and shape memory alloys

    Science.gov (United States)

    Park, Jungkyu; Headings, Leon; Dapino, Marcelo; Baur, Jeffery; Tandon, Gyaneshwar

    2015-03-01

    Shape memory composites (SMCs) based on shape memory alloys (SMAs) and shape memory polymers (SMPs) allow many design possibilities due to their controllable temperature-dependent mechanical properties. The complementary characteristics of SMAs and SMPs can be utilized in systems with shape recovery created by the SMA and shape fixity provided by the SMP. In this research, three SMC operating regimes are identified and the behavior of SMC structures is analyzed by focusing on composite shape fixity and interfacial stresses. Analytical models show that SMPs can be used to adequately fix the shape of SMA actuators and springs. COMSOL finite element simulations are in agreement with analytical expressions for shape fixity and interfacial stresses. Analytical models are developed for an end-coupled linear SMP-SMA two-way actuator and the predicted strain is shown to be in good agreement with experimental test results.

  8. A direct metal transfer method for cross-bar type polymer non-volatile memory applications

    International Nuclear Information System (INIS)

    Kim, Tae-Wook; Lee, Kyeongmi; Oh, Seung-Hwan; Wang, Gunuk; Kim, Dong-Yu; Jung, Gun-Young; Lee, Takhee

    2008-01-01

    Polymer non-volatile memory devices in 8 x 8 array cross-bar architecture were fabricated by a non-aqueous direct metal transfer (DMT) method using a two-step thermal treatment. Top electrodes with a linewidth of 2 μm were transferred onto the polymer layer by the DMT method. The switching behaviour of memory devices fabricated by the DMT method was very similar to that of devices fabricated by the conventional shadow mask method. The devices fabricated using the DMT method showed three orders of magnitude of on/off ratio with stable resistance switching, demonstrating that the DMT method can be a simple process to fabricate organic memory array devices

  9. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.

    Science.gov (United States)

    Liu, Ye; Li, Ying; Yang, Guang; Zheng, Xiaotong; Zhou, Shaobing

    2015-02-25

    In this study, we developed a thermoresponsive and water-responsive shape-memory polymer nanocomposite network by chemically cross-linking cellulose nanocrystals (CNCs) with polycaprolactone (PCL) and polyethylene glycol (PEG). The nanocomposite network was fully characterized, including the microstructure, cross-link density, water contact angle, water uptake, crystallinity, thermal properties, and static and dynamic mechanical properties. We found that the PEG[60]-PCL[40]-CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 °C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights. In addition, Alamar blue assays based on osteoblasts indicated that the nanocomposites possessed good cytocompatibility. Therefore, this thermoresponsive and water-responsive shape-memory nanocomposite could be potentially developed into a new smart biomaterial.

  10. Shape memory polymer nanofibers and their composites: electrospinning, structure, performance and applications

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Zhou, Tianyang; Liu, Yanju; Leng, Jinsong

    2015-10-01

    Shape memory polymers (SMPs) have been defined as a kind of smart materials under great investigation from academic research to industry applications. Research on SMPs and their composites, now incorporates a growing focus on nanofibers which offers new structures in microscopic level and the potential of enhanced performance of SMPs. This paper presents a comprehensive review of the development of shape memory polymer nanofibers and their composites, including the introduction of electrospinning technology, the morphology and structures of nanofibers (non-woven fibers, oriented fibers, core/shell fibers and functional particles added in the fibers), shape memory performance (thermal and mechanical properties, stimulus responsive behavior, multiple and two-way shape changing performance), as well as their potential applications in the fields of biomedical and tissue engineering.

  11. Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode

    International Nuclear Information System (INIS)

    Jang, Byung Chul; Kim, Jong Yun; Koo, Beom Jun; Yang, Sang Yoon; Choi, Sung-Yool; Seong, Hyejeong; Im, Sung Gap; Kim, Sung Kyu

    2015-01-01

    Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices. (paper)

  12. Experimental and modelling studies of the shape memory properties of amorphous polymer network composites

    International Nuclear Information System (INIS)

    Arrieta, J S; Diani, J; Gilormini, P

    2014-01-01

    Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP. (paper)

  13. Review on the Functional Determinants and Durability of Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    Thorsten Pretsch

    2010-07-01

    Full Text Available Shape memory polymers (SMP belong to the class of stimuli-responsive materials and have generated significant research interest. Their capability to retain an imposed, temporary shape and to recover the initial, permanent shape upon exposure to an external stimulus depends on the “functional determinants”, which in simplistic terms, can be divided into structural/morphological and processing/environmental factors. The primary aim of the first part of this review is to reflect the knowledge about these fundamental relationships. In a next step, recent advances in shape memory polymer composites are summarized. In contrast to earlier reviews, studies on the impairment of shape memory properties through various factors, such as aging, compression and hibernation, lubricants, UV light and thermo-mechanical cycling, are extensively reviewed. Apart from summarizing the state-of-the-art in SMP research, recent progress is commented.

  14. Memory and threshold switching in thin film PMMA polymer

    International Nuclear Information System (INIS)

    Rabah, K.V.O.

    1995-05-01

    Threshold switching between two impedance states have been observed at room temperature in a polymethylmethacrylate (PMMA) thin film sandwiched between two evaporated Al-metal electrodes. The cell's I-V characteristics were found to exhibit memory property. (author). 19 refs, 4 figs

  15. Non-volatile ferroelectric memory with position-addressable polymer semiconducting nanowire.

    Science.gov (United States)

    Hwang, Sun Kak; Min, Sung-Yong; Bae, Insung; Cho, Suk Man; Kim, Kang Lib; Lee, Tae-Woo; Park, Cheolmin

    2014-05-28

    One-dimensional nanowires (NWs) have been extensively examined for numerous potential nano-electronic device applications such as transistors, sensors, memories, and photodetectors. The ferroelectric-gate field effect transistors (Fe-FETs) with semiconducting NWs in particular in combination with ferroelectric polymers as gate insulating layers have attracted great attention because of their potential in high density memory integration. However, most of the devices still suffer from low yield of devices mainly due to the ill-control of the location of NWs on a substrate. NWs randomly deposited on a substrate from solution-dispersed droplet made it extremely difficult to fabricate arrays of NW Fe-FETs. Moreover, rigid inorganic NWs were rarely applicable for flexible non-volatile memories. Here, we present the NW Fe-FETs with position-addressable polymer semiconducting NWs. Polymer NWs precisely controlled in both location and number between source and drain electrode were achieved by direct electrohydrodynamic NW printing. The polymer NW Fe-FETs with a ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) exhibited non-volatile ON/OFF current margin at zero gate voltage of approximately 10(2) with time-dependent data retention and read/write endurance of more than 10(4) seconds and 10(2) cycles, respectively. Furthermore, our device showed characteristic bistable current hysteresis curves when being deformed with various bending radii and multiple bending cycles over 1000 times. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Description of the shape memory effect of radiation-modified polymers under thermomechanical action

    International Nuclear Information System (INIS)

    Chernous, D.A.; Shil'ko, S.V.; Pleskachevskij, Yu.M.

    2004-01-01

    The 'shape memory' effect of crystallizing polymer materials is simulated. The polymer is considered to be an inhomogeneous medium with a moving boundary (temperature-dependent phase composition). Using a model based on the 'frozen strain' hypothesis, the temperature dependences of stresses under isometric heating and cooling have been obtained. On the basis of the known data on the influence of gamma-irradiation on the thermomechanical characteristics the dependences of thermorelaxation and thermoshrinkage stresses on the absorbed dose for high-density polyethylene have been found. (Authors)

  17. The tunable bistable and multistable memory effect in polymer nanowires

    International Nuclear Information System (INIS)

    Rahman, Atikur; Sanyal, Milan K

    2008-01-01

    Tunable bistable and multistable resistance switching in conducting polymer nanowires has been reported. These wires show reproducible switching transition under several READ-WRITE-ERASE cycles. The switching is observed at low temperature and the ON/OFF resistance ratio for the voltage biased switching transition was found to be more than 10 3 . Current biased measurements show lower ON/OFF ratio and some of the nanowires exhibit a multistable switching transition in current biased measurements. The threshold voltage for switching and the ON/OFF resistance ratio can be tuned by changing doping concentration of the nanowires

  18. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.

    Science.gov (United States)

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2015-10-28

    Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.

  19. Influence of Holding Time on Shape Recovery in a Polyurethane Shape-Memory Polymer

    Science.gov (United States)

    Santiago, David; Ferrando, Francesc; De la Flor, Silvia

    2014-07-01

    Shape-memory polymers have attracted a lot of interest in recent years. A shape-memory polymer can be deformed and fixed into a temporary shape and subsequently made to recover its original shape when a suitable stimulus is applied. This is accomplished by means of a thermomechanical cycle called programming. Programming can be performed in a stress- or strain-controlled mode. The thermomechanical conditions of the programming affect shape-memory properties differently in each programming mode. One of the parameters which significantly affects shape-memory properties in a stress-controlled procedure is stress-holding time ( t H) at high temperature. This paper studies how stress-holding time affects the most significant shape-memory properties under successive thermomechanical cycles. The experiments were conducted using two different programming temperatures in the vicinity of the T g. The shape-recovery ratio decreased dramatically with cycling even when the holding time was just a few seconds, however, the impact of the stress-holding time depends on the temperature at which it has been applied. Shape-fixity ratio and switching temperature were also studied, but stress-holding time and successive cycles do not seem to affect either of these factors.

  20. Preparation and characterization of shape memory composite foams with interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Yao, Yongtao; Zhou, Tianyang; Yang, Cheng; Leng, Jinsong; Liu, Yanju

    2016-01-01

    The present study reports a feasible approach of fabricating shape memory composite foams with an interpenetrating polymer network (IPN) based on polyurethane (PU) and shape memory epoxy resin (SMER) via a simultaneous polymerization technique. The PU component is capable of constructing a foam structure and the SMER is grafted on the PU network to offer its shape memory property in the final IPN foams. A series of IPN foams without phase separation were produced due to good compatibility and a tight chemical interaction between PU and SMER components. The relationships of the geometry of the foam cell were investigated via varying compositions of PU and SMER. The physical property and shape memory property were also evaluated. The stimulus temperature of IPN shape memory composite foams, glass temperature (T g ), could be tunable by varying the constituents and T g of PU and SMER. The mechanism of the shape memory effect of IPN foams has been proposed. The shape memory composite foam with IPN developed in this study has the potential to extend its application field. (paper)

  1. Multiple-phase behavior and memory effect of polymer gel

    CERN Document Server

    Annaka, M; Nakahira, T; Sugiyama, M; Hara, K; Matsuura, T

    2002-01-01

    A poly(4-acrylamidosalicylic acid) gel (PASA gel) exhibits multiple phases as characterized by distinct degrees of swelling; the gel can take one of four different swelling values, but none of the intermediate values. The gel has remarkable memory: the phase behavior of the gel depends on whether the gel has experienced the most swollen phase or the most collapsed phase in the immediate past. The information is stored and reversibly erased in the form of a macroscopic phase transition behavior. The structure factors corresponding to these four phases were obtained by SANS, which indicated the presence of characteristic structures depending on pH and temperature, particularly in the shrunken state. (orig.)

  2. Ultra Low Density Shape Memory Polymer Foams With Tunable Physicochemical Properties for Treatment of intracranial Aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Pooja [Texas A & M Univ., College Station, TX (United States)

    2013-12-01

    Shape memory polymers (SMPs) are a rapidly emerging class of smart materials that can be stored in a deformed temporary shape, and can actively return to their original shape upon application of an external stimulus such as heat, pH or light. This behavior is particularly advantageous for minimally invasive biomedical applications comprising embolic/regenerative scaffolds, as it enables a transcatheter delivery of the device to the target site. The focus of this work was to exploit this shape memory behavior of polyurethanes, and develop an efficient embolic SMP foam device for the treatment of intracranial aneurysms.In summary, this work reports a novel family of ultra low density polymer foams which can be delivered via a minimally invasive surgery to the aneurysm site, actuated in a controlled manner to efficiently embolize the aneurysm while promoting physiological fluid/blood flow through the reticulated/open porous structure, and eventually biodegrade leading to complete healing of the vasculature.

  3. Shape Memory Polymers from Blends of Elastomers and Crystalline Small Molecules

    Science.gov (United States)

    Cavicchi, Kevin; Brostowitz, Nicole; Hukill, Brent; Fairbairn, Heather

    2015-03-01

    This talk will present work on the fabrication of shape memory polymers (SMPs) by swelling natural with molten fatty acids. By this method a SMPs with excellent shape fixity and recovery can be obtained during free recovery after uniaxial deformation to 100% strain. Experiments to measure the shape memory properties under both stress and strain controlled conditions will be reported and compared. This fabrication method offers a number of advantages for preparing SMPs. First, it utilizes natural rubber as the base material for the SMP, which capitalizes on a high performance, commodity elastomer. Second, by blending a commercial polymer with a small molecule additive no additional chemistry is needed for the preparation of the SMP. Third, this route inverts the typically processing steps by crosslinking the permanent network prior to formation of the physically crosslinked reversible network. This offers a means to potentially generate a SMP from any preformed elastomeric article.

  4. Characterization and recovery of shape memory polymers filled with carbon nanofibers

    Science.gov (United States)

    Powers, Daniel Stephen

    The microstructure and shape memory properties of polymers utilizing two different shape memory processes reinforced with vapor grown carbon nanofibers (CNFs) were investigated by thermal and thermomechanical techniques. The first shape memory polymer (SMP) was a thermoplastic polyurethane elastomer (Irogran) that used strain-induced crystallization for locking in the deformation. Shape recovery occurred through the melting temperature of the crystallites and demonstrated relatively good shape memory properties. Both shape fixity (ability to lock in the deformation) and recovery time (how fast the material recovered back to its original shape) improved with carbon nanofiber loading; however, the percent recovery (ability to return back to its original shape) decreased with CNF loading. Initial studies verified the role of strain-induced crystallization. Solid-state proton nuclear magnetic resonance (NMR) was used to investigate the impact of CNFs on the structure and dynamics of the crystallites in this thermoplastic polyurethane elastomer (TPE). The introduction of CNFs led to a shifting and broadening of the spectra, where the magnitude of the induced shifts and line broadening increased with CNF concentration. The spin-lattice and spin-spin relaxation times were not significantly changed with the introduction of CNFs. This demonstrated that the line broadening was inhomogeneous and a consequence of the magnetic susceptibility of the CNFs and not a reduction in segment mobility due to the proximity of the CNF surface. Spin diffusion experiments provided additional insight into the strain induced structure of the TPE/CNF composites. The second SMP was a thermoset epoxy (TEMBO DP5.1) reinforced with CNFs. This SMP used vitrification through the glass transition temperature for locking in the deformation and demonstrated excellent shape memory properties. The morphology of the CNFs throughout the epoxy polymer matrix, along with the recovery times of the

  5. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2014-06-10

    Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent p-type oxide (SnO) as the active channel layer. A record mobility of 3.3 cm 2V-1s-1, large memory window (~16 V), low read voltages (~-1 V), and excellent retention characteristics up to 5000 sec have been achieved. The mobility achieved in our devices is over 10 times higher than previously reported polymer ferroelectric field-effect transistor memory with p-type channel. This demonstration opens the door for the development of non-volatile memory devices based on dual channel for emerging transparent and flexible electronic devices.

  6. Free volume study of three types of shape memory polymers by positron annihilation

    International Nuclear Information System (INIS)

    Ujihira, Y.; Li, H.L.; Ito, K.

    1999-01-01

    Temperature dependence of nanoscopic environment of shape memory polymers such as polynorbornene (T g ∼ 313 K), polyurethane (T g ∼ 321 K = dynamic viscoelasticity, destruction of hydrogen bond ∼ 353 K) and styrene-butadiene copolymer (T m = 333 K) is observed in terms of free volume parameters - average size, numerical concentration and size distribution - estimated from positronium lifetime measurement, and mechanism of their recoveries are discussed at a molecular level. (author)

  7. Experimental characterization and computational modeling of unimorph shape memory polymer actuators incorporating transverse curvature in the substrate

    Science.gov (United States)

    Cantrell, Jason T.

    This document outlines in detail the research performed by applying shape memory polymers in a generic unimorph actuator configuration. A set of experiments designed to investigate the influence of transverse curvature, the relative widths of shape memory polymer and composite substrates, and shape memory polymer thickness on actuator recoverability after multiple thermo-mechanical cycles is presented in detail. A theoretical model of the moment required to maintain shape fixity with minimal shape retention loss was developed and experimentally validated for unimorph composite actuators of varying cross-sectional areas. Theoretical models were also developed and evaluated to determine the relationship between the materials neutral axes and thermal stability during a thermo-mechanical cycle. Research was conducted on the incorporation of shape memory polymers on micro air vehicle wings to maximize shape fixity and shape recoverability while minimizing the volume of shape memory polymer on the wing surface. Applications based research also included experimentally evaluating the feasibility of shape memory polymers on deployable satellite antenna ribs both with and without resistance heaters which could be utilized to assist in antenna deployment.

  8. Characterizing Effects of Nitric Oxide Sterilization on tert-Butyl Acrylate Shape Memory Polymers

    Science.gov (United States)

    Phillippi, Ben

    As research into the potential uses of shape memory polymers (SMPs) as implantable medical devices continues to grow and expand, so does the need for an accurate and reliable sterilization mechanism. The ability of an SMP to precisely undergo a programmed shape change will define its ability to accomplish a therapeutic task. To ensure proper execution of the in vivo shape change, the sterilization process must not negatively affect the shape memory behavior of the material. To address this need, this thesis investigates the effectiveness of a benchtop nitric oxide (NOx) sterilization process and the extent to which the process affects the shape memory behavior of a well-studied tert-Butyl Acrylate (tBA) SMP. Quantifying the effects on shape memory behavior was performed using a two-tiered analysis. A two-tiered study design was used to determine if the sterilization process induced any premature shape recovery and to identify any effects that NOx has on the overall shape memory behavior of the foams. Determining the effectiveness of the NOx system--specially, whether the treated samples are more sterile/less contaminated than untreated--was also performed with a two-tiered analysis. In this case, the two-tiered analysis was employed to have a secondary check for contamination. To elaborate, all of the samples that were deemed not contaminated from the initial test were put through a second sterility test to check for contamination a second time. The results of these tests indicated the NOx system is an effective sterilization mechanism and the current protocol does not negatively impact the shape memory behavior of the tBA SMP. The samples held their compressed shape throughout the entirety of the sterilization process. Additionally, there were no observable impacts on the shape memory behavior induced by NOx. Lastly, the treated samples demonstrated lower contamination than the untreated. This thesis demonstrates the effectiveness of NOx as a laboratory scale

  9. Towards Low-Cost Effective and Homogeneous Thermal Activation of Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    Andrés Díaz Lantada

    2013-11-01

    Full Text Available A typical limitation of intelligent devices based on the use of shape-memory polymers as actuators is linked to the widespread use of distributed heating resistors, via Joule effect, as activation method, which involves several relevant issues needing attention, such as: (a Final device size is importantly increased due to the additional space required for the resistances; (b the use of resistances limits materials’ strength and the obtained devices are normally weaker; (c the activation process through heating resistances is not homogeneous, thus leading to important temperature differences among the polymeric structure and to undesirable thermal gradients and stresses, also limiting the application fields of shape-memory polymers. In our present work we describe interesting activation alternatives, based on coating shape-memory polymers with different kinds of conductive materials, including textiles, conductive threads and conductive paint, which stand out for their easy, rapid and very cheap implementation. Distributed heating and homogeneous activation can be achieved in several of the alternatives studied and the technical results are comparable to those obtained by using advanced shape-memory nanocomposites, which have to deal with complex synthesis, processing and security aspects. Different combinations of shape memory epoxy resin with several coating electrotextiles, conductive films and paints are prepared, simulated with the help of thermal finite element method based resources and characterized using infrared thermography for validating the simulations and overall design process. A final application linked to an active catheter pincer is detailed and the advantages of using distributed heating instead of conventional resistors are discussed.

  10. Shape-memory effect by specific biodegradable polymer blending for biomedical applications.

    Science.gov (United States)

    Cha, Kook Jin; Lih, Eugene; Choi, Jiyeon; Joung, Yoon Ki; Ahn, Dong Jun; Han, Dong Keun

    2014-05-01

    Specific biodegradable polymers having shape-memory properties through "polymer-blend" method are investigated and their shape-switching in body temperature (37 °C) is characterized. Poly(L-lactide-co-caprolactone) (PLCL) and poly(L-lactide-co-glycolide) (PLGA) are dissolved in chloroform and the films of several blending ratios of PLCL/PLGA are prepared by solvent casting. The shape-memory properties of films are also examined using dynamic mechanical analysis (DMA). Among the blending ratios, the PLCL50/PLGA50 film shows good performance of shape-fixity and shape-recovery based on glass transition temperature. It displays that the degree of shape recovery is 100% at 37 °C and the shape recovery proceeds within only 15 s. In vitro biocompatibility studies are shown to have good blood compatibility and cytocompatibility for the PLCL50/PLGA50 films. It is expected that this blended biodegradable polymer can be potentially used as a material for blood-contacting medical devices such as a self-expended vascular polymer stents and vascular closure devices in biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    Science.gov (United States)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber

  12. Surface engineering of ferroelectric polymer for the enhanced electrical performance of organic transistor memory

    Science.gov (United States)

    Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk

    2018-05-01

    We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.

  13. Organic ferroelectric memory devices with inkjet-printed polymer electrodes on flexible substrates

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2013-05-01

    Drop-on-demand piezoelectric inkjet-printing technique has been used to fabricate a functional cross-bar array of all-organic ferroelectric memory devices. The polymer-ferroelectric-polymer device consists of a ferroelectric copolymer P(VDF-TrFE) film sandwiched between inkjet-patterned, continuous, orthogonal lines of PEDOT:PSS polymer as the bottom and top electrodes. These devices exhibit well-saturated hysteresis curves with a maximum remnant polarization (Pr) = 6.7 μC/cm2, coercive field (E c) = 55 MV/m and a peak capacitance density of 45 nF/cm2. Our polarization fatigue measurements show that these devices retain ∼100% and 45% of their initial Pr values after 103 and 10 5 stress cycles, respectively. The overall performance and polarization retention characteristics of these ferroelectric capacitors with inkjet-printed polymer electrodes are comparable to metal and spin-cast polymer electrodes suggesting their potential use in large-area flexible electronics. © 2013 Elsevier Ltd. All rights reserved.

  14. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA

    Science.gov (United States)

    Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei

    2018-01-01

    In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.

  15. Crosslinkable high k polymer dielectrics for low voltage organic field-effect transistor memories (Conference Presentation)

    Science.gov (United States)

    Wu, Hung-Chin; Hung, Chih-Chien; Chiu, Yu-Cheng; Tung, Shih-Huang; Chen, Wen-Chang

    2016-09-01

    High Performance organic field-effect transistor (OFET) memory devices were successfully prepared using new dielectric materials, poly(N-(hydroxymethyl)acrylamide-co-5 -(9-(5-(diethylamino)pentyl)-2-(4-vinylphenyl)-9H-fluorene (P(NMA-co-F6NSt)), which contained chemical cross-linkable segment (NMA) and hole trapping building block (F6NSt). The high k characteristics of P(NMA-co-F6NSt)) led to a low voltage operation, a small power consumption, and a good digital information storage capacity. Such P(NMA-co-F6NSt) dielectrics in OFET memories with variant NMA/F6NSt molar ratios (100/0 (P1), 95/5 (P2), 80/20 (P3), and 67/33 (P4)) showed excellent insulating properties and good charge storage performance under a low operating voltage below ±5V, due to the tightly network structures after crosslinking and well-dispersed trapping cites (i.e. fluorene moieties). P3-based memory device, in particular, exhibited largest memory window of 4.13 V among the studied polymers, and possessed stable data retention stability over 104 s with a high on/off current ratio (i.e. 104) and good endurance characteristics of more than 200 write-read-write-erase (WRER) cycles. The above results suggested that a high-performance OFET memory device could be facilely achieved using the novel synthesized high-k copolymers.

  16. Metal-free, single-polymer device exhibits resistive memory effect

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2013-12-23

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4- ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10 3), good retention characteristics (>10 000 s), and stability in ambient storage (>3 months). © 2013 American Chemical Society.

  17. Intelligent structures based on the improved activation of shape memory polymers using Peltier cells

    International Nuclear Information System (INIS)

    Díaz Lantada, Andrés; Lafont Morgado, Pilar; Muñoz Sanz, José Luis; Muñoz García, Julio; Munoz-Guijosa, Juan Manuel; Echávarri Otero, Javier

    2010-01-01

    This study is focused on obtaining intelligent structures manufactured from shape memory polymers possessing the ability to change their geometry in successive or 'step-by-step' actions. This objective has been reached by changing the conventionally used shape memory activation systems (heating resistance, laser or induction heating). The solution set out consists in using Peltier cells as a heating system capable of heating (and activating) a specific zone of the device in the first activation, while the opposite zone keeps its original geometry. By carefully reversing the polarity of the electrical supply to the Peltier cell, in the second activation, the as yet unchanged zone is activated while the already changed zone in the first activation remains unaltered. We have described the criteria for the selection, calibration and design of this alternative heating (activation) system based on the thermoelectric effect, together with the development of different 'proof of concept' prototypes that have enabled us to validate the concepts put forward, as well as suggest future improvements for 'intelligent' shape memory polymer-based devices

  18. Basic properties and application of shape memory polymer composite to deployable hinge for solar arrays

    Science.gov (United States)

    Wang, Xiaohua; Zhang, Wei; Lan, Xin; Liu, Yanju; Leng, Jinsong

    2007-07-01

    This paper is concerned about the basic properties of deployment of shape memory polymer composite (SMPC) and its application to deployable hinge for solar arrays. Shape memory polymer (SMP) used in this study is a thermoset styrene-based shape memory resin in contrast to normal thermoplastic SMPs. Carbon fiber fabric reinforced SMPC is discussed here. In order to investigate the basic performances of deployment for SMPC hinge, the experimental methods are used as follows: dynamic mechanical analysis (DMA), three point bending test and deployment tests. Results indicate that the glass transition temperature (T g) of SMPC is approximate 63°C. SMPC shows typical linear elasticity and high bending modulus before glass transition in SMP, while exhibits apparent nonlinear viscoelasticity and low bending modulus within the range of glass transition in SMP. The shape recovery ratio of SMPC is above 90% at/above T g, while drops sharply at below T g. The deployment properties of SMPC depend strongly on the number of thermomechanical cycles, which become relatively stable after some packaging/deployment cycles. Moreover, deployment velocity and shape recovery ratio rise remarkably with the increase of temperature of SMPC. In the end, a prototype of solar array actuated by SMPC hinge, which is heated by passing an electrical current, deploys from about 180° to 0° in one minute. This SMPC hinge performs good deployment performances during numerous thermomechanical cycles.

  19. Investigation of mechanical and conductive properties of shape memory polymer composite (SMPC)

    Science.gov (United States)

    Leng, Jinsong; Lan, Xin; Lv, Haibao; Zhang, Dawei; Liu, Yanju; Du, Shanyi

    2007-04-01

    This paper is concerned about an investigation of mechanical and electrical conductive properties of carbon fiber fabric reinforced shape memory polymer composite (SMPC). The shape memory polymer (SMP) is a thermoset styrene-based resin. SMP is a promising smart material, which is under intensive investigation at present. Its primary advantages over other smart materials are the high strain capacity (200% reversible strain), low density and low cost etc.. But its major drawbacks are low strength, low modulus and low recovery stress. So the fiber reinforced SMPC was naturally considered to be investigated in this paper, which may overcome the disadvantages mentioned above. The investigation was conducted with experimental methods: Dynamic Mechanical Analyzer (DMA), static and mechanical cycle loading tests, microscope observation of microstructural deformation mechanism, conductivity and shape recovery tests. Results indicated that SMPC showed higher glass transition temperature (T g) than neat SMP and improved the storage modulus, bending modulus, strength and resistance against relaxation and creep. Both fiber microbuckling and fracture of SMPC were observed after the static 3-ponit bending test at the constant room temperature. SMPC showed favorable recovery performances during thermomechanical cycles of the bending recovery test and the fiber microbuckling was obvious. Moreover, the conductive SMPC of this study experienced low electrical resistivity and performed a good shape memory effect during numerous thermomechanical cycles.

  20. New design strategy for reversible plasticity shape memory polymers with deformable glassy aggregates.

    Science.gov (United States)

    Lin, Tengfei; Tang, Zhenghai; Guo, Baochun

    2014-12-10

    Reversible plasticity shape memory (RPSM) is a new concept in the study of shape memory performance behavior and describes a phenomenon in which shape memory polymers (SMPs) can undergo a large plastic deformation at room temperature and subsequently recover their original shape upon heating. To date, RPSM behavior has been demonstrated in only a few polymers. In the present study, we implement a new design strategy, in which deformable glassy hindered phenol (AO-80) aggregates are incorporated into an amorphous network of epoxidized natural rubber (ENR) cured with zinc diacrylate (ZDA), in order to achieve RPSM properties. We propose that AO-80 continuously tunes the glass transition temperature (Tg) and improves the chain mobility of the SMP, providing traction and anchoring the ENR chains by intermolecular hydrogen bonding interactions. The RPSM behavior of the amorphous SMPs is characterized, and the results demonstrate good fixity at large deformations (up to 300%) and excellent recovery upon heating. Large energy storage capacities at Td in these RPSM materials are demonstrated compared with those achieved at elevated temperature in traditional SMPs. Interestingly, the further revealed self-healing properties of these materials are closely related to their RPSM behavior.

  1. Fabrication and properties of shape-memory polymer coated with conductive nanofiber paper

    Science.gov (United States)

    Lu, Haibao; Liu, Yanju; Gou, Jan; Leng, Jinsong

    2009-07-01

    A unique concept of shape-memory polymer (SMP) nanocomposites making up of carbon nanofiber paper was explored. The essential element of this method was to design and fabricate nanopaper with well-controlled and optimized network structure of carbon nanofibers. In this study, carbon nanofiber paper was prepared under ultrasonicated processing and vapor press method, while the dispersion of nanofiber was treated by BYK-191 dispersant. The morphologies of carbon nanofibers within the paper were characterized with scanning electron microscopy (SEM). In addition, the thermomechanical properties of SMP coated with carbon nanofiber paper were measured by the dynamic mechanical thermal analysis (DMTA). It was found that the glass transition temperature and thermomechanical properties of nanocomposites were strongly determined by the dispersion of polymer in conductive paper. Subsequently, the electrical conductivity of conductive paper and nanocomposites were measured, respectively. And experimental results revealed that the conductive properties of nanocoposites were significantly improved by carbon nanopaper, resulting in actuation driven by electrical resistive heating.

  2. New design of shape memory polymers based on natural rubber crosslinked via oxa-Michael reaction.

    Science.gov (United States)

    Lin, Tengfei; Ma, Siwei; Lu, Yang; Guo, Baochun

    2014-04-23

    Shape memory polymers (SMPs) based on natural rubber were fabricated by crosslinking epoxidized natural rubber with zinc diacrylate (ZDA) using the oxa-Michael reaction. These SMPs possessed excellent shape fixity and recovery. The glass transition largely accounted for the fixing of the SMPs temporary shape. Increasing the ZDA content allowed the trigger temperature (20-46 °C) and recovery time (14-33 s) of the SMPs to be continuously tuned. Nanosized silica (nanosilica) was incorporated into the neat polymers to further increase the flexibility and tune the recovery stress. The nanosilica-SMPs exhibited exceptionally high strength in a rubbery state (>20 MPa). The nanosilica-SMPs exhibited high transparency, making them suitable in visible heat-shrinkable tubes.

  3. Top-gate organic field-effect transistors fabricated on shape-memory polymer substrates

    Science.gov (United States)

    Choi, Sangmoo; Fuentes-Hernandez, Canek; Wang, Cheng-Yin; Wei, Andrew; Voit, Walter; Zhang, Yadong; Barlow, Stephen; Marder, Seth R.; Kippelen, Bernard

    2015-08-01

    We demonstrate top-gate organic field-effect transistors (OFETs) with a bilayer gate dielectric and doped contacts fabricated on shape-memory polymer (SMP) substrates. SMPs exhibit large variations in Young's modulus dependent on temperature and have the ability to fix two or more geometric configurations when a proper stimulus is applied. These unique properties make SMPs desirable for three-dimensional shape applications of OFETs. The electrical properties of OFETs on SMP substrates are presented and compared to those of OFETs on traditional glass substrates.

  4. Nanoscale Design of Nano-Sized Particles in Shape-Memory Polymer Nanocomposites Driven by Electricity

    Directory of Open Access Journals (Sweden)

    Kai Yu

    2013-09-01

    Full Text Available In the last few years, we have witnessed significant progress in developing high performance shape memory polymer (SMP nanocomposites, in particular, for shape recovery activated by indirect heating in the presence of electricity, magnetism, light, radio frequency, microwave and radiation, etc. In this paper, we critically review recent findings in Joule heating of SMP nanocomposites incorporated with nanosized conductive electromagnetic particles by means of nanoscale control via applying an electro- and/or magnetic field. A few different nanoscale design principles to form one-/two-/three- dimensional conductive networks are discussed.

  5. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J.

    2017-12-12

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boiling points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.

  6. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability.

    Science.gov (United States)

    Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2017-02-15

    Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.

  7. Fabricating fast triggered electro-active shape memory graphite/silver nanowires/epoxy resin composite from polymer template.

    Science.gov (United States)

    Zhou, Jie; Li, Hua; Tian, Ran; Dugnani, Roberto; Lu, Huiyuan; Chen, Yujie; Guo, Yiping; Duan, Huanan; Liu, Hezhou

    2017-07-17

    In recent years shape-memory polymers have been under intense investigation due to their unique mechanical, thermal, and electrical properties that could potentially make them extremely valuable in numerous engineering applications. In this manuscript, we report a polymer-template-assisted assembly manufacturing strategy used to fabricate graphite/silver nanowires/epoxy resin (PGSE) composite. In the proposed method, the porous polymer foams work as the skeleton by forming three-dimensional graphite structure, whereas the silver nanowires act as the continuous conductive network. Preliminary testing on hybrid foams after vacuum infusion showed high electrical conductivity and excellent thermal stability. Furthermore, the composites were found to recover their original shape within 60 seconds from the application of a 0.8 V mm -1 electric field. Notably, the reported shape-memory polymer composites are manufactured with readily-available raw materials, they are fast to manufacture, and are shape-controlled.

  8. Two-way actuation behavior of shape memory polymer/elastomer core/shell composites

    International Nuclear Information System (INIS)

    Kang, Tae-Hyung; Lee, Jeong-Min; Yu, Woong-Ryeol; Youk, Ji Ho; Ryu, Hee Wook

    2012-01-01

    Semi-crystalline shape memory polymers (SMPs) show net two-way shape memory (2W-SM) behavior under constant stresses by the recoverable creep strain upon heating and stress-induced crystallization under the application of creep stress upon cooling. The applied constant stress is the key factor in this 2W-SM behavior. A core/shell structure is manufactured for the purpose of imparting a constant stress upon SMPs. An SMP in film or fiber form is dipped into a solution of an elastomer, photoinitiator, and curing agent and then dried out. After this dip coating process is repeatedly carried out, the SMP/elastomer core/shell composite is deformed into a temporary shape after being heated up above the transition temperature of the SMP. Under constant strain conditions, the composite is cooled down, after which the shell elastomer is cured using ultraviolet light. Then, the SMP/elastomer core/shell composite extends and contracts upon cooling and heating, respectively, without any external load. This cyclic deformation behavior is characterized, demonstrating that the current method offers a simple macroscopic processing technique to manufacture 2W-SM polymer composites. (paper)

  9. Biodegradable polyester-based shape memory polymers: Concepts of (supramolecular architecturing

    Directory of Open Access Journals (Sweden)

    J. Karger-Kocsis

    2014-06-01

    Full Text Available Shape memory polymers (SMPs are capable of memorizing one or more temporary shapes and recovering to the permanent shape upon an external stimulus that is usually heat. Biodegradable polymers are an emerging family within the SMPs. This minireview delivers an overlook on actual concepts of molecular and supramolecular architectures which are followed to tailor the shape memory (SM properties of biodegradable polyesters. Because the underlying switching mechanisms of SM actions is either related to the glass transition (Tg or melting temperatures (Tm, the related SMPs are classified as Tg- or Tm-activated ones. For fixing of the permanent shape various physical and chemical networks serve, which were also introduced and discussed. Beside of the structure developments in one-way, also those in two-way SM polyesters were considered. Adjustment of the switching temperature to that of the human body, acceleration of the shape recovery, enhancement of the recovery stress, controlled degradation, and recycling aspects were concluded as main targets for the future development of SM systems with biodegradable polyesters.

  10. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire

    International Nuclear Information System (INIS)

    Takashima, Kazuto; Sugitani, Kazuhiro; Morimoto, Naohiro; Sakaguchi, Seiya; Noritsugu, Toshiro; Mukai, Toshiharu

    2014-01-01

    Shape-memory polymer (SMP) can be deformed by applying a small load above its glass transition temperature (T g ). Shape-memory polymer maintains its shape after it has cooled below T g and returns to a predefined shape when subsequently heated above T g . The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred times. Based on the change in stiffness of the SMP in relation to the change in temperature, the present study attempts to evaluate the application of the SMP to soft actuators of a robot. In order to control the temperature of the SMP, we developed an SMP sheet with an embedded electrical heating wire. We formed a uniform, thin SMP sheet without air bubbles using a heat press. The SMP sheet with a heating wire can be heated quickly and can be maintained at a constant temperature. Moreover, the effects of the embedded wire on the mechanical properties in bending and tensile tests were small. Then, we applied the SMP sheet with the embedded electrical heating wire to a pneumatic artificial rubber muscle. The enhanced versatility of SMP sheet applications is demonstrated through a series of experiments conducted using a prototype. The initial shape and bending displacement of the pneumatic artificial rubber muscle can be changed by controlling the temperature of the SMP sheet. (paper)

  11. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire

    Science.gov (United States)

    Takashima, Kazuto; Sugitani, Kazuhiro; Morimoto, Naohiro; Sakaguchi, Seiya; Noritsugu, Toshiro; Mukai, Toshiharu

    2014-12-01

    Shape-memory polymer (SMP) can be deformed by applying a small load above its glass transition temperature (Tg). Shape-memory polymer maintains its shape after it has cooled below Tg and returns to a predefined shape when subsequently heated above Tg. The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred times. Based on the change in stiffness of the SMP in relation to the change in temperature, the present study attempts to evaluate the application of the SMP to soft actuators of a robot. In order to control the temperature of the SMP, we developed an SMP sheet with an embedded electrical heating wire. We formed a uniform, thin SMP sheet without air bubbles using a heat press. The SMP sheet with a heating wire can be heated quickly and can be maintained at a constant temperature. Moreover, the effects of the embedded wire on the mechanical properties in bending and tensile tests were small. Then, we applied the SMP sheet with the embedded electrical heating wire to a pneumatic artificial rubber muscle. The enhanced versatility of SMP sheet applications is demonstrated through a series of experiments conducted using a prototype. The initial shape and bending displacement of the pneumatic artificial rubber muscle can be changed by controlling the temperature of the SMP sheet.

  12. Analysis of the finite deformation response of shape memory polymers: I. Thermomechanical characterization

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Chen, Yi-Chao; Whitley, Karen S

    2010-01-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part I of this work presents the thermomechanical characterization of the material behavior of a shape memory polymer. In this experimental investigation, the vision image correlation system, a visual–photographic apparatus, was used to measure displacements in the gauge area. A series of tensile tests, which included nominal values of the extension of 10%, 25%, 50%, and 100%, were performed on SMP specimens. The effects on the free recovery behavior of increasing the value of the applied deformation and temperature rate were considered. The stress–extension relationship was observed to be nonlinear for increasing values of the extension, and the shape recovery was observed to occur at higher temperatures upon increasing the temperature rate. The experimental results, aided by the advanced experimental apparatus, present components of the material behavior which are critical for the development and calibration of models to describe the response of SMPs

  13. Combined, Independent Small Molecule Release and Shape Memory via Nanogel-Coated Thiourethane Polymer Networks.

    Science.gov (United States)

    Dailing, Eric A; Nair, Devatha P; Setterberg, Whitney K; Kyburz, Kyle A; Yang, Chun; D'Ovidio, Tyler; Anseth, Kristi S; Stansbury, Jeffrey W

    2016-01-28

    Drug releasing shape memory polymers (SMPs) were prepared from poly(thiourethane) networks that were coated with drug loaded nanogels through a UV initiated, surface mediated crosslinking reaction. Multifunctional thiol and isocyanate monomers were crosslinked through a step-growth mechanism to produce polymers with a homogeneous network structure that exhibited a sharp glass transition with 97% strain recovery and 96% shape fixity. Incorporating a small stoichiometric excess of thiol groups left pendant functionality for a surface coating reaction. Nanogels with diameter of approximately 10 nm bearing allyl and methacrylate groups were prepared separately via solution free radical polymerization. Coatings with thickness of 10-30 μm were formed via dip-coating and subsequent UV-initiated thiol-ene crosslinking between the SMP surface and the nanogel, and through inter-nanogel methacrylate homopolymerization. No significant change in mechanical properties or shape memory behavior was observed after the coating process, indicating that functional coatings can be integrated into an SMP without altering its original performance. Drug bioactivity was confirmed via in vitro culturing of human mesenchymal stem cells with SMPs coated with dexamethasone-loaded nanogels. This article offers a new strategy to independently tune multiple functions on a single polymeric device, and has broad application toward implantable, minimally invasive medical devices such as vascular stents and ocular shunts, where local drug release can greatly prolong device function.

  14. Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release.

    Science.gov (United States)

    Nagahama, Koji; Ueda, Yuichi; Ouchi, Tatsuro; Ohya, Yuichi

    2009-07-13

    Biodegradable shape-memory polymer networks prepared by cross-linking star shape branched oligo(ε-caprolactone) (bOCL) with hexamethylene diisocyanate are introduced. The thermal and mechanical properties of these networks were investigated using differential scanning calorimetry and tensile testing, respectively, and the morphology of the phase structure was characterized by polarized optical microscopy. The shape-memory properties of the networks were quantified using thermomechanical tensile experiments and showed strain fixity rates R(f) higher than 97% and strain recovery rates R(r) as high as 100%. Of note, networks of OCL segments with a lower degree of polymerization (DP; 10) exhibited significantly improved temperature-sensitive shape recovery: 90% of the permanent shape was recovered upon heating to within a 2 °C range (37-39 °C). The networks exhibited complete shape recovery to the permanent shape within 10 s at 42 °C. Theophylline-loaded (10 and 20 wt %) shape-memory materials, prepared by cross-linking bOCL with hexamethylene diisocyanate in the presence of theophylline, are also described as a model for a controlled drug release device. The 10 wt % loaded material was sufficiently soft and flexible for complex shape transformation and also showed high R(f) (98%) and R(r) (99%). Sustained release of loaded theophylline was achieved over 1 month without initial burst-release in a phosphate buffer solution (PBS; pH 7.4) at 37 °C.

  15. 3D Printing of a Thermoplastic Shape Memory Polymer using FDM

    Science.gov (United States)

    Zhao, Zhiyang; Weiss, R. A.; Vogt, Bryan

    Shape memory polymers (SMPs) change from a temporary shape to its permanent shape when exposed to an external stimulus. The shape memory relies on the presence of two independent networks. 3D printing provides a facile method to fabricate complex shapes with high degrees of customizability. The most common consumer 3D printing technology is fused deposition modeling (FDM), which relies on the extrusion of a thermoplastic filament to build-up the part in a layer by layer fashion. The material choices for FDM are limited, but growing. The generation of an SMP that is printable by FDM could open SMPs to many new potential applications. In this work, we demonstrate printing of thermally activated SMP using FDM. Partially neutralized poly(ethylene-co-r-methacrylic acid) ionomers (Surlyn by Dupont) was extruded into filaments and used as a model thermoplastic shape memory material. The properties of the SMP part can be readily tuned by print parameters, such as infill density or infill direction without changing the base material. We discuss the performance and characteristics of 3D printed shapes compared to their compression molded analogs.

  16. Pre-stressed piezoelectric bimorph micro-actuators based on machined 40 µm PZT thick films: batch scale fabrication and integration with MEMS

    Science.gov (United States)

    Wilson, S. A.; Jourdain, R. P.; Owens, S.

    2010-09-01

    The projected force-displacement capability of piezoelectric ceramic films in the 20-50 µm thickness range suggests that they are well suited to many micro-fluidic and micro-pneumatic applications. Furthermore when they are configured as bending actuators and operated at ~ 1 V µm - 1 they do not necessarily conform to the high-voltage, very low-displacement piezoelectric stereotype. Even so they are rarely found today in commercial micro-electromechanical devices, such as micro-pumps and micro-valves, and the main barriers to making them much more widely available would appear to be processing incompatibilities rather than commercial desirability. In particular, the issues associated with integration of these devices into MEMS at the production level are highly significant and they have perhaps received less attention in the mainstream than they deserve. This paper describes a fabrication route based on ultra-precision ceramic machining and full-wafer bonding for cost-effective batch scale production of thick film PZT bimorph micro-actuators and their integration with MEMS. The resulting actuators are pre-stressed (ceramic in compression) which gives them added performance, they are true bimorphs with bi-directional capability and they exhibit full bulk piezoelectric ceramic properties. The devices are designed to integrate with ancillary systems components using transfer-bonding techniques. The work forms part of the European Framework 6 Project 'Q2M—Quality to Micro'.

  17. A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress within Arteriovenous Grafts

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J M; Small, W; Wilson, T S; Benett, W; Loge, J; Maitland, D J

    2006-08-16

    A deployable, shape memory polymer adapter is investigated for reducing the hemodynamic stress caused by a dialysis needle flow within an arteriovenous graft. Computational fluid dynamics simulations of dialysis sessions with and without the adapter demonstrate that the adapter provides a significant decrease in the wall shear stress. In vitro flow visualization measurements are made within a graft model following delivery and actuation of a prototype shape memory polymer adapter. Vascular access complications resulting from arteriovenous (AV) graft failures account for over $1 billion per year in the health care costs of dialysis patients in the U.S.[1] The primary mode of failure of arteriovenous fistulas (AVF's) and polytetrafluoroethylene (PTFE) grafts is the development of intimal hyperplasia (IH) and the subsequent formation of stenotic lesions, resulting in a graft flow decline. The hemodynamic stresses arising within AVF's and PTFE grafts play an important role in the pathogenesis of IH. Studies have shown that vascular damage can occur in regions where there is flow separation, oscillation, or extreme values of wall shear stress (WSS).[2] Nevaril et al.[3] show that exposure of red blood cells to WSS's on the order of 1500 dynes/cm2 can result in hemolysis. Hemodynamic stress from dialysis needle flow has recently been investigated for the role it plays in graft failure. Using laser Doppler velocimetry measurements, Unnikrishnan et al.[4] show that turbulence intensities are 5-6 times greater in the AV flow when the needle flow is present and that increased levels of turbulence exist for approximately 7-8cm downstream of the needle. Since the AVF or PTFE graft is exposed to these high levels of hemodynamic stress several hours each week during dialysis sessions, it is quite possible that needle flow is an important contributor to vascular access occlusion.[4] We present a method for reducing the hemodynamic stress in an AV graft by tailoring

  18. A phenomenological formulation for the shape/temperature memory effect in amorphous polymers with multi-stress components

    Science.gov (United States)

    Lu, Haibao; Wang, Xiaodong; Yu, Kai; Huang, Wei Min; Yao, Yongtao; Leng, Jinsong

    2017-09-01

    By means of combining the influence of temperature and strain rate, and based on the cooperative Eyring model, a phenomenological formulation for the shape memory effect and temperature memory effect of an amorphous shape memory polymer (SMP) is proposed. The internal stress and stored mechanical energy are correlated to shape/temperature memory behaviours below and above the glass transition temperature. The working mechanism and fundamentals for the chemo-responsive shape memory behaviour in SMPs are further investigated in terms of the activation enthalpy parameter for inductive depression. Simulation using the proposed model is compared with the experimental results reported in the literature. Predictions are also made using the proposed model. This phenomenological framework is expected to provide a powerful tool for investigating the underlying thermomechanics that originate in the movement of cooperative segments and segmental relaxations in SMPs.

  19. Ordered arrays of a defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption.

    Science.gov (United States)

    Chen, Xiang-Zhong; Chen, Xin; Guo, Xu; Cui, Yu-Shuang; Shen, Qun-Dong; Ge, Hai-Xiong

    2014-11-21

    Ferroelectric polymers are among the most promising materials for flexible electronic devices. Highly ordered arrays of the defect-modified ferroelectric polymer P(VDF-TrFE-CFE) (poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)) are fabricated by nanoimprint lithography for nonvolatile memory application. The defective CFE units reduce the coercive field to one-fifth of that of the un-modified P(VDF-TrFE), which can help minimize the energy consumption and extend the lifespan of the device. The nanoimprint process leads to preferable orientation of polymer chains and delicately controlled distribution of the defects, and thus a bi-stable polarization that makes the memory nonvolatile, as revealed by the pulsed polarization experiment.

  20. Self-assembled shape-memory fibers of triblock liquid-crystal polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ahir, S.V.; Tajbakhsh, A.R.; Terentjev, E.M. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2006-03-03

    New thermoplastic liquid-crystalline elastomers have been synthesized using the telechelic principle of microphase separation in triblock copolymers. The large central block is made of a main-chain nematic polymer renowned for its large spontaneous elongation along the nematic director. The effective crosslinking is established by small terminal blocks formed of terphenyl moieties, which phase separate into semicrystalline micelles acting as multifunctional junction points of the network. The resulting transient network retains the director alignment and shows a significant shape-memory effect, characteristic and exceeding that of covalently bonded nematic elastomers. Its plasticity at temperatures above the nematic-isotropic transition allows drawing thin well-aligned fibers from the melt. The fibers have been characterized and their thermal actuator behavior - reversible contraction of heating and elongation on cooling - has been investigated. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  2. Fabrication and Characterization of Cylindrical Light Diffusers Comprised of Shape Memory Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Buckley, P R; Wilson, T S; Loge, J M; Maitland, K D; Maitland, D J

    2007-01-29

    We have developed a technique for constructing light diffusing devices comprised of a flexible shape memory polymer (SMP) cylindrical diffuser attached to the tip of an optical fiber. Devices were fabricated by casting an SMP rod over the cleaved tip of an optical fiber and media blasting the SMP rod to create a light diffusing surface. The axial and polar emission profiles and circumferential (azimuthal) uniformity were characterized for various blasting pressures, nozzle-to-sample distances, and nozzle translation speeds. The diffusers were generally strongly forward-directed and consistently withstood over 8 W of incident infrared laser light without suffering damage when immersed in water. These devices are suitable for various endoluminal and interstitial biomedical applications.

  3. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.

    Science.gov (United States)

    Woodard, Lindsay N; Page, Vanessa M; Kmetz, Kevin T; Grunlan, Melissa A

    2016-12-01

    Thermoresponsive shape memory polymers (SMPs) based on poly(ε-caprolactone) (PCL) whose shape may be actuated by a transition temperature (T trans ) have shown utility for a variety of biomedical applications. Important to their utility is the ability to modulate mechanical and degradation properties. Thus, in this work, SMPs are formed as semi-interpenetrating networks (semi-IPNs) comprised of a cross-linked PCL diacrylate (PCL-DA) network and thermoplastic poly(l-lactic acid) (PLLA). The semi-IPN uniquely allows for requisite crystallization of both PCL and PLLA. The influence of PLLA (PCL:PLLA wt% ratio) and PCL-DA molecular weight (n) on film properties are investigated. PCL-PLLA semi-IPNs are able to achieve enhanced mechanical properties and accelerated rates of degradation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Self-healing of sandwich structures with a grid stiffened shape memory polymer syntactic foam core

    Science.gov (United States)

    John, Manu; Li, Guoqiang

    2010-07-01

    In this paper, a new sandwich with an orthogrid stiffened shape memory polymer (SMP) based syntactic foam core was proposed, fabricated, programmed, impacted, healed (sealed), and compression tested, for the purposes of healing impact damage repeatedly and almost autonomously. Two prestrain levels (3% and 20%), two impact energy levels (30.0 and 53.3 J), and two recovery (healing) conditions (2D confined and 3D confined) were employed in this paper. Up to seven impact-healing cycles were conducted. Macroscopic and microscopic damage-healing observation and analysis were implemented. Residual strength was evaluated using an anti-buckling compression test fixture. It was found that the healing efficiency was over 100% for almost all the impact-healing cycles; programming using 20% prestrain led to higher residual strength than that with 3% prestrain; 3D confined recovery resulted in higher residual strength than 2D confined recovery; and as the impact energy increased, the healing efficiency slightly decreased.

  5. Solvent-Free Patterning of Colloidal Quantum Dot Films Utilizing Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    Hohyun Keum

    2017-01-01

    Full Text Available Colloidal quantum dots (QDs with properties that can be tuned by size, shape, and composition are promising for the next generation of photonic and electronic devices. However, utilization of these materials in such devices is hindered by the limited compatibility of established semiconductor processing techniques. In this context, patterning of QD films formed from colloidal solutions is a critical challenge and alternative methods are currently being developed for the broader adoption of colloidal QDs in functional devices. Here, we present a solvent-free approach to patterning QD films by utilizing a shape memory polymer (SMP. The high pull-off force of the SMP below glass transition temperature (Tg in conjunction with the conformal contact at elevated temperatures (above Tg enables large-area, rate-independent, fine patterning while preserving desired properties of QDs.

  6. Monitoring static shape memory polymers using a fiber Bragg grating as a vector-bending sensor

    Science.gov (United States)

    Li, Peng; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Leng, Jinsong

    2013-01-01

    We propose and demonstrate a technique for monitoring the recovery deformation of the shape-memory polymers (SMP) using a surface-attached fiber Bragg grating (FBG) as a vector-bending sensor. The proposed sensing scheme could monitor the pure bending deformation for the SMP sample. When the SMP sample undergoes concave or convex bending, the resonance wavelength of the FBG will have red-shift or blue-shift according to the tensile or compressive stress gradient along the FBG. As the results show, the bending sensitivity is around 4.07 nm/cm-1. The experimental results clearly indicate that the deformation of such an SMP sample can be effectively monitored by the attached FBG not just for the bending curvature but also the bending direction.

  7. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser

    2013-10-29

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    Science.gov (United States)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  9. Fire-Retardant, Self-Extinguishing Inorganic/Polymer Composite Memory Foams.

    Science.gov (United States)

    Chatterjee, Soumyajyoti; Shanmuganathan, Kadhiravan; Kumaraswamy, Guruswamy

    2017-12-27

    Polymeric foams used in furniture and automotive and aircraft seating applications rely on the incorporation of environmentally hazardous fire-retardant additives to meet fire safety norms. This has occasioned significant interest in novel approaches to the elimination of fire-retardant additives. Foams based on polymer nanocomposites or based on fire-retardant coatings show compromised mechanical performance and require additional processing steps. Here, we demonstrate a one-step preparation of a fire-retardant ice-templated inorganic/polymer hybrid that does not incorporate fire-retardant additives. The hybrid foams exhibit excellent mechanical properties. They are elastic to large compressional strain, despite the high inorganic content. They also exhibit tunable mechanical recovery, including viscoelastic "memory". These hybrid foams are prepared using ice-templating that relies on a green solvent, water, as a porogen. Because these foams are predominantly comprised of inorganic components, they exhibit exceptional fire retardance in torch burn tests and are self-extinguishing. After being subjected to a flame, the foam retains its porous structure and does not drip or collapse. In micro-combustion calorimetry, the hybrid foams show a peak heat release rate that is only 25% that of a commercial fire-retardant polyurethanes. Finally, we demonstrate that we can use ice-templating to prepare hybrid foams with different inorganic colloids, including cheap commercial materials. We also demonstrate that ice-templating is amenable to scale up, without loss of mechanical performance or fire-retardant properties.

  10. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization

    Science.gov (United States)

    Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin

    2017-09-01

    Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.

  11. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water

    International Nuclear Information System (INIS)

    Zhang, Ben; DeBartolo, Janae E.; Song, Jie

    2017-01-01

    Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydration was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.

  12. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths

    Science.gov (United States)

    Zhang, Dawei; Giese, Melissa L.; Prukop, Stacy L.; Grunlan, Melissa A.

    2012-01-01

    Thermoresponsive shape memory polymers (SMPs) are stimuli-responsive materials that return to their permanent shape from a temporary shape in response to heating. The design of new SMPs which obtain a broader range of properties including mechanical behavior is critical to realize their potential in biomedical as well as industrial and aerospace applications. To tailor the properties of SMPs, “AB networks” comprised of two distinct polymer components have been investigated but are overwhelmingly limited to those in which both components are organic. In this present work, we prepared inorganic-organic SMPs comprised of inorganic polydimethyl-siloxane (PDMS) segments of varying lengths and organic poly(ε-caprolactone) (PCL) segments. PDMS has a particularly low Tg (−125 °C) which makes it a particularly effective soft segment to tailor the mechanical properties of PCL-based SMPs. The SMPs were prepared via the rapid photocure of solutions of diacrylated PCL40-block-PDMSm-block-PCL40 macromers (m = 20, 37, 66 and 130). The resulting inorganic-organic SMP networks exhibited excellent shape fixity and recovery. By changing the PDMS segment length, the thermal, mechanical, and surface properties were systematically altered. PMID:22904597

  13. Shape memory polymers with enhanced visibility for magnetic resonance- and X-ray imaging modalities.

    Science.gov (United States)

    Weems, A C; Szafron, J M; Easley, A D; Herting, S; Smolen, J; Maitland, D J

    2017-05-01

    Currently, monitoring of minimally invasive medical devices is performed using fluoroscopy. The risks associated with fluoroscopy, including increased risk of cancer, make this method especially unsuitable for pediatric device delivery and follow-up procedures. A more suitable method is magnetic resonance (MR) imaging, which makes use of harmless magnetic fields rather than ionizing radiation when imaging the patient; this method is safer for both the patient and the performing technicians. Unfortunately, there is a lack of research available on bulk polymeric materials to enhance MR-visibility for use in medical devices. Here we show the incorporation of both physical and chemical modifying agents for the enhancement of both MR and X-ray visibility. Through the incorporation of these additives, we are able to control shape recovery of the polymer without sacrificing the thermal transition temperatures or the mechanical properties. For long-term implantation, these MR-visible materials do not have altered degradation profiles, and the release of additives is well below significant thresholds for daily dosages of MR-visible compounds. We anticipate our materials to be a starting point for safer, MR-visible medical devices incorporating polymeric components. Shape memory polymers (SMPs) are polymeric materials with unique shape recovery abilities that are being considered for use in biomedical and medical device applications. This paper presents a methodology for the development of MR and X-ray visible SMPs using either a chemically loaded or physical loaded method during polymer synthesis. Such knowledge is imperative for the development and clinical application of SMPs for biomedical devices, specifically for minimally-invasive vascular occlusion treatments, and while there are studies pertaining to the visibility of polymeric particles, little work has been performed on the utility of biomaterials intended for medical devices and the impact of how adding multiple

  14. Estimation of creep and recovery behavior of a shape memory polymer

    Science.gov (United States)

    Sakai, Takenobu; Tao, Takayuki; Somiya, Satoshi

    2015-11-01

    The shape recovery and shape fixity properties of shape memory polymers (SMPs), advanced functional materials, were investigated in this study. Although the shape recovery behavior of these polymers has been examined from a viscoelastic point of view, questions remain with regard to quantifying the recovery behavior of SMPs. SMPs can recover their shape after the molding process; this recovery occurs via creep recovery and/or shape recovery; an estimation of SMP recovery requires a good understanding of both processes. In this study, the time-temperature superposition principle was applied to the creep and shape recovery behavior of SMPs. The creep behavior was estimated using an experimentally obtained master curve and time-temperature shift factors. Our estimated results were in good agreement with the experimental data. However, the estimation of the creep recovery with changing temperature below or above the glass transition temperature was not successful due to the lack of consideration of the shape recovery behavior. The time and temperature dependency of the shape recovery were confirmed for creep behavior, using the master curve for the recovery ratio and the corresponding shift factors for shape recovery. The values of the shape recovery shift factors differed from those for the time-temperature shift factors obtained for creep behavior. Therefore, these shape recovery shift factors were used in the estimation of creep and shape recovery behavior using the master curve for the creep tests. The estimated results were closer to the results obtained experimentally. Moreover, our results indicated that the recovery behavior above Tg was dominated by shape recovery as a result of polymer viscoelasticity.

  15. Toward Self-Control Systems for Neurogenic Underactive Bladder: A Triboelectric Nanogenerator Sensor Integrated with a Bistable Micro-Actuator.

    Science.gov (United States)

    Arab Hassani, Faezeh; Mogan, Roshini P; Gammad, Gil G L; Wang, Hao; Yen, Shih-Cheng; Thakor, Nitish V; Lee, Chengkuo

    2018-04-24

    Aging, neurologic diseases, and diabetes are a few risk factors that may lead to underactive bladder (UAB) syndrome. Despite all of the serious consequences of UAB, current solutions, the most common being ureteric catheterization, are all accompanied by serious shortcomings. The necessity of multiple catheterizations per day for a physically able patient not only reduces the quality of life with constant discomfort and pain but also can end up causing serious complications. Here, we present a bistable actuator to empty the bladder by incorporating shape memory alloy components integrated on flexible polyvinyl chloride sheets. The introduction of two compression and restoration phases for the actuator allows for repeated actuation for a more complete voiding of the bladder. The proposed actuator exhibits one of the highest reported voiding percentages of up to 78% of the bladder volume in an anesthetized rat after only 20 s of actuation. This amount of voiding is comparable to the common catheterization method, and its one time implantation onto the bladder rectifies the drawbacks of multiple catheterizations per day. Furthermore, the scaling of the device for animal models larger than rats can be easily achieved by adjusting the number of nitinol springs. For neurogenic UAB patients with degraded nerve function as well as degenerated detrusor muscle, we integrate a flexible triboelectric nanogenerator sensor with the actuator to detect the fullness of the bladder. The sensitivity of this sensor to the filling status of the bladder shows its capability for defining a self-control system in the future that would allow autonomous micturition.

  16. Multiple shape memory polymers based on laminates formed from thiol-click chemistry based polymerizations.

    Science.gov (United States)

    Podgórski, M; Wang, C; Bowman, C N

    2015-09-14

    This investigation details the formation of polymer network trilayer laminates formed by thiol-X click chemistries, and their subsequent implementation and evaluation for quadruple shape memory behavior. Thiol-Michael addition and thiol-isocyanate-based crosslinking reactions were employed to fabricate each of the laminate's layers with independent control of the chemistry and properties of each layer and outstanding interlayer adhesion and stability. The characteristic features of step-growth thiol-X reactions, such as excellent network uniformity and narrow thermal transitions as well as their stoichiometric nature, enabled fabrication of trilayer laminates with three distinctly different glass transition temperatures grouped within a narrow range of 100 °C. Through variations in the layer thicknesses, a step-wise modulus drop as a function of temperature was achieved. This behavior allowed multi-step programming and the demonstration and quantification of quadruple shape memory performance. As is critical for this performance, the interface connecting the layers was evaluated in stoichiometric as well as off-stoichiometric systems. It was shown that the laminated structures exhibit strong interfacial binding and hardly suffer any delamination during cyclic material testing and deformation.

  17. Influences of poly (vinyl alcohol molecular weight and carbon nanotubes on radiation crosslinking shape memory polymers

    Directory of Open Access Journals (Sweden)

    Aamer A.M. Alfayyadh

    2017-06-01

    Full Text Available Polyvinyl alcohol (PVA of two molecular weights was used to prepare shape memory polymers based on chemical-crosslinking by glutaraldehyde. The chemical-crosslinking was done in the presence of 2-carboxyethyl acrylate oligomers (CEA and nano-filler [multi-wall carbon nanotubes (MWCNT and functionalized carbon nanotubes (MWCNT-NH2] followed by radiation-induced crosslinking. The analysis of the material revealed an increase in the gel fraction and a significant reduction in swelling of the nanocomposite material that was crosslinked with both glutaraldehyde and ionizing radiation. The radiation crosslinked nanocomposites demonstrated approximately a 90% gelation over a range of 50–300 kGy irradiation doses. The scanning electron microscopy (SEM analysis showed a homogeneous distribution of nanocomposites in the composite matrix. The thermal properties of radiation crosslinked (PVA/CEA and (PVA-CEA-nano-fillers were investigated by a thermogravimetric analysis (TGA. The mechanical properties were examined via dynamic mechanical analysis (DMA which showed significant variation because of the addition of nanocomposites. This radiation crosslinked materials show good shape memory behavior that may be useful in many applications based on the range of temperatures at which Tan δ appears.

  18. Chromogenic Photonic Crystal Sensors Enabled by Multistimuli-Responsive Shape Memory Polymers.

    Science.gov (United States)

    Leo, Sin-Yen; Zhang, Wei; Zhang, Yifan; Ni, Yongliang; Jiang, Helena; Jones, Cory; Jiang, Peng; Basile, Vito; Taylor, Curtis

    2018-03-01

    Here novel chromogenic photonic crystal sensors based on smart shape memory polymers (SMPs) comprising polyester/polyether-based urethane acrylates blended with tripropylene glycol diacrylate are reported, which exhibit nontraditional all-room-temperature shape memory (SM) effects. Stepwise recovery of the collapsed macropores with 350 nm diameter created by a "cold" programming process leads to easily perceived color changes that can be correlated with the concentrations of swelling analytes in complex, multicomponent nonswelling mixtures. High sensitivity (as low as 10 ppm) and unprecedented measurement range (from 10 ppm to 30 vol%) for analyzing ethanol in octane and gasoline have been demonstrated by leveraging colorimetric sensing in both liquid and gas phases. Proof-of-concept tests for specifically detecting ethanol in consumer medical and healthcare products have also been demonstrated. These sensors are inexpensive, reusable, durable, and readily deployable with mobile platforms for quantitative analysis. Additionally, theoretical modeling of solvent diffusion in macroporous SMPs provides fundamental insights into the mechanisms of nanoscopic SM recovery, which is a topic that has received little examination. These novel sensors are of great technological importance in a wide spectrum of applications ranging from environmental monitoring and workplace hazard identification to threat detection and process/product control in chemical, petroleum, and pharmaceutical industries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.

    Science.gov (United States)

    Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang

    2017-10-25

    Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.

  20. Shape recovery in a thermoset shape memory polymer and its fabric-reinforced composites

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available A shape memory polymer (SMP can be deformed from a permanent to a temporary shape above their transformation temperature. Upon reheating, the SMP spontaneously returns to the permanent shape. SMP’s show high deformability, but the recovery stresses are very low, thus limiting the size of the components. This paper presents the first results of an ongoing research to develop large sized components based on SMP. To achieve higher recovery stresses, asymmetric fibre reinforced shape memory composites were produced (SMPC using resin transfer moulding. The results show a 30-fold increase in recovery stress, compared to the neat SMP resin. The recovery stress is independent of the deformation temperature, but is strongly affected by the degree of deformation. At higher deformation levels, crazing occurs. Even though the visible effects of the crazing disappear during reheating, it does influence the recovery stress. This indicates that the ability to recover the permanent shape might change in cyclic loading. All composites tested show complete recovery upon reheating. The rate of shape recovery is higher when the fibre reinforcement is loaded in compression.

  1. Multi-shape active composites by 3D printing of digital shape memory polymers.

    Science.gov (United States)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-04-13

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  2. Effects of sensitizer length on radiation crosslinked shape-memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ware, Taylor, E-mail: tware@gatech.ed [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332 (United States); Voit, Walter [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332 (United States); Gall, Ken [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332 (United States); Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332 (United States)

    2010-04-15

    Shape-memory polymers (SMPs) are smart materials that can be designed to retain a metastable state and upon activation, recover a preprogrammed shape. In this study, poly(methyl acrylate) (PMA) is blended with poly(ethylene glycol) diacrylate (PEGDA) of various molecular weights in various concentrations and subsequently exposed to ionizing radiation. PEGDA sensitizes the radiation crosslinking of PMA, lowering the minimum absorbed dose for gelation and increasing the rubbery modulus, after crosslinking. Minimum dose for gelation, as determined by the Charlesby-Pinner equation, decreases from 25.57 kGy for unblended PMA to 2.06 kGy for PMA blended with 10.00 mole% PEGDA. Moreover, increase in the blend concentration of PEGDA increases the crosslinking density of the resulting networks. Sensitizer length, namely M{sub n} of PEGDA, also affects crosslinking and final mechanical properties. Increase in the length of the PEGDA molecule at a constant molar ratio increases the efficacy of the molecule as a radiation sensitizer as determined by the increase in gel fraction and rubbery modulus across doses. However, at a constant weight ratio of PEGDA to PMA, shorter PEGDA chains sensitize more crosslinking because they have more reactive ends per weight fraction. Sensitized samples of PMA with PEGDA were tested for shape-memory properties and showed shape fixity of greater than 99%. Samples had a glass transition temperature near 28 deg. C and recovered between 97% and 99% of the induced strain when strained to 50%.

  3. Effects of sensitizer length on radiation crosslinked shape-memory polymers

    Science.gov (United States)

    Ware, Taylor; Voit, Walter; Gall, Ken

    2010-04-01

    Shape-memory polymers (SMPs) are smart materials that can be designed to retain a metastable state and upon activation, recover a preprogrammed shape. In this study, poly(methyl acrylate) (PMA) is blended with poly(ethylene glycol) diacrylate (PEGDA) of various molecular weights in various concentrations and subsequently exposed to ionizing radiation. PEGDA sensitizes the radiation crosslinking of PMA, lowering the minimum absorbed dose for gelation and increasing the rubbery modulus, after crosslinking. Minimum dose for gelation, as determined by the Charlesby-Pinner equation, decreases from 25.57 kGy for unblended PMA to 2.06 kGy for PMA blended with 10.00 mole% PEGDA. Moreover, increase in the blend concentration of PEGDA increases the crosslinking density of the resulting networks. Sensitizer length, namely Mn of PEGDA, also affects crosslinking and final mechanical properties. Increase in the length of the PEGDA molecule at a constant molar ratio increases the efficacy of the molecule as a radiation sensitizer as determined by the increase in gel fraction and rubbery modulus across doses. However, at a constant weight ratio of PEGDA to PMA, shorter PEGDA chains sensitize more crosslinking because they have more reactive ends per weight fraction. Sensitized samples of PMA with PEGDA were tested for shape-memory properties and showed shape fixity of greater than 99%. Samples had a glass transition temperature near 28 °C and recovered between 97% and 99% of the induced strain when strained to 50%.

  4. Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: Testing and constitutive modeling

    Science.gov (United States)

    Li, Guoqiang; Xu, Wei

    2011-06-01

    Programming is a key process for thermally activated stress or strain recovery of shape memory polymers (SMPs). Typically, programming requires an initial heating above the glass transition temperature ( Tg), subsequent cooling below Tg and removal of the applied load, in order to fix a temporary shape. This work adopted a new approach to program thermoset SMPs directly at temperatures well below Tg, which effectively simplified the shape fixing process. 1-D compression programming below Tg and free shape recovery of a thermoset SMP were experimentally investigated. Functional stability of the shape fixity under various environmental attacks was also experimentally evaluated. A mechanism-based thermoviscoelastic-thermoviscoplastic constitutive model incorporating structural and stress relaxation was then developed to predict the nonlinear shape memory behavior of the SMP trained below Tg. Comparison between the prediction and the experiment showed good agreement. The structure dependence of the thermomechanical behavior of the SMP was further discussed through a parametric study per the validated constitutive model. This study validates that programming by cold-compression is a viable alternative for thermally responsive thermoset SMPs.

  5. Fabrication of a Bioactive, PCL-based "Self-fitting" Shape Memory Polymer Scaffold.

    Science.gov (United States)

    Nail, Lindsay N; Zhang, Dawei; Reinhard, Jessica L; Grunlan, Melissa A

    2015-10-23

    Tissue engineering has been explored as an alternative strategy for the treatment of critical-sized cranio-maxillofacial (CMF) bone defects. Essential to the success of this approach is a scaffold that is able to conformally fit within an irregular defect while also having the requisite biodegradability, pore interconnectivity and bioactivity. By nature of their shape recovery and fixity properties, shape memory polymer (SMP) scaffolds could achieve defect "self-fitting." In this way, following exposure to warm saline (~60 ºC), the SMP scaffold would become malleable, permitting it to be hand-pressed into an irregular defect. Subsequent cooling (~37 ºC) would return the scaffold to its relatively rigid state within the defect. To meet these requirements, this protocol describes the preparation of SMP scaffolds prepared via the photochemical cure of biodegradable polycaprolactone diacrylate (PCL-DA) using a solvent-casting particulate-leaching (SCPL) method. A fused salt template is utilized to achieve pore interconnectivity. To realize bioactivity, a polydopamine coating is applied to the surface of the scaffold pore walls. Characterization of self-fitting and shape memory behaviors, pore interconnectivity and in vitro bioactivity are also described.

  6. Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application.

    Science.gov (United States)

    Peng, Qingyu; Wei, Hongqiu; Qin, Yuyang; Lin, Zaishan; Zhao, Xu; Xu, Fan; Leng, Jinsong; He, Xiaodong; Cao, Anyuan; Li, Yibin

    2016-10-27

    Electrical stimulation of shape-memory polymers (SMPs) has many advantages over thermal methods; creating an efficient conductive path through the bulk polymers is essential for developing high performance electroactive systems. Here, we show that a three-dimensional (3D) porous carbon nanotube sponge can serve as a built-in integral conductive network to provide internal, homogeneous, in situ Joule heating for shape-memory polymers, thus significantly improving the mechanical and thermal behavior of SMPs. As a result, the 3D nanocomposites show a fast response and produce large exerting forces (with a maximum flexural stress of 14.6 MPa) during shape recovery. We further studied the construction of a double-layer composite structure for bidirectional actuation, in which the shape change is dominated by the temperature-dependent exerting force from the top and bottom layer, alternately. An inchworm-type robot is demonstrated whose locomotion is realized by such bidirectional shape memory. Our large stroke shape-memory nanocomposites have promising applications in many areas including artificial muscles and bionic robots.

  7. Demonstration of a multiscale modeling technique: prediction of the stress–strain response of light activated shape memory polymers

    International Nuclear Information System (INIS)

    Beblo, Richard V; Weiland, Lisa Mauck

    2010-01-01

    Presented is a multiscale modeling method applied to light activated shape memory polymers (LASMPs). LASMPs are a new class of shape memory polymer (SMPs) being developed for adaptive structures applications where a thermal stimulus is undesirable. LASMP developmental emphasis is placed on optical manipulation of Young's modulus. A multiscale modeling approach is employed to anticipate the soft and hard state moduli solely on the basis of a proposed molecular formulation. Employing such a model shows promise for expediting down-selection of favorable formulations for synthesis and testing, and subsequently accelerating LASMP development. An empirical adaptation of the model is also presented which has applications in system design once a formulation has been identified. The approach employs rotational isomeric state theory to build a molecular scale model of the polymer chain yielding a list of distances between the predicted crosslink locations, or r-values. The r-values are then fitted with Johnson probability density functions and used with Boltzmann statistical mechanics to predict stress as a function of the strain of the phantom polymer network. Empirical adaptation for design adds junction constraint theory to the modeling process. Junction constraint theory includes the effects of neighboring chain interactions. Empirical fitting results in numerically accurate Young's modulus predictions. The system is modular in nature and thus lends itself well to being adapted to other polymer systems and development applications

  8. Formation of holographic polymer-dispersed liquid crystal memory by angle-multiplexing recording for optically reconfigurable gate arrays.

    Science.gov (United States)

    Ogiwara, Akifumi; Watanabe, Minoru

    2015-12-20

    Formation of holographic polymer-dispersed liquid crystal (HPDLC) memory for an optically reconfigurable gate array is discussed for angle-multiplexing recording by controlling the laser interference exposure in LC composites. The successive laser illumination system to record the various configuration contexts at the specified region and angle in HPDLC memory is constructed by using the combination of a half-mirror and a photomask placed on the motorized stages under the control of a personal computer. The effect of laser exposure energy on the formation of holographic memory is investigated by measuring diffraction intensity as a function of exposure energy during the grating formation process and observing the internal grating structure by scanning electron microscopy. The optical reconfiguration in the gate-array VLSI is executed for configuration contexts of OR and NOR operations shown as logical operators that are reconstructed by laser irradiation at different incident angles for a specified region in the HPDLC memory.

  9. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering.

    Science.gov (United States)

    Xie, Meihua; Wang, Ling; Ge, Juan; Guo, Baolin; Ma, Peter X

    2015-04-01

    Preparation of functional shape memory polymer (SMP) for tissue engineering remains a challenge. Here the synthesis of strong electroactive shape memory polymer (ESMP) networks based on star-shaped polylactide (PLA) and aniline trimer (AT) is reported. Six-armed PLAs with various chain lengths were chemically cross-linked to synthesize SMP. After addition of an electroactive AT segment into the SMP, ESMP was obtained. The polymers were characterized by (1)H NMR, GPC, FT-IR, CV, DSC, DMA, tensile test, and degradation test. The SMP and ESMP exhibited strong mechanical properties (modulus higher than GPa) and excellent shape memory performance: short recovery time (several seconds), high recovery ratio (over 94%), and high fixity ratio (almost 100%). Moreover, cyclic voltammetry test confirmed the electroactivity of the ESMP. The ESMP significantly enhanced the proliferation of C2C12 cells compared to SMP and linear PLA (control). In addition, the ESMP greatly improved the osteogenic differentiation of C2C12 myoblast cells compared to PH10 and PLA in terms of ALP enzyme activity, immunofluorescence staining, and relative gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). These intelligent SMPs and electroactive SMP with strong mechanical properties, tunable degradability, good electroactivity, biocompatibility, and enhanced osteogenic differentiation of C2C12 cells show great potential for bone regeneration.

  10. Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation

    Science.gov (United States)

    Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai

    2018-01-01

    In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.

  11. Sensing and actuating capabilities of a shape memory polymer composite integrated with hybrid filler

    International Nuclear Information System (INIS)

    Lu, Haibao; Yu, Kai; Leng, Jinsong; Liu, Yanju

    2010-01-01

    In this paper, hybrid fillers, including carbon black (CB) and chopped short carbon fibers (SCF), are integrated into a styrene-based shape memory polymer (SMP) with sensing and actuating capabilities. The hybrid filler is expected to transform insulating SMP into conducting. Static mechanical properties of the SMP composites containing various filler concentrations of hybrid filler reinforcement are studied first, and it is theoretically and experimentally confirmed that the mechanical properties are significantly improved by a factor of filler content of SCF. The excellent electrical properties of this novel type of SMP composite are determined by a four-point-probe method. As a consequence, the sensing properties of SMP composite filled with 5 wt% CB and 2 wt% SCF are characterized by functions of temperature and strain. These two experimental results both aid the use of SMP composites as sensors that respond to changes in temperature or mechanical loads. On the other hand, the actuating capability of SMP composites is also validated and demonstrated. The dynamic mechanical analysis result reveals that the output strength of SMP composites is improved with an increase in filler content of SCF. The actuating capability of SMP composites is subsequently demonstrated in a series of photographs

  12. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling

    Science.gov (United States)

    Hu, G. F.; Damanpack, A. R.; Bodaghi, M.; Liao, W. H.

    2017-12-01

    The main objective of this paper is to introduce a 4D printing method to program shape memory polymers (SMPs) during fabrication process. Fused deposition modeling (FDM) as a filament-based printing method is employed to program SMPs during depositing the material. This method is implemented to fabricate complicated polymeric structures by self-bending features without need of any post-programming. Experiments are conducted to demonstrate feasibility of one-dimensional (1D)-to 2D and 2D-to-3D self-bending. It is shown that 3D printed plate structures can transform into masonry-inspired 3D curved shell structures by simply heating. Good reliability of SMP programming during printing process is also demonstrated. A 3D macroscopic constitutive model is established to simulate thermo-mechanical features of the printed SMPs. Governing equations are also derived to simulate programming mechanism during printing process and shape change of self-bending structures. In this respect, a finite element formulation is developed considering von-Kármán geometric nonlinearity and solved by implementing iterative Newton-Raphson scheme. The accuracy of the computational approach is checked with experimental results. It is demonstrated that the theoretical model is able to replicate the main characteristics observed in the experiments. This research is likely to advance the state of the art FDM 4D printing, and provide pertinent results and computational tool that are instrumental in design of smart materials and structures with self-bending features.

  13. Shape memory polymer nanocomposites for application of multiple-field active disassembly: experiment and simulation.

    Science.gov (United States)

    Carrell, John; Zhang, Hong-Chao; Wang, Shiren; Tate, Derrick

    2013-11-19

    Active disassembly (AD) uses innovative materials that can perform a designed disassembly action by the application of an external field. AD provides improvements over current disassembly processes by limiting machine or manual labor and enabling batch processing for end-of-life products. With improved disassembly operations, more reuse of components and purer recycling streams may be seen. One problem with AD, however, has been with the single-field actuation because of the probability of accidental disassembly. This presentation will discuss the application of shape memory polymer (SMP) nanocomposites in a new AD process. This novel AD process requires multiple-field actuation of the SMP nanocomposite fastener. In the analysis of this AD process, thermal and magnetic field tests were performed on the SMP nanocomposite. From these tests, finite-element analysis was performed to model and simulate the multiple-field AD process. The results of the simulations provide performance variables for the AD process and show a better performance time for the SMP nanocomposite fastener than for a comparable SMP fastener.

  14. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation

    Science.gov (United States)

    Nji, Jones; Li, Guoqiang

    2010-03-01

    In this paper, a three-dimensional (3D) woven fabric reinforced shape memory polymer composite for impact mitigation was proposed, fabricated, programmed using a three-step strain-controlled thermomechanical cycle at a pre-strain level of 5% and machined to two groups of specimens (G1 and G2) with dimensions 152.4 mm × 101.6 mm × 12.7 mm. The specimens were impact tested, transversely, centrally and repeatedly with 32 and 42 J of energy. G1 specimens were healed after each impact until perforation occurred. G2 specimens were not healed after each impact and served as controls. At 32 J impact energy, G2 specimens were perforated at the 9th impact while G1 specimens lasted until the 15th impact; at 42 J impact energy, G2 specimens were perforated at the 5th impact while G1 specimens were perforated at the 7th impact. Visual inspection, C-scan, and scanning electron microscopy techniques were used to evaluate damage, failure modes, and healing efficiency.

  15. Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device

    Directory of Open Access Journals (Sweden)

    Wilson Thomas S

    2009-12-01

    Full Text Available Abstract Background Interventional medical devices based on thermally responsive shape memory polymer (SMP are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. Methods A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Results Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Conclusions Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  16. Shape memory polymers and their composites in aerospace applications: a review

    International Nuclear Information System (INIS)

    Liu, Yanju; Du, Haiyang; Liu, Liwu; Leng, Jinsong

    2014-01-01

    As a new class of smart materials, shape memory polymers and their composites (SMPs and SMPCs) can respond to specific external stimulus and remember the original shape. There are many types of stimulus methods to actuate the deformation of SMPs and SMPCs, of which the thermal- and electro-responsive components and structures are common. In this review, the general mechanism of SMPs and SMPCs are first introduced, the stimulus methods are then discussed to demonstrate the shape recovery effect, and finally, the applications of SMPs and SMPCs that are reinforced with fiber materials in aerospace are reviewed. SMPC hinges and booms are discussed in the part on components; the booms can be divided again into foldable SMPC truss booms, coilable SMPC truss booms and storable tubular extendible member (STEM) booms. In terms of SMPC structures, the solar array and deployable panel, reflector antenna and morphing wing are introduced in detail. Considering the factors of weight, recovery force and shock effect, SMPCs are expected to have great potential applications in aerospace. (topical review)

  17. Thermomechanical properties of polyurethane shape memory polymer-experiment and modelling

    Science.gov (United States)

    Pieczyska, E. A.; Maj, M.; Kowalczyk-Gajewska, K.; Staszczak, M.; Gradys, A.; Majewski, M.; Cristea, M.; Tobushi, H.; Hayashi, S.

    2015-04-01

    In this paper extensive research on the polyurethane shape memory polymer (PU-SMP) is reported, including its structure analysis, our experimental investigation of its thermomechanical properties and its modelling. The influence of the effects of thermomechanical couplings on the SMP behaviour during tension at room temperature is studied using a fast and sensitive infrared camera. It is shown that the thermomechanical behaviour of the SMP significantly depends on the strain rate: at a higher strain rate higher stress and temperature values are obtained. This indicates that an increase of the strain rate leads to activation of different deformation mechanisms at the micro-scale, along with reorientation and alignment of the molecular chains. Furthermore, influence of temperature on the SMP’s mechanical behaviour is studied. It is observed during the loading in a thermal chamber that at the temperature 20 °C below the glass transition temperature (Tg) the PU-SMP strengthens about six times compared to the material above Tg but does not exhibit the shape recovery. A finite-strain constitutive model is formulated, where the SMP is described as a two-phase material composed of a hyperelastic rubbery phase and elastic-viscoplastic glassy phase. The volume content of phases is governed by the current temperature. Finally, model predictions are compared with the experimental results.

  18. Electro-induced shape-memory polymer nanocomposite containing conductive particles and short fibers

    Science.gov (United States)

    Lv, Haibao; Leng, Jinsong; Du, Shanyi

    2008-03-01

    This present paper is focused on the effect of conductive particulate and fibrous fillers on the characterized property of styrene-based shape memory polymer incorporating carbon black (CB) and short carbon fiber (SCF). It was shown that the particulate additives are dispersed homogeneously within matrix and served as interconnections between the fibers, while the fibrous additives may be considered as a rigid long aggregate of carbon, leading to easy formation of continuous conductive networks. The glass transition temperature of nanocomposites drops sharply as compared with that of pure SMP from the differential scanning calorimetry (DSC). For the composite containing 5 wt% CB and 2 wt% SCF, the storage modulus increases by 16.2% compared to that of the composite containing 5 wt% CB and 1 wt% SCF; the peak of tangent delta curve is an alternative definition of T g, thus T g defined in such a way is determined as 69.44°C from Dynamic Mechanical Analyzer (DMA) test which is higher than 25.78°C obtained from DSC test. The electrical conductivity of the composite achieves 3 S/cm by four-point Van De Pauw method, and the shape recovery can be activated with a constant voltage of 25 V through them.

  19. Fabrication and In Vitro Deployment of a Laser-Activated Shape Memory Polymer Vascular Stent

    Energy Technology Data Exchange (ETDEWEB)

    Baer, G M; Small IV, W; Wilson, T S; Benett, W J; Matthews, D L; Hartman, J; Maitland, D J

    2007-04-25

    Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model. A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery. At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of {approx}8 W. We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated.

  20. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    International Nuclear Information System (INIS)

    Roberts, R C; Wu, J; Li, D C; Hau, N Y; Chang, Y H; Feng, S P

    2014-01-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm 2 with stable metal performance

  1. Structural design of flexible Au electrode to enable shape memory polymer for electrical actuation

    Science.gov (United States)

    Lu, Haibao; Lei, Ming; Zhao, Chao; Xu, Ben; Leng, Jinsong; Fu, Y. Q.

    2015-04-01

    An effective resistive Joule heating approach was conducted to improve the electrical actuation and shape-recovery performance of a shape memory polymer (SMP) nanocomposite. Two types of gold (Au) film patterns were deposited to be used as electrodes to drive thermal-responsive SMPs and achieve a uniform temperature distribution during electro-activated shape recovery. Furthermore, the sensing capability of the Au electrode to both mechanical and thermal stimuli applied to the SMP nanocomposite was experimentally investigated and theoretically analyzed. It was found that the change in the electrical resistance of the Au electrode could be used as an indication of shape-recovery performance. The linear response of the electrical resistance to strain was identified mainly due to the opening/closing of microcracks and their propagations in the Au electrodes during out-of-plane deformations. With an increment of thermomechanical bending cycles, the electrical resistance was increased exponentially, but it returned back to the original reading when the SMP nanocomposite returned back to its permanent shape. Finally, the flexible Au electrode enabled the actuation of the SMP nanocomposite under an electric voltage of 13.4 V, with an improved shape-recovery performance and temperature distribution.

  2. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation

    International Nuclear Information System (INIS)

    Nji, Jones; Li, Guoqiang

    2010-01-01

    In this paper, a three-dimensional (3D) woven fabric reinforced shape memory polymer composite for impact mitigation was proposed, fabricated, programmed using a three-step strain-controlled thermomechanical cycle at a pre-strain level of 5% and machined to two groups of specimens (G1 and G2) with dimensions 152.4 mm × 101.6 mm × 12.7 mm. The specimens were impact tested, transversely, centrally and repeatedly with 32 and 42 J of energy. G1 specimens were healed after each impact until perforation occurred. G2 specimens were not healed after each impact and served as controls. At 32 J impact energy, G2 specimens were perforated at the 9th impact while G1 specimens lasted until the 15th impact; at 42 J impact energy, G2 specimens were perforated at the 5th impact while G1 specimens were perforated at the 7th impact. Visual inspection, C-scan, and scanning electron microscopy techniques were used to evaluate damage, failure modes, and healing efficiency

  3. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J

    2011-01-01

    In this work, tensile tests and one-dimensional constitutive modeling were performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigated the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles were performed during each test. The material was observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5–4.2 MPa was observed for the constrained displacement recovery experiments. After the experiments were performed, the Chen and Lagoudas model was used to simulate and predict the experimental results. The material properties used in the constitutive model—namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction—were calibrated from a single 10% extension free recovery experiment. The model was then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data

  4. Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study.

    Science.gov (United States)

    Xie, Ruiqi; Hu, Jinlian; Hoffmann, Oskar; Zhang, Yuanchi; Ng, Frankie; Qin, Tingwu; Guo, Xia

    2018-04-01

    Although tissue engineering has been attracted greatly for healing of critical-sized bone defects, great efforts for improvement are still being made in scaffold design. In particular, bone regeneration would be enhanced if a scaffold precisely matches the contour of bone defects, especially if it could be implanted into the human body conveniently and safely. In this study, polyurethane/hydroxyapatite-based shape memory polymer (SMP) foam was fabricated as a scaffold substrate to facilitate bone regeneration. The minimally invasive delivery and the self-fitting behavior of the SMP foam were systematically evaluated to demonstrate its feasibility in the treatment of bone defects in vivo. Results showed that the SMP foam could be conveniently implanted into bone defects with a compact shape. Subsequently, it self-matched the boundary of bone defects upon shape-recovery activation in vivo. Micro-computed tomography determined that bone ingrowth initiated at the periphery of the SMP foam with a constant decrease towards the inside. Successful vascularization and bone remodeling were also demonstrated by histological analysis. Thus, our results indicate that the SMP foam demonstrated great potential for bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Development of a McKibben artificial muscle using a shape-memory polymer

    Science.gov (United States)

    Takashima, Kazuto; Rossiter, Jonathan; Mukai, Toshiharu

    2010-04-01

    When McKibben artificial muscle actuators are applied to robotic joints, the joints are driven by pairs of actuators located antagonistically to increase the joint stiffness. However, the force for shape fixity is not large. Therefore, the objective of this study is to develop a McKibben artificial muscle using a shape-memory polymer (SMP). SMPs can be deformed above their glass transition temperature (Tg) by applying a small load. They maintain their shape after they have been cooled to below Tg. They then return to the predefined shape when heated above Tg. Exploiting these characteristics, we coated the braided mesh shell of a commercial McKibben artificial muscle and made a prototype of the actuator using the SMP. When this new actuator is warmed above Tg, the SMP deforms. Then, when the internal bladder is pressurized, the actuator shortens and/or produces a load. After the actuator becomes the desirable length, the actuator is cooled to below Tg and the SMP is fixed in a rigid state even without the air supply. Consequently, this actuator can maintain its length more rigidly and accurately. The experimental results conducted on this prototype confirm the feasibility of this new actuator.

  6. Strain rate effect on the thermomechanical behavior of a thermoset shape memory polymer

    Science.gov (United States)

    Wang, Anqi; Li, Guoqiang; Meng, Harper

    2013-08-01

    Driven by conformational entropy, a shape memory polymer (SMP) is capable of memorizing typical programming information, such as level of induced strain, deformation sequence and temperature profile. Because strain rate is one of the variables during programming, it is desirable to know whether the strain rate effect can be memorized or not. In this study, the effects of programming strain rate on the thermomechanical behavior of a thermoset SMP were investigated. A polystyrene based thermoset SMP was programmed under various strain rates (1500, 0.1 and 0.0001 s-1) in the glassy state, with the same prestrain level and temperature profiles. The thermomechanical response and some crucial physical properties were investigated via multiple characterization techniques. The test results indicate that programming strain rate has an influence on the glass transition temperature. A higher strain rate consistently leads to higher relaxation of prestrain and thus lower strain fixity. Moreover, the recovery strain and recovery strain rate rely on the pseudo-plastic strain during programming, which is associated with the programming strain rate.

  7. Implementation of a finite element analysis procedure for structural analysis of shape memory behaviour of fibre reinforced shape memory polymer composites

    Science.gov (United States)

    Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong

    2017-12-01

    Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.

  8. High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites

    Science.gov (United States)

    Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang

    2016-01-01

    Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices. PMID:26831222

  9. Synergistic effect of carbon nanofiber and sub-micro filamentary nickel nanostrand on the shape memory polymer nanocomposite

    International Nuclear Information System (INIS)

    Lu, Haibao; Leng, Jinsong; Du, Shanyi; Gou, Jihua

    2011-01-01

    This work studies the synergistic effect of carbon nanofiber (CNF) and sub-micro filamentary nickel nanostrand on the thermal and electrical properties, as well as the electro-active shape memory behavior, of a shape memory polymer (SMP) nanocomposite. The combination of electrical CNF and electromagnetic nickel nanostrand is used to render insulating thermo-responsive SMPs conductive. Subsequently, the shape memory behavior of the SMP can be activated by the electrical resistive heating. It is shown that sub-micro filamentary nickel-coated nanostrands significantly improved the electrical conductivity to facilitate the actuation of the SMP nanocomposite despite the low nanostrand volume content and low electrical voltage. Also the CNFs are blended with the SMP resin to facilitate the dispersion of nanostrands and improve the thermal conductivity to accelerate the electro- and thermo-active responses

  10. Transport and Fatigue Properties of Ferroelectric Polymer P(VDF-TrFE) For Nonvolatile Memory Applications

    KAUST Repository

    Hanna, Amir

    2012-06-01

    Organic ferroelectrics polymers have recently received much interest for use in nonvolatile memory devices. The ferroelectric copolymer poly(vinylidene fluoride- trifluoroethylene) , P(VDF-TrFE), is a promising candidate due to its relatively high remnant polarization, low coercive field, fast switching times, easy processability, and low Curie transition. However, no detailed study of charge injection and current transport properties in P(VDF-TrFE) have been reported in the literature yet. Charge injection and transport are believed to affect various properties of ferroelectric films such as remnant polarization values and polarization fatigue behavior.. Thus, this thesis aims to study charge injection in P(VDF-TrFE) and its transport properties as a function of electrode material. Injection was studied for Al, Ag, Au and Pt electrodes. Higher work function metals such as Pt have shown less leakage current compared to lower work function metals such as Al for more than an order of magnitude. That implied n-type conduction behavior for P(VDF-TrFE), as well as electrons being the dominant injected carrier type. Charge transport was also studied as a function of temperature, and two major transport regimes were identified: 1) Thermionic emission over a Schottky barrier for low fields (E < 25 MV/m). 2) Space-Charge-Limited regime at higher fields (25 < E <120 MV/m). We have also studied the optical imprint phenomenon, the polarization fatigue resulting from a combination of broad band optical illumination and DC bias near the switching field. A setup was designed for the experiment, and validated by reproducing the reported effect in polycrystalline Pb(Zr,Ti)O3 , PZT, film. On the other hand, P(VDF-TrFE) film showed no polarization fatigue as a result of optical imprint test, which could be attributed to the large band gap of the material, and the low intensity of the UV portion of the arc lamp white light used for the experiment. Results suggest using high work

  11. Analysis of the shape-recovery performance of thermally-activated shape-memory polymer composite with microstructural heterogeneities

    Science.gov (United States)

    Nishikawa, Masaaki; Hojo, Masaki

    2012-04-01

    Functional polymer composite is expected to be applied to the potential material for space deployable structures. Especially, thermally-activated shape-memory polymer (SMP) composites are increasingly investigated due to their excellent shape fixity and shape recovery; the thermomechanical properties of these materials greatly change around their glass transition temperature Tg. To enhance the ability of space deployable structures, the microstructural design at the fiber-matrix level in the material is required to pursuit the better performance of SMP composite. The present study focused on a micromechanics consideration of shape-memory polymer (SMP) composite with slits in the fiber mat, and attempted to discuss the effect of microstructural heterogeneities (slit positions) on the shape-fixity and shape-recovery performance. Analysis of the shape-recovery performance of SMP composites was conducted using the micromechanical model based on a viscoelastic thermomechanical constitutive model. According to the numerical results, only when the slits gather at the same location, the best shape-fixity property and shape-recovery performance is achieved, while sacrificing its bending stiffness. This is because the slits act as a hinge in the material under a bending loading.

  12. Deformation behavior of carbon-fiber reinforced shape-memory-polymer composites used for deployable structures (Conference Presentation)

    Science.gov (United States)

    Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft

  13. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    polymer nanocompo- sites are used as advanced toner materials for high quality colour copiers and printers and as contrast agents in NMR analysis, memory devices. .... tions on polymer nanocomposite can thus pay rich dividends. Suggested Reading. [1] Metal-Polymer Nanocomposites Nicolais, Luigi(ed.) ; Carotenuto,.

  14. Memory

    Science.gov (United States)

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  15. A strategy for tuning achiral main-chain polymers into helical assemblies and chiral memory systems.

    Science.gov (United States)

    Yang, Dong; Zhao, Yin; Lv, Kai; Wang, Xiufeng; Zhang, Wei; Zhang, Li; Liu, Minghua

    2016-01-28

    A general strategy to tune the achiral main chain polymers into helical nanoassemblies was proposed based on the co-gelation approach. As an example, two achiral main chain polymers, PCz8 and PSi8, were selected, and their co-assembly with an amphiphilic l- or d-glutamide gelator was investigated. Although the polymers could not form gels individually, they could form co-gels with the gelator and the resultant gels exhibited macroscopic supramolecular chirality, which could be confirmed by CD spectra and SEM observations. Moreover, the supramolecular chirality can be memorized even after the gelator molecules were removed. Remarkably, either the gelator-containing or gelator-free chiral polymer assemblies showed circularly polarized luminescence (CPL), which is usually inherent to intrinsic chiral polymers. It was suggested that during the co-gelation, the chirality of the gelator was transferred to and memorized by the achiral polymers. The approach seems to be general and we provided the first example to tune the achiral polymers into helical assemblies through the co-gelation.

  16. Memory.

    Science.gov (United States)

    McKean, Kevin

    1983-01-01

    Discusses current research (including that involving amnesiacs and snails) into the nature of the memory process, differentiating between and providing examples of "fact" memory and "skill" memory. Suggests that three brain parts (thalamus, fornix, mammilary body) are involved in the memory process. (JN)

  17. Photo-Mediated Copper(I)-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) "Click" Reactions for Forming Polymer Networks as Shape Memory Materials.

    Science.gov (United States)

    McBride, Matthew K; Gong, Tao; Nair, Devatha P; Bowman, Christopher N

    2014-11-05

    The formation of polymer networks polymerized with the Copper (I) - catalyzed azide - alkyne cycloaddition (CuAAC) click reaction is described along with their accompanying utilization as shape memory polymers. Due to the click nature of the reaction and the synthetic accessibility of azide and alkyne functional-monomers, the polymer architecture was readily controlled through monomer design to manipulate crosslink density, ability for further functionalization, and the glass transition temperature (55 to 120°C). Free strain recovery is used to quantify the shape memory properties of a model CuAAC network resulting in excellent shape fixity and recovery of 99%. The step growth nature of this polymerization results in homogenous network formation with narrow glass transitions ranges having half widths of the transition close to 15°C for these materials resulting in shape recovery sharpness of 3.9 %/°C in a model system comparable to similarly crosslinked chain growth polymers. Utilization of the CuAAC reaction to form shape memory materials opens a range of possibilities and behaviors that are not readily achieved in other shape memory materials such as (meth) acrylates, thiolene, thiol-Michael, and poly(caprolactone) based shape memory materials.

  18. Photo-Mediated Copper(I)-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) “Click” Reactions for Forming Polymer Networks as Shape Memory Materials

    Science.gov (United States)

    McBride, Matthew K.; Gong, Tao; Nair, Devatha P.; Bowman, Christopher N.

    2014-01-01

    The formation of polymer networks polymerized with the Copper (I) – catalyzed azide – alkyne cycloaddition (CuAAC) click reaction is described along with their accompanying utilization as shape memory polymers. Due to the click nature of the reaction and the synthetic accessibility of azide and alkyne functional-monomers, the polymer architecture was readily controlled through monomer design to manipulate crosslink density, ability for further functionalization, and the glass transition temperature (55 to 120°C). Free strain recovery is used to quantify the shape memory properties of a model CuAAC network resulting in excellent shape fixity and recovery of 99%. The step growth nature of this polymerization results in homogenous network formation with narrow glass transitions ranges having half widths of the transition close to 15°C for these materials resulting in shape recovery sharpness of 3.9 %/°C in a model system comparable to similarly crosslinked chain growth polymers. Utilization of the CuAAC reaction to form shape memory materials opens a range of possibilities and behaviors that are not readily achieved in other shape memory materials such as (meth) acrylates, thiolene, thiol-Michael, and poly(caprolactone) based shape memory materials. PMID:25378717

  19. Effects of Loading Rate on the Relaxation and Recovery Ability of an Epoxy-Based Shape Memory Polymer

    Directory of Open Access Journals (Sweden)

    Amber J.W. McClung

    2017-03-01

    Full Text Available The majority of aerospace structural composites use thermoset resins for their processing flexibility, temperature capability, and environmental durability. In this study, the recovery behavior of Veriflex-E, an epoxy-based, thermosetting, thermally-triggered shape memory polymer (SMP resin, is investigated in glassy (25 °C and rubbery (130 °C states, as a function of shape memory cycles, and as a means to evaluate its potential as a resin for a shape memory composite. At 25 °C, Veriflex-E exhibits a promising high elastic modulus and a positive, nonlinear strain rate sensitivity in monotonic loading. At 130 °C, the strain rate sensitivity in monotonic loading decreases. Stress relaxation after storage in the deformed temporary state and subsequent shape recovery is of particular interest, a challenge to measure, and has not been widely reported for SMPs. The current experimental program measures the influence of strain rate changes in the 10−4–10−2 s−1 range on the stress relaxation response of the material, as well as on the strain recovery behavior at both 25 °C and 130 °C. As expected, the post-relaxation strain is larger with faster loading. Unexpectedly, the total strain recovered after shape memory cycling is more similar to the low temperature deformation. Overall, the results suggest that, while being influenced by both the loading rate and the test temperature, Veriflex-E is a promising candidate for a shape memory composite which could enable adaptive structures.

  20. A 1D thermomechanical network transition constitutive model coupled with multiple structural relaxation for shape memory polymers

    Science.gov (United States)

    Zeng, Hao; Xie, Zhimin; Gu, Jianping; Sun, Huiyu

    2018-03-01

    A new thermomechanical network transition constitutive model is proposed in the study to describe the viscoelastic behavior of shape memory polymers (SMPs). Based on the microstructure of semi-crystalline SMPs, a new simplified transformation equation is proposed to describe the transform of transient networks. And the generalized fractional Maxwell model is introduced in the paper to estimate the temperature-dependent storage modulus. In addition, a neo-KAHR theory with multiple discrete relaxation processes is put forward to study the structural relaxation of the nonlinear thermal strain in cooling/heating processes. The evolution equations of the time- and temperature-dependent stress and strain response are developed. In the model, the thermodynamical and mechanical characteristics of SMPs in the typical thermomechanical cycle are described clearly and the irreversible deformation is studied in detail. Finally, the typical thermomechanical cycles are simulated using the present constitutive model, and the simulation results agree well with the experimental results.

  1. Conjugated polymer covalently modified graphene oxide quantum dots for ternary electronic memory devices.

    Science.gov (United States)

    Fan, Fei; Zhang, Bin; Cao, Yaming; Yang, Xutong; Gu, Junwei; Chen, Yu

    2017-08-03

    Zero dimensional graphene oxide (GO) quantum dots (GOQDs) have been expected to play an important role in the development of new memory materials. When the size of GO was reduced to that of GOQDs, both the electron affinity and ionization potential of GO were found to be decreased, and this was followed by the elevation of lowest energy unoccupied molecular orbital (LUMO) energy level. This implies that the electron withdrawing ability of GOQDs is weaker than that of GO. In this work, a novel arylamine-based polyazomethine covalently functionalized graphene oxide quantum dots (TPAPAM-GOQDs), which was synthesized using an amidation reaction, was for the first time used to fabricate a ternary memory device with a configuration of gold/TPAPAM-GOQDs/indium tin oxide. The current ratio of OFF : ON-1 : ON-2 was found to be 1 : 60 : 3000. Its conductive nature was also revealed using an in situ conductive atomic force microscopy technique. This memory device could potentially increase the memory capacity of the device from the conventional 2 n to 3 n when compared to binary memory devices.

  2. All-polymer bistable resistive memory device based on nanoscale phase-separated PCBM-ferroelectric blends

    KAUST Repository

    Khan, Yasser

    2012-11-21

    All polymer nonvolatile bistable memory devices are fabricated from blends of ferroelectric poly(vinylidenefluoride-trifluoroethylene (P(VDF-TrFE)) and n-type semiconducting [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The nanoscale phase separated films consist of PCBM domains that extend from bottom to top electrode, surrounded by a ferroelectric P(VDF-TrFE) matrix. Highly conducting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer electrodes are used to engineer band offsets at the interfaces. The devices display resistive switching behavior due to modulation of this injection barrier. With careful optimization of the solvent and processing conditions, it is possible to spin cast very smooth blend films (Rrms ≈ 7.94 nm) and with good reproducibility. The devices exhibit high Ion/I off ratios (≈3 × 103), low read voltages (≈5 V), excellent dielectric response at high frequencies (Ïμr ≈ 8.3 at 1 MHz), and excellent retention characteristics up to 10 000 s. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis and Study of Shape-Memory Polymers Selectively Induced by Near-Infrared Lights via In Situ Copolymerization

    Directory of Open Access Journals (Sweden)

    Tianyu Fang

    2017-05-01

    Full Text Available Shape-memory polymers (SMPs selectively induced by near-infrared lights of 980 or 808 nm were synthesized via free radical copolymerization. Methyl methacrylate (MMA monomer, ethylene glycol dimethylacrylate (EGDMA as a cross-linker, and organic complexes of Yb(TTA2AAPhen or Nd(TTA2AAPhen containing a reactive ligand of acrylic acid (AA were copolymerized in situ. The dispersion of the organic complexes in the copolymer matrix was highly improved, while the transparency of the copolymers was negligibly influenced in comparison with the pristine cross-linked PMMA. In addition, the thermal resistance of the copolymers was enhanced with the complex loading, while their glass transition temperature, cross-linking level, and mechanical properties were to some extent reduced. Yb(TTA2AAPhen and Nd(TTA2AAPhen provided the prepared copolymers with selective photothermal effects and shape-memory functions for 980 and 808 nm NIR lights, respectively. Finally, smart optical devices which exhibited localized transparency or diffraction evolution procedures were demonstrated based on the prepared copolymers, owing to the combination of good transparency and selective light wavelength responsivity.

  4. An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt

    International Nuclear Information System (INIS)

    Gong, Xiaobo; Leng, Jinsong; Liu, Liwu; Liu, Yanju

    2016-01-01

    Shape memory polymers (SMPs) have the ability to adjust their stiffness, lock a temporary shape, and recover the permanent shape upon imposing an appropriate stimulus. They have found their way into the field of morphing structures. The electrically Joule resistive heating of the conductive composite can be a desirable stimulus to activate the shape memory effect of SMPs without external heating equipment. Electro-induced SMP composites incorporated with carbon fiber felt (CFF) were explored in this work. The CFF is an excellent conductive filler which can easily spread throughout the composite. It has a huge advantage in terms of low cost, simple manufacturing process, and uniform and tunable temperature distribution while heating. A continuous and compact conductive network made of carbon fibers and the overlap joints among them was observed from the microscopy images, and this network contributes to the high conductive properties of the CFF/SMP composites. The CFF/SMP composites can be electrical-heated rapidly and uniformly, and its’ shape recovery effect can be actuated by the electrical resistance Joule heating of the CFF without an external heater. The CFF/SMP composite get higher modulus and higher strength than the pure SMP without losing any strain recovery property. The high dependence of temperature and strain on the electrical resistance also make the composite a good self-sensing material. In general, the CFF/SMP composite shows great prospects as a potential material for the future morphing structures. (paper)

  5. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    International Nuclear Information System (INIS)

    El-Tahan, M; Dawood, M; Song, G

    2015-01-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements. (paper)

  6. Sustainable shape memory polymers based on epoxidized natural rubber cured by zinc ferulate via oxa-Michael reaction

    Directory of Open Access Journals (Sweden)

    Xuhui Zhang

    2015-10-01

    Full Text Available Although various shape memory polymers (SMPs or diverse applications have been widely reported, the SMPs based on rubbers have been rarely realized due to the low triggering temperature of rubbers. In another aspect, the SMPs based on sustainable substances are highly desired for the growing shortage in fossil resources. In the present study, we accordingly developed the sustainable SMPs with tunable triggering temperature, based on natural rubber (NR and ferulic acid (FA as the raw materials. Specifically, the SMPs are based on a crosslinked network of epoxidized natural rubber (ENR crosslinked by in situ formed zinc ferulate (ZDF via oxa-Michael reaction. The excellent shape memory effect (SME is found in these SMPs, as evidenced by the high fixity/recovery ratio and the tunable triggering temperature. With the incorporation of natural halloysite nanotubes (HNTs, the stress and recovery rate of the SMPs are found to be tunable, which widens the application of this kind of SMPs. The combination of adoption of sustainable raw materials, and the excellent and tunable SME makes these SMPs potentially useful in many applications, such as various actuators and heat-shrinkable package materials.

  7. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    Science.gov (United States)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  8. Radiation-crosslinking of shape memory polymers based on poly(vinyl alcohol) in the presence of carbon nanotubes

    Science.gov (United States)

    Basfar, A. A.; Lotfy, S.

    2015-01-01

    Shape memory polymers based on poly(vinyl alcohol) (SM-PVA) in the presence of 2-carboxyethyl acrylate oligomers (CEA) and multi-wall carbon nanotubes (MWCNTs) crosslinked by ionizing radiation were investigated. Chemical-crosslinking of PVA by glutaraldehyde in the presence of CEA and MWCNTs was also studied. The swelling and gel fraction of the radiation-crosslinked SM-PVA and chemically crosslinked systems were evaluated. Analysis of the swelling and gel fraction revealed a significant reduction in swelling and an increase in the gel fraction of the material that was chemically crosslinked with glutaraldehyde. The radiation-crosslinked SM-PVA demonstrated 100% gelation at an irradiation dose of 50 kGy. In addition, radiation-crosslinked SM-PVA exhibited good temperature responsive shape-memory behavior. A scanning electron microscopy (SEM) analysis was performed. The thermal properties of radiation-crosslinked SM-PVA were investigated by a thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The ability of the material to return or store energy (E‧), to its ability to lose energy (E″), and the ratio of these effects (Tanδ), which is called damping were examined via DMA. The temperature of Tanδ in the radiation-crosslinked SM-PVA decreased significantly by 6 and 13 °C as a result of the addition of MWCNTs. In addition, the temperature of Tanδ for SM-PVA increased as the irradiation dose increased. These radiation-crosslinked SM-PVA materials show promising shape-memory behavior based on the range of temperatures at which Tanδ appears.

  9. Synthesis of Shape Memory Polyurethane/Nanoclay Composites: Chemical Structure and Interactions between Polymer and Nanoclay Particles

    Directory of Open Access Journals (Sweden)

    Mahnaz sadat Haghayegh

    2012-12-01

    Full Text Available Although  there  are many works  published  on  shape memory  polyurethanes, but  no  report  is  found  on  PCL-based  polyurethane  composite  using  PCL with  molecular  weight  of  2000  g/mol  and  nanoclay  particles  via  in-situ polymerization.  In  this  work,  we  try  to  approach  some  problems  concerning  the chemical structure, dispersion of a noparticles in the matrix and interaction between nanoparticles  and  polymer  in  shape  memory  of  PCL  (Mn=  2000  g/mol-based  polyurethane/nanoclay  composites.  While  PCL  (Mn=  2000  g/mol  polyurethane constituted the soft segments, MDI/BD formed the hard segments. The weight ratio of  soft  to  hard  segments was  found  to  be  65/35. Composites were  synthesized  in presence 1 and 3 wt% of nanoclay (Cloisite®30B via in-situ polymerization by a two-step method. Effect of nano particles on their interactions with polyurethane chains, crystallinity, mechanical properties and shape memory have been investigated using

  10. Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation.

    Science.gov (United States)

    Hwang, Sun Kak; Bae, Insung; Kim, Richard Hahnkee; Park, Cheolmin

    2012-11-20

    A flexible field-effect transistor with a poly(3-hexylthiophene) (P3HT) active channel and a ferroelectric poly(vinlyidene fluoride-co-trifluoro ethylene) (PVDF-TrFE) insulator exhibits gate-voltage-controllable multilevel non-volatile memory characteristics with highly reliable data retention and endurance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Memory

    OpenAIRE

    Wager, Nadia

    2017-01-01

    This chapter will explore a response to traumatic victimisation which has divided the opinions of psychologists at an exponential rate. We will be examining amnesia for memories of childhood sexual abuse and the potential to recover these memories in adulthood. Whilst this phenomenon is generally accepted in clinical circles, it is seen as highly contentious amongst research psychologists, particularly experimental cognitive psychologists. The chapter will begin with a real case study of a wo...

  12. Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments

    Directory of Open Access Journals (Sweden)

    A. Lendlein

    2012-01-01

    Full Text Available Thermo-sensitive shape-memory polymers (SMP, which are capable of memorizing two or more different shapes, have generated significant research and technological interest. A triple-shape effect (TSE of SMP can be activated e.g. by increasing the environmental temperature (Tenv, whereby two switching temperatures (Tsw have to be exceeded to enable the subsequent shape changes from shape (A to shape (B and finally the original shape (C. In this work, we explored the thermally and magnetically initiated shape-memory properties of triple-shape nanocomposites with various compositions and particle contents using different shape-memory creation procedures (SMCP. The nanocomposites were prepared by the incorporation of magnetite nanoparticles into a multiphase polymer network matrix with grafted polymer network architecture containing crystallizable poly(ethylene glycol (PEG side chains and poly(ε-caprolactone (PCL crosslinks named CLEGC. Excellent triple-shape properties were achieved for nanocomposites with high PEG weight fraction when two-step programming procedures were applied. In contrast, single-step programming resulted in dual-shape properties for all investigated materials as here the temporary shape (A was predominantly fixed by PCL crystallites.

  13. Electro-activate styrene-based shape memory polymer nanocomposite filled with multi-walled carbon nanotubes

    Science.gov (United States)

    Lv, Haibao; Liu, Yanju; Leng, Jinsong; Du, Shanyi

    2007-07-01

    The fabrication and characterization, especially mechanical and electrical properties, of styrene-based shape memory polymer mixed with multi-walled carbon nanotubes (MWNTs) are presented in this paper. It is found that surface-modified MWNTs incorporated very well with resin processed by royal water, and dispersion was achieved by high-energy sonication in the solution. Scanning Electron Microscope (SEM) is shown that the particulate additives were dispersed homogeneously within matrix and served as local conductive paths. The glass transition temperature (Tg) of the composite containing MWNTs is lower than that of the pure SMP obtained from Differential Scanning Calorimetry (DSC). With the increasing filler content, resulting in the reduction of Tg increases. The composites have a better thermodynamic stability awarding to the results of Thermal Gravity Analyzer (TGA). The vibration of MWNTs in composite system was obtained from Raman spectrums. For the mechanical property of SMP composite with 8 wt% MWNTs, its Young's modulus increases by 12.1% and the tensile strength by 8.1% as compared with that of the pure SMP. Four-point Van De Pauw method is introduced to investigate the electrical property of composites. An electrical conductivity of 1.25×10 -3 S/cm is obtained for 8 wt% MWNTs composite.

  14. Active vortex generator deployed on demand by size independent actuation of shape memory alloy wires integrated in fiber reinforced polymers

    Science.gov (United States)

    Hübler, M.; Nissle, S.; Gurka, M.; Wassenaar, J.

    2016-04-01

    Static vortex generators (VGs) are installed on different aircraft types. They generate vortices and interfuse the slow boundary layer with the fast moving air above. Due to this energizing, a flow separation of the boundary layer can be suppressed at high angles of attack. However the VGs cause a permanently increased drag over the whole flight cycle reducing the cruise efficiency. This drawback is currently limiting the use of VGs. New active VGs, deployed only on demand at low speed, can help to overcome this contradiction. Active hybrid structures, combining the actuation of shape memory alloys (SMA) with fiber reinforced polymers (FRP) on the materials level, provide an actuation principle with high lightweight potential and minimum space requirements. Being one of the first applications of active hybrid structures from SMA and FRP, these active vortex generators help to demonstrate the advantages of this new technology. A new design approach and experimental results of active VGs are presented based on the application of unique design tools and advanced manufacturing approaches for these active hybrid structures. The experimental investigation of the actuation focuses on the deflection potential and the dynamic response. Benchmark performance data such as a weight of 1.5g and a maximum thickness of only 1.8mm per vortex generator finally ensure a simple integration in the wing structure.

  15. A bioactive "self-fitting" shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects.

    Science.gov (United States)

    Zhang, Dawei; George, Olivia J; Petersen, Keri M; Jimenez-Vergara, Andrea C; Hahn, Mariah S; Grunlan, Melissa A

    2014-11-01

    While tissue engineering is a promising alternative for treating critical-sized cranio-maxillofacial bone defects, improvements in scaffold design are needed. In particular, scaffolds that can precisely match the irregular boundaries of bone defects as well as exhibit an interconnected pore morphology and bioactivity would enhance tissue regeneration. In this study, a shape memory polymer (SMP) scaffold was developed exhibiting an open porous structure and the capacity to conformally "self-fit" into irregular defects. The SMP scaffold was prepared via photocrosslinking of poly(ε-caprolactone) (PCL) diacrylate using a SCPL method, which included a fused salt template. A bioactive polydopamine coating was applied to coat the pore walls. Following exposure to warm saline at T>T(trans) (T(trans)=T(m) of PCL), the scaffold became malleable and could be pressed into an irregular model defect. Cooling caused the scaffold to lock in its temporary shape within the defect. The polydopamine coating did not alter the physical properties of the scaffold. However, polydopamine-coated scaffolds exhibited superior bioactivity (i.e. formation of hydroxyapatite in vitro), osteoblast adhesion, proliferation, osteogenic gene expression and extracellular matrix deposition. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Fabrication and characterization of a magnetic micro-actuator based on deformable Fe-doped PDMS artificial cilium using 3D printing

    International Nuclear Information System (INIS)

    Liu, Fengli; Alici, Gursel; Li, Weihua; Zhang, Binbin; Beirne, Stephen

    2015-01-01

    This paper proposes the use of a 3D extrusion printer to fabricate artificial magnetic cilium. The cilia are fabricated using polydimethylsiloxane (PDMS) doped with iron particles so that they remain slender and flexible. They can be driven by a magnetic field to closely mimic the behaviour of biological cilia. Doping iron particles to the polymers has already been done; however, to the best of our knowledge, printing such active and soft magnetic structures has not. The existing methods for manufacturing magnetic polymeric structures are complex and difficult to use for the fabrication of micro-sized high-aspect-ratio cilia. The 3D printing technique we propose here is simple and inexpensive compared to previously suggested fabrication methods. In this study, free-standing magnetic PDMS cilia were fabricated in different sizes up to 5 mm in length and 1 mm in width. The stress-strain curves of the PDMS cilia were experimentally obtained to quantify the effect of the concentration of the iron particles on the modulus of elasticity of the cilia. The higher the iron concentration, the higher the modulus of elasticity. We have quantified the characteristics of the cilia made of 40% w/w iron particles in PDMS. A single cilium (5 × 1 × 0.0035 mm) can output up to 27 μN blocking force under a magnetic field of 160 mT. These cilia can be used as a mixer in lap-on-chip applications and as the anchoring and propulsion legs of endoscopic capsule robots operating within the gastrointestinal tract of humans. Analytical expressions estimating the blocking force are established and compared with the experimental results. (paper)

  17. Memories.

    Science.gov (United States)

    Brand, Judith, Ed.

    1998-01-01

    This theme issue of the journal "Exploring" covers the topic of "memories" and describes an exhibition at San Francisco's Exploratorium that ran from May 22, 1998 through January 1999 and that contained over 40 hands-on exhibits, demonstrations, artworks, images, sounds, smells, and tastes that demonstrated and depicted the biological,…

  18. Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer

    Science.gov (United States)

    Teoh, Joanne Ee Mei; Zhao, Yue; An, Jia; Chua, Chee Kai; Liu, Yong

    2017-12-01

    Shape memory polymers (SMPs) have gained a presence in additive manufacturing due to their role in 4D printing. They can be printed either in multi-materials for multi-stage shape recovery or in a single material for single-stage shape recovery. When printed in multi-materials, material or material-based design is used as a controlling factor for multi-stage shape recovery. However, when printed in a single material, it is difficult to design multi-stage shape recovery due to the lack of a controlling factor. In this research, we explore the use of geometric thickness as a controlling factor to design smart structures possessing multi-stage shape recovery using a single SMP. L-shaped hinges with a thickness ranging from 0.3–2 mm were designed and printed in four different SMPs. The effect of thickness on SMP’s response time was examined via both experiment and finite element analysis using Ansys transient thermal simulation. A method was developed to accurately measure the response time in millisecond resolution. Temperature distribution and heat transfer in specimens during thermal activation were also simulated and discussed. Finally, a spiral square and an artificial flower consisting of a single SMP were designed and printed with appropriate thickness variation for the demonstration of a controlled multi-stage shape recovery. Experimental results indicated that smart structures printed using single material with controlled thickness parameters are able to achieve controlled shape recovery characteristics similar to those printed with multiple materials and uniform geometric thickness. Hence, the geometric parameter can be used to increase the degree of freedom in designing future smart structures possessing complex shape recovery characteristics.

  19. Influence of Thin-Film Adhesives in Pullout Tests Between Nickel-Titanium Shape Memory Alloy and Carbon Fiber-Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.

    2018-01-01

    Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.

  20. Fabrication and characterization of a foamed polylactic acid (PLA)/ thermoplastic polyurethane (TPU) shape memory polymer (SMP) blend for biomedical and clinical applications

    Science.gov (United States)

    Song, Janice J.; Srivastava, Ijya; Kowalski, Jennifer; Naguib, Hani E.

    2014-03-01

    Shape memory polymers (SMP) are a class of stimuli-responsive materials that are able to respond to external stimulus such as heat by altering their shape. Bio-compatible SMPs have a number of advantages over static materials and are being studied extensively for biomedical and clinical applications (such as tissue stents and scaffolds). A previous study has demonstrated that the bio-compatible polymer blend of polylactic acid (PLA)/ thermoplastic polyurethane (TPU) (50/50 and 70/30) exhibit good shape memory properties. In this study, the mechanical and thermo-mechanical (shape memory) properties of TPU/PLA SMP blends were characterized; the compositions studied were 80/20, 65/35, and 50/50 TPU/PLA. In addition, porous TPU/PLA SMP blends were fabricated with a gas-foaming technique; and the morphology of the porous structure of these SMPs foams were characterized with scanning electron microscopy (SEM). The TPU/PLA bio-compatible SMP blend was fabricated with melt-blending and compression molding. The glass transition temperature (Tg) of the SMP blends was determined with a differential scanning calorimeter (DSC). The mechanical properties studied were the stress-strain behavior, tensile strength, and elastic modulus; and the thermomechanical (or shape memory) properties studied were the shape fixity rate (Rf), shape recovery rate (Rr), response time, and the effect of recovery temperature on Rr. The porous 80/20 PLA/TPU SMP blend was found to have the highest tensile strength, toughness and percentage extension, as well as the lowest density and uniform pore structure in the micron and submicron scale. The porous 80/20 TPU/PLA SMP blend may be further developed for specific biomedical and clinical applications where a combination of tensile strength, toughness, and low density are required.

  1. High precision laser forming for micro actuation

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Huis in 't Veld, Bert; Nakata, Yoshiki; Xu, Xianfan; Roth, Stephan; Neuenschwander, Beat

    2014-01-01

    For assembly of micro-devices, such as photonic devices, the precision alignment of components is often critical for their performance. Laser forming, also known as laser-adjusting, can be used to create an integrated microactuator to align the components with sub-micron precision after bonding. In

  2. Memory-like behavior as a feature of electrical signal transmission in melanin-like bio-polymers

    Science.gov (United States)

    Ambrico, M.; Ambrico, P. F.; Ligonzo, T.; Cardone, A.; Cicco, S. R.; Lavizzera, A.; Augelli, V.; Farinola, G. M.

    2012-06-01

    The memory-like behavior of melanin biopolymer under electrical stimuli is shown through electrical transport characterization performed on melanin based metal insulator semiconductor structures on silicon. The presence of a memory window and retention behavior is verified by capacitance-voltage read outs before and after the application of voltage pulses. Interestingly, these phenomena occur without the presence of metallic nanoclusters enclosed in the melanin matrix. Charge trapping is considered the main mechanism responsible for the melanin memory-like character. The inability to erase the memory window has been ascribed to the permanent polarization effect during the application of the voltage pulse.

  3. Polymers and radiation

    International Nuclear Information System (INIS)

    Zagorski, Z.

    2000-01-01

    The article is the broad review of history and state of art in radiation chemistry of polymers. The scientific background of radiation interaction with polymers and mechanisms of radiolytic degradation for aqueous solutions and 'dry' state of polymers have been shown. Also the applications of radiation for polymer properties modifications has been discussed in terms of polymers grafting and cross-linking for achieve shape memory feature, preparation of radioresistant polymers used for medical supplies being devoted to radiation sterilization etc. The polish contribution in related studies has been presented as well

  4. Direct-write fabrication of 4D active shape-changing behavior based on a shape memory polymer and its nanocomposite (Conference Presentation)

    Science.gov (United States)

    Wei, Hongqiu; Zhang, Qiwei; Yao, Yongtao; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs), a typical class of smart materials, have been witnessed significant advances in the past decades. Based on the unique performance to recover the initial shape after going through a shape deformation, the applications of SMPs have aroused growing interests. However, most of the researches are hindered by traditional processing technologies which limit the design space of SMPs-based structures. Three-dimension (3D) printing as an emerging technology endows design freedom to manufacture materials with complex structures. In present article, we show that by employing direct-write printing method; one can realize the printing of SMPs to achieve 4D active shape-changing structures. We first fabricated a kind of 3D printable polylactide (PLA)-based SMPs and characterized the overall properties of such materials. Results demonstrated the prepared PLA-based SMPs presenting excellent shape memory effect. In what follows, the rheological properties of such PLA-based SMP ink during printing process were discussed in detail. Finally, we designed and printed several 3D configurations for investigation. By combining 3D printing with shape memory behavior, these printed structures achieve 4D active shape-changing performance under heat stimuli. This research presents a high flexible method to realize the fabrication of SMP-based 4D active shape-changing structures, which opens the way for further developments and improvements of high-tech fields like 4D printing, soft robotics, micro-systems and biomedical devices.

  5. Amorphous blue phase III polymer scaffold as a sub-millisecond switching electro-optical memory device

    Science.gov (United States)

    Gandhi, Sahil Sandesh; Kim, Min Su; Hwang, Jeoung-Yeon; Chien, Liang-Chy

    2017-02-01

    We demonstrate the application of the nanostructured scaffold of BPIII as a resuable EO device that retains the BPIII ordering and sub-millisecond EO switching characteristics, that is, "EO-memory" of the original BPIII even after removal of the cholesteric blue phase liquid crystal (LC) and subsequent refilling with different nematic LCs. We also fabricate scaffolds mimicking the isotropic phase and cubic blue phase I (BPI) to demonstrate the versatility of our material system to nano-engineer EO-memory scaffolds of various structures. We envisage that this work will promote new experimental investigations of the mysterious BPIII and the development of novel device architectures and optically functional nanomaterials.

  6. Enhanced photomechanical response of a Ni-Ti shape memory alloy coated with polymer-based photothermal composites

    Science.gov (United States)

    Perez-Zúñiga, M. G.; Sánchez-Arévalo, F. M.; Hernández-Cordero, J.

    2017-10-01

    A simple way to enhance the activation of shape memory effects with light in a Ni-Ti alloy is demonstrated. Using polydimethylsiloxane-carbon nanopowder (PDMS+CNP) composites as coatings, the one-way shape memory effect (OWSME) of the alloy can be triggered using low power IR light from a laser diode. The PDMS+CNP coatings serve as photothermal materials capable to absorb light, and subsequently generate and dissipate heat in a highly efficient manner, thereby reducing the optical powers required for triggering the OWSME in the Ni-Ti alloy. Experimental results with a cantilever flexural test using both, bare Ni-Ti and coated samples, show that the PDMS+CNP coatings perform as thermal boosters, and therefore the temperatures required for phase transformation in the alloy can be readily obtained with low laser powers. It is also shown that the two-way shape memory effect (TWSME) can be set in the Ni-Ti alloy through cycling the TWSME by simply modulating the laser diode signal. This provides a simple means for training the material, yielding a light driven actuator capable to provide forces in the mN range. Hence, the use of photothermal coatings on Ni-Ti shape memory alloys may offer new possibilities for developing light-controlled smart actuators.

  7. Design of a Shape Memory Alloy deployment hinge for reflector facets

    Science.gov (United States)

    Anders, W. S.; Rogers, C. A.

    1991-01-01

    A design concept for a Shape Memory Alloy (SMA) actuated hinge mechanism for deploying segmented facet-type reflector surfaces on antenna truss structures is presented. The mechanism uses nitinol, a nickel-titanium shape memory alloy, as a displacement-force micro-actuator. An electrical current is used to resistively heat a 'plastically' elongated SMA actuator wire, causing it to contract in response to a thermally-induced phase transformation. The resulting tension creates a moment, imparting rotary motion between two adjacent panels. Mechanical stops are designed into the device to limit its range of motion and to establish positioning accuracy at the termination of deployment. The concept and its operation are discussed in detail, and an analytical dynamic simulation model is presented. The model has been used to perform nondimensionalized parametric design studies.

  8. The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect.

    Science.gov (United States)

    Petisco-Ferrero, S; Fernández, J; Fernández San Martín, M M; Santamaría Ibarburu, P A; Sarasua Oiz, J R

    2016-08-01

    The shape memory effect (SME) has long been the focus of interest of many research groups that have studied many facets of it, yet to the authors' knowledge some molecular parameters, such as the molecular weight, have been skipped. Thus, the aim of this work is to offer further insight into the shape memory effect, by disclosing the importance of the molecular weight as the relevant parameter dictating the extension of the rubbery plateau, which is the scenario where the entropic network of entanglements manifests. For this, a set of biodegradable amorphous poly(rac-d,l)lactides have been synthesised by ring opening copolymerization of a racemic mixture of L-and D-lactide. The analysis performed on the synthesised enantiomeric copolylactides includes the determination of molecular weights by means of Gel Permeation Chromatography (GPC), thermal properties by Differential Scanning Calorimetry (DSC), dynamic mechanical analysis (DMA) and rheological tests using small amplitude oscillatory flow analysis. Shape memory properties have been determined by means of specific cyclic thermo-mechanic test protocol. It has been shown that the recovery capacity of amorphous PDLLA is linked to the disentanglement time through an exponential law. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Switching and memory effects in composite films of semiconducting polymers with particles of graphene and graphene oxide

    Science.gov (United States)

    Krylov, P. S.; Berestennikov, A. S.; Aleshin, A. N.; Komolov, A. S.; Shcherbakov, I. P.; Petrov, V. N.; Trapeznikova, I. N.

    2015-08-01

    The effects of switching were investigated in composite films based on multifunctional polymers. i.e., derivatives of carbazole (PVK) and fluorene (PFD), as well as based on particles of graphene (Gr) and graphene oxide (GO). The concentration of Gr and GO particles in the PVK(PFD) matrix was varied in the range of 2-3 wt %, which corresponded to the percolation threshold in these systems. The atomic composition of the composite films PVK: GO was examined using X-ray photoelectron spectroscopy. It was found that the effect of switching in structures of the form Al/PVK(PFD): GO(Gr)/ITO/PET manifests itself in a sharp change of the electrical resistance of the composite film from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜0.1-0.3 V ( E ˜ 3-5 × 104 V/cm), which is below the threshold switching voltages for similar composites. The mechanism of resistance switching, which is associated with the processes of capture and accumulation of charge carriers by Gr (GO) particles introduced into the matrices of the high-molecular-weight (PVK) and relatively low-molecular-weight (PFD) polymers, was discussed.

  10. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering.

    Science.gov (United States)

    Bao, Min; Lou, Xiangxin; Zhou, Qihui; Dong, Wen; Yuan, Huihua; Zhang, Yanzhong

    2014-02-26

    Multifunctional fibrous scaffolds, which combine the capabilities of biomimicry to the native tissue architecture and shape memory effect (SME), are highly promising for the realization of functional tissue-engineered products with minimally invasive surgical implantation possibility. In this study, fibrous scaffolds of biodegradable poly(d,l-lactide-co-trimethylene carbonate) (denoted as PDLLA-co-TMC, or PLMC) with shape memory properties were fabricated by electrospinning. Morphology, thermal and mechanical properties as well as SME of the resultant fibrous structure were characterized using different techniques. And rat calvarial osteoblasts were cultured on the fibrous PLMC scaffolds to assess their suitability for bone tissue engineering. It is found that by varying the monomer ratio of DLLA:TMC from 5:5 to 9:1, fineness of the resultant PLMC fibers was attenuated from ca. 1500 down to 680 nm. This also allowed for readily modulating the glass transition temperature Tg (i.e., the switching temperature for actuating shape recovery) of the fibrous PLMC to fall between 19.2 and 44.2 °C, a temperature range relevant for biomedical applications in the human body. The PLMC fibers exhibited excellent shape memory properties with shape recovery ratios of Rr > 94% and shape fixity ratios of Rf > 98%, and macroscopically demonstrated a fast shape recovery (∼10 s at 39 °C) in the pre-deformed configurations. Biological assay results corroborated that the fibrous PLMC scaffolds were cytocompatible by supporting osteoblast adhesion and proliferation, and functionally promoted biomineralization-relevant alkaline phosphatase expression and mineral deposition. We envision the wide applicability of using the SME-capable biomimetic scaffolds for achieving enhanced efficacy in repairing various bone defects (e.g., as implants for healing bone screw holes or as barrier membranes for guided bone regeneration).

  11. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    Science.gov (United States)

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preparation of porous structures with shape memory properties from biodegradable polymeric networks

    NARCIS (Netherlands)

    Sharifi, Shahriar; Blanquer, Sebastien; Grijpma, Dirk W.

    2012-01-01

    Preparing porous biodegradable structures from shape memory polymers can combine the structure-defining properties of porous structures with the minimally invasive implanting possibilities of shape memory polymers. In this study, porous biodegradable shape memory structures were prepared using

  13. The Effects of Fiber Orientation and Adhesives on Tensile Properties of Carbon Fiber Reinforced Polymer Matrix Composite with Embedded Nickel-Titanium Shape Memory Alloys

    Science.gov (United States)

    Quade, Derek J.; Jana, Sadhan C.; Morscher, Gregory N.; Kannan, Manigandan; McCorkle, Linda S.

    2017-01-01

    Nickel-titanium (NiTi) shape memory alloy (SMA) sections were embedded within carbon fiber reinforced polymer matrix composite (CFRPPMC) laminates and their tensile properties were evaluated with simultaneous monitoring of modal acoustic emissions. The test specimens were fabricated in three different layup configurations and two different thin film adhesives were applied to bond the SMA with the PMC. A trio of acoustic sensors were attached to the specimens during tensile testing to monitor the modal acoustic emission (AE) as the materials experienced mechanical failure. The values of ultimate tensile strengths, strains, and moduli were obtained. Cumulative AE energy of events and specimen failure location were determined. In conjunction, optical and scanning electron microscopy techniques were used to examine the break areas of the specimens. The analysis of AE data revealed failure locations within the specimens which were validated from the microscopic images. The placement of 90 deg plies in the outer ply gave the strongest acoustic signals during break as well as the cleanest break of the samples tested. Overlapping 0 deg ply layers surrounding the SMA was found to be the best scenario to prevent failure of the specimen itself.

  14. Recent Development of Nanomaterial-Doped Conductive Polymers

    Science.gov (United States)

    Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.

    2017-12-01

    Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.

  15. Soluble porphyrin polymers

    Science.gov (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  16. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  17. Emerging non-volatile memories

    CERN Document Server

    Hong, Seungbum; Wouters, Dirk

    2014-01-01

    This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers' understanding of future trends in non-volatile memories.

  18. RF magnetron sputtered TiNiCu shape memory alloy thin film

    International Nuclear Information System (INIS)

    Fu Yongqing; Du Hejun

    2003-01-01

    Shape memory alloys (SMAs) offer a unique combination of novel properties, such as shape memory effect, super-elasticity, biocompatibility and high damping capacity, and thin film SMAs have the potential to become a primary actuating mechanism for micro-actuators. In this study, TiNiCu films were successfully prepared by mix sputtering of a Ti 55 Ni 45 target with a separated Cu target. Crystalline structure, residual stress and phase transformation properties of the TiNiCu films were investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and curvature measurement methods. Effects of the processing parameters on the film composition, phase transformation and shape-memory effects were analyzed. Results showed that films prepared at a high Ar gas pressure exhibited a columnar structure, while films deposited at a low Ar gas pressure showed smooth and featureless structure. Chemical composition of TiNiCu thin films was dependent on the DC power of copper target. DSC, XRD and curvature measurement revealed clearly the martensitic transformation of the deposited TiNiCu films. When the free-standing film was heated and cooled, a 'two-way' shape-memory effect can be clearly observed

  19. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  20. Shape Memory Polymer Composites of Poly(styrene-b-butadiene-b-styrene Copolymer/Liner Low Density Polyethylene/Fe3O4 Nanoparticles for Remote Activation

    Directory of Open Access Journals (Sweden)

    Yongkun Wang

    2016-11-01

    Full Text Available Magnetically sensitive shape memory poly(styrene-b-butadiene-b-styrene copolymer (SBS/liner low density polyethylene (LLDPE composites filled with various contents of Fe3O4 nanoparticles were prepared. The influence of the Fe3O4 nanoparticles content on the thermal properties, mechanical properties, fracture morphology, magnetic behavior, and shape memory effect of SBS/LLDPE/Fe3O4 composites was systematically studied in this paper. The results indicated that homogeneously dispersed Fe3O4 nanoparticles ensured the uniform heat generation and transfer in the alternating magnetic field, and endowed the SBS/LLDPE/Fe3O4 composites with an excellent magnetically responsive shape memory effect. When the shape memory composites were in the alternating magnetic field (f = 60 kHz, H = 21.21 kA·m−1, the best shape recovery ratio reached 99%, the shape retention ratio reached 99.4%, and the shape recovery speed increased significantly with the increment of Fe3O4 nanoparticles. It is anticipated that tagging products with this novel shape memory composite is helpful for the purpose of an intravascular delivery system in Micro-Electro-Mechanical System (MEMS devices.

  1. A large-stroke electrostatic micro-actuator

    International Nuclear Information System (INIS)

    Towfighian, S; Seleim, A; Abdel-Rahman, E M; Heppler, G R

    2011-01-01

    Voltage-driven parallel-plate electrostatic actuators suffer from an operation range limit of 30% of the electrostatic gap; this has restrained their application in microelectromechanical systems. In this paper, the travel range of an electrostatic actuator made of a micro-cantilever beam above a fixed electrode is extended quasi-statically to 90% of the capacitor gap by introducing a voltage regulator (controller) circuit designed for low-frequency actuation. The voltage regulator reduces the actuator input voltage, and therefore the electrostatic force, as the beam approaches the fixed electrode so that balance is maintained between the mechanical restoring force and the electrostatic force. The low-frequency actuator also shows evidence of high-order superharmonic resonances that are observed here for the first time in electrostatic actuators

  2. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  3. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer

  4. Nanoreinforced shape memory polyurethane

    Science.gov (United States)

    Richardson, Tara Beth

    Shape memory polymers (SMPs) are functional materials, which find applications in a broad range of temperature sensing elements and biological micro-electro-mechanical systems (MEMS). These polymers are capable of fixing a transient shape and recovering to their original shape after a series of thermo-mechanical treatments. Generally, these materials are thermoplastic segmented polyurethanes composed of soft segments, usually formed by a polyether macroglycol, and hard segments formed from the reaction of a diisocyanate with a low molecular mass diol. The hard segment content is a key parameter to control the final properties of the polymer, such as rubbery plateau modulus, melting point, hardness, and tensile strength. The long flexible soft segment largely controls the low temperature properties, solvent resistance, and weather resistance properties. The morphology and properties of polyurethanes (PU) are greatly influenced by the ratio of hard and soft block components and the average block lengths. However, in some applications, SMPs may not generate enough recovery force to be useful. The reinforcement of SMPs using nanofillers represents a novel approach of enhancing the performance of these materials. The incorporation of these fillers into SMPs can produce performance enhancements (particularly elastic modulus) at small nanoparticle loadings (˜1-2 wt %). An optimal performance of nanofiller-polymer nanocomposites requires uniform dispersion of filler in polymers and good interfacial adhesion. The addition of nanofillers like cellulose nanofibers (CNF), conductive cellulose nanofibers (C-CNF), and carbon nanotubes (CNTs) allows for the production of stiffer materials with deformation capacity comparable to that of the unfilled polymer. Additionally, the use of conductive nanoreinforcements such as C-CNF and CNTs leads to new pathways for actuation of the shape memory effect. During this work, thermoplastic shape memory polyurethanes were synthesized with

  5. Enhancements of the memory margin and the stability of an organic bistable device due to a graphene oxide:mica nanocomposite sandwiched between two polymer (9-vinylcarbazole) buffer layers

    Science.gov (United States)

    Kim, Woo Kyum; Wu, Chaoxing; Lee, Dea Uk; Kim, Hyoun Woo; Kim, Tae Whan

    2018-01-01

    Current-voltage (I-V) curves for the Al/polymer (9-vinylcarbazole) (PVK)/graphene oxide (GO):mica/PVK/indium-tin oxide (ITO) devices at 300 K showed a current bistability with a maximum high conductivity (ON)/low conductivity (OFF) ratio of 2 × 104, which was approximately 10 times larger than that of the device without a PVK layer. The endurance number of ON/OFF switchings for the Al/PVK/GO:mica/PVK/ITO device was 1 × 102 cycles, which was 20 times larger than that for the Al/GO:mica/ITO device. The ;erase; voltages were distributed between 2.3 and 3 V, and the ;write; voltages were distributed between -1.2 and -0.5 V. The retention time for the Al/PVK/GO:mica/PVK/ITO device was above 1 × 104 s, indicative of the memory stability of the device. The carrier transport mechanisms occurring in the Al/PVK/GO:mica/PVK/ITO and the Al/GO:mica/ITO devices are described on the basis of the I-V results and the energy band diagrams.

  6. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  7. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  8. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  9. Simulations of Polymer Translocation

    Science.gov (United States)

    Vocks, H.

    2008-07-01

    simulations in which long polymers creep through tiny pores. In Chapter 3 we study pore blockage times for a translocating polymer of length N, driven by a field E across te pore. In three dimensions we find that the typical time the pore remains blocked during a translocation event scales as N^{1.37}/E We show that the scaling behavior stems from the polymer dynamics at the immediate vicinity of the pore -- in particular, the memory effects in the polymer chain tension imbalance across the pore. Chapter 4 studies the unbiased translocation of a polymer with length N, surrounded by equally long polymers, through a narrow pore in a membrane. We show that in dense polymeric systems a relaxation time exists that scales as N^{2.65}, much longer than the Rouse time N^2. If the polymers are well entangled, we find that the mean dwell times scales as N^{3.3}, while for shorter, less entangled polymers, we measure dwell times scaling as N^{2.7}. In Chapter 5 we study the translocation of an RNA molecule, pulled through a nanopore by an optical tweezer, as a method to determine its secondary structure. The resolution with which the elements of the secondary structure can be determined is limited by thermal fluctuations, ruling out single-nucleotide resolution under normal experimental conditions.

  10. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  11. Forming of shape memory composite structures

    DEFF Research Database (Denmark)

    Santo, Loredana; Quadrini, Fabrizio; De Chiffre, Leonardo

    2013-01-01

    tomography. Final shape memory composite panels were mechanically tested by three point bending before and after a shape memory step. This step consisted of a compression to reduce the panel thickness up to 60%. At the end of the bending test the panel shape was recovered by heating and a new memory step...... was performed with a higher thickness reduction. Memory steps were performed at room temperature and 120 °C so as to test the foam core in the glassy and rubbery state, respectively. Shape memory tests revealed the ability of the shape memory composite structures to recover the initial shape also after severe......A new forming procedure was developed to produce shape memory composite structures having structural composite skins over a shape memory polymer core. Core material was obtained by solid state foaming of an epoxy polyester resin with remarkably shape memory properties. The composite skin consisted...

  12. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    thane, PVC, polyesters, polystyrene and polypropylene. Also, some biocompatible polymers like PLA, poly (E-caprolactone) to mention a few, have been synthesized by varying methods and with different clay loadings (%by weight). The hydrophobicity /hydrophilicity ofthe polymer affects its dispersion in the clay.

  13. MEMORY MODULATION

    Science.gov (United States)

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145

  14. Organometallic Polymers.

    Science.gov (United States)

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  15. Polymers All Around You!

    Science.gov (United States)

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  16. Memory Palaces

    Science.gov (United States)

    Wood, Marianne

    2007-01-01

    This article presents a lesson called Memory Palaces. A memory palace is a memory tool used to remember information, usually as visual images, in a sequence that is logical to the person remembering it. In his book, "In the Palaces of Memory", George Johnson calls them "...structure(s) for arranging knowledge. Lots of connections to language arts,…

  17. Antimocrobial Polymer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Huang, Zhi-Heng (Walnut Creek, CA); Wright, Stacy C. (Columbus, GA)

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  18. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  19. Shape-memory polymers and multifunctional composites

    National Research Council Canada - National Science Library

    Leng, Jinsong; Du, Shanyi

    2010-01-01

    ... and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright materi...

  20. High Performance Polymer Memory and Its Formation

    National Research Council Canada - National Science Library

    Yang, Yang

    2007-01-01

    Under the major support from AFOSR (FA9550-04-1-0215) during the years of 2004, 2005 and 2006, we have done significant achievement on scientific research and invented very promising electronic and optoelectronic devices including (1...

  1. Conducting Polymers

    Indian Academy of Sciences (India)

    backbone (by the process of doping) and make them electrically. Conducting Polymers. From a Laboratory Curiosity to the Market Place. S Ramakrishnan ..... switching occurs between transparent yellow and green in less than. 100ms. Thus, while these materials are yet to achieve the set target. (in terms of their life cycle) ...

  2. Conducting Polymers

    Indian Academy of Sciences (India)

    ized the plastics industry by providing a route to polypropylene. (Zeigler and Natta jointly won the. Nobel Prize in Chemistry in 1963 for their discovery.) ... transport of charge in these systems can be understood in a simple fashion, by causing the imine and amine nitrogens to exchange places along the polymer backbone (in ...

  3. Conducting Polymers

    Indian Academy of Sciences (India)

    the plastics industry by providing a route to polypropylene. (Zeigler and Natta jointly won the Nobel Prize in chemistry in 1963 for their discovery.) ... these systems can be understood in a simple fashion, by causing the imine and amine nitrogens to exchange places along the polymer backbone (in protonated emeraldinel.

  4. Conducting Polymers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Conducting Polymers - From a Laboratory Curiosity to the Market Place. S Ramakrishnan. Volume 16 Issue 12 December 2011 pp 1254-1265. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Polymer solutions

    Science.gov (United States)

    Krawczyk, Gerhard Erich [Bremen, DE; Miller, Kevin Michael [West Dundee, IL

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  6. Polymer physics

    CERN Document Server

    Gedde, Ulf W

    1999-01-01

    This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in t...

  7. Supramolecular polymers

    National Research Council Canada - National Science Library

    Ciferri, A

    2000-01-01

    ... to the new class of self-assembled polymers that undergo reversible growth by the formation of noncovalent bonds. This class (Part II) is wider than expected: not only mainchain assemblies of hydrogen-bonded repeating units, but also planar organization of S-layer proteins, micellar and related three-dimensional structures of blo...

  8. Sharing Memories

    DEFF Research Database (Denmark)

    Rodil, Kasper; Nielsen, Emil Byskov; Nielsen, Jonathan Bernstorff

    2018-01-01

    For people suffering from aphasia, everyday verbal and bodily interpersonal communication is challenging. To increase aphasics' ability to share memories, an assistive technology (the MemoryBook) was conceptualized based on explicit, observable and tacit knowledge gathered from the practices...

  9. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting ...

  10. Cognitive memory.

    Science.gov (United States)

    Widrow, Bernard; Aragon, Juan Carlos

    2013-05-01

    Regarding the workings of the human mind, memory and pattern recognition seem to be intertwined. You generally do not have one without the other. Taking inspiration from life experience, a new form of computer memory has been devised. Certain conjectures about human memory are keys to the central idea. The design of a practical and useful "cognitive" memory system is contemplated, a memory system that may also serve as a model for many aspects of human memory. The new memory does not function like a computer memory where specific data is stored in specific numbered registers and retrieval is done by reading the contents of the specified memory register, or done by matching key words as with a document search. Incoming sensory data would be stored at the next available empty memory location, and indeed could be stored redundantly at several empty locations. The stored sensory data would neither have key words nor would it be located in known or specified memory locations. Sensory inputs concerning a single object or subject are stored together as patterns in a single "file folder" or "memory folder". When the contents of the folder are retrieved, sights, sounds, tactile feel, smell, etc., are obtained all at the same time. Retrieval would be initiated by a query or a prompt signal from a current set of sensory inputs or patterns. A search through the memory would be made to locate stored data that correlates with or relates to the prompt input. The search would be done by a retrieval system whose first stage makes use of autoassociative artificial neural networks and whose second stage relies on exhaustive search. Applications of cognitive memory systems have been made to visual aircraft identification, aircraft navigation, and human facial recognition. Concerning human memory, reasons are given why it is unlikely that long-term memory is stored in the synapses of the brain's neural networks. Reasons are given suggesting that long-term memory is stored in DNA or RNA

  11. Memory Modulation

    NARCIS (Netherlands)

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive

  12. Nanostructured Shape Memory Alloys: Adaptive Composite Materials and Components

    National Research Council Canada - National Science Library

    Crone, Wendy C; Ellis, Arthur B; Perepezko, John H

    2007-01-01

    .... Both SMA-polymer and SMA-metal composites were created, as well as new fabrication strategies for producing NiTi and CuAlNi shape memory alloy particles with refined size which still display shape...

  13. Shape memory polyurethane nanocomposites

    Science.gov (United States)

    Cao, Feina

    Shape memory polymers are smart materials which can remember their original shapes. However, the low recovery stress and low mechanical strength limit the commercial applications of shape memory polymers. In this study, nanoclays were introduced to shape memory polyurethanes (SMPU) to augment these properties by enhance the network of SMPU. Several factors which influence the shape recovery stress were evaluated, including the nature of polymer chain by using different monomers, type of clay particles, extent of filler dispersion, clay content and deformation conditions. It was found that only reactive clay particles were well dispersed into polyurethane matrix by the tethering between --CH2CH 2OH functional groups in clay surfactants and polyurethane chains. Two different shape memory polyurethanes (Systems I & II) prepared by bulk polymerization were compared. The shape memory effect of System I was triggered by melting of the soft segment crystals, while that of System II was by glass transition of the soft segments. It was seen that the reactive clay particles dispersed well in both polyurethane matrices and augmented the recovery stress, e.g., 20% increase with 1 wt % nanoclay in System I and 40% increase with 5 wt % nanoclay in System II were observed. In System I, clay particles interfered with soft segment crystallization, and promoted phase mixing between the hard and soft segments, thus affecting the fixity and recovery ratio. Nevertheless, the soft segment crystallinity was still enough and in some cases increased due to stretching to exhibit excellent shape fixity and shape recovery ratio. The higher loading of clay particles accelerated the stress relaxation, resulting in reduction of recovery stress. In System II, no significant effect of clay particles in phase separation was observed, so there was no influence of clay on shape fixity and recovery ratio. The recovery stress increased with reactive nanoclay content. It was also found that the recovery

  14. Emerging memories

    Science.gov (United States)

    Baldi, Livio; Bez, Roberto; Sandhu, Gurtej

    2014-12-01

    Memory is a key component of any data processing system. Following the classical Turing machine approach, memories hold both the data to be processed and the rules for processing them. In the history of microelectronics, the distinction has been rather between working memory, which is exemplified by DRAM, and storage memory, exemplified by NAND. These two types of memory devices now represent 90% of all memory market and 25% of the total semiconductor market, and have been the technology drivers in the last decades. Even if radically different in characteristics, they are however based on the same storage mechanism: charge storage, and this mechanism seems to be near to reaching its physical limits. The search for new alternative memory approaches, based on more scalable mechanisms, has therefore gained new momentum. The status of incumbent memory technologies and their scaling limitations will be discussed. Emerging memory technologies will be analyzed, starting from the ones that are already present for niche applications, and which are getting new attention, thanks to recent technology breakthroughs. Maturity level, physical limitations and potential for scaling will be compared to existing memories. At the end the possible future composition of memory systems will be discussed.

  15. Memory protection

    Science.gov (United States)

    Denning, Peter J.

    1988-01-01

    Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.

  16. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  17. Quantum memory Quantum memory

    Science.gov (United States)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  18. Declarative memory.

    Science.gov (United States)

    Riedel, Wim J; Blokland, Arjan

    2015-01-01

    Declarative Memory consists of memory for events (episodic memory) and facts (semantic memory). Methods to test declarative memory are key in investigating effects of potential cognition-enhancing substances--medicinal drugs or nutrients. A number of cognitive performance tests assessing declarative episodic memory tapping verbal learning, logical memory, pattern recognition memory, and paired associates learning are described. These tests have been used as outcome variables in 34 studies in humans that have been described in the literature in the past 10 years. Also, the use of episodic tests in animal research is discussed also in relation to the drug effects in these tasks. The results show that nutritional supplementation of polyunsaturated fatty acids has been investigated most abundantly and, in a number of cases, but not all, show indications of positive effects on declarative memory, more so in elderly than in young subjects. Studies investigating effects of registered anti-Alzheimer drugs, cholinesterase inhibitors in mild cognitive impairment, show positive and negative effects on declarative memory. Studies mainly carried out in healthy volunteers investigating the effects of acute dopamine stimulation indicate enhanced memory consolidation as manifested specifically by better delayed recall, especially at time points long after learning and more so when drug is administered after learning and if word lists are longer. The animal studies reveal a different picture with respect to the effects of different drugs on memory performance. This suggests that at least for episodic memory tasks, the translational value is rather poor. For the human studies, detailed parameters of the compositions of word lists for declarative memory tests are discussed and it is concluded that tailored adaptations of tests to fit the hypothesis under study, rather than "off-the-shelf" use of existing tests, are recommended.

  19. Measuring memory.

    Science.gov (United States)

    Baddeley, A

    1988-01-01

    Three broad approaches to the measurement of memory functioning will be described. The first of these involves using memory as a general indicator of any dysfunction in the central nervous system. This approach will be illustrated using Sternberg's short-term memory scanning paradigm. Its strengths are that such tests are often very sensitive, but they are often very difficult to interpret both theoretically and in practical terms. A second approach is to use a range of tasks selected so as to tap different aspects of human memory. Such an approach is of considerably more theoretical interest, and is discussed in more detail by Eysenck (this volume). Its weaknesses are that theories of memory are still changing relatively quickly, and that mapping such results onto memory outside the laboratory is often complex. A third approach is to attempt a more direct measure of everyday memory. The use of questionnaires for this purpose will be critically discussed, and a new test of everyday memory will be described. This test, the Rivermead Behavioural Memory Test, correlates well with observations of memory lapses in patients, and appears to offer a promising new line of development.

  20. Graphene-based polymer nanocomposites in electronics

    CERN Document Server

    Sadasivuni, Kishor Kumar; Kim, Jaehwan

    2015-01-01

    This book covers graphene reinforced polymers, which are useful in electronic applications, including electrically conductive thermoplastics composites, thermosets and elastomers. It systematically introduces the reader to fundamental aspects and leads over to actual applications, such as sensor fabrication, electromagnetic interference shielding, optoelectronics, superconductivity, or memory chips. The book also describes dielectric and thermal behaviour of graphene polymer composites - properties which are essential to consider for the fabrication and production of these new electronic materials. The contributions in this book critically discuss the actual questions in the development and applications of graphene polymer composites. It will thus appeal to chemists, physicists, materials scientists as well as nano technologists, who are interested in the properties of graphene polymer composites.

  1. Disputed Memory

    DEFF Research Database (Denmark)

    The world wars, genocides and extremist ideologies of the 20th century are remembered very differently across Central, Eastern and Southeastern Europe, resulting sometimes in fierce memory disputes. This book investigates the complexity and contention of the layers of memory of the troubled 20th...... century in the region. Written by an international group of scholars from a diversity of disciplines, the chapters approach memory disputes in methodologically innovative ways, studying representations and negotiations of disputed pasts in different media, including monuments, museum exhibitions......, individual and political discourse and electronic social media. Analyzing memory disputes in various local, national and transnational contexts, the chapters demonstrate the political power and social impact of painful and disputed memories. The book brings new insights into current memory disputes...

  2. Memory design

    DEFF Research Database (Denmark)

    Tanderup, Sisse

    Mind and Matter - Nordik 2009 Conference for Art Historians Design Matters Contributed Memory design BACKGROUND My research concerns the use of memory categories in the designs by the companies Alessi and Georg Jensen. When Alessi's designers create their products, they are usually inspired...... by cultural forms, often specifically by the concept of memory in philosophy, sociology and psychology, while Danish design traditionally has been focusing on form and function with frequent references to the forms of nature. Alessi's motivation for investigating the concept of memory is that it adds...... a cultural dimension to the design objects, enabling the objects to make an identity-forming impact. Whether or not the concept of memory plays a significant role in Danish design has not yet been elucidated fully. TERMINOLOGY The concept of "memory design" refers to the idea that design carries...

  3. Memory design

    DEFF Research Database (Denmark)

    Tanderup, Sisse

    over time. Memory is bonded with story telling. Both in the way the designer tells a story through his design and in the way the user recognizes the story in his perception of design. Memory design first requires recognition and then cognition. AIM The purpose of my research is to investigate the use......Mind and Matter - Nordik 2009 Conference for Art Historians Design Matters Contributed Memory design BACKGROUND My research concerns the use of memory categories in the designs by the companies Alessi and Georg Jensen. When Alessi's designers create their products, they are usually inspired...... by cultural forms, often specifically by the concept of memory in philosophy, sociology and psychology, while Danish design traditionally has been focusing on form and function with frequent references to the forms of nature. Alessi's motivation for investigating the concept of memory is that it adds...

  4. Milestoning with transition memory

    Science.gov (United States)

    Hawk, Alexander T.; Makarov, Dmitrii E.

    2011-12-01

    Milestoning is a method used to calculate the kinetics and thermodynamics of molecular processes occurring on time scales that are not accessible to brute force molecular dynamics (MD). In milestoning, the conformation space of the system is sectioned by hypersurfaces (milestones), an ensemble of trajectories is initialized on each milestone, and MD simulations are performed to calculate transitions between milestones. The transition probabilities and transition time distributions are then used to model the dynamics of the system with a Markov renewal process, wherein a long trajectory of the system is approximated as a succession of independent transitions between milestones. This approximation is justified if the transition probabilities and transition times are statistically independent. In practice, this amounts to a requirement that milestones are spaced such that trajectories lose position and velocity memory between subsequent transitions. Unfortunately, limiting the number of milestones limits both the resolution at which a system's properties can be analyzed, and the computational speedup achieved by the method. We propose a generalized milestoning procedure, milestoning with transition memory (MTM), which accounts for memory of previous transitions made by the system. When a reaction coordinate is used to define the milestones, the MTM procedure can be carried out at no significant additional expense as compared to conventional milestoning. To test MTM, we have applied its version that allows for the memory of the previous step to the toy model of a polymer chain undergoing Langevin dynamics in solution. We have computed the mean first passage time for the chain to attain a cyclic conformation and found that the number of milestones that can be used, without incurring significant errors in the first passage time is at least 8 times that permitted by conventional milestoning. We further demonstrate that, unlike conventional milestoning, MTM permits

  5. Main Memory

    NARCIS (Netherlands)

    P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu

    2008-01-01

    htmlabstractPrimary storage, presently known as main memory, is the largest memory directly accessible to the CPU in the prevalent Von Neumann model and stores both data and instructions (program code). The CPU continuously reads instructions stored there and executes them. It is also called Random

  6. Random Memory

    OpenAIRE

    Martos Forniés, Sergio

    2015-01-01

    Desarrollo de una nueva versión del juego Memory para dispositivos móviles Android. Desenvolupament d'una nova versió del joc Memory per a dispositius mòbils Android. Bachelor thesis for the Computer Science program on Educational video games.

  7. Shared Memories?

    DEFF Research Database (Denmark)

    Wæhrens, Anne

    This paper analyses how the memory of the Holocaust has been addressed in the European Parliament from 1989 to 2009. I identify two major changes that occurred in the 1990s and after the 2004 enlargement of the European Union respectively. In the 1990s the war in Bosnia and the question of restit...... identifies what seems to be a political memory split between Left and Right; and it shows that the time might not be ripe for a shared European memory.......This paper analyses how the memory of the Holocaust has been addressed in the European Parliament from 1989 to 2009. I identify two major changes that occurred in the 1990s and after the 2004 enlargement of the European Union respectively. In the 1990s the war in Bosnia and the question...... of restitution universalised the memory of the Holocaust and made it present. The 2004 enlargement brought the memory of Soviet Communism into the Union and made it a central task to construct a community of memory that includes both the memory of the Holocaust and of Soviet Communism. The analysis also...

  8. Memory Magic.

    Science.gov (United States)

    Hartman, Thomas G.; Nowak, Norman

    This paper outlines several "tricks" that aid students in improving their memories. The distinctions between operational and figural thought processes are noted. Operational memory is described as something that allows adults to make generalizations about numbers and the rules by which they may be combined, thus leading to easier memorization.…

  9. Episodic Memories

    Science.gov (United States)

    Conway, Martin A.

    2009-01-01

    An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of "episodic elements," summary records of experience often in the form of visual images, associated to a "conceptual frame" that provides a…

  10. Collaging Memories

    Science.gov (United States)

    Wallach, Michele

    2011-01-01

    Even middle school students can have memories of their childhoods, of an earlier time. The art of Romare Bearden and the writings of Paul Auster can be used to introduce ideas about time and memory to students and inspire works of their own. Bearden is an exceptional role model for young artists, not only because of his astounding art, but also…

  11. Memory Matters

    Science.gov (United States)

    ... site Sitio para adolescentes Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Memory Matters KidsHealth / For Kids / Memory Matters What's in ...

  12. Nanoimprint lithography for functional polymer patterning

    Science.gov (United States)

    Cui, Dehu

    2011-07-01

    Organic semiconductors have generated huge interested in recent years for low-cost and flexible electronics. Current and future device applications for semiconducting polymers include light-emitting diodes, thin-film transistors, photovoltaic cells, photodetectors, lasers, and memories. The performance of conjugated polymer devices depends on two major factors: the chain conformation in polymer film and the device architecture. Highly ordered chain structure usually leads to much improved performance by enhancing interchain interaction to facilitate carrier transport. The goal of this research is to improve the performance of organic devices with the nanoimprint lithography. The work begins with the controlling of polymer chain orientation in patterned nanostructures through nanoimprint mold design and process parameter manipulation, and studying the effect of chain ordering on material properties. Then, step-and-repeat thermal nanoimprint technique for large-scale continuous manufacturing of conjugated polymer nanostructures is developed. After that, Systematic investigation of polymer chain configuration by Raman spectroscopy is carried out to understand how nanoimprint process parameters, such as mold pattern size, temperature, and polymer molecular weight, affects polymer chain configuration. The results indicate that chain orientation in nanoimprinted polymer micro- and nanostructures is highly related to the nanoimprint temperature and the dimensions of the mold structures. The ability to create nanoscale polymer micro- and nanostructures and manipulate their internal chain conformation establishes an original experimental platform that enables studying the properties of functional polymers at the micro- and nanoscale and understanding their fundamental structure-property relationships. In addition to the impact on basic research, the techniques developed in this work are important in applied research and development. Large-area conjugated polymer micro- and

  13. Transient behaviour of a polymer dragged through a viscoelastic medium.

    Science.gov (United States)

    Vandebroek, Hans; Vanderzande, Carlo

    2014-09-21

    We study the dynamics of a polymer that is pulled by a constant force through a viscoelastic medium. This is a model for a polymer being pulled through a cell by an external force, or for an active biopolymer moving due to a self-generated force. Using the Rouse model with a memory dependent drag force, we find that the center of mass of the polymer follows a subballistic motion. We determine the time evolution of the length and the shape of the polymer. Through an analysis of the velocity of the monomers, we investigate how the tension propagates through the polymer. We discuss how polymers can be used to probe the properties of a viscoelastic medium.

  14. Accessing memory

    Science.gov (United States)

    Yoon, Doe Hyun; Muralimanohar, Naveen; Chang, Jichuan; Ranganthan, Parthasarathy

    2017-09-26

    A disclosed example method involves performing simultaneous data accesses on at least first and second independently selectable logical sub-ranks to access first data via a wide internal data bus in a memory device. The memory device includes a translation buffer chip, memory chips in independently selectable logical sub-ranks, a narrow external data bus to connect the translation buffer chip to a memory controller, and the wide internal data bus between the translation buffer chip and the memory chips. A data access is performed on only the first independently selectable logical sub-rank to access second data via the wide internal data bus. The example method also involves locating a first portion of the first data, a second portion of the first data, and the second data on the narrow external data bus during separate data transfers.

  15. Memory conformity affects inaccurate memories more than accurate memories.

    Science.gov (United States)

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  16. From commodity polymers to functional polymers.

    Science.gov (United States)

    Xiang, Tao; Wang, Ling-Ren; Ma, Lang; Han, Zhi-Yuan; Wang, Rui; Cheng, Chong; Xia, Yi; Qin, Hui; Zhao, Chang-Sheng

    2014-04-08

    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outstanding pH-sensitivity and pH-reversibility, antifouling property, antibacterial, and anticoagulant property. Our study opens a route for the functionalization of commodity polymers, which lead to important advances in polymeric materials applications.

  17. Investigation of Multi-Functional Ferroelectric Nanorod/Carbon Nanotube/Polymer Composites and Shape Memory Alloy Treatment for Vibration Control of Fire Control System to Improve Firing Accuracy

    Science.gov (United States)

    2015-08-10

    Hadi Fekrmandi, Amin Baghalian, Shervin Tashakori, Kathleen Oyola, Abdullah Alsenawi, Ibrahim Nur Tansel. A non-contact method for part-based process ...example. Carbon nanotubes are considered to be the ultimate low-density high-modulus fibers [1]. Our previous results also indicated that MWCNT...Release; Distribution Unlimited Final Report: Investigation of Multi-Functional Ferroelectric Nanorod/ Carbon Nanotube/Polymer Composites and Shape

  18. Memory loss

    Science.gov (United States)

    A person with memory loss needs a lot of support. It helps to show the person familiar objects, music, or and photos or play familiar music. Write down when the person should take any medicine or do other ...

  19. Multiferroic Memories

    Directory of Open Access Journals (Sweden)

    Amritendu Roy

    2012-01-01

    Full Text Available Multiferroism implies simultaneous presence of more than one ferroic characteristics such as coexistence of ferroelectric and magnetic ordering. This phenomenon has led to the development of various kinds of materials and conceptions of many novel applications such as development of a memory device utilizing the multifunctionality of the multiferroic materials leading to a multistate memory device with electrical writing and nondestructive magnetic reading operations. Though, interdependence of electrical- and magnetic-order parameters makes it difficult to accomplish the above and thus rendering the device to only two switchable states, recent research has shown that such problems can be circumvented by novel device designs such as formation of tunnel junction or by use of exchange bias. In this paper, we review the operational aspects of multiferroic memories as well as the materials used for these applications along with the designs that hold promise for the future memory devices.

  20. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  1. Concrete Memories

    DEFF Research Database (Denmark)

    Wiegand, Frauke Katharina

    2015-01-01

    This article traces the presence of Atlantikwall bunkers in amateur holiday snapshots and discusses the ambiguous role of the bunker site in visual cultural memory. Departing from my family’s private photo collection from twenty years of vacationing at the Danish West coast, the different mundane...... the bunkers’ changing visuality and the cultural topography they both actively transform and are being transformed by through juxtaposing different acts and objects of memory over time and in different visual articulations....

  2. Polymer and ceramic nanocomposites for aerospace applications

    Science.gov (United States)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  3. Conducting polymer materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2003-01-01

    Full Text Available Conducting polymers represent a very interesting group of polymer materials Investigation of the synthesis, structure and properties of these materials has been the subject of considerable research efforts in the last twenty years. A short presentating of newer results obtained by investigating of the synthesis, structure and properties of two basic groups of conducting polymers: a conducting polymers the conductivity of which is the result of their molecular structure, and b conducting polymer composites (EPC, is given in this paper. The applications and future development of this group of polymer materials is also discussed.

  4. Self-Healing Composite of Thermoset Polymer and Programmed Super Contraction Fibers

    Science.gov (United States)

    Li, Guoqiang (Inventor); Meng, Harper (Inventor)

    2016-01-01

    A composition comprising thermoset polymer, shape memory polymer to facilitate macro scale damage closure, and a thermoplastic polymer for molecular scale healing is disclosed; the composition has the ability to resolve structural defects by a bio-mimetic close-then heal process. In use, the shape memory polymer serves to bring surfaces of a structural defect into approximation, whereafter use of the thermoplastic polymer for molecular scale healing allowed for movement of the thermoplastic polymer into the defect and thus obtain molecular scale healing. The thermoplastic can be fibers, particles or spheres which are used by heating to a level at or above the thermoplastic's melting point, then cooling of the composition below the melting temperature of the thermoplastic. Compositions of the invention have the ability to not only close macroscopic defects, but also to do so repeatedly even if another wound/damage occurs in a previously healed/repaired area.

  5. Operation method verification for two-terminal polymer RAM

    International Nuclear Information System (INIS)

    Kim, Jung-Ha; Ahn, Chang-Yong; Lee, Jong-Hoon; Lee, Sang-Sun

    2010-01-01

    The polymer random access memory (PoRAM) has various excellent electrical and mechanical properties, such as small cell feature sizes, high density integrations, and mass producibility. Although the polymer memories have important advantages for reliability, the peripheral circuits of the polymer memories have not been studied yet; so not many research articles are available. Instead of the conventional MOS-switch, a PoRAM uses a diode switch as the cell switch for high density in memory. The diode-switch PoRAM, which has a memory margin (I on /I off ratio) of approximately 1 x 10 3 , achieves a sensing time of 10 ns through the proposed schemes. In this paper, a memory core configuration, read/program/erase techniques and a high-density structure using two-terminal devices such as diodes for the PoRAM are proposed. All proposed schemes were verified by using the CADENCE tool and were fabricated using Dongbu 0.13 um technology.

  6. Working memory.

    Science.gov (United States)

    Baddeley, A

    1992-01-31

    The term working memory refers to a brain system that provides temporary storage and manipulation of the information necessary for such complex cognitive tasks as language comprehension, learning, and reasoning. This definition has evolved from the concept of a unitary short-term memory system. Working memory has been found to require the simultaneous storage and processing of information. It can be divided into the following three subcomponents: (i) the central executive, which is assumed to be an attentional-controlling system, is important in skills such as chess playing and is particularly susceptible to the effects of Alzheimer's disease; and two slave systems, namely (ii) the visuospatial sketch pad, which manipulates visual images and (iii) the phonological loop, which stores and rehearses speech-based information and is necessary for the acquisition of both native and second-language vocabulary.

  7. Introduction to Polymer Chemistry.

    Science.gov (United States)

    Harris, Frank W.

    1981-01-01

    Reviews the physical and chemical properties of polymers and the two major methods of polymer synthesis: addition (chain, chain-growth, or chain-reaction), and condensation (step-growth or step-reaction) polymerization. (JN)

  8. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    polymerized in a controlled manner with carrier monomers of historically proven biocompatible polymers. The carrier polymers, the loading of ribavirin as well as the size of the polymer were varied systematically with the aid of an automated synthesis platform. These polymers were tested in a cellular assay...... of reversible-addition-fragmentation chain transfer polymerization, which not only controls the size of polymer, but also allows the introduction of a terminal amine on the polymer which can be used for further conjugation. This has allowed for not only fluorescent labeling of the polymer, but also protein......The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...

  9. Polymer Fluid Dynamics.

    Science.gov (United States)

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  10. Vial Memory

    OpenAIRE

    Grimes, Karl

    2005-01-01

    Vial Memory is the final part in the Collected trilogy. Following Still Life and Future Nature, the work marks a return to the medical archive and the body on display. The project is an art and science collaboration with the Mütter Museum and the College of Physicians of Philadelphia, U.S.A. Vial Memory explicitly invokes scientific process and human consciousness. On one level functioning as a form of memento mori with their intimations of mortality, yet the vivid spectacular of the images a...

  11. Inventing Memories

    DEFF Research Database (Denmark)

    Sandvik, Kjetil; Christensen, Dorthe Refslund

    on the Internet facilitating the process of mourning for people who have lost loved ones (children, lovers, siblings, parents etc), websites like e.g. Letters to Heaven. In this paper we analyze the Danish mourning website, mindet.dk (mindet means memory). On this website participants perform their grief...... by designing online memory spaces for their loved one(s) displaying photographs, poetry, stories and expressions of grief and longing. They take part in expressions of empathy for others by lighting candles for other people's loved ones, they share their personal experiences in different chatrooms...

  12. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the reptation model and discuss in some more detail processes limiting the confinement.

  13. Milestoning with coarse memory

    Science.gov (United States)

    Hawk, Alexander T.

    2013-04-01

    Milestoning is a method used to calculate the kinetics of molecular processes occurring on timescales inaccessible to traditional molecular dynamics (MD) simulations. In the method, the phase space of the system is partitioned by milestones (hypersurfaces), trajectories are initialized on each milestone, and short MD simulations are performed to calculate transitions between neighboring milestones. Long trajectories of the system are then reconstructed with a semi-Markov process from the observed statistics of transition. The procedure is typically justified by the assumption that trajectories lose memory between crossing successive milestones. Here we present Milestoning with Coarse Memory (MCM), a generalization of Milestoning that relaxes the memory loss assumption of conventional Milestoning. In the method, milestones are defined and sample transitions are calculated in the standard Milestoning way. Then, after it is clear where trajectories sample milestones, the milestones are broken up into distinct neighborhoods (clusters), and each sample transition is associated with two clusters: the cluster containing the coordinates the trajectory was initialized in, and the cluster (on the terminal milestone) containing trajectory's final coordinates. Long trajectories of the system are then reconstructed with a semi-Markov process in an extended state space built from milestone and cluster indices. To test the method, we apply it to a process that is particularly ill suited for Milestoning: the dynamics of a polymer confined to a narrow cylinder. We show that Milestoning calculations of both the mean first passage time and the mean transit time of reversal—which occurs when the end-to-end vector reverses direction—are significantly improved when MCM is applied. Finally, we note the overhead of performing MCM on top of conventional Milestoning is negligible.

  14. Antimicrobial Modifications of Polymers

    OpenAIRE

    Sedlarik, Vladimir

    2013-01-01

    This chapter is focused on antimicrobial modifications of polymer materials intended for medical devices production. Firstly, a brief introduction into the field of medical application of polymers is presented. Considering the fact that polymer medical devices are often connected with occurrence of nosocomial infections, the next part refers to this phenomenon and its causes. One of the possibilities of reducing of the infection occurrence is aimed at polymer modification. It is a key topic o...

  15. Microgel polymer composite fibres

    OpenAIRE

    Kehren, Dominic

    2014-01-01

    In this thesis some novel ideas and advancements in the field of polymer composite fibres, specifically microgel-based polymer composite fibres have been achieved. The main task was to investigate and understand the electrospinning process of microgels and polymers and the interplay of parameter influences, in order to fabricate reproducible and continuously homogenous composite fibres. The main aim was to fabricate a composite material which combines the special properties of polymer fibres ...

  16. Memory disorders in children

    OpenAIRE

    Majerus, Steve; Van der Linden, Martial

    2013-01-01

    Memory disorders are a frequent consequence of a variety of childhood neurological conditions. We will review the characteristics of memory disorders as a function of the main four memory systems: short-term memory, episodic memory, semantic memory, and procedural memory. For each system, we will identify the most typical cerebral and/or genetic correlates, and we will discuss the impact of impairment of each memory system on everyday life functioning. © 2013 Elsevier B.V.

  17. Modeling semiflexible polymer networks

    NARCIS (Netherlands)

    Broedersz, C.P.; MacKintosh, F.C.

    2014-01-01

    This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have

  18. Memory consolidation

    NARCIS (Netherlands)

    Takashima, A.; Bakker, I.; Schmid, H.-J.

    2016-01-01

    In order to make use of novel experiences and knowledge to guide our future behavior, we must keep large amounts of information accessible for retrieval. The memory system that stores this information needs to be flexible in order to rapidly incorporate incoming information, but also requires that

  19. Holographic memories

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Berg, R.H.; Hvilsted, Søren

    1999-01-01

    A Two-dimensional holographic memory for archival storage is described. Assuming a coherent transfer function, an A4 page can be stored at high resolution in an area of 1 mm(2). Recently developed side-chain liquid crystalline azobenzene polyesters are found to be suitable media for holographic s...

  20. Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D

    1999-01-01

    Effects of the electronic structure of polymer/polymer interfaces on the electroluminescence efficiency and tunable multicolor emission of polymer heterojunction light-emitting diodes were explored...

  1. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  2. Radiation effects on polymers

    International Nuclear Information System (INIS)

    Clough, R.L.; Shalaby, S.W.

    1991-01-01

    This book covers polymer radiation effects to be available in more than a decade. This volume reviews the fundamental chemistry and physics of polymer-radiation interaction and examines recent progress in most major areas of the field. Its 38 chapters, cover: fundamentals of polymer radiation chemistry; technological applications of radiation to polymers (including radiation processing; radiation curing; sterilization; cross-linking, polymerization, grafting, x-ray resists, and others); and degradation of stabilization of irradiated polymers (including nuclear plants, scintillation detectors for particle physics, and others)

  3. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  4. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  5. Fluorination of polymers

    International Nuclear Information System (INIS)

    Du Toit, F.J.

    1991-01-01

    Polyethylene and polypropylene were reacted with elemental fluorine under carefully controlled conditions to produce fluorocarbon polymers. Fluorination of polymer films resulted in fluorination of only the outer surfaces of the films, while the reaction of elemental fluorine with powdered hydrocarbon polymers produced perfluorocarbon polymers. Existing and newly developed techniques were used to characterize the fluorinated polymers. It was shown that the degree of fluorination was influenced by the surface area of the hydrocarbon material, the concentration, of the fluorine gas, and the time and temperature of fluorination. A fluidized-bed reactor used for the fluorination of polymer powders effectively increased the reaction rate. The surface tension and the oxygen permeability of the fluorinated polymers were studied. The surface tension of hydrocarbon polymers was not influenced by different solvents, but the surface tension of fluorinated polymers was affected by the type of solvent that was used. There were indications that the surface tension was affected by oxygen introduced into the polymer surface during fluorination. Fluorination lowered the permeability of oxygen through hydrocarbon polymers. 55 refs., 51 figs., 26 tabs

  6. Advanced polymers in medicine

    CERN Document Server

    Puoci, Francesco

    2014-01-01

    The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.

  7. Smart polymers for implantable electronics

    Science.gov (United States)

    Ware, Taylor H.

    Neural interfaces have been heavily investigated due to their unique ability to tap into the communication system of the body. Substrates compatible with microelectronics processing are planar and 5-7 orders of magnitude stiffer than the tissue with which they interact. This work enables fabrication of devices by photolithography that are stiff enough to penetrate soft tissue, change in stiffness to more closely match the modulus of tissue after implantation and adopt shapes to conform to tissue. Several classes of physiologically-responsive, amorphous polymer networks with the onset of the glass transition above 37 °C are synthesized and thermomechanically characterized. These glassy networks exhibit an isothermal reduction in modulus due to plasticization in the presence of aqueous fluids. Modulus after plasticization can be tuned by the dry glass transition temperature, degree of plasticization and crosslink density. Acrylic shape memory polymer based intracortical probes, which can change in modulus from above 1 GPa to less than 1 MPa, are fabricated through a transfer process that shields the substrate from processing and enhances adhesion to the microelectronics. Substrates capable of withstanding the conditions of photolithography are fabricated "thiol-ene" and "thiol-epoxy" substrates. These materials provide processing windows that rival engineering thermoplastics, swell less than 6% in water, and exhibit a controllable reduction in modulus from above 1 GPa to between 5 and 150 MPa. Substrates, planar for processing, that subsequently recover 3D shapes are synthesized by the formation of post-gelation crosslinks either covalent or supramolecular in nature. Acrylics with varied supramolecular, based on ureidopyrimidone moieties, and covalent crosslink density demonstrate triple-shape memory behavior. Post-gelation covalent crosslinks are established to permanently fix 3D shapes in thiol-ene networks. Devices fabricated include intracortical and nerve cuff

  8. Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Nguyen, Thao D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, Rui [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-02-01

    Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate the effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.

  9. Comparative analysis of the planar capacitor and IDT piezoelectric thin-film micro-actuator models

    International Nuclear Information System (INIS)

    Myers, Oliver J; Anjanappa, M; Freidhoff, Carl B

    2011-01-01

    A comparison of the analysis of similarly developed microactuators is presented. Accurate modeling and simulation techniques are vital for piezoelectrically actuated microactuators. Coupling analytical and numerical modeling techniques with variational design parameters, accurate performance predictions can be realized. Axi-symmetric two-dimensional and three-dimensional static deflection and harmonic models of a planar capacitor actuator are presented. Planar capacitor samples were modeled as unimorph diaphragms with sandwiched piezoelectric material. The harmonic frequencies were calculated numerically and compared well to predicted values and deformations. The finite element modeling reflects the impact of the d 31 piezoelectric constant. Two-dimensional axi-symmetric models of circularly interdigitated piezoelectrically membranes are also presented. The models include the piezoelectric material and properties, the membrane materials and properties, and incorporates various design considerations of the model. These models also include the electro-mechanical coupling for piezoelectric actuation and highlight a novel approach to take advantage of the higher d 33 piezoelectric coupling coefficient. Performance is evaluated for varying parameters such as electrode pitch, electrode width, and piezoelectric material thickness. The models also showed that several of the design parameters were naturally coupled. The static numerical models correlate well with the maximum static deflection of the experimental devices. Finally, this paper deals with the development of numerical harmonic models of piezoelectrically actuated planar capacitor and interdigitated diaphragms. The models were able to closely predict the first two harmonics, conservatively predict the third through sixth harmonics and predict the estimated values of center deflection using plate theory. Harmonic frequency and deflection simulations need further correlation by conducting extensive iterative harmonic simulations and experiments. The results, conclusions and potential improvements are discussed.

  10. Characterization, modeling and control of the uWalker - a micro actuator for data storage

    NARCIS (Netherlands)

    Patrascu, M.

    2006-01-01

    We, people, always want more. Ever increasing demands for computing performance and storage capacity call for disruptive technologies of digital data storage. An additional fact is the miniaturization of many consumer electronics devices that are present on the market. The combination of these two

  11. Inventing Memories

    DEFF Research Database (Denmark)

    Sandvik, Kjetil; Christensen, Dorthe Refslund

    describes the long term process through which instutions and interaction modes are being changed in culture and society due to the media's increasing influence. Mediatization defines and frames the way we experience and how we define ourselves and the roles we play in connection to this experience. Web 2...... on the Internet facilitating the process of mourning for people who have lost loved ones (children, lovers, siblings, parents etc), websites like e.g. Letters to Heaven. In this paper we analyze the Danish mourning website, mindet.dk (mindet means memory). On this website participants perform their grief...... by designing online memory spaces for their loved one(s) displaying photographs, poetry, stories and expressions of grief and longing. They take part in expressions of empathy for others by lighting candles for other people's loved ones, they share their personal experiences in different chatrooms...

  12. Stratification in Drying Polymer-Polymer and Colloid-Polymer Mixtures.

    Science.gov (United States)

    Howard, Michael P; Nikoubashman, Arash; Panagiotopoulos, Athanassios Z

    2017-10-24

    Drying polymer-polymer and colloid-polymer mixtures were studied using Langevin dynamics computer simulations. Polymer-polymer mixtures vertically stratified into layers, with the shorter polymers enriched near the drying interface and the longer polymers pushed down toward the substrate. Colloid-polymer mixtures stratified into a polymer-on-top structure when the polymer radius of gyration was comparable to or smaller than the colloid diameter, and a colloid-on-top structure otherwise. We also developed a theoretical model for the drying mixtures based on dynamical density functional theory, which gave excellent quantitative agreement with the simulations for the polymer-polymer mixtures and qualitatively predicted the observed polymer-on-top or colloid-on-top structures for the colloid-polymer mixtures.

  13. Shape-Memory PVDF Exhibiting Switchable Piezoelectricity.

    Science.gov (United States)

    Hoeher, Robin; Raidt, Thomas; Novak, Nikola; Katzenberg, Frank; Tiller, Joerg C

    2015-12-01

    In this study, a material is designed which combines the properties of shape-memory and electroactive polymers. This is achieved by covalent cross-linking of polyvinylidene fluoride. The resulting polymer network exhibits excellent shape-memory properties with a storable strain of 200%, and fixity as well as recovery values of 100%. Programming upon rolling induces the transformation from the nonelectroactive α-phase to the piezoelectric β-phase. The highest β-phase content is found to be 83% for a programming strain of 200% affording a d33 value of -30 pm V(-1). This is in good accordance with literature known values for piezoelectric properties. Thermal triggering this material does not only result in a shape change but also renders the material nonelectroactive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  15. Generalized Langevin Theory Of The Brownian Motion And The Dynamics Of Polymers In Solution

    International Nuclear Information System (INIS)

    Tothova, J.; Lisy, V.

    2015-01-01

    The review deals with a generalization of the Rouse and Zimm bead-spring models of the dynamics of flexible polymers in dilute solutions. As distinct from these popular theories, the memory in the polymer motion is taken into account. The memory naturally arises as a consequence of the fluid and bead inertia within the linearized Navier-Stokes hydrodynamics. We begin with a generalization of the classical theory of the Brownian motion, which forms the basis of any theory of the polymer dynamics. The random force driving the Brownian particles is not the white one as in the Langevin theory, but “colored”, i.e., statistically correlated in time, and the friction force on the particles depends on the history of their motion. An efficient method of solving the resulting generalized Langevin equations is presented and applied to the solution of the equations of motion of polymer beads. The memory effects lead to several peculiarities in the time correlation functions used to describe the dynamics of polymer chains. So, the mean square displacement of the polymer coils contains algebraic long-time tails and at short times it is ballistic. It is shown how these features reveal in the experimentally observable quantities, such as the dynamic structure factors of the scattering or the viscosity of polymer solutions. A phenomenological theory is also presented that describes the dependence of these quantities on the polymer concentration in solution. (author)

  16. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  17. Internally plasticised cellulose polymers

    International Nuclear Information System (INIS)

    Burnup, M.; Hayes, G.F.; Fydelor, P.J.

    1981-01-01

    Plasticised cellulose polymers comprise base polymer having a chain of β-anhydroglucose units joined by ether linkages, with at least one of said units carrying at least one chemically unreactive side chain derived from an allylic monomer or a vinyl substituted derivative of ferrocene. The side chains are normally formed by radiation grafting. These internally plasticised celluloses are useful in particular as inhibitor coatings for rocket motor propellants and in general wherever cellulose polymers are employed. (author)

  18. Characterisation of polymers, 1

    CERN Document Server

    Crompton, Roy

    2008-01-01

    This essential guide to Polymer Characterisation is a complete compendium of methodologies that have evolved for the determination of the chemical composition of polymers. This 478-page book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. Volume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different m

  19. Transactional Memory

    CERN Document Server

    Harris, Tim; Rajwar, Ravi

    2010-01-01

    The advent of multicore processors has renewed interest in the idea of incorporating transactions into the programming model used to write parallel programs.This approach, known as transactional memory, offers an alternative, and hopefully better, way to coordinate concurrent threads. The ACI(atomicity, consistency, isolation) properties of transactions provide a foundation to ensure that concurrent reads and writes of shared data do not produce inconsistent or incorrect results. At a higher level, a computation wrapped in a transaction executes atomically - either it completes successfullyand

  20. Pulse-modulated multilevel data storage in an organic ferroelectric resistive memory diode

    NARCIS (Netherlands)

    Lee, J.; Breemen, A.J.J.M. van; Khikhlovskyi, V.; Kemerink, M.; Janssen, R.A.J.; Gelinck, G.H.

    2016-01-01

    We demonstrate multilevel data storage in organic ferroelectric resistive memory diodes consisting of a phase-separated blend of P(VDF-TrFE) and a semiconducting polymer. The dynamic behaviour of the organic ferroelectric memory diode can be described in terms of the inhomogeneous field mechanism

  1. Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage

    NARCIS (Netherlands)

    Asadi, Kamal; Li, Mengyuan; Stingelin, Natalie; Blom, Paul W. M.; de Leeuw, Dago M.

    2010-01-01

    Cross-talk in memories using resistive switches in a cross-bar geometry can be prevented by integration of a rectifying diode. We present a functional cross bar memory array using a phase separated blend of a ferroelectric and a semiconducting polymer as storage medium. Each intersection acts

  2. Tailored high performance shape memory epoxy–silica nanocomposites. Structure design

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Donato, Ricardo Keitel; Matějka, Libor

    2016-01-01

    Roč. 7, č. 3 (2016), s. 560-572 ISSN 1759-9954 R&D Projects: GA ČR(CZ) GAP108/12/1459 Institutional support: RVO:61389013 Keywords : shape- memory polymer * epoxy-silica nanocomposite * shape- memory effect Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.375, year: 2016

  3. Poly(Capro-Lactone) Networks as Actively Moving Polymers

    Science.gov (United States)

    Meng, Yuan

    Shape-memory polymers (SMPs), as a subset of actively moving polymers, form an exciting class of materials that can store and recover elastic deformation energy upon application of an external stimulus. Although engineering of SMPs nowadays has lead to robust materials that can memorize multiple temporary shapes, and can be triggered by various stimuli such as heat, light, moisture, or applied magnetic fields, further commercialization of SMPs is still constrained by the material's incapability to store large elastic energy, as well as its inherent one-way shape-change nature. This thesis develops a series of model semi-crystalline shape-memory networks that exhibit ultra-high energy storage capacity, with accurately tunable triggering temperature; by introducing a second competing network, or reconfiguring the existing network under strained state, configurational chain bias can be effectively locked-in, and give rise to two-way shape-actuators that, in the absence of an external load, elongates upon cooling and reversibly contracts upon heating. We found that well-defined network architecture plays essential role on strain-induced crystallization and on the performance of cold-drawn shape-memory polymers. Model networks with uniform molecular weight between crosslinks, and specified functionality of each net-point, results in tougher, more elastic materials with a high degree of crystallinity and outstanding shape-memory properties. The thermal behavior of the model networks can be finely modified by introducing non-crystalline small molecule linkers that effectively frustrates the crystallization of the network strands. This resulted in shape-memory networks that are ultra-sensitive to heat, as deformed materials can be efficiently triggered to revert to its permanent state upon only exposure to body temperature. We also coupled the same reaction adopted to create the model network with conventional free-radical polymerization to prepare a dual-cure "double

  4. Binary Polymer Brushes of Strongly Immiscible Polymers.

    Science.gov (United States)

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  5. Intentionally fabricated autobiographical memories

    OpenAIRE

    Justice, LV; Morrison, CM; Conway, MA

    2017-01-01

    Participants generated both autobiographical memories (AMs) that they believed to be true and intentionally fabricated autobiographical memories (IFAMs). Memories were constructed while a concurrent memory load (random 8-digit sequence) was held in mind or while there was no concurrent load. Amount and accuracy of recall of the concurrent memory load was reliably poorer following generation of IFAMs than following generation of AMs. There was no reliable effect of load on memory generation ti...

  6. STRUKTUR DAN PROSES MEMORI

    Directory of Open Access Journals (Sweden)

    Magda Bhinnety

    2015-09-01

    Full Text Available This paper describes structures and processes of human memory system according to the modal model. Sensory memory is described as the first system to store information from outside world. Short‐term memory, or now called working memory, represents a system characterized by limited ability in storing as well as retrieving information. Long‐term memory on the hand stores information larger in amount and longer than short‐term memory

  7. Electroconvulsive therapy and memory.

    Science.gov (United States)

    Harper, R G; Wiens, A N

    1975-10-01

    Recent research on the effects of electroconvulsive therapy (ECT) on memory is critically reviewed. Despite some inconsistent findings, unilateral nondominant ECT appears to affect verbal memory less than bilateral ECT. Adequate research on multiple monitored ECT is lacking. With few exceptions, the research methodologies for assessing memory have been inadequate. Many studies have confounded learning with retention, and only very recently has long term memory been adequately studied. Standardized assessment procedures for short term and long term memory are needed, in addition to more sophisticated assessment of memory processes, the duration of memory loss, and qualitative aspects of memories.

  8. Polymers targeting habitual diseases

    Science.gov (United States)

    The use of polymeric drug conjugates mainly for the treatment for cancer therapy has been addressed, but these polymers also find their way in treatment of various lifestyle disorders like diabetes, hypertension, cardiovascular diseases etc. The focus is being laid to develop biodegradable polymer ...

  9. Stiff Quantum Polymers

    OpenAIRE

    Kleinert, H.

    2007-01-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  10. Segmented conjugated polymers

    Indian Academy of Sciences (India)

    Segmented conjugated polymers, wherein the conjugation is randomly truncated by varying lengths of non-conjugated segments, form an interesting class of polymers as they not only represent systems of varying stiffness, but also ones where the backbone can be construed as being made up of chromophores of varying ...

  11. Elastic lattice polymers

    NARCIS (Netherlands)

    Baiesi, M.; Barkema, G.T.; Carlon, E.

    2010-01-01

    We study a model of “elastic” lattice polymer in which a fixed number of monomers m is hosted by a self-avoiding walk with fluctuating length l. We show that the stored length density m 1− l /m scales asymptotically for large m as m= 1− /m+. . . , where is the polymer entropic exponent, so that can

  12. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R

    2002-01-01

    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  13. Polymer light emitting diodes

    International Nuclear Information System (INIS)

    Gautier-Thianche, Emmmanuelle

    1998-01-01

    We study sandwich type semiconducting polymer light emitting diodes; anode/polymer/cathode. ITO is selected as anode, this polymer is a blend of a commercially available polymer with a high hole transport ability: polyvinyl-carbazole and a laser dye: coumarin-515. Magnesium covered with silver is chosen for the anode. We study the influence of polymer thickness and coumarin doping ratio on electroluminescence spectrum, electric characteristics and quantum efficiency. An important drawback is that diodes lifetime remains low. In the second part of our study we determine degradations causes with X-Ray reflectivity experiments. It may be due to ITO very high roughness. We realize a new type of planar electroluminescent device: a channel type electroluminescent device in which polymer layer is inserted into an aluminium channel. Such a device is by far more stable than using classical sandwich structures with the same polymer composition: indeed, charges are generated by internal-field ionization and there is no injection from the electrode to the polymer. This avoids electrochemical reactions at electrodes, thus reducing degradations routes. (author) [fr

  14. Polymers for Combating Biocorrosion

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2018-03-01

    Full Text Available Biocorrosion has been considered as big trouble in many industries and marine environments due to causing of great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anticorrosion and antimicrobial properties have been widely accepted as a novel and effective approach to prevent biocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbial corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: (i traditional polymers incorporated with biocides, (ii antibacterial polymers containing quaternary ammonium compounds, and (iii conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting antibacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization, and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  15. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  16. Conducting polymer hydrogels

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav

    2017-01-01

    Roč. 71, č. 2 (2017), s. 269-291 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : aerogel * conducting polymers * conductivity Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  17. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    operating systems. With this situation, attempts have been made in poly (ethylene oxide) (PEO) based polymer electrolytes to reach an appreciable electrical conducti- vity at ambient temperature (Wright 1975; Martuscelli et al 1984). Generally solid polymer electrolytes have many advantages, viz. high ionic conductivity, ...

  18. PEO polymer electrolytes

    Indian Academy of Sciences (India)

    Unknown

    vs temperature plots showed the enhancement of conductivity with TiO2 added nanocomposite ceramic fillers. The enhanced conductivity is ... developing mixed polymer electrolyte by using a novel class of plasticizers. Classical polymer ..... phology of the ceramic filler could optimize the conduc- tion. This might lead to the ...

  19. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  20. All Polymer Micropump

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen

    2008-01-01

    In this thesis an all polymer micropump, and the fabrication method required to fabricate this, are examined. Polymer microfluidic. devices are of major scientific interest because they can combine complicated chemical and biological analys~s in cheap and disposable devices. The electrode system...... in the micropump is based on the conducting polymer poly(3,4 ethylenedioxythiophene) (PEDOT). The majority of the work conducted was therefore aimed at developing methods for patterning and processing PEDOT. First a method was developed, where the conducting polymer PEDOT can be integrated into non...... of the substrate, the PEDOT is integrated into the non-conductive polymer. The result is a material that retains the good conductivity of PEDOT, but gains the mechanical stability of the substrate. The best results were obtained for PEDOTjPMMA. The new mechanically stable PEDOTjPMMA was micro-patterned using clean...

  1. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby...... the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  2. Detailed sensory memory, sloppy working memory

    NARCIS (Netherlands)

    Sligte, I.G.; Vandenbroucke, A.R.E.; Scholte, H.S.; Lamme, V.A.F.

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity

  3. Optical memory

    Science.gov (United States)

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  4. Magnetoelectric polymer-based composites fundamentals and applications

    CERN Document Server

    Martins, Pedro

    2017-01-01

    The first book on this topic provides a comprehensive and well-structured overview of the fundamentals, synthesis and emerging applications of magnetoelectric polymer materials. Following an introduction to the basic aspects of polymer based magnetoelectric materials and recent developments, subsequent chapters discuss the various types as well as their synthesis and characterization. There then follows a review of the latest applications, such as memories, sensors and actuators. The book concludes with a look at future technological advances. An essential reference for entrants to the field as well as for experienced researchers.

  5. Large energy absorption in Ni-Mn-Ga/polymer composites

    International Nuclear Information System (INIS)

    Feuchtwanger, Jorge; Richard, Marc L.; Tang, Yun J.; Berkowitz, Ami E.; O'Handley, Robert C.; Allen, Samuel M.

    2005-01-01

    Ferromagnetic shape memory alloys can respond to a magnetic field or applied stress by the motion of twin boundaries and hence they show large hysteresis or energy loss. Ni-Mn-Ga particles made by spark erosion have been dispersed and oriented in a polymer matrix to form pseudo 3:1 composites which are studied under applied stress. Loss ratios have been determined from the stress-strain data. The loss ratios of the composites range from 63% to 67% compared to only about 17% for the pure, unfilled polymer samples

  6. Thermally Activated Composite with Two-Way and Multi-Shape Memory Effects.

    Science.gov (United States)

    Basit, Abdul; L'Hostis, Gildas; Pac, Marie José; Durand, Bernard

    2013-09-12

    The use of shape memory polymer composites is growing rapidly in smart structure applications. In this work, an active asymmetric composite called "controlled behavior composite material (CBCM)" is used as shape memory polymer composite. The programming and the corresponding initial fixity of the composite structure is obtained during a bending test, by heating CBCM above thermal glass transition temperature of the used Epoxy polymer. The shape memory properties of these composites are investigated by a bending test. Three types of recoveries are conducted, two classical recovery tests: unconstrained recovery and constrained recovery, and a new test of partial recovery under load. During recovery, high recovery displacement and force are produced that enables the composite to perform strong two-way actuations along with multi-shape memory effect. The recovery force confirms full recovery with two-way actuation even under a high load. This unique property of CBCM is characterized by the recovered mechanical work.

  7. Polymer-Polymer Miscibility and Enthalpy Relaxations

    NARCIS (Netherlands)

    Bosma, Martin; Brinke, Gerrit ten; Ellis, Thomas S.

    Annealing of polymers below the glass transition temperature results in a decrease in enthalpy that is recovered during heating. The enthalpy recovery is visible as an endothermic peak in a differential scanning calorimetry (DSC) scan. The position of this peak depends on the thermal treatment given

  8. Photoluminescence in conjugated polymers

    International Nuclear Information System (INIS)

    Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.

    2002-01-01

    Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light

  9. Memory, microprocessor, and ASIC

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    System Timing. ROM/PROM/EPROM. SRAM. Embedded Memory. Flash Memories. Dynamic Random Access Memory. Low-Power Memory Circuits. Timing and Signal Integrity Analysis. Microprocessor Design Verification. Microprocessor Layout Method. Architecture. ASIC Design. Logic Synthesis for Field Programmable Gate Array (EPGA) Technology. Testability Concepts and DFT. ATPG and BIST. CAD Tools for BIST/DFT and Delay Faults.

  10. Nanoscale memory devices

    International Nuclear Information System (INIS)

    Chung, Andy; Deen, Jamal; Lee, Jeong-Soo; Meyyappan, M

    2010-01-01

    This article reviews the current status and future prospects for the use of nanomaterials and devices in memory technology. First, the status and continuing scaling trends of the flash memory are discussed. Then, a detailed discussion on technologies trying to replace flash in the near-term is provided. This includes phase change random access memory, Fe random access memory and magnetic random access memory. The long-term nanotechnology prospects for memory devices include carbon-nanotube-based memory, molecular electronics and memristors based on resistive materials such as TiO 2 . (topical review)

  11. SANS studies of polymers

    International Nuclear Information System (INIS)

    Wignall, G.D.

    1984-10-01

    Before small-angle neutron scattering (SANS), chain conformation studies were limited to light and small angle x-ray scattering techniques, usually in dilute solution. SANS from blends of normal and labeled molecules could give direct information on chain conformation in bulk polymers. Water-soluble polymers may be examined in H 2 O/D 2 O mixtures using contrast variation methods to provide further information on polymer structure. This paper reviews some of the information provided by this technique using examples of experiments performed at the National Center for Small-Angle Scattering Research (NCSASR)

  12. Polymers in separation processes

    Science.gov (United States)

    Wieszczycka, Karolina; Staszak, Katarzyna

    2017-05-01

    Application of polymer materials as membranes and ion-exchange resins was presented with a focus on their use for the recovery of metal ions from aqueous solutions. Several membrane techniques were described including reverse osmosis, nanofiltration, ultrafiltration, diffusion and Donnan dialysis, electrodialysis and membrane extraction system (polymer inclusion and supported membranes). Moreover, the examples of using ion-exchange resins in metal recovery were presented. The possibility of modification of the resin was discussed, including hybrid system with metal cation or metal oxide immobilized on polymer matrices or solvent impregnated resin.

  13. Microstructured polymer optical fibres

    CERN Document Server

    Large, Maryanne; Barton, Geoff; van Eijkelenborg, Martijn A

    2008-01-01

    Microstructured Polymer Optical Fibres describes the optical properties of microstructured fibres, how they are made and modelled, and outlines some potential applications. These applications include areas where polymer fibres are already used, such as high-data rate transmission for Fibre-to-the Home or within cars, as well as completely new areas such as the photonic bandgap transmission of ""difficult"" wavelengths. Emphasising a conceptual understanding of the underlying physics, Microstructured Polymer Optical Fibres is clearly written, and includes numerous illustrations. It provides an

  14. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  15. On the bursting of linear polymer melts in inflation processes

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Bach, Anders

    2005-01-01

    -symmetric numerical simulation of the inflations have been performed, using a constitutive equation in the form of a separable memory integral where the strain dependence is described by the Linear Molecular Stress Function (L-MSF) model with dissipative convective constraint release. The material parameters...... been investigated using the Gel equation as a memory function (M(s)=Ans(-(1+n))) and inflating the plate with a constant velocity for the top of the plate. The hydrodynamic burst in a linear polymer is mainly associated with the linear viscoelastic properties and only slightly with the non...

  16. The quintuple-shape memory effect in electrospun nanofiber membranes

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  17. Non-volatile memories

    CERN Document Server

    Lacaze, Pierre-Camille

    2014-01-01

    Written for scientists, researchers, and engineers, Non-volatile Memories describes the recent research and implementations in relation to the design of a new generation of non-volatile electronic memories. The objective is to replace existing memories (DRAM, SRAM, EEPROM, Flash, etc.) with a universal memory model likely to reach better performances than the current types of memory: extremely high commutation speeds, high implantation densities and retention time of information of about ten years.

  18. Fiscal 1993 report on technological results. R and D on micromachine technology; 1993 nendo micro machine gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Researches on basic element technology of micromachines are conducted with the view of establishing a mechanical system constituted of minute functional elements that perform autonomous operations in a narrow small part of complicated equipment in a power station for example or in a living body. The areas of activity are 1. research on micro actuators and 2. research on basic technology of micromachine; 1 is classified into researches of (1) shape-memory actuator, (2) bending and stretching type actuator, and (3) integrated micro actuator, while 2 is classified into researches of (1) total system for medical diagnosis, (2) micro tactile sensing technology and laser applied diagnosis/treatment technology, and (3) blood pressure/blood circulation sensing technology. In 1-(1), a chemo-mechanical actuator was studied using a shape memory alloy (SMA) and a high polymer gel, and in 1-(2), an SMA and bimetal were employed as a source of the driving force. Further, examination was also made on a fluid driving type actuator. (NEDO)

  19. Verbal memory and menopause.

    Science.gov (United States)

    Maki, Pauline M

    2015-11-01

    Midlife women frequently report memory problems during the menopausal transition. Recent studies validate those complaints by showing significant correlations between memory complaints and performance on validated memory tasks. Longitudinal studies demonstrate modest declines in verbal memory during the menopausal transition and a likely rebound during the postmenopausal stage. Clinical studies that examine changes in memory following hormonal withdrawal and add-back hormone therapy (HT) demonstrate that estradiol plays a critical role in memory. Although memory changes are frequently attributed to menopausal symptoms, studies show that the memory problems occur during the transition even after controlling for menopausal symptoms. It is well established that self-reported vasomotor symptoms (VMS) are unrelated to objective memory performance. However, emerging evidence suggests that objectively measured VMS significantly correlate with memory performance, brain activity during rest, and white matter hyperintensities. This evidence raises important questions about whether VMS and VMS treatments might affect memory during the menopausal transition. Unfortunately, there are no clinical trials to inform our understanding of how HT affects both memory and objectively measured VMS in women in whom HT is indicated for treatment of moderate to severe VMS. In clinical practice, it is helpful to normalize memory complaints, to note that evidence suggests that memory problems are temporary, and to counsel women with significant VMS that memory might improve with treatment. Copyright © 2015. Published by Elsevier Ireland Ltd.

  20. Salam Memorial

    CERN Document Server

    Rubbia, Carlo

    1997-01-01

    by T.W.B. KIBBLE / Blackett Laboratory, Imperial College, London. Recollections of Abdus Salam at Imperial College I shall give a personal account of Professor Salam's life and work from the perspective of a colleague at Imperial College, concentrating particularly but not exclusively on the period leading up to the discovery of the electro-weak theory. If necessary I could perhaps give more detail, but only once I have given more thought to what ground I shall cover. by Sheldon Lee GLASHOW / Harvard University, Cambridge, MA, USA. Memories of Abdus Salam. My interactions with Abdus Salam, weak as they have been, extended over five decades. I regret that we never once collaborated in print or by correspondence. I visited Abdus only twice in London and twice again in Trieste, and met him at the occasional conference or summer school. Our face-to-face encounters could be counted on one's fingers and toes, but we became the best of friends. Others will discuss Abdus as an inspiring teacher, as a great scientist,...

  1. Superabsorbent polymer; Kokyushusei porima

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, M. [Sanyo Kasei Kogyo K.K., Tokyo (Japan)

    1996-07-20

    Superabsorbent polymer (SAP) which has the absorbing ability from several hundreds to thousand times of the dead weight possesses many other functions in addition to the absorbing function, and studies on its application to various fields have been carried on very actively. Particularly, about 90% of the demand is for the application to body fluid absorber in the fields of sanitary materials. Basic water absorption mechanism, kinds, production methods, special features and applied cases of superabsorbent polymer are introduced. SAP is structured by loosely bridged water soluble polymer, particularly polymer electrolyte, to provide water unsoluble and water swelling properties. The kinds and production methods of SAP are described. SAP has respiration property in addition to the high water absorbing power and water holding ability. It has carboxyl ions, and has ammonia absorption ability and polyvalent metal ion adsorption ability. Paper diapers, water holding materials for soil, and cold reserving materials are discussed as examples of SAP application. 3 refs., 2 figs., 1 tab.

  2. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening......) hydrogen bonding polymers, and (b) ionic bonding polymers (hereafter termed as ionomers). We study linear and non-linear rheology fora model system of entangled pure poly(n-butyl acrylate), PnBA, homopolymer andfour poly(acrylic acid), PnBA-PAA, copolymers with varying AA side groups synthesizedvia...

  3. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  4. Tunable Optical Polymer Systems

    National Research Council Canada - National Science Library

    Jenekhe, S. A; Bard, Allen J; Chen, S. H; Hammond, P. T; Rothberg, L. J

    2004-01-01

    This multidisciplinary university research initiative (MURI) program investigated tunable optical polymer systems suitable for large-area color-switchable coatings and devices, displays, sensors, and other electronic applications...

  5. Zwitterionic Electroactive Polymer Actuators

    National Research Council Canada - National Science Library

    Zakin, Mitchell

    2002-01-01

    .... The enabling technology is a zwitterionic polyaniline derivative in which generation of +/- charge pairs upon oxidation provides significant conformational distortion along the polymer backbone, and a concomitant change in free volume...

  6. Biocatalytic Polymer Skin Adhesives

    National Research Council Canada - National Science Library

    LeJeune, Keith

    2001-01-01

    .... Preliminary results also suggest that the incorporation of enzymes within such polymers reduces immunogenic and allergenic responses that are often observed when applying protein-based materials on skin tissue...

  7. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  8. Edible Polymers: Challenges and Opportunities

    OpenAIRE

    Subhas C. Shit; Pathik M. Shah

    2014-01-01

    Edible polymers have established substantial deliberation in modern eons because of their benefits comprising use as edible materials over synthetic polymers. This could contribute to the reduction of environmental contamination. Edible polymers can practically diminish the complexity and thus improve the recyclability of materials, compared to the more traditional non-environmentally friendly materials and may be able to substitute such synthetic polymers. A synthetic hydrogel polymer unlock...

  9. Reactive polymer fused deposition manufacturing

    Science.gov (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  10. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  11. Graphene-polymer composites

    Science.gov (United States)

    Carotenuto, G.; Romeo, V.; Cannavaro, I.; Roncato, D.; Martorana, B.; Gosso, M.

    2012-09-01

    Graphene is a novel nanostructured material that can be conveniently used as filler for thermoplastic polymers or thermosetting resins, and the resulting nanocomposite material has unique mechanical and chemical/physical properties. Industrial production of graphene/polymer materials requires the availability of a chemical route to produce massive amount of graphene. Natural graphite flakes can be the best starting material for a bulk-production of graphene to be used in the polymeric nanocomposite preparation.

  12. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  13. Interfaced conducting polymers

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Bober, Patrycja; Trchová, Miroslava; Nuzhnyy, Dmitry; Bovtun, Viktor; Savinov, Maxim; Petzelt, Jan; Prokeš, J.

    2017-01-01

    Roč. 224, February (2017), s. 109-115 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 ; RVO:68378271 Keywords : polyaniline * polypyrrole * poly(p-phenylenediamine) Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (FZU-D) OBOR OECD: Polymer science; Polymer science (FZU-D) Impact factor: 2.435, year: 2016

  14. True and intentionally fabricated memories

    OpenAIRE

    Justice, L.V.; Morrison, C.M.; Conway, M. A.

    2012-01-01

    The aim of the experiment reported here was to investigate the processes underlying the construction of truthful and deliberately fabricated memories. Properties of memories created to be intentionally false - fabricated memories - were compared to properties of memories believed to be true - true memories. Participants recalled and then wrote or spoke true memories and fabricated memories of everyday events. It was found that true memories were reliably more vivid than fabricated memories an...

  15. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  16. Crystallization in polymer nanocomposites

    Science.gov (United States)

    Chrissopoulou, Kyriakh; Perivolari, Helena; Leisch, Stefanos; Papananou, Hellen; Anastasiadis, Spiros H.

    Polymer crystallization is a very interesting topic since it is responsible for the final properties of the materials. On the other hand, addition of inorganic nanomaterials has been recently widely used to optimize polymer properties. In this work, the effect of the presence of surfaces and of the severe confinement on polymer morphology and crystallization are investigated in hydrophilic nanohybrids of poly(ethylene oxide) and silica nanoparticles of different sizes; hybrids with different ratios of the two kinds of nanoparticles were synthesized as well, to achieve the highest confinement. Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) were utilized to investigate the behavior and showed that the polymer chains that were able to crystallize showed a different crystalline behavior in the hybrids with lower Tm and lower crystallinity. Under severe confinement polymer crystallization was completely suppressed. Moreover, the crystallization kinetics was investigated with Isothermal Polarized Optical Microscopy (POM) and Isothermal Differential Scanning Calorimetry (DSC) showing different characteristics in the hybrids compared to that of the neat polymer depending on the silica content. Sponsored by the Greek GSRT (AENAO research project, Action KRIPIS)

  17. Conducting polymer nanofibers: Synthesis, properties and applications

    Science.gov (United States)

    Huang, Jiaxing

    An interfacial polymerization method is described which enables the synthesis of polyaniline nanofibers with diameters tunable from 30 to 120 nm. This synthesis is template-free and readily scalable and can be applied to polyaniline derivatives and other conjugated polymers. Mechanistic studies reveal that nanofibers form naturally during the chemical oxidative polymerization of aniline in water without the need for any template, functional molecule or seed. In conventional polymerization, nanofibers are subject to secondary growth of amorphous particles which leads to irregularly shaped agglomerates. The key to producing pure nanofibers is to suppress secondary growth. This has been achieved with interfacial polymerization where the interface separates nanofiber formation from secondary growth and also by using rapidly mixed reactions where the initiator molecules are consumed before secondary growth begins. Polyaniline nanofibers dramatically enhance many applications of conventional polyaniline, such as in chemical sensors. Here, the small diameter, high surface area and water dispersibility of the nanofibers enable improved sensor performance and new sensing mechanisms. The nanofibers can also serve as a template to grow inorganic/polyaniline nanocomposites. Polyaniline nanofibers with 1--5 nm gold nanoparticles possess exciting applications such as in electronic non-volatile memory devices. Additionally, a novel flash welding technique for the nanofibers has been invented. A photographic camera flash sets off cross-linking reactions that can be used to make asymmetric polymer membranes, form patterned nanofiber films and create polymer based nanocomposites.

  18. Organizational memory: from expectations memory to procedural memory

    NARCIS (Netherlands)

    Ebbers, J.J.; Wijnberg, N.M.

    2009-01-01

    Organizational memory is not just the stock of knowledge about how to do things, but also of expectations of organizational members vis-à-vis each other and the organization as a whole. The central argument of this paper is that this second type of organizational memory -organizational expectations

  19. Stochastic memory: getting memory out of noise

    Science.gov (United States)

    Stotland, Alexander; di Ventra, Massimiliano

    2011-03-01

    Memory circuit elements, namely memristors, memcapacitors and meminductors, can store information without the need of a power source. These systems are generally defined in terms of deterministic equations of motion for the state variables that are responsible for memory. However, in real systems noise sources can never be eliminated completely. One would then expect noise to be detrimental for memory. Here, we show that under specific conditions on the noise intensity memory can actually be enhanced. We illustrate this phenomenon using a physical model of a memristor in which the addition of white noise into the state variable equation improves the memory and helps the operation of the system. We discuss under which conditions this effect can be realized experimentally, discuss its implications on existing memory systems discussed in the literature, and also analyze the effects of colored noise. Work supported in part by NSF.

  20. Exploring history and memory through autobiographical memory

    Directory of Open Access Journals (Sweden)

    Ivor Goodson

    2015-02-01

    Full Text Available The article reviews the role of autobiographical memory as a site of narrative construction. Far from being a place of liberal retrospective recall it is a site of active recapitulation and reconstruction. The article provides examples of how history and memory are intermingled. It also draws in the author’s autobiographical vignettes to explore the underpinning desires for historical reconstruction in autobiographical memory work

  1. Detailed Sensory Memory, Sloppy Working Memory

    OpenAIRE

    Sligte, Ilja G.; Vandenbroucke, Annelinde R. E.; Scholte, H. Steven; Lamme, Victor A. F.

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a...

  2. 40 CFR 723.250 - Polymers.

    Science.gov (United States)

    2010-07-01

    ..., boron, phosphorus, titanium, manganese, iron, nickel, copper, zinc, tin, and zirconium. (3) Polymers... introduce into the polymer elements, properties, or functional groups that would render the polymer...

  3. Precursor polymer compositions comprising polybenzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  4. Confined relaxations of grafted polymer in solutions of linear polymer

    Science.gov (United States)

    Poling-Skutvik, Ryan; Krishnamoorti, Ramanan; Conrad, Jacinta

    Using neutron spin echo spectroscopy (NSE), we investigate the relaxations of polymer grafted to silica nanoparticles dispersed in semidilute solutions of linear polymer. The grafted polymer has a radius of gyration comparable to radius of the silica nanoparticle with a moderate grafting density so that the grafted polymer is more extended than a Gaussian chain. On length scales ranging from 1 to 20 nm and time scales less than 100 ns, the dynamics of the grafted polymer deviate from the standard Zimm model derived for linear polymers. Instead, the polymer chains are confined and unable to fully relax over the experimental time. The confinement length agrees with the distance between chains decreases as the linear polymer concentration is increased. Additionally, the confinement length is independent of linear polymer molecular weight, suggesting that linear polymer cannot penetrate the grafted layer. Instead, the grafted chains collapse onto themselves, similar to the structural changes observed in systems of star and linear polymers at high concentrations of linear polymer. We verify this physical picture using small-angle x-ray scattering and atomic force microscopy to observe aggregation of grafted particles at high concentrations of linear polymer.

  5. Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids

    KAUST Repository

    Odent, Jérémy

    2017-03-27

    Commercial polylactide (PLA) was converted and endowed with shape-memory properties by synthesizing ionic hybrids based on blends of PLA with imidazolium-terminated PLA and poly[ε-caprolactone-co-d,l-lactide] (P[CL-co-LA]) and surface-modified silica nanoparticles. The electrostatic interactions assist with the silica nanoparticle dispersion in the polymer matrix. Since nanoparticle dispersion in polymers is a perennial challenge and has prevented nanocomposites from reaching their full potential in terms of performance we expect this new design will be exploited in other polymers systems to synthesize well-dispersed nanocomposites. Rheological measurements of the ionic hybrids are consistent with the formation of a network. The ionic hybrids are also much more deformable compared to the neat PLA. More importantly, they exhibit shape-memory behavior with fixity ratio Rf ≈ 100% and recovery ratio Rr = 79%, for the blend containing 25 wt % im-PLA and 25 wt % im-P[CL-co-LA] and 5 wt % of SiO2–SO3Na. Dielectric spectroscopy and dynamic mechanical analysis show a second, low-frequency relaxation attributed to strongly immobilized polymer chains on silica due to electrostatic interactions. Creep compliance tests further suggest that the ionic interactions prevent permanent slippage in the hybrids which is most likely responsible for the significant shape-memory behavior observed.

  6. Piezoresistance in Polymer Nanocomposites

    Science.gov (United States)

    Rizvi, Reza

    Piezoresistivity in conductive polymer nanocomposites occurs because of the disturbance of particle networks in the polymer matrix. The piezoresistance effect becomes more prominent if the matrix material is compliant making these materials attractive for applications that require flexible force and displacement sensors such as e-textiles and biomechanical measurement devices. However, the exact mechanisms of piezoresistivity including the relationship between the matrix polymer, conductive particle, internal structure and the composite's piezoresistance need to be better understood before it can be applied for such applications. The objective of this thesis is to report on the development of conductive polymer nanocomposites for use as flexible sensors and electrodes. Electrically conductive and piezoresistive nanocomposites were fabricated by a scalable melt compounding process. Particular attention was given to elucidating the role of matrix and filler materials, plastic deformation and porosity on the electrical conduction and piezoresistance. These effects were parametrically investigated through characterizing the morphology, electrical properties, rheological properties, and piezoresistivity of the polymer nanocomposites. The electrical and rheological behavior of the nanocomposites was modeled by the percolation-power law. Furthermore, a model was developed to describe the piezoresistance behavior during plastic deformation in relation to the stress and filler concentration.

  7. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  8. Multifunctional Polymer Nanocomposites

    Science.gov (United States)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  9. Efficient Xerographic Photoreceptors from Conjugated Polymers and Polymer Blends

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D

    1998-01-01

    Bilayer xerographic photoreceptors in which pi-conjugated polymers and binary conjugated polymer blends are used as the charge generation layer have been fabricated, evaluated, and shown to be highly efficient...

  10. Reversible Shape Memory Polymers and Composites: Synthesis, Modeling and Design

    Science.gov (United States)

    2013-03-01

    elasticity , while PCL, by using crystal-melt transition, serves as a reversible “switch phase” for shape fixing and recovery. The development of SMEC...temperature and stress history. b, strain evolution in both simulation and experiment. (Right) Elastic strain energy stored in each rubbery branch during the...behavior of an SMP Page 11 of 19 Mather/FA9550-09-1-0195 and the size effects on the free recovery characteristics of a magneto -sensitive SMP

  11. Electro-Responsive Polystyrene Shape Memory Polymer Nanocomposites

    NARCIS (Netherlands)

    Xu, B.; Zhang, L.; Pei, Y.T.; Luo, J.K.; Tao, S.W.; Hosson, J.Th.M. De; Fu, Y.Q.

    Microstructure, thermo-mechanical, electrical properties and shape recovery efficiency of carbon nano-particles (CNPs) enhanced polystyrene (PS) nanocomposites were characterized. Dynamic mechanical thermal analysis showed an increase in glass transition temperature (T-g) and enhancement of the

  12. Emotional Memory Persists Longer than Event Memory

    Science.gov (United States)

    Kuriyama, Kenichi; Soshi, Takahiro; Fujii, Takeshi; Kim, Yoshiharu

    2010-01-01

    The interaction between amygdala-driven and hippocampus-driven activities is expected to explain why emotion enhances episodic memory recognition. However, overwhelming behavioral evidence regarding the emotion-induced enhancement of immediate and delayed episodic memory recognition has not been obtained in humans. We found that the recognition…

  13. Doped Chiral Polymer Metamaterials

    Science.gov (United States)

    Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

  14. Active Polymer Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2010-01-01

    Full Text Available Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of heart muscles. Here we show a novel biomimetic gel actuator that can walk spontaneously with a wormlike motion without switching of external stimuli. The self-oscillating motion is produced by dissipating chemical energy of oscillating reaction. Although the gel is completely composed of synthetic polymer, it shows autonomous motion as if it were alive.

  15. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  16. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  17. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. The salt provides ions for conduction and the solvent helps in the dissolution of the salt and also provides the medium for ion conduction. Although the polymer added provides mechanical stability to the electrolytes yet.

  18. Music, memory and emotion

    Science.gov (United States)

    Jäncke, Lutz

    2008-01-01

    Because emotions enhance memory processes and music evokes strong emotions, music could be involved in forming memories, either about pieces of music or about episodes and information associated with particular music. A recent study in BMC Neuroscience has given new insights into the role of emotion in musical memory. PMID:18710596

  19. Generation and Context Memory

    Science.gov (United States)

    Mulligan, Neil W.; Lozito, Jeffrey P.; Rosner, Zachary A.

    2006-01-01

    Generation enhances memory for occurrence but may not enhance other aspects of memory. The present study further delineates the negative generation effect in context memory reported in N. W. Mulligan (2004). First, the negative generation effect occurred for perceptual attributes of the target item (its color and font) but not for extratarget…

  20. Saving Malta's music memory

    OpenAIRE

    Sant, Toni

    2013-01-01

    Maltese music is being lost. Along with it Malta loses its culture, way of life, and memories. Dr Toni Sant is trying to change this trend through the Malta Music Memory Project (M3P) http://www.um.edu.mt/think/saving-maltas-music-memory-2/

  1. Music, memory and emotion.

    Science.gov (United States)

    Jäncke, Lutz

    2008-08-08

    Because emotions enhance memory processes and music evokes strong emotions, music could be involved in forming memories, either about pieces of music or about episodes and information associated with particular music. A recent study in BMC Neuroscience has given new insights into the role of emotion in musical memory.

  2. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Associative Memory Acceptors.

    Science.gov (United States)

    Card, Roger

    The properties of an associative memory are examined in this paper from the viewpoint of automata theory. A device called an associative memory acceptor is studied under real-time operation. The family "L" of languages accepted by real-time associative memory acceptors is shown to properly contain the family of languages accepted by one-tape,…

  4. Transition state analogue imprinted polymers as artificial amidases for amino acid p-nitroanilides: morphological effects of polymer network on catalytic efficiency.

    Science.gov (United States)

    Mathew, Divya; Thomas, Benny; Devaky, K S

    2017-11-13

    The morphology of the polymer network - porous/less porous - plays predominant role in the amidase activities of the polymer catalysts in the hydrolytic reactions of amino acid p-nitroanilides. Polymers with the imprints of stable phosphonate analogue of the intermediate of hydrolytic reactions were synthesized as enzyme mimics. Molecular imprinting was carried out in thermodynamically stable porogen dimethyl sulphoxide and unstable porogen chloroform, to investigate the morphological effects of polymers on catalytic amidolysis. It was found that the medium of polymerization has vital influence in the amidase activities of the enzyme mimics. The morphological studies of the polymer catalysts were carried out by scanning electron microscopy and Bruner-Emmett-Teller analysis. The morphology of the polymer catalysts and their amidase activities are found to be dependent on the composition of reaction medium. The polymer catalyst prepared in dimethyl sulphoxide is observed to be efficient in 1:9 acetonitrile (ACN)-Tris HCl buffer and that prepared in chloroform is noticed to be stereo specifically and shape-selectively effective in 9:1 ACN-Tris HCl buffer. The solvent memory effect in catalytic amidolysis was investigated using the polymer prepared in acetonitrile.

  5. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  6. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically......The present invention relates to a composition comprising encapsulated particles in a polymeric material. The composition comprises a continuous phase and a discontinuous phase incorporated therein, wherein the continuous phase comprises a first polymeric material and wherein the discontinuous...... invisible polymer coatings....

  7. Polymers and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Schurtenberger, P. [ETH Zurich, Inst. fuer Polymere, Zurich (Switzerland)

    1996-11-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs.

  8. 'Stuffed' conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Chen, Jun; West, Keld

    2005-01-01

    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the pres....... In the present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped in the polymer films. (c) 2005 Elsevier Ltd. All rights reserved....

  9. Nanoparticles from Renewable Polymers

    Directory of Open Access Journals (Sweden)

    Frederik Roman Wurm

    2014-07-01

    Full Text Available The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin or by complex structure (proteins, lignin. This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  10. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  11. Polymer Chemistry in High School.

    Science.gov (United States)

    Stucki, Roger

    1984-01-01

    Discusses why polymer chemistry should be added to the general chemistry curriculum and what topics are appropriate (listing traditional with related polymer topics). Also discusses when and how these topics should be taught. (JN)

  12. Edible Polymers: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Subhas C. Shit

    2014-01-01

    Full Text Available Edible polymers have established substantial deliberation in modern eons because of their benefits comprising use as edible materials over synthetic polymers. This could contribute to the reduction of environmental contamination. Edible polymers can practically diminish the complexity and thus improve the recyclability of materials, compared to the more traditional non-environmentally friendly materials and may be able to substitute such synthetic polymers. A synthetic hydrogel polymer unlocked a new possibility for development of films, coatings, extrudable pellets, and synthetic nanopolymers, particularly designed for medical, agricultural, and industrial fields. Edible polymers offer many advantages for delivering drugs and tissue engineering. Edible polymer technology helps food industries to make their products more attractive and safe to use. Novel edible materials have been derived from many natural sources that have conventionally been regarded as discarded materials. The objective of this review is to provide a comprehensive introduction to edible polymers by providing descriptions in terms of their origin, properties, and potential uses.

  13. Polymer architecture and drug delivery.

    Science.gov (United States)

    Qiu, Li Yan; Bae, You Han

    2006-01-01

    Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.

  14. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  15. Polymers in our daily life

    Directory of Open Access Journals (Sweden)

    Hassan Namazi

    2017-06-01

    Full Text Available Polymers are widely used advanced materials, which are found almost in every material used in our daily life. To date, the importance of polymers has been much more highlighted because of their applications in different dominions of sciences, technologies and industry – from basic uses to biopolymers and therapeutic polymers. The main aim of this editorial is to accentuate the pragmatic impacts of polymers in human daily life.

  16. Statistical properties of curved polymer

    Indian Academy of Sciences (India)

    For semiflexible polymers, the relevant non-dimensional quantity is lp/L, where lp is the persistence length (which is proportional to the bending modulus k) and L is the contour length of the polymer. In the limit, lp/L ≪ 1, the polymer behaves as a flexible polymer whereas in the limit lp/L ≥ 1 it behaves like a straight rod. For.

  17. Nonlinear microstructured polymer optical fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...

  18. Viscoelastic Properties of Polymer Blends

    Science.gov (United States)

    Hong, S. D.; Moacanin, J.; Soong, D.

    1982-01-01

    Viscosity, shear modulus and other viscoelastic properties of multicomponent polymer blends are predicted from behavior of individual components, using a mathematical model. Model is extension of two-component-blend model based on Rouse-Bueche-Zimm theory of polymer viscoelasticity. Extension assumes that probabilities of forming various possible intracomponent and intercomponent entanglements among polymer molecules are proportional to relative abundances of components.

  19. Quantum random access memory

    OpenAIRE

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2007-01-01

    A random access memory (RAM) uses n bits to randomly address N=2^n distinct memory cells. A quantum random access memory (qRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(log N) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust qRAM algorithm, as it in general requires entanglement among exponentially l...

  20. Pervasive Theory of Memory

    Science.gov (United States)

    Degenbaev, Ulan; Paul, Wolfgang J.; Schirmer, Norbert

    For many aspects of memory theoretical treatment already exists, in particular for: simple cache construction, store buffers and store buffer forwarding, cache coherence protocols, out of order access to memory, segmentation and paging, shared memory data structures (e.g. for locks) as well as for memory models of multi-threaded programming languages. It turns out that we have to unite all of these theories into a single theory if we wish to understand why parallel C compiled by an optimizing compiler runs correctly on a contemporary multi core processor. This pervasive theory of memory is outlined here.

  1. ECT and memory loss.

    Science.gov (United States)

    Squire, L R

    1977-09-01

    The author reviews several studies that clarify the nature of the memory loss associated with ECT. Bilateral ECT produced greater anterograde memory loss than right unilateral ECT and more extensive retrograde amnesia than unilateral ECT. Reactivating memories just before ECT did not produce amnesia. Capacity for new learning recovered substantially by several months after ECT, but memory complaints were common in individuals who had received bilateral ECT. Other things being equal, right unilateral ECT seems preferable to bilateral ECT because the risks to memory associated with unilateral ECT are smaller.

  2. A multiplexed quantum memory.

    Science.gov (United States)

    Lan, S-Y; Radnaev, A G; Collins, O A; Matsukevich, D N; Kennedy, T A; Kuzmich, A

    2009-08-03

    A quantum repeater is a system for long-distance quantum communication that employs quantum memory elements to mitigate optical fiber transmission losses. The multiplexed quantum memory (O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Phys. Rev. Lett. 98, 060502 (2007)) has been shown theoretically to reduce quantum memory time requirements. We present an initial implementation of a multiplexed quantum memory element in a cold rubidium gas. We show that it is possible to create atomic excitations in arbitrary memory element pairs and demonstrate the violation of Bell's inequality for light fields generated during the write and read processes.

  3. Shape memory of polyurethanes with silver nanoparticles

    International Nuclear Information System (INIS)

    Monteiro, Fernanda M.A.; Souza, Patterson P. de; Pereira, Iaci M.; Silva, Livio B.J. da; Orefice, Rodrigo L.

    2011-01-01

    Biodegradable polyurethane nano composites were synthesized in an aqueous environment and have their shape memory properties investigated. The matrix based in isopharane diisocyanate and poly(caprolactone diol) (Mn=1250, 2000 g.mol -1 ) was prepared by the prepolymer mixing process. The silver nanoparticles were produced by mixing AgNO 3 and tannic acid. The shape memory properties were measured using universal testing machine (DL3000, EMIC). The shape memory cycle consisted of the following steps: samples were deformed at room temperature; the mechanical constraints on the polymers were removed; samples were cooled down to 0 deg C and to retain the deformed shape; three processes were tested to recover the shape: (a) samples were heated up to 80 deg C in an oven, (b) immersed in pH 4.0 and (c) immersed in pH 7.0. To study the shape memory effect on the nanostructure, small angle X-ray scattering, wide angle X-ray scattering, infrared spectroscopy experiments were carried on. (author)

  4. White polymer light-emitting diode based on polymer blending

    International Nuclear Information System (INIS)

    Lee, Yong Kyun; Kwon, Soon Kab; Kim, Jun Young; Park, Tae Jin; Song, Dae Ho; Kwon, Jang Hyuk; Choo, Dong Jun; Jang, Jin; Jin, Jae Kyu; You, Hong

    2006-01-01

    A series of white polymer light emitting devices have been fabricated by using a polymer blending system of polyfluorene-based blue and MEH-PPV red polymers. A device structure of ITO/PEDOT:PSS/polymer/LiF/Al was employed. The white polymer device exhibited a current efficiency of 4.33 cd/A (4,816 cd/m 2 , Q.E. = 1.9 %) and a maximum luminance of 21,430 cd/m 2 at 9.2 V. The CIE coordinates were (0.35, 0.37) at 5 V and (0.29, 0.30) at 9 V.

  5. Detailed sensory memory, sloppy working memory

    Directory of Open Access Journals (Sweden)

    Ilja G Sligte

    2010-10-01

    Full Text Available Visual short-term memory (VSTM enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the pre-change object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the pre-change object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88 percent of the iconic memory trials, on 71 percent of the fragile VSTM trials and merely on 53 percent of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  6. Memory dynamics under stress.

    Science.gov (United States)

    Quaedflieg, Conny W E M; Schwabe, Lars

    2018-03-01

    Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

  7. NAND flash memory technologies

    CERN Document Server

    Aritome, Seiichi

    2016-01-01

    This book discusses basic and advanced NAND flash memory technologies, including the principle of NAND flash, memory cell technologies, multi-bits cell technologies, scaling challenges of memory cell, reliability, and 3-dimensional cell as the future technology. Chapter 1 describes the background and early history of NAND flash. The basic device structures and operations are described in Chapter 2. Next, the author discusses the memory cell technologies focused on scaling in Chapter 3, and introduces the advanced operations for multi-level cells in Chapter 4. The physical limitations for scaling are examined in Chapter 5, and Chapter 6 describes the reliability of NAND flash memory. Chapter 7 examines 3-dimensional (3D) NAND flash memory cells and discusses the pros and cons in structure, process, operations, scalability, and performance. In Chapter 8, challenges of 3D NAND flash memory are dis ussed. Finally, in Chapter 9, the author summarizes and describes the prospect of technologies and market for the fu...

  8. Tracing Cultural Memory

    DEFF Research Database (Denmark)

    Wiegand, Frauke Katharina

    to Soweto’s Regina Mundi Church, this thesis analyses tourists’ snapshots at sites of memory and outlines their tracing activity in cultural memory. It draws on central concepts of actor - network theory and visual culture studies for a cross - disciplinary methodology to comprehend the collective...... of memory. They highlight the role of mundane uses of the past and indicate the need for cross - disciplinary research on the visual and on memory......We encounter, relate to and make use of our past and that of others in multifarious and increasingly mobile ways. Tourism is one of the main paths for encountering sites of memory. This thesis examines tourists’ creative appropriations of sites of memory – the objects and future memories inspired...

  9. Immunological memory is associative

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.J.; Forrest, S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science; Perelson, A.S. [Los Alamos National Lab., NM (United States)

    1996-12-31

    The purpose of this paper is to show that immunological memory is an associative and robust memory that belongs to the class of sparse distributed memories. This class of memories derives its associative and robust nature by sparsely sampling the input space and distributing the data among many independent agents. Other members of this class include a model of the cerebellar cortex and Sparse Distributed Memory (SDM). First we present a simplified account of the immune response and immunological memory. Next we present SDM, and then we show the correlations between immunological memory and SDM. Finally, we show how associative recall in the immune response can be both beneficial and detrimental to the fitness of an individual.

  10. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    Bull. Mater. Sci., Vol. 29, No. 7, December 2006, pp. 673–678. © Indian Academy of Sciences. 673. Investigation on poly (vinylidene fluoride) based gel polymer electrolytes ... (Alamgir and Abraham 1993; Sukeshini et al 1996; Ra- jendran and Uma ... Yang et al 1996; Ramesh and Arof 2001) and such elec- trolytes exhibit ...

  11. Raw and renewable polymers

    CSIR Research Space (South Africa)

    Joseph, S

    2010-01-01

    Full Text Available with enhanced support for global sustainability. High performance plastics are the outcome of continuous research over the last few decades. The real challenge of renewable polymers lies in finding applications, which will result in mass production, and price...

  12. Knots in polymers

    Indian Academy of Sciences (India)

    Knots and topological entanglements play an important role in the statistical mechanics of polymers. While topological entanglement is a global property, it is possible to study the size of a knotted region both numerically and analytically. It can be shown that long-range repulsive interactions, as well as entropy favor small ...

  13. Conformational properties of polymers

    Indian Academy of Sciences (India)

    Abstract. We discuss exact enumeration technique and its application to polymers and biopolymers. Using this method one can obtain phase diagram in thermodynamic limit. The method works quite well in describing the outcomes of single molecule force spectroscopy results where finite size effects play a crucial role.

  14. Polymers of phenylenediamines

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav

    2015-01-01

    Roč. 41, February (2015), s. 1-31 ISSN 0079-6700 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyphenylenediamine * phenylenediamine * conducting polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 27.184, year: 2015

  15. Polyester polymer concrete overlay.

    Science.gov (United States)

    2013-01-01

    Polyester polymer concrete (PPC) was used in a trial application on a section of pavement that suffers from extensive studded tire wear. The purpose of the trial section is to determine if PPC is a possible repair strategy for this type of pavement d...

  16. Stochastic memory: Memory enhancement due to noise

    Science.gov (United States)

    Stotland, Alexander; di Ventra, Massimiliano

    2012-01-01

    There are certain classes of resistors, capacitors, and inductors that, when subject to a periodic input of appropriate frequency, develop hysteresis loops in their characteristic response. Here we show that the hysteresis of such memory elements can also be induced by white noise of appropriate intensity even at very low frequencies of the external driving field. We illustrate this phenomenon using a physical model of memory resistor realized by TiO2 thin films sandwiched between metallic electrodes and discuss under which conditions this effect can be observed experimentally. We also discuss its implications on existing memory systems described in the literature and the role of colored noise.

  17. Self-healing polymers and composites based on thermal activation

    Science.gov (United States)

    Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan

    2007-04-01

    Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.

  18. Surface tension of polymer melts - experimental investigations of its effect on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Islam, Mohammad Aminul; Hansen, Hans Nørgaard

    -polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEl, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies...

  19. Surface tension of polymer melts - experimental investigations of its effects on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Jankova Atanasova, Katja; Hansen, Hans Nørgaard

    -polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEI, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies...

  20. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  1. Frictional properties of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J

    2008-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force...

  2. Conducting Polymers for Neutron Detection

    International Nuclear Information System (INIS)

    Clare Kimblin; Kirk Miller; Bob Vogel; Bill Quam; Harry McHugh; Glen Anthony; Steve Jones; Mike Grover

    2007-01-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number

  3. Conducting Polymers for Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Kimblin, Clare; Miller, Kirk; Vogel, Bob; Quam, Bill; McHugh, Harry; Anthony, Glen; Mike, Grover

    2007-12-01

    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number.

  4. Memory phenomenon in a lanthanum based bulk metallic glass

    International Nuclear Information System (INIS)

    Zhou, Ye; Huang, Wei Min; Zhao, Yong; Ding, Zhen; Li, Yan; Tor, Shu Beng; Liu, Erjia

    2016-01-01

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  5. Memory for speech and speech for memory.

    Science.gov (United States)

    Locke, J L; Kutz, K J

    1975-03-01

    Thirty kindergarteners, 15 who substituted /w/ for /r/ and 15 with correct articulation, received two perception tests and a memory test that included /w/ and /r/ in minimally contrastive syllables. Although both groups had nearly perfect perception of the experimenter's productions of /w/ and /r/, misarticulating subjects perceived their own tape-recorded w/r productions as /w/. In the memory task these same misarticulating subjects committed significantly more /w/-/r/ confusions in unspoken recall. The discussion considers why people subvocally rehearse; a developmental period in which children do not rehearse; ways subvocalization may aid recall, including motor and acoustic encoding; an echoic store that provides additional recall support if subjects rehearse vocally, and perception of self- and other- produced phonemes by misarticulating children-including its relevance to a motor theory of perception. Evidence is presented that speech for memory can be sufficiently impaired to cause memory disorder. Conceptions that restrict speech disorder to an impairment of communication are challenged.

  6. Dissolving Polymers in Ionic Liquids.

    Science.gov (United States)

    Hoagland, David; Harner, John

    2009-03-01

    Dissolution and phase behavior of polymers in ionic liquids have been assessed by solution characterization techniques such as intrinsic viscosity and light scattering (static and dynamic). Elevated viscosity proved the greatest obstacle. As yet, whether principles standard to conventional polymer solutions apply to ionic liquid solutions is uncertain, especially for polymers such as polyelectrolytes and hydrophilic block copolymers that may specifically interact with ionic liquid anions or cations. For flexible polyelectrolytes (polymers releasing counterions into high dielectric solvents), characterization in ionic liquids suggests behaviors more typical of neutral polymer. Coil sizes and conformations are approximately the same as in aqueous buffer. Further, several globular proteins dissolve in a hydrophilic ionic liquid with conformations analogous to those in buffer. General principles of solubility, however, remain unclear, making predictions of which polymer dissolves in which ionic liquid difficult; several otherwise intractable polymers (e.g., cellulose, polyvinyl alcohol) dissolve and can be efficiently functionalized in ionic liquids.

  7. The contributions of handedness and working memory to episodic memory.

    Science.gov (United States)

    Sahu, Aparna; Christman, Stephen D; Propper, Ruth E

    2016-11-01

    Past studies have independently shown associations of working memory and degree of handedness with episodic memory retrieval. The current study takes a step ahead by examining whether handedness and working memory independently predict episodic memory. In agreement with past studies, there was an inconsistent-handed advantage for episodic memory; however, this advantage was absent for working memory tasks. Furthermore, regression analyses showed handedness, and complex working memory predicted episodic memory performance at different times. Results are discussed in light of theories of episodic memory and hemispheric interaction.

  8. Psychophysiology of prospective memory.

    Science.gov (United States)

    Rothen, Nicolas; Meier, Beat

    2014-01-01

    Prospective memory involves the self-initiated retrieval of an intention upon an appropriate retrieval cue. Cue identification can be considered as an orienting reaction and may thus trigger a psychophysiological response. Here we present two experiments in which skin conductance responses (SCRs) elicited by prospective memory cues were compared to SCRs elicited by aversive stimuli to test whether a single prospective memory cue triggers a similar SCR as an aversive stimulus. In Experiment 2 we also assessed whether cue specificity had a differential influence on prospective memory performance and on SCRs. We found that detecting a single prospective memory cue is as likely to elicit a SCR as an aversive stimulus. Missed prospective memory cues also elicited SCRs. On a behavioural level, specific intentions led to better prospective memory performance. However, on a psychophysiological level specificity had no influence. More generally, the results indicate reliable SCRs for prospective memory cues and point to psychophysiological measures as valuable approach, which offers a new way to study one-off prospective memory tasks. Moreover, the findings are consistent with a theory that posits multiple prospective memory retrieval stages.

  9. Smart materials based on shape memory alloys: examples from Europe

    International Nuclear Information System (INIS)

    Gotthardt, R.; Scherrer, P.

    2000-01-01

    Shape memory alloys (SMAs) have become increasingly attractive as embedded actuators in polymers yielding adaptive composite structures. In particular, SMA-elements have been used to actively or passively control shape, elastic modules, internal stress level and damping capacity of such smart composites. In the passive approach, copper-base SMA-plates can be used as temperature-sensitive damping elements, an interesting solution to improve the vibrational behaviour of alpine skis for example. Active materials are obtained by the integration of pre-strained Ni-Ti-base thin wires in polymer matrix composites enabling control of the vibrational behaviour through the recovery-stress tuning technique. In this paper, some results of national research programmes in Belgium and Switzerland, mainly concerning the damping capacity, are shown and a new European project entitled ''adaptive composites with embedded shape memory alloy wires'' is presented in which partners from Belgium, Germany, Greece, Great Britain and Switzerland are collaborating. (orig.)

  10. Electrospun nanofiber membranes for electrically activated shape memory nanocomposites

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Leng, Jinsong

    2014-06-01

    A novel shape memory nanocomposite system, consisting of a thermoplastic Nafion polymer and ultrathin electrospun polyacrylonitrile (PAN)-based carbonization nanofiber membranes, is successfully synthesized. PAN-based carbonization nanofiber networks that offer responses to deformations are considered to be an excellent actuation source. Significant improvement in the electrical conductivity of carbon nanofiber membranes is found by adjusting the applied voltage power in the electrospinning PAN process varying from 7.85 to 12.30 S cm-1. The porous structure of the carbon nanofiber membranes provides a large specific surface area and interfacial contact area when combined with the polymer matrix. Shape memory Nafion nanocomposites filled with interpenetrating non-woven electrospun PAN carbonization membranes can be actuated by applying 14 V electrical voltage within 5 s. The results, as demonstrated through morphology, electrical and thermal measurements and a shape recovery test, suggest a valuable route to producing soft nanocomposites.

  11. Adsorption and flocculation by polymers and polymer mixtures.

    Science.gov (United States)

    Gregory, John; Barany, Sandor

    2011-11-14

    Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Actuating and memorizing bilayer hydrogels for a self-deformed shape memory function.

    Science.gov (United States)

    Wang, Li; Jian, Yukun; Le, Xiaoxia; Lu, Wei; Ma, Chunxin; Zhang, Jiawei; Huang, Youju; Huang, Chih-Feng; Chen, Tao

    2018-01-31

    A general strategy for fabricating a double layer self-deformed shape memory hydrogel which includes a thermo-responsive actuating layer and a pH-responsive memorizing layer is presented. Compared with traditional shape memory polymer systems, the temporary shape of the hydrogel could be generated by a thermo-responsive actuating layer upon the trigger of heat without the need for an external force, which could be further memorized by the pH-responsive memorizing layer.

  13. A Vertical Organic Transistor Architecture for Fast Nonvolatile Memory.

    Science.gov (United States)

    She, Xiao-Jian; Gustafsson, David; Sirringhaus, Henning

    2017-02-01

    A new device architecture for fast organic transistor memory is developed, based on a vertical organic transistor configuration incorporating high-performance ambipolar conjugated polymers and unipolar small molecules as the transport layers, to achieve reliable and fast programming and erasing of the threshold voltage shift in less than 200 ns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Intentionally fabricated autobiographical memories.

    Science.gov (United States)

    Justice, Lucy V; Morrison, Catriona M; Conway, Martin A

    2018-02-01

    Participants generated both autobiographical memories (AMs) that they believed to be true and intentionally fabricated autobiographical memories (IFAMs). Memories were constructed while a concurrent memory load (random 8-digit sequence) was held in mind or while there was no concurrent load. Amount and accuracy of recall of the concurrent memory load was reliably poorer following generation of IFAMs than following generation of AMs. There was no reliable effect of load on memory generation times; however, IFAMs always took longer to construct than AMs. Finally, replicating previous findings, fewer IFAMs had a field perspective than AMs, IFAMs were less vivid than AMs, and IFAMs contained more motion words (indicative of increased cognitive load). Taken together, these findings show a pattern of systematic differences that mark out IFAMs, and they also show that IFAMs can be identified indirectly by lowered performance on concurrent tasks that increase cognitive load.

  15. What memory is.

    Science.gov (United States)

    Klein, Stanley B

    2015-01-01

    I argue that our current practice of ascribing the term 'memory' to mental states and processes lacks epistemic warrant. Memory, according to the 'received view', is any state or process that results from the sequential stages of encoding, storage, and retrieval. By these criteria, memory, or its footprint, can be seen in virtually every mental state we are capable of having. This, I argue, stretches the term to the breaking point. I draw on phenomenological, historical, and conceptual considerations to make the case that an act of memory entails a direct, non-inferential feeling of reacquaintance with one's past. It does so by linking content retrieved from storage with autonoetic awareness during retrieval. On this view, memory is not the content of experience, but the manner in which that content is experienced. I discuss some theoretical and practical implications and advantages of adopting this more circumscribed view of memory. © 2014 John Wiley & Sons, Ltd.

  16. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...... garnered a great deal of interest due to the substantial room for improvement inherent to conventional chemotherapeutic agents. Chemotherapeutic agents and antiviral agents have a lot of features in common due to both of them typically targeting endogenous targets, unlike antibacterial compounds, though...... the examples of polymer therapeutics being applied as an antiviral treatment are few and far in-between. This work aims to explore antiviral therapeutics, specifically in context of hepatitis virus C (HCV) and HIV. The current treatment of hepatitis C consists of a combination of drugs, of which ribavirin...

  17. Polymer Physics Prize Talk

    Science.gov (United States)

    Olvera de La Cruz, Monica

    Polymer electrolytes have been particularly difficult to describe theoretically given the large number of disparate length scales involved in determining their physical properties. The Debye length, the Bjerrum length, the ion size, the chain length, and the distance between the charges along their backbones determine their structure and their response to external fields. We have developed an approach that uses multi-scale calculations with the capability of demonstrating the phase behavior of polymer electrolytes and of providing a conceptual understanding of how charge dictates nano-scale structure formation. Moreover, our molecular dynamics simulations have provided an understanding of the coupling of their conformation to their dynamics, which is crucial to design self-assembling materials, as well as to explore the dynamics of complex electrolytes for energy storage and conversion applications.

  18. Dielectric Actuation of Polymers

    Science.gov (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  19. Polymer/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrdad shokrieh

    2007-06-01

    Full Text Available Nanocomposite materials have recently attracted increasing interests in the field of modelling. Finite element modelling can be used for computation of bulk properties of polymer/clay nanocomposites. In this study, by   considering the structure of a nano-composite material, a quasi real model is proposed. The model has been used to predict the elastic constants by selection of suitable elements and boundary conditions. The effects of nano-structural parameters on the mechanical properties of a polymer/clay nano-composite are studied. The geometrical overlap of particles, horizontal distance between particles, length of particles and nano-clay volume fraction are defined as functions of the nano-structural parameters and their effects on mechanical properties of nano-composites are studied by a finite element modelling technique.

  20. Mesoscale Polymer Assemblies

    Science.gov (United States)

    Choudhary, Satyan; Pham, Jonathan; Crosby, Alfred

    2015-03-01

    Materials encompassing structural hierarchy and multi-functionality allow for remarkable physical properties across different length scales. Mesoscale Polymer (MSP) assemblies provide a critical link, from nanometer to centimeter scales, in the definition of such hierarchical structures. Recent focus has been on exploiting these MSP assemblies for optical, electronic, photonics and biological applications. We demonstrate a novel fabrication method for MSP assemblies. Current fabrication methods restrict the length scale and volume of such assemblies. A new method developed uses a simple piezo-actuated motion for de-pinning of a polymer solution trapped by capillary forces between a flexible blade and a rigid substrate. The advantages of new method include ability to make MSP of monodisperse length and to fabricate sufficient volumes of MSP to study their physical properties and functionality in liquid dispersions. We demonstrate the application of MSP as filler for soft materials, providing rheological studies of the MSP with surrounding matrices.

  1. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  2. Emotion and Autobiographical Memory

    Directory of Open Access Journals (Sweden)

    Nuray Sarp

    2011-09-01

    Full Text Available Self and mind are constituted with the cumulative effects of significant life events. This description is regarded as a given explicitly or implicitly in vari-ous theories of personality. Such an acknowledgment inevitably brings together these theories on two basic concepts. The first one is the emotions that give meaning to experiences and the second one is the memory which is related to the storage of these experiences. The part of the memory which is responsible for the storage and retrieval of life events is the autobiographical memory. Besides the development of personality, emotions and autobiographical memory are important in the development of and maintenance of psychopathology. Therefore, these two concepts have both longitudinal and cross-sectional functions in understanding human beings. In case of psychopathology, understanding emotions and autobiographical memory developmentally, aids in understanding the internal susceptibility factors. In addition, understanding how these two structures work and influence each other in an acute event would help to understand the etiological mechanisms of mental disorders. In the literature, theories that include both of these structures and that have clinical implications, are inconclusive. Theories on memory generally focus on cognitive and semantic structures while neglecting emotions, whereas theories on emotions generally neglect memory and its organization. There are only a few theories that cover both of these two concepts. In the present article, these theories that include both emotions and autobiographical memory in the same framework (i.e. Self Memory System, Associative Network Theory, Structural and Contextual theories and Affect Regulation Theory were discussed to see the full picture. Taken together, these theories seem to have the potential to suggest data-driven models in understanding and explaining symptoms such as flashbacks, dissociation, amnesia, over general memory seen in

  3. Coding for flash memories

    OpenAIRE

    Yaakobi, Eitan

    2011-01-01

    Flash memories are, by far, the most important type of non -volatile memory in use today. They are employed widely in mobile, embedded, and mass-storage applications, and the growth in this sector continues at a staggering pace. Moreover, since flash memories do not suffer from the mechanical limitations of magnetic disk drives, solid- state drives have the potential to upstage the magnetic recording industry in the foreseeable future. The research goal of this dissertation is the discovery o...

  4. Music, memory and emotion

    OpenAIRE

    J?ncke, Lutz

    2008-01-01

    Because emotions enhance memory processes and music evokes strong emotions, music could be involved in forming memories, either about pieces of music or about episodes and information associated with particular music. A recent study in BMC Neuroscience has given new insights into the role of emotion in musical memory. Music has a prominent role in the everyday life of many people. Whether it is for recreation, distraction or mood enhancement, a lot of people listen to music from early in t...

  5. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi

    2017-03-16

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  6. A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Agostino; Dimonte, Alice; Tarabella, Giuseppe; D’Angelo, Pasquale, E-mail: dangelo@imem.cnr.it, E-mail: iannotta@imem.cnr.it; Erokhin, Victor; Iannotta, Salvatore, E-mail: dangelo@imem.cnr.it, E-mail: iannotta@imem.cnr.it [IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parma 43124 (Italy)

    2015-01-01

    The development of devices able to detect and record ion fluxes is a crucial point in order to understand the mechanisms that regulate communication and life of organisms. Here, we take advantage of the combined electronic and ionic conduction properties of a conducting polymer to develop a hybrid organic/living device with a three-terminal configuration, using the Physarum polycephalum Cell (PPC) slime mould as a living bio-electrolyte. An over-oxidation process induces a conductivity switch in the polymer, due to the ionic flux taking place at the PPC/polymer interface. This behaviour endows a current-depending memory effect to the device.

  7. Knots in polymers

    Indian Academy of Sciences (India)

    Ey; 05.40.Fb; 02.10.Kn; 82.35.Rs. 1. Introduction. Knots and links naturally appear in long polymers [1] and play an important role in biological processes [2]. The simplest statistical–mechanical model of a ..... [6] A D Bates and A Maxwell, DNA Topology (IRL Press, Oxford, 1993). [7] P Pieranski, S Przyby l and A Stasiak, ...

  8. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  9. Solid polymer electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  10. Dynamics of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Buchenau, U. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energieverfahrenstechnik

    1996-11-01

    Neutron scattering from amorphous polymers allows to switch from incoherent to coherent scattering in the same substance. The power of the tool for the study of the picosecond dynamics of disordered matter is illustrated for polybutadiene, polycarbonate and polystyrene. The results suggest a mixture of sound waves and localized modes, strongly interacting with each other, in the picosecond range. (author) 8 figs., tabs., 39 refs.

  11. High Mobility Conjugated Polymers

    Science.gov (United States)

    2007-10-20

    blends with poly(3- hexylthiophene) (PHT) could be readily fabricated as uniform nanofibers by co- electrospinning their solutions with another solution...We have demonstrated that nanofibers of conjugated 10 - polymers and their blends could be conveniently fabricated by electrospinning . Furthermore, we...luminance o - - characteristics of an ITO/ PEDOT /TAPC k D r a Vol gt, V, (V) /BPQ-PPO/LiF/A! device are shown in Fig. 30. (A) Current density-voltage

  12. Dynamics of polymers

    International Nuclear Information System (INIS)

    Buchenau, U.

    1996-01-01

    Neutron scattering from amorphous polymers allows to switch from incoherent to coherent scattering in the same substance. The power of the tool for the study of the picosecond dynamics of disordered matter is illustrated for polybutadiene, polycarbonate and polystyrene. The results suggest a mixture of sound waves and localized modes, strongly interacting with each other, in the picosecond range. (author) 8 figs., tabs., 39 refs

  13. CLASSIFICATION OF BIODEGRADABLE POLYMERS

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2015-01-01

    Full Text Available The executed investigations have made it possible to ascertain that a morphological structure of starch granules mainly determine technological peculiarities of starch isolation from raw material, its modification and its later use. Morphological structure of starch granules primarily depends on type of plant starch-containing raw material which has been used for its isolation. Class of raw material exerts a strong impact on the shape and size of the granules. Linear “light” amylose chains and “heavy” amylopectin branch chains form a starch granule ultrastructure. X-ray research has proved that starch granules are characterized by presence of interlacing amorphous and crystalline regions. In this case polymer orientation using stretching of the obtained end product influences on its physical and mechanical  indices which are increasing due to polymer orientation. For the purpose of packaging orientation of polymer films can solve such important problems as significant improvement of operational properties, creation of  thermosetting film materials, improvement of qualitative indices of the recycled film.Results of the conducted research have proved the fact that it is necessary to make changes in technology in order to increase biological degradability of the recycled packaging made from polymers and improve physical and mechanical indices. In this regard film production technology presupposes usage of such substances as stark and others which are characterized by rather large presence of branch chains of molecules and interlacing amorphous and crystalline regions. Such approach makes it possible to obtain after-use package which is strong and quickly degradable by micro-organisms.

  14. Polymer engineering (I)

    International Nuclear Information System (INIS)

    Kim, Seong Cheol; Kim, Do Hyeon; Lee, Gi Yun

    1994-08-01

    This book deals with polymer engineering, which gives descriptions of addition polymerization, condensation polymerization, special polymerization, copolymerization, reaction of a high molecule, polymerization process, structure of a high molecule chain, molecular weight, crystal structure of a high molecule, melting and glass transition, viscoelasticity of a high molecule, rubber elasticity, transform and destroy of a high molecule, property of another matter, melting rheology of a high molecule, flowing in the tube and channel, pressing, injection molding, calendaring and spinning process.

  15. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  16. Conductive Polymer Composites

    OpenAIRE

    Pierini, Filippo

    2013-01-01

    In recent years, nanotechnologies have led to the production of materials with new and sometimes unexpected qualities through the manipulation of nanoscale components. This research aimed primarily to the study of the correlation between hierarchical structures of hybrid organic-inorganic materials such as conductive polymer composites (CPCs). Using a bottom-up methodology, we could synthesize a wide range of inorganic nanometric materials with a high degree of homogeneity and purity, ...

  17. Enhancement of Polymer Cytocompatibility by Nanostructuring of Polymer Surface

    Directory of Open Access Journals (Sweden)

    Petr Slepička

    2012-01-01

    Full Text Available Polymers with their advantageous physical, chemical, mechanical, and electrical properties and easy manufacturing are widely used in biology, tissue engineering, and medicine, for example, as prosthetic materials. In some cases the polymer usage may be impeded by low biocompatibility of common synthetic polymers. The biocompatibility can be improved by modification of polymer surface, for example, by plasma discharge, irradiation with ionizing radiation, and sometime subsequent grafting with suitable organic (e.g., amino-acids or inorganic (e.g., gold nanoparticles agents. In this way new chemically active structures are created on the polymer surface, and in some cases new surface relief is created. Recent advances in nanotechnology and in characterization of nanostructured objects open the way to development of new polymer-based materials with better bio-properties and higher application potential in biomedicine. Some of recent results obtained in the field are summarized and discussed in this paper.

  18. All-Polymer Lasers

    Science.gov (United States)

    Wu, Yeheng; Lott, Joseph; Kazmierczak, Tomasz; Song, Hyunmin; Baer, Eric; Singer, Kenneth; Weder, Christoph

    2008-03-01

    We have fabricated all-polymer lasers both as distributed feedback lasers (DFB) and distributed Bragg reflector (DBR) lasers. For the DBR lasers, a layer of polymer doped with the laser dye is laminated between two multilayer polymer mirrors. The mirrors were made using the co-extrusion process combining PMMA alternated with polystyrene with 128 layers for each mirror. Two dyes were employed, Rhodamine 6G (R6G), and 1,4-bis-(α-cyano-4-methoxystyryl)-2,5-dimethoxybenzene (C1RG). They were pumped with a nanosecond laser and emitted at about 570 and 510 nm respectively. For DFB lasers, the low refractive index layers were doped with C1RG or R6G. PMMA and PMMA-PVDF were the hosts for the C1RG and R6G respectively. A total of eight co-extruded 32-layer films were stacked together to make a DFB laser. For the DBR lasers, we were able to observe thresholds as low as 100nJ. The highest conversion efficiency obtained about 14% in the forward direction. We also observed trends of lasing threshold, even spaced lasing modes and penetration of the film. Matrix method simulations taking into account layer thickness variations were consistent with experimental results. For the DFB lasers, the lowest lasing threshold observed was 52 μW.

  19. Simulated Associating Polymer Networks

    Science.gov (United States)

    Billen, Joris

    Telechelic associating polymer networks consist of polymer chains terminated by endgroups that have a different chemical composition than the polymer backbone. When dissolved in a solution, the endgroups cluster together to form aggregates. At low temperature, a strongly connected reversible network is formed and the system behaves like a gel. Telechelic networks are of interest since they are representative for biopolymer networks (e.g. F-actin) and are widely used in medical applications (e.g. hydrogels for tissue engineering, wound dressings) and consumer products (e.g. contact lenses, paint thickeners). In this thesis such systems are studied by means of a molecular dynamics/Monte Carlo simulation. At first, the system in rest is studied by means of graph theory. The changes in network topology upon cooling to the gel state, are characterized. Hereto an extensive study of the eigenvalue spectrum of the gel network is performed. As a result, an in-depth investigation of the eigenvalue spectra for spatial ER, scale-free, and small-world networks is carried out. Next, the gel under the application of a constant shear is studied, with a focus on shear banding and the changes in topology under shear. Finally, the relation between the gel transition and percolation is discussed.

  20. BioArtificial polymers

    Science.gov (United States)

    Szałata, Kamila; Gumi, Tania

    2017-07-01

    Nowadays, the polymer science has impact in practically all life areas. Countless benefits coming from the usage of materials with high mechanical and chemical resistance, variety of functionalities and potentiality of modification drive to the development of new application fields. Novel approaches of combining these synthetic substances with biomolecules lead to obtain multifunctional hybrid conjugates which merge the bioactivity of natural component with outstanding properties of artificial polymer. Over the decades, an immense progress in bioartificial composites domain allowed to reach a high level of knowledge in terms of natural-like systems engineering, leading to diverse strategies of biomolecule immobilization. Together with different available options, including covalent and noncovalent attachment, come various challenges, related mainly with maintaining the biological activity of fixed molecules. Even though the amount of applications that achieve commercial status is still not substantial, and is expanding continuously in the disciplines like "smart materials," biosensors, delivery systems, nanoreactors and many others. A huge number of remarkable developments reported in the literature present a potential of bioartificial conjugates as a fabrics with highly controllable structure and multiple functionalities, serving as a powerful nanotechnological tool. This novel approach brings closer biologists, chemists and engineers, who sharing their effort and complementing the knowledge can revolutionize the field of bioartificial polymer science.