WorldWideScience

Sample records for memory efficient lempel-ziv

  1. On the Approximation Ratio of Lempel-Ziv Parsing

    DEFF Research Database (Denmark)

    Gagie, Travis; Navarro, Gonzalo; Prezza, Nicola

    2018-01-01

    in the text. Since computing b is NP-complete, a popular gold standard is z, the number of phrases in the Lempel-Ziv parse of the text, where phrases can be copied only from the left. While z can be computed in linear time, almost nothing has been known for decades about its approximation ratio with respect...

  2. Lempel-Ziv Compression in a Sliding Window

    DEFF Research Database (Denmark)

    Bille, Philip; Cording, Patrick Hagge; Fischer, Johannes

    2017-01-01

    result, we combine a simple modification and augmentation of the suffix tree with periodicity properties of sliding windows. We also apply this new technique to obtain an algorithm for the approximate rightmost LZ77 problem that uses O(n(log z + loglogn)) time and O(n) space and produces a (1 + ϵ......We present new algorithms for the sliding window Lempel-Ziv (LZ77) problem and the approximate rightmost LZ77 parsing problem. Our main result is a new and surprisingly simple algorithm that computes the sliding window LZ77 parse in O(w) space and either O(n) expected time or O(n log log w + z log...

  3. Picture data compression coder using subband/transform coding with a Lempel-Ziv-based coder

    Science.gov (United States)

    Glover, Daniel R. (Inventor)

    1995-01-01

    Digital data coders/decoders are used extensively in video transmission. A digitally encoded video signal is separated into subbands. Separating the video into subbands allows transmission at low data rates. Once the data is separated into these subbands it can be coded and then decoded by statistical coders such as the Lempel-Ziv based coder.

  4. Lempel-Ziv complexity analysis of one dimensional cellular automata.

    Science.gov (United States)

    Estevez-Rams, E; Lora-Serrano, R; Nunes, C A J; Aragón-Fernández, B

    2015-12-01

    Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules.

  5. Time-space trade-offs for lempel-ziv compressed indexing

    DEFF Research Database (Denmark)

    Bille, Philip; Ettienne, Mikko Berggren; Gørtz, Inge Li

    2017-01-01

    Given a string S, the compressed indexing problem is to preprocess S into a compressed representation that supports fast substring queries. The goal is to use little space relative to the compressed size of S while supporting fast queries. We present a compressed index based on the Lempel-Ziv 1977...... compression scheme. Let n, and z denote the size of the input string, and the compressed LZ77 string, respectively. We obtain the following time-space trade-offs. Given a pattern string P of length m, we can solve the problem in (i) O (m + occ lg lg n) time using O(z lg(n/z) lg lg z) space, or (ii) (m (1...... best space bound, but has a leading term in the query time of O(m(1 + lgϵ z/lg(n/z))). However, for any polynomial compression ratio, i.e., z = O(n1-δ), for constant δ > 0, this becomes O(m). Our index also supports extraction of any substring of length ℓ in O(ℓ + lg(n/z)) time. Technically, our...

  6. A short note on the paper of Liu et al. (2012). A relative Lempel-Ziv complexity: Application to comparing biological sequences. Chemical Physics Letters, volume 530, 19 March 2012, pages 107-112

    Science.gov (United States)

    Arit, Turkan; Keskin, Burak; Firuzan, Esin; Cavas, Cagin Kandemir; Liu, Liwei; Cavas, Levent

    2018-04-01

    The report entitled "L. Liu, D. Li, F. Bai, A relative Lempel-Ziv complexity: Application to comparing biological sequences, Chem. Phys. Lett. 530 (2012) 107-112" mentions on the powerful construction of phylogenetic trees based on Lempel-Ziv algorithm. On the other hand, the method explained in the paper does not give promising result on the data set on invasive Caulerpa taxifolia in the Mediterranean Sea. The phylogenetic trees are obtained by the proposed method of the aforementioned paper in this short note.

  7. Correlation between detrended fluctuation analysis and the Lempel-Ziv complexity in nonlinear time series analysis

    International Nuclear Information System (INIS)

    Tang You-Fu; Liu Shu-Lin; Jiang Rui-Hong; Liu Ying-Hui

    2013-01-01

    We study the correlation between detrended fluctuation analysis (DFA) and the Lempel-Ziv complexity (LZC) in nonlinear time series analysis in this paper. Typical dynamic systems including a logistic map and a Duffing model are investigated. Moreover, the influence of Gaussian random noise on both the DFA and LZC are analyzed. The results show a high correlation between the DFA and LZC, which can quantify the non-stationarity and the nonlinearity of the time series, respectively. With the enhancement of the random component, the exponent a and the normalized complexity index C show increasing trends. In addition, C is found to be more sensitive to the fluctuation in the nonlinear time series than α. Finally, the correlation between the DFA and LZC is applied to the extraction of vibration signals for a reciprocating compressor gas valve, and an effective fault diagnosis result is obtained

  8. Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics

    Science.gov (United States)

    Zhang, Yali; Wang, Jun

    2017-09-01

    In an attempt to investigate the nonlinear complex evolution of financial dynamics, a new financial price model - the multitype range-intensity contact (MRIC) financial model, is developed based on the multitype range-intensity interacting contact system, in which the interaction and transmission of different types of investment attitudes in a stock market are simulated by viruses spreading. Two new random visibility graph (VG) based analyses and Lempel-Ziv complexity (LZC) are applied to study the complex behaviors of return time series and the corresponding random sorted series. The VG method is the complex network theory, and the LZC is a non-parametric measure of complexity reflecting the rate of new pattern generation of a series. In this work, the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, the numerical empirical study shows the similar complexity behaviors between the model and the real markets, the research confirms that the financial model is reasonable to some extent.

  9. Watermark Compression in Medical Image Watermarking Using Lempel-Ziv-Welch (LZW) Lossless Compression Technique.

    Science.gov (United States)

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohd; Ali, Mushtaq

    2016-04-01

    In teleradiology, image contents may be altered due to noisy communication channels and hacker manipulation. Medical image data is very sensitive and can not tolerate any illegal change. Illegally changed image-based analysis could result in wrong medical decision. Digital watermarking technique can be used to authenticate images and detect as well as recover illegal changes made to teleradiology images. Watermarking of medical images with heavy payload watermarks causes image perceptual degradation. The image perceptual degradation directly affects medical diagnosis. To maintain the image perceptual and diagnostic qualities standard during watermarking, the watermark should be lossless compressed. This paper focuses on watermarking of ultrasound medical images with Lempel-Ziv-Welch (LZW) lossless-compressed watermarks. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the combination of defined region of interest (ROI) and image watermarking secret key. The performance of the LZW compression technique was compared with other conventional compression methods based on compression ratio. LZW was found better and used for watermark lossless compression in ultrasound medical images watermarking. Tabulated results show the watermark bits reduction, image watermarking with effective tamper detection and lossless recovery.

  10. Evaluation of Efficient XML Interchange (EXI) for Large Datasets and as an Alternative to Binary JSON Encodings

    Science.gov (United States)

    2015-03-01

    1977 Algorithm LZMA Lempel-Ziv Markov-chain Algorithm MB Megabyte NCW Network-Centric Warfare NoSQL Not only Structured Query Language NOW Network...Language ( NoSQL ) database (MongoDB Documentation Project, 2014). Its stated design goals are to be lightweight or compact, quickly traversed by

  11. Spatial-Aided Low-Delay Wyner-Ziv Video Coding

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2009-01-01

    Full Text Available In distributed video coding, the side information (SI quality plays an important role in Wyner-Ziv (WZ frame coding. Usually, SI is generated at the decoder by the motion-compensated interpolation (MCI from the past and future key frames under the assumption that the motion trajectory between the adjacent frames is translational with constant velocity. However, this assumption is not always true and thus, the coding efficiency for WZ coding is often unsatisfactory in video with high and/or irregular motion. This situation becomes more serious in low-delay applications since only motion-compensated extrapolation (MCE can be applied to yield SI. In this paper, a spatial-aided Wyner-Ziv video coding (WZVC in low-delay application is proposed. In SA-WZVC, at the encoder, each WZ frame is coded as performed in the existing common Wyner-Ziv video coding scheme and meanwhile, the auxiliary information is also coded with the low-complexity DPCM. At the decoder, for the WZ frame decoding, auxiliary information should be decoded firstly and then SI is generated with the help of this auxiliary information by the spatial-aided motion-compensated extrapolation (SA-MCE. Theoretical analysis proved that when a good tradeoff between the auxiliary information coding and WZ frame coding is achieved, SA-WZVC is able to achieve better rate distortion performance than the conventional MCE-based WZVC without auxiliary information. Experimental results also demonstrate that SA-WZVC can efficiently improve the coding performance of WZVC in low-delay application.

  12. Successful single treatment with ziv-aflibercept for existing corneal neovascularization following ocular chemical insult in the rabbit model.

    Science.gov (United States)

    Gore, Ariel; Horwitz, Vered; Cohen, Maayan; Gutman, Hila; Cohen, Liat; Gez, Rellie; Kadar, Tamar; Dachir, Shlomit

    2018-03-13

    To evaluate the efficacy of ziv-aflibercept as a treatment for established corneal neovascularization (NV) and to compare its efficacy to that of bevacizumab following ocular chemical insult of sulfur mustard (SM) in the rabbit model. Chemical SM burn was induced in the right eye of NZW rabbits by vapor exposure. Ziv-aflibercept (2 mg) was applied once to neovascularized eyes by subconjunctival injection while subconjunctival bevacizumab (5 mg) was administered twice a week, for 3 weeks. Non-treated exposed eyes served as a control. A clinical follow-up employed by slit-lamp microscope, was performed up to 12 weeks following exposure and digital photographs of the cornea were taken for measurement of blood vessels length using the image analysis software. Eyes were taken for histological evaluation 2, 4 and 8 weeks following treatment for general morphology and for visualization of NV, using H&E and Masson Trichrome stainings, while conjunctival goblet cell density was determined by PAS staining. Corneal NV developed, starting as early as two weeks after exposure. A single subconjunctival treatment of ziv-aflibercept at 4 weeks post exposure, significantly reduced the extent of existing NV already one week following injection, an effect which lasted for at least 8 weeks following treatment, while NV in the non-treated exposed eyes continued to advance. The extensive reduction in corneal NV in the ziv-aflibercept treated group was confirmed by histological evaluation. Bevacizumab multiple treatment showed a benefit in NV reduction, but to a lesser extent compared to the ziv-aflibercept treatment. Finally, ziv-aflibercept increased the density of conjunctival goblet cells as compared to the exposed non-treated group. Subconjunctival ziv-aflibercept single treatment presented a highly efficient long-term therapeutic benefit in reducing existing corneal NV, following ocular sulfur mustard exposure. These findings show the robust anti-angiogenic efficacy of ziv

  13. Freeing Space for NASA: Incorporating a Lossless Compression Algorithm into NASA's FOSS System

    Science.gov (United States)

    Fiechtner, Kaitlyn; Parker, Allen

    2011-01-01

    NASA's Fiber Optic Strain Sensing (FOSS) system can gather and store up to 1,536,000 bytes (1.46 megabytes) per second. Since the FOSS system typically acquires hours - or even days - of data, the system can gather hundreds of gigabytes of data for a given test event. To store such large quantities of data more effectively, NASA is modifying a Lempel-Ziv-Oberhumer (LZO) lossless data compression program to compress data as it is being acquired in real time. After proving that the algorithm is capable of compressing the data from the FOSS system, the LZO program will be modified and incorporated into the FOSS system. Implementing an LZO compression algorithm will instantly free up memory space without compromising any data obtained. With the availability of memory space, the FOSS system can be used more efficiently on test specimens, such as Unmanned Aerial Vehicles (UAVs) that can be in flight for days. By integrating the compression algorithm, the FOSS system can continue gathering data, even on longer flights.

  14. Transform domain Wyner-Ziv video coding with refinement of noise residue and side information

    DEFF Research Database (Denmark)

    Huang, Xin; Forchhammer, Søren

    2010-01-01

    are successively updating the estimated noise residue for noise modeling and side information frame quality during decoding. Experimental results show that the proposed decoder can improve the Rate- Distortion (RD) performance of a state-of-the-art Wyner Ziv video codec for the set of test sequences.......Distributed Video Coding (DVC) is a video coding paradigm which mainly exploits the source statistics at the decoder based on the availability of side information at the decoder. This paper considers feedback channel based Transform Domain Wyner-Ziv (TDWZ) DVC. The coding efficiency of TDWZ video...... coding does not match that of conventional video coding yet, mainly due to the quality of side information and inaccurate noise estimation. In this context, a novel TDWZ video decoder with noise residue refinement (NRR) and side information refinement (SIR) is proposed. The proposed refinement schemes...

  15. Ziv-aflibercept in metastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Patel A

    2013-12-01

    Full Text Available Anuj Patel, Weijing Sun Division of Hematology-Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Abstract: The combination of cytotoxic chemotherapy and antiangiogenic agents has become a conventional treatment option for patients with metastatic colorectal cancer. Ziv-aflibercept is a fusion protein which acts as a decoy receptor for vascular endothelial growth factor (VEGF-A, VEGF-B, and placental growth factor (PlGF; it was approved in combination with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI for the treatment of patients with metastatic colorectal cancer that is resistant to or has progressed after an oxaliplatin-containing fluoropyrimidine-based regimen. Herein we review the role of tumor angiogenesis as the rationale for antiangiogenic therapy, the clinical data associated with ziv-aflibercept, and its current role as a treatment option compared to other antiangiogenic agents, such as bevacizumab and regorafenib. Keywords: aflibercept, angiogenesis, colorectal cancer

  16. Parallel iterative decoding of transform domain Wyner-Ziv video using cross bitplane correlation

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Huang, Xin; Forchhammer, Søren

    2011-01-01

    decoding scheme is proposed to improve the coding efficiency of TDWZ video codecs. The proposed parallel iterative LDPC decoding scheme is able to utilize cross bitplane correlation during decoding, by iteratively refining the soft-input, updating a modeled noise distribution and thereafter enhancing......In recent years, Transform Domain Wyner-Ziv (TDWZ) video coding has been proposed as an efficient Distributed Video Coding (DVC) solution, which fully or partly exploits the source statistics at the decoder to reduce the computational burden at the encoder. In this paper, a parallel iterative LDPC...

  17. LZ-Compressed String Dictionaries

    OpenAIRE

    Arz, Julian; Fischer, Johannes

    2013-01-01

    We show how to compress string dictionaries using the Lempel-Ziv (LZ78) data compression algorithm. Our approach is validated experimentally on dictionaries of up to 1.5 GB of uncompressed text. We achieve compression ratios often outperforming the existing alternatives, especially on dictionaries containing many repeated substrings. Our query times remain competitive.

  18. Mutiple LDPC Decoding using Bitplane Correlation for Transform Domain Wyner-Ziv Video Coding

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Huang, Xin; Forchhammer, Søren

    2011-01-01

    Distributed video coding (DVC) is an emerging video coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. This paper considers a Low Density Parity Check (LDPC) based Transform Domain Wyner-Ziv (TDWZ) video...... codec. To improve the LDPC coding performance in the context of TDWZ, this paper proposes a Wyner-Ziv video codec using bitplane correlation through multiple parallel LDPC decoding. The proposed scheme utilizes inter bitplane correlation to enhance the bitplane decoding performance. Experimental results...

  19. Corrections of the NIST Statistical Test Suite for Randomness

    OpenAIRE

    Kim, Song-Ju; Umeno, Ken; Hasegawa, Akio

    2004-01-01

    It is well known that the NIST statistical test suite was used for the evaluation of AES candidate algorithms. We have found that the test setting of Discrete Fourier Transform test and Lempel-Ziv test of this test suite are wrong. We give four corrections of mistakes in the test settings. This suggests that re-evaluation of the test results should be needed.

  20. Three-month outcome of ziv-aflibercept for exudative age-related macular degeneration.

    Science.gov (United States)

    Mansour, Ahmad M; Chhablani, Jay; Antonios, Rafic S; Yogi, Rohit; Younis, Muhammad H; Dakroub, Rola; Chahine, Hasan

    2016-12-01

    In vitro and in vivo studies did not detect toxicity to the retinal pigment epithelium cells using intravitreal ziv-aflibercept. Our purpose is to ascertain the 3-month safety and efficacy in wet age-related macular degeneration (AMD) treated with intravitreal ziv-aflibercept. Prospectively, consecutive patients with wet AMD underwent ziv-aflibercept intravitreal injection (1.25 mg/0.05 mL) from March 2015 to November 2015. Monitoring of best-corrected visual acuity, intraocular inflammation, cataract progression and by spectral domain optical coherence tomography were carried out at baseline day 1, 1 week, 1 month, 2 months and 3 months after injections. 30 eyes were treated (22 Caucasians, 8 Indians; 16 men, 14 women; 14 right eyes and 16 left eyes) with mean age of 74.3 years with 11 treatment-naïve cases and 19 having had treatment-non-naïve. Best-corrected visual acuity improved from baseline logMAR 1.08-0.74 at 1 week, 0.72 at 1 month, 0.67 at 2 months and 0.71 at 3 months (p<0.001 for all time periods). Central macular thickness in microns decreased from 332.8 to 302.0 at 1 week, 244.8 at 1 month, 229.0 at 2 months and 208.2 at 3 months (p<0.001 for all time periods). There were no signs of intraocular inflammation, or change in lens status or increase in intraocular pressure throughout the study. Off label use of ziv-aflibercept improves visual acuity, without detectable ocular toxicity and offers a cheaper alternative to the same molecule aflibercept, especially in low/middle-income countries and in countries where aflibercept (Eylea) is not available. NCT02486484. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Studi Kompresi Data dengan Metode Arithmetic Coding

    OpenAIRE

    Santoso, Petrus

    2001-01-01

    In Bahasa Indonesia : Ada banyak sekali metode kompresi data yang ada saat ini. Sebagian besar metode tersebut bisa dikelompokkan ke dalam salah satu dari dua kelompok besar, statistical based dan dictionary based. Contoh dari dictionary based coding adalah Lempel Ziv Welch dan contoh dari statistical based coding adalah Huffman Coding dan Arithmetic Coding yang merupakan algoritma terbaru. Makalah ini mengulas prinsip-prinsip dari Arithmetic Coding serta keuntungan-keuntungannya dibandi...

  2. Intravitreal injection of ziv-aflibercept in the treatment of choroidal and retinal vascular diseases.

    Science.gov (United States)

    HodjatJalali, Kamran; Mehravaran, Shiva; Faghihi, Hooshang; Hashemi, Hassan; Kazemi, Pegah; Rastad, Hadith

    2017-09-01

    To investigate the short-term outcomes after intravitreal injection of ziv-aflibercept in the treatment of choroidal and retinal vascular diseases. Thirty-four eyes of 29 patients with age-related macular degeneration (AMD), diabetic retinopathy, and retinal vein occlusion (RVO) received a single dose intravitreal injection of 0.05 ml ziv-aflibercept (1.25 mg). Visual acuity, spectral domain optical coherence tomography (SD-OCT) activity, and possible side effects were assessed before and at 1 week and 1 month after the intervention. At 1 month after treatment, mean central macular thickness (CMT) significantly decreased from 531.09 μm to 339.5 μm ( P  < 0.001), and no signs of side effects were observed in any subject. All patients responded to treatment in terms of reduction in CMT. The improvement in visual acuity was statistically non-significant. Our findings suggest that a single dose intravitreal injection of ziv-aflibercept may have acceptable relative safety and efficacy in the treatment of patients with intraocular vascular disease. The trial was registered in the Iranian Registry of Clinical Trials (IRCT2015081723651N1).

  3. Unraveling chaotic attractors by complex networks and measurements of stock market complexity.

    Science.gov (United States)

    Cao, Hongduo; Li, Ying

    2014-03-01

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel-Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.

  4. Lempel–Ziv Data Compression on Parallel and Distributed Systems

    Directory of Open Access Journals (Sweden)

    Sergio De Agostino

    2011-09-01

    Full Text Available We present a survey of results concerning Lempel–Ziv data compression on parallel and distributed systems, starting from the theoretical approach to parallel time complexity to conclude with the practical goal of designing distributed algorithms with low communication cost. Storer’s extension for image compression is also discussed.

  5. From LZ77 to the run-length encoded burrows-wheeler transform, and back

    DEFF Research Database (Denmark)

    Policriti, Alberto; Prezza, Nicola

    2017-01-01

    The Lempel-Ziv factorization (LZ77) and the Run-Length encoded Burrows-Wheeler Transform (RLBWT) are two important tools in text compression and indexing, being their sizes z and r closely related to the amount of text self-repetitiveness. In this paper we consider the problem of converting the t......(r + z) words of working space. Note that r and z can be constant if the text is highly repetitive, and our algorithms can operate with (up to) exponentially less space than naive solutions based on full decompression.......The Lempel-Ziv factorization (LZ77) and the Run-Length encoded Burrows-Wheeler Transform (RLBWT) are two important tools in text compression and indexing, being their sizes z and r closely related to the amount of text self-repetitiveness. In this paper we consider the problem of converting the two...... representations into each other within a working space proportional to the input and the output. Let n be the text length. We show that RLBWT can be converted to LZ77 in O(n log r) time and O(r) words of working space. Conversely, we provide an algorithm to convert LZ77 to RLBWT in O(n(log r + log z)) time and O...

  6. RAM-efficient external memory sorting

    DEFF Research Database (Denmark)

    Arge, Lars; Thorup, Mikkel

    2013-01-01

    In recent years a large number of problems have been considered in external memory models of computation, where the complexity measure is the number of blocks of data that are moved between slow external memory and fast internal memory (also called I/Os). In practice, however, internal memory time...... often dominates the total running time once I/O-efficiency has been obtained. In this paper we study algorithms for fundamental problems that are simultaneously I/O-efficient and internal memory efficient in the RAM model of computation....

  7. Lossless compression for 3D PET

    International Nuclear Information System (INIS)

    Macq, B.; Sibomana, M.; Coppens, A.; Bol, A.; Michel, C.

    1994-01-01

    A new adaptive scheme is proposed for the lossless compression of positron emission tomography (PET) sinogram data. The algorithm uses an adaptive differential pulse code modulator (ADPCM) followed by a universal variable length coder (UVLC). Contrasting with Lempel-Ziv (LZ), which operates on a whole sinogram, UVLC operates very efficiently on short data blocks. This is a major advantage for real-time implementation. The algorithm is adaptive and codes data after some on-line estimations of the statistics inside each block. Its efficiency is tested when coding dynamic and static scans from two PET scanners and reaches asymptotically the entropy limit for long frames. For very short 3D frames, the new algorithm is twice more efficient than LZ. Since an ASIC implementing a similar UVLC scheme is available today, a similar one should be able to sustain PET data lossless compression and decompression at a rate of 27 MBytes/sec. This algorithm is consequently a good candidate for the next generation of lossless compression engine

  8. Safety profiles of anti-VEGF drugs: bevacizumab, ranibizumab, aflibercept and ziv-aflibercept on human retinal pigment epithelium cells in culture

    Science.gov (United States)

    Malik, Deepika; Tarek, Mohamed; Caceres del Carpio, Javier; Ramirez, Claudio; Boyer, David; Kenney, M Cristina; Kuppermann, Baruch D

    2014-01-01

    Purpose To compare the safety profiles of antivascular endothelial growth factor (VEGF) drugs ranibizumab, bevacizumab, aflibercept and ziv-aflibercept on retinal pigment epithelium cells in culture. Methods Human retinal pigment epithelium cells (ARPE-19) were exposed for 24 h to four anti-VEGF drugs at 1/2×, 1×, 2× and 10× clinical concentrations. Cell viability and mitochondrial membrane potential assay were performed to evaluate early apoptotic changes and rate of overall cell death. Results Cell viability decreased at 10× concentrations in bevacizumab (82.38%, p=0.0001), aflibercept (82.68%, p=0.0002) and ziv-aflibercept (77.25%, p<0.0001), but not at lower concentrations. However, no changes were seen in cell viability in ranibizumab-treated cells at all concentrations including 10×. Mitochondrial membrane potential was slightly decreased in 10× ranibizumab-treated cells (89.61%, p=0.0006) and 2× and 10× aflibercept-treated cells (88.76%, 81.46%; p<0.01, respectively). A larger reduction in mitochondrial membrane potential was seen at 1×, 2× and 10× concentrations of bevacizumab (86.53%, 74.38%, 66.67%; p<0.01) and ziv-aflibercept (73.50%, 64.83% and 49.65% p<0.01) suggestive of early apoptosis at lower doses, including the clinical doses. Conclusions At clinical doses, neither ranibizumab nor aflibercept produced evidence of mitochondrial toxicity or cell death. However, bevacizumab and ziv-aflibercept showed mild mitochondrial toxicity at clinically relevant doses. PMID:24836865

  9. Interacting price model and fluctuation behavior analysis from Lempel–Ziv complexity and multi-scale weighted-permutation entropy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui, E-mail: lirui1401@bjtu.edu.cn; Wang, Jun

    2016-01-08

    A financial price model is developed based on the voter interacting system in this work. The Lempel–Ziv complexity is introduced to analyze the complex behaviors of the stock market. Some stock market stylized facts including fat tails, absence of autocorrelation and volatility clustering are investigated for the proposed price model firstly. Then the complexity of fluctuation behaviors of the real stock markets and the proposed price model are mainly explored by Lempel–Ziv complexity (LZC) analysis and multi-scale weighted-permutation entropy (MWPE) analysis. A series of LZC analyses of the returns and the absolute returns of daily closing prices and moving average prices are performed. Moreover, the complexity of the returns, the absolute returns and their corresponding intrinsic mode functions (IMFs) derived from the empirical mode decomposition (EMD) with MWPE is also investigated. The numerical empirical study shows similar statistical and complex behaviors between the proposed price model and the real stock markets, which exhibits that the proposed model is feasible to some extent. - Highlights: • A financial price dynamical model is developed based on the voter interacting system. • Lempel–Ziv complexity is the firstly applied to investigate the stock market dynamics system. • MWPE is employed to explore the complexity fluctuation behaviors of the stock market. • Empirical results show the feasibility of the proposed financial model.

  10. Interacting price model and fluctuation behavior analysis from Lempel–Ziv complexity and multi-scale weighted-permutation entropy

    International Nuclear Information System (INIS)

    Li, Rui; Wang, Jun

    2016-01-01

    A financial price model is developed based on the voter interacting system in this work. The Lempel–Ziv complexity is introduced to analyze the complex behaviors of the stock market. Some stock market stylized facts including fat tails, absence of autocorrelation and volatility clustering are investigated for the proposed price model firstly. Then the complexity of fluctuation behaviors of the real stock markets and the proposed price model are mainly explored by Lempel–Ziv complexity (LZC) analysis and multi-scale weighted-permutation entropy (MWPE) analysis. A series of LZC analyses of the returns and the absolute returns of daily closing prices and moving average prices are performed. Moreover, the complexity of the returns, the absolute returns and their corresponding intrinsic mode functions (IMFs) derived from the empirical mode decomposition (EMD) with MWPE is also investigated. The numerical empirical study shows similar statistical and complex behaviors between the proposed price model and the real stock markets, which exhibits that the proposed model is feasible to some extent. - Highlights: • A financial price dynamical model is developed based on the voter interacting system. • Lempel–Ziv complexity is the firstly applied to investigate the stock market dynamics system. • MWPE is employed to explore the complexity fluctuation behaviors of the stock market. • Empirical results show the feasibility of the proposed financial model.

  11. Lossless compression for 3D PET

    International Nuclear Information System (INIS)

    Macq, B.; Sibomana, M.; Coppens, A.; Bol, A.; Michel, C.; Baker, K.; Jones, B.

    1994-01-01

    A new adaptive scheme is proposed for the lossless compression of positron emission tomography (PET) sinogram data. The algorithm uses an adaptive differential pulse code modulator (ADPCM) followed by a universal variable length coder (UVLC). Contrasting with Lempel-Ziv (LZ), which operates on a whole sinogram, UVLC operates very efficiently on short data blocks. This is a major advantage for real-time implementation. The algorithms is adaptive and codes data after some on-line estimations of the statistics inside each block. Its efficiency is tested when coding dynamic and static scans from two PET scanners and reaches asymptotically the entropy limit for long frames. For very short 3D frames, the new algorithm is twice more efficient than LZ. Since an application specific integrated circuit (ASIC) implementing a similar UVLC scheme is available today, a similar one should be able to sustain PET data lossless compression and decompression at a rate of 27 MBytes/sec. This algorithm is consequently a good candidate for the next generation of lossless compression engine

  12. CLINICAL AND ELECTROPHYSIOLOGICAL EVALUATION AFTER INTRAVITREAL ZIV-AFLIBERCEPT FOR EXUDATIVE AGE-RELATED MACULAR DEGENERATION.

    Science.gov (United States)

    de Oliveira Dias, João Rafael; de Andrade, Gabriel Costa; Kniggendorf, Vinicius Ferreira; Novais, Eduardo Amorim; Maia, André; Meyer, Carsten; Watanabe, Sung Eun Song; Farah, Michel Eid; Rodrigues, Eduardo Büchele

    2017-08-01

    To evaluate the 6-month safety and efficacy of ziv-aflibercept intravitreal injections for treating exudative age-related macular degeneration. Fifteen patients with unilateral exudative age-related macular degeneration were enrolled. The best-corrected visual acuity was measured and spectral domain optical coherence tomography was performed at baseline and monthly. Full-field electroretinography and multifocal electroretinography were obtained at baseline and 4, 13, and 26 weeks after the first injection. All patients received three monthly intravitreal injections of ziv-aflibercept (1.25 mg) followed by as-needed treatment. Between baseline and 26 weeks, the mean logMAR best-corrected visual acuity improved (P = 0.00408) from 0.93 ± 0.4 (20/200) to 0.82 ± 0.5 (20/160) logarithm of the minimum angle of resolution, respectively; the central retinal thickness decreased significantly (P = 0.0007) from 490.3 ± 155.1 microns to 327.9 ± 101.5 microns; the mean total macular volume decreased significantly (P macular responses within the first central 15° showed significantly (P macular volume from baseline to 26 weeks. No retinal toxicity on full-field electroretinography or adverse events occurred during the follow-up period.

  13. A method for rapid similarity analysis of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Liu Na

    2006-11-01

    Full Text Available Abstract Background Owing to the rapid expansion of RNA structure databases in recent years, efficient methods for structure comparison are in demand for function prediction and evolutionary analysis. Usually, the similarity of RNA secondary structures is evaluated based on tree models and dynamic programming algorithms. We present here a new method for the similarity analysis of RNA secondary structures. Results Three sets of real data have been used as input for the example applications. Set I includes the structures from 5S rRNAs. Set II includes the secondary structures from RNase P and RNase MRP. Set III includes the structures from 16S rRNAs. Reasonable phylogenetic trees are derived for these three sets of data by using our method. Moreover, our program runs faster as compared to some existing ones. Conclusion The famous Lempel-Ziv algorithm can efficiently extract the information on repeated patterns encoded in RNA secondary structures and makes our method an alternative to analyze the similarity of RNA secondary structures. This method will also be useful to researchers who are interested in evolutionary analysis.

  14. Changes in brain network efficiency and working memory performance in aging.

    Science.gov (United States)

    Stanley, Matthew L; Simpson, Sean L; Dagenbach, Dale; Lyday, Robert G; Burdette, Jonathan H; Laurienti, Paul J

    2015-01-01

    Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.

  15. Efficiency of working memory: Theoretical concept and practical application

    Directory of Open Access Journals (Sweden)

    Lalović Dejan

    2008-01-01

    Full Text Available Efficiency of working memory is the concept which connects psychology of memory with different fields of cognitive, differential and applied psychology. In this paper, the history of interest for the assessment of the capacity of short-term memory is presented in brief, as well as the different methods used nowadays to assess the individual differences in the efficiency of working memory. What follows is the consideration of studies that indicate the existence of significant links between the efficiency of working memory and general intelligence, the ability of reasoning, personality variables, as well as some socio-psychological phenomena. Special emphasis is placed on the links between the efficiency of working memory and certain aspects of pedagogical practice: acquiring the skill of reading, learning arithmetic and shedding light on the cause of general failure in learning at school. What is also provided are the suggestions that, in the light of knowledge about the development and limitations of working memory at school age, can be useful for teaching practice.

  16. Data compression and genomes: a two-dimensional life domain map.

    Science.gov (United States)

    Menconi, Giulia; Benci, Vieri; Buiatti, Marcello

    2008-07-21

    We define the complexity of DNA sequences as the information content per nucleotide, calculated by means of some Lempel-Ziv data compression algorithm. It is possible to use the statistics of the complexity values of the functional regions of different complete genomes to distinguish among genomes of different domains of life (Archaea, Bacteria and Eukarya). We shall focus on the distribution function of the complexity of non-coding regions. We show that the three domains may be plotted in separate regions within the two-dimensional space where the axes are the skewness coefficient and the curtosis coefficient of the aforementioned distribution. Preliminary results on 15 genomes are introduced.

  17. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  18. Efficiency of working memory: Theoretical concept and practical application

    OpenAIRE

    Lalović Dejan

    2008-01-01

    Efficiency of working memory is the concept which connects psychology of memory with different fields of cognitive, differential and applied psychology. In this paper, the history of interest for the assessment of the capacity of short-term memory is presented in brief, as well as the different methods used nowadays to assess the individual differences in the efficiency of working memory. What follows is the consideration of studies that indicate the existence of significant links between the...

  19. Working memory capacity and redundant information processing efficiency.

    Science.gov (United States)

    Endres, Michael J; Houpt, Joseph W; Donkin, Chris; Finn, Peter R

    2015-01-01

    Working memory capacity (WMC) is typically measured by the amount of task-relevant information an individual can keep in mind while resisting distraction or interference from task-irrelevant information. The current research investigated the extent to which differences in WMC were associated with performance on a novel redundant memory probes (RMP) task that systematically varied the amount of to-be-remembered (targets) and to-be-ignored (distractor) information. The RMP task was designed to both facilitate and inhibit working memory search processes, as evidenced by differences in accuracy, response time, and Linear Ballistic Accumulator (LBA) model estimates of information processing efficiency. Participants (N = 170) completed standard intelligence tests and dual-span WMC tasks, along with the RMP task. As expected, accuracy, response-time, and LBA model results indicated memory search and retrieval processes were facilitated under redundant-target conditions, but also inhibited under mixed target/distractor and redundant-distractor conditions. Repeated measures analyses also indicated that, while individuals classified as high (n = 85) and low (n = 85) WMC did not differ in the magnitude of redundancy effects, groups did differ in the efficiency of memory search and retrieval processes overall. Results suggest that redundant information reliably facilitates and inhibits the efficiency or speed of working memory search, and these effects are independent of more general limits and individual differences in the capacity or space of working memory.

  20. The psychosis-like effects of Δ(9)-tetrahydrocannabinol are associated with increased cortical noise in healthy humans.

    Science.gov (United States)

    Cortes-Briones, Jose A; Cahill, John D; Skosnik, Patrick D; Mathalon, Daniel H; Williams, Ashley; Sewell, R Andrew; Roach, Brian J; Ford, Judith M; Ranganathan, Mohini; D'Souza, Deepak Cyril

    2015-12-01

    Drugs that induce psychosis may do so by increasing the level of task-irrelevant random neural activity or neural noise. Increased levels of neural noise have been demonstrated in psychotic disorders. We tested the hypothesis that neural noise could also be involved in the psychotomimetic effects of delta-9-tetrahydrocannabinol (Δ(9)-THC), the principal active constituent of cannabis. Neural noise was indexed by measuring the level of randomness in the electroencephalogram during the prestimulus baseline period of an oddball task using Lempel-Ziv complexity, a nonlinear measure of signal randomness. The acute, dose-related effects of Δ(9)-THC on Lempel-Ziv complexity and signal power were studied in humans (n = 24) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, .015 and .03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Δ(9)-THC increased neural noise in a dose-related manner. Furthermore, there was a strong positive relationship between neural noise and the psychosis-like positive and disorganization symptoms induced by Δ(9)-THC, which was independent of total signal power. Instead, there was no relationship between noise and negative-like symptoms. In addition, Δ(9)-THC reduced total signal power during both active drug conditions compared with placebo, but no relationship was detected between signal power and psychosis-like symptoms. At doses that produced psychosis-like effects, Δ(9)-THC increased neural noise in humans in a dose-dependent manner. Furthermore, increases in neural noise were related with increases in Δ(9)-THC-induced psychosis-like symptoms but not negative-like symptoms. These findings suggest that increases in neural noise may contribute to the psychotomimetic effects of Δ(9)-THC. Published by Elsevier Inc.

  1. Neural Markers of Responsiveness to the Environment in Human Sleep

    DEFF Research Database (Denmark)

    Andrillon, Thomas; Poulsen, Andreas Trier; Hansen, Lars Kai

    2016-01-01

    by Lempel-Ziv complexity (LZc), a measure shown to track arousal in sleep and anesthesia. Neural activity related to the semantic content of stimuli was conserved in light non-rapid eye movement (NREM) sleep. However, these processes were suppressed in deep NREM sleep and, importantly, also in REM sleep...... could be related to modulation in sleep depth. InREMsleep, however, this relationship was reversed.Wetherefore propose that, in REM sleep, endogenously generated processes compete with the processing of external input. Sleep can thus be seen as a self-regulated process in which external information can...... be processed in lighter stages but suppressed in deeper stages. Last, our results suggest drastically different gating mechanisms in NREM and REM sleep....

  2. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    Science.gov (United States)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  3. Improved virtual channel noise model for transform domain Wyner-Ziv video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Forchhammer, Søren

    2009-01-01

    Distributed video coding (DVC) has been proposed as a new video coding paradigm to deal with lossy source coding using side information to exploit the statistics at the decoder to reduce computational demands at the encoder. A virtual channel noise model is utilized at the decoder to estimate...... the noise distribution between the side information frame and the original frame. This is one of the most important aspects influencing the coding performance of DVC. Noise models with different granularity have been proposed. In this paper, an improved noise model for transform domain Wyner-Ziv video...... coding is proposed, which utilizes cross-band correlation to estimate the Laplacian parameters more accurately. Experimental results show that the proposed noise model can improve the rate-distortion (RD) performance....

  4. Efficient Four-Parametric with-and-without-Memory Iterative Methods Possessing High Efficiency Indices

    Directory of Open Access Journals (Sweden)

    Alicia Cordero

    2018-01-01

    Full Text Available We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156 and a very high efficiency index 15.51561/4≈1.9847. Some particular schemes of the with-memory family are also described. Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.

  5. MEMORY EFFICIENT SEMI-GLOBAL MATCHING

    Directory of Open Access Journals (Sweden)

    H. Hirschmüller

    2012-07-01

    Full Text Available Semi-GlobalMatching (SGM is a robust stereo method that has proven its usefulness in various applications ranging from aerial image matching to driver assistance systems. It supports pixelwise matching for maintaining sharp object boundaries and fine structures and can be implemented efficiently on different computation hardware. Furthermore, the method is not sensitive to the choice of parameters. The structure of the matching algorithm is well suited to be processed by highly paralleling hardware e.g. FPGAs and GPUs. The drawback of SGM is the temporary memory requirement that depends on the number of pixels and the disparity range. On the one hand this results in long idle times due to the bandwidth limitations of the external memory and on the other hand the capacity bounds are quickly reached. A full HD image with a size of 1920 × 1080 pixels and a disparity range of 512 pixels requires already 1 billion elements, which is at least several GB of RAM, depending on the element size, wich are not available at standard FPGA- and GPUboards. The novel memory efficient (eSGM method is an advancement in which the amount of temporary memory only depends on the number of pixels and not on the disparity range. This permits matching of huge images in one piece and reduces the requirements of the memory bandwidth for real-time mobile robotics. The feature comes at the cost of 50% more compute operations as compared to SGM. This overhead is compensated by the previously idle compute logic within the FPGA and the GPU and therefore results in an overall performance increase. We show that eSGM produces the same high quality disparity images as SGM and demonstrate its performance both on an aerial image pair with 142 MPixel and within a real-time mobile robotic application. We have implemented the new method on the CPU, GPU and FPGA.We conclude that eSGM is advantageous for a GPU implementation and essential for an implementation on our FPGA.

  6. A model of memory impairment in schizophrenia: cognitive and clinical factors associated with memory efficiency and memory errors.

    Science.gov (United States)

    Brébion, Gildas; Bressan, Rodrigo A; Ohlsen, Ruth I; David, Anthony S

    2013-12-01

    Memory impairments in patients with schizophrenia have been associated with various cognitive and clinical factors. Hallucinations have been more specifically associated with errors stemming from source monitoring failure. We conducted a broad investigation of verbal memory and visual memory as well as source memory functioning in a sample of patients with schizophrenia. Various memory measures were tallied, and we studied their associations with processing speed, working memory span, and positive, negative, and depressive symptoms. Superficial and deep memory processes were differentially associated with processing speed, working memory span, avolition, depression, and attention disorders. Auditory/verbal and visual hallucinations were differentially associated with specific types of source memory error. We integrated all the results into a revised version of a previously published model of memory functioning in schizophrenia. The model describes the factors that affect memory efficiency, as well as the cognitive underpinnings of hallucinations within the source monitoring framework. © 2013.

  7. A Proposal for Cardiac Arrhythmia Classification using Complexity Measures

    Directory of Open Access Journals (Sweden)

    AROTARITEI, D.

    2017-08-01

    Full Text Available Cardiovascular diseases are one of the major problems of humanity and therefore one of their component, arrhythmia detection and classification drawn an increased attention worldwide. The presence of randomness in discrete time series, like those arising in electrophysiology, is firmly connected with computational complexity measure. This connection can be used, for instance, in the analysis of RR-intervals of electrocardiographic (ECG signal, coded as binary string, to detect and classify arrhythmia. Our approach uses three algorithms (Lempel-Ziv, Sample Entropy and T-Code to compute the information complexity applied and a classification tree to detect 13 types of arrhythmia with encouraging results. To overcome the computational effort required for complexity calculus, a cloud computing solution with executable code deployment is also proposed.

  8. BLESS 2: accurate, memory-efficient and fast error correction method.

    Science.gov (United States)

    Heo, Yun; Ramachandran, Anand; Hwu, Wen-Mei; Ma, Jian; Chen, Deming

    2016-08-01

    The most important features of error correction tools for sequencing data are accuracy, memory efficiency and fast runtime. The previous version of BLESS was highly memory-efficient and accurate, but it was too slow to handle reads from large genomes. We have developed a new version of BLESS to improve runtime and accuracy while maintaining a small memory usage. The new version, called BLESS 2, has an error correction algorithm that is more accurate than BLESS, and the algorithm has been parallelized using hybrid MPI and OpenMP programming. BLESS 2 was compared with five top-performing tools, and it was found to be the fastest when it was executed on two computing nodes using MPI, with each node containing twelve cores. Also, BLESS 2 showed at least 11% higher gain while retaining the memory efficiency of the previous version for large genomes. Freely available at https://sourceforge.net/projects/bless-ec dchen@illinois.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Empirical and Statistical Evaluation of the Effectiveness of Four Lossless Data Compression Algorithms

    Directory of Open Access Journals (Sweden)

    N. A. Azeez

    2017-04-01

    Full Text Available Data compression is the process of reducing the size of a file to effectively reduce storage space and communication cost. The evolvement in technology and digital age has led to an unparalleled usage of digital files in this current decade. The usage of data has resulted to an increase in the amount of data being transmitted via various channels of data communication which has prompted the need to look into the current lossless data compression algorithms to check for their level of effectiveness so as to maximally reduce the bandwidth requirement in communication and transfer of data. Four lossless data compression algorithm: Lempel-Ziv Welch algorithm, Shannon-Fano algorithm, Adaptive Huffman algorithm and Run-Length encoding have been selected for implementation. The choice of these algorithms was based on their similarities, particularly in application areas. Their level of efficiency and effectiveness were evaluated using some set of predefined performance evaluation metrics namely compression ratio, compression factor, compression time, saving percentage, entropy and code efficiency. The algorithms implementation was done in the NetBeans Integrated Development Environment using Java as the programming language. Through the statistical analysis performed using Boxplot and ANOVA and comparison made on the four algo

  10. Nonlinear complexity behaviors of agent-based 3D Potts financial dynamics with random environments

    Science.gov (United States)

    Xing, Yani; Wang, Jun

    2018-02-01

    A new microscopic 3D Potts interaction financial price model is established in this work, to investigate the nonlinear complexity behaviors of stock markets. 3D Potts model, which extends the 2D Potts model to three-dimensional, is a cubic lattice model to explain the interaction behavior among the agents. In order to explore the complexity of real financial markets and the 3D Potts financial model, a new random coarse-grained Lempel-Ziv complexity is proposed to certain series, such as the price returns, the price volatilities, and the random time d-returns. Then the composite multiscale entropy (CMSE) method is applied to the intrinsic mode functions (IMFs) and the corresponding shuffled data to study the complexity behaviors. The empirical results indicate that the 3D financial model is feasible.

  11. Comparing memory-efficient genome assemblers on stand-alone and cloud infrastructures.

    Science.gov (United States)

    Kleftogiannis, Dimitrios; Kalnis, Panos; Bajic, Vladimir B

    2013-01-01

    A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.

  12. Comparing Memory-Efficient Genome Assemblers on Stand-Alone and Cloud Infrastructures

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2013-09-27

    A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.

  13. Adaptive Noise Model for Transform Domain Wyner-Ziv Video using Clustering of DCT Blocks

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Huang, Xin; Forchhammer, Søren

    2011-01-01

    The noise model is one of the most important aspects influencing the coding performance of Distributed Video Coding. This paper proposes a novel noise model for Transform Domain Wyner-Ziv (TDWZ) video coding by using clustering of DCT blocks. The clustering algorithm takes advantage of the residual...... modelling. Furthermore, the proposed cluster level noise model is adaptively combined with a coefficient level noise model in this paper to robustly improve coding performance of TDWZ video codec up to 1.24 dB (by Bjøntegaard metric) compared to the DISCOVER TDWZ video codec....... information of all frequency bands, iteratively classifies blocks into different categories and estimates the noise parameter in each category. The experimental results show that the coding performance of the proposed cluster level noise model is competitive with state-ofthe- art coefficient level noise...

  14. Trait anxiety and the neural efficiency of manipulation in working memory

    NARCIS (Netherlands)

    Basten, U.; Stelzel, C.; Fiebach, C.J.

    2012-01-01

    The present study investigates the effects of trait anxiety on the neural efficiency of working memory component functions (manipulation vs. maintenance) in the absence of threat-related stimuli. For the manipulation of affectively neutral verbal information held in working memory, high- and

  15. Multiscale multifractal DCCA and complexity behaviors of return intervals for Potts price model

    Science.gov (United States)

    Wang, Jie; Wang, Jun; Stanley, H. Eugene

    2018-02-01

    To investigate the characteristics of extreme events in financial markets and the corresponding return intervals among these events, we use a Potts dynamic system to construct a random financial time series model of the attitudes of market traders. We use multiscale multifractal detrended cross-correlation analysis (MM-DCCA) and Lempel-Ziv complexity (LZC) perform numerical research of the return intervals for two significant China's stock market indices and for the proposed model. The new MM-DCCA method is based on the Hurst surface and provides more interpretable cross-correlations of the dynamic mechanism between different return interval series. We scale the LZC method with different exponents to illustrate the complexity of return intervals in different scales. Empirical studies indicate that the proposed return intervals from the Potts system and the real stock market indices hold similar statistical properties.

  16. Efficient accesses of data structures using processing near memory

    Science.gov (United States)

    Jayasena, Nuwan S.; Zhang, Dong Ping; Diez, Paula Aguilera

    2018-05-22

    Systems, apparatuses, and methods for implementing efficient queues and other data structures. A queue may be shared among multiple processors and/or threads without using explicit software atomic instructions to coordinate access to the queue. System software may allocate an atomic queue and corresponding queue metadata in system memory and return, to the requesting thread, a handle referencing the queue metadata. Any number of threads may utilize the handle for accessing the atomic queue. The logic for ensuring the atomicity of accesses to the atomic queue may reside in a management unit in the memory controller coupled to the memory where the atomic queue is allocated.

  17. Memory Efficient VLSI Implementation of Real-Time Motion Detection System Using FPGA Platform

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2017-06-01

    Full Text Available Motion detection is the heart of a potentially complex automated video surveillance system, intended to be used as a standalone system. Therefore, in addition to being accurate and robust, a successful motion detection technique must also be economical in the use of computational resources on selected FPGA development platform. This is because many other complex algorithms of an automated video surveillance system also run on the same platform. Keeping this key requirement as main focus, a memory efficient VLSI architecture for real-time motion detection and its implementation on FPGA platform is presented in this paper. This is accomplished by proposing a new memory efficient motion detection scheme and designing its VLSI architecture. The complete real-time motion detection system using the proposed memory efficient architecture along with proper input/output interfaces is implemented on Xilinx ML510 (Virtex-5 FX130T FPGA development platform and is capable of operating at 154.55 MHz clock frequency. Memory requirement of the proposed architecture is reduced by 41% compared to the standard clustering based motion detection architecture. The new memory efficient system robustly and automatically detects motion in real-world scenarios (both for the static backgrounds and the pseudo-stationary backgrounds in real-time for standard PAL (720 × 576 size color video.

  18. Memory-Efficient Analysis of Dense Functional Connectomes.

    Science.gov (United States)

    Loewe, Kristian; Donohue, Sarah E; Schoenfeld, Mircea A; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to

  19. Efficiency of Energy Harvesting in Ni-Mn-Ga Shape Memory Alloys

    Science.gov (United States)

    Lindquist, Paul; Hobza, Tony; Patrick, Charles; Müllner, Peter

    2018-03-01

    Many researchers have reported on the voltage and power generated while energy harvesting using Ni-Mn-Ga shape memory alloys; few researchers report on the power conversion efficiency of energy harvesting. We measured the magneto-mechanical behavior and energy harvesting of Ni-Mn-Ga shape memory alloys to quantify the efficiency of energy harvesting using the inverse magneto-plastic effect. At low frequencies, less than 150 Hz, the power conversion efficiency is less than 0.1%. Power conversion efficiency increases with (i) increasing actuation frequency, (ii) increasing actuation stroke, and (iii) decreasing twinning stress. Extrapolating the results of low-frequency experiments to the kHz actuation regime yields a power conversion factor of about 20% for 3 kHz actuation frequency, 7% actuation strain, and 0.05 MPa twinning stress.

  20. Efficient external memory structures for range-aggregate queries

    DEFF Research Database (Denmark)

    Agarwal, P.K.; Yang, J.; Arge, L.

    2013-01-01

    We present external memory data structures for efficiently answering range-aggregate queries. The range-aggregate problem is defined as follows: Given a set of weighted points in Rd, compute the aggregate of the weights of the points that lie inside a d-dimensional orthogonal query rectangle. The...

  1. Memory-efficient analysis of dense functional connectomes

    Directory of Open Access Journals (Sweden)

    Kristian Loewe

    2016-11-01

    Full Text Available The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software are compared with regard to their computational efficiency in terms of memory requirements and computation time. The matrix implementation based on on-demand computations has very low memory requirements thus enabling

  2. How phonological awareness mediates the relation between working memory and word reading efficiency in children with dyslexia.

    Science.gov (United States)

    Knoop-van Campen, Carolien A N; Segers, Eliane; Verhoeven, Ludo

    2018-05-01

    This study examined the relation between working memory, phonological awareness, and word reading efficiency in fourth-grade children with dyslexia. To test whether the relation between phonological awareness and word reading efficiency differed for children with dyslexia versus typically developing children, we assessed phonological awareness and word reading efficiency in 50 children with dyslexia (aged 9;10, 35 boys) and 613 typically developing children (aged 9;5, 279 boys). Phonological awareness was found to be associated with word reading efficiency, similar for children with dyslexia and typically developing children. To find out whether the relation between working memory and word reading efficiency in the group with dyslexia could be explained by phonological awareness, the children with dyslexia were also tested on working memory. Results of a mediation analysis showed a significant indirect effect of working memory on word reading efficiency via phonological awareness. Working memory predicted reading efficiency, via its relation with phonological awareness in children with dyslexia. This indicates that working memory is necessary for word reading efficiency via its impact on phonological awareness and that phonological awareness continues to be important for word reading efficiency in older children with dyslexia. © 2018 The Authors Dyslexia Published by John Wiley & Sons Ltd.

  3. Memory Efficient Data Structures for Explicit Verification of Timed Systems

    DEFF Research Database (Denmark)

    Taankvist, Jakob Haahr; Srba, Jiri; Larsen, Kim Guldstrand

    2014-01-01

    Timed analysis of real-time systems can be performed using continuous (symbolic) or discrete (explicit) techniques. The explicit state-space exploration can be considerably faster for models with moderately small constants, however, at the expense of high memory consumption. In the setting of timed......-arc Petri nets, we explore new data structures for lowering the used memory: PTries for efficient storing of configurations and time darts for semi-symbolic description of the state-space. Both methods are implemented as a part of the tool TAPAAL and the experiments document at least one order of magnitude...... of memory savings while preserving comparable verification times....

  4. Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures

    Science.gov (United States)

    2017-10-04

    to the memory architectures of CPUs and GPUs to obtain good performance and result in good memory performance using cache management. These methods ...Accomplishments: The PI and students has developed new methods for path and ray tracing and their Report Date: 14-Oct-2017 INVESTIGATOR(S): Phone...The efficiency of our method makes it a good candidate for forming hybrid schemes with wave-based models. One possibility is to couple the ray curve

  5. Direct migration motion estimation and mode decision to decoder for a low-complexity decoder Wyner-Ziv video coding

    Science.gov (United States)

    Lei, Ted Chih-Wei; Tseng, Fan-Shuo

    2017-07-01

    This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.

  6. Characteristics analysis of acupuncture electroencephalograph based on mutual information Lempel—Ziv complexity

    International Nuclear Information System (INIS)

    Luo Xi-Liu; Wang Jiang; Deng Bin; Wei Xi-Le; Bian Hong-Rui; Han Chun-Xiao

    2012-01-01

    As a convenient approach to the characterization of cerebral cortex electrical information, electroencephalograph (EEG) has potential clinical application in monitoring the acupuncture effects. In this paper, a method composed of the mutual information method and Lempel—Ziv complexity method (MILZC) is proposed to investigate the effects of acupuncture on the complexity of information exchanges between different brain regions based on EEGs. In the experiments, eight subjects are manually acupunctured at ‘Zusanli’ acupuncture point (ST-36) with different frequencies (i.e., 50, 100, 150, and 200 times/min) and the EEGs are recorded simultaneously. First, MILZC values are compared in general. Then average brain connections are used to quantify the effectiveness of acupuncture under the above four frequencies. Finally, significance index P values are used to study the spatiality of the acupuncture effect on the brain. Three main findings are obtained: (i) MILZC values increase during the acupuncture; (ii) manual acupunctures (MAs) with 100 times/min and 150 times/min are more effective than with 50 times/min and 200 times/min; (iii) contralateral hemisphere activation is more prominent than ipsilateral hemisphere's. All these findings suggest that acupuncture contributes to the increase of brain information exchange complexity and the MILZC method can successfully describe these changes. (interdisciplinary physics and related areas of science and technology)

  7. The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-07-01

    Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.

  8. Worst-case efficient external-memory priority queues

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Katajainen, Jyrki

    1998-01-01

    A priority queue Q is a data structure that maintains a collection of elements, each element having an associated priority drawn from a totally ordered universe, under the operations Insert, which inserts an element into Q, and DeleteMin, which deletes an element with the minimum priority from Q....... In this paper a priority-queue implementation is given which is efficient with respect to the number of block transfers or I/Os performed between the internal and external memories of a computer. Let B and M denote the respective capacity of a block and the internal memory measured in elements. The developed...... data structure handles any intermixed sequence of Insert and DeleteMin operations such that in every disjoint interval of B consecutive priorityqueue operations at most clogM/B N/M I/Os are performed, for some positive constant c. These I/Os are divided evenly among the operations: if B ≥ clogM/B N...

  9. Characterisation of the Effects of Sleep Deprivation on the Electroencephalogram Using Permutation Lempel–Ziv Complexity, a Non-Linear Analysis Tool

    Directory of Open Access Journals (Sweden)

    Pinar Deniz Tosun

    2017-12-01

    Full Text Available Specific patterns of brain activity during sleep and waking are recorded in the electroencephalogram (EEG. Time-frequency analysis methods have been widely used to analyse the EEG and identified characteristic oscillations for each vigilance state (VS, i.e., wakefulness, rapid-eye movement (REM and non-rapid-eye movement (NREM sleep. However, other aspects such as change of patterns associated with brain dynamics may not be captured unless a non-linear-based analysis method is used. In this pilot study, Permutation Lempel–Ziv complexity (PLZC, a novel symbolic dynamics analysis method, was used to characterise the changes in the EEG in sleep and wakefulness during baseline and recovery from sleep deprivation (SD. The results obtained with PLZC were contrasted with a related non-linear method, Lempel–Ziv complexity (LZC. Both measure the emergence of new patterns. However, LZC is dependent on the absolute amplitude of the EEG, while PLZC is only dependent on the relative amplitude due to symbolisation procedure and thus, more resistant to noise. We showed that PLZC discriminates activated brain states associated with wakefulness and REM sleep, which both displayed higher complexity, compared to NREM sleep. Additionally, significantly lower PLZC values were measured in NREM sleep during the recovery period following SD compared to baseline, suggesting a reduced emergence of new activity patterns in the EEG. These findings were validated using PLZC on surrogate data. By contrast, LZC was merely reflecting changes in the spectral composition of the EEG. Overall, this study implies that PLZC is a robust non-linear complexity measure, which is not dependent on amplitude variations in the signal, and which may be useful to further assess EEG alterations induced by environmental or pharmacological manipulations.

  10. Cryptanalysis of a family of 1D unimodal maps

    Science.gov (United States)

    Md Said, Mohamad Rushdan; Hina, Aliyu Danladi; Banerjee, Santo

    2017-07-01

    In this paper, we proposed a topologically conjugate map, equivalent to the well known logistic map. This constructed map is defined on the integer domain [0, 2n) with a view to be used as a random number generator (RNG) based on an integer domain as is the required in classical cryptography. The maps were found to have a one to one correspondence between points in their respective defining intervals defined on an n-bits precision. The dynamics of the proposed map similar with that of the logistic map, in terms of the Lyapunov exponents with the control parameter. This similarity between the curves indicates topological conjugacy between the maps. With a view to be applied in cryptography as a Pseudo-Random number generator (PRNG), the complexity of the constructed map as a source of randomness is determined using both the permutation entropy (PE) and the Lempel-Ziv (LZ-76) complexity measures, and the results are compared with numerical simulations.

  11. Exploring Human Activity Patterns Using Taxicab Static Points

    Directory of Open Access Journals (Sweden)

    Bin Jiang

    2012-06-01

    Full Text Available This paper explores the patterns of human activities within a geographical space by adopting the taxicab static points which refer to the locations with zero speed along the tracking trajectory. We report the findings from both aggregated and individual aspects. Results from the aggregated level indicate the following: (1 Human activities exhibit an obvious regularity in time, for example, there is a burst of activity during weekend nights and a lull during the week. (2 They show a remarkable spatial drifting pattern, which strengthens our understanding of the activities in any given place. (3 Activities are heterogeneous in space irrespective of their drifting with time. These aggregated results not only help in city planning, but also facilitate traffic control and management. On the other hand, investigations on an individual level suggest that (4 activities witnessed by one taxicab will have different temporal regularity to another, and (5 each regularity implies a high level of prediction with low entropy by applying the Lempel-Ziv algorithm.

  12. Efficiency Enhancement in DC Pulsed Gas Discharge Memory Panel

    Science.gov (United States)

    Okamoto, Yukio

    1983-01-01

    Much improvement in the luminous efficiency of a dc pulsed gas discharge memory panel for color TV display was achieved by shortening the sustaining pulse duration. High energy electrons can thus be produced in the pulsed discharge with fast rise times. Calculated optimum value of E/P in a Xe gas discharge is 7-8 V/cm\\cdotTorr.

  13. Intrinsic retrieval efficiency for quantum memories: A three-dimensional theory of light interaction with an atomic ensemble

    Science.gov (United States)

    Gujarati, Tanvi P.; Wu, Yukai; Duan, Luming

    2018-03-01

    Duan-Lukin-Cirac-Zoller quantum repeater protocol, which was proposed to realize long distance quantum communication, requires usage of quantum memories. Atomic ensembles interacting with optical beams based on off-resonant Raman scattering serve as convenient on-demand quantum memories. Here, a complete free space, three-dimensional theory of the associated read and write process for this quantum memory is worked out with the aim of understanding intrinsic retrieval efficiency. We develop a formalism to calculate the transverse mode structure for the signal and the idler photons and use the formalism to study the intrinsic retrieval efficiency under various configurations. The effects of atomic density fluctuations and atomic motion are incorporated by numerically simulating this system for a range of realistic experimental parameters. We obtain results that describe the variation in the intrinsic retrieval efficiency as a function of the memory storage time for skewed beam configuration at a finite temperature, which provides valuable information for optimization of the retrieval efficiency in experiments.

  14. Simple and efficient absorption filter for single photons from a cold atom quantum memory.

    Science.gov (United States)

    Stack, Daniel T; Lee, Patricia J; Quraishi, Qudsia

    2015-03-09

    The ability to filter unwanted light signals is critical to the operation of quantum memories based on neutral atom ensembles. Here we demonstrate an efficient frequency filter which uses a vapor cell filled with (85)Rb and a buffer gas to attenuate both residual laser light and noise photons by nearly two orders of magnitude with little loss to the single photons associated with our cold (87)Rb quantum memory. This simple, passive filter provides an additional 18 dB attenuation of our pump laser and erroneous spontaneous emissions for every 1 dB loss of the single photon signal. We show that the addition of a frequency filter increases the non-classical correlations and the retrieval efficiency of our quantum memory by ≈ 35%.

  15. Memory Efficient PCA Methods for Large Group ICA.

    Science.gov (United States)

    Rachakonda, Srinivas; Silva, Rogers F; Liu, Jingyu; Calhoun, Vince D

    2016-01-01

    Principal component analysis (PCA) is widely used for data reduction in group independent component analysis (ICA) of fMRI data. Commonly, group-level PCA of temporally concatenated datasets is computed prior to ICA of the group principal components. This work focuses on reducing very high dimensional temporally concatenated datasets into its group PCA space. Existing randomized PCA methods can determine the PCA subspace with minimal memory requirements and, thus, are ideal for solving large PCA problems. Since the number of dataloads is not typically optimized, we extend one of these methods to compute PCA of very large datasets with a minimal number of dataloads. This method is coined multi power iteration (MPOWIT). The key idea behind MPOWIT is to estimate a subspace larger than the desired one, while checking for convergence of only the smaller subset of interest. The number of iterations is reduced considerably (as well as the number of dataloads), accelerating convergence without loss of accuracy. More importantly, in the proposed implementation of MPOWIT, the memory required for successful recovery of the group principal components becomes independent of the number of subjects analyzed. Highly efficient subsampled eigenvalue decomposition techniques are also introduced, furnishing excellent PCA subspace approximations that can be used for intelligent initialization of randomized methods such as MPOWIT. Together, these developments enable efficient estimation of accurate principal components, as we illustrate by solving a 1600-subject group-level PCA of fMRI with standard acquisition parameters, on a regular desktop computer with only 4 GB RAM, in just a few hours. MPOWIT is also highly scalable and could realistically solve group-level PCA of fMRI on thousands of subjects, or more, using standard hardware, limited only by time, not memory. Also, the MPOWIT algorithm is highly parallelizable, which would enable fast, distributed implementations ideal for big

  16. Memory efficient PCA methods for large group ICA

    Directory of Open Access Journals (Sweden)

    Srinivas eRachakonda

    2016-02-01

    Full Text Available Principal component analysis (PCA is widely used for data reduction in group independent component analysis (ICA of fMRI data. Commonly, group-level PCA of temporally concatenated datasets is computed prior to ICA of the group principal components. This work focuses on reducing very high dimensional temporally concatenated datasets into its group PCA space. Existing randomized PCA methods can determine the PCA subspace with minimal memory requirements and, thus, are ideal for solving large PCA problems. Since the number of dataloads is not typically optimized, we extend one of these methods to compute PCA of very large datasets with a minimal number of dataloads. This method is coined multi power iteration (MPOWIT. The key idea behind MPOWIT is to estimate a subspace larger than the desired one, while checking for convergence of only the smaller subset of interest. The number of iterations is reduced considerably (as well as the number of dataloads, accelerating convergence without loss of accuracy. More importantly, in the proposed implementation of MPOWIT, the memory required for successful recovery of the group principal components becomes independent of the number of subjects analyzed. Highly efficient subsampled eigenvalue decomposition techniques are also introduced, furnishing excellent PCA subspace approximations that can be used for intelligent initialization of randomized methods such as MPOWIT. Together, these developments enable efficient estimation of accurate principal components, as we illustrate by solving a 1600-subject group-level PCA of fMRI with standard acquisition parameters, on a regular desktop computer with only 4GB RAM, in just a few hours. MPOWIT is also highly scalable and could realistically solve group-level PCA of fMRI on thousands of subjects, or more, using standard hardware, limited only by time, not memory. Also, the MPOWIT algorithm is highly parallelizable, which would enable fast, distributed implementations

  17. Fast and Memory-Efficient Key Recovery in Side-Channel Attacks

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Kizhvatov, Ilya; Manzoor, Kamran

    2016-01-01

    , this algorithm outputs the full combined keys in the optimal order – from more likely to less likely ones. OKEA uses plenty of memory by its nature though, which limits its practical efficiency. Especially in the cases where the side-channel traces are noisy, the memory and running time requirements to find...... the right key can be prohibitively high. To tackle this problem, we propose a score-based key enumeration algorithm (SKEA). Though it is suboptimal in terms of the output order of candidate combined keys, SKEA’s memory and running time requirements are more practical than those of OKEA. We verify...... the advantage at the example of a DPA attack on an 8-bit embedded software implementation of AES-128. We vary the number of traces available to the adversary and report a significant increase in the success rate of the key recovery due to SKEA when compared to OKEA, within practical limitations on time...

  18. Computing with memory for energy-efficient robust systems

    CERN Document Server

    Paul, Somnath

    2013-01-01

    This book analyzes energy and reliability as major challenges faced by designers of computing frameworks in the nanometer technology regime.  The authors describe the existing solutions to address these challenges and then reveal a new reconfigurable computing platform, which leverages high-density nanoscale memory for both data storage and computation to maximize the energy-efficiency and reliability. The energy and reliability benefits of this new paradigm are illustrated and the design challenges are discussed. Various hardware and software aspects of this exciting computing paradigm are de

  19. THE EFFECTS OF BANKRUPTCY ON THE PREDICTABILITY OF PRICE FORMATION PROCESSES ON WARSAW’S STOCK MARKET

    Directory of Open Access Journals (Sweden)

    Paweł Fiedor

    2016-07-01

    Full Text Available In this study we investigate how bankruptcy affects the market behaviour of prices of stocks on Warsaw’s Stock Exchange. As the behaviour of prices can be seen in a myriad of ways, we investigate a particular aspect of this behaviour, namely the predictability of these price formation processes. We approximate their predictability as the structural complexity of logarithmic returns. This method of analysing predictability of price formation processes using information theory follows closely the mathematical definition of predictability, and is equal to the degree to which redundancy is present in the time series describing stock returns. We use Shannon’s entropy rate (approximating Kolmogorov-Sinai entropy to measure this redundancy, and estimate it using the Lempel-Ziv algorithm, computing it with a running window approach over the entire price history of 50 companies listed on the Warsaw market which have gone bankrupt in the last few years. This enables us not only to compare the differences between predictability of price formation processes before and after their filing for bankruptcy, but also to compare the changes in predictability over time, as well as divided into different categories of companies and bankruptcies. There exists a large body of research analysing the efficiency of the whole market and the predictability of price changes enlarge, but only a few detailed studies analysing the influence of external stimulion the efficiency of price formation processes. This study fills this gap in the knowledge of financial markets, and their response to extreme external events.

  20. Efficiency at rest: magnetoencephalographic resting-state connectivity and individual differences in verbal working memory.

    Science.gov (United States)

    del Río, David; Cuesta, Pablo; Bajo, Ricardo; García-Pacios, Javier; López-Higes, Ramón; del-Pozo, Francisco; Maestú, Fernando

    2012-11-01

    Inter-individual differences in cognitive performance are based on an efficient use of task-related brain resources. However, little is known yet on how these differences might be reflected on resting-state brain networks. Here we used Magnetoencephalography resting-state recordings to assess the relationship between a behavioral measurement of verbal working memory and functional connectivity as measured through Mutual Information. We studied theta (4-8 Hz), low alpha (8-10 Hz), high alpha (10-13 Hz), low beta (13-18 Hz) and high beta (18-30 Hz) frequency bands. A higher verbal working memory capacity was associated with a lower mutual information in the low alpha band, prominently among right-anterior and left-lateral sensors. The results suggest that an efficient brain organization in the domain of verbal working memory might be related to a lower resting-state functional connectivity across large-scale brain networks possibly involving right prefrontal and left perisylvian areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. A Memory Efficient Network Encryption Scheme

    Science.gov (United States)

    El-Fotouh, Mohamed Abo; Diepold, Klaus

    In this paper, we studied the two widely used encryption schemes in network applications. Shortcomings have been found in both schemes, as these schemes consume either more memory to gain high throughput or low memory with low throughput. The need has aroused for a scheme that has low memory requirements and in the same time possesses high speed, as the number of the internet users increases each day. We used the SSM model [1], to construct an encryption scheme based on the AES. The proposed scheme possesses high throughput together with low memory requirements.

  2. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency.

    Science.gov (United States)

    Drummond, Sean P A; Anderson, Dane E; Straus, Laura D; Vogel, Edward K; Perez, Veronica B

    2012-01-01

    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers).

  3. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency.

    Directory of Open Access Journals (Sweden)

    Sean P A Drummond

    Full Text Available Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1 in a well-rested condition (following 6 nights of 9 hours in bed/night; and 2 following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency. Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care

  4. A mathematical model of capacious and efficient memory that survives trauma

    Science.gov (United States)

    Srivastava, Vipin; Edwards, S. F.

    2004-02-01

    The brain's memory system can store without any apparent constraint, it recalls stored information efficiently and it is robust against lesion. Existing models of memory do not fully account for all these features. The model due to Hopfield (Proc. Natl. Acad. Sci. USA 79 (1982) 2554) based on Hebbian learning (The Organization of Behaviour, Wiley, New York, 1949) shows an early saturation of memory with the retrieval from memory becoming slow and unreliable before collapsing at this limit. Our hypothesis (Physica A 276 (2000) 352) that the brain might store orthogonalized information improved the situation in many ways but was still constrained in that the information to be stored had to be linearly independent, i.e., signals that could be expressed as linear combinations of others had to be excluded. Here we present a model that attempts to address the problem quite comprehensively in the background of the above attributes of the brain. We demonstrate that if the brain devolves incoming signals in analogy with Fourier analysis, the noise created by interference of stored signals diminishes systematically (which yields prompt retrieval) and most importantly it can withstand partial damages to the brain.

  5. Intelligence as the efficiency of cue-driven retrieval from secondary memory.

    Science.gov (United States)

    Liesefeld, Heinrich René; Hoffmann, Eugenia; Wentura, Dirk

    2016-01-01

    Complex-span (working-memory-capacity) tasks are among the most successful predictors of intelligence. One important contributor to this relationship is the ability to efficiently employ cues for the retrieval from secondary memory. Presumably, intelligent individuals can considerably restrict their memory search sets by using such cues and can thereby improve recall performance. We here test this assumption by experimentally manipulating the validity of retrieval cues. When memoranda are drawn from the same semantic category on two successive trials of a verbal complex-span task, the category is a very strong retrieval cue on its first occurrence (strong-cue trial) but loses some of its validity on its second occurrence (weak-cue trial). If intelligent individuals make better use of semantic categories as retrieval cues, their recall accuracy suffers more from this loss of cue validity. Accordingly, our results show that less variance in intelligence is explained by recall accuracy on weak-cue compared with strong-cue trials.

  6. Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin

    Science.gov (United States)

    Schartner, Michael M.; Carhart-Harris, Robin L.; Barrett, Adam B.; Seth, Anil K.; Muthukumaraswamy, Suresh D.

    2017-04-01

    What is the level of consciousness of the psychedelic state? Empirically, measures of neural signal diversity such as entropy and Lempel-Ziv (LZ) complexity score higher for wakeful rest than for states with lower conscious level like propofol-induced anesthesia. Here we compute these measures for spontaneous magnetoencephalographic (MEG) signals from humans during altered states of consciousness induced by three psychedelic substances: psilocybin, ketamine and LSD. For all three, we find reliably higher spontaneous signal diversity, even when controlling for spectral changes. This increase is most pronounced for the single-channel LZ complexity measure, and hence for temporal, as opposed to spatial, signal diversity. We also uncover selective correlations between changes in signal diversity and phenomenological reports of the intensity of psychedelic experience. This is the first time that these measures have been applied to the psychedelic state and, crucially, that they have yielded values exceeding those of normal waking consciousness. These findings suggest that the sustained occurrence of psychedelic phenomenology constitutes an elevated level of consciousness - as measured by neural signal diversity.

  7. Electroencephalogram complexity analysis in children with attention-deficit/hyperactivity disorder during a visual cognitive task.

    Science.gov (United States)

    Zarafshan, Hadi; Khaleghi, Ali; Mohammadi, Mohammad Reza; Moeini, Mahdi; Malmir, Nastaran

    2016-01-01

    The aim of this study was to investigate electroencephalogram (EEG) dynamics using complexity analysis in children with attention-deficit/hyperactivity disorder (ADHD) compared with healthy control children when performing a cognitive task. Thirty 7-12-year-old children meeting Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) criteria for ADHD and 30 healthy control children underwent an EEG evaluation during a cognitive task, and Lempel-Ziv complexity (LZC) values were computed. There were no significant differences between ADHD and control groups on age and gender. The mean LZC of the ADHD children was significantly larger than healthy children over the right anterior and right posterior regions during the cognitive performance. In the ADHD group, complexity of the right hemisphere was higher than that of the left hemisphere, but the complexity of the left hemisphere was higher than that of the right hemisphere in the normal group. Although fronto-striatal dysfunction is considered conclusive evidence for the pathophysiology of ADHD, our arithmetic mental task has provided evidence of structural and functional changes in the posterior regions and probably cerebellum in ADHD.

  8. Modeling and complexity of stochastic interacting Lévy type financial price dynamics

    Science.gov (United States)

    Wang, Yiduan; Zheng, Shenzhou; Zhang, Wei; Wang, Jun; Wang, Guochao

    2018-06-01

    In attempt to reproduce and investigate nonlinear dynamics of security markets, a novel nonlinear random interacting price dynamics, which is considered as a Lévy type process, is developed and investigated by the combination of lattice oriented percolation and Potts dynamics, which concerns with the instinctive random fluctuation and the fluctuation caused by the spread of the investors' trading attitudes, respectively. To better understand the fluctuation complexity properties of the proposed model, the complexity analyses of random logarithmic price return and corresponding volatility series are preformed, including power-law distribution, Lempel-Ziv complexity and fractional sample entropy. In order to verify the rationality of the proposed model, the corresponding studies of actual security market datasets are also implemented for comparison. The empirical results reveal that this financial price model can reproduce some important complexity features of actual security markets to some extent. The complexity of returns decreases with the increase of parameters γ1 and β respectively, furthermore, the volatility series exhibit lower complexity than the return series

  9. New approach of financial volatility duration dynamics by stochastic finite-range interacting voter system.

    Science.gov (United States)

    Wang, Guochao; Wang, Jun

    2017-01-01

    We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.

  10. Generative complexity of Gray-Scott model

    Science.gov (United States)

    Adamatzky, Andrew

    2018-03-01

    In the Gray-Scott reaction-diffusion system one reactant is constantly fed in the system, another reactant is reproduced by consuming the supplied reactant and also converted to an inert product. The rate of feeding one reactant in the system and the rate of removing another reactant from the system determine configurations of concentration profiles: stripes, spots, waves. We calculate the generative complexity-a morphological complexity of concentration profiles grown from a point-wise perturbation of the medium-of the Gray-Scott system for a range of the feeding and removal rates. The morphological complexity is evaluated using Shannon entropy, Simpson diversity, approximation of Lempel-Ziv complexity, and expressivity (Shannon entropy divided by space-filling). We analyse behaviour of the systems with highest values of the generative morphological complexity and show that the Gray-Scott systems expressing highest levels of the complexity are composed of the wave-fragments (similar to wave-fragments in sub-excitable media) and travelling localisations (similar to quasi-dissipative solitons and gliders in Conway's Game of Life).

  11. Automatic evaluation of intrapartum fetal heart rate recordings: a comprehensive analysis of useful features.

    Science.gov (United States)

    Chudáček, V; Spilka, J; Janků, P; Koucký, M; Lhotská, L; Huptych, M

    2011-08-01

    Cardiotocography is the monitoring of fetal heart rate (FHR) and uterine contractions (TOCO), used routinely since the 1960s by obstetricians to detect fetal hypoxia. The evaluation of the FHR in clinical settings is based on an evaluation of macroscopic morphological features and so far has managed to avoid adopting any achievements from the HRV research field. In this work, most of the features utilized for FHR characterization, including FIGO, HRV, nonlinear, wavelet, and time and frequency domain features, are investigated and assessed based on their statistical significance in the task of distinguishing the FHR into three FIGO classes. We assess the features on a large data set (552 records) and unlike in other published papers we use three-class expert evaluation of the records instead of the pH values. We conclude the paper by presenting the best uncorrelated features and their individual rank of importance according to the meta-analysis of three different ranking methods. The number of accelerations and decelerations, interval index, as well as Lempel-Ziv complexity and Higuchi's fractal dimension are among the top five features.

  12. Assessment of features for automatic CTG analysis based on expert annotation.

    Science.gov (United States)

    Chudácek, Vacláv; Spilka, Jirí; Lhotská, Lenka; Janku, Petr; Koucký, Michal; Huptych, Michal; Bursa, Miroslav

    2011-01-01

    Cardiotocography (CTG) is the monitoring of fetal heart rate (FHR) and uterine contractions (TOCO) since 1960's used routinely by obstetricians to detect fetal hypoxia. The evaluation of the FHR in clinical settings is based on an evaluation of macroscopic morphological features and so far has managed to avoid adopting any achievements from the HRV research field. In this work, most of the ever-used features utilized for FHR characterization, including FIGO, HRV, nonlinear, wavelet, and time and frequency domain features, are investigated and the features are assessed based on their statistical significance in the task of distinguishing the FHR into three FIGO classes. Annotation derived from the panel of experts instead of the commonly utilized pH values was used for evaluation of the features on a large data set (552 records). We conclude the paper by presenting the best uncorrelated features and their individual rank of importance according to the meta-analysis of three different ranking methods. Number of acceleration and deceleration, interval index, as well as Lempel-Ziv complexity and Higuchi's fractal dimension are among the top five features.

  13. Is less really more: Does a prefrontal efficiency genotype actually confer better performance when working memory becomes difficult?

    Science.gov (United States)

    Ihne, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E

    2016-01-01

    Perhaps the most widely studied effect to emerge from the combination of neuroimaging and human genetics is the association of the COMT-Val(108/158)Met polymorphism with prefrontal activity during working memory. COMT-Val is a putative risk factor in schizophrenia, which is characterized by disordered prefrontal function. Work in healthy populations has sought to characterize mechanisms by which the valine (Val) allele may lead to disadvantaged prefrontal cognition. Lower activity in methionine (Met) carriers has been interpreted as advantageous neural efficiency. Notably, however, studies reporting COMT effects on neural efficiency have generally not reported working memory performance effects. Those studies have employed relatively low/easy working memory loads. Higher loads are known to elicit individual differences in working memory performance that are not visible at lower loads. If COMT-Met confers greater neural efficiency when working memory is easy, a reasonable prediction is that Met carriers will be better able to cope with increasing demand for neural resources when working memory becomes difficult. To our knowledge, this prediction has thus far gone untested. Here, we tested performance on three working memory tasks. Performance on each task was measured at multiple levels of load/difficulty, including loads more demanding than those used in prior studies. We found no genotype-by-load interactions or main effects of COMT genotype on accuracy or reaction time. Indeed, even testing for performance differences at each load of each task failed to find a single significant effect of COMT genotype. Thus, even if COMT genotype has the effects on prefrontal efficiency that prior work has suggested, such effects may not directly impact high-load working memory ability. The present findings accord with previous evidence that behavioral effects of COMT are small or nonexistent and, more broadly, with a growing consensus that substantial effects on phenotype will

  14. Working memory load predicts visual search efficiency: Evidence from a novel pupillary response paradigm.

    Science.gov (United States)

    Attar, Nada; Schneps, Matthew H; Pomplun, Marc

    2016-10-01

    An observer's pupil dilates and constricts in response to variables such as ambient and focal luminance, cognitive effort, the emotional stimulus content, and working memory load. The pupil's memory load response is of particular interest, as it might be used for estimating observers' memory load while they are performing a complex task, without adding an interruptive and confounding memory test to the protocol. One important task in which working memory's involvement is still being debated is visual search, and indeed a previous experiment by Porter, Troscianko, and Gilchrist (Quarterly Journal of Experimental Psychology, 60, 211-229, 2007) analyzed observers' pupil sizes during search to study this issue. These authors found that pupil size increased over the course of the search, and they attributed this finding to accumulating working memory load. However, since the pupil response is slow and does not depend on memory load alone, this conclusion is rather speculative. In the present study, we estimated working memory load in visual search during the presentation of intermittent fixation screens, thought to induce a low, stable level of arousal and cognitive effort. Using standard visual search and control tasks, we showed that this paradigm reduces the influence of non-memory-related factors on pupil size. Furthermore, we found an early increase in working memory load to be associated with more efficient search, indicating a significant role of working memory in the search process.

  15. An abstraction layer for efficient memory management of tabulated chemistry and flamelet solutions

    Science.gov (United States)

    Weise, Steffen; Messig, Danny; Meyer, Bernd; Hasse, Christian

    2013-06-01

    A large number of methods for simulating reactive flows exist, some of them, for example, directly use detailed chemical kinetics or use precomputed and tabulated flame solutions. Both approaches couple the research fields computational fluid dynamics and chemistry tightly together using either an online or offline approach to solve the chemistry domain. The offline approach usually involves a method of generating databases or so-called Lookup-Tables (LUTs). As these LUTs are extended to not only contain material properties but interactions between chemistry and turbulent flow, the number of parameters and thus dimensions increases. Given a reasonable discretisation, file sizes can increase drastically. The main goal of this work is to provide methods that handle large database files efficiently. A Memory Abstraction Layer (MAL) has been developed that handles requested LUT entries efficiently by splitting the database file into several smaller blocks. It keeps the total memory usage at a minimum using thin allocation methods and compression to minimise filesystem operations. The MAL has been evaluated using three different test cases. The first rather generic one is a sequential reading operation on an LUT to evaluate the runtime behaviour as well as the memory consumption of the MAL. The second test case is a simulation of a non-premixed turbulent flame, the so-called HM1 flame, which is a well-known test case in the turbulent combustion community. The third test case is a simulation of a non-premixed laminar flame as described by McEnally in 1996 and Bennett in 2000. Using the previously developed solver 'flameletFoam' in conjunction with the MAL, memory consumption and the performance penalty introduced were studied. The total memory used while running a parallel simulation was reduced significantly while the CPU time overhead associated with the MAL remained low.

  16. Task complexity as a driver for collaborative learning efficiency: The collective working-memory effect

    NARCIS (Netherlands)

    Kirschner, Femke; Paas, Fred; Kirschner, Paul A.

    2010-01-01

    Kirschner, F., Paas, F., & Kirschner, P. A. (2011). Task complexity as a driver for collaborative learning efficiency: The collective working-memory effect. Applied Cognitive Psychology, 25, 615–624. doi: 10.1002/acp.1730.

  17. Reduced prefrontal efficiency for visuospatial working memory in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Bédard, Anne-Claude V; Newcorn, Jeffrey H; Clerkin, Suzanne M; Krone, Beth; Fan, Jin; Halperin, Jeffrey M; Schulz, Kurt P

    2014-09-01

    Visuospatial working memory impairments have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, most ADHD research has focused on the neural correlates of nonspatial mnemonic processes. This study examined brain activation and functional connectivity for visuospatial working memory in youth with and without ADHD. Twenty-four youth with ADHD and 21 age- and sex-matched healthy controls were scanned with functional magnetic resonance imaging while performing an N-back test of working memory for spatial position. Block-design analyses contrasted activation and functional connectivity separately for high (2-back) and low (1-back) working memory load conditions versus the control condition (0-back). The effect of working memory load was modeled with linear contrasts. The 2 groups performed comparably on the task and demonstrated similar patterns of frontoparietal activation, with no differences in linear gains in activation as working memory load increased. However, youth with ADHD showed greater activation in the left dorsolateral prefrontal cortex (DLPFC) and left posterior cingulate cortex (PCC), greater functional connectivity between the left DLPFC and left intraparietal sulcus, and reduced left DLPFC connectivity with left midcingulate cortex and PCC for the high load contrast compared to controls (p 100 voxels). Reanalysis using a more conservative statistical approach (p 100 voxels) yielded group differences in PCC activation and DLPFC-midcingulate connectivity. Youth with ADHD show decreased efficiency of DLPFC for high-load visuospatial working memory and greater reliance on posterior spatial attention circuits to store and update spatial position than healthy control youth. Findings should be replicated in larger samples. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Memory-Efficient Onboard Rock Segmentation

    Science.gov (United States)

    Burl, Michael C.; Thompson, David R.; Bornstein, Benjamin J.; deGranville, Charles K.

    2013-01-01

    Rockster-MER is an autonomous perception capability that was uploaded to the Mars Exploration Rover Opportunity in December 2009. This software provides the vision front end for a larger software system known as AEGIS (Autonomous Exploration for Gathering Increased Science), which was recently named 2011 NASA Software of the Year. As the first step in AEGIS, Rockster-MER analyzes an image captured by the rover, and detects and automatically identifies the boundary contours of rocks and regions of outcrop present in the scene. This initial segmentation step reduces the data volume from millions of pixels into hundreds (or fewer) of rock contours. Subsequent stages of AEGIS then prioritize the best rocks according to scientist- defined preferences and take high-resolution, follow-up observations. Rockster-MER has performed robustly from the outset on the Mars surface under challenging conditions. Rockster-MER is a specially adapted, embedded version of the original Rockster algorithm ("Rock Segmentation Through Edge Regrouping," (NPO- 44417) Software Tech Briefs, September 2008, p. 25). Although the new version performs the same basic task as the original code, the software has been (1) significantly upgraded to overcome the severe onboard re source limitations (CPU, memory, power, time) and (2) "bulletproofed" through code reviews and extensive testing and profiling to avoid the occurrence of faults. Because of the limited computational power of the RAD6000 flight processor on Opportunity (roughly two orders of magnitude slower than a modern workstation), the algorithm was heavily tuned to improve its speed. Several functional elements of the original algorithm were removed as a result of an extensive cost/benefit analysis conducted on a large set of archived rover images. The algorithm was also required to operate below a stringent 4MB high-water memory ceiling; hence, numerous tricks and strategies were introduced to reduce the memory footprint. Local filtering

  19. Perform wordcount Map-Reduce Job in Single Node Apache Hadoop cluster and compress data using Lempel-Ziv-Oberhumer (LZO) algorithm

    OpenAIRE

    Mirajkar, Nandan; Bhujbal, Sandeep; Deshmukh, Aaradhana

    2013-01-01

    Applications like Yahoo, Facebook, Twitter have huge data which has to be stored and retrieved as per client access. This huge data storage requires huge database leading to increase in physical storage and becomes complex for analysis required in business growth. This storage capacity can be reduced and distributed processing of huge data can be done using Apache Hadoop which uses Map-reduce algorithm and combines the repeating data so that entire data is stored in reduced format. The paper ...

  20. Perspective: Memcomputing: Leveraging memory and physics to compute efficiently

    Science.gov (United States)

    Di Ventra, Massimiliano; Traversa, Fabio L.

    2018-05-01

    It is well known that physical phenomena may be of great help in computing some difficult problems efficiently. A typical example is prime factorization that may be solved in polynomial time by exploiting quantum entanglement on a quantum computer. There are, however, other types of (non-quantum) physical properties that one may leverage to compute efficiently a wide range of hard problems. In this perspective, we discuss how to employ one such property, memory (time non-locality), in a novel physics-based approach to computation: Memcomputing. In particular, we focus on digital memcomputing machines (DMMs) that are scalable. DMMs can be realized with non-linear dynamical systems with memory. The latter property allows the realization of a new type of Boolean logic, one that is self-organizing. Self-organizing logic gates are "terminal-agnostic," namely, they do not distinguish between the input and output terminals. When appropriately assembled to represent a given combinatorial/optimization problem, the corresponding self-organizing circuit converges to the equilibrium points that express the solutions of the problem at hand. In doing so, DMMs take advantage of the long-range order that develops during the transient dynamics. This collective dynamical behavior, reminiscent of a phase transition, or even the "edge of chaos," is mediated by families of classical trajectories (instantons) that connect critical points of increasing stability in the system's phase space. The topological character of the solution search renders DMMs robust against noise and structural disorder. Since DMMs are non-quantum systems described by ordinary differential equations, not only can they be built in hardware with the available technology, they can also be simulated efficiently on modern classical computers. As an example, we will show the polynomial-time solution of the subset-sum problem for the worst cases, and point to other types of hard problems where simulations of DMMs

  1. A real-time multichannel memory controller and optimal mapping of memory clients to memory channels

    NARCIS (Netherlands)

    Gomony, M.D.; Akesson, K.B.; Goossens, K.G.W.

    2015-01-01

    Ever-increasing demands for main memory bandwidth and memory speed/power tradeoff led to the introduction of memories with multiple memory channels, such as Wide IO DRAM. Efficient utilization of a multichannel memory as a shared resource in multiprocessor real-time systems depends on mapping of the

  2. Age-related changes of frontal-midline theta is predictive of efficient memory maintenance.

    Science.gov (United States)

    Kardos, Z; Tóth, B; Boha, R; File, B; Molnár, M

    2014-07-25

    Frontal areas are thought to be the coordinators of working memory processes by controlling other brain areas reflected by oscillatory activities like frontal-midline theta (4-7 Hz). With aging substantial changes can be observed in the frontal brain areas, presumably leading to age-associated changes in cortical correlates of cognitive functioning. The present study aimed to test whether altered frontal-midline theta dynamics during working memory maintenance may underlie the capacity deficits observed in older adults. 33-channel EEG was recorded in young (18-26 years, N=20) and old (60-71 years, N=16) adults during the retention period of a visual delayed match-to-sample task, in which they had to maintain arrays of 3 or 5 colored squares. An additional visual odd-ball task was used to be able to measure the electrophysiological indices of sustained attentional processes. Old participants showed reduced frontal theta activity during both tasks compared to the young group. In the young memory maintenance-related frontal-midline theta activity was shown to be sensitive both to the increased memory demands and to efficient subsequent memory performance, whereas the old adults showed no such task-related difference in the frontal theta activity. The decrease of frontal-midline theta activity in the old group indicates that cerebral aging may alter the cortical circuitries of theta dynamics, thereby leading to age-associated decline of working memory maintenance function. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. A One-Pass Real-Time Decoder Using Memory-Efficient State Network

    Science.gov (United States)

    Shao, Jian; Li, Ta; Zhang, Qingqing; Zhao, Qingwei; Yan, Yonghong

    This paper presents our developed decoder which adopts the idea of statically optimizing part of the knowledge sources while handling the others dynamically. The lexicon, phonetic contexts and acoustic model are statically integrated to form a memory-efficient state network, while the language model (LM) is dynamically incorporated on the fly by means of extended tokens. The novelties of our approach for constructing the state network are (1) introducing two layers of dummy nodes to cluster the cross-word (CW) context dependent fan-in and fan-out triphones, (2) introducing a so-called “WI layer” to store the word identities and putting the nodes of this layer in the non-shared mid-part of the network, (3) optimizing the network at state level by a sufficient forward and backward node-merge process. The state network is organized as a multi-layer structure for distinct token propagation at each layer. By exploiting the characteristics of the state network, several techniques including LM look-ahead, LM cache and beam pruning are specially designed for search efficiency. Especially in beam pruning, a layer-dependent pruning method is proposed to further reduce the search space. The layer-dependent pruning takes account of the neck-like characteristics of WI layer and the reduced variety of word endings, which enables tighter beam without introducing much search errors. In addition, other techniques including LM compression, lattice-based bookkeeping and lattice garbage collection are also employed to reduce the memory requirements. Experiments are carried out on a Mandarin spontaneous speech recognition task where the decoder involves a trigram LM and CW triphone models. A comparison with HDecode of HTK toolkits shows that, within 1% performance deviation, our decoder can run 5 times faster with half of the memory footprint.

  4. Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.

    Science.gov (United States)

    Li, Wenyuan; Gong, Ke; Li, Qingjiao; Alber, Frank; Zhou, Xianghong Jasmine

    2015-03-15

    Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently become important tools to study spatial genome organization. Removing biases from chromatin contact matrices generated by such techniques is a critical preprocessing step of subsequent analyses. The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C data, resulting in very large matrices of chromatin contacts. Such large-size matrices, however, pose a great challenge on the memory usage and speed of its normalization. Therefore, there is an urgent need for fast and memory-efficient methods for normalization of Hi-C data. We developed Hi-Corrector, an easy-to-use, open source implementation of the Hi-C data normalization algorithm. Its salient features are (i) scalability-the software is capable of normalizing Hi-C data of any size in reasonable times; (ii) memory efficiency-the sequential version can run on any single computer with very limited memory, no matter how little; (iii) fast speed-the parallel version can run very fast on multiple computing nodes with limited local memory. The sequential version is implemented in ANSI C and can be easily compiled on any system; the parallel version is implemented in ANSI C with the MPI library (a standardized and portable parallel environment designed for solving large-scale scientific problems). The package is freely available at http://zhoulab.usc.edu/Hi-Corrector/. © The Author 2014. Published by Oxford University Press.

  5. Time and Memory Efficient Online Piecewise Linear Approximation of Sensor Signals.

    Science.gov (United States)

    Grützmacher, Florian; Beichler, Benjamin; Hein, Albert; Kirste, Thomas; Haubelt, Christian

    2018-05-23

    Piecewise linear approximation of sensor signals is a well-known technique in the fields of Data Mining and Activity Recognition. In this context, several algorithms have been developed, some of them with the purpose to be performed on resource constrained microcontroller architectures of wireless sensor nodes. While microcontrollers are usually constrained in computational power and memory resources, all state-of-the-art piecewise linear approximation techniques either need to buffer sensor data or have an execution time depending on the segment’s length. In the paper at hand, we propose a novel piecewise linear approximation algorithm, with a constant computational complexity as well as a constant memory complexity. Our proposed algorithm’s worst-case execution time is one to three orders of magnitude smaller and its average execution time is three to seventy times smaller compared to the state-of-the-art Piecewise Linear Approximation (PLA) algorithms in our experiments. In our evaluations, we show that our algorithm is time and memory efficient without sacrificing the approximation quality compared to other state-of-the-art piecewise linear approximation techniques, while providing a maximum error guarantee per segment, a small parameter space of only one parameter, and a maximum latency of one sample period plus its worst-case execution time.

  6. Improving the performance and energy-efficiency of virtual memory

    OpenAIRE

    Karakostas, Vasileios

    2016-01-01

    Virtual memory improves programmer productivity, enhances process security, and increases memory utilization. However, virtual memory requires an address translation from the virtual to the physical address space on every memory operation. Page-based implementations of virtual memory divide physical memory into fixed size pages, and use a per-process page table to map virtual pages to physical pages. The hardware key component for accelerating address translation is the Translation Lookasi...

  7. Electroencephalography signatures of attention-deficit/hyperactivity disorder: clinical utility.

    Science.gov (United States)

    Alba, Guzmán; Pereda, Ernesto; Mañas, Soledad; Méndez, Leopoldo D; González, Almudena; González, Julián J

    2015-01-01

    The techniques and the most important results on the use of electroencephalography (EEG) to extract different measures are reviewed in this work, which can be clinically useful to study subjects with attention-deficit/hyperactivity disorder (ADHD). First, we discuss briefly and in simple terms the EEG analysis and processing techniques most used in the context of ADHD. We review techniques that both analyze individual EEG channels (univariate measures) and study the statistical interdependence between different EEG channels (multivariate measures), the so-called functional brain connectivity. Among the former ones, we review the classical indices of absolute and relative spectral power and estimations of the complexity of the channels, such as the approximate entropy and the Lempel-Ziv complexity. Among the latter ones, we focus on the magnitude square coherence and on different measures based on the concept of generalized synchronization and its estimation in the state space. Second, from a historical point of view, we present the most important results achieved with these techniques and their clinical utility (sensitivity, specificity, and accuracy) to diagnose ADHD. Finally, we propose future research lines based on these results.

  8. Processing efficiency theory in children: working memory as a mediator between trait anxiety and academic performance.

    Science.gov (United States)

    Owens, Matthew; Stevenson, Jim; Norgate, Roger; Hadwin, Julie A

    2008-10-01

    Working memory skills are positively associated with academic performance. In contrast, high levels of trait anxiety are linked with educational underachievement. Based on Eysenck and Calvo's (1992) processing efficiency theory (PET), the present study investigated whether associations between anxiety and educational achievement were mediated via poor working memory performance. Fifty children aged 11-12 years completed verbal (backwards digit span; tapping the phonological store/central executive) and spatial (Corsi blocks; tapping the visuospatial sketchpad/central executive) working memory tasks. Trait anxiety was measured using the State-Trait Anxiety Inventory for Children. Academic performance was assessed using school administered tests of reasoning (Cognitive Abilities Test) and attainment (Standard Assessment Tests). The results showed that the association between trait anxiety and academic performance was significantly mediated by verbal working memory for three of the six academic performance measures (math, quantitative and non-verbal reasoning). Spatial working memory did not significantly mediate the relationship between trait anxiety and academic performance. On average verbal working memory accounted for 51% of the association between trait anxiety and academic performance, while spatial working memory only accounted for 9%. The findings indicate that PET is a useful framework to assess the impact of children's anxiety on educational achievement.

  9. Efficient Management for Hybrid Memory in Managed Language Runtime

    OpenAIRE

    Wang , Chenxi; Cao , Ting; Zigman , John; Lv , Fang; Zhang , Yunquan; Feng , Xiaobing

    2016-01-01

    Part 1: Memory: Non-Volatile, Solid State Drives, Hybrid Systems; International audience; Hybrid memory, which leverages the benefits of traditional DRAM and emerging memory technologies, is a promising alternative for future main memory design. However popular management policies through memory-access recording and page migration may invoke non-trivial overhead in execution time and hardware space. Nowadays, managed language applications are increasingly dominant in every kind of platform. M...

  10. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses

    DEFF Research Database (Denmark)

    Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech; Holst, Peter Johannes

    2012-01-01

    directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated...... that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD......8 T-cell memory even in individuals with pre-existing vector immunity....

  11. Design of a memory-access controller with 3.71-times-enhanced energy efficiency for Internet-of-Things-oriented nonvolatile microcontroller unit

    Science.gov (United States)

    Natsui, Masanori; Hanyu, Takahiro

    2018-04-01

    In realizing a nonvolatile microcontroller unit (MCU) for sensor nodes in Internet-of-Things (IoT) applications, it is important to solve the data-transfer bottleneck between the central processing unit (CPU) and the nonvolatile memory constituting the MCU. As one circuit-oriented approach to solving this problem, we propose a memory access minimization technique for magnetoresistive-random-access-memory (MRAM)-embedded nonvolatile MCUs. In addition to multiplexing and prefetching of memory access, the proposed technique realizes efficient instruction fetch by eliminating redundant memory access while considering the code length of the instruction to be fetched and the transition of the memory address to be accessed. As a result, the performance of the MCU can be improved while relaxing the performance requirement for the embedded MRAM, and compact and low-power implementation can be performed as compared with the conventional cache-based one. Through the evaluation using a system consisting of a general purpose 32-bit CPU and embedded MRAM, it is demonstrated that the proposed technique increases the peak efficiency of the system up to 3.71 times, while a 2.29-fold area reduction is achieved compared with the cache-based one.

  12. Stack Memory Implementation and Analysis of Timing Constraint, Power and Memory using FPGA

    DEFF Research Database (Denmark)

    Thind, Vandana; Pandey, Nisha; Pandey, Bishwajeet

    2017-01-01

    real-time output, so that source used to realize the project is not wasted and get an energy efficient design. However, Stack memory is an approach in which information is entered and deleted from the stack memory segment in the pattern of last in first out mechanism. There are several ways...... of implementation of stack memory algorithm but virtex4 and virtex7 low voltage were considered to be the most efficient platforms for its operation. The developed system is energy efficient as the algorim ensures less memory utilization, less power consumption and short time for signal travel.......Abstract— in this work of analysis, stack memory algorithm is implemented on a number of FPGA platforms like virtex4, virtex5, virtex6, virtex6 low power and virtex7 low voltage and very detailed observations/investigations were made about timing constraint, memory and power dissipation. The main...

  13. On the predictability of extreme events in records with linear and nonlinear long-range memory: Efficiency and noise robustness

    Science.gov (United States)

    Bogachev, Mikhail I.; Bunde, Armin

    2011-06-01

    We study the predictability of extreme events in records with linear and nonlinear long-range memory in the presence of additive white noise using two different approaches: (i) the precursory pattern recognition technique (PRT) that exploits solely the information about short-term precursors, and (ii) the return interval approach (RIA) that exploits long-range memory incorporated in the elapsed time after the last extreme event. We find that the PRT always performs better when only linear memory is present. In the presence of nonlinear memory, both methods demonstrate comparable efficiency in the absence of white noise. When additional white noise is present in the record (which is the case in most observational records), the efficiency of the PRT decreases monotonously with increasing noise level. In contrast, the RIA shows an abrupt transition between a phase of low level noise where the prediction is as good as in the absence of noise, and a phase of high level noise where the prediction becomes poor. In the phase of low and intermediate noise the RIA predicts considerably better than the PRT, which explains our recent findings in physiological and financial records.

  14. NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seyong [ORNL; Vetter, Jeffrey S [ORNL

    2016-01-01

    Computer architecture experts expect that non-volatile memory (NVM) hierarchies will play a more significant role in future systems including mobile, enterprise, and HPC architectures. With this expectation in mind, we present NVL-C: a novel programming system that facilitates the efficient and correct programming of NVM main memory systems. The NVL-C programming abstraction extends C with a small set of intuitive language features that target NVM main memory, and can be combined directly with traditional C memory model features for DRAM. We have designed these new features to enable compiler analyses and run-time checks that can improve performance and guard against a number of subtle programming errors, which, when left uncorrected, can corrupt NVM-stored data. Moreover, to enable recovery of data across application or system failures, these NVL-C features include a flexible directive for specifying NVM transactions. So that our implementation might be extended to other compiler front ends and languages, the majority of our compiler analyses are implemented in an extended version of LLVM's intermediate representation (LLVM IR). We evaluate NVL-C on a number of applications to show its flexibility, performance, and correctness.

  15. Memory Efficient Sequence Analysis Using Compressed Data Structures (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Jared

    2011-10-13

    Wellcome Trust Sanger Institute's Jared Simpson on Memory efficient sequence analysis using compressed data structures at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  16. Concurrent Memory Load Can Make RSVP Search More Efficient

    Science.gov (United States)

    Gil-Gomez de Liano, Beatriz; Botella, Juan

    2011-01-01

    The detrimental effect of increased memory load on selective attention has been demonstrated in many situations. However, in search tasks over time using RSVP methods, it is not clear how memory load affects attentional processes; no effects as well as beneficial and detrimental effects of memory load have been found in these types of tasks. The…

  17. Visual Working Memory Capacity Can Be Increased by Training on Distractor Filtering Efficiency.

    Science.gov (United States)

    Li, Cui-Hong; He, Xu; Wang, Yu-Juan; Hu, Zhe; Guo, Chun-Yan

    2017-01-01

    It is generally considered that working memory (WM) capacity is limited and that WM capacity affects cognitive processes. Distractor filtering efficiency has been suggested to be an important factor in determining the visual working memory (VWM) capacity of individuals. In the present study, we investigated whether training in visual filtering efficiency (FE) could improve VWM capacity, as measured by performance on the change detection task (CDT) and changes of contralateral delay activity (CDA) (contralateral delay activity) of different conditions, and evaluated the transfer effect of visual FE training on verbal WM and fluid intelligence, as indexed by performance on the verbal WM span task and Raven's Standard Progressive Matrices (RSPM) test, respectively. Participants were divided into high- and low-capacity groups based on their performance in a CDT designed to test VWM capacity, and then the low-capacity individuals received 20 days of FE training. The training significantly improved the group's performance in the CDT, and their CDA models of different conditions became more similar with high capacity group, and the effect generalized to improve verbal WM span. These gains were maintained at a 3-month follow-up test. Participants' RSPM scores were not changed by the training. These findings support the notion that WM capacity is determined, at least in part, by distractor FE and can be enhanced through training.

  18. Encoding: the keystone to efficient functioning of verbal short-term memory.

    Science.gov (United States)

    Barry, Johanna G; Sabisch, Beate; Friederici, Angela D; Brauer, Jens

    2011-11-01

    Verbal short-term memory (VSTM) is thought to play a critical role in language learning. It is indexed by the nonword repetition task where listeners are asked to repeat meaningless words like 'blonterstaping'. The present study investigated the effect on nonword repetition performance of differences in efficiency of functioning of some part of the neural architecture mediating VSTM. Hypotheses were stated within Baddeley and Hitch's (1974) multicomponent model of VSTM, with respect to regions of the brain known to be active during tasks tapping into VSTM. We were specifically interested in activations associated with the posterior planum temporale (Spt) which emerge during rehearsal since this region is hypothesized to be central to VTSM (Buchsbaum, Olsen, Koch, & Berman, 2005a). Participants performed a delayed reaction time task in the scanner which explicitly mimicked the three main stages of information-processing involved in VSTM (encoding, rehearsal, recall (here recognition)). The data for each stage were then convolved with scores from a separately measured nonword repetition task. Rather than observing a pattern of individual differences located to specific regions specialized for supporting VSTM, a dissociation in direction of correlation in overlapping regions of the brain was observed during encoding and recognition. Larger hemodynamic responses during encoding were associated with better nonword repetition, and vice versa during recognition. There was little evidence for a network of activations specialized for VSTM. Instead, the main correlations were observed in regions also known to be involved in long-term memory. It seems that individuals who are better at nonword repetition and hence at language learning, activate these regions more efficiently than poorer nonword-repeaters early after stimulus input. These observations are discussed with respect to various models proposed for explaining the phenomenon of VSTM. Crown Copyright © 2011

  19. Lossless medical image compression with a hybrid coder

    Science.gov (United States)

    Way, Jing-Dar; Cheng, Po-Yuen

    1998-10-01

    The volume of medical image data is expected to increase dramatically in the next decade due to the large use of radiological image for medical diagnosis. The economics of distributing the medical image dictate that data compression is essential. While there is lossy image compression, the medical image must be recorded and transmitted lossless before it reaches the users to avoid wrong diagnosis due to the image data lost. Therefore, a low complexity, high performance lossless compression schematic that can approach the theoretic bound and operate in near real-time is needed. In this paper, we propose a hybrid image coder to compress the digitized medical image without any data loss. The hybrid coder is constituted of two key components: an embedded wavelet coder and a lossless run-length coder. In this system, the medical image is compressed with the lossy wavelet coder first, and the residual image between the original and the compressed ones is further compressed with the run-length coder. Several optimization schemes have been used in these coders to increase the coding performance. It is shown that the proposed algorithm is with higher compression ratio than run-length entropy coders such as arithmetic, Huffman and Lempel-Ziv coders.

  20. Three perspectives on complexity: entropy, compression, subsymmetry

    Science.gov (United States)

    Nagaraj, Nithin; Balasubramanian, Karthi

    2017-12-01

    There is no single universally accepted definition of `Complexity'. There are several perspectives on complexity and what constitutes complex behaviour or complex systems, as opposed to regular, predictable behaviour and simple systems. In this paper, we explore the following perspectives on complexity: effort-to-describe (Shannon entropy H, Lempel-Ziv complexity LZ), effort-to-compress (ETC complexity) and degree-of-order (Subsymmetry or SubSym). While Shannon entropy and LZ are very popular and widely used, ETC is relatively a new complexity measure. In this paper, we also propose a novel normalized complexity measure SubSym based on the existing idea of counting the number of subsymmetries or palindromes within a sequence. We compare the performance of these complexity measures on the following tasks: (A) characterizing complexity of short binary sequences of lengths 4 to 16, (B) distinguishing periodic and chaotic time series from 1D logistic map and 2D Hénon map, (C) analyzing the complexity of stochastic time series generated from 2-state Markov chains, and (D) distinguishing between tonic and irregular spiking patterns generated from the `Adaptive exponential integrate-and-fire' neuron model. Our study reveals that each perspective has its own advantages and uniqueness while also having an overlap with each other.

  1. Monte Carlo photon transport on shared memory and distributed memory parallel processors

    International Nuclear Information System (INIS)

    Martin, W.R.; Wan, T.C.; Abdel-Rahman, T.S.; Mudge, T.N.; Miura, K.

    1987-01-01

    Parallelized Monte Carlo algorithms for analyzing photon transport in an inertially confined fusion (ICF) plasma are considered. Algorithms were developed for shared memory (vector and scalar) and distributed memory (scalar) parallel processors. The shared memory algorithm was implemented on the IBM 3090/400, and timing results are presented for dedicated runs with two, three, and four processors. Two alternative distributed memory algorithms (replication and dispatching) were implemented on a hypercube parallel processor (1 through 64 nodes). The replication algorithm yields essentially full efficiency for all cube sizes; with the 64-node configuration, the absolute performance is nearly the same as with the CRAY X-MP. The dispatching algorithm also yields efficiencies above 80% in a large simulation for the 64-processor configuration

  2. VOP memory management in MPEG-4

    Science.gov (United States)

    Vaithianathan, Karthikeyan; Panchanathan, Sethuraman

    2001-03-01

    MPEG-4 is a multimedia standard that requires Video Object Planes (VOPs). Generation of VOPs for any kind of video sequence is still a challenging problem that largely remains unsolved. Nevertheless, if this problem is treated by imposing certain constraints, solutions for specific application domains can be found. MPEG-4 applications in mobile devices is one such domain where the opposite goals namely low power and high throughput are required to be met. Efficient memory management plays a major role in reducing the power consumption. Specifically, efficient memory management for VOPs is difficult because the lifetimes of these objects vary and these life times may be overlapping. Varying life times of the objects requires dynamic memory management where memory fragmentation is a key problem that needs to be addressed. In general, memory management systems address this problem by following a combination of strategy, policy and mechanism. For MPEG4 based mobile devices that lack instruction processors, a hardware based memory management solution is necessary. In MPEG4 based mobile devices that have a RISC processor, using a Real time operating system (RTOS) for this memory management task is not expected to be efficient because the strategies and policies used by the ROTS is often tuned for handling memory segments of smaller sizes compared to object sizes. Hence, a memory management scheme specifically tuned for VOPs is important. In this paper, different strategies, policies and mechanisms for memory management are considered and an efficient combination is proposed for the case of VOP memory management along with a hardware architecture, which can handle the proposed combination.

  3. Memory effect, resolution, and efficiency measurements of an Al2O3 coated plastic scintillator used for radioxenon detection

    Science.gov (United States)

    Bläckberg, L.; Fritioff, T.; Mårtensson, L.; Nielsen, F.; Ringbom, A.; Sjöstrand, H.; Klintenberg, M.

    2013-06-01

    A cylindrical plastic scintillator cell, used for radioxenon monitoring within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty, has been coated with 425 nm Al2O3 using low temperature Atomic Layer Deposition, and its performance has been evaluated. The motivation is to reduce the memory effect caused by radioxenon diffusing into the plastic scintillator material during measurements, resulting in an elevated detection limit. Measurements with the coated detector show both energy resolution and efficiency comparable to uncoated detectors, and a memory effect reduction of a factor of 1000. Provided that the quality of the detector is maintained for a longer period of time, Al2O3 coatings are believed to be a viable solution to the memory effect problem in question.

  4. Memory effect, resolution, and efficiency measurements of an Al2O3 coated plastic scintillator used for radioxenon detection

    International Nuclear Information System (INIS)

    Bläckberg, L.; Fritioff, T.; Mårtensson, L.; Nielsen, F.; Ringbom, A.; Sjöstrand, H.; Klintenberg, M.

    2013-01-01

    A cylindrical plastic scintillator cell, used for radioxenon monitoring within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty, has been coated with 425 nm Al 2 O 3 using low temperature Atomic Layer Deposition, and its performance has been evaluated. The motivation is to reduce the memory effect caused by radioxenon diffusing into the plastic scintillator material during measurements, resulting in an elevated detection limit. Measurements with the coated detector show both energy resolution and efficiency comparable to uncoated detectors, and a memory effect reduction of a factor of 1000. Provided that the quality of the detector is maintained for a longer period of time, Al 2 O 3 coatings are believed to be a viable solution to the memory effect problem in question

  5. CPU and cache efficient management of memory-resident databases

    NARCIS (Netherlands)

    Pirk, H.; Funke, F.; Grund, M.; Neumann, T.; Leser, U.; Manegold, S.; Kemper, A.; Kersten, M.L.

    2013-01-01

    Memory-Resident Database Management Systems (MRDBMS) have to be optimized for two resources: CPU cycles and memory bandwidth. To optimize for bandwidth in mixed OLTP/OLAP scenarios, the hybrid or Partially Decomposed Storage Model (PDSM) has been proposed. However, in current implementations,

  6. CPU and Cache Efficient Management of Memory-Resident Databases

    NARCIS (Netherlands)

    H. Pirk (Holger); F. Funke; M. Grund; T. Neumann (Thomas); U. Leser; S. Manegold (Stefan); A. Kemper (Alfons); M.L. Kersten (Martin)

    2013-01-01

    htmlabstractMemory-Resident Database Management Systems (MRDBMS) have to be optimized for two resources: CPU cycles and memory bandwidth. To optimize for bandwidth in mixed OLTP/OLAP scenarios, the hybrid or Partially Decomposed Storage Model (PDSM) has been proposed. However, in current

  7. Two-terminal video coding.

    Science.gov (United States)

    Yang, Yang; Stanković, Vladimir; Xiong, Zixiang; Zhao, Wei

    2009-03-01

    Following recent works on the rate region of the quadratic Gaussian two-terminal source coding problem and limit-approaching code designs, this paper examines multiterminal source coding of two correlated, i.e., stereo, video sequences to save the sum rate over independent coding of both sequences. Two multiterminal video coding schemes are proposed. In the first scheme, the left sequence of the stereo pair is coded by H.264/AVC and used at the joint decoder to facilitate Wyner-Ziv coding of the right video sequence. The first I-frame of the right sequence is successively coded by H.264/AVC Intracoding and Wyner-Ziv coding. An efficient stereo matching algorithm based on loopy belief propagation is then adopted at the decoder to produce pixel-level disparity maps between the corresponding frames of the two decoded video sequences on the fly. Based on the disparity maps, side information for both motion vectors and motion-compensated residual frames of the right sequence are generated at the decoder before Wyner-Ziv encoding. In the second scheme, source splitting is employed on top of classic and Wyner-Ziv coding for compression of both I-frames to allow flexible rate allocation between the two sequences. Experiments with both schemes on stereo video sequences using H.264/AVC, LDPC codes for Slepian-Wolf coding of the motion vectors, and scalar quantization in conjunction with LDPC codes for Wyner-Ziv coding of the residual coefficients give a slightly lower sum rate than separate H.264/AVC coding of both sequences at the same video quality.

  8. A method for real-time memory efficient implementation of blob detection in large images

    Directory of Open Access Journals (Sweden)

    Petrović Vladimir L.

    2017-01-01

    Full Text Available In this paper we propose a method for real-time blob detection in large images with low memory cost. The method is suitable for implementation on the specialized parallel hardware such as multi-core platforms, FPGA and ASIC. It uses parallelism to speed-up the blob detection. The input image is divided into blocks of equal sizes to which the maximally stable extremal regions (MSER blob detector is applied in parallel. We propose the usage of multiresolution analysis for detection of large blobs which are not detected by processing the small blocks. This method can find its place in many applications such as medical imaging, text recognition, as well as video surveillance or wide area motion imagery (WAMI. We explored the possibilities of usage of detected blobs in the feature-based image alignment as well. When large images are processed, our approach is 10 to over 20 times more memory efficient than the state of the art hardware implementation of the MSER.

  9. Zone memories and pseudorandom addressing

    International Nuclear Information System (INIS)

    Marino, D.; Mirizzi, N.; Stella, R.; Visaggio, G.

    1975-01-01

    A quantitative comparison between zone memories, pseudorandom addressed memories and an alternative special purpose memory (spread zone memory) in which the distance between any two transformed descriptors, at first adjacent, is independent of the descriptors pair and results the maximum one is presented. This memory has not been particularly considered at present in spite of its efficiency and its simple implementation

  10. Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Alberto Bosque

    2011-10-01

    Full Text Available Homeostatic proliferation ensures the longevity of central memory T-cells by inducing cell proliferation in the absence of cellular differentiation or activation. This process is governed mainly by IL-7. Central memory T-cells can also be stimulated via engagement of the T-cell receptor, leading to cell proliferation but also activation and differentiation. Using an in vitro model of HIV-1 latency, we have examined in detail the effects of homeostatic proliferation on latently infected central memory T cells. We have also used antigenic stimulation via anti-CD3/anti-CD28 antibodies and established a comparison with a homeostatic proliferation stimulus, to evaluate potential differences in how either treatment affects the dynamics of latent virus populations. First, we show that homeostatic proliferation, as induced by a combination of IL-2 plus IL-7, leads to partial reactivation of latent HIV-1 but is unable to reduce the size of the reservoir in vitro. Second, latently infected cells are able to homeostatically proliferate in the absence of viral reactivation or cell differentiation. These results indicate that IL-2 plus IL-7 may induce a detrimental effect by favoring the maintenance of the latent HIV-1 reservoir. On the other hand, antigenic stimulation efficiently reactivated latent HIV-1 in cultured central memory cells and led to depletion of the latently infected cells via virus-induced cell death.

  11. Targeted Memory Reactivation during Sleep Adaptively Promotes the Strengthening or Weakening of Overlapping Memories.

    Science.gov (United States)

    Oyarzún, Javiera P; Morís, Joaquín; Luque, David; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-08-09

    System memory consolidation is conceptualized as an active process whereby newly encoded memory representations are strengthened through selective memory reactivation during sleep. However, our learning experience is highly overlapping in content (i.e., shares common elements), and memories of these events are organized in an intricate network of overlapping associated events. It remains to be explored whether and how selective memory reactivation during sleep has an impact on these overlapping memories acquired during awake time. Here, we test in a group of adult women and men the prediction that selective memory reactivation during sleep entails the reactivation of associated events and that this may lead the brain to adaptively regulate whether these associated memories are strengthened or pruned from memory networks on the basis of their relative associative strength with the shared element. Our findings demonstrate the existence of efficient regulatory neural mechanisms governing how complex memory networks are shaped during sleep as a function of their associative memory strength. SIGNIFICANCE STATEMENT Numerous studies have demonstrated that system memory consolidation is an active, selective, and sleep-dependent process in which only subsets of new memories become stabilized through their reactivation. However, the learning experience is highly overlapping in content and thus events are encoded in an intricate network of related memories. It remains to be explored whether and how memory reactivation has an impact on overlapping memories acquired during awake time. Here, we show that sleep memory reactivation promotes strengthening and weakening of overlapping memories based on their associative memory strength. These results suggest the existence of an efficient regulatory neural mechanism that avoids the formation of cluttered memory representation of multiple events and promotes stabilization of complex memory networks. Copyright © 2017 the authors 0270-6474/17/377748-11$15.00/0.

  12. Extreme Quantum Memory Advantage for Rare-Event Sampling

    Science.gov (United States)

    Aghamohammadi, Cina; Loomis, Samuel P.; Mahoney, John R.; Crutchfield, James P.

    2018-02-01

    We introduce a quantum algorithm for memory-efficient biased sampling of rare events generated by classical memoryful stochastic processes. Two efficiency metrics are used to compare quantum and classical resources for rare-event sampling. For a fixed stochastic process, the first is the classical-to-quantum ratio of required memory. We show for two example processes that there exists an infinite number of rare-event classes for which the memory ratio for sampling is larger than r , for any large real number r . Then, for a sequence of processes each labeled by an integer size N , we compare how the classical and quantum required memories scale with N . In this setting, since both memories can diverge as N →∞ , the efficiency metric tracks how fast they diverge. An extreme quantum memory advantage exists when the classical memory diverges in the limit N →∞ , but the quantum memory has a finite bound. We then show that finite-state Markov processes and spin chains exhibit memory advantage for sampling of almost all of their rare-event classes.

  13. Extreme Quantum Memory Advantage for Rare-Event Sampling

    Directory of Open Access Journals (Sweden)

    Cina Aghamohammadi

    2018-02-01

    Full Text Available We introduce a quantum algorithm for memory-efficient biased sampling of rare events generated by classical memoryful stochastic processes. Two efficiency metrics are used to compare quantum and classical resources for rare-event sampling. For a fixed stochastic process, the first is the classical-to-quantum ratio of required memory. We show for two example processes that there exists an infinite number of rare-event classes for which the memory ratio for sampling is larger than r, for any large real number r. Then, for a sequence of processes each labeled by an integer size N, we compare how the classical and quantum required memories scale with N. In this setting, since both memories can diverge as N→∞, the efficiency metric tracks how fast they diverge. An extreme quantum memory advantage exists when the classical memory diverges in the limit N→∞, but the quantum memory has a finite bound. We then show that finite-state Markov processes and spin chains exhibit memory advantage for sampling of almost all of their rare-event classes.

  14. Configurable memory system and method for providing atomic counting operations in a memory device

    Science.gov (United States)

    Bellofatto, Ralph E.; Gara, Alan G.; Giampapa, Mark E.; Ohmacht, Martin

    2010-09-14

    A memory system and method for providing atomic memory-based counter operations to operating systems and applications that make most efficient use of counter-backing memory and virtual and physical address space, while simplifying operating system memory management, and enabling the counter-backing memory to be used for purposes other than counter-backing storage when desired. The encoding and address decoding enabled by the invention provides all this functionality through a combination of software and hardware.

  15. Undermining belief in false memories leads to less efficient problem-solving behaviour.

    Science.gov (United States)

    Wang, Jianqin; Otgaar, Henry; Howe, Mark L; Smeets, Tom; Merckelbach, Harald; Nahouli, Zacharia

    2017-08-01

    Memories of events for which the belief in the occurrence of those events is undermined, but recollection is retained, are called nonbelieved memories (NBMs). The present experiments examined the effects of NBMs on subsequent problem-solving behaviour. In Experiment 1, we challenged participants' beliefs in their memories and examined whether NBMs affected subsequent solution rates on insight-based problems. True and false memories were elicited using the Deese/Roediger-McDermott (DRM) paradigm. Then participants' belief in true and false memories was challenged by telling them the item had not been presented. We found that when the challenge led to undermining belief in false memories, fewer problems were solved than when belief was not challenged. In Experiment 2, a similar procedure was used except that some participants solved the problems one week rather than immediately after the feedback. Again, our results showed that undermining belief in false memories resulted in lower problem solution rates. These findings suggest that for false memories, belief is an important agent in whether memories serve as effective primes for immediate and delayed problem-solving.

  16. Fault Tolerant External Memory Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Brodal, Gerth Stølting; Mølhave, Thomas

    2009-01-01

    Algorithms dealing with massive data sets are usually designed for I/O-efficiency, often captured by the I/O model by Aggarwal and Vitter. Another aspect of dealing with massive data is how to deal with memory faults, e.g. captured by the adversary based faulty memory RAM by Finocchi and Italiano....... However, current fault tolerant algorithms do not scale beyond the internal memory. In this paper we investigate for the first time the connection between I/O-efficiency in the I/O model and fault tolerance in the faulty memory RAM, and we assume that both memory and disk are unreliable. We show a lower...... bound on the number of I/Os required for any deterministic dictionary that is resilient to memory faults. We design a static and a dynamic deterministic dictionary with optimal query performance as well as an optimal sorting algorithm and an optimal priority queue. Finally, we consider scenarios where...

  17. Motor Action and Emotional Memory

    Science.gov (United States)

    Casasanto, Daniel; Dijkstra, Katinka

    2010-01-01

    Can simple motor actions affect how efficiently people retrieve emotional memories, and influence what they choose to remember? In Experiment 1, participants were prompted to retell autobiographical memories with either positive or negative valence, while moving marbles either upward or downward. They retrieved memories faster when the direction…

  18. The effects of working memory training on functional brain network efficiency.

    Science.gov (United States)

    Langer, Nicolas; von Bastian, Claudia C; Wirz, Helen; Oberauer, Klaus; Jäncke, Lutz

    2013-10-01

    The human brain is a highly interconnected network. Recent studies have shown that the functional and anatomical features of this network are organized in an efficient small-world manner that confers high efficiency of information processing at relatively low connection cost. However, it has been unclear how the architecture of functional brain networks is related to performance in working memory (WM) tasks and if these networks can be modified by WM training. Therefore, we conducted a double-blind training study enrolling 66 young adults. Half of the subjects practiced three WM tasks and were compared to an active control group practicing three tasks with low WM demand. High-density resting-state electroencephalography (EEG) was recorded before and after training to analyze graph-theoretical functional network characteristics at an intracortical level. WM performance was uniquely correlated with power in the theta frequency, and theta power was increased by WM training. Moreover, the better a person's WM performance, the more their network exhibited small-world topology. WM training shifted network characteristics in the direction of high performers, showing increased small-worldness within a distributed fronto-parietal network. Taken together, this is the first longitudinal study that provides evidence for the plasticity of the functional brain network underlying WM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. MSuPDA: A Memory Efficient Algorithm for Sequence Alignment.

    Science.gov (United States)

    Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon

    2016-03-01

    Space complexity is a million dollar question in DNA sequence alignments. In this regard, memory saving under pushdown automata can help to reduce the occupied spaces in computer memory. Our proposed process is that anchor seed (AS) will be selected from given data set of nucleotide base pairs for local sequence alignment. Quick splitting techniques will separate the AS from all the DNA genome segments. Selected AS will be placed to pushdown automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. AS from input unit will be matched with the DNA genome segments from stack of PDA. Match, mismatch and indel of nucleotides will be popped from the stack under the control unit of pushdown automata. During the POP operation on stack, it will free the memory cell occupied by the nucleotide base pair.

  20. The cellular memory disc of reprogrammed cells.

    Science.gov (United States)

    Anjamrooz, Seyed Hadi

    2013-04-01

    The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].

  1. Efficient implementation of multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    Science.gov (United States)

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2012-01-10

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  2. Fast lossless compression via cascading Bloom filters.

    Science.gov (United States)

    Rozov, Roye; Shamir, Ron; Halperin, Eran

    2014-01-01

    Data from large Next Generation Sequencing (NGS) experiments present challenges both in terms of costs associated with storage and in time required for file transfer. It is sometimes possible to store only a summary relevant to particular applications, but generally it is desirable to keep all information needed to revisit experimental results in the future. Thus, the need for efficient lossless compression methods for NGS reads arises. It has been shown that NGS-specific compression schemes can improve results over generic compression methods, such as the Lempel-Ziv algorithm, Burrows-Wheeler transform, or Arithmetic Coding. When a reference genome is available, effective compression can be achieved by first aligning the reads to the reference genome, and then encoding each read using the alignment position combined with the differences in the read relative to the reference. These reference-based methods have been shown to compress better than reference-free schemes, but the alignment step they require demands several hours of CPU time on a typical dataset, whereas reference-free methods can usually compress in minutes. We present a new approach that achieves highly efficient compression by using a reference genome, but completely circumvents the need for alignment, affording a great reduction in the time needed to compress. In contrast to reference-based methods that first align reads to the genome, we hash all reads into Bloom filters to encode, and decode by querying the same Bloom filters using read-length subsequences of the reference genome. Further compression is achieved by using a cascade of such filters. Our method, called BARCODE, runs an order of magnitude faster than reference-based methods, while compressing an order of magnitude better than reference-free methods, over a broad range of sequencing coverage. In high coverage (50-100 fold), compared to the best tested compressors, BARCODE saves 80-90% of the running time while only increasing space

  3. Estimating the Entropy of Binary Time Series: Methodology, Some Theory and a Simulation Study

    Directory of Open Access Journals (Sweden)

    Elie Bienenstock

    2008-06-01

    Full Text Available Partly motivated by entropy-estimation problems in neuroscience, we present a detailed and extensive comparison between some of the most popular and effective entropy estimation methods used in practice: The plug-in method, four different estimators based on the Lempel-Ziv (LZ family of data compression algorithms, an estimator based on the Context-Tree Weighting (CTW method, and the renewal entropy estimator. METHODOLOGY: Three new entropy estimators are introduced; two new LZ-based estimators, and the “renewal entropy estimator,” which is tailored to data generated by a binary renewal process. For two of the four LZ-based estimators, a bootstrap procedure is described for evaluating their standard error, and a practical rule of thumb is heuristically derived for selecting the values of their parameters in practice. THEORY: We prove that, unlike their earlier versions, the two new LZ-based estimators are universally consistent, that is, they converge to the entropy rate for every finite-valued, stationary and ergodic process. An effective method is derived for the accurate approximation of the entropy rate of a finite-state hidden Markov model (HMM with known distribution. Heuristic calculations are presented and approximate formulas are derived for evaluating the bias and the standard error of each estimator. SIMULATION: All estimators are applied to a wide range of data generated by numerous different processes with varying degrees of dependence and memory. The main conclusions drawn from these experiments include: (i For all estimators considered, the main source of error is the bias. (ii The CTW method is repeatedly and consistently seen to provide the most accurate results. (iii The performance of the LZ-based estimators is often comparable to that of the plug-in method. (iv The main drawback of the plug-in method is its computational inefficiency; with small word-lengths it fails to detect longer-range structure in

  4. Efficient development of memory bounded geo-applications to scale on modern supercomputers

    Science.gov (United States)

    Räss, Ludovic; Omlin, Samuel; Licul, Aleksandar; Podladchikov, Yuri; Herman, Frédéric

    2016-04-01

    Numerical modeling is an actual key tool in the area of geosciences. The current challenge is to solve problems that are multi-physics and for which the length scale and the place of occurrence might not be known in advance. Also, the spatial extend of the investigated domain might strongly vary in size, ranging from millimeters for reactive transport to kilometers for glacier erosion dynamics. An efficient way to proceed is to develop simple but robust algorithms that perform well and scale on modern supercomputers and permit therefore very high-resolution simulations. We propose an efficient approach to solve memory bounded real-world applications on modern supercomputers architectures. We optimize the software to run on our newly acquired state-of-the-art GPU cluster "octopus". Our approach shows promising preliminary results on important geodynamical and geomechanical problematics: we have developed a Stokes solver for glacier flow and a poromechanical solver including complex rheologies for nonlinear waves in stressed rocks porous rocks. We solve the system of partial differential equations on a regular Cartesian grid and use an iterative finite difference scheme with preconditioning of the residuals. The MPI communication happens only locally (point-to-point); this method is known to scale linearly by construction. The "octopus" GPU cluster, which we use for the computations, has been designed to achieve maximal data transfer throughput at minimal hardware cost. It is composed of twenty compute nodes, each hosting four Nvidia Titan X GPU accelerators. These high-density nodes are interconnected with a parallel (dual-rail) FDR InfiniBand network. Our efforts show promising preliminary results for the different physics investigated. The glacier flow solver achieves good accuracy in the relevant benchmarks and the coupled poromechanical solver permits to explain previously unresolvable focused fluid flow as a natural outcome of the porosity setup. In both cases

  5. A memory efficient user interface for CLIPS micro-computer applications

    Science.gov (United States)

    Sterle, Mark E.; Mayer, Richard J.; Jordan, Janice A.; Brodale, Howard N.; Lin, Min-Jin

    1990-01-01

    The goal of the Integrated Southern Pine Beetle Expert System (ISPBEX) is to provide expert level knowledge concerning treatment advice that is convenient and easy to use for Forest Service personnel. ISPBEX was developed in CLIPS and delivered on an IBM PC AT class micro-computer, operating with an MS/DOS operating system. This restricted the size of the run time system to 640K. In order to provide a robust expert system, with on-line explanation, help, and alternative actions menus, as well as features that allow the user to back up or execute 'what if' scenarios, a memory efficient menuing system was developed to interface with the CLIPS programs. By robust, we mean an expert system that (1) is user friendly, (2) provides reasonable solutions for a wide variety of domain specific problems, (3) explains why some solutions were suggested but others were not, and (4) provides technical information relating to the problem solution. Several advantages were gained by using this type of user interface (UI). First, by storing the menus on the hard disk (instead of main memory) during program execution, a more robust system could be implemented. Second, since the menus were built rapidly, development time was reduced. Third, the user may try a new scenario by backing up to any of the input screens and revising segments of the original input without having to retype all the information. And fourth, asserting facts from the menus provided for a dynamic and flexible fact base. This UI technology has been applied successfully in expert systems applications in forest management, agriculture, and manufacturing. This paper discusses the architecture of the UI system, human factors considerations, and the menu syntax design.

  6. A Theoretical Basis for Entropy-Scaling Effects in Human Mobility Patterns.

    Science.gov (United States)

    Osgood, Nathaniel D; Paul, Tuhin; Stanley, Kevin G; Qian, Weicheng

    2016-01-01

    Characterizing how people move through space has been an important component of many disciplines. With the advent of automated data collection through GPS and other location sensing systems, researchers have the opportunity to examine human mobility at spatio-temporal resolution heretofore impossible. However, the copious and complex data collected through these logging systems can be difficult for humans to fully exploit, leading many researchers to propose novel metrics for encapsulating movement patterns in succinct and useful ways. A particularly salient proposed metric is the mobility entropy rate of the string representing the sequence of locations visited by an individual. However, mobility entropy rate is not scale invariant: entropy rate calculations based on measurements of the same trajectory at varying spatial or temporal granularity do not yield the same value, limiting the utility of mobility entropy rate as a metric by confounding inter-experimental comparisons. In this paper, we derive a scaling relationship for mobility entropy rate of non-repeating straight line paths from the definition of Lempel-Ziv compression. We show that the resulting formulation predicts the scaling behavior of simulated mobility traces, and provides an upper bound on mobility entropy rate under certain assumptions. We further show that this formulation has a maximum value for a particular sampling rate, implying that optimal sampling rates for particular movement patterns exist.

  7. Flash memory management system and method utilizing multiple block list windows

    Science.gov (United States)

    Chow, James (Inventor); Gender, Thomas K. (Inventor)

    2005-01-01

    The present invention provides a flash memory management system and method with increased performance. The flash memory management system provides the ability to efficiently manage and allocate flash memory use in a way that improves reliability and longevity, while maintaining good performance levels. The flash memory management system includes a free block mechanism, a disk maintenance mechanism, and a bad block detection mechanism. The free block mechanism provides efficient sorting of free blocks to facilitate selecting low use blocks for writing. The disk maintenance mechanism provides for the ability to efficiently clean flash memory blocks during processor idle times. The bad block detection mechanism provides the ability to better detect when a block of flash memory is likely to go bad. The flash status mechanism stores information in fast access memory that describes the content and status of the data in the flash disk. The new bank detection mechanism provides the ability to automatically detect when new banks of flash memory are added to the system. Together, these mechanisms provide a flash memory management system that can improve the operational efficiency of systems that utilize flash memory.

  8. Time-Predictable Virtual Memory

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Schoeberl, Martin

    2016-01-01

    Virtual memory is an important feature of modern computer architectures. For hard real-time systems, memory protection is a particularly interesting feature of virtual memory. However, current memory management units are not designed for time-predictability and therefore cannot be used...... in such systems. This paper investigates the requirements on virtual memory from the perspective of hard real-time systems and presents the design of a time-predictable memory management unit. Our evaluation shows that the proposed design can be implemented efficiently. The design allows address translation...... and address range checking in constant time of two clock cycles on a cache miss. This constant time is in strong contrast to the possible cost of a miss in a translation look-aside buffer in traditional virtual memory organizations. Compared to a platform without a memory management unit, these two additional...

  9. Memory effect, resolution, and efficiency measurements of an Al{sub 2}O{sub 3} coated plastic scintillator used for radioxenon detection

    Energy Technology Data Exchange (ETDEWEB)

    Bläckberg, L., E-mail: lisa.blackberg@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Fritioff, T.; Mårtensson, L.; Nielsen, F.; Ringbom, A. [Division of Defence and Security Systems, Swedish Defence Research Agency (FOI), SE-17290 Stockholm (Sweden); Sjöstrand, H.; Klintenberg, M. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2013-06-21

    A cylindrical plastic scintillator cell, used for radioxenon monitoring within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty, has been coated with 425 nm Al{sub 2}O{sub 3} using low temperature Atomic Layer Deposition, and its performance has been evaluated. The motivation is to reduce the memory effect caused by radioxenon diffusing into the plastic scintillator material during measurements, resulting in an elevated detection limit. Measurements with the coated detector show both energy resolution and efficiency comparable to uncoated detectors, and a memory effect reduction of a factor of 1000. Provided that the quality of the detector is maintained for a longer period of time, Al{sub 2}O{sub 3} coatings are believed to be a viable solution to the memory effect problem in question.

  10. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials.

    Science.gov (United States)

    Chan, Jacky Chi-Hung; Lam, Wai Han; Yam, Vivian Wing-Wah

    2014-12-10

    Diarylethene compounds are potential candidates for applications in optical memory storage systems and photoswitchable molecular devices; however, they usually show low photocycloreversion quantum yields, which result in ineffective erasure processes. Here, we present the first highly efficient photochromic silole-containing dithienylethene with excellent thermal stability and fatigue resistance. The photochemical quantum yields for photocyclization and photocycloreversion of the compound are found to be high and comparable to each other; the latter of which is rarely found in diarylethene compounds. These would give rise to highly efficient photoswitchable material with effective writing and erasure processes. Incorporation of the silole moiety as a photochromic dithienylethene backbone also was demonstrated to enhance the thermal stability of the closed form, in which the thermal backward reaction to the open form was found to be negligible even at 100 °C, which leads to a promising candidate for use as photoswitchable materials and optical memory storage.

  11. Parallel External Memory Graph Algorithms

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Goodrich, Michael T.; Sitchinava, Nodari

    2010-01-01

    In this paper, we study parallel I/O efficient graph algorithms in the Parallel External Memory (PEM) model, one o f the private-cache chip multiprocessor (CMP) models. We study the fundamental problem of list ranking which leads to efficient solutions to problems on trees, such as computing lowest...... an optimal speedup of ¿(P) in parallel I/O complexity and parallel computation time, compared to the single-processor external memory counterparts....

  12. Spatial memory enhances the evacuation efficiency of virtual pedestrians under poor visibility condition

    Science.gov (United States)

    Ma, Yi; Lee, Eric Wai Ming; Shi, Meng; Kwok Kit Yuen, Richard

    2018-03-01

    Spatial memory is a critical navigation support tool for disoriented evacuees during evacuation under adverse environmental conditions such as dark or smoky conditions. Owing to the complexity of memory, it is challenging to understand the effect of spatial memory on pedestrian evacuation quantitatively. In this study, we propose a simple method to quantitatively represent the evacueeʼs spatial memory about the emergency exit, model the evacuation of pedestrians under the guidance of the spatial memory, and investigate the effect of the evacueeʼs spatial memory on the evacuation from theoretical and physical perspectives. The result shows that (i) a good memory can significantly assist the evacuation of pedestrians under poor visibility conditions, and the evacuation can always succeed when the degree of the memory exceeds a threshold (\\varphi > 0.5); (ii) the effect of memory is superior to that of “follow-the-crowd” under the same environmental conditions; (iii) in the case of multiple exits, the difference in the degree of the memory between evacuees has a significant effect (the greater the difference, the faster the evacuation) for the evacuation under poor visibility conditions. Our study provides a new quantitative insight into the effect of spatial memory on crowd evacuation under poor visibility conditions. Project supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. 11203615).

  13. Only "efficient" emotional stimuli affect the content of working memory during free-recollection from natural scenes.

    Science.gov (United States)

    Buttafuoco, Arianna; Pedale, Tiziana; Buchanan, Tony W; Santangelo, Valerio

    2018-02-01

    Emotional events are thought to have privileged access to attention and memory, consuming resources needed to encode competing emotionally neutral stimuli. However, it is not clear whether this detrimental effect is automatic or depends on the successful maintenance of the specific emotional object within working memory. Here, participants viewed everyday scenes including an emotional object among other neutral objects followed by a free-recollection task. Results showed that emotional objects-irrespective of their perceptual saliency-were recollected more often than neutral objects. The probability of being recollected increased as a function of the arousal of the emotional objects, specifically for negative objects. Successful recollection of emotional objects (positive or negative) from a scene reduced the overall number of recollected neutral objects from the same scene. This indicates that only emotional stimuli that are efficient in grabbing (and then consuming) available attentional resources play a crucial role during the encoding of competing information, with a subsequent bias in the recollection of neutral representations.

  14. Searching while loaded: Visual working memory does not interfere with hybrid search efficiency but hybrid search uses working memory capacity.

    Science.gov (United States)

    Drew, Trafton; Boettcher, Sage E P; Wolfe, Jeremy M

    2016-02-01

    In "hybrid search" tasks, such as finding items on a grocery list, one must search the scene for targets while also searching the list in memory. How is the representation of a visual item compared with the representations of items in the memory set? Predominant theories would propose a role for visual working memory (VWM) either as the site of the comparison or as a conduit between visual and memory systems. In seven experiments, we loaded VWM in different ways and found little or no effect on hybrid search performance. However, the presence of a hybrid search task did reduce the measured capacity of VWM by a constant amount regardless of the size of the memory or visual sets. These data are broadly consistent with an account in which VWM must dedicate a fixed amount of its capacity to passing visual representations to long-term memory for comparison to the items in the memory set. The data cast doubt on models in which the search template resides in VWM or where memory set item representations are moved from LTM through VWM to earlier areas for comparison to visual items.

  15. Memory dynamics under stress.

    Science.gov (United States)

    Quaedflieg, Conny W E M; Schwabe, Lars

    2018-03-01

    Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

  16. PIMS: Memristor-Based Processing-in-Memory-and-Storage.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeanine

    2018-02-01

    Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energy efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.

  17. Efficient implementation of a multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    Science.gov (United States)

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2008-01-01

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  18. Main-Memory Operation Buffering for Efficient R-Tree Update

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Saltenis, Simonas; Biveinis, Laurynas

    2007-01-01

    the buffering of update operations in main memory as well as the grouping of operations to reduce disk I/O. In particular, operations are performed in bulk so that multiple operations are able to share I/O. The paper presents an analytical cost model that is shown to be accurate by empirical studies...... the main memory that is indeed available, or do not support some of the standard index operations. Assuming a setting where the index updates need not be written to disk immediately, we propose an R-tree-based indexing technique that does not exhibit any of these drawbacks. This technique exploits...

  19. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons

    Science.gov (United States)

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp

    2017-08-01

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.

  20. Examining the Relative Contribution of Memory Updating, Attention Focus Switching, and Sustained Attention to Children’s Verbal Working Memory Span

    OpenAIRE

    Beula M. Magimairaj; James W. Montgomery

    2013-01-01

    Whereas considerable developmental memory research has examined the contributions of short-term memory, processing efficiency, retention duration, and scope of attention to complex memory span, little is known about the influence of controlled attention. The present study investigated the relative influence of three understudied attention mechanisms on the verbal working memory span of school-age children: memory updating; attention focus switching; and sustained attention. Results of general...

  1. Inefficiency of Data Storing in Physical Memory

    OpenAIRE

    Kamaruddin Malik Mohamad; Sapiee Haji Jamel; Mustafa Mat Deris

    2009-01-01

    Memory forensic is important in digital investigation. The forensic is based on the data stored in physical memory that involve memory management and processing time. However, the current forensic tools do not consider the efficiency in terms of storage management and the processing time. This paper shows the high redundancy of data found in the physical memory that cause inefficiency in processing time and memory management. The experiment is done using Borland C compile...

  2. Long - Memory Persistence in African Stock Markets

    Directory of Open Access Journals (Sweden)

    Emmanuel Numapau Gyamfi

    2016-05-01

    Full Text Available Emerging stock markets are said to become efficient with time. This study seeks to investigate this assertion by analyzing long - memory persistence in 8 African stock markets covering the period from 28 August 2000 to 28 August 2015. The Hurst exponent is used as our efficiency measure which is evaluated by the Detrended Fluctuation Analysis (DFA. Our findings show strong evidence of long - memory persistence in the markets studied therefore violating the weak - form Efficient Market Hypothesis (EMH.

  3. Memory architecture for efficient utilization of SDRAM: a case study of the computation/memory access trade-off

    DEFF Research Database (Denmark)

    Gleerup, Thomas Møller; Holten-Lund, Hans Erik; Madsen, Jan

    2000-01-01

    . In software, forward differencing is usually better, but in this hardware implementation, the trade-off has made it possible to develop a very regular memory architecture with a buffering system, which can reach 95% bandwidth utilization using off-the-shelf SDRAM, This is achieved by changing the algorithm......This paper discusses the trade-off between calculations and memory accesses in a 3D graphics tile renderer for visualization of data from medical scanners. The performance requirement of this application is a frame rate of 25 frames per second when rendering 3D models with 2 million triangles, i...... to use a memory access strategy with write-only and read-only phases, and a buffering system, which uses round-robin bank write-access combined with burst read-access....

  4. Constructive memory: past and future.

    Science.gov (United States)

    Schacter, Daniel L

    2012-03-01

    Human memory is not a literal reproduction of the past, but instead relies on constructive processes that are sometimes prone to error and distortion. Understanding of constructive memory has accelerated during recent years as a result of research that has linked together its cognitive and neural bases. This article focuses on three aspects of constructive memory that have been the target of recent research: (i) the idea that certain kinds of memory distortions reflect the operation of adaptive cognitive processes that contribute to the efficient functioning of memory; (ii) the role of a constructive memory system in imagining or simulating possible future events; and (iii) differences between true and false memories that have been revealed by functional neuroimaging techniques. The article delineates the theoretical implications of relevant research, and also considers some clinical and applied implications.

  5. Carbon nanomaterials for non-volatile memories

    Science.gov (United States)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  6. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems.

    Science.gov (United States)

    Shehzad, Danish; Bozkuş, Zeki

    2016-01-01

    Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  7. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems

    Directory of Open Access Journals (Sweden)

    Danish Shehzad

    2016-01-01

    Full Text Available Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.

  8. A highly efficient parallel algorithm for solving the neutron diffusion nodal equations on shared-memory computers

    International Nuclear Information System (INIS)

    Azmy, Y.Y.; Kirk, B.L.

    1990-01-01

    Modern parallel computer architectures offer an enormous potential for reducing CPU and wall-clock execution times of large-scale computations commonly performed in various applications in science and engineering. Recently, several authors have reported their efforts in developing and implementing parallel algorithms for solving the neutron diffusion equation on a variety of shared- and distributed-memory parallel computers. Testing of these algorithms for a variety of two- and three-dimensional meshes showed significant speedup of the computation. Even for very large problems (i.e., three-dimensional fine meshes) executed concurrently on a few nodes in serial (nonvector) mode, however, the measured computational efficiency is very low (40 to 86%). In this paper, the authors present a highly efficient (∼85 to 99.9%) algorithm for solving the two-dimensional nodal diffusion equations on the Sequent Balance 8000 parallel computer. Also presented is a model for the performance, represented by the efficiency, as a function of problem size and the number of participating processors. The model is validated through several tests and then extrapolated to larger problems and more processors to predict the performance of the algorithm in more computationally demanding situations

  9. Giant voltage manipulation of MgO-based magnetic tunnel junctions via localized anisotropic strain: A potential pathway to ultra-energy-efficient memory technology

    Science.gov (United States)

    Zhao, Zhengyang; Jamali, Mahdi; D'Souza, Noel; Zhang, Delin; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha; Wang, Jian-Ping

    2016-08-01

    Voltage control of magnetization via strain in piezoelectric/magnetostrictive systems is a promising mechanism to implement energy-efficient straintronic memory devices. Here, we demonstrate giant voltage manipulation of MgO magnetic tunnel junctions (MTJ) on a Pb(Mg1/3Nb2/3)0.7Ti0.3O3 piezoelectric substrate with (001) orientation. It is found that the magnetic easy axis, switching field, and the tunnel magnetoresistance (TMR) of the MTJ can be efficiently controlled by strain from the underlying piezoelectric layer upon the application of a gate voltage. Repeatable voltage controlled MTJ toggling between high/low-resistance states is demonstrated. More importantly, instead of relying on the intrinsic anisotropy of the piezoelectric substrate to generate the required strain, we utilize anisotropic strain produced using a local gating scheme, which is scalable and amenable to practical memory applications. Additionally, the adoption of crystalline MgO-based MTJ on piezoelectric layer lends itself to high TMR in the strain-mediated MRAM devices.

  10. An ultra-low-power area-efficient non-volatile memory in a 0.18 μm single-poly CMOS process for passive RFID tags

    International Nuclear Information System (INIS)

    Jia Xiaoyun; Feng Peng; Zhang Shengguang; Wu Nanjian; Zhao Baiqin; Liu Su

    2013-01-01

    This paper presents an ultra-low-power area-efficient non-volatile memory (NVM) in a 0.18 μm single-poly standard CMOS process for passive radio frequency identification (RFID) tags. In the memory cell, a novel low-power operation method is proposed to realize bi-directional Fowler—Nordheim tunneling during write operation. Furthermore, the cell is designed with PMOS transistors and coupling capacitors to minimize its area. In order to improve its reliability, the cell consists of double floating gates to store the data, and the 1 kbit NVM was implemented in a 0.18 μm single-poly standard CMOS process. The area of the memory cell and 1 kbit memory array is 96 μm 2 and 0.12 mm 2 , respectively. The measured results indicate that the program/erase voltage ranges from 5 to 6 V The power consumption of the read/write operation is 0.19 μW/0.69 μW at a read/write rate of (268 kb/s)/(3.0 kb/s). (semiconductor integrated circuits)

  11. Spatial working memory load affects counting but not subitizing in enumeration.

    Science.gov (United States)

    Shimomura, Tomonari; Kumada, Takatsune

    2011-08-01

    The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.

  12. A comparison between swallowing sounds and vibrations in patients with dysphagia

    Science.gov (United States)

    Movahedi, Faezeh; Kurosu, Atsuko; Coyle, James L.; Perera, Subashan

    2017-01-01

    The cervical auscultation refers to the observation and analysis of sounds or vibrations captured during swallowing using either a stethoscope or acoustic/vibratory detectors. Microphones and accelerometers have recently become two common sensors used in modern cervical auscultation methods. There are open questions about whether swallowing signals recorded by these two sensors provide unique or complementary information about swallowing function; or whether they present interchangeable information. The aim of this study is to present a broad comparison of swallowing signals recorded by a microphone and a tri-axial accelerometer from 72 patients (mean age 63.94 ± 12.58 years, 42 male, 30 female), who underwent videofluoroscopic examination. The participants swallowed one or more boluses of thickened liquids of different consistencies, including thin liquids, nectar-thick liquids, and pudding. A comfortable self-selected volume from a cup or a controlled volume by the examiner from a 5ml spoon was given to the participants. A comprehensive set of features was extracted in time, information-theoretic, and frequency domains from each of 881 swallows presented in this study. The swallowing sounds exhibited significantly higher frequency content and kurtosis values than the swallowing vibrations. In addition, the Lempel-Ziv complexity was lower for swallowing sounds than those for swallowing vibrations. To conclude, information provided by microphones and accelerometers about swallowing function are unique and these two transducers are not interchangeable. Consequently, the selection of transducer would be a vital step in future studies. PMID:28495001

  13. Super-activating Quantum Memory with Entanglement

    OpenAIRE

    Guan, Ji; Feng, Yuan; Ying, Mingsheng

    2017-01-01

    Noiseless subsystems were proved to be an efficient and faithful approach to preserve fragile information against decoherence in quantum information processing and quantum computation. They were employed to design a general (hybrid) quantum memory cell model that can store both quantum and classical information. In this Letter, we find an interesting new phenomenon that the purely classical memory cell can be super-activated to preserve quantum states, whereas the null memory cell can only be...

  14. A performance evaluation of in-memory databases

    Directory of Open Access Journals (Sweden)

    Abdullah Talha Kabakus

    2017-10-01

    Full Text Available The popularity of NoSQL databases has increased due to the need of (1 processing vast amount of data faster than the relational database management systems by taking the advantage of highly scalable architecture, (2 flexible (schema-free data structure, and, (3 low latency and high performance. Despite that memory usage is not major criteria to evaluate performance of algorithms, since these databases serve the data from memory, their memory usages are also experimented alongside the time taken to complete each operation in the paper to reveal which one uses the memory most efficiently. Currently there exists over 225 NoSQL databases that provide different features and characteristics. So it is necessary to reveal which one provides better performance for different data operations. In this paper, we experiment the widely used in-memory databases to measure their performance in terms of (1 the time taken to complete operations, and (2 how efficiently they use memory during operations. As per the results reported in this paper, there is no database that provides the best performance for all data operations. It is also proved that even though a RDMS stores its data in memory, its overall performance is worse than NoSQL databases.

  15. Noise reduction in optically controlled quantum memory

    Science.gov (United States)

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2018-05-01

    Quantum memory is an essential tool for quantum communications systems and quantum computers. An important category of quantum memory, called optically controlled quantum memory, uses a strong classical beam to control the storage and re-emission of a single-photon signal through an atomic ensemble. In this type of memory, the residual light from the strong classical control beam can cause severe noise and degrade the system performance significantly. Efficiently suppressing this noise is a requirement for the successful implementation of optically controlled quantum memories. In this paper, we briefly introduce the latest and most common approaches to quantum memory and review the various noise-reduction techniques used in implementing them.

  16. Models of Working Memory

    National Research Council Canada - National Science Library

    Miyake, Akira

    1997-01-01

    .... Understanding the mechanisms and structures underlying working memory is, hence, one of the most important scientific issues that need to be addressed to improve the efficiency and performance...

  17. Memory detection 2.0: the first web-based memory detection test.

    Science.gov (United States)

    Kleinberg, Bennett; Verschuere, Bruno

    2015-01-01

    There is accumulating evidence that reaction times (RTs) can be used to detect recognition of critical (e.g., crime) information. A limitation of this research base is its reliance upon small samples (average n = 24), and indications of publication bias. To advance RT-based memory detection, we report upon the development of the first web-based memory detection test. Participants in this research (Study1: n = 255; Study2: n = 262) tried to hide 2 high salient (birthday, country of origin) and 2 low salient (favourite colour, favourite animal) autobiographical details. RTs allowed to detect concealed autobiographical information, and this, as predicted, more successfully so than error rates, and for high salient than for low salient items. While much remains to be learned, memory detection 2.0 seems to offer an interesting new platform to efficiently and validly conduct RT-based memory detection research.

  18. Memory detection 2.0: the first web-based memory detection test.

    Directory of Open Access Journals (Sweden)

    Bennett Kleinberg

    Full Text Available There is accumulating evidence that reaction times (RTs can be used to detect recognition of critical (e.g., crime information. A limitation of this research base is its reliance upon small samples (average n = 24, and indications of publication bias. To advance RT-based memory detection, we report upon the development of the first web-based memory detection test. Participants in this research (Study1: n = 255; Study2: n = 262 tried to hide 2 high salient (birthday, country of origin and 2 low salient (favourite colour, favourite animal autobiographical details. RTs allowed to detect concealed autobiographical information, and this, as predicted, more successfully so than error rates, and for high salient than for low salient items. While much remains to be learned, memory detection 2.0 seems to offer an interesting new platform to efficiently and validly conduct RT-based memory detection research.

  19. Battling memory requirements of array programming through streaming

    DEFF Research Database (Denmark)

    Kristensen, Mads Ruben Burgdorff; Avery, James Emil; Blum, Troels

    2016-01-01

    A barrier to efficient array programming, for example in Python/NumPy, is that algorithms written as pure array operations completely without loops, while most efficient on small input, can lead to explosions in memory use. The present paper presents a solution to this problem using array streaming......, implemented in the automatic parallelization high-performance framework Bohrium. This makes it possible to use array programming in Python/NumPy code directly, even when the apparent memory requirement exceeds the machine capacity, since the automatic streaming eliminates the temporary memory overhead...... by performing calculations in per-thread registers. Using Bohrium, we automatically fuse, JIT-compile, and execute NumPy array operations on GPGPUs without modification to the user programs. We present performance evaluations of three benchmarks, all of which show dramatic reductions in memory use from...

  20. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design

    OpenAIRE

    Rhu, Minsoo; Gimelshein, Natalia; Clemons, Jason; Zulfiqar, Arslan; Keckler, Stephen W.

    2016-01-01

    The most widely used machine learning frameworks require users to carefully tune their memory usage so that the deep neural network (DNN) fits into the DRAM capacity of a GPU. This restriction hampers a researcher's flexibility to study different machine learning algorithms, forcing them to either use a less desirable network architecture or parallelize the processing across multiple GPUs. We propose a runtime memory manager that virtualizes the memory usage of DNNs such that both GPU and CPU...

  1. External Memory Pipelining Made Easy With TPIE

    OpenAIRE

    Arge, Lars; Rav, Mathias; Svendsen, Svend C.; Truelsen, Jakob

    2017-01-01

    When handling large datasets that exceed the capacity of the main memory, movement of data between main memory and external memory (disk), rather than actual (CPU) computation time, is often the bottleneck in the computation. Since data is moved between disk and main memory in large contiguous blocks, this has led to the development of a large number of I/O-efficient algorithms that minimize the number of such block movements. TPIE is one of two major libraries that have been developed to sup...

  2. Customizable Memory Schemes for Data Parallel Architectures

    NARCIS (Netherlands)

    Gou, C.

    2011-01-01

    Memory system efficiency is crucial for any processor to achieve high performance, especially in the case of data parallel machines. Processing capabilities of parallel lanes will be wasted, when data requests are not accomplished in a sustainable and timely manner. Irregular vector memory accesses

  3. Memory-efficient calculations of adjoint-weighted tallies by the Monte Carlo Wielandt method

    International Nuclear Information System (INIS)

    Choi, Sung Hoon; Shim, Hyung Jin

    2016-01-01

    Highlights: • The MC Wielandt method is applied to reduce memory for the adjoint estimation. • The adjoint-weighted kinetics parameters are estimated in the MC Wielandt calculations. • The MC S/U analyses are conducted in the MC Wielandt calculations. - Abstract: The current Monte Carlo (MC) adjoint-weighted tally techniques based on the iterated fission probability (IFP) concept require a memory amount which is proportional to the numbers of the adjoint-weighted tallies and histories per cycle to store history-wise tally estimates during the convergence of the adjoint flux. Especially the conventional MC adjoint-weighted perturbation (AWP) calculations for the nuclear data sensitivity and uncertainty (S/U) analysis suffer from the huge memory consumption to realize the IFP concept. In order to reduce the memory requirement drastically, we present a new adjoint estimation method in which the memory usage is irrelevant to the numbers of histories per cycle by applying the IFP concept for the MC Wielandt calculations. The new algorithms for the adjoint-weighted kinetics parameter estimation and the AWP calculations in the MC Wielandt method are implemented in a Seoul National University MC code, McCARD and its validity is demonstrated in critical facility problems. From the comparison of the nuclear data S/U analyses, it is demonstrated that the memory amounts to store the sensitivity estimates in the proposed method become negligibly small.

  4. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    Science.gov (United States)

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  5. Memory for conversation and the development of common ground.

    Science.gov (United States)

    McKinley, Geoffrey L; Brown-Schmidt, Sarah; Benjamin, Aaron S

    2017-11-01

    Efficient conversation is guided by the mutual knowledge, or common ground, that interlocutors form as a conversation progresses. Characterized from the perspective of commonly used measures of memory, efficient conversation should be closely associated with item memory-what was said-and context memory-who said what to whom. However, few studies have explicitly probed memory to evaluate what type of information is maintained following a communicative exchange. The current study examined how item and context memory relate to the development of common ground over the course of a conversation, and how these forms of memory vary as a function of one's role in a conversation as speaker or listener. The process of developing common ground was positively related to both item and context memory. In addition, content that was spoken was remembered better than content that was heard. Our findings illustrate how memory assessments can complement language measures by revealing the impact that basic conversational processes have on memory for what has been discussed. By taking this approach, we show that not only does the process of forming common ground facilitate communication in the present, but it also promotes an enduring record of that event, facilitating conversation into the future.

  6. Fast Magnetoresistive Random-Access Memory

    Science.gov (United States)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1991-01-01

    Magnetoresistive binary digital memories of proposed new type expected to feature high speed, nonvolatility, ability to withstand ionizing radiation, high density, and low power. In memory cell, magnetoresistive effect exploited more efficiently by use of ferromagnetic material to store datum and adjacent magnetoresistive material to sense datum for readout. Because relative change in sensed resistance between "zero" and "one" states greater, shorter sampling and readout access times achievable.

  7. Examining the Relative Contribution of Memory Updating, Attention Focus Switching, and Sustained Attention to Children’s Verbal Working Memory Span

    Directory of Open Access Journals (Sweden)

    Beula M. Magimairaj

    2013-01-01

    Full Text Available Whereas considerable developmental memory research has examined the contributions of short-term memory, processing efficiency, retention duration, and scope of attention to complex memory span, little is known about the influence of controlled attention. The present study investigated the relative influence of three understudied attention mechanisms on the verbal working memory span of school-age children: memory updating; attention focus switching; and sustained attention. Results of general linear modeling revealed that, after controlling for age, only updating accuracy emerged as a significant predictor of verbal working memory span. Memory updating speed (that subsumed attention focus switching speed also contributed but was mediated by age. The results extend the developmental memory literature by implicating the mechanism of memory updating and developmental improvement in speed of attention focus switching and updating as critical contributors to children’s verbal working memory. Theoretically, the results provide substantively new information about the role of domain-general executive attention in children’s verbal working memory.

  8. Towards Terabit Memories

    Science.gov (United States)

    Hoefflinger, Bernd

    Memories have been the major yardstick for the continuing validity of Moore's law. In single-transistor-per-Bit dynamic random-access memories (DRAM), the number of bits per chip pretty much gives us the number of transistors. For decades, DRAM's have offered the largest storage capacity per chip. However, DRAM does not scale any longer, both in density and voltage, severely limiting its power efficiency to 10 fJ/b. A differential DRAM would gain four-times in density and eight-times in energy. Static CMOS RAM (SRAM) with its six transistors/cell is gaining in reputation because it scales well in cell size and operating voltage so that its fundamental advantage of speed, non-destructive read-out and low-power standby could lead to just 2.5 electrons/bit in standby and to a dynamic power efficiency of 2aJ/b. With a projected 2020 density of 16 Gb/cm², the SRAM would be as dense as normal DRAM and vastly better in power efficiency, which would mean a major change in the architecture and market scenario for DRAM versus SRAM. Non-volatile Flash memory have seen two quantum jumps in density well beyond the roadmap: Multi-Bit storage per transistor and high-density TSV (through-silicon via) technology. The number of electrons required per Bit on the storage gate has been reduced since their first realization in 1996 by more than an order of magnitude to 400 electrons/Bit in 2010 for a complexity of 32Gbit per chip at the 32 nm node. Chip stacking of eight chips with TSV has produced a 32GByte solid-state drive (SSD). A stack of 32 chips with 2 b/cell at the 16 nm node will reach a density of 2.5 Terabit/cm². Non-volatile memory with a density of 10 × 10 nm²/Bit is the target for widespread development. Phase-change memory (PCM) and resistive memory (RRAM) lead in cell density, and they will reach 20 Gb/cm² in 2D and higher with 3D chip stacking. This is still almost an order-of-magnitude less than Flash. However, their read-out speed is ~10-times faster, with as yet

  9. Brain oscillatory substrates of visual short-term memory capacity.

    Science.gov (United States)

    Sauseng, Paul; Klimesch, Wolfgang; Heise, Kirstin F; Gruber, Walter R; Holz, Elisa; Karim, Ahmed A; Glennon, Mark; Gerloff, Christian; Birbaumer, Niels; Hummel, Friedhelm C

    2009-11-17

    The amount of information that can be stored in visual short-term memory is strictly limited to about four items. Therefore, memory capacity relies not only on the successful retention of relevant information but also on efficient suppression of distracting information, visual attention, and executive functions. However, completely separable neural signatures for these memory capacity-limiting factors remain to be identified. Because of its functional diversity, oscillatory brain activity may offer a utile solution. In the present study, we show that capacity-determining mechanisms, namely retention of relevant information and suppression of distracting information, are based on neural substrates independent of each other: the successful maintenance of relevant material in short-term memory is associated with cross-frequency phase synchronization between theta (rhythmical neural activity around 5 Hz) and gamma (> 50 Hz) oscillations at posterior parietal recording sites. On the other hand, electroencephalographic alpha activity (around 10 Hz) predicts memory capacity based on efficient suppression of irrelevant information in short-term memory. Moreover, repetitive transcranial magnetic stimulation at alpha frequency can modulate short-term memory capacity by influencing the ability to suppress distracting information. Taken together, the current study provides evidence for a double dissociation of brain oscillatory correlates of visual short-term memory capacity.

  10. Working Memory Intervention: A Reading Comprehension Approach

    Science.gov (United States)

    Perry, Tracy L.; Malaia, Evguenia

    2013-01-01

    For any complex mental task, people rely on working memory. Working memory capacity (WMC) is one predictor of success in learning. Historically, attempts to improve verbal WM through training have not been effective. This study provided elementary students with WM consolidation efficiency training to answer the question, Can reading comprehension…

  11. Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chun-Yi [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-16

    By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitive or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access

  12. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses.

    Directory of Open Access Journals (Sweden)

    Maria Abildgaard Steffensen

    Full Text Available Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii. To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.

  13. Nonfractional Memory: Filtering, Antipersistence, and Forecasting

    DEFF Research Database (Denmark)

    Vera-Valdés, J. Eduardo

    The fractional difference operator remains to be the most popular mechanism to generate long memory due to the existence of efficient algorithms for their simulation and forecasting. Nonetheless, there is no theoretical argument linking the fractional difference operator with the presence of long....... Pointedly, while the autocorrelations for the fractional difference operator are negative for negative degrees of memory by construction, this restriction does not apply to the cross-sectional aggregated scheme. We show that this has implications for long memory tests in the frequency domain, which...... memory in real data. In this regard, one of the most predominant theoretical explanations for the presence of long memory is cross-sectional aggregation of persistent micro units. Yet, the type of processes obtained by cross-sectional aggregation differs from the one due to fractional differencing. Thus...

  14. A stacked memory device on logic 3D technology for ultra-high-density data storage

    International Nuclear Information System (INIS)

    Kim, Jiyoung; Hong, Augustin J; Kim, Sung Min; Shin, Kyeong-Sik; Song, Emil B; Hwang, Yongha; Xiu, Faxian; Galatsis, Kosmas; Chui, Chi On; Candler, Rob N; Wang, Kang L; Choi, Siyoung; Moon, Joo-Tae

    2011-01-01

    We have demonstrated, for the first time, a novel three-dimensional (3D) memory chip architecture of stacked-memory-devices-on-logic (SMOL) achieving up to 95% of cell-area efficiency by directly building up memory devices on top of front-end CMOS devices. In order to realize the SMOL, a unique 3D Flash memory device and vertical integration structure have been successfully developed. The SMOL architecture has great potential to achieve tera-bit level memory density by stacking memory devices vertically and maximizing cell-area efficiency. Furthermore, various emerging devices could replace the 3D memory device to develop new 3D chip architectures.

  15. A stacked memory device on logic 3D technology for ultra-high-density data storage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jiyoung; Hong, Augustin J; Kim, Sung Min; Shin, Kyeong-Sik; Song, Emil B; Hwang, Yongha; Xiu, Faxian; Galatsis, Kosmas; Chui, Chi On; Candler, Rob N; Wang, Kang L [Device Research Laboratory, Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Choi, Siyoung; Moon, Joo-Tae, E-mail: hbt100@ee.ucla.edu [Advanced Technology Development Team and Process Development Team, Memory R and D Center, Samsung Electronics Co. Ltd (Korea, Republic of)

    2011-06-24

    We have demonstrated, for the first time, a novel three-dimensional (3D) memory chip architecture of stacked-memory-devices-on-logic (SMOL) achieving up to 95% of cell-area efficiency by directly building up memory devices on top of front-end CMOS devices. In order to realize the SMOL, a unique 3D Flash memory device and vertical integration structure have been successfully developed. The SMOL architecture has great potential to achieve tera-bit level memory density by stacking memory devices vertically and maximizing cell-area efficiency. Furthermore, various emerging devices could replace the 3D memory device to develop new 3D chip architectures.

  16. All-printed paper memory

    KAUST Repository

    Lien, Derhsien

    2014-08-26

    We report the memory device on paper by means of an all-printing approach. Using a sequence of inkjet and screen-printing techniques, a simple metal-insulator-metal device structure is fabricated on paper as a resistive random access memory with a potential to reach gigabyte capacities on an A4 paper. The printed-paper-based memory devices (PPMDs) exhibit reproducible switching endurance, reliable retention, tunable memory window, and the capability to operate under extreme bending conditions. In addition, the PBMD can be labeled on electronics or living objects for multifunctional, wearable, on-skin, and biocompatible applications. The disposability and the high-security data storage of the paper-based memory are also demonstrated to show the ease of data handling, which are not achievable for regular silicon-based electronic devices. We envision that the PPMDs manufactured by this cost-effective and time-efficient all-printing approach would be a key electronic component to fully activate a paper-based circuit and can be directly implemented in medical biosensors, multifunctional devices, and self-powered systems. © 2014 American Chemical Society.

  17. Disorders of working memory and selected cognitive processes inpatients treated for paranoid schizophrenia

    Directory of Open Access Journals (Sweden)

    Damian Giętkowski

    2012-03-01

    Full Text Available Already since the times of Baddeley and Hitch the dorsolateral part of the frontal lobe was regarded as the function‑ al centre of the working memory. Working memory disorders are, on the other hand, one of the basic and consoli‑ dated disorders in the course of paranoid schizophrenia. The concept of neurodevelopmental schizophrenia com‑ bines these elements and associates the illness with the changes occurring in the brain in the prenatal period. The efficiency of the working memory system, which acts as a buffer manipulating with the possessed and inflowing information, influences the quality of other cognitive processes, such as long‑term memory, short‑term memory, con‑ centration and thinking. A study was performed on two groups: one experimental consisting of 31 people suffering from paranoid schizophrenia and one control group of 31 healthy people. In both groups a replica of Wisconsin Card Sorting Task was used in order to measure the efficiency of the working memory and selected tests from WAIS‑R (PL: the Polish adaptation of Wechsler Adult Intelligence Scale to assess the functioning of concentration, memory and thinking. The results of the study showed that in the experimental group the efficiency of the working memory is very low and that the illness affects the performance of concentration, memory and thinking. Moreover the tests proved that the working memory disorder increases with time.

  18. Efficient implementations of block sparse matrix operations on shared memory vector machines

    International Nuclear Information System (INIS)

    Washio, T.; Maruyama, K.; Osoda, T.; Doi, S.; Shimizu, F.

    2000-01-01

    In this paper, we propose vectorization and shared memory-parallelization techniques for block-type random sparse matrix operations in finite element (FEM) applications. Here, a block corresponds to unknowns on one node in the FEM mesh and we assume that the block size is constant over the mesh. First, we discuss some basic vectorization ideas (the jagged diagonal (JAD) format and the segmented scan algorithm) for the sparse matrix-vector product. Then, we extend these ideas to the shared memory parallelization. After that, we show that the techniques can be applied not only to the sparse matrix-vector product but also to the sparse matrix-matrix product, the incomplete or complete sparse LU factorization and preconditioning. Finally, we report the performance evaluation results obtained on an NEC SX-4 shared memory vector machine for linear systems in some FEM applications. (author)

  19. Teuchos C++ memory management classes, idioms, and related topics, the complete reference : a comprehensive strategy for safe and efficient memory management in C++ for high performance computing.

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, Roscoe Ainsworth

    2010-05-01

    The ubiquitous use of raw pointers in higher-level code is the primary cause of all memory usage problems and memory leaks in C++ programs. This paper describes what might be considered a radical approach to the problem which is to encapsulate the use of all raw pointers and all raw calls to new and delete in higher-level C++ code. Instead, a set of cooperating template classes developed in the Trilinos package Teuchos are used to encapsulate every use of raw C++ pointers in every use case where it appears in high-level code. Included in the set of memory management classes is the typical reference-counted smart pointer class similar to boost::shared ptr (and therefore C++0x std::shared ptr). However, what is missing in boost and the new standard library are non-reference counted classes for remaining use cases where raw C++ pointers would need to be used. These classes have a debug build mode where nearly all programmer errors are caught and gracefully reported at runtime. The default optimized build mode strips all runtime checks and allows the code to perform as efficiently as raw C++ pointers with reasonable usage. Also included is a novel approach for dealing with the circular references problem that imparts little extra overhead and is almost completely invisible to most of the code (unlike the boost and therefore C++0x approach). Rather than being a radical approach, encapsulating all raw C++ pointers is simply the logical progression of a trend in the C++ development and standards community that started with std::auto ptr and is continued (but not finished) with std::shared ptr in C++0x. Using the Teuchos reference-counted memory management classes allows one to remove unnecessary constraints in the use of objects by removing arbitrary lifetime ordering constraints which are a type of unnecessary coupling [23]. The code one writes with these classes will be more likely to be correct on first writing, will be less likely to contain silent (but deadly) memory

  20. External Memory Planar Point Location with Logarithmic Updates

    DEFF Research Database (Denmark)

    Arge, Lars; Brodal, Gerth Stølting; Satti, Srinivasa Rao

    2008-01-01

    Point location is an extremely well-studied problem both in internal memory models and recently also in the external memory model. In this paper, we present an I/O-efficient dynamic data structure for point location in general planar subdivisions. Our structure uses linear space to store...

  1. Application of source biasing technique for energy efficient DECODER circuit design: memory array application

    Science.gov (United States)

    Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav

    2018-04-01

    Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.

  2. Distributed-Memory Fast Maximal Independent Set

    Energy Technology Data Exchange (ETDEWEB)

    Kanewala Appuhamilage, Thejaka Amila J.; Zalewski, Marcin J.; Lumsdaine, Andrew

    2017-09-13

    The Maximal Independent Set (MIS) graph problem arises in many applications such as computer vision, information theory, molecular biology, and process scheduling. The growing scale of MIS problems suggests the use of distributed-memory hardware as a cost-effective approach to providing necessary compute and memory resources. Luby proposed four randomized algorithms to solve the MIS problem. All those algorithms are designed focusing on shared-memory machines and are analyzed using the PRAM model. These algorithms do not have direct efficient distributed-memory implementations. In this paper, we extend two of Luby’s seminal MIS algorithms, “Luby(A)” and “Luby(B),” to distributed-memory execution, and we evaluate their performance. We compare our results with the “Filtered MIS” implementation in the Combinatorial BLAS library for two types of synthetic graph inputs.

  3. In-memory interconnect protocol configuration registers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  4. In-memory interconnect protocol configuration registers

    Science.gov (United States)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  5. Does high memory load kick task-irrelevant information out of visual working memory?

    Science.gov (United States)

    Yin, Jun; Zhou, Jifan; Xu, Haokui; Liang, Junying; Gao, Zaifeng; Shen, Mowei

    2012-04-01

    The limited capacity of visual working memory (VWM) requires the existence of an efficient information selection mechanism. While it has been shown that under low VWM load, an irrelevant simple feature can be processed, its fate under high load (e.g., six objects) remains unclear. We explored this issue by probing the "irrelevant-change distracting effect," in which the change of a stored irrelevant feature affects performance. Simple colored shapes were used as stimuli, with color as the target. Using a whole-probe method (presenting six objects in both the memory and test arrays), in Experiment 1 we found that a change to one of the six shapes led to a significant distracting effect. Using a partial-probe method (presenting the probe either at the screen center or at a location selected from the memory array), in Experiment 2 we showed the distracting effect again. These results suggest that irrelevant simple features can be stored into VWM, regardless of memory load.

  6. Deterministically entangling multiple remote quantum memories inside an optical cavity

    Science.gov (United States)

    Yan, Zhihui; Liu, Yanhong; Yan, Jieli; Jia, Xiaojun

    2018-01-01

    Quantum memory for the nonclassical state of light and entanglement among multiple remote quantum nodes hold promise for a large-scale quantum network, however, continuous-variable (CV) memory efficiency and entangled degree are limited due to imperfect implementation. Here we propose a scheme to deterministically entangle multiple distant atomic ensembles based on CV cavity-enhanced quantum memory. The memory efficiency can be improved with the help of cavity-enhanced electromagnetically induced transparency dynamics. A high degree of entanglement among multiple atomic ensembles can be obtained by mapping the quantum state from multiple entangled optical modes into a collection of atomic spin waves inside optical cavities. Besides being of interest in terms of unconditional entanglement among multiple macroscopic objects, our scheme paves the way towards the practical application of quantum networks.

  7. Quantum memory Quantum memory

    Science.gov (United States)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    quest for higher efficiency, better fidelity, broader bandwidth, multimode capacity and longer storage lifetime is pursued in all those approaches, as shown in this special issue. The improvement of quantum memory operation specifically requires in-depth study and control of numerous physical processes leading to atomic decoherence. The present issue reflects the development of rare earth ion doped matrices offering long lifetime superposition states, either as bulk crystals or as optical waveguides. The need for quantum sources and high efficiency detectors at the single photon level is also illustrated. Several papers address the networking of quantum memories either in long-haul cryptography or in the prospect of quantum processing. In this context, much attention has been paid recently to interfacing quantum light with superconducting qubits and with nitrogen-vacancy centers in diamond. Finally, the quantum interfacing of light with matter raises questions on entanglement. The last two papers are devoted to the generation of entanglement by dissipative processes. It is shown that long lifetime entanglement may be built in this way. We hope this special issue will help readers to become familiar with the exciting field of ensemble-based quantum memories and will stimulate them to bring deeper insights and new ideas to this area.

  8. A short review of memory research

    Directory of Open Access Journals (Sweden)

    Igor Areh

    2004-09-01

    Full Text Available Scientific research on memory began at the end of 19th century with studies of semantic and/or long term memory. In most cases memory was interpreted as a storehouse for various data and the quality of the storehouse was usually defined by a quantity of recalled data. The research work was concentrated on specificity of the connection between memory and learning. At that time few authors developed theories which were rare, uncommon and before their time (e.g.: Bartlett, Ribot, Freud. Even after 20th century, when behavioural stimulus-response approach began to dominate, the measure of memory quality was still the quantity of memory recall. In the 1960th the rise of cognitive psychology began, the computer metaphor was born and finally the behavioural comprehension of cognitive system was surpassed. Cognitive system was understood as a computer-like interface between an organism and environment. In recent years the computer metaphor is no longer dominant. New and efficient concepts are moving forward. Quantity of data recall, as the measure of memory quality, is not so important any more – attention is focused on accuracy of memory recall.

  9. Efficient Immutable Collections

    NARCIS (Netherlands)

    Steindorfer, M.J.

    2017-01-01

    This thesis proposes novel and efficient data structures, suitable for immutable collection libraries, that carefully balance memory footprint and runtime performance of operations, and are aware of constraints and platform co-design challenges on the Java Virtual Machine (JVM). Collection data

  10. Time-Dependent Behavior of Microvascular Blood Flow and Oxygenation: A Predictor of Functional Outcomes.

    Science.gov (United States)

    Kuliga, Katarzyna Z; Gush, Rodney; Clough, Geraldine F; Chipperfield, Andrew John

    2018-05-01

    This study investigates the time-dependent behaviour and algorithmic complexity of low-frequency periodic oscillations in blood flux (BF) and oxygenation signals from the microvasculature. Microvascular BF and oxygenation (OXY: oxyHb, deoxyHb, totalHb, and SO 2 %) was recorded from 15 healthy young adult males using combined laser Doppler fluximetry and white light spectroscopy with local skin temperature clamped to 33  °C and during local thermal hyperaemia (LTH) at 43 °C. Power spectral density of the BF and OXY signals was evaluated within the frequency range (0.0095-1.6 Hz). Signal complexity was determined using the Lempel-Ziv (LZ) algorithm. Fold increase in BF during LTH was 15.6 (10.3, 22.8) and in OxyHb 4.8 (3.5, 5.9) (median, range). All BF and OXY signals exhibited multiple oscillatory components with clear differences in signal power distribution across frequency bands at 33 and 43 °C. Significant reduction in the intrinsic variability and complexity of the microvascular signals during LTH was found, with mean LZ complexity of BF and OxyHb falling by 25% and 49%, respectively ( ). These results provide corroboration that in human skin microvascular blood flow and oxygenation are influenced by multiple time-varying oscillators that adapt to local influences and become more predictable during increased haemodynamic flow. Recent evidence strongly suggests that the inability of microvascular networks to adapt to an imposed stressor is symptomatic of disease risk which might be assessed via BF and OXY via the combination signal analysis techniques described here.

  11. Nonlinear Recurrent Dynamics and Long-Term Nonstationarities in EEG Alpha Cortical Activity: Implications for Choosing Adequate Segment Length in Nonlinear EEG Analyses.

    Science.gov (United States)

    Cerquera, Alexander; Vollebregt, Madelon A; Arns, Martijn

    2018-03-01

    Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.

  12. Electroencephalography signatures of attention-deficit/hyperactivity disorder: clinical utility

    Directory of Open Access Journals (Sweden)

    Alba G

    2015-10-01

    Full Text Available Guzmán Alba,1 Ernesto Pereda,2 Soledad Mañas,3 Leopoldo D Méndez,3 Almudena González,1 Julián J González1 1Physiology Unit, Health Sciences Faculty (S Medicine, 2Department of Industrial Engineering, School of Engineering and Technology, University of La Laguna, 3Clinical Neurophysiology Unit, University Hospital La Candelaria, Tenerife, Spain Abstract: The techniques and the most important results on the use of electroencephalography (EEG to extract different measures are reviewed in this work, which can be clinically useful to study subjects with attention-deficit/hyperactivity disorder (ADHD. First, we discuss briefly and in simple terms the EEG analysis and processing techniques most used in the context of ADHD. We review techniques that both analyze individual EEG channels (univariate measures and study the statistical interdependence between different EEG channels (multivariate measures, the so-called functional brain connectivity. Among the former ones, we review the classical indices of absolute and relative spectral power and estimations of the complexity of the channels, such as the approximate entropy and the Lempel-Ziv complexity. Among the latter ones, we focus on the magnitude square coherence and on different measures based on the concept of generalized synchronization and its estimation in the state space. Second, from a historical point of view, we present the most important results achieved with these techniques and their clinical utility (sensitivity, specificity, and accuracy to diagnose ADHD. Finally, we propose future research lines based on these results. Keywords: EEG, ADHD, power spectrum, functional connectivity, clinical assessment

  13. Use of a machine learning algorithm to classify expertise: analysis of hand motion patterns during a simulated surgical task.

    Science.gov (United States)

    Watson, Robert A

    2014-08-01

    To test the hypothesis that machine learning algorithms increase the predictive power to classify surgical expertise using surgeons' hand motion patterns. In 2012 at the University of North Carolina at Chapel Hill, 14 surgical attendings and 10 first- and second-year surgical residents each performed two bench model venous anastomoses. During the simulated tasks, the participants wore an inertial measurement unit on the dorsum of their dominant (right) hand to capture their hand motion patterns. The pattern from each bench model task performed was preprocessed into a symbolic time series and labeled as expert (attending) or novice (resident). The labeled hand motion patterns were processed and used to train a Support Vector Machine (SVM) classification algorithm. The trained algorithm was then tested for discriminative/predictive power against unlabeled (blinded) hand motion patterns from tasks not used in the training. The Lempel-Ziv (LZ) complexity metric was also measured from each hand motion pattern, with an optimal threshold calculated to separately classify the patterns. The LZ metric classified unlabeled (blinded) hand motion patterns into expert and novice groups with an accuracy of 70% (sensitivity 64%, specificity 80%). The SVM algorithm had an accuracy of 83% (sensitivity 86%, specificity 80%). The results confirmed the hypothesis. The SVM algorithm increased the predictive power to classify blinded surgical hand motion patterns into expert versus novice groups. With further development, the system used in this study could become a viable tool for low-cost, objective assessment of procedural proficiency in a competency-based curriculum.

  14. Nonlinear analysis of EEGs of patients with major depression during different emotional states.

    Science.gov (United States)

    Akdemir Akar, Saime; Kara, Sadık; Agambayev, Sümeyra; Bilgiç, Vedat

    2015-12-01

    Although patients with major depressive disorder (MDD) have dysfunctions in cognitive behaviors and the regulation of emotions, the underlying brain dynamics of the pathophysiology are unclear. Therefore, nonlinear techniques can be used to understand the dynamic behavior of the EEG signals of MDD patients. To investigate and clarify the dynamics of MDD patients׳ brains during different emotional states, EEG recordings were analyzed using nonlinear techniques. The purpose of the present study was to assess whether there are different EEG complexities that discriminate between MDD patients and healthy controls during emotional processing. Therefore, nonlinear parameters, such as Katz fractal dimension (KFD), Higuchi fractal dimension (HFD), Shannon entropy (ShEn), Lempel-Ziv complexity (LZC) and Kolmogorov complexity (KC), were computed from the EEG signals of two groups under different experimental states: noise (negative emotional content) and music (positive emotional content) periods. First, higher complexity values were generated by MDD patients relative to controls. Significant differences were obtained in the frontal and parietal scalp locations using KFD (pemotional bias was demonstrated by their higher brain complexities during the noise period than the music stimulus. Additionally, we found that the KFD, HFD and LZC values were more sensitive in discriminating between patients and controls than the ShEn and KC measures, according to the results of ANOVA and ROC calculations. It can be concluded that the nonlinear analysis may be a useful and discriminative tool in investigating the neuro-dynamic properties of the brain in patients with MDD during emotional stimulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dynamic memory management for embedded systems

    CERN Document Server

    Atienza Alonso, David; Poucet, Christophe; Peón-Quirós, Miguel; Bartzas, Alexandros; Catthoor, Francky; Soudris, Dimitrios

    2015-01-01

    This book provides a systematic and unified methodology, including basic principles and reusable processes, for dynamic memory management (DMM) in embedded systems.  The authors describe in detail how to design and optimize the use of dynamic memory in modern, multimedia and network applications, targeting the latest generation of portable embedded systems, such as smartphones. Coverage includes a variety of design and optimization topics in electronic design automation of DMM, from high-level software optimization to microarchitecture-level hardware support. The authors describe the design of multi-layer dynamic data structures for the final memory hierarchy layers of the target portable embedded systems and how to create a low-fragmentation, cost-efficient, dynamic memory management subsystem out of configurable components for the particular memory allocation and de-allocation patterns for each type of application.  The design methodology described in this book is based on propagating constraints among de...

  16. Anatomical coupling between distinct metacognitive systems for memory and visual perception.

    Science.gov (United States)

    McCurdy, Li Yan; Maniscalco, Brian; Metcalfe, Janet; Liu, Ka Yuet; de Lange, Floris P; Lau, Hakwan

    2013-01-30

    A recent study found that, across individuals, gray matter volume in the frontal polar region was correlated with visual metacognition capacity (i.e., how well one's confidence ratings distinguish between correct and incorrect judgments). A question arises as to whether the putative metacognitive mechanisms in this region are also used in other metacognitive tasks involving, for example, memory. A novel psychophysical measure allowed us to assess metacognitive efficiency separately in a visual and a memory task, while taking variations in basic task performance capacity into account. We found that, across individuals, metacognitive efficiencies positively correlated between the two tasks. However, voxel-based morphometry analysis revealed distinct brain structures for the two kinds of metacognition. Replicating a previous finding, variation in visual metacognitive efficiency was correlated with volume of frontal polar regions. However, variation in memory metacognitive efficiency was correlated with volume of the precuneus. There was also a weak correlation between visual metacognitive efficiency and precuneus volume, which may account for the behavioral correlation between visual and memory metacognition (i.e., the precuneus may contain common mechanisms for both types of metacognition). However, we also found that gray matter volumes of the frontal polar and precuneus regions themselves correlated across individuals, and a formal model comparison analysis suggested that this structural covariation was sufficient to account for the behavioral correlation of metacognition in the two tasks. These results highlight the importance of the precuneus in higher-order memory processing and suggest that there may be functionally distinct metacognitive systems in the human brain.

  17. Learning and memory performance in a cohort of clinically referred breast cancer survivors: the role of attention versus forgetting in patient-reported memory complaints.

    Science.gov (United States)

    Root, James C; Ryan, Elizabeth; Barnett, Gregory; Andreotti, Charissa; Bolutayo, Kemi; Ahles, Tim

    2015-05-01

    While forgetfulness is widely reported by breast cancer survivors, studies documenting objective memory performance yield mixed, largely inconsistent, results. Failure to find consistent, objective memory issues may be due to the possibility that cancer survivors misattribute their experience of forgetfulness to primary memory issues rather than to difficulties in attention at the time of learning. To clarify potential attention issues, factor scores for Attention Span, Learning Efficiency, Delayed Memory, and Inaccurate Memory were analyzed for the California Verbal Learning Test-Second Edition (CVLT-II) in 64 clinically referred breast cancer survivors with self-reported cognitive complaints; item analysis was conducted to clarify specific contributors to observed effects, and contrasts between learning and recall trials were compared with normative data. Performance on broader cognitive domains is also reported. The Attention Span factor, but not Learning Efficiency, Delayed Memory, or Inaccurate Memory factors, was significantly affected in this clinical sample. Contrasts between trials were consistent with normative data and did not indicate greater loss of information over time than in the normative sample. Results of this analysis suggest that attentional dysfunction may contribute to subjective and objective memory complaints in breast cancer survivors. These results are discussed in the context of broader cognitive effects following treatment for clinicians who may see cancer survivors for assessment. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Can We Efficiently Check Concurrent Programs Under Relaxed Memory Models in Maude?

    DEFF Research Database (Denmark)

    Arrahman, Yehia Abd; Andric, Marina; Beggiato, Alessandro

    2014-01-01

    to the state space explosion. Several techniques have been proposed to mitigate those problems so to make verification under relaxed memory models feasible. We discuss how to adopt some of those techniques in a Maude-based approach to language prototyping, and suggest the use of other techniques that have been......Relaxed memory models offer suitable abstractions of the actual optimizations offered by multi-core architectures and by compilers of concurrent programming languages. Using such abstractions for verification purposes is challenging in part due to their inherent non-determinism which contributes...

  19. Neuroanatomic organization of sound memory in humans.

    Science.gov (United States)

    Kraut, Michael A; Pitcock, Jeffery A; Calhoun, Vince; Li, Juan; Freeman, Thomas; Hart, John

    2006-11-01

    The neural interface between sensory perception and memory is a central issue in neuroscience, particularly initial memory organization following perceptual analyses. We used functional magnetic resonance imaging to identify anatomic regions extracting initial auditory semantic memory information related to environmental sounds. Two distinct anatomic foci were detected in the right superior temporal gyrus when subjects identified sounds representing either animals or threatening items. Threatening animal stimuli elicited signal changes in both foci, suggesting a distributed neural representation. Our results demonstrate both category- and feature-specific responses to nonverbal sounds in early stages of extracting semantic memory information from these sounds. This organization allows for these category-feature detection nodes to extract early, semantic memory information for efficient processing of transient sound stimuli. Neural regions selective for threatening sounds are similar to those of nonhuman primates, demonstrating semantic memory organization for basic biological/survival primitives are present across species.

  20. Efficient packing of patterns in sparse distributed memory by selective weighting of input bits

    Science.gov (United States)

    Kanerva, Pentti

    1991-01-01

    When a set of patterns is stored in a distributed memory, any given storage location participates in the storage of many patterns. From the perspective of any one stored pattern, the other patterns act as noise, and such noise limits the memory's storage capacity. The more similar the retrieval cues for two patterns are, the more the patterns interfere with each other in memory, and the harder it is to separate them on retrieval. A method is described of weighting the retrieval cues to reduce such interference and thus to improve the separability of patterns that have similar cues.

  1. Assessment of attention and memory efficiency in persons with solvent neurotoxicity.

    Science.gov (United States)

    Morrow, L A; Robin, N; Hodgson, M J; Kamis, H

    1992-10-01

    Memory and attention were evaluated in 40 persons with a history of organic solvent exposure and 40 demographically similar controls. Exposed subjects, in comparison to controls, had reduced digit spans, were deficient at learning new information, and recall on a Brown-Peterson distractor test was especially low following a 30-sec interference interval. If original learning was considered, long-term recall was similar for both groups. On a test of sustained attention, the Continuous Performance Test, exposed subjects became less accurate over successive blocks, a pattern opposite to that seen in control subjects. The data suggest that the memory impairment following solvent exposure may result from deficient allocation of attentional resources due to the inability to deal effectively with an increase in processing load.

  2. Contribution of auditory working memory to speech understanding in mandarin-speaking cochlear implant users.

    Science.gov (United States)

    Tao, Duoduo; Deng, Rui; Jiang, Ye; Galvin, John J; Fu, Qian-Jie; Chen, Bing

    2014-01-01

    To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users. Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork. There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants. Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance

  3. Memory Applications Using Resonant Tunneling Diodes

    Science.gov (United States)

    Shieh, Ming-Huei

    Resonant tunneling diodes (RTDs) producing unique folding current-voltage (I-V) characteristics have attracted considerable research attention due to their promising application in signal processing and multi-valued logic. The negative differential resistance of RTDs renders the operating points self-latching and stable. We have proposed a multiple -dimensional multiple-state RTD-based static random-access memory (SRAM) cell in which the number of stable states can significantly be increased to (N + 1)^ m or more for m number of N-peak RTDs connected in series. The proposed cells take advantage of the hysteresis and folding I-V characteristics of RTD. Several cell designs are presented and evaluated. A two-dimensional nine-state memory cell has been implemented and demonstrated by a breadboard circuit using two 2-peak RTDs. The hysteresis phenomenon in a series of RTDs is also further analyzed. The switch model provided in SPICE 3 can be utilized to simulate the hysteretic I-V characteristics of RTDs. A simple macro-circuit is described to model the hysteretic I-V characteristic of RTD for circuit simulation. A new scheme for storing word-wide multiple-bit information very efficiently in a single memory cell using RTDs is proposed. An efficient and inexpensive periphery circuit to read from and write into the cell is also described. Simulation results on the design of a 3-bit memory cell scheme using one-peak RTDs are also presented. Finally, a binary transistor-less memory cell which is only composed of a pair of RTDs and an ordinary rectifier diode is presented and investigated. A simple means for reading and writing information from or into the memory cell is also discussed.

  4. A slant type shape memory alloy

    International Nuclear Information System (INIS)

    Kanada, T.; Enokizono, M.

    2000-01-01

    A heat-treated Fe-based shape memory alloy (SMA) has compatible properties, magnetization and shape memory effect (SME). Since SME depends on the heat treatment conditions (temperature and time), we produced a slant-type SMA that has a gradient SME value in the longitudinal direction of the specimen. It is obvious that sheet specimen is superior to wire because the value of SME as a slant SME shows greater efficiency than that of wire

  5. An energy efficient and high speed architecture for convolution computing based on binary resistive random access memory

    Science.gov (United States)

    Liu, Chen; Han, Runze; Zhou, Zheng; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng

    2018-04-01

    In this work we present a novel convolution computing architecture based on metal oxide resistive random access memory (RRAM) to process the image data stored in the RRAM arrays. The proposed image storage architecture shows performances of better speed-device consumption efficiency compared with the previous kernel storage architecture. Further we improve the architecture for a high accuracy and low power computing by utilizing the binary storage and the series resistor. For a 28 × 28 image and 10 kernels with a size of 3 × 3, compared with the previous kernel storage approach, the newly proposed architecture shows excellent performances including: 1) almost 100% accuracy within 20% LRS variation and 90% HRS variation; 2) more than 67 times speed boost; 3) 71.4% energy saving.

  6. Glucose enhancement of memory is modulated by trait anxiety in healthy adolescent males.

    Science.gov (United States)

    Smith, Michael A; Hii, Hilary L; Foster, Jonathan K; van Eekelen, J A M

    2011-01-01

    Glucose administration is associated with memory enhancement in healthy young individuals under conditions of divided attention at encoding. While the specific neurocognitive mechanisms underlying this 'glucose memory facilitation effect' are currently uncertain, it is thought that individual differences in glucoregulatory efficiency may alter an individual's sensitivity to the glucose memory facilitation effect. In the present study, we sought to investigate whether basal hypothalamic-pituitary-adrenal axis function (itself a modulator of glucoregulatory efficiency), baseline self-reported stress and trait anxiety influence the glucose memory facilitation effect. Adolescent males (age range = 14-17 years) were administered glucose and placebo prior to completing a verbal episodic memory task on two separate testing days in a counter-balanced, within-subjects design. Glucose ingestion improved verbal episodic memory performance when memory recall was tested (i) within an hour of glucose ingestion and encoding, and (ii) one week subsequent to glucose ingestion and encoding. Basal hypothalamic-pituitary-adrenal axis function did not appear to influence the glucose memory facilitation effect; however, glucose ingestion only improved memory in participants reporting relatively higher trait anxiety. These findings suggest that the glucose memory facilitation effect may be mediated by biological mechanisms associated with trait anxiety.

  7. The impact of auditory working memory training on the fronto-parietal working memory network.

    Science.gov (United States)

    Schneiders, Julia A; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously.

  8. The impact of auditory working memory training on the fronto-parietal working memory network

    Science.gov (United States)

    Schneiders, Julia A.; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously. PMID:22701418

  9. An extended continuum model considering optimal velocity change with memory and numerical tests

    Science.gov (United States)

    Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng

    2018-01-01

    In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.

  10. Real-time stereo matching architecture based on 2D MRF model: a memory-efficient systolic array

    Directory of Open Access Journals (Sweden)

    Park Sungchan

    2011-01-01

    Full Text Available Abstract There is a growing need in computer vision applications for stereopsis, requiring not only accurate distance but also fast and compact physical implementation. Global energy minimization techniques provide remarkably precise results. But they suffer from huge computational complexity. One of the main challenges is to parallelize the iterative computation, solving the memory access problem between the big external memory and the massive processors. Remarkable memory saving can be obtained with our memory reduction scheme, and our new architecture is a systolic array. If we expand it into N's multiple chips in a cascaded manner, we can cope with various ranges of image resolutions. We have realized it using the FPGA technology. Our architecture records 19 times smaller memory than the global minimization technique, which is a principal step toward real-time chip implementation of the various iterative image processing algorithms with tiny and distributed memory resources like optical flow, image restoration, etc.

  11. Three-dimensional theory of quantum memories based on Λ-type atomic ensembles

    International Nuclear Information System (INIS)

    Zeuthen, Emil; Grodecka-Grad, Anna; Soerensen, Anders S.

    2011-01-01

    We develop a three-dimensional theory for quantum memories based on light storage in ensembles of Λ-type atoms, where two long-lived atomic ground states are employed. We consider light storage in an ensemble of finite spatial extent and we show that within the paraxial approximation the Fresnel number of the atomic ensemble and the optical depth are the only important physical parameters determining the quality of the quantum memory. We analyze the influence of these parameters on the storage of light followed by either forward or backward read-out from the quantum memory. We show that for small Fresnel numbers the forward memory provides higher efficiencies, whereas for large Fresnel numbers the backward memory is advantageous. The optimal light modes to store in the memory are presented together with the corresponding spin waves and outcoming light modes. We show that for high optical depths such Λ-type atomic ensembles allow for highly efficient backward and forward memories even for small Fresnel numbers F(greater-or-similar sign)0.1.

  12. A memory efficient method for fully three-dimensional object reconstruction with HAADF STEM

    International Nuclear Information System (INIS)

    Van den Broek, W.; Rosenauer, A.; Van Aert, S.; Sijbers, J.; Van Dyck, D.

    2014-01-01

    The conventional approach to object reconstruction through electron tomography is to reduce the three-dimensional problem to a series of independent two-dimensional slice-by-slice reconstructions. However, at atomic resolution the image of a single atom extends over many such slices and incorporating this image as prior knowledge in tomography or depth sectioning therefore requires a fully three-dimensional treatment. Unfortunately, the size of the three-dimensional projection operator scales highly unfavorably with object size and readily exceeds the available computer memory. In this paper, it is shown that for incoherent image formation the memory requirement can be reduced to the fundamental lower limit of the object size, both for tomography and depth sectioning. Furthermore, it is shown through multislice calculations that high angle annular dark field scanning transmission electron microscopy can be sufficiently incoherent for the reconstruction of single element nanocrystals, but that dynamical diffraction effects can cause classification problems if more than one element is present. - Highlights: • The full 3D approach to atomic resolution object retrieval has high memory load. • For incoherent imaging the projection process is a matrix–vector product. • Carrying out this product implicitly as Fourier transforms reduces memory load. • Reconstructions are demonstrated from HAADF STEM and depth sectioning simulations

  13. External-Memory Algorithms and Data Structures

    DEFF Research Database (Denmark)

    Arge, Lars; Zeh, Norbert

    2010-01-01

    The data sets involved in many modern applications are often too massive to fit in main memory of even the most powerful computers and must therefore reside on disk. Thus communication between internal and external memory, and not actual computation time, becomes the bottleneck in the computation....... This is due to the huge difference in access time of fast internal memory and slower external memory such as disks. The goal of theoretical work in the area of external memory algorithms (also called I/O algorithms or out-of-core algorithms) has been to develop algorithms that minimize the Input...... in parallel and the use of parallel disks has received a lot of theoretical attention. See below for recent surveys of theoretical results in the area of I/O-efficient algorithms. TPIE is designed to bridge the gap between the theory and practice of parallel I/O systems. It is intended to demonstrate all...

  14. Memory-related brain lateralisation in birds and humans.

    Science.gov (United States)

    Moorman, Sanne; Nicol, Alister U

    2015-03-01

    Visual imprinting in chicks and song learning in songbirds are prominent model systems for the study of the neural mechanisms of memory. In both systems, neural lateralisation has been found to be involved in memory formation. Although many processes in the human brain are lateralised--spatial memory and musical processing involves mostly right hemisphere dominance, whilst language is mostly left hemisphere dominant--it is unclear what the function of lateralisation is. It might enhance brain capacity, make processing more efficient, or prevent occurrence of conflicting signals. In both avian paradigms we find memory-related lateralisation. We will discuss avian lateralisation findings and propose that birds provide a strong model for studying neural mechanisms of memory-related lateralisation. Copyright © 2014. Published by Elsevier Ltd.

  15. Large scale particle simulations in a virtual memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Million, R.; Wagner, J.S.; Tajima, T.

    1983-01-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceeds the computer core size. The required address space is automatically mapped onto slow disc memory the the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Assesses to slow memory significantly reduce the excecution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time. (orig.)

  16. Large-scale particle simulations in a virtual-memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Wagner, J.S.; Tajima, T.; Million, R.

    1982-08-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceed the computer core size. The required address space is automatically mapped onto slow disc memory by the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Accesses to slow memory significantly reduce the execution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time

  17. A Shared Scratchpad Memory with Synchronization Support

    DEFF Research Database (Denmark)

    Hansen, Henrik Enggaard; Maroun, Emad Jacob; Kristensen, Andreas Toftegaard

    2017-01-01

    Multicore processors usually communicate via shared memory, which is backed up by a shared level 2 cache and a cache coherence protocol. However, this solution is not a good fit for real-time systems, where we need to provide tight guarantees on execution and memory access times. In this paper, we...... propose a shared scratchpad memory as a time-predictable communication and synchronization structure, instead of the level 2 cache. The shared on-chip memory is accessed via a time division multiplexing arbiter, isolating the execution time of load and store instructions between processing cores....... Furthermore, the arbiter supports an extended time slot where an atomic load and store instruction can be executed to implement synchronization primitives. In the evaluation we show that a shared scratchpad memory is an efficient communication structure for a small number of processors; in our setup, 9 cores...

  18. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    Science.gov (United States)

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  19. How to assess gaming-induced benefits on attention and working memory

    OpenAIRE

    Mishra, Jyoti; Bavelier, Daphné; Gazzaley, Adam

    2012-01-01

    Our daily actions are driven by our goals in the moment, constantly forcing us to choose among various options. Attention and working memory are key enablers of that process. Attention allows for selective processing of goal-relevant information and rejecting task-irrelevant information. Working memory functions to maintain goal-relevant information in memory for brief periods of time for subsequent recall and/or manipulation. Efficient attention and working memory thus support the best extra...

  20. High-speed noise-free optical quantum memory

    Science.gov (United States)

    Kaczmarek, K. T.; Ledingham, P. M.; Brecht, B.; Thomas, S. E.; Thekkadath, G. S.; Lazo-Arjona, O.; Munns, J. H. D.; Poem, E.; Feizpour, A.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.

    2018-04-01

    Optical quantum memories are devices that store and recall quantum light and are vital to the realization of future photonic quantum networks. To date, much effort has been put into improving storage times and efficiencies of such devices to enable long-distance communications. However, less attention has been devoted to building quantum memories which add zero noise to the output. Even small additional noise can render the memory classical by destroying the fragile quantum signatures of the stored light. Therefore, noise performance is a critical parameter for all quantum memories. Here we introduce an intrinsically noise-free quantum memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We demonstrate successful storage of GHz-bandwidth heralded single photons in a warm atomic vapor with no added noise, confirmed by the unaltered photon-number statistics upon recall. Our ORCA memory meets the stringent noise requirements for quantum memories while combining high-speed and room-temperature operation with technical simplicity, and therefore is immediately applicable to low-latency quantum networks.

  1. IP lookup with low memory requirement and fast update

    DEFF Research Database (Denmark)

    Berger, Michael Stübert

    2003-01-01

    The paper presents an IP address lookup algorithm with low memory requirement and fast updates. The scheme, which is denoted prefix-tree, uses a combination of a trie and a tree search, which is efficient in memory usage because the tree contains exactly one node for each prefix in the routing...

  2. The Control of Single-color and Multiple-color Visual Search by Attentional Templates in Working Memory and in Long-term Memory.

    Science.gov (United States)

    Grubert, Anna; Carlisle, Nancy B; Eimer, Martin

    2016-12-01

    The question whether target selection in visual search can be effectively controlled by simultaneous attentional templates for multiple features is still under dispute. We investigated whether multiple-color attentional guidance is possible when target colors remain constant and can thus be represented in long-term memory but not when they change frequently and have to be held in working memory. Participants searched for one, two, or three possible target colors that were specified by cue displays at the start of each trial. In constant-color blocks, the same colors remained task-relevant throughout. In variable-color blocks, target colors changed between trials. The contralateral delay activity (CDA) to cue displays increased in amplitude as a function of color memory load in variable-color blocks, which indicates that cued target colors were held in working memory. In constant-color blocks, the CDA was much smaller, suggesting that color representations were primarily stored in long-term memory. N2pc components to targets were measured as a marker of attentional target selection. Target N2pcs were attenuated and delayed during multiple-color search, demonstrating less efficient attentional deployment to color-defined target objects relative to single-color search. Importantly, these costs were the same in constant-color and variable-color blocks. These results demonstrate that attentional guidance by multiple-feature as compared with single-feature templates is less efficient both when target features remain constant and can be represented in long-term memory and when they change across trials and therefore have to be maintained in working memory.

  3. Variability in visual working memory ability limits the efficiency of perceptual decision making.

    Science.gov (United States)

    Ester, Edward F; Ho, Tiffany C; Brown, Scott D; Serences, John T

    2014-04-02

    The ability to make rapid and accurate decisions based on limited sensory information is a critical component of visual cognition. Available evidence suggests that simple perceptual discriminations are based on the accumulation and integration of sensory evidence over time. However, the memory system(s) mediating this accumulation are unclear. One candidate system is working memory (WM), which enables the temporary maintenance of information in a readily accessible state. Here, we show that individual variability in WM capacity is strongly correlated with the speed of evidence accumulation in speeded two-alternative forced choice tasks. This relationship generalized across different decision-making tasks, and could not be easily explained by variability in general arousal or vigilance. Moreover, we show that performing a difficult discrimination task while maintaining a concurrent memory load has a deleterious effect on the latter, suggesting that WM storage and decision making are directly linked.

  4. Re-estimation of Motion and Reconstruction for Distributed Video Coding

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Raket, Lars Lau; Forchhammer, Søren

    2014-01-01

    Transform domain Wyner-Ziv (TDWZ) video coding is an efficient approach to distributed video coding (DVC), which provides low complexity encoding by exploiting the source statistics at the decoder side. The DVC coding efficiency depends mainly on side information and noise modeling. This paper...... proposes a motion re-estimation technique based on optical flow to improve side information and noise residual frames by taking partially decoded information into account. To improve noise modeling, a noise residual motion re-estimation technique is proposed. Residual motion compensation with motion...

  5. Comparing Memory-Efficient Genome Assemblers on Stand-Alone and Cloud Infrastructures

    KAUST Repository

    Kleftogiannis, Dimitrios A.; Kalnis, Panos; Bajic, Vladimir B.

    2013-01-01

    methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment

  6. The Impact of Auditory Working Memory Training on the Fronto-Parietal Working Memory Network

    Directory of Open Access Journals (Sweden)

    Julia eSchneiders

    2012-06-01

    Full Text Available Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal working memory task or whether it generalizes to an (across-modal visual working memory task. We used an adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal auditory but not for the (across-modal visual 2-back task. Training-induced activation changes in the auditory 2-back task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extends intra-modal effects to the auditory modality. These results might reflect increased neural efficiency in auditory working memory processes as in the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information. By this, these effects are analogical to the activation decreases in the right middle frontal gyrus for the visual modality in our previous study. Furthermore, task-unspecific (across-modal activation decreases in the visual and auditory 2-back task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demands on general attentional control processes. These data are in good agreement with across-modal activation decreases within the same brain regions on a visual 2-back task reported previously.

  7. Relationships among Verbal Memory, Spatial Working Memory and Intelligence in Children of 10-11 years

    Directory of Open Access Journals (Sweden)

    Burdukova Yu,A.

    2018-04-01

    Full Text Available The issue investigates the relationship Selective Reminding Test (SRT, a test of spatial working memory (SWM with Kaufman Assessment Battery for Children (KABC II. It has been found that the efficiency of memorizing verbal material is associated with the estimates on the K-ABC Sequential processing scale and K-ABC Simultaneous processing scale, but not to the Learning scale of education, is measured indirectly verbal memorization. Spatial working memory is not related to IQ.The issue is part of a research project on cognitive function in children with neuro-oncological disorders

  8. Processing-in-Memory Enabled Graphics Processors for 3D Rendering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chenhao; Song, Shuaiwen; Wang, Jing; Zhang, Weigong; Fu, Xin

    2017-02-06

    The performance of 3D rendering of Graphics Processing Unit that convents 3D vector stream into 2D frame with 3D image effects significantly impact users’ gaming experience on modern computer systems. Due to the high texture throughput in 3D rendering, main memory bandwidth becomes a critical obstacle for improving the overall rendering performance. 3D stacked memory systems such as Hybrid Memory Cube (HMC) provide opportunities to significantly overcome the memory wall by directly connecting logic controllers to DRAM dies. Based on the observation that texel fetches significantly impact off-chip memory traffic, we propose two architectural designs to enable Processing-In-Memory based GPU for efficient 3D rendering.

  9. Techniques for Reducing Consistency-Related Communication in Distributed Shared Memory System

    OpenAIRE

    Zwaenepoel, W; Bennett, J.K.; Carter, J.B.

    1995-01-01

    Distributed shared memory 8DSM) is an abstraction of shared memory on a distributed memory machine. Hardware DSM systems support this abstraction at the architecture level; software DSM systems support the abstraction within the runtime system. One of the key problems in building an efficient software DSM system is to reduce the amount of communication needed to keep the distributed memories consistent. In this paper we present four techniques for doing so: 1) software release consistency; 2)...

  10. PGHPF – An Optimizing High Performance Fortran Compiler for Distributed Memory Machines

    Directory of Open Access Journals (Sweden)

    Zeki Bozkus

    1997-01-01

    Full Text Available High Performance Fortran (HPF is the first widely supported, efficient, and portable parallel programming language for shared and distributed memory systems. HPF is realized through a set of directive-based extensions to Fortran 90. It enables application developers and Fortran end-users to write compact, portable, and efficient software that will compile and execute on workstations, shared memory servers, clusters, traditional supercomputers, or massively parallel processors. This article describes a production-quality HPF compiler for a set of parallel machines. Compilation techniques such as data and computation distribution, communication generation, run-time support, and optimization issues are elaborated as the basis for an HPF compiler implementation on distributed memory machines. The performance of this compiler on benchmark programs demonstrates that high efficiency can be achieved executing HPF code on parallel architectures.

  11. The cost of misremembering: Inferring the loss function in visual working memory.

    Science.gov (United States)

    Sims, Chris R

    2015-03-04

    Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets. © 2015 ARVO.

  12. Organization of the two-level memory in the image processing system on scanning measuring projectors

    International Nuclear Information System (INIS)

    Sychev, A.Yu.

    1977-01-01

    Discussed are the problems of improving the efficiency of the system for processing pictures taken in bubble chambers with the use of scanning measuring projectors. The system comprises 20 to 30 pro ectors linked with the ICL-1903A computer provided with a mainframe memory, 64 kilobytes in size. Because of the insufficient size of a mainframe memory, a part of the programs and data is located in a second-level memory, i.e. in an external memory. The analytical model described herein is used to analyze the effect of the memory organization on the characteristics of the system. It is shown that organization of pure procedures and introduction of the centralized control of the tWo-leVel memory result in substantial improvement of the efficiency of the picture processing system

  13. Assessing Programming Costs of Explicit Memory Localization on a Large Scale Shared Memory Multiprocessor

    Directory of Open Access Journals (Sweden)

    Silvio Picano

    1992-01-01

    Full Text Available We present detailed experimental work involving a commercially available large scale shared memory multiple instruction stream-multiple data stream (MIMD parallel computer having a software controlled cache coherence mechanism. To make effective use of such an architecture, the programmer is responsible for designing the program's structure to match the underlying multiprocessors capabilities. We describe the techniques used to exploit our multiprocessor (the BBN TC2000 on a network simulation program, showing the resulting performance gains and the associated programming costs. We show that an efficient implementation relies heavily on the user's ability to explicitly manage the memory system.

  14. Database Management Using Optical Associative Memory

    National Research Council Canada - National Science Library

    Ralston, Lynda

    1998-01-01

    A concept was developed for an optical based associative memory system that accepts a query request from a user, searches the disk for the location of the information and ensures maximum efficiency in data recovery...

  15. Chalcogenide phase-change memory nanotubes for lower writing current operation

    International Nuclear Information System (INIS)

    Jung, Yeonwoong; Agarwal, Rahul; Yang, Chung-Ying; Agarwal, Ritesh

    2011-01-01

    We report the synthesis and characterization of Sb-doped Te-rich nanotubes, and study their memory switching properties under the application of electrical pulses. Te-rich nanotubes display significantly low writing currents due to their small cross-sectional areas, which is desirable for power-efficient memory operation. The nanotube devices show limited resistance ratio and cyclic switching capability owing to the intrinsic properties of Te. The observed memory switching properties of this new class of nanostructured memory elements are discussed in terms of fundamental materials properties and extrinsic geometrical effects.

  16. Partitioning and Scheduling DSP Applications with Maximal Memory Access Hiding

    Directory of Open Access Journals (Sweden)

    Sha Edwin Hsing-Mean

    2002-01-01

    Full Text Available This paper presents an iteration space partitioning scheme to reduce the CPU idle time due to the long memory access latency. We take into consideration both the data accesses of intermediate and initial data. An algorithm is proposed to find the largest overlap for initial data to reduce the entire memory traffic. In order to efficiently hide the memory latency, another algorithm is developed to balance the ALU and memory schedules. The experiments on DSP benchmarks show that the algorithms significantly outperform the known existing methods.

  17. A memory-efficient data structure representing exact-match overlap graphs with application for next-generation DNA assembly.

    Science.gov (United States)

    Dinh, Hieu; Rajasekaran, Sanguthevar

    2011-07-15

    constructing the data structure for the exact-match overlap graph. The first algorithm runs in O(λℓnlogn) worse-case time and requires O(λ) extra memory. The second one runs in O(λℓn) time and requires O(n) extra memory. Our experimental results on a huge amount of simulated data from sequence assembly show that the data structure can be constructed efficiently in time and memory. Our DNA sequence assembler that incorporates the data structure is freely available on the web at http://www.engr.uconn.edu/~htd06001/assembler/leap.zip

  18. Working Memory Capacity and Recall from Long-Term Memory: Examining the Influences of Encoding Strategies, Study Time Allocation, Search Efficiency, and Monitoring Abilities

    Science.gov (United States)

    Unsworth, Nash

    2016-01-01

    The relation between working memory capacity (WMC) and recall from long-term memory (LTM) was examined in the current study. Participants performed multiple measures of delayed free recall varying in presentation duration and self-reported their strategy usage after each task. Participants also performed multiple measures of WMC. The results…

  19. Energy-aware memory management for embedded multimedia systems a computer-aided design approach

    CERN Document Server

    Balasa, Florin

    2011-01-01

    Energy-Aware Memory Management for Embedded Multimedia Systems: A Computer-Aided Design Approach presents recent computer-aided design (CAD) ideas that address memory management tasks, particularly the optimization of energy consumption in the memory subsystem. It explains how to efficiently implement CAD solutions, including theoretical methods and novel algorithms. The book covers various energy-aware design techniques, including data-dependence analysis techniques, memory size estimation methods, extensions of mapping approaches, and memory banking approaches. It shows how these techniques

  20. Evaluation of External Memory Access Performance on a High-End FPGA Hybrid Computer

    Directory of Open Access Journals (Sweden)

    Konstantinos Kalaitzis

    2016-10-01

    Full Text Available The motivation of this research was to evaluate the main memory performance of a hybrid super computer such as the Convey HC-x, and ascertain how the controller performs in several access scenarios, vis-à-vis hand-coded memory prefetches. Such memory patterns are very useful in stencil computations. The theoretical bandwidth of the memory of the Convey is compared with the results of our measurements. The accurate study of the memory subsystem is particularly useful for users when they are developing their application-specific personality. Experiments were performed to measure the bandwidth between the coprocessor and the memory subsystem. The experiments aimed mainly at measuring the reading access speed of the memory from Application Engines (FPGAs. Different ways of accessing data were used in order to find the most efficient way to access memory. This way was proposed for future work in the Convey HC-x. When performing a series of accesses to memory, non-uniform latencies occur. The Memory Controller of the Convey HC-x in the coprocessor attempts to cover this latency. We measure memory efficiency as a ratio of the number of memory accesses and the number of execution cycles. The result of this measurement converges to one in most cases. In addition, we performed experiments with hand-coded memory accesses. The analysis of the experimental results shows how the memory subsystem and Memory Controllers work. From this work we conclude that the memory controllers do an excellent job, largely because (transparently to the user they seem to cache large amounts of data, and hence hand-coding is not needed in most situations.

  1. Components of working memory and visual selective attention.

    Science.gov (United States)

    Burnham, Bryan R; Sabia, Matthew; Langan, Catherine

    2014-02-01

    Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Some comments on Hurst exponent and the long memory processes on capital markets

    Science.gov (United States)

    Sánchez Granero, M. A.; Trinidad Segovia, J. E.; García Pérez, J.

    2008-09-01

    The analysis of long memory processes in capital markets has been one of the topics in finance, since the existence of the market memory could implicate the rejection of an efficient market hypothesis. The study of these processes in finance is realized through Hurst exponent and the most classical method applied is R/S analysis. In this paper we will discuss the efficiency of this methodology as well as some of its more important modifications to detect the long memory. We also propose the application of a classical geometrical method with short modifications and we compare both approaches.

  3. Nanophotonic rare-earth quantum memory with optically controlled retrieval

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Bartholomew, John G.; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D.; Beyer, Andrew D.; Faraon, Andrei

    2017-09-01

    Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes.

  4. Combating Memory Corruption Attacks On Scada Devices

    Science.gov (United States)

    Bellettini, Carlo; Rrushi, Julian

    Memory corruption attacks on SCADA devices can cause significant disruptions to control systems and the industrial processes they operate. However, despite the presence of numerous memory corruption vulnerabilities, few, if any, techniques have been proposed for addressing the vulnerabilities or for combating memory corruption attacks. This paper describes a technique for defending against memory corruption attacks by enforcing logical boundaries between potentially hostile data and safe data in protected processes. The technique encrypts all input data using random keys; the encrypted data is stored in main memory and is decrypted according to the principle of least privilege just before it is processed by the CPU. The defensive technique affects the precision with which attackers can corrupt control data and pure data, protecting against code injection and arc injection attacks, and alleviating problems posed by the incomparability of mitigation techniques. An experimental evaluation involving the popular Modbus protocol demonstrates the feasibility and efficiency of the defensive technique.

  5. Temporal context memory in high-functioning autism.

    Science.gov (United States)

    Gras-Vincendon, Agnès; Mottron, Laurent; Salamé, Pierre; Bursztejn, Claude; Danion, Jean-Marie

    2007-11-01

    Episodic memory, i.e. memory for specific episodes situated in space and time, seems impaired in individuals with autism. According to weak central coherence theory, individuals with autism have general difficulty connecting contextual and item information which then impairs their capacity to memorize information in context. This study investigated temporal context memory for visual information in individuals with autism. Eighteen adolescents and adults with high-functioning autism (HFA) or Asperger syndrome (AS) and age- and IQ-matched typically developing participants were tested using a recency judgement task. The performance of the autistic group did not differ from that of the control group, nor did the performance between the AS and HFA groups. We conclude that autism in high-functioning individuals does not impair temporal context memory as assessed on this task. We suggest that individuals with autism are as efficient on this task as typically developing subjects because contextual memory performance here involves more automatic than organizational processing.

  6. A Memristor as Multi-Bit Memory: Feasibility Analysis

    Directory of Open Access Journals (Sweden)

    O. Bass

    2015-06-01

    Full Text Available The use of emerging memristor materials for advanced electrical devices such as multi-valued logic is expected to outperform today's binary logic digital technologies. We show here an example for such non-binary device with the design of a multi-bit memory. While conventional memory cells can store only 1 bit, memristors-based multi-bit cells can store more information within single device thus increasing the information storage density. Such devices can potentially utilize the non-linear resistance of memristor materials for efficient information storage. We analyze the performance of such memory devices based on their expected variations in order to determine the viability of memristor-based multi-bit memory. A design of read/write scheme and a simple model for this cell, lay grounds for full integration of memristor multi-bit memory cell.

  7. Memory and Learning: A Case Study.

    Science.gov (United States)

    Webster, Raymond E.

    1986-01-01

    The usefulness of the Learning Efficency Test (LET), an approach to assessing the learning efficiency and short-term memory recall capacity in children, is described via a case study demonstrating the test's use to develop instructional strategies. (CL)

  8. Stress, memory and the amygdala

    NARCIS (Netherlands)

    Roozendaal, Benno; McEwen, Bruce S.; Chattarji, Sumantra

    Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified

  9. Using memory-efficient algorithm for large-scale time-domain modeling of surface plasmon polaritons propagation in organic light emitting diodes

    Science.gov (United States)

    Zakirov, Andrey; Belousov, Sergei; Valuev, Ilya; Levchenko, Vadim; Perepelkina, Anastasia; Zempo, Yasunari

    2017-10-01

    We demonstrate an efficient approach to numerical modeling of optical properties of large-scale structures with typical dimensions much greater than the wavelength of light. For this purpose, we use the finite-difference time-domain (FDTD) method enhanced with a memory efficient Locally Recursive non-Locally Asynchronous (LRnLA) algorithm called DiamondTorre and implemented for General Purpose Graphical Processing Units (GPGPU) architecture. We apply our approach to simulation of optical properties of organic light emitting diodes (OLEDs), which is an essential step in the process of designing OLEDs with improved efficiency. Specifically, we consider a problem of excitation and propagation of surface plasmon polaritons (SPPs) in a typical OLED, which is a challenging task given that SPP decay length can be about two orders of magnitude greater than the wavelength of excitation. We show that with our approach it is possible to extend the simulated volume size sufficiently so that SPP decay dynamics is accounted for. We further consider an OLED with periodically corrugated metallic cathode and show how the SPP decay length can be greatly reduced due to scattering off the corrugation. Ultimately, we compare the performance of our algorithm to the conventional FDTD and demonstrate that our approach can efficiently be used for large-scale FDTD simulations with the use of only a single GPGPU-powered workstation, which is not practically feasible with the conventional FDTD.

  10. Prospective memory, working memory, retrospective memory and self-rated memory performance in persons with intellectual disability

    OpenAIRE

    Levén, Anna; Lyxell, Björn; Andersson, Jan; Danielsson, Henrik; Rönnberg, Jerker

    2008-01-01

    The purpose of the present study was to examine the relationship between prospective memory, working memory, retrospective memory and self-rated memory capacity in adults with and without intellectual disability. Prospective memory was investigated by means of a picture-based task. Working memory was measured as performance on span tasks. Retrospective memory was scored as recall of subject performed tasks. Self-ratings of memory performance were based on the prospective and retrospective mem...

  11. Superior memory efficiency of quantum devices for the simulation of continuous-time stochastic processes

    Science.gov (United States)

    Elliott, Thomas J.; Gu, Mile

    2018-03-01

    Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However, quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue simulation of continuous-time renewal processes with a quantum machine.

  12. Aging Memory Is "Not" a Limiting Factor for Lifelong Learning

    Science.gov (United States)

    Lalovic, Dejan; Gvozdenovic, Vasilije

    2015-01-01

    Efficient memory is one of the necessary cognitive potentials required for virtually every form of lifelong learning. In this contribution we first briefly review and summarize state of the art of knowledge on memory and related cognitive functions in normal aging. Then we critically discuss a relatively short inventory of clinical, psychometric,…

  13. Long memory in the Croatian and Hungarian stock market returns

    Directory of Open Access Journals (Sweden)

    Silvo Dajčman

    2012-06-01

    Full Text Available The objective of this paper is to analyze and compare the fractal structure of the Croatian and Hungarian stock market returns. The presence of long memory components in asset returns provides evidence against the weak-form of stock market efficiency. The starting working hypothesis that there is no long memory in the Croatian and Hungarian stock market returns is tested by applying the Kwiatkowski-Phillips-Schmidt-Shin (KPSS (1992 test, Lo’s (1991 modified rescaled range (R/S test, and the wavelet ordinary least squares (WOLS estimator of Jensen (1999. The research showed that the WOLS estimator may lead to different conclusions regarding long memory presence in the stock returns from the KPSS and unit root tests or Lo’s R/S test. Furthermore, it proved that the fractal structure of individual stock returns may be masked in aggregated stock market returns (i.e. in returns of stock index. The main finding of the paper is that both the Croatian stock index Crobex and individual stocks in this index exhibit long memory. Long memory is identified for some stocks in the Hungarian stock market as well, but not for the stock market index BUX. Based on the results of the long memory tests, it can be concluded that while the Hungarian stock market is weakform efficient, the Croatian stock market is not.

  14. Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy

    Science.gov (United States)

    Sidhu, M.K.; Stretton, J.; Winston, G.P.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S.

    2015-01-01

    Summary Aims In temporal lobe epilepsy (TLE) due to hippocampal sclerosis reorganisation in the memory encoding network has been consistently described. Distinct areas of reorganisation have been shown to be efficient when associated with successful subsequent memory formation or inefficient when not associated with successful subsequent memory. We investigated the effect of clinical parameters that modulate memory functions: age at onset of epilepsy, epilepsy duration and seizure frequency in a large cohort of patients. Methods We studied 53 patients with unilateral TLE and hippocampal sclerosis (29 left). All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words. A continuous regression analysis was used to investigate the effects of age at onset of epilepsy, epilepsy duration and seizure frequency on the activation patterns in the memory encoding network. Results Earlier age at onset of epilepsy was associated with left posterior hippocampus activations that were involved in successful subsequent memory formation in left hippocampal sclerosis patients. No association of age at onset of epilepsy was seen with face encoding in right hippocampal sclerosis patients. In both left hippocampal sclerosis patients during word encoding and right hippocampal sclerosis patients during face encoding, shorter duration of epilepsy and lower seizure frequency were associated with medial temporal lobe activations that were involved in successful memory formation. Longer epilepsy duration and higher seizure frequency were associated with contralateral extra-temporal activations that were not associated with successful memory formation. Conclusion Age at onset of epilepsy influenced verbal memory encoding in patients with TLE due to hippocampal sclerosis in the speech-dominant hemisphere. Shorter duration of epilepsy and lower seizure frequency were associated with less disruption of the efficient memory encoding network whilst

  15. Hardware Transactional Memory Optimization Guidelines, Applied to Ordered Maps

    DEFF Research Database (Denmark)

    Bonnichsen, Lars Frydendal; Probst, Christian W.; Karlsson, Sven

    2015-01-01

    efficiently requires reasoning about those differences. In this paper we present 5 guidelines for applying hardware transactional memory efficiently, and apply the guidelines to BT-trees, a concurrent ordered map. Evaluating BT-trees on standard benchmarks shows that they are up to 5.3 times faster than...

  16. Noise-assisted morphing of memory and logic function

    International Nuclear Information System (INIS)

    Kohar, Vivek; Sinha, Sudeshna

    2012-01-01

    We demonstrate how noise allows a bistable system to behave as a memory device, as well as a logic gate. Namely, in some optimal range of noise, the system can operate flexibly, both as a NAND/AND gate and a Set–Reset latch, by varying an asymmetrizing bias. Thus we show how this system implements memory, even for sub-threshold input signals, using noise constructively to store information. This can lead to the development of reconfigurable devices, that can switch efficiently between memory tasks and logic operations. -- Highlights: ► We consider a nonlinear system in a noisy environment. ► We show that the system can function as a robust memory element. ► Further, the response of the system can be easily morphed from memory to logic operations. ► Such systems can potentially act as building blocks of “smart” computing devices.

  17. Complexity analysis of the turbulent environmental fluid flow time series

    Science.gov (United States)

    Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.

    2014-02-01

    We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.

  18. Association between increased EEG signal complexity and cannabis dependence.

    Science.gov (United States)

    Laprevote, Vincent; Bon, Laura; Krieg, Julien; Schwitzer, Thomas; Bourion-Bedes, Stéphanie; Maillard, Louis; Schwan, Raymund

    2017-12-01

    Both acute and regular cannabis use affects the functioning of the brain. While several studies have demonstrated that regular cannabis use can impair the capacity to synchronize neural assemblies during specific tasks, less is known about spontaneous brain activity. This can be explored by measuring EEG complexity, which reflects the spontaneous variability of human brain activity. A recent study has shown that acute cannabis use can affect that complexity. Since the characteristics of cannabis use can affect the impact on brain functioning, this study sets out to measure EEG complexity in regular cannabis users with or without dependence, in comparison with healthy controls. We recruited 26 healthy controls, 25 cannabis users without cannabis dependence and 14 cannabis users with cannabis dependence, based on DSM IV TR criteria. The EEG signal was extracted from at least 250 epochs of the 500ms pre-stimulation phase during a visual evoked potential paradigm. Brain complexity was estimated using Lempel-Ziv Complexity (LZC), which was compared across groups by non-parametric Kruskall-Wallis ANOVA. The analysis revealed a significant difference between the groups, with higher LZC in participants with cannabis dependence than in non-dependent cannabis users. There was no specific localization of this effect across electrodes. We showed that cannabis dependence is associated to an increased spontaneous brain complexity in regular users. This result is in line with previous results in acute cannabis users. It may reflect increased randomness of neural activity in cannabis dependence. Future studies should explore whether this effect is permanent or diminishes with cannabis cessation. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  19. Image quality (IQ) guided multispectral image compression

    Science.gov (United States)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  20. Dynamics of a pulsed continuous-variable quantum memory

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Pinard, Michel

    2006-01-01

    We study the transfer dynamics of nonclassical fluctuations of light to the ground-state collective spin components of an atomic ensemble during a pulsed quantum memory sequence, and evaluate the relevant physical quantities to be measured in order to characterize such a quantum memory. We show...... in particular that the fluctuations stored into the atoms are emitted in temporal modes which are always different from those of the readout pulse, but which can nevertheless be retrieved efficiently using a suitable temporal mode-matching technique. We give a simple toy model—a cavity with variable...... transmission—that accounts for the behavior of the atomic quantum memory....

  1. Memory-guided attention in the anterior thalamus.

    Science.gov (United States)

    Leszczyński, Marcin; Staudigl, Tobias

    2016-07-01

    The anterior thalamus is densely connected with both the hippocampus and the prefrontal cortex. It is known to play a role in learning and episodic memory. Given its connectivity profile with the prefrontal cortex, it may also be expected to contribute to executive functions. Recent studies in both rodents and humans add to our understanding of anterior thalamic function, suggesting that it is a key region for allocating attention. We discuss the convergence between studies in rodents and humans, both of which imply that the anterior thalamus may play a key role in memory-guided attention. We suggest that efficient allocation of attention to memory representations requires interaction between the memory-related hippocampal and the attention related fronto-parietal networks. We further propose that the anterior thalamus is a hub that connects and modulates both systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Languages, compilers and run-time environments for distributed memory machines

    CERN Document Server

    Saltz, J

    1992-01-01

    Papers presented within this volume cover a wide range of topics related to programming distributed memory machines. Distributed memory architectures, although having the potential to supply the very high levels of performance required to support future computing needs, present awkward programming problems. The major issue is to design methods which enable compilers to generate efficient distributed memory programs from relatively machine independent program specifications. This book is the compilation of papers describing a wide range of research efforts aimed at easing the task of programmin

  3. Adaptive memory: the survival-processing memory advantage is not due to negativity or mortality salience.

    Science.gov (United States)

    Bell, Raoul; Röer, Jan P; Buchner, Axel

    2013-05-01

    Recent research has highlighted the adaptive function of memory by showing that imagining being stranded in the grasslands without any survival material and rating words according to their survival value in this situation leads to exceptionally good memory for these words. Studies examining the role of emotions in causing the survival-processing memory advantage have been inconclusive, but some studies have suggested that the effect might be due to negativity or mortality salience. In Experiments 1 and 2, we compared the survival scenario to a control scenario that implied imagining a hopeless situation (floating in outer space with dwindling oxygen supplies) in which only suicide can avoid the agony of choking to death. Although this scenario was perceived as being more negative than the survival scenario, the survival-processing memory advantage persisted. In Experiment 3, thinking about the relevance of words for survival led to better memory for these words than did thinking about the relevance of words for death. This survival advantage was found for concrete, but not for abstract, words. The latter finding is consistent with the assumption that the survival instructions encourage participants to think about many different potential uses of items to aid survival, which may be a particularly efficient form of elaborate encoding. Together, the results suggest that thinking about death is much less effective in promoting recall than is thinking about survival. Therefore, the survival-processing memory advantage cannot be satisfactorily explained by negativity or mortality salience.

  4. Laser memory (hologram) and coincident redundant multiplex memory (CRM-memory)

    International Nuclear Information System (INIS)

    Ostojic, Branko

    1975-01-01

    It is shown that besides the memory which remembers the object by memorising of the phases of the interferenting waves of the light (i.e. hologram) it is possible to construct the memory which remembers the object by memorising of the phases of the interferenting impulses (CFM-memory). It is given the mathematical description of the memory, based on the experimental model. Although in the paper only the technical aspect of CRM memory is given. It is mentioned the possibility that the human memory has the same principle and that the invention of CRM memory is due to cybernetical analysis of the system human eye-visual cortex

  5. A homotopy method for solving Riccati equations on a shared memory parallel computer

    International Nuclear Information System (INIS)

    Zigic, D.; Watson, L.T.; Collins, E.G. Jr.; Davis, L.D.

    1993-01-01

    Although there are numerous algorithms for solving Riccati equations, there still remains a need for algorithms which can operate efficiently on large problems and on parallel machines. This paper gives a new homotopy-based algorithm for solving Riccati equations on a shared memory parallel computer. The central part of the algorithm is the computation of the kernel of the Jacobian matrix, which is essential for the corrector iterations along the homotopy zero curve. Using a Schur decomposition the tensor product structure of various matrices can be efficiently exploited. The algorithm allows for efficient parallelization on shared memory machines

  6. Improved Functional Properties and Efficiencies of Nitinol Wires Under High-Performance Shape Memory Effect (HP-SME)

    Science.gov (United States)

    Casati, R.; Saghafi, F.; Biffi, C. A.; Vedani, M.; Tuissi, A.

    2017-10-01

    Martensitic Ti-rich NiTi intermetallics are broadly used in various cyclic applications as actuators, which exploit the shape memory effect (SME). Recently, a new approach for exploiting austenitic Ni-rich NiTi shape memory alloys as actuators was proposed and named high-performance shape memory effect (HP-SME). HP-SME is based on thermal recovery of de-twinned martensite produced by mechanical loading of the parent phase. The aim of the manuscript consists in evaluating and comparing the fatigue and actuation properties of austenitic HP-SME wires and conventional martensitic SME wires. The effect of the thermomechanical cycling on the actuation response and the changes in the electrical resistivity of both shape memory materials were studied by performing the actuation tests at different stages of the fatigue life. Finally, the changes in the transition temperatures before and after cycling were also investigated by differential calorimetric tests.

  7. The role of memory for visual search in scenes.

    Science.gov (United States)

    Le-Hoa Võ, Melissa; Wolfe, Jeremy M

    2015-03-01

    Many daily activities involve looking for something. The ease with which these searches are performed often allows one to forget that searching represents complex interactions between visual attention and memory. Although a clear understanding exists of how search efficiency will be influenced by visual features of targets and their surrounding distractors or by the number of items in the display, the role of memory in search is less well understood. Contextual cueing studies have shown that implicit memory for repeated item configurations can facilitate search in artificial displays. When searching more naturalistic environments, other forms of memory come into play. For instance, semantic memory provides useful information about which objects are typically found where within a scene, and episodic scene memory provides information about where a particular object was seen the last time a particular scene was viewed. In this paper, we will review work on these topics, with special emphasis on the role of memory in guiding search in organized, real-world scenes. © 2015 New York Academy of Sciences.

  8. Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Ichiro N. Maruyama

    2017-05-01

    Full Text Available Because of the relative simplicity of its nervous system, Caenorhabditis elegans is a useful model organism to study learning and memory at cellular and molecular levels. For appetitive conditioning in C. elegans, food has exclusively been used as an unconditioned stimulus (US. It may be difficult to analyze neuronal circuits for associative memory since food is a multimodal combination of olfactory, gustatory, and mechanical stimuli. Here, we report classical appetitive conditioning and associative memory in C. elegans, using 1-nonanol as a conditioned stimulus (CS, and potassium chloride (KCl as a US. Before conditioning, C. elegans innately avoided 1-nonanol, an aversive olfactory stimulus, and was attracted by KCl, an appetitive gustatory stimulus, on assay agar plates. Both massed training without an intertrial interval (ITI and spaced training with a 10-min ITI induced significant levels of memory of association regarding the two chemicals. Memory induced by massed training decayed within 6 h, while that induced by spaced training was retained for more than 6 h. Animals treated with inhibitors of transcription or translation formed the memory induced by spaced training less efficiently than untreated animals, whereas the memory induced by massed training was not significantly affected by such treatments. By definition, therefore, memories induced by massed training and spaced training are classified as short-term memory (STM and long-term memory (LTM, respectively. When animals conditioned by spaced training were exposed to 1-nonanol alone, their learning index was lower than that of untreated animals, suggesting that extinction learning occurs in C. elegans. In support of these results, C. elegans mutants defective in nmr-1, encoding an NMDA receptor subunit, formed both STM and LTM less efficiently than wild-type animals, while mutations in crh-1, encoding a ubiquitous transcription factor CREB required for memory consolidation, affected

  9. Minimizing the disruptive effects of prospective memory in simulated air traffic control.

    Science.gov (United States)

    Loft, Shayne; Smith, Rebekah E; Remington, Roger W

    2013-09-01

    Prospective memory refers to remembering to perform an intended action in the future. Failures of prospective memory can occur in air traffic control. In two experiments, we examined the utility of external aids for facilitating air traffic management in a simulated air traffic control task with prospective memory requirements. Participants accepted and handed-off aircraft and detected aircraft conflicts. The prospective memory task involved remembering to deviate from a routine operating procedure when accepting target aircraft. External aids that contained details of the prospective memory task appeared and flashed when target aircraft needed acceptance. In Experiment 1, external aids presented either adjacent or nonadjacent to each of the 20 target aircraft presented over the 40-min test phase reduced prospective memory error by 11% compared with a condition without external aids. In Experiment 2, only a single target aircraft was presented a significant time (39-42 min) after presentation of the prospective memory instruction, and the external aids reduced prospective memory error by 34%. In both experiments, costs to the efficiency of nonprospective memory air traffic management (nontarget aircraft acceptance response time, conflict detection response time) were reduced by nonadjacent aids compared with no aids or adjacent aids. In contrast, in both experiments, the efficiency of the prospective memory air traffic management (target aircraft acceptance response time) was facilitated by adjacent aids compared with nonadjacent aids. Together, these findings have potential implications for the design of automated alerting systems to maximize multitask performance in work settings where operators monitor and control demanding perceptual displays. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. Sex, estradiol, and spatial memory in a food-caching corvid.

    Science.gov (United States)

    Rensel, Michelle A; Ellis, Jesse M S; Harvey, Brigit; Schlinger, Barney A

    2015-09-01

    Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Seven-year-olds allocate attention like adults unless working memory is overloaded

    NARCIS (Netherlands)

    Cowan, Nelson; Morey, Candice C.; AuBuchon, Angela M.; Zwilling, Christopher E.; Gilchrist, Amanda L.

    Previous studies have indicated that visual working memory performance increases with age in childhood, but it is not clear why. One main hypothesis has been that younger children are less efficient in their attention; specifically, they are less able to exclude irrelevant items from working memory

  12. Efficient Work Team Scheduling: Using Psychological Models of Knowledge Retention to Improve Code Writing Efficiency

    Directory of Open Access Journals (Sweden)

    Michael J. Pelosi

    2014-12-01

    Full Text Available Development teams and programmers must retain critical information about their work during work intervals and gaps in order to improve future performance when work resumes. Despite time lapses, project managers want to maximize coding efficiency and effectiveness. By developing a mathematically justified, practically useful, and computationally tractable quantitative and cognitive model of learning and memory retention, this study establishes calculations designed to maximize scheduling payoff and optimize developer efficiency and effectiveness.

  13. A pipeline of associative memory boards for track finding

    CERN Document Server

    Annovi, A; Bardi, A; Carosi, R; Dell'Orso, Mauro; Giannetti, P; Iannaccone, G; Morsani, F; Pietri, M; Varotto, G

    2000-01-01

    We present a pipeline of associative memory boards for track finding, which satisfies the requirements of level two triggers of the next LHC experiments. With respect to previous realizations, the pipelined architecture warrants full scalability of the memory bank, increased bandwidth (by one order of magnitude), increased number of detector layers (by a factor 2). Each associative memory board consists of four smaller boards, each containing 32 programmable associative memory chips, implemented with low-cost commercial FPGA. FPGA programming has been optimized for maximum efficiency in terms of pattern density and PCB design has been optimized in terms of modularity and FPGA chip density. A complete AM board has been successfully tested at 40 MHz, and can contain 6.6x10//3 particle trajectories. 7 Refs.

  14. Raman scheme for adjustable-bandwidth quantum memory

    International Nuclear Information System (INIS)

    Le Goueet, J.-L.; Berman, P. R.

    2009-01-01

    We propose a scenario of quantum memory for light based on Raman scattering. The storage medium is a vapor and the different spectral components of the input pulse are stored in different atomic velocity classes. One uses appropriate pulses to reverse the resulting Doppler phase shift and to regenerate the input pulse, without distortion, in the backward direction. The different stages of the protocol are detailed and the recovery efficiency is calculated in the semiclassical picture. Since the memory bandwidth is determined by the Raman transition Doppler width, it can be adjusted by changing the angle between the input pulse wave vector and the control beams. The optical depth also depends on the beam angle. As a consequence the available optical depth can be optimized depending on the needed bandwidth. The predicted recovery efficiency is close to 100% for large optical depth.

  15. Network Sampling with Memory: A proposal for more efficient sampling from social networks

    Science.gov (United States)

    Mouw, Ted; Verdery, Ashton M.

    2013-01-01

    Techniques for sampling from networks have grown into an important area of research across several fields. For sociologists, the possibility of sampling from a network is appealing for two reasons: (1) A network sample can yield substantively interesting data about network structures and social interactions, and (2) it is useful in situations where study populations are difficult or impossible to survey with traditional sampling approaches because of the lack of a sampling frame. Despite its appeal, methodological concerns about the precision and accuracy of network-based sampling methods remain. In particular, recent research has shown that sampling from a network using a random walk based approach such as Respondent Driven Sampling (RDS) can result in high design effects (DE)—the ratio of the sampling variance to the sampling variance of simple random sampling (SRS). A high design effect means that more cases must be collected to achieve the same level of precision as SRS. In this paper we propose an alternative strategy, Network Sampling with Memory (NSM), which collects network data from respondents in order to reduce design effects and, correspondingly, the number of interviews needed to achieve a given level of statistical power. NSM combines a “List” mode, where all individuals on the revealed network list are sampled with the same cumulative probability, with a “Search” mode, which gives priority to bridge nodes connecting the current sample to unexplored parts of the network. We test the relative efficiency of NSM compared to RDS and SRS on 162 school and university networks from Add Health and Facebook that range in size from 110 to 16,278 nodes. The results show that the average design effect for NSM on these 162 networks is 1.16, which is very close to the efficiency of a simple random sample (DE=1), and 98.5% lower than the average DE we observed for RDS. PMID:24159246

  16. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing.

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, Craig Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilize memory.

  17. Episodic memory, semantic memory, and amnesia.

    Science.gov (United States)

    Squire, L R; Zola, S M

    1998-01-01

    Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.

  18. Low-memory iterative density fitting.

    Science.gov (United States)

    Grajciar, Lukáš

    2015-07-30

    A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation. © 2015 Wiley Periodicals, Inc.

  19. Glucose enhancement of memory is modulated by trait anxiety in healthy adolescent males

    OpenAIRE

    Smith, Michael; Hii, Hilary; Foster, Jonathan; van Eekelen, Anke

    2011-01-01

    Glucose administration is associated with memory enhancement in healthy young individuals under conditions of divided attention at encoding. While the specific neurocognitive mechanisms underlying this ‘glucose memory facilitation effect’ are currently uncertain, it is thought that individual differences in glucoregulatory efficiency may alter an individual’s sensitivity to the glucose memory facilitation effect. In the present study, we sought to investigate whether basal hypothalamic–pituit...

  20. Fast, noise-free memory for photon synchronization at room temperature.

    Science.gov (United States)

    Finkelstein, Ran; Poem, Eilon; Michel, Ohad; Lahad, Ohr; Firstenberg, Ofer

    2018-01-01

    Future quantum photonic networks require coherent optical memories for synchronizing quantum sources and gates of probabilistic nature. We demonstrate a fast ladder memory (FLAME) mapping the optical field onto the superposition between electronic orbitals of rubidium vapor. Using a ladder-level system of orbital transitions with nearly degenerate frequencies simultaneously enables high bandwidth, low noise, and long memory lifetime. We store and retrieve 1.7-ns-long pulses, containing 0.5 photons on average, and observe short-time external efficiency of 25%, memory lifetime (1/ e ) of 86 ns, and below 10 -4 added noise photons. Consequently, coupling this memory to a probabilistic source would enhance the on-demand photon generation probability by a factor of 12, the highest number yet reported for a noise-free, room temperature memory. This paves the way toward the controlled production of large quantum states of light from probabilistic photon sources.

  1. How quickly they forget:The relationship between forgetting and working memory performance

    OpenAIRE

    Bayliss, Donna M.; Jarrold, Christopher

    2014-01-01

    This study examined the contribution of individual differences in rate of forgetting to variation in working memory performance in children. One hundred and twelve children (mean age 9 years 4 months) completed 2 tasks designed to measure forgetting, as well as measures of working memory, processing efficiency, and short-term storage ability. Individual differences in forgetting rate accounted for unique variance in working memory performance over and above variance explained by measures of p...

  2. Scientific developments of liquid crystal-based optical memory: a review

    Science.gov (United States)

    Prakash, Jai; Chandran, Achu; Biradar, Ashok M.

    2017-01-01

    The memory behavior in liquid crystals (LCs), although rarely observed, has made very significant headway over the past three decades since their discovery in nematic type LCs. It has gone from a mere scientific curiosity to application in variety of commodities. The memory element formed by numerous LCs have been protected by patents, and some commercialized, and used as compensation to non-volatile memory devices, and as memory in personal computers and digital cameras. They also have the low cost, large area, high speed, and high density memory needed for advanced computers and digital electronics. Short and long duration memory behavior for industrial applications have been obtained from several LC materials, and an LC memory with interesting features and applications has been demonstrated using numerous LCs. However, considerable challenges still exist in searching for highly efficient, stable, and long-lifespan materials and methods so that the development of useful memory devices is possible. This review focuses on the scientific and technological approach of fascinating applications of LC-based memory. We address the introduction, development status, novel design and engineering principles, and parameters of LC memory. We also address how the amalgamation of LCs could bring significant change/improvement in memory effects in the emerging field of nanotechnology, and the application of LC memory as the active component for futuristic and interesting memory devices.

  3. The nature of working memory for Braille.

    Science.gov (United States)

    Cohen, Henri; Voss, Patrice; Lepore, Franco; Scherzer, Peter

    2010-05-26

    Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents.

  4. Quasi-cyclic unit memory convolutional codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Paaske, Erik; Ballan, Mark

    1990-01-01

    Unit memory convolutional codes with generator matrices, which are composed of circulant submatrices, are introduced. This structure facilitates the analysis of efficient search for good codes. Equivalences among such codes and some of the basic structural properties are discussed. In particular......, catastrophic encoders and minimal encoders are characterized and dual codes treated. Further, various distance measures are discussed, and a number of good codes, some of which result from efficient computer search and some of which result from known block codes, are presented...

  5. Combined Cognitive Training vs. Memory Strategy Training in Healthy Older Adults

    Science.gov (United States)

    Li, Bing; Zhu, Xinyi; Hou, Jianhua; Chen, Tingji; Wang, Pengyun; Li, Juan

    2016-01-01

    As mnemonic utilization deficit in older adults associates with age-related decline in executive function, we hypothesized that memory strategy training combined with executive function training might induce larger training effect in memory and broader training effects in non-memory outcomes than pure memory training. The present study compared the effects of combined cognitive training (executive function training plus memory strategy training) to pure memory strategy training. Forty healthy older adults were randomly assigned to a combined cognitive training group or a memory strategy training group. A control group receiving no training was also included. Combined cognitive training group received 16 sessions of training (eight sessions of executive function training followed by eight sessions of memory strategy training). Memory training group received 16 sessions of memory strategy training. The results partly supported our hypothesis in that indeed improved performance on executive function was only found in combined training group, whereas memory performance increased less in combined training compared to memory strategy group. Results suggest that combined cognitive training may be less efficient than pure memory training in memory outcomes, though the influences from insufficient training time and less closeness between trained executive function and working memory could not be excluded; however it has broader training effects in non-memory outcomes. Clinical Trial Registration: www.chictr.org.cn, identifier ChiCTR-OON-16007793. PMID:27375521

  6. The hard fall effect: high working memory capacity leads to a higher, but less robust short-term memory performance.

    Science.gov (United States)

    Thomassin, Noémylle; Gonthier, Corentin; Guerraz, Michel; Roulin, Jean-Luc

    2015-01-01

    Participants with a high working memory span tend to perform better than low spans in a variety of tasks. However, their performance is paradoxically more impaired when they have to perform two tasks at once, a phenomenon that could be labeled the "hard fall effect." The present study tested whether this effect exists in a short-term memory task, and investigated the proposal that the effect is due to high spans using efficient facilitative strategies under simple task conditions. Ninety-eight participants performed a spatial short-term memory task under simple and dual task conditions; stimuli presentation times either allowed for the use of complex facilitative strategies or not. High spans outperformed low spans only under simple task conditions when presentation times allowed for the use of facilitative strategies. These results indicate that the hard fall effect exists on a short-term memory task and may be caused by individual differences in strategy use.

  7. An efficient spectral crystal plasticity solver for GPU architectures

    Science.gov (United States)

    Malahe, Michael

    2018-03-01

    We present a spectral crystal plasticity (CP) solver for graphics processing unit (GPU) architectures that achieves a tenfold increase in efficiency over prior GPU solvers. The approach makes use of a database containing a spectral decomposition of CP simulations performed using a conventional iterative solver over a parameter space of crystal orientations and applied velocity gradients. The key improvements in efficiency come from reducing global memory transactions, exposing more instruction-level parallelism, reducing integer instructions and performing fast range reductions on trigonometric arguments. The scheme also makes more efficient use of memory than prior work, allowing for larger problems to be solved on a single GPU. We illustrate these improvements with a simulation of 390 million crystal grains on a consumer-grade GPU, which executes at a rate of 2.72 s per strain step.

  8. Circadian modulation of short-term memory in Drosophila.

    Science.gov (United States)

    Lyons, Lisa C; Roman, Gregg

    2009-01-01

    Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term associative memory formation using a negatively reinforced olfactory-learning paradigm in Drosophila melanogaster. We found that memory formation was regulated in a circadian manner. The peak performance in short-term memory (STM) occurred during the early subjective night with a twofold performance amplitude after a single pairing of conditioned and unconditioned stimuli. This rhythm in memory is eliminated in both timeless and period mutants and is absent during constant light conditions. Circadian gating of sensory perception does not appear to underlie the rhythm in short-term memory as evidenced by the nonrhythmic shock avoidance and olfactory avoidance behaviors. Moreover, central brain oscillators appear to be responsible for the modulation as cryptochrome mutants, in which the antennal circadian oscillators are nonfunctional, demonstrate robust circadian rhythms in short-term memory. Together these data suggest that central, rather than peripheral, circadian oscillators modulate the formation of short-term associative memory and not the perception of the stimuli.

  9. BLACKCOMB2: Hardware-software co-design for non-volatile memory in exascale systems

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, Trevor [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-12-15

    This work was part of a larger project, Blackcomb2, centered at Oak Ridge National Labs (Jeff Vetter PI) to investigate the opportunities for replacing or supplementing DRAM main memory with nonvolatile memory (NVmemory) in Exascale memory systems. The goal was to reduce the energy consumed by in future supercomputer memory systems and to improve their resiliency. Building on the accomplishments of the original Blackcomb Project, funded in 2010, the goal for Blackcomb2 was to identify, evaluate, and optimize the most promising emerging memory technologies, architecture hardware and software technologies, which are essential to provide the necessary memory capacity, performance, resilience, and energy efficiency in Exascale systems. Capacity and energy are the key drivers.

  10. Sleep modulates the neural substrates of both spatial and contextual memory consolidation.

    Directory of Open Access Journals (Sweden)

    Géraldine Rauchs

    Full Text Available It is known that sleep reshapes the neural representations that subtend the memories acquired while navigating in a virtual environment. However, navigation is not process-pure, as manifold learning components contribute to performance, notably the spatial and contextual memory constituents. In this context, it remains unclear whether post-training sleep globally promotes consolidation of all of the memory components embedded in virtual navigation, or rather favors the development of specific representations. Here, we investigated the effect of post-training sleep on the neural substrates of the consolidation of spatial and contextual memories acquired while navigating in a complex 3D, naturalistic virtual town. Using fMRI, we mapped regional cerebral activity during various tasks designed to tap either the spatial or the contextual memory component, or both, 72 h after encoding with or without sleep deprivation during the first post-training night. Behavioral performance was not dependent upon post-training sleep deprivation, neither in a natural setting that engages both spatial and contextual memory processes nor when looking more specifically at each of these memory representations. At the neuronal level however, analyses that focused on contextual memory revealed distinct correlations between performance and neuronal activity in frontal areas associated with recollection processes after post-training sleep, and in the parahippocampal gyrus associated with familiarity processes in sleep-deprived participants. Likewise, efficient spatial memory was associated with posterior cortical activity after sleep whereas it correlated with parahippocampal/medial temporal activity after sleep deprivation. Finally, variations in place-finding efficiency in a natural setting encompassing spatial and contextual elements were associated with caudate activity after post-training sleep, suggesting the automation of navigation. These data indicate that post

  11. Memory allocation and computations for Laplace’s equation of 3-D arbitrary boundary problems

    Directory of Open Access Journals (Sweden)

    Tsay Tswn-Syau

    2017-01-01

    Full Text Available Computation iteration schemes and memory allocation technique for finite difference method were presented in this paper. The transformed form of a groundwater flow problem in the generalized curvilinear coordinates was taken to be the illustrating example and a 3-dimensional second order accurate 19-point scheme was presented. Traditional element-by-element methods (e.g. SOR are preferred since it is simple and memory efficient but time consuming in computation. For efficient memory allocation, an index method was presented to store the sparse non-symmetric matrix of the problem. For computations, conjugate-gradient-like methods were reported to be computationally efficient. Among them, using incomplete Choleski decomposition as preconditioner was reported to be good method for iteration convergence. In general, the developed index method in this paper has the following advantages: (1 adaptable to various governing and boundary conditions, (2 flexible for higher order approximation, (3 independence of problem dimension, (4 efficient for complex problems when global matrix is not symmetric, (5 convenience for general sparse matrices, (6 computationally efficient in the most time consuming procedure of matrix multiplication, and (7 applicable to any developed matrix solver.

  12. Memory blindness: Altered memory reports lead to distortion in eyewitness memory.

    Science.gov (United States)

    Cochran, Kevin J; Greenspan, Rachel L; Bogart, Daniel F; Loftus, Elizabeth F

    2016-07-01

    Choice blindness refers to the finding that people can often be misled about their own self-reported choices. However, little research has investigated the more long-term effects of choice blindness. We examined whether people would detect alterations to their own memory reports, and whether such alterations could influence participants' memories. Participants viewed slideshows depicting crimes, and then either reported their memories for episodic details of the event (Exp. 1) or identified a suspect from a lineup (Exp. 2). Then we exposed participants to manipulated versions of their memory reports, and later tested their memories a second time. The results indicated that the majority of participants failed to detect the misinformation, and that exposing witnesses to misleading versions of their own memory reports caused their memories to change to be consistent with those reports. These experiments have implications for eyewitness memory.

  13. Unconditional polarization qubit quantum memory at room temperature

    Science.gov (United States)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  14. Memory-based attention capture when multiple items are maintained in visual working memory.

    Science.gov (United States)

    Hollingworth, Andrew; Beck, Valerie M

    2016-07-01

    Efficient visual search requires that attention is guided strategically to relevant objects, and most theories of visual search implement this function by means of a target template maintained in visual working memory (VWM). However, there is currently debate over the architecture of VWM-based attentional guidance. We contrasted a single-item-template hypothesis with a multiple-item-template hypothesis, which differ in their claims about structural limits on the interaction between VWM representations and perceptual selection. Recent evidence from van Moorselaar, Theeuwes, and Olivers (2014) indicated that memory-based capture during search, an index of VWM guidance, is not observed when memory set size is increased beyond a single item, suggesting that multiple items in VWM do not guide attention. In the present study, we maximized the overlap between multiple colors held in VWM and the colors of distractors in a search array. Reliable capture was observed when 2 colors were held in VWM and both colors were present as distractors, using both the original van Moorselaar et al. singleton-shape search task and a search task that required focal attention to array elements (gap location in outline square stimuli). In the latter task, memory-based capture was consistent with the simultaneous guidance of attention by multiple VWM representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Cognitive Control Network Contributions to Memory-Guided Visual Attention.

    Science.gov (United States)

    Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C

    2016-05-01

    Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network(CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Efficient modeling of vector hysteresis using fuzzy inference systems

    International Nuclear Information System (INIS)

    Adly, A.A.; Abd-El-Hafiz, S.K.

    2008-01-01

    Vector hysteresis models have always been regarded as important tools to determine which multi-dimensional magnetic field-media interactions may be predicted. In the past, considerable efforts have been focused on mathematical modeling methodologies of vector hysteresis. This paper presents an efficient approach based upon fuzzy inference systems for modeling vector hysteresis. Computational efficiency of the proposed approach stems from the fact that the basic non-local memory Preisach-type hysteresis model is approximated by a local memory model. The proposed computational low-cost methodology can be easily integrated in field calculation packages involving massive multi-dimensional discretizations. Details of the modeling methodology and its experimental testing are presented

  17. Sleep Supports the Slow Abstraction of Gist from Visual Perceptual Memories.

    Science.gov (United States)

    Lutz, Nicolas D; Diekelmann, Susanne; Hinse-Stern, Patricia; Born, Jan; Rauss, Karsten

    2017-02-17

    Sleep benefits the consolidation of individual episodic memories. In the long run, however, it may be more efficient to retain the abstract gist of single, related memories, which can be generalized to similar instances in the future. While episodic memory is enhanced after one night of sleep, effective gist abstraction is thought to require multiple nights. We tested this hypothesis using a visual Deese-Roediger-McDermott paradigm, examining gist abstraction and episodic-like memory consolidation after 20 min, after 10 hours, as well as after one year of retention. While after 10 hours, sleep enhanced episodic-like memory for single items, it did not affect gist abstraction. One year later, however, we found significant gist knowledge only if subjects had slept immediately after encoding, while there was no residual memory for individual items. These findings indicate that sleep after learning strengthens episodic-like memories in the short term and facilitates long-term gist abstraction.

  18. Working memory capacity predicts listwise directed forgetting in adults and children.

    Science.gov (United States)

    Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T

    2010-05-01

    In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.

  19. How Quickly They Forget: The Relationship between Forgetting and Working Memory Performance

    Science.gov (United States)

    Bayliss, Donna M.; Jarrold, Christopher

    2015-01-01

    This study examined the contribution of individual differences in rate of forgetting to variation in working memory performance in children. One hundred and twelve children (mean age 9 years 4 months) completed 2 tasks designed to measure forgetting, as well as measures of working memory, processing efficiency, and short-term storage ability.…

  20. A review of emerging non-volatile memory (NVM) technologies and applications

    Science.gov (United States)

    Chen, An

    2016-11-01

    This paper will review emerging non-volatile memory (NVM) technologies, with the focus on phase change memory (PCM), spin-transfer-torque random-access-memory (STTRAM), resistive random-access-memory (RRAM), and ferroelectric field-effect-transistor (FeFET) memory. These promising NVM devices are evaluated in terms of their advantages, challenges, and applications. Their performance is compared based on reported parameters of major industrial test chips. Memory selector devices and cell structures are discussed. Changing market trends toward low power (e.g., mobile, IoT) and data-centric applications create opportunities for emerging NVMs. High-performance and low-cost emerging NVMs may simplify memory hierarchy, introduce non-volatility in logic gates and circuits, reduce system power, and enable novel architectures. Storage-class memory (SCM) based on high-density NVMs could fill the performance and density gap between memory and storage. Some unique characteristics of emerging NVMs can be utilized for novel applications beyond the memory space, e.g., neuromorphic computing, hardware security, etc. In the beyond-CMOS era, emerging NVMs have the potential to fulfill more important functions and enable more efficient, intelligent, and secure computing systems.

  1. Static Memory Deduplication for Performance Optimization in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Gangyong Jia

    2017-04-01

    Full Text Available In a cloud computing environment, the number of virtual machines (VMs on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.

  2. Control of Working Memory in Rhesus Monkeys (Macaca mulatta)

    Science.gov (United States)

    Tu, Hsiao-Wei; Hampton, Robert R.

    2014-01-01

    Cognitive control is critical for efficiently using the limited resources in working memory. It is well established that humans use rehearsal to increase the probability of remembering needed information, but little is known in nonhumans, with some studies reporting the absence of active control and others subject to alternative explanations. We trained monkeys in a visual matching-to-sample paradigm with a post-sample memory cue. Monkeys either saw a remember cue that predicted the occurrence of a matching test that required memory for the sample, or a forget cue that predicted a discrimination test that did not require memory of the sample. Infrequent probe trials on which monkeys were given tests of the type not cued on that trial were used to assess whether memory was under cognitive control. Our procedures controlled for reward expectation and for the surprising nature of the probes. Monkeys matched less accurately after forget cues, while discrimination accuracy was equivalent in the two cue conditions. We also tested monkeys with lists of two consecutive sample images that shared the same cue. Again, memory for expected memory tests was superior to that on unexpected tests. Together these results show that monkeys cognitively control their working memory. PMID:25436219

  3. Static Memory Deduplication for Performance Optimization in Cloud Computing.

    Science.gov (United States)

    Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan

    2017-04-27

    In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.

  4. Are subjective memory problems related to suggestibility, compliance, false memories, and objective memory performance?

    Science.gov (United States)

    Van Bergen, Saskia; Jelicic, Marko; Merckelbach, Harald

    2009-01-01

    The relationship between subjective memory beliefs and suggestibility, compliance, false memories, and objective memory performance was studied in a community sample of young and middle-aged people (N = 142). We hypothesized that people with subjective memory problems would exhibit higher suggestibility and compliance levels and would be more susceptible to false recollections than those who are optimistic about their memory. In addition, we expected a discrepancy between subjective memory judgments and objective memory performance. We found that subjective memory judgments correlated significantly with compliance, with more negative memory judgments accompanying higher levels of compliance. Contrary to our expectation, subjective memory problems did not correlate with suggestibility or false recollections. Furthermore, participants were accurate in estimating their objective memory performance.

  5. Energy efficient and fast reversal of a fixed skyrmion two-terminal memory with spin current assisted by voltage controlled magnetic anisotropy

    Science.gov (United States)

    Bhattacharya, Dhritiman; Mamun Al-Rashid, Md; Atulasimha, Jayasimha

    2017-10-01

    Recent work (P-H Jang et al 2015 Appl. Phys. Lett. 107 202401, J. Sampaio et al 2016 Appl. Phys. Lett. 108 112403) suggests that ferromagnetic reversal with spin transfer torque (STT) requires more current in a system in the presence of Dzyaloshinskii-Moriya interaction (DMI) than switching a typical ferromagnet of the same dimensions and perpendicular magnetic anisotropy (PMA). However, DMI promotes the stabilization of skyrmions and we report that when perpendicular anisotropy is modulated (reduced) for both the skyrmion and ferromagnet, it takes a much smaller current to reverse the fixed skyrmion than to reverse the ferromagnet in the same amount of time, or the skyrmion reverses much faster than the ferromagnet at similar levels of current. We show with rigorous micromagnetic simulations that skyrmion switching proceeds along a different path at very low PMA, which results in a significant reduction in the spin current or time required for reversal. This can offer potential for memory applications where a relatively simple modification of the standard STT-RAM (to include a heavy metal adjacent to the soft magnetic layer and with appropriate design of the tunnel barrier) can lead to an energy efficient and fast magnetic memory device based on the reversal of fixed skyrmions.

  6. The nature of working memory for Braille.

    Directory of Open Access Journals (Sweden)

    Henri Cohen

    Full Text Available Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV. In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents.

  7. Cognitive psychopathology in Schizophrenia: Comparing memory performances with Obsessive-compulsive disorder patients and normal subjects on the Wechsler Memory Scale-IV.

    Science.gov (United States)

    Cammisuli, Davide Maria; Sportiello, Marco Timpano

    2016-06-01

    and Mannerism and Posturing symptoms, were found too. Memory damage observed in schizophrenia patients was more severe and wider than that of patients with obsessive-compulsive disorder, except for visual working memory. Memory dysfunction, mainly related to episodic memory damage and reduced efficiency of central executive, is intimately connected to the specific psychopathological processes characterizing schizophrenia. Implications for therapeutics and cognitive remediation techniques are discussed.

  8. Multiway simple cycle separators and I/O-efficient algorithms for planar graphs

    DEFF Research Database (Denmark)

    Arge, L.; Walderveen, Freek van; Zeh, Norbert

    2013-01-01

    memory, where sort(N) is the number of I/Os needed to sort N items in external memory. The key, and the main technical contribution of this paper, is a multiway version of Miller's simple cycle separator theorem. We show how to compute these separators in linear time in internal memory, and using O...... in internal memory, thereby completely negating the performance gain achieved by minimizing the number of disk accesses. In this paper, we show how to make these algorithms simultaneously efficient in internal and external memory so they achieve I/O complexity O(sort(N)) and take O(N log N) time in internal......(sort(N)) I/Os and O(N log N) (internal-memory computation) time in external memory....

  9. Room-temperature antiferromagnetic memory resistor.

    Science.gov (United States)

    Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R

    2014-04-01

    The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

  10. Protein-Based Three-Dimensional Memories and Associative Processors

    Science.gov (United States)

    Birge, Robert

    2008-03-01

    The field of bioelectronics has benefited from the fact that nature has often solved problems of a similar nature to those which must be solved to create molecular electronic or photonic devices that operate with efficiency and reliability. Retinal proteins show great promise in bioelectronic devices because they operate with high efficiency (˜0.65%), high cyclicity (>10^7), operate over an extended wavelength range (360 -- 630 nm) and can convert light into changes in voltage, pH, absorption or refractive index. This talk will focus on a retinal protein called bacteriorhodopsin, the proton pump of the organism Halobacterium salinarum. Two memories based on this protein will be described. The first is an optical three-dimensional memory. This memory stores information using volume elements (voxels), and provides as much as a thousand-fold improvement in effective capacity over current technology. A unique branching reaction of a variant of bacteriorhodopsin is used to turn each protein into an optically addressed latched AND gate. Although three working prototypes have been developed, a number of cost/performance and architectural issues must be resolved prior to commercialization. The major issue is that the native protein provides a very inefficient branching reaction. Genetic engineering has improved performance by nearly 500-fold, but a further order of magnitude improvement is needed. Protein-based holographic associative memories will also be discussed. The human brain stores and retrieves information via association, and human intelligence is intimately connected to the nature and enormous capacity of this associative search and retrieval process. To a first order approximation, creativity can be viewed as the association of two seemingly disparate concepts to form a totally new construct. Thus, artificial intelligence requires large scale associative memories. Current computer hardware does not provide an optimal environment for creating artificial

  11. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors

    International Nuclear Information System (INIS)

    Nishiura, Daisuke; Sakaguchi, Hide

    2011-01-01

    Over the last few decades, the computational demands of massive particle-based simulations for both scientific and industrial purposes have been continuously increasing. Hence, considerable efforts are being made to develop parallel computing techniques on various platforms. In such simulations, particles freely move within a given space, and so on a distributed-memory system, load balancing, i.e., assigning an equal number of particles to each processor, is not guaranteed. However, shared-memory systems achieve better load balancing for particle models, but suffer from the intrinsic drawback of memory access competition, particularly during (1) paring of contact candidates from among neighboring particles and (2) force summation for each particle. Here, novel algorithms are proposed to overcome these two problems. For the first problem, the key is a pre-conditioning process during which particle labels are sorted by a cell label in the domain to which the particles belong. Then, a list of contact candidates is constructed by pairing the sorted particle labels. For the latter problem, a table comprising the list indexes of the contact candidate pairs is created and used to sum the contact forces acting on each particle for all contacts according to Newton's third law. With just these methods, memory access competition is avoided without additional redundant procedures. The parallel efficiency and compatibility of these two algorithms were evaluated in discrete element method (DEM) simulations on four types of shared-memory parallel computers: a multicore multiprocessor computer, scalar supercomputer, vector supercomputer, and graphics processing unit. The computational efficiency of a DEM code was found to be drastically improved with our algorithms on all but the scalar supercomputer. Thus, the developed parallel algorithms are useful on shared-memory parallel computers with sufficient memory bandwidth.

  12. Two-Photon Absorbing Molecules as Potential Materials for 3D Optical Memory

    Directory of Open Access Journals (Sweden)

    Kazuya Ogawa

    2014-01-01

    Full Text Available In this review, recent advances in two-photon absorbing photochromic molecules, as potential materials for 3D optical memory, are presented. The investigations introduced in this review indicate that 3D data storage processing at the molecular level is possible. As 3D memory using two-photon absorption allows advantages over existing systems, the use of two-photon absorbing photochromic molecules is preferable. Although there are some photochromic molecules with good properties for memory, in most cases, the two-photon absorption efficiency is not high. Photochromic molecules with high two-photon absorption efficiency are desired. Recently, molecules having much larger two-photon absorption cross sections over 10,000 GM (GM= 10−50 cm4 s molecule−1 photon−1 have been discovered and are expected to open the way to realize two-photon absorption 3D data storage.

  13. Polish Foundation for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  14. Intelligence moderates the benefits of strategy instructions on memory performance: An adult-lifespan examination

    NARCIS (Netherlands)

    Frankenmolen, N.L.; Altgassen, A.M.; Kessels, R.M.H.; Waal, M.M. de; Hindriksen, J.A.; Verhoeven, B.W.H.; Fasotti, L.; Scheres, A.P.J.; Kessels, R.P.C.; Oosterman, J.M.

    2017-01-01

    Whether older adults can compensate for their associative memory deficit by using memory strategies efficiently might depend on their general cognitive abilities. This study examined the moderating role of an IQ estimate on the beneficial effects of strategy instructions. A total of 142 participants

  15. Performance analysis and comparison of a minimum interconnections direct storage model with traditional neural bidirectional memories.

    Science.gov (United States)

    Bhatti, A Aziz

    2009-12-01

    This study proposes an efficient and improved model of a direct storage bidirectional memory, improved bidirectional associative memory (IBAM), and emphasises the use of nanotechnology for efficient implementation of such large-scale neural network structures at a considerable lower cost reduced complexity, and less area required for implementation. This memory model directly stores the X and Y associated sets of M bipolar binary vectors in the form of (MxN(x)) and (MxN(y)) memory matrices, requires O(N) or about 30% of interconnections with weight strength ranging between +/-1, and is computationally very efficient as compared to sequential, intraconnected and other bidirectional associative memory (BAM) models of outer-product type that require O(N(2)) complex interconnections with weight strength ranging between +/-M. It is shown that it is functionally equivalent to and possesses all attributes of a BAM of outer-product type, and yet it is simple and robust in structure, very large scale integration (VLSI), optical and nanotechnology realisable, modular and expandable neural network bidirectional associative memory model in which the addition or deletion of a pair of vectors does not require changes in the strength of interconnections of the entire memory matrix. The analysis of retrieval process, signal-to-noise ratio, storage capacity and stability of the proposed model as well as of the traditional BAM has been carried out. Constraints on and characteristics of unipolar and bipolar binaries for improved storage and retrieval are discussed. The simulation results show that it has log(e) N times higher storage capacity, superior performance, faster convergence and retrieval time, when compared to traditional sequential and intraconnected bidirectional memories.

  16. Efficiently GPU-accelerating long kernel convolutions in 3-D DIRECT TOF PET reconstruction via memory cache optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sungsoo; Mueller, Klaus [Stony Brook Univ., NY (United States). Center for Visual Computing; Matej, Samuel [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Radiology

    2011-07-01

    The DIRECT represents a novel approach for 3-D Time-of-Flight (TOF) PET reconstruction. Its novelty stems from the fact that it performs all iterative predictor-corrector operations directly in image space. The projection operations now amount to convolutions in image space, using long TOF (resolution) kernels. While for spatially invariant kernels the computational complexity can be algorithmically overcome by replacing spatial convolution with multiplication in Fourier space, spatially variant kernels cannot use this shortcut. Therefore in this paper, we describe a GPU-accelerated approach for this task. However, the intricate parallel architecture of GPUs poses its own challenges, and careful memory and thread management is the key to obtaining optimal results. As convolution is mainly memory-bound we focus on the former, proposing two types of memory caching schemes that warrant best cache memory re-use by the parallel threads. In contrast to our previous two-stage algorithm, the schemes presented here are both single-stage which is more accurate. (orig.)

  17. Memory is Not Enough: The Neurobiological Substrates of Dynamic Cognitive Reserve.

    Science.gov (United States)

    Serra, Laura; Bruschini, Michela; Di Domenico, Carlotta; Gabrielli, Giulia Bechi; Marra, Camillo; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2017-01-01

    Changes in the residual memory variance are considered as a dynamic aspect of cognitive reserve (d-CR). We aimed to investigate for the first time the neural substrate associated with changes in the residual memory variance overtime in patients with amnestic mild cognitive impairment (aMCI). Thirty-four aMCI patients followed-up for 36 months and 48 healthy elderly individuals (HE) were recruited. All participants underwent 3T MRI, collecting T1-weighted images for voxel-based morphometry (VBM). They underwent an extensive neuropsychological battery, including six episodic memory tests. In patients and controls, factor analyses were used on the episodic memory scores to obtain a composite memory score (C-MS). Partial Least Square analyses were used to decompose the variance of C-MS in latent variables (LT scores), accounting for demographic variables and for the general cognitive efficiency level; linear regressions were applied on LT scores, striping off any contribution of general cognitive abilities, to obtain the residual value of memory variance, considered as an index of d-CR. LT scores and d-CR were used in discriminant analysis, in patients only. Finally, LT scores and d-CR were used as variable of interest in VBM analysis. The d-CR score was not able to correctly classify patients. In both aMCI patients and HE, LT1st and d-CR scores showed correlations with grey matter volumes in common and in specific brain areas. Using CR measures limited to assess memory function is likely less sensitive to detect the cognitive decline and predict the evolution of Alzheimer's disease. In conclusion, d-CR needs a measure of general cognition to identify conversion to Alzheimer's disease efficiently.

  18. Quantum memory for images: A quantum hologram

    International Nuclear Information System (INIS)

    Vasilyev, Denis V.; Sokolov, Ivan V.; Polzik, Eugene S.

    2008-01-01

    Matter-light quantum interface and quantum memory for light are important ingredients of quantum information protocols, such as quantum networks, distributed quantum computation, etc. [P. Zoller et al., Eur. Phys. J. D 36, 203 (2005)]. In this paper we present a spatially multimode scheme for quantum memory for light, which we call a quantum hologram. Our approach uses a multiatom ensemble which has been shown to be efficient for a single spatial mode quantum memory. Due to the multiatom nature of the ensemble and to the optical parallelism it is capable of storing many spatial modes, a feature critical for the present proposal. A quantum hologram with the fidelity exceeding that of classical hologram will be able to store quantum features of an image, such as multimode superposition and entangled quantum states, something that a standard hologram is unable to achieve

  19. Event-related brain potentials in memory: correlates of episodic, semantic and implicit memory.

    Science.gov (United States)

    Wieser, Stephan; Wieser, Heinz Gregor

    2003-06-01

    , indicating the presence or the absence of associative binding. Retrieval showed a significant test effect between the word pairs learned by association (AWL) and the ones learned by encoding the words in isolation of each other (DSWE and SSWE). The comparison of the ERPs generated by autonoetic awareness ('remember') and noetic awareness ('know') exhibited a significant test effect as well. The results of behavioural data, in particular that of the 'remember/know' procedure, are evidence that the task paradigm was efficient in activating different kinds of memory. Associative word learning generated a high degree of autonoetic awareness, which is a result of the episodic memory, whereas both kinds of single word learning generated less. AWL, DSWE and SSWE resulted in different electrophysiological correlates, both for encoding as well as retrieval, indicating that different brain structures were activated in different temporal sequence.

  20. Interplay between affect and arousal in recognition memory.

    Science.gov (United States)

    Greene, Ciara M; Bahri, Pooja; Soto, David

    2010-07-23

    Emotional states linked to arousal and mood are known to affect the efficiency of cognitive performance. However, the extent to which memory processes may be affected by arousal, mood or their interaction is poorly understood. Following a study phase of abstract shapes, we altered the emotional state of participants by means of exposure to music that varied in both mood and arousal dimensions, leading to four different emotional states: (i) positive mood-high arousal; (ii) positive mood-low arousal; (iii) negative mood-high arousal; (iv) negative mood-low arousal. Following the emotional induction, participants performed a memory recognition test. Critically, there was an interaction between mood and arousal on recognition performance. Memory was enhanced in the positive mood-high arousal and in the negative mood-low arousal states, relative to the other emotional conditions. Neither mood nor arousal alone but their interaction appears most critical to understanding the emotional enhancement of memory.

  1. Interplay between affect and arousal in recognition memory.

    Directory of Open Access Journals (Sweden)

    Ciara M Greene

    2010-07-01

    Full Text Available Emotional states linked to arousal and mood are known to affect the efficiency of cognitive performance. However, the extent to which memory processes may be affected by arousal, mood or their interaction is poorly understood.Following a study phase of abstract shapes, we altered the emotional state of participants by means of exposure to music that varied in both mood and arousal dimensions, leading to four different emotional states: (i positive mood-high arousal; (ii positive mood-low arousal; (iii negative mood-high arousal; (iv negative mood-low arousal. Following the emotional induction, participants performed a memory recognition test. Critically, there was an interaction between mood and arousal on recognition performance. Memory was enhanced in the positive mood-high arousal and in the negative mood-low arousal states, relative to the other emotional conditions.Neither mood nor arousal alone but their interaction appears most critical to understanding the emotional enhancement of memory.

  2. Cache and energy efficient algorithms for Nussinov's RNA Folding.

    Science.gov (United States)

    Zhao, Chunchun; Sahni, Sartaj

    2017-12-06

    An RNA folding/RNA secondary structure prediction algorithm determines the non-nested/pseudoknot-free structure by maximizing the number of complementary base pairs and minimizing the energy. Several implementations of Nussinov's classical RNA folding algorithm have been proposed. Our focus is to obtain run time and energy efficiency by reducing the number of cache misses. Three cache-efficient algorithms, ByRow, ByRowSegment and ByBox, for Nussinov's RNA folding are developed. Using a simple LRU cache model, we show that the Classical algorithm of Nussinov has the highest number of cache misses followed by the algorithms Transpose (Li et al.), ByRow, ByRowSegment, and ByBox (in this order). Extensive experiments conducted on four computational platforms-Xeon E5, AMD Athlon 64 X2, Intel I7 and PowerPC A2-using two programming languages-C and Java-show that our cache efficient algorithms are also efficient in terms of run time and energy. Our benchmarking shows that, depending on the computational platform and programming language, either ByRow or ByBox give best run time and energy performance. The C version of these algorithms reduce run time by as much as 97.2% and energy consumption by as much as 88.8% relative to Classical and by as much as 56.3% and 57.8% relative to Transpose. The Java versions reduce run time by as much as 98.3% relative to Classical and by as much as 75.2% relative to Transpose. Transpose achieves run time and energy efficiency at the expense of memory as it takes twice the memory required by Classical. The memory required by ByRow, ByRowSegment, and ByBox is the same as that of Classical. As a result, using the same amount of memory, the algorithms proposed by us can solve problems up to 40% larger than those solvable by Transpose.

  3. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)

    Science.gov (United States)

    2014-01-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299

  4. A comparison of three types of autobiographical memories in old-old age: first memories, pivotal memories and traumatic memories.

    Science.gov (United States)

    Cohen-Mansfield, Jiska; Shmotkin, Dov; Eyal, Nitza; Reichental, Yael; Hazan, Haim

    2010-01-01

    Autobiographical memory enables us to construct a personal narrative through which we identify ourselves. Especially important are memories of formative events. This study describes autobiographical memories of people who have reached old-old age (85 years and above), studying 3 types of memories of particular impact on identity and adaptation: first memories, pivotal memories and traumatic memories. In this paper, we examine the content, characteristic themes and environments, and structural characteristics of each of the 3 types of memory. The participants were 26 persons from a larger longitudinal study with an average age of 91 years; half were men and the other half women. The study integrated qualitative and quantitative tools. An open-ended questionnaire included questions about the participants' life story as well as questions about the 3 types of memories. The responses were rated by 3 independent judges on dimensions of central themes and structural characteristics. First memories had a more positive emotional tone, more references to characters from the participant's social circle, a stronger sense of group belonging, and a more narrative style than the other types of memories. Pivotal and traumatic memories were described as more personal than first memories. The 3 types of memories reflect different stages in life development, which together form a sense of identity. They present experiences from the past on select themes, which may assist in the complex task of coping with the difficulties and limitations that advanced old age presents. Future research should examine the functional role of those memories and whether they enable the old-old to support selfhood in the challenging period of last changes and losses. Copyright © 2010 S. Karger AG, Basel.

  5. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening

    International Nuclear Information System (INIS)

    Sangouard, Nicolas; Simon, Christoph; Afzelius, Mikael; Gisin, Nicolas

    2007-01-01

    We present a detailed analysis of a quantum memory for photons based on controlled and reversible inhomogeneous broadening. The explicit solution of the equations of motion is obtained in the weak excitation regime, making it possible to gain insight into the dependence of the memory efficiency on the optical depth, and on the width and shape of the atomic spectral distributions. We also study a simplified memory protocol which does not require any optical control fields

  6. Software and DVFS Tuning for Performance and Energy-Efficiency on Intel KNL Processors

    Directory of Open Access Journals (Sweden)

    Enrico Calore

    2018-06-01

    Full Text Available Energy consumption of processors and memories is quickly becoming a limiting factor in the deployment of large computing systems. For this reason, it is important to understand the energy performance of these processors and to study strategies allowing their use in the most efficient way. In this work, we focus on the computing and energy performance of the Knights Landing Xeon Phi, the latest Intel many-core architecture processor for HPC applications. We consider the 64-core Xeon Phi 7230 and profile its performance and energy efficiency using both its on-chip MCDRAM and the off-chip DDR4 memory as the main storage for application data. As a benchmark application, we use a lattice Boltzmann code heavily optimized for this architecture and implemented using several different arrangements of the application data in memory (data-layouts, in short. We also assess the dependence of energy consumption on data-layouts, memory configurations (DDR4 or MCDRAM and the number of threads per core. We finally consider possible trade-offs between computing performance and energy efficiency, tuning the clock frequency of the processor using the Dynamic Voltage and Frequency Scaling (DVFS technique.

  7. An efficient method for evaluating RRAM crossbar array performance

    Science.gov (United States)

    Song, Lin; Zhang, Jinyu; Chen, An; Wu, Huaqiang; Qian, He; Yu, Zhiping

    2016-06-01

    An efficient method is proposed in this paper to mitigate computational burden in resistive random access memory (RRAM) array simulation. In the worst case scenario, a 4 Mb RRAM array with line resistance is greatly reduced using this method. For 1S1R-RRAM array structures, static and statistical parameters in both reading and writing processes are simulated. Error analysis is performed to prove the reliability of the algorithm when line resistance is extremely small compared with the junction resistance. Results show that high precision is maintained even if the size of RRAM array is reduced by one thousand times, which indicates significant improvements in both computational efficiency and memory requirements.

  8. Contextual knowledge reduces demands on working memory during reading.

    Science.gov (United States)

    Miller, Lisa M Soederberg; Cohen, Jason A; Wingfield, Arthur

    2006-09-01

    An experiment is reported in which young, middle-aged, and older adults read and recalled ambiguous texts either with or without the topic title that supplied contextual knowledge. Within each of the age groups, the participants were divided into those with high or low working memory (WM) spans, with available WM capacity further manipulated by the presence or absence of an auditory target detection task concurrent with the reading task. Differences in reading efficiency (reading time per proposition recalled) between low WM span and high WM span groups were greater among readers who had access to contextual knowledge relative to those who did not, suggesting that contextual knowledge reduces demands on WM capacity. This position was further supported by the finding that increased age and attentional demands, two factors associated with reduced WM capacity, exaggerated the benefits of contextual knowledge on reading efficiency. The relative strengths of additional potential predictors of reading efficiency (e.g., interest, effort, and memory beliefs), along with knowledge, WM span, and age, are reported. Findings showed that contextual knowledge was the strongest predictor of reading efficiency even after controlling for the effects of all of the other predictors.

  9. Aging memories: differential decay of episodic memory components.

    Science.gov (United States)

    Talamini, Lucia M; Gorree, Eva

    2012-05-17

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a preferential loss of hippocampus-dependent, configurational information over more cortically based memory components, including memory for individual objects. The current study systematically tests this hypothesis, using a new paradigm that allows the contemporaneous assessment of memory for objects, object pairings, and object-position conjunctions. Retention of each memory component was tested, at multiple intervals, up to 3 mo following encoding. The three memory subtasks adopted the same retrieval paradigm and were matched for initial difficulty. Results show differential decay of the tested episodic memory components, whereby memory for configurational aspects of a scene (objects' co-occurrence and object position) decays faster than memory for featured objects. Interestingly, memory requiring a visually detailed object representation decays at a similar rate as global object recognition, arguing against interpretations based on task difficulty and against the notion that (visual) detail is forgotten preferentially. These findings show that memories undergo qualitative changes as they age. More specifically, event memories become less configurational over time, preferentially losing some of the higher order associations that are dependent on the hippocampus for initial fast encoding. Implications for theories of long-term memory are discussed.

  10. The efficiency of multimedia learning into old age.

    Science.gov (United States)

    Van Gerven, Pascal W M; Paas, Fred; Van Merriënboer, Jeroen J G; Hendriks, Maaike; Schmidt, Henk G

    2003-12-01

    On the basis of a multimodal model of working memory, cognitive load theory predicts that a multimedia-based instructional format leads to a better acquisition of complex subject matter than a purely visual instructional format. This study investigated the extent to which age and instructional format had an impact on training efficiency among both young and old adults. It was hypothesised that studying worked examples that are presented as a narrated animation (multimedia condition) is a more efficient means of complex skill training than studying visually presented worked examples (unimodal condition) and solving conventional problems. Furthermore, it was hypothesised that multimedia-based worked examples are especially helpful for elderly learners, who have to deal with a general decline of working-memory resources, because they address both mode-specific working-memory stores. The sample consisted of 60 young (mean age = 15.98 years) and 60 old adults (mean age = 64.48 years). Participants of both age groups were trained in either a conventional, a unimodal, or a multimedia condition. Subsequently, they had to solve a series of test problems. Dependent variables were perceived cognitive load during the training, performance on the test, and efficiency in terms of the ratio between these two variables. Results showed that for both age groups multimedia-based worked examples were more efficient than the other training formats in that less cognitive load led to at least an equal performance level. Although no difference in the beneficial effect of multimedia learning was found between the age groups, multimedia-based instructions seem promising for the elderly.

  11. Adult Word Recognition and Visual Sequential Memory

    Science.gov (United States)

    Holmes, V. M.

    2012-01-01

    Two experiments were conducted investigating the role of visual sequential memory skill in the word recognition efficiency of undergraduate university students. Word recognition was assessed in a lexical decision task using regularly and strangely spelt words, and nonwords that were either standard orthographically legal strings or items made from…

  12. [Memory processes and executive functioning: novel trends for research].

    Science.gov (United States)

    Collette, Fabienne; Angel, Lucie

    2015-01-01

    The existence of processes common to memory systems and executive functioning was evidenced by studies in the domain of cerebral neuroimaging, individual differences (mainly in normal aging) and, to a lesser extent, neuropsychology. Executive functioning depends on a large antero-posterior brain network, some regions of which (the middle dorsolateral and ventrolateral cortex, the dorsal anterior cingulate cortex) are involved in a series of executive processes, but also in encoding and retrieval of information in episodic memory and short-term memory. A consequence of lesions in frontal areas is to impair strategical organization of the information to-be-processed (an executive process) and thus leads to a lower memory capacity in frontal patients. Moreover, executive abilities will influence both memory efficiency and the associated brain networks even in people without brain pathology. These data attest to the importance of the relationships between executive and memory processes for an optimal cognitive functioning. Recent advances in neuroimaging and electrophysiology data acquisition and analysis techniques should allow us to better determine and understand the fashion in which these relationships work. © Société de Biologie, 2016.

  13. Working memory in volunteers and schizophrenics using BOLD fMRI

    International Nuclear Information System (INIS)

    Giesel, F.L.; Hohmann, N.; Seidl, U.; Kress, K.R.; Schoenknecht, P.; Schroeder, J.; Kauczor, H.-U.; Essig, M.

    2005-01-01

    Functional magnetic resonance imaging uses the blood oxygen level-dependent effect (BOLD MRI) for noninvasive display of cerebral correlatives of cognitive function. The importance for the understanding of physiological and pathological processes is demonstrated by investigations of working memory in schizophrenics and healthy controls. Working memory is involved in processing rather than storage of information and therefore is linked to complex processes such as learning and problem solving. In schizophrenic psychosis, these functions are clearly restricted. Training effects in the working memory task follow an inverse U-shape function, suggesting that cerebral activation reaches a peak before economics of the brain find a more efficient method and activation decreases. (orig.) [de

  14. Identifying Memory Allocation Patterns in HEP Software

    Science.gov (United States)

    Kama, S.; Rauschmayr, N.

    2017-10-01

    HEP applications perform an excessive amount of allocations/deallocations within short time intervals which results in memory churn, poor locality and performance degradation. These issues are already known for a decade, but due to the complexity of software frameworks and billions of allocations for a single job, up until recently no efficient mechanism has been available to correlate these issues with source code lines. However, with the advent of the Big Data era, many tools and platforms are now available to do large scale memory profiling. This paper presents, a prototype program developed to track and identify each single (de-)allocation. The CERN IT Hadoop cluster is used to compute memory key metrics, like locality, variation, lifetime and density of allocations. The prototype further provides a web based visualization back-end that allows the user to explore the results generated on the Hadoop cluster. Plotting these metrics for every single allocation over time gives a new insight into application’s memory handling. For instance, it shows which algorithms cause which kind of memory allocation patterns, which function flow causes how many short-lived objects, what are the most commonly allocated sizes etc. The paper will give an insight into the prototype and will show profiling examples for the LHC reconstruction, digitization and simulation jobs.

  15. Seizure Control and Memory Impairment Are Related to Disrupted Brain Functional Integration in Temporal Lobe Epilepsy.

    Science.gov (United States)

    Park, Chang-Hyun; Choi, Yun Seo; Jung, A-Reum; Chung, Hwa-Kyoung; Kim, Hyeon Jin; Yoo, Jeong Hyun; Lee, Hyang Woon

    2017-01-01

    Brain functional integration can be disrupted in patients with temporal lobe epilepsy (TLE), but the clinical relevance of this disruption is not completely understood. The authors hypothesized that disrupted functional integration over brain regions remote from, as well as adjacent to, the seizure focus could be related to clinical severity in terms of seizure control and memory impairment. Using resting-state functional MRI data acquired from 48 TLE patients and 45 healthy controls, the authors mapped functional brain networks and assessed changes in a network parameter of brain functional integration, efficiency, to examine the distribution of disrupted functional integration within and between brain regions. The authors assessed whether the extent of altered efficiency was influenced by seizure control status and whether the degree of altered efficiency was associated with the severity of memory impairment. Alterations in the efficiency were observed primarily near the subcortical region ipsilateral to the seizure focus in TLE patients. The extent of regional involvement was greater in patients with poor seizure control: it reached the frontal, temporal, occipital, and insular cortices in TLE patients with poor seizure control, whereas it was limited to the limbic and parietal cortices in TLE patients with good seizure control. Furthermore, TLE patients with poor seizure control experienced more severe memory impairment, and this was associated with lower efficiency in the brain regions with altered efficiency. These findings indicate that the distribution of disrupted brain functional integration is clinically relevant, as it is associated with seizure control status and comorbid memory impairment.

  16. Exploring memory hierarchy design with emerging memory technologies

    CERN Document Server

    Sun, Guangyu

    2014-01-01

    This book equips readers with tools for computer architecture of high performance, low power, and high reliability memory hierarchy in computer systems based on emerging memory technologies, such as STTRAM, PCM, FBDRAM, etc.  The techniques described offer advantages of high density, near-zero static power, and immunity to soft errors, which have the potential of overcoming the “memory wall.”  The authors discuss memory design from various perspectives: emerging memory technologies are employed in the memory hierarchy with novel architecture modification;  hybrid memory structure is introduced to leverage advantages from multiple memory technologies; an analytical model named “Moguls” is introduced to explore quantitatively the optimization design of a memory hierarchy; finally, the vulnerability of the CMPs to radiation-based soft errors is improved by replacing different levels of on-chip memory with STT-RAMs.   ·         Provides a holistic study of using emerging memory technologies i...

  17. The structural connectivity pattern of the default mode network and its association with memory and anxiety

    Directory of Open Access Journals (Sweden)

    Yan eTao

    2015-11-01

    Full Text Available The default mode network (DMN is one of the most widely studied resting state functional networks. The structural basis for the DMN is of particular interest and has been studied by several researchers using diffusion tensor imaging (DTI. Most of these previous studies focused on a few regions or white matter tracts of the DMN so that the global structural connectivity pattern and network properties of the DMN remain unclear. Moreover, evidences indicate that the DMN is involved in both memory and emotion, but how the DMN regulates memory and anxiety from the perspective of the whole DMN structural network remains unknown. We used multimodal neuroimaging methods to investigate the structural connectivity pattern of the DMN and the association of its network properties with memory and anxiety in 205 young healthy subjects. Using a probabilistic fiber tractography technique based on DTI data and graph theory methods, we constructed the global structural connectivity pattern of the DMN and found that memory quotient (MQ score was significantly positively correlated with the global and local efficiency of the DMN whereas anxiety was found to be negatively correlated with the efficiency. The strong structural connectivity between multiple brain regions within DMN may reflect that the DMN has certain structural basis. Meanwhile, we found the network efficiency of the DMN were related to memory and anxiety measures, which indicated that the DMN may play a role in the memory and anxiety.

  18. The Effect of Iconic and Beat Gestures on Memory Recall in Greek's First and Second Language

    OpenAIRE

    Eleni Ioanna Levantinou

    2016-01-01

    Gestures play a major role in comprehension and memory recall due to the fact that aid the efficient channel of the meaning and support listeners’ comprehension and memory. In the present study, the assistance of two kinds of gestures (iconic and beat gestures) is tested in regards to memory and recall. The hypothesis investigated here is whether or not iconic and beat gestures provide assistance in memory and recall in Greek and in Greek speakers’ second language. Two gr...

  19. A chiral-based magnetic memory device without a permanent magnet.

    Science.gov (United States)

    Ben Dor, Oren; Yochelis, Shira; Mathew, Shinto P; Naaman, Ron; Paltiel, Yossi

    2013-01-01

    Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices.

  20. Working memory in multilingual children: is there a bilingual effect?

    Science.gov (United States)

    Engel de Abreu, Pascale M J

    2011-07-01

    This research investigates whether early childhood bilingualism affects working memory performance in 6- to 8-year-olds, followed over a longitudinal period of 3 years. The study tests the hypothesis that bilinguals might exhibit more efficient working memory abilities than monolinguals, potentially via the opportunity a bilingual environment provides to train cognitive control by combating interference and intrusions from the non-target language. A total of 44 bilingual and monolingual children, matched on age, sex, and socioeconomic status, completed assessments of working memory (simple span and complex span tasks), fluid intelligence, and language (vocabulary and syntax). The data showed that the monolinguals performed significantly better on the language measures across the years, whereas no language group effect emerged on the working memory and fluid intelligence tasks after verbal abilities were considered. The study suggests that the need to manage several language systems in the bilingual mind has an impact on children's language skills while having little effects on the development of working memory.

  1. Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Hansen, Nils Jacob Vest

    2003-01-01

    DNA vaccination is an efficient way to induce CD8+ T cell memory, but it is still unclear to what extent such memory responses afford protection in vivo. To study this, we induced CD8+ memory responses directed towards defined viral epitopes, using DNA vaccines encoding immunodominant MHC class I......-restricted epitopes of lymphocytic choriomeningitis virus covalently linked to beta2-microglobulin. This vaccine construct primed for a stronger recall response than did a more conventional minigene construct. Despite this, vaccinated mice were only protected against systemic infection whereas protection against...... sites. Thus, our DNA vaccine induces a long-lived memory CD8+ T cell population that provides efficient protection against high-dose systemic infection. However, viral replication in solid non-lymphoid organs is not curtailed sufficiently fast to prevent significant virus-induced inflammation. Our...

  2. A randomised controlled trial investigating the benefits of adaptive working memory training for working memory capacity and attentional control in high worriers.

    Science.gov (United States)

    Hotton, Matthew; Derakshan, Nazanin; Fox, Elaine

    2018-01-01

    The process of worry has been associated with reductions in working memory capacity and availability of resources necessary for efficient attentional control. This, in turn, can lead to escalating worry. Recent investigations into working memory training have shown improvements in attentional control and cognitive performance in high trait-anxious individuals and individuals with sub-clinical depression. The current randomised controlled trial investigated the effects of 15 days of adaptive n-back working memory training, or an active control task, on working memory capacity, attentional control and worry in a sample of high worriers. Pre-training, post-training and one-month follow-up measures of working memory capacity were assessed using a Change Detection task, while a Flanker task was used to assess attentional control. A breathing focus task was used as a behavioural measure of worry in addition to a number of self-report assessments of worry and anxiety. Overall there was no difference between the active training and the active control condition with both groups demonstrating similar improvements in working memory capacity and worry, post-training and at follow-up. However, training-related improvements on the n-back task were associated with gains in working memory capacity and reductions in worry symptoms in the active training condition. These results highlight the need for further research investigating the role of individual differences in working memory training. Copyright © 2017. Published by Elsevier Ltd.

  3. Boosting the FM-Index on the GPU: Effective Techniques to Mitigate Random Memory Access.

    Science.gov (United States)

    Chacón, Alejandro; Marco-Sola, Santiago; Espinosa, Antonio; Ribeca, Paolo; Moure, Juan Carlos

    2015-01-01

    The recent advent of high-throughput sequencing machines producing big amounts of short reads has boosted the interest in efficient string searching techniques. As of today, many mainstream sequence alignment software tools rely on a special data structure, called the FM-index, which allows for fast exact searches in large genomic references. However, such searches translate into a pseudo-random memory access pattern, thus making memory access the limiting factor of all computation-efficient implementations, both on CPUs and GPUs. Here, we show that several strategies can be put in place to remove the memory bottleneck on the GPU: more compact indexes can be implemented by having more threads work cooperatively on larger memory blocks, and a k-step FM-index can be used to further reduce the number of memory accesses. The combination of those and other optimisations yields an implementation that is able to process about two Gbases of queries per second on our test platform, being about 8 × faster than a comparable multi-core CPU version, and about 3 × to 5 × faster than the FM-index implementation on the GPU provided by the recently announced Nvidia NVBIO bioinformatics library.

  4. Hippotherapy acute impact on heart rate variability non-linear dynamics in neurological disorders.

    Science.gov (United States)

    Cabiddu, Ramona; Borghi-Silva, Audrey; Trimer, Renata; Trimer, Vitor; Ricci, Paula Angélica; Italiano Monteiro, Clara; Camargo Magalhães Maniglia, Marcela; Silva Pereira, Ana Maria; Rodrigues das Chagas, Gustavo; Carvalho, Eliane Maria

    2016-05-15

    Neurological disorders are associated with autonomic dysfunction. Hippotherapy (HT) is a therapy treatment strategy that utilizes a horse in an interdisciplinary approach for the physical and mental rehabilitation of people with physical, mental and/or psychological disabilities. However, no studies have been carried out which evaluated the effects of HT on the autonomic control in these patients. Therefore, the objective of the present study was to investigate the effects of a single HT session on cardiovascular autonomic control by time domain and non-linear analysis of heart rate variability (HRV). The HRV signal was recorded continuously in twelve children affected by neurological disorders during a HT session, consisting in a 10-minute sitting position rest (P1), a 15-minute preparatory phase sitting on the horse (P2), a 15-minute HT session (P3) and a final 10-minute sitting position recovery (P4). Time domain and non-linear HRV indices, including Sample Entropy (SampEn), Lempel-Ziv Complexity (LZC) and Detrended Fluctuation Analysis (DFA), were calculated for each treatment phase. We observed that SampEn increased during P3 (SampEn=0.56±0.10) with respect to P1 (SampEn=0.40±0.14, p<0.05), while DFA decreased during P3 (DFA=1.10±0.10) with respect to P1 (DFA=1.26±0.14, p<0.05). A significant SDRR increase (p<0.05) was observed during the recovery period P4 (SDRR=50±30ms) with respect to the HT session period P3 (SDRR=30±10ms). Our results suggest that HT might benefit children with disabilities attributable to neurological disorders by eliciting an acute autonomic response during the therapy and during the recovery period. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.

    Science.gov (United States)

    Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila

    2018-05-07

    Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.

  6. Efficiency of the Prefrontal Cortex during Working Memory in Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Sheridan, Margaret A.; Hinshaw, Stephen; D'Esposito, Mark

    2007-01-01

    Objective: Previous research has demonstrated that during task conditions requiring an increase in inhibitory function or working memory, children and adults with attention-deficit/hyperactivity disorder (ADHD) exhibit greater and more varied prefrontal cortical(PFC) activation compared to age-matched control participants. This pattern may reflect…

  7. MEMORY MODULATION

    Science.gov (United States)

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145

  8. Aging and memory as discrimination: Influences of encoding specificity, cue overload, and prior knowledge.

    Science.gov (United States)

    Badham, Stephen P; Poirier, Marie; Gandhi, Navina; Hadjivassiliou, Anna; Maylor, Elizabeth A

    2016-11-01

    From the perspective of memory-as-discrimination, whether a cue leads to correct retrieval simultaneously depends on the cue's relationship to (a) the memory target and (b) the other retrieval candidates. A corollary of the view is that increasing encoding-retrieval match may only help memory if it improves the cue's capacity to discriminate the target from competitors. Here, age differences in this discrimination process were assessed by manipulating the overlap between cues present at encoding and retrieval orthogonally with cue-target distinctiveness. In Experiment 1, associative memory differences for cue-target sets between young and older adults were minimized through training and retrieval efficiency was assessed through response time. In Experiment 2, age-group differences in associative memory were left to vary and retrieval efficiency was assessed through accuracy. Both experiments showed age-invariance in memory-as-discrimination: cues increasing encoding-retrieval match did not benefit memory unless they also improved discrimination between the target and competitors. Predictions based on the age-related associative deficit were also supported: prior knowledge alleviated age-related associative deficits (Experiment 1), and increasing encoding-retrieval match benefited older more than young adults (Experiment 2). We suggest that the latter occurred because older adults' associative memory deficits reduced the impact of competing retrieval candidates-hence the age-related benefit was not attributable to encoding-retrieval match per se, but rather it was a joint function of an increased probability of the cue connecting to the target combined with a decrease in competing retrieval candidates. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Aging and Memory as Discrimination: Influences of Encoding Specificity, Cue Overload, and Prior Knowledge

    Science.gov (United States)

    2016-01-01

    From the perspective of memory-as-discrimination, whether a cue leads to correct retrieval simultaneously depends on the cue’s relationship to (a) the memory target and (b) the other retrieval candidates. A corollary of the view is that increasing encoding-retrieval match may only help memory if it improves the cue’s capacity to discriminate the target from competitors. Here, age differences in this discrimination process were assessed by manipulating the overlap between cues present at encoding and retrieval orthogonally with cue–target distinctiveness. In Experiment 1, associative memory differences for cue–target sets between young and older adults were minimized through training and retrieval efficiency was assessed through response time. In Experiment 2, age-group differences in associative memory were left to vary and retrieval efficiency was assessed through accuracy. Both experiments showed age-invariance in memory-as-discrimination: cues increasing encoding-retrieval match did not benefit memory unless they also improved discrimination between the target and competitors. Predictions based on the age-related associative deficit were also supported: prior knowledge alleviated age-related associative deficits (Experiment 1), and increasing encoding-retrieval match benefited older more than young adults (Experiment 2). We suggest that the latter occurred because older adults’ associative memory deficits reduced the impact of competing retrieval candidates—hence the age-related benefit was not attributable to encoding-retrieval match per se, but rather it was a joint function of an increased probability of the cue connecting to the target combined with a decrease in competing retrieval candidates. PMID:27831714

  10. Energy-Efficient Abundant-Data Computing: The N3XT 1,000X

    OpenAIRE

    Aly Mohamed M. Sabry; Gao Mingyu; Hills Gage; Lee Chi-Shuen; Pinter Greg; Shulaker Max M.; Wu Tony F.; Asheghi Mehdi; Bokor Jeff; Franchetti Franz; Goodson Kenneth E.; Kozyrakis Christos; Markov Igor; Olukotun Kunle; Pileggi Larry

    2015-01-01

    Next generation information technologies will process unprecedented amounts of loosely structured data that overwhelm existing computing systems. N3XT improves the energy efficiency of abundant data applications 1000 fold by using new logic and memory technologies 3D integration with fine grained connectivity and new architectures for computation immersed in memory.

  11. Axially modulated arch resonator for logic and memory applications

    KAUST Repository

    Hafiz, Md Abdullah Al

    2018-01-17

    We demonstrate reconfigurable logic and random access memory devices based on an axially modulated clamped-guided arch resonator. The device is electrostatically actuated and the motional signal is capacitively sensed, while the resonance frequency is modulated through an axial electrostatic force from the guided side of the microbeam. A multi-physics finite element model is used to verify the effectiveness of the axial modulation. We present two case studies: first, a reconfigurable two-input logic gate based on the linear resonance frequency modulation, and second, a memory element based on the hysteretic frequency response of the resonator working in the nonlinear regime. The energy consumptions of the device for both logic and memory operations are in the range of picojoules, promising for energy efficient alternative computing paradigm.

  12. The complexities of complex span: explaining individual differences in working memory in children and adults.

    Science.gov (United States)

    Bayliss, Donna M; Jarrold, Christopher; Gunn, Deborah M; Baddeley, Alan D

    2003-03-01

    Two studies are presented that investigated the constraints underlying working memory performance in children and adults. In each case, independent measures of processing efficiency and storage capacity are assessed to determine their relative importance in predicting performance on complex span tasks,which measure working memory capacity. Results show that complex span performance was independently constrained by individual differences in domain-general processing efficiency and domain-specific storage capacity. Residual variance, which may reflect the ability to coordinate storage and processing, also predicted academic achievement. These results challenge the view that complex span taps a limited-capacity resource pool shared between processing and storage operations. Rather, they are consistent with a multiple-component model in which separate resource pools support the processing and storage functions of working memory.

  13. Processing Efficiency in Preschoolers' Memory Span: Individual Differences Related to Age and Anxiety

    Science.gov (United States)

    Visu-Petra, Laura; Miclea, Mircea; Cheie, Lavinia; Benga, Oana

    2009-01-01

    In self-paced auditory memory span tasks, the microanalysis of response timing measures represents a developmentally sensitive measure, providing insights into the development of distinct processing rates during recall performance. The current study first examined the effects of age and trait anxiety on span accuracy (effectiveness) and response…

  14. Memory architecture

    NARCIS (Netherlands)

    2012-01-01

    A memory architecture is presented. The memory architecture comprises a first memory and a second memory. The first memory has at least a bank with a first width addressable by a single address. The second memory has a plurality of banks of a second width, said banks being addressable by components

  15. Detailed sensory memory, sloppy working memory

    Directory of Open Access Journals (Sweden)

    Ilja G Sligte

    2010-10-01

    Full Text Available Visual short-term memory (VSTM enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the pre-change object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the pre-change object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88 percent of the iconic memory trials, on 71 percent of the fragile VSTM trials and merely on 53 percent of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  16. Detailed sensory memory, sloppy working memory.

    Science.gov (United States)

    Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  17. Gold, currencies and market efficiency

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  18. MIROS: a hybrid real-time energy-efficient operating system for the resource-constrained wireless sensor nodes.

    Science.gov (United States)

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; El Gholami, Khalid

    2014-09-22

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant.

  19. MIROS: A Hybrid Real-Time Energy-Efficient Operating System for the Resource-Constrained Wireless Sensor Nodes

    Science.gov (United States)

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; Gholami, Khalid El

    2014-01-01

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant. PMID:25248069

  20. Word-Decoding Skill Interacts with Working Memory Capacity to Influence Inference Generation during Reading

    Science.gov (United States)

    Hamilton, Stephen; Freed, Erin; Long, Debra L.

    2016-01-01

    The aim of this study was to examine predictions derived from a proposal about the relation between word-decoding skill and working memory capacity, called verbal efficiency theory. The theory states that poor word representations and slow decoding processes consume resources in working memory that would otherwise be used to execute high-level…

  1. The Development of Strategy Use in Elementary School Children: Working Memory and Individual Differences

    Science.gov (United States)

    Imbo, Ineke; Vandierendonck, Andre

    2007-01-01

    The current study tested the development of working memory involvement in children's arithmetic strategy selection and strategy efficiency. To this end, an experiment in which the dual-task method and the choice/no-choice method were combined was administered to 10- to 12-year-olds. Working memory was needed in retrieval, transformation, and…

  2. Secure Virtualization Environment Based on Advanced Memory Introspection

    Directory of Open Access Journals (Sweden)

    Shuhui Zhang

    2018-01-01

    Full Text Available Most existing virtual machine introspection (VMI technologies analyze the status of a target virtual machine under the assumption that the operating system (OS version and kernel structure information are known at the hypervisor level. In this paper, we propose a model of virtual machine (VM security monitoring based on memory introspection. Using a hardware-based approach to acquire the physical memory of the host machine in real time, the security of the host machine and VM can be diagnosed. Furthermore, a novel approach for VM memory forensics based on the virtual machine control structure (VMCS is put forward. By analyzing the memory of the host machine, the running VMs can be detected and their high-level semantic information can be reconstructed. Then, malicious activity in the VMs can be identified in a timely manner. Moreover, by mutually analyzing the memory content of the host machine and VMs, VM escape may be detected. Compared with previous memory introspection technologies, our solution can automatically reconstruct the comprehensive running state of a target VM without any prior knowledge and is strongly resistant to attacks with high reliability. We developed a prototype system called the VEDefender. Experimental results indicate that our system can handle the VMs of mainstream Linux and Windows OS versions with high efficiency and does not influence the performance of the host machine and VMs.

  3. Thermomechanical characterization of thiol-epoxy shape memory thermosets for mechanical actuators design

    Science.gov (United States)

    Belmonte, Alberto; Fernández-Francos, Xavier; De la Flor, Silvia

    2018-02-01

    In this paper, shape-memory "thiol-epoxy" polymers are synthesized and characterized as potential thermomechanical actuators. Their thermomechanical properties are investigated through dynamo mechanical and tensile analyses and related to their network structural properties by using "thiol" and "epoxy" compounds of different functionality and structure. Their mechanical properties (resistance at break, elongation limits and strain energy) are related to their shape-memory response under free-recovery conditions and partially-constrained conditions, thus, establishing the connection between network relaxation (free-recovery) with the work output capabilities (partially-constrained). Results show high mechanical performance, achieving high elongation at break values (up to 100%) and stress at break values (up to 50 MPa). The shape-memory experiments reveal strong dependence of the programming conditions and network structure on the recovery efficiency at free-conditions, whereas under partially-constrained conditions, the controlling factors are the mechanical limits at high temperature. Moreover, some recommendations to achieve the maximum work output efficiency for a given operational design of a thermomechanical actuator are deduced.

  4. The effect of background music on episodic memory and autonomic responses: listening to emotionally touching music enhances facial memory capacity

    Science.gov (United States)

    Mado Proverbio, C.A. Alice; Lozano Nasi, Valentina; Alessandra Arcari, Laura; De Benedetto, Francesco; Guardamagna, Matteo; Gazzola, Martina; Zani, Alberto

    2015-01-01

    The aim of this study was to investigate how background auditory processing can affect other perceptual and cognitive processes as a function of stimulus content, style and emotional nature. Previous studies have offered contrasting evidence, and it has been recently shown that listening to music negatively affected concurrent mental processing in the elderly but not in young adults. To further investigate this matter, the effect of listening to music vs. listening to the sound of rain or silence was examined by administering an old/new face memory task (involving 448 unknown faces) to a group of 54 non-musician university students. Heart rate and diastolic and systolic blood pressure were measured during an explicit face study session that was followed by a memory test. The results indicated that more efficient and faster recall of faces occurred under conditions of silence or when participants were listening to emotionally touching music. Whereas auditory background (e.g., rain or joyful music) interfered with memory encoding, listening to emotionally touching music improved memory and significantly increased heart rate. It is hypothesized that touching music is able to modify the visual perception of faces by binding facial properties with auditory and emotionally charged information (music), which may therefore result in deeper memory encoding. PMID:26469712

  5. The effect of background music on episodic memory and autonomic responses: listening to emotionally touching music enhances facial memory capacity.

    Science.gov (United States)

    Proverbio, Alice Mado; Mado Proverbio, C A Alice; Lozano Nasi, Valentina; Alessandra Arcari, Laura; De Benedetto, Francesco; Guardamagna, Matteo; Gazzola, Martina; Zani, Alberto

    2015-10-15

    The aim of this study was to investigate how background auditory processing can affect other perceptual and cognitive processes as a function of stimulus content, style and emotional nature. Previous studies have offered contrasting evidence, and it has been recently shown that listening to music negatively affected concurrent mental processing in the elderly but not in young adults. To further investigate this matter, the effect of listening to music vs. listening to the sound of rain or silence was examined by administering an old/new face memory task (involving 448 unknown faces) to a group of 54 non-musician university students. Heart rate and diastolic and systolic blood pressure were measured during an explicit face study session that was followed by a memory test. The results indicated that more efficient and faster recall of faces occurred under conditions of silence or when participants were listening to emotionally touching music. Whereas auditory background (e.g., rain or joyful music) interfered with memory encoding, listening to emotionally touching music improved memory and significantly increased heart rate. It is hypothesized that touching music is able to modify the visual perception of faces by binding facial properties with auditory and emotionally charged information (music), which may therefore result in deeper memory encoding.

  6. Exploration of depth modeling mode one lossless wedgelets storage strategies for 3D-high efficiency video coding

    Science.gov (United States)

    Sanchez, Gustavo; Marcon, César; Agostini, Luciano Volcan

    2018-01-01

    The 3D-high efficiency video coding has introduced tools to obtain higher efficiency in 3-D video coding, and most of them are related to the depth maps coding. Among these tools, the depth modeling mode-1 (DMM-1) focuses on better encoding edges regions of depth maps. The large memory required for storing all wedgelet patterns is one of the bottlenecks in the DMM-1 hardware design of both encoder and decoder since many patterns must be stored. Three algorithms to reduce the DMM-1 memory requirements and a hardware design targeting the most efficient among these algorithms are presented. Experimental results demonstrate that the proposed solutions surpass related works reducing up to 78.8% of the wedgelet memory, without degrading the encoding efficiency. Synthesis results demonstrate that the proposed algorithm reduces almost 75% of the power dissipation when compared to the standard approach.

  7. Effects of Transcranial Direct Current Stimulation (tDCS) on Human Memory.

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Laura E.; Trumbo, Michael Christopher Stefan

    2014-10-01

    Training a person in a new knowledge base or skill set is extremely time consuming and costly, particularly in highly specialized domains such as the military and the intelligence community. Recent research in cognitive neuroscience has suggested that a technique called transcranial direct current stimulation (tDCS) has the potential to revolutionize training by enabling learners to acquire new skills faster, more efficiently, and more robustly (Bullard et al., 2011). In this project, we tested the effects of tDCS on two types of memory performance that are critical for learning new skills: associative memory and working memory. Associative memory is memory for the relationship between two items or events. It forms the foundation of all episodic memories, so enhancing associative memory could provide substantial benefits to the speed and robustness of learning new information. We tested the effects of tDCS on associative memory, using a real-world associative memory task: remembering the links between faces and names. Working memory refers to the amount of information that can be held in mind and processed at one time, and it forms the basis for all higher-level cognitive processing. We investigated the degree of transfer between various working memory tasks (the N-back task as a measure of verbal working memory, the rotation-span task as a measure of visuospatial working memory, and Raven's progressive matrices as a measure of fluid intelligence) in order to determine if tDCS-induced facilitation of performance is task-specific or general.

  8. Trees or Grids? Indexing Moving Objects in Main Memory

    DEFF Research Database (Denmark)

    Sidlauskas, Darius; Saltenis, Simonas; Christiansen, Christian Winther

    2009-01-01

    New application areas, such as location-based services, rely on the efficient management of large collections of mobile objects. Maintaining accurate, up-to-date positions of these objects results in massive update loads that must be supported by spatial indexing structures and main-memory indexes...... are usually necessary to provide high update performance. Traditionally, the R-tree and its variants were used for indexing spatial data, but most of the recent research assumes that a simple, uniform grid is the best choice for managing moving objects in main memory. We perform an extensive experimental...

  9. Survival Processing Enhances Visual Search Efficiency.

    Science.gov (United States)

    Cho, Kit W

    2018-05-01

    Words rated for their survival relevance are remembered better than when rated using other well-known memory mnemonics. This finding, which is known as the survival advantage effect and has been replicated in many studies, suggests that our memory systems are molded by natural selection pressures. In two experiments, the present study used a visual search task to examine whether there is likewise a survival advantage for our visual systems. Participants rated words for their survival relevance or for their pleasantness before locating that object's picture in a search array with 8 or 16 objects. Although there was no difference in search times among the two rating scenarios when set size was 8, survival processing reduced visual search times when set size was 16. These findings reflect a search efficiency effect and suggest that similar to our memory systems, our visual systems are also tuned toward self-preservation.

  10. In search of memory tests equivalent for experiments on animals and humans.

    Science.gov (United States)

    Brodziak, Andrzej; Kołat, Estera; Różyk-Myrta, Alicja

    2014-12-19

    Older people often exhibit memory impairments. Contemporary demographic trends cause aging of the society. In this situation, it is important to conduct clinical trials of drugs and use training methods to improve memory capacity. Development of new memory tests requires experiments on animals and then clinical trials in humans. Therefore, we decided to review the assessment methods and search for tests that evaluate analogous cognitive processes in animals and humans. This review has enabled us to propose 2 pairs of tests of the efficiency of working memory capacity in animals and humans. We propose a basic set of methods for complex clinical trials of drugs and training methods to improve memory, consisting of 2 pairs of tests: 1) the Novel Object Recognition Test - Sternberg Item Recognition Test and 2) the Object-Location Test - Visuospatial Memory Test. We postulate that further investigations of methods that are equivalent in animals experiments and observations performed on humans are necessary.

  11. Detailed sensory memory, sloppy working memory

    NARCIS (Netherlands)

    Sligte, I.G.; Vandenbroucke, A.R.E.; Scholte, H.S.; Lamme, V.A.F.

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity

  12. Channel equalization techniques for non-volatile memristor memories

    KAUST Repository

    Naous, Rawan

    2016-03-16

    Channel coding and information theoretic approaches have been utilized in conventional non-volatile memories to overcome their inherent design limitations of leakage, coupling and refresh rates. However, the continuous scaling and integration constraints set on the current devices directed the attention towards emerging memory technologies as suitable alternatives. Memristive devices are prominent candidates to replace the conventional electronics due to its non-volatility and small feature size. Nonetheless, memristor-based memories still encounter an accuracy limitation throughout the read operation addressed as the sneak path phenomenon. The readout data is corrupted with added distortion that increases significantly the bit error rate and jeopardizes the reliability of the read operation. A novel technique is applied to alleviate this distorting effect where the communication channel model is proposed for the memory array. Noise cancellation principles are applied with the aid of preset pilots to extract channel information and adjust the readout values accordingly. The proposed technique has the virtue of high speed, energy efficiency, and low complexity design while achieving high reliability and error-free decoding.

  13. Channel equalization techniques for non-volatile memristor memories

    KAUST Repository

    Naous, Rawan; Zidan, Mohammed A.; Salem, Ahmed Sultan; Salama, Khaled N.

    2016-01-01

    Channel coding and information theoretic approaches have been utilized in conventional non-volatile memories to overcome their inherent design limitations of leakage, coupling and refresh rates. However, the continuous scaling and integration constraints set on the current devices directed the attention towards emerging memory technologies as suitable alternatives. Memristive devices are prominent candidates to replace the conventional electronics due to its non-volatility and small feature size. Nonetheless, memristor-based memories still encounter an accuracy limitation throughout the read operation addressed as the sneak path phenomenon. The readout data is corrupted with added distortion that increases significantly the bit error rate and jeopardizes the reliability of the read operation. A novel technique is applied to alleviate this distorting effect where the communication channel model is proposed for the memory array. Noise cancellation principles are applied with the aid of preset pilots to extract channel information and adjust the readout values accordingly. The proposed technique has the virtue of high speed, energy efficiency, and low complexity design while achieving high reliability and error-free decoding.

  14. Visual memory for objects following foveal vision loss.

    Science.gov (United States)

    Geringswald, Franziska; Herbik, Anne; Hofmüller, Wolfram; Hoffmann, Michael B; Pollmann, Stefan

    2015-09-01

    Allocation of visual attention is crucial for encoding items into visual long-term memory. In free vision, attention is closely linked to the center of gaze, raising the question whether foveal vision loss entails suboptimal deployment of attention and subsequent impairment of object encoding. To investigate this question, we examined visual long-term memory for objects in patients suffering from foveal vision loss due to age-related macular degeneration. We measured patients' change detection sensitivity after a period of free scene exploration monocularly with their worse eye when possible, and under binocular vision, comparing sensitivity and eye movements to matched normal-sighted controls. A highly salient cue was used to capture attention to a nontarget location before a target change occurred in half of the trials, ensuring that change detection relied on memory. Patients' monocular and binocular sensitivity to object change was comparable to controls, even after more than 4 intervening fixations, and not significantly correlated with visual impairment. We conclude that extrafoveal vision suffices for efficient encoding into visual long-term memory. (c) 2015 APA, all rights reserved).

  15. Thermomechanical Analysis of Shape-Memory Composite Tape Spring

    Science.gov (United States)

    Yang, H.; Wang, L. Y.

    2013-06-01

    Intelligent materials and structures have been extensively applied for satellite designs in order to minimize the mass and reduce the cost in the launch of the spacecraft. Elastic memory composites (EMCs) have the ability of high-strain packaging and shape-memory effect, but increase the parts and total weight due to the additional heating system. Shape-memory sandwich structures Li and Wang (J. Intell. Mater. Syst. Struct. 22(14), 1605-1612, 2011) can overcome such disadvantage by using the metal skin acting as the heating element. However, the high strain in the micro-buckled metal skin decreases the deployment efficiency. This paper aims to present an insight into the folding and deployment behaviors of shape-memory composite (SMC) tape springs. A thermomechanical process was analyzed, including the packaging deformation at an elevated temperature, shape frozen at the low temperature and shape recovery after reheating. The result shows that SMC tape springs can significantly decrease the strain concentration in the metal skin, as well as exhibiting excellent shape frozen and recovery behaviors. Additionally, possible failure modes of SMC tape springs were also analyzed.

  16. Scaling Non-Regular Shared-Memory Codes by Reusing Custom Loop Schedules

    Directory of Open Access Journals (Sweden)

    Dimitrios S. Nikolopoulos

    2003-01-01

    Full Text Available In this paper we explore the idea of customizing and reusing loop schedules to improve the scalability of non-regular numerical codes in shared-memory architectures with non-uniform memory access latency. The main objective is to implicitly setup affinity links between threads and data, by devising loop schedules that achieve balanced work distribution within irregular data spaces and reusing them as much as possible along the execution of the program for better memory access locality. This transformation provides a great deal of flexibility in optimizing locality, without compromising the simplicity of the shared-memory programming paradigm. In particular, the programmer does not need to explicitly distribute data between processors. The paper presents practical examples from real applications and experiments showing the efficiency of the approach.

  17. The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load

    Science.gov (United States)

    Lim, Sung-Joo; Wöstmann, Malte; Geweke, Frederik; Obleser, Jonas

    2018-01-01

    Humans can be cued to attend to an item in memory, which facilitates and enhances the perceptual precision in recalling this item. Here, we demonstrate that this facilitating effect of attention-to-memory hinges on the overall degree of memory load. The benefit an individual draws from attention-to-memory depends on her overall working memory performance, measured as sensitivity (d′) in a retroactive cue (retro-cue) pitch discrimination task. While listeners maintained 2, 4, or 6 auditory syllables in memory, we provided valid or neutral retro-cues to direct listeners’ attention to one, to-be-probed syllable in memory. Participants’ overall memory performance (i.e., perceptual sensitivity d′) was relatively unaffected by the presence of valid retro-cues across memory loads. However, a more fine-grained analysis using psychophysical modeling shows that valid retro-cues elicited faster pitch-change judgments and improved perceptual precision. Importantly, as memory load increased, listeners’ overall working memory performance correlated with inter-individual differences in the degree to which precision improved (r = 0.39, p = 0.029). Under high load, individuals with low working memory profited least from attention-to-memory. Our results demonstrate that retrospective attention enhances perceptual precision of attended items in memory but listeners’ optimal use of informative cues depends on their overall memory abilities. PMID:29520246

  18. The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load

    Directory of Open Access Journals (Sweden)

    Sung-Joo Lim

    2018-02-01

    Full Text Available Humans can be cued to attend to an item in memory, which facilitates and enhances the perceptual precision in recalling this item. Here, we demonstrate that this facilitating effect of attention-to-memory hinges on the overall degree of memory load. The benefit an individual draws from attention-to-memory depends on her overall working memory performance, measured as sensitivity (d′ in a retroactive cue (retro-cue pitch discrimination task. While listeners maintained 2, 4, or 6 auditory syllables in memory, we provided valid or neutral retro-cues to direct listeners’ attention to one, to-be-probed syllable in memory. Participants’ overall memory performance (i.e., perceptual sensitivity d′ was relatively unaffected by the presence of valid retro-cues across memory loads. However, a more fine-grained analysis using psychophysical modeling shows that valid retro-cues elicited faster pitch-change judgments and improved perceptual precision. Importantly, as memory load increased, listeners’ overall working memory performance correlated with inter-individual differences in the degree to which precision improved (r = 0.39, p = 0.029. Under high load, individuals with low working memory profited least from attention-to-memory. Our results demonstrate that retrospective attention enhances perceptual precision of attended items in memory but listeners’ optimal use of informative cues depends on their overall memory abilities.

  19. Spatial memory impairment in Morris water maze after electroconvulsive seizures.

    Science.gov (United States)

    Svensson, Maria; Hallin, Thord; Broms, Jonas; Ekstrand, Joakim; Tingström, Anders

    2017-02-01

    Electroconvulsive therapy (ECT) is one of the most efficient treatments for severe major depression, but some patients suffer from retrograde memory loss after treatment. Electroconvulsive seizures (ECS), an animal model of ECT, have repeatedly been shown to increase hippocampal neurogenesis, and multiple ECS treatments cause retrograde amnesia in hippocampus-dependent memory tasks. Since recent studies propose that addition of newborn hippocampal neurons might degrade existing memories, we investigated whether the memory impairment after multiple ECS treatments is a cumulative effect of repeated treatments, or if it is the result of a delayed effect after a single ECS. We used the hippocampus-dependent memory task Morris water maze (MWM) to evaluate spatial memory. Rats were exposed to an 8-day training paradigm before receiving either a single ECS or sham treatment and tested in the MWM 24 h, 72 h, or 7 days after this treatment, or multiple (four) ECS or sham treatments and tested 7 days after the first treatment. A single ECS treatment was not sufficient to cause retrograde amnesia whereas multiple ECS treatments strongly disrupted spatial memory in the MWM. The retrograde amnesia after multiple ECS is a cumulative effect of repeated treatments rather than a delayed effect after a single ECS.

  20. Glucoregulatory and order effects on verbal episodic memory in healthy adolescents after oral glucose administration.

    Science.gov (United States)

    Smith, Michael A; Foster, Jonathan K

    2008-10-01

    The ingestion of oral glucose has been observed to facilitate memory performance in both elderly individuals and in young adults. However, fewer studies have investigated the effect of glucose on memory in children or adolescents. In the present study, the ingestion of a glucose laden drink was observed to enhance verbal episodic memory performance in healthy adolescents under conditions of divided attention, relative to a placebo drink. Further analyses found that this glucose memory facilitation effect was observed only in adolescents exhibiting better glucoregulatory efficiency. These findings demonstrate that the glucose memory facilitation effect can be generalised to younger individuals. The importance of controlling for treatment order in within-subjects designs investigating the glucose memory enhancement effect is also discussed.

  1. How to Assess Gaming-Induced Benefits on Attention and Working Memory.

    Science.gov (United States)

    Mishra, Jyoti; Bavelier, Daphne; Gazzaley, Adam

    2012-06-01

    Our daily actions are driven by our goals in the moment, constantly forcing us to choose among various options. Attention and working memory are key enablers of that process. Attention allows for selective processing of goal-relevant information and rejecting task-irrelevant information. Working memory functions to maintain goal-relevant information in memory for brief periods of time for subsequent recall and/or manipulation. Efficient attention and working memory thus support the best extraction and retention of environmental information for optimal task performance. Recent studies have evidenced that attention and working memory abilities can be enhanced by cognitive training games as well as entertainment videogames. Here we review key cognitive paradigms that have been used to evaluate the impact of game-based training on various aspects of attention and working memory. Common use of such methodology within the scientific community will enable direct comparison of the efficacy of different games across age groups and clinical populations. The availability of common assessment tools will ultimately facilitate development of the most effective forms of game-based training for cognitive rehabilitation and education.

  2. Interactive Effects of Working Memory Self-Regulatory Ability and Relevance Instructions on Text Processing

    Science.gov (United States)

    Hamilton, Nancy Jo

    2012-01-01

    Reading is a process that requires the enactment of many cognitive processes. Each of these processes uses a certain amount of working memory resources, which are severely constrained by biology. More efficiency in the function of working memory may mediate the biological limits of same. Reading relevancy instructions may be one such method to…

  3. The Influences of Emotion on Learning and Memory

    Directory of Open Access Journals (Sweden)

    Chai M. Tyng

    2017-08-01

    Full Text Available Emotion has a substantial influence on the cognitive processes in humans, including perception, attention, learning, memory, reasoning, and problem solving. Emotion has a particularly strong influence on attention, especially modulating the selectivity of attention as well as motivating action and behavior. This attentional and executive control is intimately linked to learning processes, as intrinsically limited attentional capacities are better focused on relevant information. Emotion also facilitates encoding and helps retrieval of information efficiently. However, the effects of emotion on learning and memory are not always univalent, as studies have reported that emotion either enhances or impairs learning and long-term memory (LTM retention, depending on a range of factors. Recent neuroimaging findings have indicated that the amygdala and prefrontal cortex cooperate with the medial temporal lobe in an integrated manner that affords (i the amygdala modulating memory consolidation; (ii the prefrontal cortex mediating memory encoding and formation; and (iii the hippocampus for successful learning and LTM retention. We also review the nested hierarchies of circular emotional control and cognitive regulation (bottom-up and top-down influences within the brain to achieve optimal integration of emotional and cognitive processing. This review highlights a basic evolutionary approach to emotion to understand the effects of emotion on learning and memory and the functional roles played by various brain regions and their mutual interactions in relation to emotional processing. We also summarize the current state of knowledge on the impact of emotion on memory and map implications for educational settings. In addition to elucidating the memory-enhancing effects of emotion, neuroimaging findings extend our understanding of emotional influences on learning and memory processes; this knowledge may be useful for the design of effective educational

  4. Optimal External-Memory Planar Point Enclosure

    DEFF Research Database (Denmark)

    Arge, Lars; Samoladas, Vasilis; Yi, Ke

    2007-01-01

    .g. spatial and temporal databases, and is dual to the important and well-studied orthogonal range searching problem. Surprisingly, despite the fact that the problem can be solved optimally in internal memory with linear space and O(log N+K) query time, we show that one cannot construct a linear sized......In this paper we study the external memory planar point enclosure problem: Given N axis-parallel rectangles in the plane, construct a data structure on disk (an index) such that all K rectangles containing a query point can be reported I/O-efficiently. This problem has important applications in e...... external memory point enclosure data structure that can be used to answer a query in O(log  B N+K/B) I/Os, where B is the disk block size. To obtain this bound, Ω(N/B 1−ε ) disk blocks are needed for some constant ε>0. With linear space, the best obtainable query bound is O(log 2 N+K/B) if a linear output...

  5. Virus-Clip: a fast and memory-efficient viral integration site detection tool at single-base resolution with annotation capability.

    Science.gov (United States)

    Ho, Daniel W H; Sze, Karen M F; Ng, Irene O L

    2015-08-28

    Viral integration into the human genome upon infection is an important risk factor for various human malignancies. We developed viral integration site detection tool called Virus-Clip, which makes use of information extracted from soft-clipped sequencing reads to identify exact positions of human and virus breakpoints of integration events. With initial read alignment to virus reference genome and streamlined procedures, Virus-Clip delivers a simple, fast and memory-efficient solution to viral integration site detection. Moreover, it can also automatically annotate the integration events with the corresponding affected human genes. Virus-Clip has been verified using whole-transcriptome sequencing data and its detection was validated to have satisfactory sensitivity and specificity. Marked advancement in performance was detected, compared to existing tools. It is applicable to versatile types of data including whole-genome sequencing, whole-transcriptome sequencing, and targeted sequencing. Virus-Clip is available at http://web.hku.hk/~dwhho/Virus-Clip.zip.

  6. Multiple Memory Structure Bit Reversal Algorithm Based on Recursive Patterns of Bit Reversal Permutation

    Directory of Open Access Journals (Sweden)

    K. K. L. B. Adikaram

    2014-01-01

    Full Text Available With the increasing demand for online/inline data processing efficient Fourier analysis becomes more and more relevant. Due to the fact that the bit reversal process requires considerable processing time of the Fast Fourier Transform (FFT algorithm, it is vital to optimize the bit reversal algorithm (BRA. This paper is to introduce an efficient BRA with multiple memory structures. In 2009, Elster showed the relation between the first and the second halves of the bit reversal permutation (BRP and stated that it may cause serious impact on cache performance of the computer, if implemented. We found exceptions, especially when the said index mapping was implemented with multiple one-dimensional memory structures instead of multidimensional or one-dimensional memory structure. Also we found a new index mapping, even after the recursive splitting of BRP into equal sized slots. The four-array and the four-vector versions of BRA with new index mapping reported 34% and 16% improvement in performance in relation to similar versions of Linear BRA of Elster which uses single one-dimensional memory structure.

  7. A database for on-line event analysis on a distributed memory machine

    CERN Document Server

    Argante, E; Van der Stok, P D V; Willers, Ian Malcolm

    1995-01-01

    Parallel in-memory databases can enhance the structuring and parallelization of programs used in High Energy Physics (HEP). Efficient database access routines are used as communication primitives which hide the communication topology in contrast to the more explicit communications like PVM or MPI. A parallel in-memory database, called SPIDER, has been implemented on a 32 node Meiko CS-2 distributed memory machine. The spider primitives generate a lower overhead than the one generated by PVM or PMI. The event reconstruction program, CPREAD of the CPLEAR experiment, has been used as a test case. Performance measurerate generated by CPLEAR.

  8. Memory reconsolidation mediates the updating of hippocampal memory content

    Directory of Open Access Journals (Sweden)

    Jonathan L C Lee

    2010-11-01

    Full Text Available The retrieval or reactivation of a memory places it into a labile state, requiring a process of reconsolidation to restabilize it. This retrieval-induced plasticity is a potential mechanism for the modification of the existing memory. Following previous data supportive of a functional role for memory reconsolidation in the modification of memory strength, here I show that hippocampal memory reconsolidation also supports the updating of contextual memory content. Using a procedure that separates the learning of pure context from footshock-motivated contextual fear learning, I demonstrate doubly dissociable hippocampal mechanisms of initial context learning and subsequent updating of the neutral contextual representation to incorporate the footshock. Contextual memory consolidation was dependent upon BDNF expression in the dorsal hippocampus, whereas the footshock modification of the contextual representation required the expression of Zif268. These mechanisms match those previously shown to be selectively involved in hippocampal memory consolidation and reconsolidation, respectively. Moreover, memory reactivation is a necessary step in modifying memory content, as inhibition of hippocampal synaptic protein degradation also prevented the footshock-mediated memory modification. Finally, dorsal hippocampal knockdown of Zif268 impaired the reconsolidation of the pure contextual memory only under conditions of weak context memory training, as well as failing to disrupt contextual freezing when a strong contextual fear memory is reactivated by further conditioning. Therefore, an adaptive function of the reactivation and reconsolidation process is to enable the updating of memory content.

  9. The Importance of Memory Specificity and Memory Coherence for the Self: Linking Two Characteristics of Autobiographical Memory

    Directory of Open Access Journals (Sweden)

    Elien Vanderveren

    2017-12-01

    Full Text Available Autobiographical memory forms a network of memories about personal experiences that defines and supports well-being and effective functioning of the self in various ways. During the last three decades, there have been two characteristics of autobiographical memory that have received special interest regarding their role in psychological well-being and psychopathology, namely memory specificity and memory coherence. Memory specificity refers to the extent to which retrieved autobiographical memories are specific (i.e., memories about a particular experience that happened on a particular day. Difficulty retrieving specific memories interferes with effective functioning of the self and is related to depression and post-traumatic stress disorder. Memory coherence refers to the narrative expression of the overall structure of autobiographical memories. It has likewise been related to psychological well-being and the occurrence of psychopathology. Research on memory specificity and memory coherence has developed as two largely independent research domains, even though they show much overlap. This raises some important theoretical questions. How do these two characteristics of autobiographical memory relate to each other, both theoretically and empirically? Additionally, how can the integration of these two facilitate our understanding of the importance of autobiographical memory for the self? In this article, we give a critical overview of memory specificity and memory coherence and their relation to the self. We link both features of autobiographical memory by describing some important similarities and by formulating hypotheses about how they might relate to each other. By situating both memory specificity and memory coherence within Conway and Pleydell-Pearce’s Self-Memory System, we make a first attempt at a theoretical integration. Finally, we suggest some new and exciting research possibilities and explain how both research fields could benefit

  10. Gold, currencies and market efficiency

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Vošvrda, Miloslav

    2016-01-01

    Roč. 449, č. 1 (2016), s. 27-34 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Efficient market hypothesis, * Gold * Currencies, * Fractal dimension * Entropy * Long-Term memory Subject RIV: AH - Economics Impact factor: 2.243, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0455876.pdf

  11. Efficient Searching with Linear Constraints

    DEFF Research Database (Denmark)

    Agarwal, Pankaj K.; Arge, Lars Allan; Erickson, Jeff

    2000-01-01

    We show how to preprocess a set S of points in d into an external memory data structure that efficiently supports linear-constraint queries. Each query is in the form of a linear constraint xd a0+∑d−1i=1 aixi; the data structure must report all the points of S that satisfy the constraint. This pr...

  12. Memory

    Science.gov (United States)

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  13. The effect of strategic memory training in older adults: who benefits most?

    Science.gov (United States)

    Rosi, Alessia; Del Signore, Federica; Canelli, Elisa; Allegri, Nicola; Bottiroli, Sara; Vecchi, Tomaso; Cavallini, Elena

    2017-12-07

    Previous research has suggested that there is a degree of variability among older adults' response to memory training, such that some individuals benefit more than others. The aim of the present study was to identify the profile of older adults who were likely to benefit most from a strategic memory training program that has previously proved to be effective in improving memory in healthy older adults. In total, 44 older adults (60-83 years) participated in a strategic memory training. We examined memory training benefits by measuring changes in memory practiced (word list learning) and non-practiced tasks (grocery list and associative learning). In addition, a battery of cognitive measures was administered in order to assess crystallized and fluid abilities, short-term memory, working memory, and processing speed. Results confirmed the efficacy of the training in improving performance in both practiced and non-practiced memory tasks. For the practiced memory tasks, results showed that memory baseline performance and crystallized ability predicted training gains. For the non-practiced memory tasks, analyses showed that memory baseline performance was a significant predictor of gain in the grocery list learning task. For the associative learning task, the significant predictors were memory baseline performance, processing speed, and marginally the age. Our results indicate that older adults with a higher baseline memory capacity and with more efficient cognitive resources were those who tended to benefit most from the training. The present study provides new avenues in designing personalized intervention according to the older adults' cognitive profile.

  14. Consolidation differentially modulates schema effects on memory for items and associations.

    Science.gov (United States)

    van Kesteren, Marlieke T R; Rijpkema, Mark; Ruiter, Dirk J; Fernández, Guillén

    2013-01-01

    Newly learned information that is congruent with a preexisting schema is often better remembered than information that is incongruent. This schema effect on memory has previously been associated to more efficient encoding and consolidation mechanisms. However, this effect is not always consistently supported in the literature, with differential schema effects reported for different types of memory, different retrieval cues, and the possibility of time-dependent effects related to consolidation processes. To examine these effects more directly, we tested participants on two different types of memory (item recognition and associative memory) for newly encoded visuo-tactile associations at different study-test intervals, thus probing memory retrieval accuracy for schema-congruent and schema-incongruent items and associations at different time points (t = 0, t = 20, and t = 48 hours) after encoding. Results show that the schema effect on visual item recognition only arises after consolidation, while the schema effect on associative memory is already apparent immediately after encoding, persisting, but getting smaller over time. These findings give further insight into different factors influencing the schema effect on memory, and can inform future schema experiments by illustrating the value of considering effects of memory type and consolidation on schema-modulated retrieval.

  15. Consolidation differentially modulates schema effects on memory for items and associations.

    Directory of Open Access Journals (Sweden)

    Marlieke T R van Kesteren

    Full Text Available Newly learned information that is congruent with a preexisting schema is often better remembered than information that is incongruent. This schema effect on memory has previously been associated to more efficient encoding and consolidation mechanisms. However, this effect is not always consistently supported in the literature, with differential schema effects reported for different types of memory, different retrieval cues, and the possibility of time-dependent effects related to consolidation processes. To examine these effects more directly, we tested participants on two different types of memory (item recognition and associative memory for newly encoded visuo-tactile associations at different study-test intervals, thus probing memory retrieval accuracy for schema-congruent and schema-incongruent items and associations at different time points (t = 0, t = 20, and t = 48 hours after encoding. Results show that the schema effect on visual item recognition only arises after consolidation, while the schema effect on associative memory is already apparent immediately after encoding, persisting, but getting smaller over time. These findings give further insight into different factors influencing the schema effect on memory, and can inform future schema experiments by illustrating the value of considering effects of memory type and consolidation on schema-modulated retrieval.

  16. Role of working memory components in planning performance of individuals with Parkinson's disease.

    Science.gov (United States)

    Altgassen, Mareike; Phillips, Louise; Kopp, Ute; Kliegel, Matthias

    2007-06-11

    The current study investigated the involvement of all four components of Baddeley's [Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-423] revised working memory model in deficits of planning accompanying Parkinson's disease (PD). PD resulted in poorer formulation and execution of plans, as measured by the Tower of London task. PD also reduced the efficiency of the episodic buffer and central executive components of working memory, but did not influence storage of verbal or visuospatial information. Planning deficits in PD were particularly linked to problems in integrating multimodal short-term information with long-term memory (episodic buffer). These results emphasize the importance of integrative and executive processing in cognitive problems in PD, rather than simple memory deficits.

  17. Syntactic Recursion Facilitates and Working Memory Predicts Recursive Theory of Mind

    Science.gov (United States)

    Arslan, Burcu; Hohenberger, Annette; Verbrugge, Rineke

    2017-01-01

    In this study, we focus on the possible roles of second-order syntactic recursion and working memory in terms of simple and complex span tasks in the development of second-order false belief reasoning. We tested 89 Turkish children in two age groups, one younger (4;6–6;5 years) and one older (6;7–8;10 years). Although second-order syntactic recursion is significantly correlated with the second-order false belief task, results of ordinal logistic regressions revealed that the main predictor of second-order false belief reasoning is complex working memory span. Unlike simple working memory and second-order syntactic recursion tasks, the complex working memory task required processing information serially with additional reasoning demands that require complex working memory strategies. Based on our results, we propose that children’s second-order theory of mind develops when they have efficient reasoning rules to process embedded beliefs serially, thus overcoming a possible serial processing bottleneck. PMID:28072823

  18. Syntactic Recursion Facilitates and Working Memory Predicts Recursive Theory of Mind.

    Directory of Open Access Journals (Sweden)

    Burcu Arslan

    Full Text Available In this study, we focus on the possible roles of second-order syntactic recursion and working memory in terms of simple and complex span tasks in the development of second-order false belief reasoning. We tested 89 Turkish children in two age groups, one younger (4;6-6;5 years and one older (6;7-8;10 years. Although second-order syntactic recursion is significantly correlated with the second-order false belief task, results of ordinal logistic regressions revealed that the main predictor of second-order false belief reasoning is complex working memory span. Unlike simple working memory and second-order syntactic recursion tasks, the complex working memory task required processing information serially with additional reasoning demands that require complex working memory strategies. Based on our results, we propose that children's second-order theory of mind develops when they have efficient reasoning rules to process embedded beliefs serially, thus overcoming a possible serial processing bottleneck.

  19. Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.

    Science.gov (United States)

    Newberg, Lee A

    2008-08-15

    A backtrace through a dynamic programming algorithm's intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forward-backward algorithm, is a task of fundamental importance in computational biology. When there is insufficient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10,000. Sample C++-code for optimal backtrace is available in the Supplementary Materials. Supplementary data is available at Bioinformatics online.

  20. Cognitive memory.

    Science.gov (United States)

    Widrow, Bernard; Aragon, Juan Carlos

    2013-05-01

    Regarding the workings of the human mind, memory and pattern recognition seem to be intertwined. You generally do not have one without the other. Taking inspiration from life experience, a new form of computer memory has been devised. Certain conjectures about human memory are keys to the central idea. The design of a practical and useful "cognitive" memory system is contemplated, a memory system that may also serve as a model for many aspects of human memory. The new memory does not function like a computer memory where specific data is stored in specific numbered registers and retrieval is done by reading the contents of the specified memory register, or done by matching key words as with a document search. Incoming sensory data would be stored at the next available empty memory location, and indeed could be stored redundantly at several empty locations. The stored sensory data would neither have key words nor would it be located in known or specified memory locations. Sensory inputs concerning a single object or subject are stored together as patterns in a single "file folder" or "memory folder". When the contents of the folder are retrieved, sights, sounds, tactile feel, smell, etc., are obtained all at the same time. Retrieval would be initiated by a query or a prompt signal from a current set of sensory inputs or patterns. A search through the memory would be made to locate stored data that correlates with or relates to the prompt input. The search would be done by a retrieval system whose first stage makes use of autoassociative artificial neural networks and whose second stage relies on exhaustive search. Applications of cognitive memory systems have been made to visual aircraft identification, aircraft navigation, and human facial recognition. Concerning human memory, reasons are given why it is unlikely that long-term memory is stored in the synapses of the brain's neural networks. Reasons are given suggesting that long-term memory is stored in DNA or RNA

  1. Untyped Memory in the Java Virtual Machine

    DEFF Research Database (Denmark)

    Gal, Andreas; Probst, Christian; Franz, Michael

    2005-01-01

    We have implemented a virtual execution environment that executes legacy binary code on top of the type-safe Java Virtual Machine by recompiling native code instructions to type-safe bytecode. As it is essentially impossible to infer static typing into untyped machine code, our system emulates...... untyped memory on top of Java’s type system. While this approach allows to execute native code on any off-the-shelf JVM, the resulting runtime performance is poor. We propose a set of virtual machine extensions that add type-unsafe memory objects to JVM. We contend that these JVM extensions do not relax...... Java’s type system as the same functionality can be achieved in pure Java, albeit much less efficiently....

  2. Retention interval affects visual short-term memory encoding.

    Science.gov (United States)

    Bankó, Eva M; Vidnyánszky, Zoltán

    2010-03-01

    Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.

  3. Feasibility study of current pulse induced 2-bit/4-state multilevel programming in phase-change memory

    Science.gov (United States)

    Liu, Yan; Fan, Xi; Chen, Houpeng; Wang, Yueqing; Liu, Bo; Song, Zhitang; Feng, Songlin

    2017-08-01

    In this brief, multilevel data storage for phase-change memory (PCM) has attracted more attention in the memory market to implement high capacity memory system and reduce cost-per-bit. In this work, we present a universal programing method of SET stair-case current pulse in PCM cells, which can exploit the optimum programing scheme to achieve 2-bit/ 4state resistance-level with equal logarithm interval. SET stair-case waveform can be optimized by TCAD real time simulation to realize multilevel data storage efficiently in an arbitrary phase change material. Experimental results from 1 k-bit PCM test-chip have validated the proposed multilevel programing scheme. This multilevel programming scheme has improved the information storage density, robustness of resistance-level, energy efficient and avoiding process complexity.

  4. The impact of interference on short-term memory for visual orientation.

    Science.gov (United States)

    Rademaker, Rosanne L; Bloem, Ilona M; De Weerd, Peter; Sack, Alexander T

    2015-12-01

    Visual short-term memory serves as an efficient buffer for maintaining no longer directly accessible information. How robust are visual memories against interference? Memory for simple visual features has proven vulnerable to distractors containing conflicting information along the relevant stimulus dimension, leading to the idea that interacting feature-specific channels at an early stage of visual processing support memory for simple visual features. Here we showed that memory for a single randomly orientated grating was susceptible to interference from a to-be-ignored distractor grating presented midway through a 3-s delay period. Memory for the initially presented orientation became noisier when it differed from the distractor orientation, and response distributions were shifted toward the distractor orientation (by ∼3°). Interestingly, when the distractor was rendered task-relevant by making it a second memory target, memory for both retained orientations showed reduced reliability as a function of increased orientation differences between them. However, the degree to which responses to the first grating shifted toward the orientation of the task-relevant second grating was much reduced. Finally, using a dichoptic display, we demonstrated that these systematic biases caused by a consciously perceived distractor disappeared once the distractor was presented outside of participants' awareness. Together, our results show that visual short-term memory for orientation can be systematically biased by interfering information that is consciously perceived. (c) 2015 APA, all rights reserved).

  5. The contributions of handedness and working memory to episodic memory.

    Science.gov (United States)

    Sahu, Aparna; Christman, Stephen D; Propper, Ruth E

    2016-11-01

    Past studies have independently shown associations of working memory and degree of handedness with episodic memory retrieval. The current study takes a step ahead by examining whether handedness and working memory independently predict episodic memory. In agreement with past studies, there was an inconsistent-handed advantage for episodic memory; however, this advantage was absent for working memory tasks. Furthermore, regression analyses showed handedness, and complex working memory predicted episodic memory performance at different times. Results are discussed in light of theories of episodic memory and hemispheric interaction.

  6. Memory Dysfunction

    Science.gov (United States)

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  7. Visual search elicits the electrophysiological marker of visual working memory.

    Directory of Open Access Journals (Sweden)

    Stephen M Emrich

    Full Text Available BACKGROUND: Although limited in capacity, visual working memory (VWM plays an important role in many aspects of visually-guided behavior. Recent experiments have demonstrated an electrophysiological marker of VWM encoding and maintenance, the contralateral delay activity (CDA, which has been shown in multiple tasks that have both explicit and implicit memory demands. Here, we investigate whether the CDA is evident during visual search, a thoroughly-researched task that is a hallmark of visual attention but has no explicit memory requirements. METHODOLOGY/PRINCIPAL FINDINGS: The results demonstrate that the CDA is present during a lateralized search task, and that it is similar in amplitude to the CDA observed in a change-detection task, but peaks slightly later. The changes in CDA amplitude during search were strongly correlated with VWM capacity, as well as with search efficiency. These results were paralleled by behavioral findings showing a strong correlation between VWM capacity and search efficiency. CONCLUSIONS/SIGNIFICANCE: We conclude that the activity observed during visual search was generated by the same neural resources that subserve VWM, and that this activity reflects the maintenance of previously searched distractors.

  8. 3D Printed Photoresponsive Devices Based on Shape Memory Composites.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Wang, Ting; Wang, Juan; Yu, Jiancan; He, Ke; Qi, Dianpeng; Wan, Changjin; Chen, Xiaodong

    2017-09-01

    Compared with traditional stimuli-responsive devices with simple planar or tubular geometries, 3D printed stimuli-responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Behavioural memory reconsolidation of food and fear memories.

    Science.gov (United States)

    Flavell, Charlotte R; Barber, David J; Lee, Jonathan L C

    2011-10-18

    The reactivation of a memory through retrieval can render it subject to disruption or modification through the process of memory reconsolidation. In both humans and rodents, briefly reactivating a fear memory results in effective erasure by subsequent extinction training. Here we show that a similar strategy is equally effective in the disruption of appetitive pavlovian cue-food memories. However, systemic administration of the NMDA receptor partial agonist D-cycloserine, under the same behavioural conditions, did not potentiate appetitive memory extinction, suggesting that reactivation does not enhance subsequent extinction learning. To confirm that reactivation followed by extinction reflects a behavioural analogue of memory reconsolidation, we show that prevention of contextual fear memory reactivation by the L-type voltage-gated calcium channel blocker nimodipine interferes with the amnestic outcome. Therefore, the reconsolidation process can be manipulated behaviourally to disrupt both aversive and appetitive memories. © 2011 Macmillan Publishers Limited. All rights reserved.

  10. Coherence time of over a second in a telecom-compatible quantum memory storage material

    Science.gov (United States)

    Rančić, Miloš; Hedges, Morgan P.; Ahlefeldt, Rose L.; Sellars, Matthew J.

    2018-01-01

    Quantum memories for light will be essential elements in future long-range quantum communication networks. These memories operate by reversibly mapping the quantum state of light onto the quantum transitions of a material system. For networks, the quantum coherence times of these transitions must be long compared to the network transmission times, approximately 100 ms for a global communication network. Due to a lack of a suitable storage material, a quantum memory that operates in the 1,550 nm optical fibre communication band with a storage time greater than 1 μs has not been demonstrated. Here we describe the spin dynamics of 167Er3+: Y2SiO5 in a high magnetic field and demonstrate that this material has the characteristics for a practical quantum memory in the 1,550 nm communication band. We observe a hyperfine coherence time of 1.3 s. We also demonstrate efficient spin pumping of the entire ensemble into a single hyperfine state, a requirement for broadband spin-wave storage. With an absorption of 70 dB cm-1 at 1,538 nm and Λ transitions enabling spin-wave storage, this material is the first candidate identified for an efficient, broadband quantum memory at telecommunication wavelengths.

  11. Synthesis of energy-efficient FSMs implemented in PLD circuits

    Science.gov (United States)

    Nawrot, Radosław; Kulisz, Józef; Kania, Dariusz

    2017-11-01

    The paper presents an outline of a simple synthesis method of energy-efficient FSMs. The idea consists in using local clock gating to selectively block the clock signal, if no transition of a state of a memory element is required. The research was dedicated to logic circuits using Programmable Logic Devices as the implementation platform, but the conclusions can be applied to any synchronous circuit. The experimental section reports a comparison of three methods of implementing sequential circuits in PLDs with respect to clock distribution: the classical fully synchronous structure, the structure exploiting the Enable Clock inputs of memory elements, and the structure using clock gating. The results show that the approach based on clock gating is the most efficient one, and it leads to significant reduction of dynamic power consumed by the FSM.

  12. The influences of working memory representations on long-range regression in text reading: An eye-tracking study

    Directory of Open Access Journals (Sweden)

    Teppei eTanaka

    2014-09-01

    Full Text Available The present study investigated the relationship between verbal and visuospatial working memory capacity and long-range regression (i.e., word relocation processes in reading. We analyzed eye movements during a whodunit task, in which readers were asked to answer a content question while original text was being presented. The eye movements were more efficient in relocating a target word when the target was at recency positions within the text than when it was at primacy positions. Furthermore, both verbal and visuospatial working memory capacity partly predicted the efficiency of the initial long-range regression. The results indicate that working memory representations have a strong influence at the first stage of long-range regression by driving the first saccade movement toward the correct target position, suggesting that there is a dynamic interaction between internal working memory representations and external actions during text reading.

  13. Likelihood ratio decisions in memory: three implied regularities.

    Science.gov (United States)

    Glanzer, Murray; Hilford, Andrew; Maloney, Laurence T

    2009-06-01

    We analyze four general signal detection models for recognition memory that differ in their distributional assumptions. Our analyses show that a basic assumption of signal detection theory, the likelihood ratio decision axis, implies three regularities in recognition memory: (1) the mirror effect, (2) the variance effect, and (3) the z-ROC length effect. For each model, we present the equations that produce the three regularities and show, in computed examples, how they do so. We then show that the regularities appear in data from a range of recognition studies. The analyses and data in our study support the following generalization: Individuals make efficient recognition decisions on the basis of likelihood ratios.

  14. The Development of Memory Efficiency and Value-Directed Remembering across the Life Span: A Cross-Sectional Study of Memory and Selectivity

    Science.gov (United States)

    Castel, Alan D.; Humphreys, Kathryn L.; Lee, Steve S.; Galvan, Adriana; Balota, David A.; McCabe, David P.

    2011-01-01

    Although attentional control and memory change considerably across the life span, no research has examined how the ability to strategically remember important information (i.e., value-directed remembering) changes from childhood to old age. The present study examined this in different age groups across the life span (N = 320, 5-96 years old). A…

  15. Memory reconsolidation mediates the updating of hippocampal memory content

    OpenAIRE

    Jonathan L C Lee

    2010-01-01

    The retrieval or reactivation of a memory places it into a labile state, requiring a process of reconsolidation to restabilize it. This retrieval-induced plasticity is a potential mechanism for the modification of the existing memory. Following previous data supportive of a functional role for memory reconsolidation in the modification of memory strength, here I show that hippocampal memory reconsolidation also supports the updating of contextual memory content. Using a procedure that se...

  16. DANoC: An Efficient Algorithm and Hardware Codesign of Deep Neural Networks on Chip.

    Science.gov (United States)

    Zhou, Xichuan; Li, Shengli; Tang, Fang; Hu, Shengdong; Lin, Zhi; Zhang, Lei

    2017-07-18

    Deep neural networks (NNs) are the state-of-the-art models for understanding the content of images and videos. However, implementing deep NNs in embedded systems is a challenging task, e.g., a typical deep belief network could exhaust gigabytes of memory and result in bandwidth and computational bottlenecks. To address this challenge, this paper presents an algorithm and hardware codesign for efficient deep neural computation. A hardware-oriented deep learning algorithm, named the deep adaptive network, is proposed to explore the sparsity of neural connections. By adaptively removing the majority of neural connections and robustly representing the reserved connections using binary integers, the proposed algorithm could save up to 99.9% memory utility and computational resources without undermining classification accuracy. An efficient sparse-mapping-memory-based hardware architecture is proposed to fully take advantage of the algorithmic optimization. Different from traditional Von Neumann architecture, the deep-adaptive network on chip (DANoC) brings communication and computation in close proximity to avoid power-hungry parameter transfers between on-board memory and on-chip computational units. Experiments over different image classification benchmarks show that the DANoC system achieves competitively high accuracy and efficiency comparing with the state-of-the-art approaches.

  17. Interference control in working memory: comparing groups of children with atypical development.

    Science.gov (United States)

    Palladino, Paola; Ferrari, Marcella

    2013-01-01

    The study aimed to test whether working memory deficits in children at risk of Learning Disabilities (LD) and/or attention deficit/hyperactivity disorder (ADHD) can be attributed to deficits in interference control, thereby implicating prefrontal systems. Two groups of children known for showing poor working memory (i.e., children with poor comprehension and children with ADHD) were compared to a group of children with specific reading decoding problems (i.e., having severe problems in phonological rather than working memory) and to a control group. All children were tested with a verbal working memory task. Interference control of irrelevant items was examined by a lexical decision task presented immediately after the final recall in about half the trials, selected at random. The interference control measure was therefore directly related to working memory performance. Results confirmed deficient working memory performance in poor comprehenders and children at risk of ADHD + LD. More interestingly, this working memory deficit was associated with greater activation of irrelevant information than in the control group. Poor decoders showed more efficient interference control, in contrast to poor comprehenders and ADHD + LD children. These results indicated that interfering items were still highly accessible to working memory in children who fail the working memory task. In turn, these findings strengthen and clarify the role of interference control, one of the most critical prefrontal functions, in working memory.

  18. Vicarious extinction learning during reconsolidation neutralizes fear memory.

    Science.gov (United States)

    Golkar, Armita; Tjaden, Cathelijn; Kindt, Merel

    2017-05-01

    Previous studies have suggested that fear memories can be updated when recalled, a process referred to as reconsolidation. Given the beneficial effects of model-based safety learning (i.e. vicarious extinction) in preventing the recovery of short-term fear memory, we examined whether consolidated long-term fear memories could be updated with safety learning accomplished through vicarious extinction learning initiated within the reconsolidation time-window. We assessed this in a final sample of 19 participants that underwent a three-day within-subject fear-conditioning design, using fear-potentiated startle as our primary index of fear learning. On day 1, two fear-relevant stimuli (reinforced CSs) were paired with shock (US) and a third stimulus served as a control (CS). On day 2, one of the two previously reinforced stimuli (the reminded CS) was presented once in order to reactivate the fear memory 10 min before vicarious extinction training was initiated for all CSs. The recovery of the fear memory was tested 24 h later. Vicarious extinction training conducted within the reconsolidation time window specifically prevented the recovery of the reactivated fear memory (p = 0.03), while leaving fear-potentiated startle responses to the non-reactivated cue intact (p = 0.62). These findings are relevant to both basic and clinical research, suggesting that a safe, non-invasive model-based exposure technique has the potential to enhance the efficiency and durability of anxiolytic therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Type II membrane protein CD69 regulates the formation of resting T-helper memory.

    Science.gov (United States)

    Shinoda, Kenta; Tokoyoda, Koji; Hanazawa, Asami; Hayashizaki, Koji; Zehentmeier, Sandra; Hosokawa, Hiroyuki; Iwamura, Chiaki; Koseki, Haruhiko; Tumes, Damon J; Radbruch, Andreas; Nakayama, Toshinori

    2012-05-08

    Memory T-helper (Th) lymphocytes are crucial for the maintenance of acquired immunity to eliminate infectious pathogens. We have previously demonstrated that most memory Th lymphocytes reside and rest on stromal niches of the bone marrow (BM). Little is known, however, regarding the molecular basis for the generation and maintenance of BM memory Th lymphocytes. Here we show that CD69-deficient effector CD4 T lymphocytes fail to relocate into and persist in the BM and therefore to differentiate into memory cells. Consequently, CD69-deficient CD4 T cells fail to facilitate the production of high-affinity antibodies and the generation of BM long-lived plasma cells in the late phase of immune responses. Thus, CD69 is critical for the generation and maintenance of professional memory Th lymphocytes, which can efficiently help humoral immunity in the late phase. The deficit of immunological memory in CD69-deficient mice also highlights the essential role of BM for the establishment of Th memory.

  20. Efficient Reanalysis Procedures in Structural Topology Optimization

    DEFF Research Database (Denmark)

    Amir, Oded

    This thesis examines efficient solution procedures for the structural analysis problem within topology optimization. The research is motivated by the observation that when the nested approach to structural optimization is applied, most of the computational effort is invested in repeated solutions...... on approximate reanalysis. For cases where memory limitations require the utilization of iterative equation solvers, we suggest efficient procedures based on alternative termination criteria for such solvers. These approaches are tested on two- and three-dimensional topology optimization problems including...

  1. Organizational memory: from expectations memory to procedural memory

    NARCIS (Netherlands)

    Ebbers, J.J.; Wijnberg, N.M.

    2009-01-01

    Organizational memory is not just the stock of knowledge about how to do things, but also of expectations of organizational members vis-à-vis each other and the organization as a whole. The central argument of this paper is that this second type of organizational memory -organizational expectations

  2. Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems

    Science.gov (United States)

    Stella, L.; Lorenz, C. D.; Kantorovich, L.

    2014-04-01

    The generalized Langevin equation (GLE) has been recently suggested to simulate the time evolution of classical solid and molecular systems when considering general nonequilibrium processes. In this approach, a part of the whole system (an open system), which interacts and exchanges energy with its dissipative environment, is studied. Because the GLE is derived by projecting out exactly the harmonic environment, the coupling to it is realistic, while the equations of motion are non-Markovian. Although the GLE formalism has already found promising applications, e.g., in nanotribology and as a powerful thermostat for equilibration in classical molecular dynamics simulations, efficient algorithms to solve the GLE for realistic memory kernels are highly nontrivial, especially if the memory kernels decay nonexponentially. This is due to the fact that one has to generate a colored noise and take account of the memory effects in a consistent manner. In this paper, we present a simple, yet efficient, algorithm for solving the GLE for practical memory kernels and we demonstrate its capability for the exactly solvable case of a harmonic oscillator coupled to a Debye bath.

  3. LOD-based clustering techniques for efficient large-scale terrain storage and visualization

    Science.gov (United States)

    Bao, Xiaohong; Pajarola, Renato

    2003-05-01

    Large multi-resolution terrain data sets are usually stored out-of-core. To visualize terrain data at interactive frame rates, the data needs to be organized on disk, loaded into main memory part by part, then rendered efficiently. Many main-memory algorithms have been proposed for efficient vertex selection and mesh construction. Organization of terrain data on disk is quite difficult because the error, the triangulation dependency and the spatial location of each vertex all need to be considered. Previous terrain clustering algorithms did not consider the per-vertex approximation error of individual terrain data sets. Therefore, the vertex sequences on disk are exactly the same for any terrain. In this paper, we propose a novel clustering algorithm which introduces the level-of-detail (LOD) information to terrain data organization to map multi-resolution terrain data to external memory. In our approach the LOD parameters of the terrain elevation points are reflected during clustering. The experiments show that dynamic loading and paging of terrain data at varying LOD is very efficient and minimizes page faults. Additionally, the preprocessing of this algorithm is very fast and works from out-of-core.

  4. Aging Memories: Differential Decay of Episodic Memory Components

    Science.gov (United States)

    Talamini, Lucia M.; Gorree, Eva

    2012-01-01

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a…

  5. Multilevel SOT-MRAM Cell with a Novel Sensing Scheme for High-Density Memory Applications

    DEFF Research Database (Denmark)

    Zeinali, Behzad; Esmaeili, Mahsa; Madsen, Jens Kargaard

    2017-01-01

    This paper presents a multilevel spin-orbit torque magnetic random access memory (SOT-MRAM). The conventional SOT-MRAMs enables a reliable and energy efficient write operation. However, these cells require two access transistors per cell, hence the efficiency of the SOTMRAMs can be questioned in ...

  6. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen-Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2018-05-15

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.

  7. Working memory, long-term memory, and medial temporal lobe function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053

  8. Single-item memory, associative memory, and the human hippocampus

    OpenAIRE

    Gold, Jeffrey J.; Hopkins, Ramona O.; Squire, Larry R.

    2006-01-01

    We tested recognition memory for items and associations in memory-impaired patients with bilateral lesions thought to be limited to the hippocampal region. In Experiment 1 (Combined memory test), participants studied words and then took a memory test in which studied words, new words, studied word pairs, and recombined word pairs were presented in a mixed order. In Experiment 2 (Separated memory test), participants studied single words and then took a memory test involving studied word and ne...

  9. Normal aging affects movement execution but not visual motion working memory and decision-making delay during cue-dependent memory-based smooth-pursuit.

    Science.gov (United States)

    Fukushima, Kikuro; Barnes, Graham R; Ito, Norie; Olley, Peter M; Warabi, Tateo

    2014-07-01

    Aging affects virtually all functions including sensory/motor and cognitive activities. While retinal image motion is the primary input for smooth-pursuit, its efficiency/accuracy depends on cognitive processes. Elderly subjects exhibit gain decrease during initial and steady-state pursuit, but reports on latencies are conflicting. Using a cue-dependent memory-based smooth-pursuit task, we identified important extra-retinal mechanisms for initial pursuit in young adults including cue information priming and extra-retinal drive components (Ito et al. in Exp Brain Res 229:23-35, 2013). We examined aging effects on parameters for smooth-pursuit using the same tasks. Elderly subjects were tested during three task conditions as previously described: memory-based pursuit, simple ramp-pursuit just to follow motion of a single spot, and popping-out of the correct spot during memory-based pursuit to enhance retinal image motion. Simple ramp-pursuit was used as a task that did not require visual motion working memory. To clarify aging effects, we then compared the results with the previous young subject data. During memory-based pursuit, elderly subjects exhibited normal working memory of cue information. Most movement-parameters including pursuit latencies differed significantly between memory-based pursuit and simple ramp-pursuit and also between young and elderly subjects. Popping-out of the correct spot motion was ineffective for enhancing initial pursuit in elderly subjects. However, the latency difference between memory-based pursuit and simple ramp-pursuit in individual subjects, which includes decision-making delay in the memory task, was similar between the two groups. Our results suggest that smooth-pursuit latencies depend on task conditions and that, although the extra-retinal mechanisms were functional for initial pursuit in elderly subjects, they were less effective.

  10. The role of cue detection for prospective memory development across the lifespan.

    Science.gov (United States)

    Hering, Alexandra; Wild-Wall, Nele; Gajewski, Patrick D; Falkenstein, Michael; Kliegel, Matthias; Zinke, Katharina

    2016-12-01

    Behavioral findings suggest an inverted U-shaped pattern of prospective memory development across the lifespan. A key mechanism underlying this development is the ability to detect cues. We examined the influence of cue detection on prospective memory, combining behavioral and electrophysiological measures, in three age groups: adolescents (12-14 years), young (19-28 years), and old adults (66-77 years). Cue detection was manipulated by varying the distinctiveness (i.e., how easy it was to detect the cue based on color) of the prospective memory cue in a semantic judgment ongoing task. Behavioral results supported the pattern of an inverted U-shape with a pronounced prospective memory decrease in old adults. Adolescents and young adults showed a prospective memory specific modulation (larger amplitudes for the cues compared to other trials) already for the N1 component. No such specific modulation was evident in old adults for the early N1 component but only at the later P3b component. Adolescents showed differential modulations of the amplitude also for irrelevant information at the P3b, suggesting less efficient processing. In terms of conceptual implications, present findings underline the importance of cue detection for prospective remembering and reveal different developmental trajectories for cue detection. Our findings suggest that cue detection is not a unitary process but consists of multiple stages corresponding to several ERP components that differentially contribute to prospective memory performance across the lifespan. In adolescents resource allocation for detecting cues seemed successful initially but less efficient at later stages; whereas we found the opposite pattern for old adults. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Memory systems interaction in the pigeon: working and reference memory.

    Science.gov (United States)

    Roberts, William A; Strang, Caroline; Macpherson, Krista

    2015-04-01

    Pigeons' performance on a working memory task, symbolic delayed matching-to-sample, was used to examine the interaction between working memory and reference memory. Reference memory was established by training pigeons to discriminate between the comparison cues used in delayed matching as S+ and S- stimuli. Delayed matching retention tests then measured accuracy when working and reference memory were congruent and incongruent. In 4 experiments, it was shown that the interaction between working and reference memory is reciprocal: Strengthening either type of memory leads to a decrease in the influence of the other type of memory. A process dissociation procedure analysis of the data from Experiment 4 showed independence of working and reference memory, and a model of working memory and reference memory interaction was shown to predict the findings reported in the 4 experiments. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  12. Declarative memory.

    Science.gov (United States)

    Riedel, Wim J; Blokland, Arjan

    2015-01-01

    Declarative Memory consists of memory for events (episodic memory) and facts (semantic memory). Methods to test declarative memory are key in investigating effects of potential cognition-enhancing substances--medicinal drugs or nutrients. A number of cognitive performance tests assessing declarative episodic memory tapping verbal learning, logical memory, pattern recognition memory, and paired associates learning are described. These tests have been used as outcome variables in 34 studies in humans that have been described in the literature in the past 10 years. Also, the use of episodic tests in animal research is discussed also in relation to the drug effects in these tasks. The results show that nutritional supplementation of polyunsaturated fatty acids has been investigated most abundantly and, in a number of cases, but not all, show indications of positive effects on declarative memory, more so in elderly than in young subjects. Studies investigating effects of registered anti-Alzheimer drugs, cholinesterase inhibitors in mild cognitive impairment, show positive and negative effects on declarative memory. Studies mainly carried out in healthy volunteers investigating the effects of acute dopamine stimulation indicate enhanced memory consolidation as manifested specifically by better delayed recall, especially at time points long after learning and more so when drug is administered after learning and if word lists are longer. The animal studies reveal a different picture with respect to the effects of different drugs on memory performance. This suggests that at least for episodic memory tasks, the translational value is rather poor. For the human studies, detailed parameters of the compositions of word lists for declarative memory tests are discussed and it is concluded that tailored adaptations of tests to fit the hypothesis under study, rather than "off-the-shelf" use of existing tests, are recommended.

  13. False memories in highly superior autobiographical memory individuals

    Science.gov (United States)

    Patihis, Lawrence; Frenda, Steven J.; LePort, Aurora K. R.; Petersen, Nicole; Nichols, Rebecca M.; Stark, Craig E. L.; McGaugh, James L.; Loftus, Elizabeth F.

    2013-01-01

    The recent identification of highly superior autobiographical memory (HSAM) raised the possibility that there may be individuals who are immune to memory distortions. We measured HSAM participants’ and age- and sex-matched controls’ susceptibility to false memories using several research paradigms. HSAM participants and controls were both susceptible to false recognition of nonpresented critical lure words in an associative word-list task. In a misinformation task, HSAM participants showed higher overall false memory compared with that of controls for details in a photographic slideshow. HSAM participants were equally as likely as controls to mistakenly report they had seen nonexistent footage of a plane crash. Finding false memories in a superior-memory group suggests that malleable reconstructive mechanisms may be fundamental to episodic remembering. Paradoxically, HSAM individuals may retrieve abundant and accurate autobiographical memories using fallible reconstructive processes. PMID:24248358

  14. False memories and memory confidence in borderline patients.

    Science.gov (United States)

    Schilling, Lisa; Wingenfeld, Katja; Spitzer, Carsten; Nagel, Matthias; Moritz, Steffen

    2013-12-01

    Mixed results have been obtained regarding memory in patients with borderline personality disorder (BPD). Prior reports and anecdotal evidence suggests that patients with BPD are prone to false memories but this assumption has to been put to firm empirical test, yet. Memory accuracy and confidence was assessed in 20 BPD patients and 22 healthy controls using a visual variant of the false memory (Deese-Roediger-McDermott) paradigm which involved a negative and a positive-valenced picture. Groups did not differ regarding veridical item recognition. Importantly, patients did not display more false memories than controls. At trend level, borderline patients rated more items as new with high confidence compared to healthy controls. The results tentatively suggest that borderline patients show uncompromised visual memory functions and display no increased susceptibility for distorted memories. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The accessibility of memory items in children’s working memory

    OpenAIRE

    Roome, Hannah; Towse, John

    2016-01-01

    This thesis investigates the processes and systems that support recall in working memory. In particular it seeks to apply ideas from the adult-based dual-memory framework (Unsworth & Engle, 2007b) that claims primary memory and secondary memory are independent contributors to working memory capacity. These two memory systems are described as domain-general processes that combine control of attention and basic memory abilities to retain information. The empirical contribution comprises five ex...

  16. Human memory retrieval as Lévy foraging

    Science.gov (United States)

    Rhodes, Theo; Turvey, Michael T.

    2007-11-01

    When people attempt to recall as many words as possible from a specific category (e.g., animal names) their retrievals occur sporadically over an extended temporal period. Retrievals decline as recall progresses, but short retrieval bursts can occur even after tens of minutes of performing the task. To date, efforts to gain insight into the nature of retrieval from this fundamental phenomenon of semantic memory have focused primarily upon the exponential growth rate of cumulative recall. Here we focus upon the time intervals between retrievals. We expected and found that, for each participant in our experiment, these intervals conformed to a Lévy distribution suggesting that the Lévy flight dynamics that characterize foraging behavior may also characterize retrieval from semantic memory. The closer the exponent on the inverse square power-law distribution of retrieval intervals approximated the optimal foraging value of 2, the more efficient was the retrieval. At an abstract dynamical level, foraging for particular foods in one's niche and searching for particular words in one's memory must be similar processes if particular foods and particular words are randomly and sparsely located in their respective spaces at sites that are not known a priori. We discuss whether Lévy dynamics imply that memory processes, like foraging, are optimized in an ecological way.

  17. Stochastic memory: getting memory out of noise

    Science.gov (United States)

    Stotland, Alexander; di Ventra, Massimiliano

    2011-03-01

    Memory circuit elements, namely memristors, memcapacitors and meminductors, can store information without the need of a power source. These systems are generally defined in terms of deterministic equations of motion for the state variables that are responsible for memory. However, in real systems noise sources can never be eliminated completely. One would then expect noise to be detrimental for memory. Here, we show that under specific conditions on the noise intensity memory can actually be enhanced. We illustrate this phenomenon using a physical model of a memristor in which the addition of white noise into the state variable equation improves the memory and helps the operation of the system. We discuss under which conditions this effect can be realized experimentally, discuss its implications on existing memory systems discussed in the literature, and also analyze the effects of colored noise. Work supported in part by NSF.

  18. Hippocampal gamma-band Synchrony and pupillary responses index memory during visual search.

    Science.gov (United States)

    Montefusco-Siegmund, Rodrigo; Leonard, Timothy K; Hoffman, Kari L

    2017-04-01

    Memory for scenes is supported by the hippocampus, among other interconnected structures, but the neural mechanisms related to this process are not well understood. To assess the role of the hippocampus in memory-guided scene search, we recorded local field potentials and multiunit activity from the hippocampus of macaques as they performed goal-directed search tasks using natural scenes. We additionally measured pupil size during scene presentation, which in humans is modulated by recognition memory. We found that both pupil dilation and search efficiency accompanied scene repetition, thereby indicating memory for scenes. Neural correlates included a brief increase in hippocampal multiunit activity and a sustained synchronization of unit activity to gamma band oscillations (50-70 Hz). The repetition effects on hippocampal gamma synchronization occurred when pupils were most dilated, suggesting an interaction between aroused, attentive processing and hippocampal correlates of recognition memory. These results suggest that the hippocampus may support memory-guided visual search through enhanced local gamma synchrony. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. False memory in aging: effects of emotional valence on word recognition accuracy.

    Science.gov (United States)

    Piguet, Olivier; Connally, Emily; Krendl, Anne C; Huot, Jessica R; Corkin, Suzanne

    2008-06-01

    Memory is susceptible to distortions. Valence and increasing age are variables known to affect memory accuracy and may increase false alarm production. Interaction between these variables and their impact on false memory was investigated in 36 young (18-28 years) and 36 older (61-83 years) healthy adults. At study, participants viewed lists of neutral words orthographically related to negative, neutral, or positive critical lures (not presented). Memory for these words was subsequently tested with a remember-know procedure. At test, items included the words seen at study and their associated critical lures, as well as sets of orthographically related neutral words not seen at study and their associated unstudied lures. Positive valence was shown to have two opposite effects on older adults' discrimination of the lures: It improved correct rejection of unstudied lures but increased false memory for critical lures (i.e., lures associated with words studied previously). Thus, increased salience triggered by positive valence may disrupt memory accuracy in older adults when discriminating among similar events. These findings likely reflect a source memory deficit due to decreased efficiency in cognitive control processes with aging.

  20. Characterization and design of antagonistic shape memory alloy actuators

    International Nuclear Information System (INIS)

    Georges, T; Brailovski, V; Terriault, P

    2012-01-01

    Antagonistic shape memory actuators use opposing shape memory alloy (SMA) elements to create devices capable of producing differential motion paths and two-way mechanical work in a very efficient manner. There is no requirement for additional bias elements to ‘re-arm’ the actuators and allow repetitive actuation. The work generation potential of antagonistic shape memory actuators is determined by specific SMA element characteristics and their assembly conditions. In this study, the selected SMA wires are assembled in antagonistic configuration and characterized using a dedicated test bench to evaluate their stress–strain characteristics as a function of the number of cycles. Using these functional characteristics, a so-called ‘working envelope’ is built to assist in the design of such an actuator. Finally, the test bench is used to simulate a real application of an antagonistic actuator (case study). (paper)

  1. Aristotle: A performance Impact Indicator for the OpenCL Kernels Using Local Memory

    Directory of Open Access Journals (Sweden)

    Jianbin Fang

    2014-01-01

    Full Text Available Due to the increasing complexity of multi/many-core architectures (with their mix of caches and scratch-pad memories and applications (with different memory access patterns, the performance of many workloads becomes increasingly variable. In this work, we address one of the main causes for this performance variability: the efficiency of the memory system. Specifically, based on an empirical evaluation driven by memory access patterns, we qualify and partially quantify the performance impact of using local memory in multi/many-core processors. To do so, we systematically describe memory access patterns (MAPs in an application-agnostic manner. Next, for each identified MAP, we use OpenCL (for portability reasons to generate two microbenchmarks: a “naive” version (without local memory and “an optimized” version (using local memory. We then evaluate both of them on typically used multi-core and many-core platforms, and we log their performance. What we eventually obtain is a local memory performance database, indexed by various MAPs and platforms. Further, we propose a set of composing rules for multiple MAPs. Thus, we can get an indicator of whether using local memory is beneficial in the presence of multiple memory access patterns. This indication can be used to either avoid the hassle of implementing optimizations with too little gain or, alternatively, give a rough prediction of the performance gain.

  2. Application of Shape Memory Alloys in Seismic Isolation: A Review

    Directory of Open Access Journals (Sweden)

    Shaghayegh Alvandi

    2014-12-01

    Full Text Available In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re-centering, high resistance to fatigue and corrosion and durability have made shape memory alloy an effective damping device or part of base isolators. A unique characteristic of shape memory alloys is in recovering residual deformations even after strong ground excitations. Seismic isolation is a device to lessen earthquake damage prospects. In the latest research studies, shape memory alloy is utilized in combination with seismic isolation system and their results indicate the effectiveness of the application of them to control the response of the structures. This paper reviews the findings of research studies on base isolation system implemented in the building and/or bridge structures by including the unique behavior of shape memory alloys. This study includes the primary information about the characteristic of the isolation system as well as the shape memory material. The efficiency and feasibility of the two mechanisms are also presented by few cases in point.

  3. Parallel discrete ordinates algorithms on distributed and common memory systems

    International Nuclear Information System (INIS)

    Wienke, B.R.; Hiromoto, R.E.; Brickner, R.G.

    1987-01-01

    The S/sub n/ algorithm employs iterative techniques in solving the linear Boltzmann equation. These methods, both ordered and chaotic, were compared on both the Denelcor HEP and the Intel hypercube. Strategies are linked to the organization and accessibility of memory (common memory versus distributed memory architectures), with common concern for acquisition of global information. Apart from this, the inherent parallelism of the algorithm maps directly onto the two architectures. Results comparing execution times, speedup, and efficiency are based on a representative 16-group (full upscatter and downscatter) sample problem. Calculations were performed on both the Los Alamos National Laboratory (LANL) Denelcor HEP and the LANL Intel hypercube. The Denelcor HEP is a 64-bit multi-instruction, multidate MIMD machine consisting of up to 16 process execution modules (PEMs), each capable of executing 64 processes concurrently. Each PEM can cooperate on a job, or run several unrelated jobs, and share a common global memory through a crossbar switch. The Intel hypercube, on the other hand, is a distributed memory system composed of 128 processing elements, each with its own local memory. Processing elements are connected in a nearest-neighbor hypercube configuration and sharing of data among processors requires execution of explicit message-passing constructs

  4. Working memory capacity in social anxiety disorder: Revisiting prior conclusions.

    Science.gov (United States)

    Waechter, Stephanie; Moscovitch, David A; Vidovic, Vanja; Bielak, Tatiana; Rowa, Karen; McCabe, Randi E

    2018-04-01

    In one of the few studies examining working memory processes in social anxiety disorder (SAD), Amir and Bomyea (2011) recruited participants with and without SAD to complete a working memory span task with neutral and social threat words. Those with SAD showed better working memory performance for social threat words compared to neutral words, suggesting an enhancement in processing efficiency for socially threatening information in SAD. The current study sought to replicate and extend these findings. In this study, 25 participants with a principal diagnosis of SAD, 24 anxious control (AC) participants with anxiety disorders other than SAD, and 27 healthy control (HC) participants with no anxiety disorder completed a working memory task with social threat, general threat, and neutral stimuli. The groups in the current study demonstrated similar working memory performance within each of the word type conditions, thus failing to replicate the principal findings of Amir and Bomyea (2011). Post hoc analyses revealed a significant association between higher levels of anxiety symptomatology and poorer overall WM performance. These results inform our understanding of working memory in the anxiety disorders and support the importance of replication in psychological research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Pushing Memory Bandwidth Limitations Through Efficient Implementations of Block-Krylov Space Solvers on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Clark, M. A. [NVIDIA Corp., Santa Clara; Strelchenko, Alexei [Fermilab; Vaquero, Alejandro [Utah U.; Wagner, Mathias [NVIDIA Corp., Santa Clara; Weinberg, Evan [Boston U.

    2017-10-26

    Lattice quantum chromodynamics simulations in nuclear physics have benefited from a tremendous number of algorithmic advances such as multigrid and eigenvector deflation. These improve the time to solution but do not alleviate the intrinsic memory-bandwidth constraints of the matrix-vector operation dominating iterative solvers. Batching this operation for multiple vectors and exploiting cache and register blocking can yield a super-linear speed up. Block-Krylov solvers can naturally take advantage of such batched matrix-vector operations, further reducing the iterations to solution by sharing the Krylov space between solves. However, practical implementations typically suffer from the quadratic scaling in the number of vector-vector operations. Using the QUDA library, we present an implementation of a block-CG solver on NVIDIA GPUs which reduces the memory-bandwidth complexity of vector-vector operations from quadratic to linear. We present results for the HISQ discretization, showing a 5x speedup compared to highly-optimized independent Krylov solves on NVIDIA's SaturnV cluster.

  6. Age differences in memory control: evidence from updating and retrieval-practice tasks.

    Science.gov (United States)

    Lechuga, Maria Teresa; Moreno, Virginia; Pelegrina, Santiago; Gómez-Ariza, Carlos J; Bajo, Maria Teresa

    2006-11-01

    Some contemporary approaches suggest that inhibitory mechanisms play an important role in cognitive development. In addition, several authors distinguish between intentional and unintentional inhibitory processes in cognition. We report two experiments aimed at exploring possible developmental changes in these two types of inhibitory mechanisms. In Experiment 1, an updating task was used. This task requires that participants intentionally suppress irrelevant information from working memory. In Experiment 2, the retrieval-practice task was used. Retrieval practice of a subset of studied items is thought to involve unintentional inhibitory processes to overcome interference from competing memories. As a result, suppressed items become forgotten in a later memory test. Results of the experiments indicated that younger children (8) were less efficient than older children (12) and adults at intentionally suppressing information (updating task). However, when the task required unintentional inhibition of competing items (retrieval-practice task), this developmental trend was not found and children and adults showed similar levels of retrieval-induced forgetting. The results are discussed in terms of the development of efficient inhibition and the distinction between intentional and unintentional inhibitions.

  7. Disrupted rapid eye movement sleep predicts poor declarative memory performance in post-traumatic stress disorder.

    Science.gov (United States)

    Lipinska, Malgorzata; Timol, Ridwana; Kaminer, Debra; Thomas, Kevin G F

    2014-06-01

    Successful memory consolidation during sleep depends on healthy slow-wave and rapid eye movement sleep, and on successful transition across sleep stages. In post-traumatic stress disorder, sleep is disrupted and memory is impaired, but relations between these two variables in the psychiatric condition remain unexplored. We examined whether disrupted sleep, and consequent disrupted memory consolidation, is a mechanism underlying declarative memory deficits in post-traumatic stress disorder. We recruited three matched groups of participants: post-traumatic stress disorder (n = 16); trauma-exposed non-post-traumatic stress disorder (n = 15); and healthy control (n = 14). They completed memory tasks before and after 8 h of sleep. We measured sleep variables using sleep-adapted electroencephalography. Post-traumatic stress disorder-diagnosed participants experienced significantly less sleep efficiency and rapid eye movement sleep percentage, and experienced more awakenings and wake percentage in the second half of the night than did participants in the other two groups. After sleep, post-traumatic stress disorder-diagnosed participants retained significantly less information on a declarative memory task than controls. Rapid eye movement percentage, wake percentage and sleep efficiency correlated with retention of information over the night. Furthermore, lower rapid eye movement percentage predicted poorer retention in post-traumatic stress disorder-diagnosed individuals. Our results suggest that declarative memory consolidation is disrupted during sleep in post-traumatic stress disorder. These data are consistent with theories suggesting that sleep benefits memory consolidation via predictable neurobiological mechanisms, and that rapid eye movement disruption is more than a symptom of post-traumatic stress disorder. © 2014 European Sleep Research Society.

  8. Recovery of Flash Memories for Reliable Mobile Storages

    Directory of Open Access Journals (Sweden)

    Daesung Moon

    2010-01-01

    Full Text Available As the mobile appliance is applied to many ubiquitous services and the importance of the information stored in it is increased, the security issue to protect the information becomes one of the major concerns. However, most previous researches focused only on the communication security, not the storage security. Especially, a flash memory whose operational characteristics are different from those of HDD is used increasingly as a storage device for the mobile appliance because of its resistance to physical shock and lower power requirement. In this paper, we propose a flash memory management scheme targeted for guaranteeing the data integrity of the mobile storage. By maintaining the old data specified during the recovery window, we can recover the old data when the mobile appliance is attacked. Also, to reduce the storage requirement for the recovery, we restrict the number of versions to be copied, called Degree of Integrity (DoI. Especially, we consider both the reclaim efficiency and the wear leveling which is a unique characteristic of the flash memory. Based on the performance evaluation, we confirm that the proposed scheme can be acceptable to many applications as a flash memory management scheme for improving data integrity.

  9. Selective transfer of visual working memory training on Chinese character learning.

    Science.gov (United States)

    Opitz, Bertram; Schneiders, Julia A; Krick, Christoph M; Mecklinger, Axel

    2014-01-01

    Previous research has shown a systematic relationship between phonological working memory capacity and second language proficiency for alphabetic languages. However, little is known about the impact of working memory processes on second language learning in a non-alphabetic language such as Mandarin Chinese. Due to the greater complexity of the Chinese writing system we expect that visual working memory rather than phonological working memory exerts a unique influence on learning Chinese characters. This issue was explored in the present experiment by comparing visual working memory training with an active (auditory working memory training) control condition and a passive, no training control condition. Training induced modulations in language-related brain networks were additionally examined using functional magnetic resonance imaging in a pretest-training-posttest design. As revealed by pre- to posttest comparisons and analyses of individual differences in working memory training gains, visual working memory training led to positive transfer effects on visual Chinese vocabulary learning compared to both control conditions. In addition, we found sustained activation after visual working memory training in the (predominantly visual) left infero-temporal cortex that was associated with behavioral transfer. In the control conditions, activation either increased (active control condition) or decreased (passive control condition) without reliable behavioral transfer effects. This suggests that visual working memory training leads to more efficient processing and more refined responses in brain regions involved in visual processing. Furthermore, visual working memory training boosted additional activation in the precuneus, presumably reflecting mental image generation of the learned characters. We, therefore, suggest that the conjoint activity of the mid-fusiform gyrus and the precuneus after visual working memory training reflects an interaction of working memory and

  10. Shape memory heat engines

    Science.gov (United States)

    Salzbrenner, R.

    1984-06-01

    The mechanical shape memory effect associated with a thermoelastic martensitic transformation can be used to convert heat directly into mechanical work. Laboratory simulation of two types of heat engine cycles (Stirling and Ericsson) has been performed to measure the amount of work available/cycle in a Ni-45 at. pct Ti alloy. Tensile deformations at ambient temperature induced martensite, while a subsequent increase in temperature caused a reversion to the parent phase during which a load was carried through the strain recovery (i.e., work was accomplished). The amount of heat necessary to carry the engines through a cycle was estimated from calorimeter measurements and the work performed/cycle. The measured efficiency of the system tested reached a maximum of 1.4 percent, which was well below the theoretical (Carnot) maximum efficiency of 35.6 percent.

  11. Visual working memory buffers information retrieved from visual long-term memory.

    Science.gov (United States)

    Fukuda, Keisuke; Woodman, Geoffrey F

    2017-05-16

    Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.

  12. Multi-Level Bitmap Indexes for Flash Memory Storage

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng; Madduri, Kamesh; Canon, Shane

    2010-07-23

    Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data at the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.

  13. Stress Effects on Working Memory, Explicit Memory, and Implicit Memory for Neutral and Emotional Stimuli in Healthy Men

    OpenAIRE

    Luethi, Mathias; Meier, Beat; Sandi, Carmen

    2009-01-01

    Stress is a strong modulator of memory function. However, memory is not a unitary process and stress seems to exert different effects depending on the memory type under study. Here, we explored the impact of social stress on different aspects of human memory, including tests for explicit memory and working memory (for neutral materials), as well as implicit memory (perceptual priming, contextual priming and classical conditioning for emotional stimuli). A total of 35 young adult...

  14. Reactivated Memories Compete for Expression After Pavlovian Extinction

    Science.gov (United States)

    Laborda, Mario A.; Miller, Ralph R.

    2012-01-01

    We view the response decrement resulting from extinction treatment as an interference effect, in which the reactivated memory from acquisition competes with the reactivated memory from extinction for behavioral expression. For each of these memories, reactivation is proportional to both the strength of the stimulus-outcome association and the quality of the facilitatory cues for that association which are present at test. Here we review basic extinction and recovery-from-extinction phenomena, showing how these effects are explicable in this associative interference framework. Moreover, this orientation has and continues to dictate efficient manipulations for minimizing recovery from extinction. This in turn suggests procedures that might reduce relapse from exposure therapy for a number of psychological disorders. Some of these manipulations enhance the facilitatory cues from extinction that are present at test, others strengthen the extinction association (i.e., CS-no outcome), and yet others seem to work by a combination of these two processes. PMID:22326812

  15. Detecting peripheral-based attacks on the host memory

    CERN Document Server

    Stewin, Patrick

    2015-01-01

    This work addresses stealthy peripheral-based attacks on host computers and presents a new approach to detecting them. Peripherals can be regarded as separate systems that have a dedicated processor and dedicated runtime memory to handle their tasks. The book addresses the problem that peripherals generally communicate with the host via the host’s main memory, storing cryptographic keys, passwords, opened files and other sensitive data in the process – an aspect attackers are quick to exploit.  Here, stealthy malicious software based on isolated micro-controllers is implemented to conduct an attack analysis, the results of which provide the basis for developing a novel runtime detector. The detector reveals stealthy peripheral-based attacks on the host’s main memory by exploiting certain hardware properties, while a permanent and resource-efficient measurement strategy ensures that the detector is also capable of detecting transient attacks, which can otherwise succeed when the applied strategy only me...

  16. Working memory capacity and controlled serial memory search.

    Science.gov (United States)

    Mızrak, Eda; Öztekin, Ilke

    2016-08-01

    The speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between working memory capacity (WMC) and the dynamics of temporal order memory retrieval. High- and low-span participants (HSs, LSs) studied sequentially presented five-item lists, followed by two probes from the study list. Participants indicated the more recent probe. Overall, accuracy was higher for HSs compared to LSs. Crucially, in contrast to previous investigations that observed no impact of WMC on speed of access to item information in memory (e.g., Öztekin & McElree, 2010), recovery of temporal order memory was slower for LSs. While accessing an item's representation in memory can be direct, recovery of relational information such as temporal order information requires a more controlled serial memory search. Collectively, these data indicate that WMC effects are particularly prominent during high demands of cognitive control, such as serial search operations necessary to access temporal order information from memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Categorizing words through semantic memory navigation

    Science.gov (United States)

    Borge-Holthoefer, J.; Arenas, A.

    2010-03-01

    Semantic memory is the cognitive system devoted to storage and retrieval of conceptual knowledge. Empirical data indicate that semantic memory is organized in a network structure. Everyday experience shows that word search and retrieval processes provide fluent and coherent speech, i.e. are efficient. This implies either that semantic memory encodes, besides thousands of words, different kind of links for different relationships (introducing greater complexity and storage costs), or that the structure evolves facilitating the differentiation between long-lasting semantic relations from incidental, phenomenological ones. Assuming the latter possibility, we explore a mechanism to disentangle the underlying semantic backbone which comprises conceptual structure (extraction of categorical relations between pairs of words), from the rest of information present in the structure. To this end, we first present and characterize an empirical data set modeled as a network, then we simulate a stochastic cognitive navigation on this topology. We schematize this latter process as uncorrelated random walks from node to node, which converge to a feature vectors network. By doing so we both introduce a novel mechanism for information retrieval, and point at the problem of category formation in close connection to linguistic and non-linguistic experience.

  18. Mapping the Developmental Constraints on Working Memory Span Performance

    Science.gov (United States)

    Bayliss, Donna M.; Jarrold, Christopher; Baddeley, Alan D.; Gunn, Deborah M.; Leigh, Eleanor

    2004-01-01

    This study investigated the constraints underlying developmental improvements in complex working memory span performance among 120 children of between 6 and 10 years of age. Independent measures of processing efficiency, storage capacity, rehearsal speed, and basic speed of processing were assessed to determine their contribution to age-related…

  19. Non-Hebbian learning implementation in light-controlled resistive memory devices.

    Science.gov (United States)

    Ungureanu, Mariana; Stoliar, Pablo; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E

    2012-01-01

    Non-Hebbian learning is often encountered in different bio-organisms. In these processes, the strength of a synapse connecting two neurons is controlled not only by the signals exchanged between the neurons, but also by an additional factor external to the synaptic structure. Here we show the implementation of non-Hebbian learning in a single solid-state resistive memory device. The output of our device is controlled not only by the applied voltages, but also by the illumination conditions under which it operates. We demonstrate that our metal/oxide/semiconductor device learns more efficiently at higher applied voltages but also when light, an external parameter, is present during the information writing steps. Conversely, memory erasing is more efficiently at higher applied voltages and in the dark. Translating neuronal activity into simple solid-state devices could provide a deeper understanding of complex brain processes and give insight into non-binary computing possibilities.

  20. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware

    Directory of Open Access Journals (Sweden)

    Andreas Stöckel

    2017-08-01

    Full Text Available Large-scale neuromorphic hardware platforms, specialized computer systems for energy efficient simulation of spiking neural networks, are being developed around the world, for example as part of the European Human Brain Project (HBP. Due to conceptual differences, a universal performance analysis of these systems in terms of runtime, accuracy and energy efficiency is non-trivial, yet indispensable for further hard- and software development. In this paper we describe a scalable benchmark based on a spiking neural network implementation of the binary neural associative memory. We treat neuromorphic hardware and software simulators as black-boxes and execute exactly the same network description across all devices. Experiments on the HBP platforms under varying configurations of the associative memory show that the presented method allows to test the quality of the neuron model implementation, and to explain significant deviations from the expected reference output.

  1. Memory blindness: Altered memory reports lead to distortion in eyewitness memory

    OpenAIRE

    Cochran, KJ; Greenspan, RL; Bogart, DF; Loftus, EF

    2016-01-01

    Choice blindness refers to the finding that people can often be misled about their own self-reported choices. However, little research has investigated the more long-term effects of choice blindness. We examined whether people would detect alterations to their own memory reports, and whether such alterations could influence participants' memories. Participants viewed slideshows depicting crimes, and then either reported their memories for episodic details of the event (Exp. 1) or identified a...

  2. Commodity futures and market efficiency

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Vošvrda, Miloslav

    2014-01-01

    Roč. 42, č. 1 (2014), s. 50-57 ISSN 0140-9883 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : commodities * efficiency * entropy * long-term memory * fractal dimension Subject RIV: AH - Economics Impact factor: 2.708, year: 2014 http://library.utia.cas.cz/separaty/2013/E/kristoufek-0420811.pdf

  3. Low Working Memory Capacity Impedes both Efficiency and Learning of Number Transcoding in Children

    Science.gov (United States)

    Camos, Valerie

    2008-01-01

    This study aimed to evaluate the impact of individual differences in working memory capacity on number transcoding. A recently proposed model, ADAPT (a developmental asemantic procedural transcoding model), accounts for the development of number transcoding from verbal form to Arabic form by two mechanisms: the learning of new production rules…

  4. How Human Memory and Working Memory Work in Second Language Acquisition

    OpenAIRE

    小那覇, 洋子; Onaha, Hiroko

    2014-01-01

    We often draw an analogy between human memory and computers. Information around us is taken into our memory storage first, and then we use the information in storage whatever we need it in our daily life. Linguistic information is also in storage and we process our thoughts based on the memory that is stored. Memory storage consists of multiple memory systems; one of which is called working memory that includes short-term memory. Working memory is the central system that underpins the process...

  5. Efficient detection of dangling pointer error for C/C++ programs

    Science.gov (United States)

    Zhang, Wenzhe

    2017-08-01

    Dangling pointer error is pervasive in C/C++ programs and it is very hard to detect. This paper introduces an efficient detector to detect dangling pointer error in C/C++ programs. By selectively leave some memory accesses unmonitored, our method could reduce the memory monitoring overhead and thus achieves better performance over previous methods. Experiments show that our method could achieve an average speed up of 9% over previous compiler instrumentation based method and more than 50% over previous page protection based method.

  6. A parallel reconfigurable platform for efficient sequence alignment ...

    African Journals Online (AJOL)

    Bioinformatics is one of the emerging trends in today's world. The major part of bioinformatics is dealing with DNA. Analysis of DNA requires more memory and high efficient computations to produce accurate outputs. Researchers use various bioinformatics algorithms for sequencing and pattern detection techniques, but still ...

  7. Characterizing Memory Usage Behavior in Memory-related Code Changes

    OpenAIRE

    Wong, Howard Wah

    2017-01-01

    With the heavy memory pressure produced by multi-core systems and with memory per- formance trailing processor performance, today’s application developers need to consider the memory subsystem during software development. In particular, optimizing software re- quires a deep understanding of how the software uses the memory and how the hardware satisfies the memory requests. In order to accelerate development, programmers rely on soft- ware tools such as profilers for insightful analysis. Howe...

  8. More Efficient e-Learning through Design: Color of Text and Background

    Science.gov (United States)

    Zufic, Janko; Kalpic, Damir

    2009-01-01

    Background: The area of research aimed for a more efficient e-learning is slowly widening from purely technical to the areas of psychology, didactics and methodology. The question is whether the text or background color influence the efficiency of memory, i.e. learning. If the answer to that question is positive, then another question arises which…

  9. Memory Management of Multimedia Services in Smart Homes

    Science.gov (United States)

    Kamel, Ibrahim; Muhaureq, Sanaa A.

    Nowadays there is a wide spectrum of applications that run in smart home environments. Consequently, home gateway, which is a central component in the smart home, must manage many applications despite limited memory resources. OSGi is a middleware standard for home gateways. OSGi models services as dependent components. Moreover, these applications might differ in their importance. Services collaborate and complement each other to achieve the required results. This paper addresses the following problem: given a home gateway that hosts several applications with different priorities and arbitrary dependencies among them. When the gateway runs out of memory, which application or service will be stopped or kicked out of memory to start a new service. Note that stopping a given service means that all the services that depend on it will be stopped too. Because of the service dependencies, traditional memory management techniques, in the operating system literatures might not be efficient. Our goal is to stop the least important and the least number of services. The paper presents a novel algorithm for home gateway memory management. The proposed algorithm takes into consideration the priority of the application and dependencies between different services, in addition to the amount of memory occupied by each service. We implement the proposed algorithm and performed many experiments to evaluate its performance and execution time. The proposed algorithm is implemented as a part of the OSGi framework (Open Service Gateway initiative). We used best fit and worst fit as yardstick to show the effectiveness of the proposed algorithm.

  10. An analytical study of physical models with inherited temporal and spatial memory

    Science.gov (United States)

    Jaradat, Imad; Alquran, Marwan; Al-Khaled, Kamel

    2018-04-01

    Du et al. (Sci. Reb. 3, 3431 (2013)) demonstrated that the fractional derivative order can be physically interpreted as a memory index by fitting the test data of memory phenomena. The aim of this work is to study analytically the joint effect of the memory index on time and space coordinates simultaneously. For this purpose, we introduce a novel bivariate fractional power series expansion that is accompanied by twofold fractional derivatives ordering α, β\\in(0,1]. Further, some convergence criteria concerning our expansion are presented and an analog of the well-known bivariate Taylor's formula in the sense of mixed fractional derivatives is obtained. Finally, in order to show the functionality and efficiency of this expansion, we employ the corresponding Taylor's series method to obtain closed-form solutions of various physical models with inherited time and space memory.

  11. Neural correlates of recognition memory of social information in people with schizophrenia.

    Science.gov (United States)

    Harvey, Philippe-Olivier; Lepage, Martin

    2014-03-01

    Social dysfunction is a hallmark characteristic of schizophrenia. Part of it may stem from an inability to efficiently encode social information into memory and retrieve it later. This study focused on whether patients with schizophrenia show a memory boost for socially relevant information and engage the same neural network as controls when processing social stimuli that were previously encoded into memory. Patients with schizophrenia and healthy controls performed a social and nonsocial picture recognition memory task while being scanned. We calculated memory performance using d'. Our main analysis focused on brain activity associated with recognition memory of social and nonsocial pictures. Our study included 28 patients with schizophrenia and 26 controls. Healthy controls demonstrated a memory boost for socially relevant information. In contrast, patients with schizophrenia failed to show enhanced recognition sensitivity for social pictures. At the neural level, patients did not engage the dorsomedial prefrontal cortex (DMPFC) as much as controls while recognizing social pictures. Our study did not include direct measures of self-referential processing. All but 3 patients were taking antipsychotic medications, which may have altered both the behavioural performance during the picture recognition memory task and brain activity. Impaired social memory in patients with schizophrenia may be associated with altered DMPFC activity. A reduction of DMPFC activity may reflect less involvement of self-referential processes during memory retrieval. Our functional MRI results contribute to a better mapping of the neural disturbances associated with social memory impairment in patients with schizophrenia and may facilitate the development of innovative treatments, such as transcranial magnetic stimulation.

  12. The cortical basis of true memory and false memory for motion.

    Science.gov (United States)

    Karanian, Jessica M; Slotnick, Scott D

    2014-02-01

    Behavioral evidence indicates that false memory, like true memory, can be rich in sensory detail. By contrast, there is fMRI evidence that true memory for visual information produces greater activity in earlier visual regions than false memory, which suggests true memory is associated with greater sensory detail. However, false memory in previous fMRI paradigms may have lacked sufficient sensory detail to recruit earlier visual processing regions. To investigate this possibility in the present fMRI study, we employed a paradigm that produced feature-specific false memory with a high degree of visual detail. During the encoding phase, moving or stationary abstract shapes were presented to the left or right of fixation. During the retrieval phase, shapes from encoding were presented at fixation and participants classified each item as previously "moving" or "stationary" within each visual field. Consistent with previous fMRI findings, true memory but not false memory for motion activated motion processing region MT+, while both true memory and false memory activated later cortical processing regions. In addition, false memory but not true memory for motion activated language processing regions. The present findings indicate that true memory activates earlier visual regions to a greater degree than false memory, even under conditions of detailed retrieval. Thus, the dissociation between previous behavioral findings and fMRI findings do not appear to be task dependent. Future work will be needed to assess whether the same pattern of true memory and false memory activity is observed for different sensory modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    Science.gov (United States)

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  14. Aging accelerates memory extinction and impairs memory restoration in Drosophila.

    Science.gov (United States)

    Chen, Nannan; Guo, Aike; Li, Yan

    2015-05-15

    Age-related memory impairment (AMI) is a phenomenon observed from invertebrates to human. Memory extinction is proposed to be an active inhibitory modification of memory, however, whether extinction is affected in aging animals remains to be elucidated. Employing a modified paradigm for studying memory extinction in fruit flies, we found that only the stable, but not the labile memory component was suppressed by extinction, thus effectively resulting in higher memory loss in aging flies. Strikingly, young flies were able to fully restore the stable memory component 3 h post extinction, while aging flies failed to do so. In conclusion, our findings reveal that both accelerated extinction and impaired restoration contribute to memory impairment in aging animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Is working memory working against suggestion susceptibility? Results from extended version of DRM paradigm

    Directory of Open Access Journals (Sweden)

    Maciaszek Patrycja

    2016-04-01

    Full Text Available The paper investigates relationship between working memory efficiency, defined as the result of its’ processing & storage capacity (Oberauer et al., 2003 and the tendency to (1 create assosiative memory distortions (false memories, FM; (2 yield under the influence of external, suggesting factors. Both issues were examined using extended version of Deese-Roediger-McDermott procedure (1959, 1995, modified in order to meet the study demands. Suggestion was contained in an ostentatious feedback information the participants (N=88 received during the DRM procedure. Working memory (WM was measured by standardized tasks (n-back, Jaeggi et al., 2010; automatic-ospan, Unsworth et al., 2005. Study included 3 conditions, differing in the quality of suggestion (positive, negative or neutral. Participants were assigned into 3 groups, depending on results they achieved completing the WM tasks. Obtained results alongside the previously set hypothesis, revealed that (1 WM impacts individuals’ tendency to create false memories in DRM and (2 that the individuals showing higher rates in WM tasks are less willing to yield to suggestion compared to those with lesser ones. It also showed that the greater amount to shift (Gudjonsson, 2003, emerges under the negative suggestion condition (collating positive. Notwithstanding that the interaction effect did not achieve saliency, both analyzed factors (WM and suggesting content are considered as meaningful to explain memory suggestion susceptibility in presented study. Although, obtained results emphasize the crucial role of WM efficiency, that is believed to decide the magnitude of feedback that is influential in every subject. Therefore, issue demands further exploration.

  16. Disputed Memory

    DEFF Research Database (Denmark)

    , individual and political discourse and electronic social media. Analyzing memory disputes in various local, national and transnational contexts, the chapters demonstrate the political power and social impact of painful and disputed memories. The book brings new insights into current memory disputes...... in Central, Eastern and Southeastern Europe. It contributes to the understanding of processes of memory transmission and negotiation across borders and cultures in Europe, emphasizing the interconnectedness of memory with emotions, mediation and politics....... century in the region. Written by an international group of scholars from a diversity of disciplines, the chapters approach memory disputes in methodologically innovative ways, studying representations and negotiations of disputed pasts in different media, including monuments, museum exhibitions...

  17. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow.

    Science.gov (United States)

    Tokoyoda, Koji; Zehentmeier, Sandra; Hegazy, Ahmed N; Albrecht, Inka; Grün, Joachim R; Löhning, Max; Radbruch, Andreas

    2009-05-01

    CD4(+) T lymphocytes are key to immunological memory. Here we show that in the memory phase of specific immune responses, most of the memory CD4(+) T lymphocytes had relocated into the bone marrow (BM) within 3-8 weeks after their generation-a process involving integrin alpha2. Antigen-specific memory CD4(+) T lymphocytes highly expressed Ly-6C, unlike most splenic CD44(hi)CD62L(-) CD4(+) T lymphocytes. In adult mice, more than 80% of Ly-6C(hi)CD44(hi)CD62L(-) memory CD4(+) T lymphocytes were in the BM. In the BM, they associated to IL-7-expressing VCAM-1(+) stroma cells. Gene expression and proliferation were downregulated, indicating a resting state. Upon challenge with antigen, they rapidly expressed cytokines and CD154 and efficiently induced the production of high-affinity antibodies by B lymphocytes. Thus, in the memory phase of immunity, memory helper T cells are maintained in BM as resting but highly reactive cells in survival niches defined by IL-7-expressing stroma cells.

  18. Working memory predicts the rejection of false memories.

    Science.gov (United States)

    Leding, Juliana K

    2012-01-01

    The relationship between working memory capacity (WMC) and false memories in the memory conjunction paradigm was explored. Previous research using other paradigms has shown that individuals high in WMC are not as likely to experience false memories as low-WMC individuals, the explanation being that high-WMC individuals are better able to engage in source monitoring. In the memory conjunction paradigm participants are presented at study with parent words (e.g., eyeglasses, whiplash). At test, in addition to being presented with targets and foils, participants are presented with lures that are composed of previously studied features (e.g., eyelash). It was found that high-WMC individuals had lower levels of false recognition than low-WMC individuals. Furthermore, recall-to-reject responses were analysed (e.g., "I know I didn't see eyelash because I remember seeing eyeglasses") and it was found that high-WMC individuals were more likely to utilise this memory editing strategy, providing direct evidence that one reason that high-WMC individuals are not as prone to false memories is because they are better able to engage in source monitoring.

  19. Enhanced tactile encoding and memory recognition in congenital blindness.

    Science.gov (United States)

    D'Angiulli, Amedeo; Waraich, Paul

    2002-06-01

    Several behavioural studies have shown that early-blind persons possess superior tactile skills. Since neurophysiological data show that early-blind persons recruit visual as well as somatosensory cortex to carry out tactile processing (cross-modal plasticity), blind persons' sharper tactile skills may be related to cortical re-organisation resulting from loss of vision early in their life. To examine the nature of blind individuals' tactile superiority and its implications for cross-modal plasticity, we compared the tactile performance of congenitally totally blind, low-vision and sighted children on raised-line picture identification test and re-test, assessing effects of task familiarity, exploratory strategy and memory recognition. What distinguished the blind from the other children was higher memory recognition and higher tactile encoding associated with efficient exploration. These results suggest that enhanced perceptual encoding and recognition memory may be two cognitive correlates of cross-modal plasticity in congenital blindness.

  20. Subtle alterations in memory systems and normal visual attention in the GAERS model of absence epilepsy.

    Science.gov (United States)

    Marques-Carneiro, J E; Faure, J-B; Barbelivien, A; Nehlig, A; Cassel, J-C

    2016-03-01

    Even if considered benign, absence epilepsy may alter memory and attention, sometimes subtly. Very little is known on behavior and cognitive functions in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model of absence epilepsy. We focused on different memory systems and sustained visual attention, using Non Epileptic Controls (NECs) and Wistars as controls. A battery of cognitive/behavioral tests was used. The functionality of reference, working, and procedural memory was assessed in the Morris water maze (MWM), 8-arm radial maze, T-maze and/or double-H maze. Sustained visual attention was evaluated in the 5-choice serial reaction time task. In the MWM, GAERS showed delayed learning and less efficient working memory. In the 8-arm radial maze and T-maze tests, working memory performance was normal in GAERS, although most GAERS preferred an egocentric strategy (based on proprioceptive/kinesthetic information) to solve the task, but could efficiently shift to an allocentric strategy (based on spatial cues) after protocol alteration. Procedural memory and visual attention were mostly unimpaired. Absence epilepsy has been associated with some learning problems in children. In GAERS, the differences in water maze performance (slower learning of the reference memory task and weak impairment of working memory) and in radial arm maze strategies suggest that cognitive alterations may be subtle, task-specific, and that normal performance can be a matter of strategy adaptation. Altogether, these results strengthen the "face validity" of the GAERS model: in humans with absence epilepsy, cognitive alterations are not easily detectable, which is compatible with subtle deficits. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.