WorldWideScience

Sample records for membranes liquides supportees

  1. Simulation of cesium nitrate extraction by a calixarene. Application to supported liquid membranes transport; Modelisation de l`extraction du nitrate de cesium par un calixarene. Application a la modelisation du transport a travers des membranes liquides supportees

    Energy Technology Data Exchange (ETDEWEB)

    Sorel, C.

    1996-12-12

    This work fits into the general pattern of the CEA studies on the decontamination of liquid effluents containing long-lived radioactive isotopes. Some calixarenes have proved to be very effective to selectively extract the cesium of aqueous solutions whose composition simulates those of the effluents to be reprocessed. On account of the difficulty of the studied extraction mechanisms, a physical and chemical simulation has been necessary. The system takes into account: 1)a concentrated nitric acid aqueous phase and/or sodium nitrate 2)an organic phase constituted by the diluent 1,2-nitro-phenyl-octyl-ether and 1,3-diisopropoxy-calix(4)arene-couronne-6. The use of concentrated aqueous solutions requires to take into account variations to ideality by the mean of activity coefficients reckoning. The different theories on the reckoning of variations to ideality in aqueous or organic phases are described in the first part. The determination of cesium and sodium nitrates activity coefficients in very concentrated matrices has required an important theoretical and experimental study which is given in the second part. The aim of this study was indeed to complete the thermodynamic data of cesium and sodium nitrates aqueous solutions. The computerized tools required for the modeling are reviewed. The stoichiometry of the extracted species in the organic phase has been determined in the third part. The supported membrane technique is an original method of separation by liquid-liquid extraction. A membrane transport model has been developed and is given in the last part of this work. (O.M.). 128 refs.

  2. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  3. Supported ionic liquid membrane in membrane reactor

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-01-01

    Membrane reactor is a device that integrates membrane based separation and (catalytic) chemical reaction vessel in a single device. Ionic liquids, considered to be a relatively recent magical chemical due to their unique properties, have a large variety of applications in all areas of chemical industries. Moreover, the ionic liquid can be used as membrane separation layer and/or catalytically active site. This paper will review utilization of ionic liquid in membrane reactor related applications especially Fischer-Tropsch, hydrogenation, and dehydrogenation reaction. This paper also reviews about the capability of ionic liquid in equilibrium reaction that produces CO2 product so that the reaction will move towards the product. Water gas shift reaction in ammonia production also direct Dimethyl Ether (DME) synthesis that produces CO2 product will be discussed. Based on a review of numerous articles on supported ionic liquid membrane (SILM) indicate that ionic liquids have the potential to support the process of chemical reaction and separation in a membrane reactor.

  4. Liquid membrane purification of biogas

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S.; Guha, A.K.; Lee, Y.T.; Papadopoulos, T.; Khare, S. (Stevens Inst. of Tech., Hoboken, NJ (United States). Dept. of Chemistry and Chemical Engineering)

    1991-03-01

    Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomings of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.

  5. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino

    2015-03-01

    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  6. MECHANISM OF LIQUID MEMBRANES AND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Filiz Nuran ACAR

    2002-02-01

    Full Text Available It has been considerably studied on the recycling of waste materials in the source besides of wastewater treatment in the last years. It has been important developments on the using of semiconductor membranes in the recycling of toxic materials such as heavy metals, intensifying the environment protection measures especially in the west countries. Wastewater treatment has been achieved with liquid membranes as it has been achieved with polymeric membrane systems such as ultrafiltration, microfiltration, electrodialysis. At the same time, liquid membranes are used for removal of metal ions in hydrometallurgy. Liquid membranes are also used in biotechnology, medical areas and gas separation process.

  7. Polymer liquid membrane for nanofiber fabrication

    Directory of Open Access Journals (Sweden)

    Kong Hai-Yan

    2013-01-01

    Full Text Available This paper finds that a polymer liquid membrane can be effectively used for nanomaterials fabrication using a blowing air and an electronic force. Polyvinyl alcohol solution is used to produce membrane on a rotating ring, which passes through periodically the solution, the membrane is deformed into a bubble by the blowing air under the presence of an electrostatic field. The experimental data show that the receptor distance affects the fiber size greatly.

  8. Membrane technologies for liquid radioactive waste treatment

    Science.gov (United States)

    Chmielewski, A. G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1999-01-01

    The paper deals with some problems concerning reduction of radioactivity of liquid low-level nuclear waste streams (LLLW). The membrane processes as ultrafiltration (UF), seeded ultrafiltration (SUF), reverse osmosis (RO) and membrane distillation (MD) were examined. Ultrafiltration enables the removal of particles with molecular weight above cut-off of UF membranes and can be only used as a pre-treatment stage. The improvement of removal is achieved by SUF, employing macromolecular ligands binding radioactive ions. The reduction of radioactivity in LLLW to very low level were achieved with RO membranes. The results of experiments led the authors to the design and construction of UF+2RO pilot plant. The development of membrane distillation improve the selectivity of membrane process in some cases. The possibility of utilisation of waste heat from cooling system of nuclear reactors as a preferable energy source can significantly reduce the cost of operation.

  9. Liquid Droplets on a Highly Deformable Membrane

    Science.gov (United States)

    Schulman, Rafael D.; Dalnoki-Veress, Kari

    2015-11-01

    We examine the deformation produced by microdroplets atop thin elastomeric and glassy free-standing films. Because of the Laplace pressure, the droplets deform the elastic membrane thereby forming a bulge. Thus, two angles define the droplet or membrane geometry: the angles the deformed bulge and the liquid surface make with the film. These angles are measured as a function of the film tension, and are in excellent agreement with a force balance at the contact line. Finally, we find that if the membrane has an anisotropic tension, the droplets are no longer spherical but become elongated along the direction of high tension.

  10. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  11. Supported liquid membranes technologies in metals removal from liquid effluents

    Directory of Open Access Journals (Sweden)

    de Agreda, D.

    2011-04-01

    Full Text Available The generation of liquid effluents containing organic and inorganic residues from industries present a potential hazardousness for environment and human health, being mandatory the elimination of these pollutants from the respective solutions containing them. In order to achieve this goal, several techniques are being used and among them, supported liquid membranes technologies are showing their potential for their application in the removal of metals contained in liquid effluents. Supported liquid membranes are a combination between conventional polymeric membranes and solvent extraction. Several configurations are used: flat-sheet supported liquid membranes, spiral wounds and hollow fiber modules. In order to improve their effectiveness, smart operations have been developed: non-dispersive solvent extraction, non-dispersive solvent extraction with strip phase dispersion and hollow fiber renewal liquid membrane. This paper overviewed some of these supported liquid membranes technologies and their applications to the treatment of metal-bearing liquid effluents.

    La generación, por parte de las industrias, de efluentes líquidos conteniendo sustancias orgánicas e inorgánicas, es un peligro potencial tanto para los humanos como para el medio ambiente, siendo necesaria la eliminación de estos elementos tóxicos de las disoluciones que los contienen. Para conseguir este fin, se están aplicando diversas técnicas y entre ellas las tecnologías de membranas líquidas soportadas, están demostrando sus aptitudes para la eliminación de metales contenidos en efluentes líquidos. Las membranas líquidas soportadas, resultan de la unión de las membranas poliméricas y de la tecnología de extracción líquido-líquido. Este tipo de membranas se pueden utilizar en diversas configuraciones: plana, módulo en fibra hueca y módulo en espiral y para aumentar su efectividad se están desarrollando las llamadas operaciones avanzadas: extracción no

  12. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  13. Liquid Droplets on a Highly Deformable Membrane

    Science.gov (United States)

    Schulman, Rafael; Dalnoki-Veress, Kari

    2015-11-01

    We present measurements of the deformation produced by micro-droplets atop thin elastomeric and glassy free-standing films. Due to the Laplace pressure, the droplets deform the elastic membrane thereby forming a bulge. Thus, there are two angles that define the droplet/membrane geometry: the angle the liquid surface makes with the film and the angle the deformed bulge makes with the film. The contact line geometry is well captured by a Neumann construction which includes contributions from interfacial and mechanical tensions. Finally, we show that a droplet atop a film with biaxial tension assumes an equilibrium shape which is elongated along the axis of high tension.

  14. Analytical Applications of Transport Through Bulk Liquid Membranes.

    Science.gov (United States)

    Diaconu, Ioana; Ruse, Elena; Aboul-Enein, Hassan Y; Bunaciu, Andrei A

    2016-07-03

    This review discusses the results of research in the use of bulk liquid membranes in separation processes and preconcentration for analytical purposes. It includes some theoretical aspects, definitions, types of liquid membranes, and transport mechanism, as well as advantages of using liquid membranes in laboratory studies. These concepts are necessary to understand fundamental principles of liquid membrane transport. Due to the multiple advantages of liquid membranes several studies present analytical applications of the transport through liquid membranes in separation or preconcentration processes of metallic cations and some organic compounds, such as phenol and phenolic derivatives, organic acids, amino acids, carbohydrates, and drugs. This review presents coupled techniques such as separation through the liquid membrane coupled with flow injection analysis.

  15. Composite hollow fiber membranes for organic solvent-based liquid-liquid extraction

    NARCIS (Netherlands)

    He, T.; Bolhuis-Versteeg, Lydia A.M.; Mulder, M.H.V.; Wessling, Matthias

    2004-01-01

    Instability issues of liquid membranes extraction significantly limit its wide application in industry. We report research on the application of a new composite hollow fiber membrane to stabilizing liquid membrane extraction. These type of composite membranes have either a polysulfone (PSf) ultrafil

  16. Composite hollow fiber membranes for organic solvent-based liquid-liquid extraction

    NARCIS (Netherlands)

    He, T.; Versteeg, L.A.M.; Mulder, M.H.V.; Wessling, M.

    2004-01-01

    Instability issues of liquid membranes extraction significantly limit its wide application in industry. We report research on the application of a new composite hollow fiber membrane to stabilizing liquid membrane extraction. These type of composite membranes have either a polysulfone (PSf) ultrafil

  17. Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: Experimental study and optimization

    CERN Document Server

    Ng, Y S; Hashim, M A

    2014-01-01

    Room temperature ionic liquids show potential as an alternative to conventional organic membrane solvents mainly due to their properties of low vapor pressure, low volatility and they are often stable. In the present work, the technical feasibilities of room temperature ionic liquids as bulk liquid membranes for phenol removal were investigated experimentally. Three ionic liquids with high hydrophobicity were used and their phenol removal efficiency, membrane stability and membrane loss were studied. Besides that, the effects of several parameters, namely feed phase pH, feed concentration, NaOH concentration and stirring speeds on the performance of best ionic liquid membrane were also evaluated. Lastly, an optimization study on bulk ionic liquid membrane was conducted and the maximum phenol removal efficiency was compared with the organic liquid membranes. The preliminary study shows that high phenol extraction and stripping efficiencies of 96.21% and 98.10%, respectively can be achieved by ionic liquid memb...

  18. Transport through liquid membranes containing omeprazole and lansoprazole.

    Science.gov (United States)

    Nagappa, A N; Pandi, P V; Mishra, P K; Girish, Rahul K; Shanmukh, I

    2002-12-01

    Omeprazole and lansoprazole, the therapeutically important drugs belonging to proton pump inhibitor category are extensively used in the treatment of gastric ulcers. Transport through liquid membranes generated by these drugs in lecithin-cholesterol mixture in series with a supporting membrane has been studied. The data obtained show the formation of liquid membrane in series with the supporting membrane. Transport of cations, chloride and bicarbonate ions in the presence liquid membranes generated by omeprazole and lanzoprazole indicate the modification in the permeability of various permeants.

  19. Pervaporation and Gas Separation with Supported Liquid Membranes.

    OpenAIRE

    2016-01-01

    The goal of this work is to combine the recent developments in the field of membrane technology, e.g. supported liquid membranes, pervaporation and gas separation with the use of ionic liquids (ILs) for providing novel solutions in downstream processing or process intensification.

  20. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  1. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  2. Supported Liquid Membrane Principle and Its Practices: A Short Review

    Directory of Open Access Journals (Sweden)

    P. K. Parhi

    2013-01-01

    Full Text Available The present paper on the supported liquid membrane (SLM deals with the general principles and applications, followed by the uphill transportation characteristic of SLM. The liquid-liquid extraction with supported liquid membrane is one of the best alternate and promising technologies for the extraction of metal ions from solutions over other hydrometallurgical separation processes. The salient features of the supported liquid membrane (SLM technique such as simultaneous extraction and stripping, low solvent inventory, process economy, high efficiency, less extractant consumption, and operating costs are discussed in detail. The supported liquid membrane of hollow fiber type provides high interfacial surface area for achieving maximum metal flux. Also the use of different organic extractants for SLM has been discussed.

  3. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  4. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  5. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. Having the inherent capability for combining reaction and separation in a single step, they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, such as these typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. This project will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. Development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  6. Polyacrylate membranes for tunable liquid-filled microlenses

    Science.gov (United States)

    Zhang, Wei; Zappe, Hans; Seifert, Andreas

    2013-04-01

    We present the use of polyacrylate membranes for the fabrication of pneumatically actuated variable lenses. Whereas the most commonly used membrane material for tunable liquid-filled lenses is polydimethylsiloxane (PDMS), polyacrylate membranes have the advantages of high resistance to swelling in silicone oil and enhanced compatibility with a wide range of aqueous optical liquids. These features are quantitatively demonstrated by comparing the material properties and performance of PDMS and polyacrylate membrane lenses. The optical transparency of polyacrylate is more than 92%. The surface roughness is below 3.3 nm rms, and reversible elastic deformation could be demonstrated. Optical measurements show that the cutoff frequency of the modulation transfer function of polyacrylate lenses with different liquid fillings, using a reference contrast of 0.2, is more than 1.5 times larger than that of the same system assembled with PDMS membranes filled with water.

  7. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli

    2015-10-08

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  8. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    DEFF Research Database (Denmark)

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller;

    2015-01-01

    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...... curvature was essential for enrichment in raft-like liquid-ordered phases; enrichment was driven by relief of lateral pressure upon anchor insertion and most likely affects the localization of lipidated proteins in general....

  9. Fabrication of Greener Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, DooLi

    2017-06-01

    Membrane technology plays a crucial role in different separation processes such as biotechnology, pharmaceutical, and food industries, drinking water supply, and wastewater treatment. However, there is a growing concern that solvents commonly used for membrane fabrication, such as dimethylformamide (DMF), dimethylacetamide (DMAc), and 1-methyl-2-pyrrolidone (NMP), are toxic to the environment and human health. To explore the possibility of substituting these toxic solvents by less toxic or safer solvents, polymers commonly used for membrane fabrication, such as polyacrylonitrile (PAN), cellulose acetate (CA), polyethersulfone (PES), and poly(ether imide sulfone) (EXTEMTM), were dissolved in ionic liquids. Flat sheet and hollow fiber membranes were then fabricated. The thermodynamics of the polymer solutions, the kinetics of phase inversion and other factors, which resulted in significant differences in the membrane structure, compared to those of membranes fabricated from more toxic solvents, were investigated. Higher water permeance with smaller pores, unique and uniform morphologies, and narrower pore size distribution, were observed in the ionic liquid-based membranes. Furthermore, comparable performance on separation of peptides and proteins with various molecular weights was achieved with the membranes fabricated from ionic liquid solutions. In summary, we propose less hazardous polymer solutions to the environment, which can be used for the membrane fabrication with better performance and more regular morphology.

  10. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B.; Goldsmith, R. [CeraMem Corp., Waltham, MA (United States)

    1995-12-31

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The use of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.

  11. Performance evaluation of organic emulsion liquid membrane on phenol removal

    CERN Document Server

    Ng, Y S; Hashim, M A

    2014-01-01

    The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration.

  12. Supported Liquid Membrane Extraction of Anabolic Androgenic ...

    African Journals Online (AJOL)

    NJD

    performance liquid chromatography coupled to a mass spectrometer operating under positive ion electrospray mode. (LC-PI-ESI-MS) ... for the analysis of anabolic compounds.37–44 However, both GC ..... Table 3 gives a summary of the frag-.

  13. Supported liquid inorganic membranes for nuclear waste separation

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  14. The stability of supported liquid membranes

    NARCIS (Netherlands)

    Neplenbroek, A.M.; Bargeman, D.; Smolders, C.A.

    1990-01-01

    In this paper a new hypothesis about the instability mechanism of SLMs will be discussed: emulsion formation induced by lateral shear forces. Experimental results show that a water phase with a low salt concentration which flows along the membrane interface causes the removal of both solvent and car

  15. Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes.

    Science.gov (United States)

    Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David

    2016-03-23

    Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid(®) and Torlon(®) as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C₆mim][Tf₂N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse.

  16. Membrane contactor assisted extraction/reaction process employing ionic liquids

    Science.gov (United States)

    Lin, Yupo J.; Snyder, Seth W.

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  17. Secondary and lyotropic liquid crystal membranes for improved aqueous separations

    Science.gov (United States)

    Nemade, Parag Ramesh

    An effective membrane separation process should have high flux (i.e., volume filtered per unit membrane surface area per unit time) and selectivity (i.e., passage of the desired species and rejection of undesired species). This dissertation examined two approaches, secondary membranes and lyotropic liquid crystal membranes, for improving flux and selectivity in aqueous liquid separations. The first part of my work emphasizes the use of pre-deposited secondary membranes and backflushing for controlling membrane fouling in microfiltration and ultrafiltration of biological mixtures. Use of secondary membranes increased the permeate flux in microfiltration by several fold. Protein transmission is also enhanced due to the presence of the secondary membrane, and the amount of protein recovered is more than twice that obtained during filtration of protein-only solutions under otherwise identical conditions. In ultrafiltration, the flux enhancement due to secondary membranes is 50%, or less. For the second part of my research, I developed and evaluated polymerized lyotropic liquid crystal (LLC) thin-film composite membranes. LLC assemblies provide an opportunity to make nanoporous polymer membranes with precise control over chemical and structural features on the nanometer scale, which is currently lacking in commercial reverse osmosis (RO) and nanofiltration (NF) membranes available today. These LLC composite membranes are prepared by photopolymerization of solution-cast films of LLC monomer on an ultrafiltration support membrane. These LLC membranes appeared to exhibit almost linearly increasing ionic rejection based on ionic diameter. LLC monomer was modified to achieve a 15% reduction in channel diameter, through the use of a larger multivalent Eu3+ cation as the carboxylate counterion. However, the monomers synthesized required use of solvents such as tetrahydrofuran, which resulted in the dissolution and damage of the support membranes used. Therefore, this direction

  18. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration.

  19. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Howard S. Meyer

    2003-04-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Potting and module materials testing were initiated. Preliminary design

  20. Membrane Treatment of Liquid Salt Bearing Radioactive Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

    2003-02-25

    The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

  1. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T. (University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering); Liu, P.K.T. (Aluminum Co. of America, Pittsburgh, PA (United States)); Webster, I.A. (Unocal Corp., Los Angeles, CA (United States))

    1992-01-01

    Membrane reactors are today finding extensive applications for gas and vapor phase catalytic reactions (see discussion in the introduction and recent reviews by Armor [92], Hsieh [93] and Tsotsis et al. [941]). There have not been any published reports, however, of their use in high pressure and temperature liquid-phase applications. The idea to apply membrane reactor technology to coal liquid upgrading has resulted from a series of experimental investigations by our group of petroleum and coal asphaltene transport through model membranes. Coal liquids contain polycyclic aromatic compounds, which not only present potential difficulties in upgrading, storage and coprocessing, but are also bioactive. Direct coal liquefaction is perceived today as a two-stage process, which involves a first stage of thermal (or catalytic) dissolution of coal, followed by a second stage, in which the resulting products of the first stage are catalytically upgraded. Even in the presence of hydrogen, the oil products of the second stage are thought to equilibrate with the heavier (asphaltenic and preasphaltenic) components found in the feedstream. The possibility exists for this smaller molecular fraction to recondense with the unreacted heavy components and form even heavier undesirable components like char and coke. One way to diminish these regressive reactions is to selectively remove these smaller molecular weight fractions once they are formed and prior to recondensation. This can, at least in principle, be accomplished through the use of high temperature membrane reactors, using ceramic membranes which are permselective for the desired products of the coal liquid upgrading process. An additional incentive to do so is in order to eliminate the further hydrogenation and hydrocracking of liquid products to undesirable light gases.

  2. Proton conducting membrane containing room temperature ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Sekhon, S.S. [Department of Applied Physics, Guru Nanak Dev University, Amritsar 143005 (India) and Polymer Electrolyte Fuel Cell Research Department, Korea Institute of Energy Research, 71-2, Jang-Dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of)]. E-mail: sekhon_apd@yahoo.com; Krishnan, P. [Polymer Electrolyte Fuel Cell Research Department, Korea Institute of Energy Research, 71-2, Jang-Dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of); Singh, Boor [Department of Applied Physics, Guru Nanak Dev University, Amritsar 143005 (India); Yamada, K. [Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima (Japan); Kim, C.S. [Polymer Electrolyte Fuel Cell Research Department, Korea Institute of Energy Research, 71-2, Jang-Dong, Yusong-gu, Daejeon 305-343 (Korea, Republic of)

    2006-12-01

    A new proton conducting membrane containing room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium trifluoromethanesulfonylimide (DMOImTFSI) and polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) has been developed in the present work. The addition of bis(trifluoromethanesulphonyl)imide (HN(CF{sub 3}SO{sub 2}){sub 2}) to this membrane results in an increase in conductivity by one order of magnitude at 25 deg. C. The membrane shows a conductivity of 2.74 x 10{sup -3} S/cm at 130 deg. C along with good mechanical stability. The membrane was tested in a commercial fuel cell test station at 100 deg. C with dry hydrogen and oxygen gas reactants using Pt/C electrodes. The membrane containing the ionic liquid has been found to be electroactive for hydrogen oxidation and oxygen reduction at the platinum electrode and can be developed for use in proton exchange membrane fuel cell (PEMFC) under non-humid conditions at elevated temperatures.

  3. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    Science.gov (United States)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there is incredible freedom in designing the block copolymer architecture

  4. Lead-selective neutral carrier based liquid membrane electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, E.; Toth, K.; Pungor, E.; Behm, F.; Oggenfuss, P.; Welti, D.H.; Ammann, D.; Morf, W.E.; Pretsch, E.; Simon, W.

    1984-06-01

    Certain synthetic, lipophilic oxa- and dioxadicarboxylic amides act as lead-selective neutral carriers in liquid-membrane electrodes. Lead is detected as monovalent permeating species of the type PbX/sup +/ (X: OH/sup -/, Cl/sup -/, NO/sub 3//sup -/, CH/sub 3/COO/sup -/). Membranes based on N,N-dioctadecyl-N',N'-dipropyl-3,6-dioxaoctanediamide reject alkali metal ions by a factor of at least 10/sup 3/ and alkaline-earth metal ions by at least 10/sup 4/. 18 references, 4 figures, 4 tables.

  5. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Howard S. Meyer

    2003-07-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. Potting

  6. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING

    Energy Technology Data Exchange (ETDEWEB)

    Howard S. Meyer

    2003-10-01

    Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. A Haz

  7. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL's contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  8. Designing lipids for selective partitioning into liquid ordered membrane domains.

    Science.gov (United States)

    Momin, Noor; Lee, Stacey; Gadok, Avinash K; Busch, David J; Bachand, George D; Hayden, Carl C; Stachowiak, Jeanne C; Sasaki, Darryl Y

    2015-04-28

    Self-organization of lipid molecules into specific membrane phases is key to the development of hierarchical molecular assemblies that mimic cellular structures. While the packing interaction of the lipid tails should provide the major driving force to direct lipid partitioning to ordered or disordered membrane domains, numerous examples show that the headgroup and spacer play important but undefined roles. We report here the development of several new biotinylated lipids that examine the role of spacer chemistry and structure on membrane phase partitioning. The new lipids were prepared with varying lengths of low molecular weight polyethylene glycol (EGn) spacers to examine how spacer hydrophilicity and length influence their partitioning behavior following binding with FITC-labeled streptavidin in liquid ordered (Lo) and liquid disordered (Ld) phase coexisting membranes. Partitioning coefficients (Kp Lo/Ld) of the biotinylated lipids were determined using fluorescence measurements in studies with giant unilamellar vesicles (GUVs). Compared against DPPE-biotin, DPPE-cap-biotin, and DSPE-PEG2000-biotin lipids, the new dipalmityl-EGn-biotin lipids exhibited markedly enhanced partitioning into liquid ordered domains, achieving Kp of up to 7.3 with a decaethylene glycol spacer (DP-EG10-biotin). We further demonstrated biological relevance of the lipids with selective partitioning to lipid raft-like domains observed in giant plasma membrane vesicles (GPMVs) derived from mammalian cells. Our results found that the spacer group not only plays a pivotal role for designing lipids with phase selectivity but may also influence the structural order of the domain assemblies.

  9. Porous Membranes Built Up from Hydrophilic Poly(ionic liquid)s.

    Science.gov (United States)

    Täuber, Karoline; Zimathies, Annett; Yuan, Jiayin

    2015-12-01

    Porous polymer membranes made via electrostatic complexation are fabricated from a water-soluble poly(ionic liquid) (PIL) for the first time. The porous structure is formed as a consequence of simultaneous phase separation of the PIL and ionic complexation with an acid, which occurred in a basic solution of a nonsolvent for the PIL. These membranes have a stimuli-responsive porosity, with open and closed pores in isopropanol and in water, respectively. This property is quantitatively demonstrated in filtration experiments, where water is passing much slower through the membranes than isopropanol.

  10. Planar equilibrium shapes of a liquid drop on a membrane.

    Science.gov (United States)

    Hui, Chung-Yuen; Jagota, Anand

    2015-12-14

    The equilibrium shape of a small liquid drop on a smooth rigid surface is governed by the minimization of energy with respect to the change in configuration, represented by the well-known Young's equation. In contrast, the equilibrium shape near the line separating three immiscible fluid phases is determined by force balance, represented by Neumann's Triangle. These two are limiting cases of the more general situation of a drop on a deformable, elastic substrate. Specifically, we have analyzed planar equilibrium shapes of a liquid drop on a deformable membrane. We show that to determine its equilibrium shape one must simultaneously satisfy configurational energy and mechanical force balance along with a constraint on the liquid volume. The first condition generalizes Young's equation to include changes in stored elastic energy upon changing the configuration. The second condition generalizes the force balance conditions by relating tensions to membrane stretches via their constitutive elastic behavior. The transition from Young's equation to Neumann's triangle is governed by the value of the elasto-capillary number, β = TRo/μh, where TRo is twice the surface tension of the solid-vapor interface, μ is the shear modulus of the membrane, and h is its thickness.

  11. Emulsion liquid membrane for selective extraction of Bi(III)

    Institute of Scientific and Technical Information of China (English)

    Bahram Mokhtari; Kobra Pourabdollah

    2015-01-01

    Di(2-ethylhexyl)phosphoric acid was used as extractant of bismuth ions from nitrate medium by emulsion liquid membrane, with Triton X-100 as the biodegradable surfactant in n-pentanol bulk membrane. The novelties and innovative points of this work are the application of emulsion liquid membrane for selective and efficient extraction of bismuth ions as wel as the relevant optimization procedures. The extraction of bismuth ions was evaluated by the yield of extraction. The experimental parameters were evaluated and optimized, including the ratio of di(2-ethylhexyl)phosphoric acid mass concentration to Triton X-100 (1.0%:0.5%), nature of diluent (n-pentanol), nature and concentration of stripping solution (sulfuric acid, 0.5 mol·L−1), stirring speed (1800 r·min−1) and equilibrium time of extraction (20 min), initial feed solution of bismuth (350 mg·L−1) and the volume ratio of internal stripping phase to membrane phase (14). The experimental parameters of kinetic extraction reveal that the bismuth ions can be extracted by 100%.

  12. Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes.

    Science.gov (United States)

    Liu, Yonggang; Agudo-Canalejo, Jaime; Grafmüller, Andrea; Dimova, Rumiana; Lipowsky, Reinhard

    2016-01-26

    Biological membranes form both intra- and intercellular nanotubes that are used for molecular sorting within single cells and for long-distance connections between different cells. Such nanotubes can also develop from synthetic lipid bilayers in their fluid state. Each nanotube has a large area-to-volume ratio and stably encloses a water channel that is thereby shielded from its surroundings. The tubes are rather flexible and can easily change both their length and their conformation. Here, we study nanotubes formed by liquid-ordered (Lo) and liquid-disordered (Ld) membranes with three lipid components exposed to aqueous mixtures of two polymers, polyethylene glycol (PEG) and dextran. Both types of membranes form striking patterns of nanotubes when we reduce the volume of giant vesicles by osmotic deflation, thereby exposing the two bilayer leaflets of the membranes to polymer solutions of different composition. With decreasing volume, three different patterns are observed corresponding to three distinct vesicle morphologies that reflect the interplay of spontaneous curvature and aqueous phase separation. We show that tube nucleation and growth is governed by two kinetic pathways and that the tubes undergo a novel shape transformation from necklace-like to cylindrical tubes at a certain critical tube length. We deduce the spontaneous curvature generated by the membrane-polymer interactions from the observed vesicle morphologies using three different and independent methods of image analysis. The spontaneous curvature of the Ld membranes is found to be 4.7 times larger than that of the Lo membranes. We also show that these curvatures are generated by weak PEG adsorption onto the membranes, with a binding affinity of about 1.6 kBT per chain. In this way, our study provides a direct connection between nanoscopic membrane shapes and molecular interactions. Our approach is rather general and can be applied to many other systems of interest such as polymersomes or

  13. Study of cyanide wastewater treatment by dispersion supported liquid membrane using trioctylamine and kerosene as liquid membrane.

    Science.gov (United States)

    Li, Guo Ping; Xue, Juan Qin; Yu, Li Hua; Liu, Ni Na

    2015-01-01

    A certain amount of cyanide is present in wastewater of various industrial processes, such as wet extraction of gold, coal processing, electroplating and other industries. In this work, an experimental study regarding transport of cyanide through a dispersion supported liquid membrane was performed. A model was established to describe the reaction and transport of CN(I) in the supported liquid membrane and the mass transfer kinetics equations were deduced. Through mass transfer kinetic equation it was derived that, when the carrier concentration was under certain conditions, there was a linear relationship between the reciprocal of the permeability coefficient of CN(I) (1/Pc) and n-th power of the concentration of H+ (cnH+), and the parameters Δa(δa/da) and Δo(δ0/d0) could be obtained from the slope and intercept of the straight line. Then the diffusion coefficient do and the diffusion layer thickness δo of the phase interface between the feed phase and membrane phase could be calculated. Factors affecting migration of CN(I) were analyzed, and the stable removal rate of CN(I) was more than 90% with carrier concentration (%TOA) of 2%, feed phase pH of 4, initial CN(I) concentration of 30 mg/L, stirring time of 1 hour, volume ratio of membrane solution to NaOH solution of 2:1, strip phase concentration of 2 mol/L. The results showed that the overall mass transfer rate increased first and then decreased with an increase of TOA concentration, organic-to-strip volume ratio, and strip concentration. Furthermore, the transport percentage of CN(I) was increased, the stability of membrane was enhanced, and the lifetime of the membrane was extended.

  14. Electroactive liquid lens driven by an annular membrane.

    Science.gov (United States)

    Wei, Kang; Domicone, Nicholas Wade; Zhao, Yi

    2014-03-01

    Unlike traditional focalization that recruits multiple moving lens elements to adjust focus, liquid lenses deliver adaptive focusing by simply tuning the surface profile of liquid or the elastomer that encloses liquid. Its simple and compact configuration, low cost, and actuation efficiency promise wide industrial, medical, and consumer applications. Dielectric elastomers (DEs), one type of commercially available soft active material, have been a good fit for creating adaptive optics. In this Letter, we present an adaptive, membrane-sealed liquid lens hydrostatically coupled to a concentric annular DE actuator. Electric actuation deforms the annular DE, which induces fluid transmission between the lens part and the actuation part for lens actuation. The maximum measured focal range was from 25.4 to 105.2 mm within 1.0 kV, which significantly outperforms the existing DE-actuated liquid lenses and eliminates the need for prestraining. The lens also enables varied focal ranges by simply adjusting its initial surface sagitta, providing flexibility for practical imaging applications.

  15. Two-dimensional materials for novel liquid separation membranes

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-01

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  16. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    Science.gov (United States)

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  17. New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Feron, P.H.M.; Versteeg, G.F.

    2002-01-01

    A new absorption liquid based on amino acid salts has been studied for CO2 removal in membrane gas-liquid contractors. Unlike conventional gas treating solvents like aqueous alkanolamines solutions, the new absorption liquid does not wet polyolefin microporous membranes. The wetting characteristics

  18. Supported liquid membranes in 1986: new technology or scientific curiosity

    Energy Technology Data Exchange (ETDEWEB)

    Danesi, P.R.

    1986-01-01

    Thin layers of organic solutions of solvent extraction reagents (membrane carriers), immobilized on microporous inert supports and interposed between two aqueous solutions (feed and strip), were first proposed more than two decades ago as a new and promising technique for separating and concentrating metal species. Such immobilized layers, representing supported liquid membranes (SLM), have been extensively studies by our group during the last six years mainly for their ability to separate and concentrate metal ions of critical and strategic importance and of relevance to the nuclear industry. In this presentation the major results obtained by our group up to 1986 in the field of SLM's are summarized. A brief indication of the major problems to be addressed to implement SLM's as a new separation technology is also given. 5 refs., 5 figs., 3 tabs.

  19. New, ionic liquid-based membranes for lithium battery application

    Energy Technology Data Exchange (ETDEWEB)

    Sirisopanaporn, C.; Fernicola, A.; Scrosati, B. [Department of Chemistry, University of Rome La Sapienza, 00185 Rome (Italy)

    2009-01-15

    New types of dimensionally stable, flexible gel-type electrolyte membranes with a relatively wide electrochemical stability, high lithium ion conductivity and other desirable properties have been prepared by immobilizing N-n-butyl-N-ethylpyrrolidinium N,N-bis(trifluoromethane)sulfonimide-lithium N,N-bis(trifluoromethane)sulfonimide (Py{sub 24}TFSI-LiTFSI), ionic liquid, IL, solutions in a poly(vinylidene fluoride)-hexafluoropropylene copolymer (PVdF-HFP) matrix. The addition of a discrete amount of ethylene and propylene carbonate (EC-PC), solvent mixture to the membranes resulted in an improvement of the ionic conductivity and in a stabilization of the interface with the lithium electrode. These IL-based gel type membranes can operate without degradation up to a temperature of 110 C where they reach conductivity values of the order of 10{sup -2} S cm{sup -1}. All these properties make these polymer electrolyte membranes of interest for applications as separators in advanced lithium batteries. (author)

  20. Dynamic single-interface hollow fiber liquid phase microextraction of Cr(VI) using ionic liquid containing supported liquid membrane.

    Science.gov (United States)

    Pimparu, Rungaroon; Nitiyanontakit, Sira; Miró, Manuel; Varanusupakul, Pakorn

    2016-12-01

    The concept of dynamic single-interface hollow fiber membrane liquid-phase microextraction (HF-LPME), where the target analyte was extracted on-line and eluted inside the lumen of the HF membrane, was explored. An ionic liquid containing supported liquid membrane was used for the trace determination of Cr(VI) as a model compound. Since the extraction took place on-line inside the hollow fiber membrane, the mass transfer behavior was described and discussed in comparison with the conventional HF-LPME. The extraction efficiency was improved by a recirculation configuration of the sample solution at relatively high sampling flow rates as a result of the increased effective contact area. The positive pressure observed to be built up during extraction was overcome by a flow-balancing pressure design. The dynamic single-interface HF-LPME method with an enrichment factor of 41, a detection limit of 1.2µgL(-1) and determination limit of 4.0µgL(-1) was successfully applied to the reliable determination of Cr(VI) from environmental water samples. The quantification limit is below the maximum contaminant level in drinking water, set at 10µgL(-1) of hexavalent chromium by the California Environmental Protection Agency.

  1. Supported Liquid Membrane Extraction Technology and Its Application in Detection of Meat Security

    Institute of Scientific and Technical Information of China (English)

    LIU Jia; LI Weijin

    2010-01-01

    As a novel technology, supported liquid membrane extraction has gradually become the direction of the research of extraction, for the advantages of using little organic solvents, good selectivity and repeatability. This paper is based on describing the working principle, structure and influencing factors of supported liquid membrane, and research in domestic and foreign literatures which are in the same period, and give a review on the application of supported liquid membrane in meat security determination.

  2. Hollow fiber membrane contactor as a gas–liquid model contactor

    NARCIS (Netherlands)

    Dindore, V.Y.; Brilman, D.W.F.; Versteeg, G.F.

    2005-01-01

    Microporous hollow fiber gas–liquid membrane contactors have a fixed and well-defined gas–liquid interfacial area. The liquid flow through the hollow fiber is laminar, thus the liquid side hydrodynamics are well known. This allows the accurate calculation of the fiber side physical mass transfer coe

  3. Hollow fiber membrane contactor as a gas-liquid model contactor

    NARCIS (Netherlands)

    Dindore, V. Y.; Brilman, D. W. F.; Versteeg, G. F.

    2005-01-01

    Microporous hollow fiber gas-liquid membrane contactors have a fixed and well-defined gas-liquid interfacial area. The liquid flow through the hollow fiber is laminar, thus the liquid side hydrodynamics are well known. This allows the accurate calculation of the fiber side physical mass transfer coe

  4. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    Science.gov (United States)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  5. Development of membrane cryostats for large liquid argon neutrino detectors

    CERN Document Server

    Montanari, D; Gendotti, A; Geynisman, M; Hentschel, S; Loew, T; Mladenov, D; Montanari, C; Murphy, S; Nessi, M; Norris, B; Noto, F; Rubbia, A; Sharma, R; Smargianaki, D; Stewart, J; Vignoli, C; Wilson, P; Wu, S

    2015-01-01

    A new collaboration is being formed to develop a multi-kiloton Long-Baseline neutrino experiment that will be located at the Surf Underground Research Facility (SURF) in Lead, SD. In the present design, the detector will be located inside cryostats filled with 68,400 ton of ultrapure liquid argon (less than 100 parts per trillion of oxygen equivalent contamination). To qualify the membrane technology for future very large-scale and underground implementations, a strong prototyping effort is ongoing: several smaller detectors of growing size with associated cryostats and cryogenic systems will be designed and built at Fermilab and CERN. They will take physics data and test different detector elements, filtration systems, design options and installation procedures. In addition, a 35 ton prototype is already operational at Fermilab and will take data with single-phase detector in early 2016. After the prototyping phase, the multi-kton detector will be constructed. After commissioning, it will detect and study ne...

  6. A SAXS study on nanostructure evolution in water free membranes containing ionic liquid: from dry membrane to saturation.

    Science.gov (United States)

    Sekhon, Satpal Singh; Park, Jin-Soo; Choi, Young-Woo

    2010-11-07

    Small-angle X-ray scattering (SAXS) technique has been used to study the evolution of ionomer peak in the recast Nafion membranes containing the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF(4)). To the best of our knowledge, this is the first report dealing with the study of membranes containing different concentrations of the ionic liquid (EMIBF(4)), from the dry (no ionic liquid) to the saturation (containing 70 wt% ionic liquid) state to understand the evolution of the ionomer peak and the formation of ionic aggregates in these anhydrous membranes. The small-angle scattering maximum (ionomer peak) has been observed to shift continuously toward lower scattering vector (q) values as the ionic liquid content increases. The ionic conductivity behavior for the membranes containing ionic liquid has been found to be closely related with the change of slope of the double logarithmic plot between the reciprocal of the position of the ionomer peak and the polymer weight fraction. The q region over which Porod's law has been obeyed in different membranes was initially narrow and has been observed to widen with an increase in the content of the ionic liquid.

  7. A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Xu, Chenxi; Liu, Xiaoteng; Cheng, Jigui; Scott, Keith

    2015-01-01

    Graphite oxide is successfully functionalised by 3-aminopropyltriethoxysilane ionic liquid and used as a filler material in a polybenzimidazole (PBI) membrane for high temperature proton exchange membrane fuel cells. The ionic-liquid-graphite-oxide/polybenzimidazole (ILGO/PBI) composite membrane exhibits an appropriate level of proton conductivity when imbibed with phosphoric acid at low phosphoric acid loading, which promotes its use in fuel cells by avoiding acid leakage and materials corrosion. The ionic conductivities of the ILGO/PBI membranes at 175 °C are 0.035 S cm-1 and 0.025 S cm-1 at per repeat units of 3.5 and 2.0, respectively. The fuel cell performance of ILGO/PBI membranes exhibits a maximum power density of 320 mW cm-2 at 175 °C, which is higher than that of a pristine PBI membrane.

  8. Thinning of reverse osmosis membranes by ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Hong, E-mail: menghong@mail.buct.edu.cn; Gong, Beibei; Geng, Tao; Li, Chunxi

    2014-02-15

    In this study, ionic liquids (ILs) were used to thin out the dense layer and, in turn, tune the surface properties and separation performance of commercial aromatic polyamide reverse osmosis membranes. It was observed that the structure of the ILs and dipping time had a strong impact on the dense layer thickness and morphology. This can be understood in terms of the dissolubility and interaction force between ILs and the organic membrane surface, such as hydrogen bonding and π–π interactions. Among the ILs synthesized, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) showed the most promising thinning effects. It was observed that the thickness of the dense layer on the surface decreased from 127 to 67 nm after dipping treatment with [BMIM]Cl for 24 h. The water flux was enhanced by 20% at the expense of a slight decline of salt rejection. AFM, contact angle and zeta potential analyses suggest that the surface hydrophilicity and electronegativity increased, while the roughness decreased, which improved the anti-fouling properties.

  9. Thinning of reverse osmosis membranes by ionic liquids

    Science.gov (United States)

    Meng, Hong; Gong, Beibei; Geng, Tao; Li, Chunxi

    2014-02-01

    In this study, ionic liquids (ILs) were used to thin out the dense layer and, in turn, tune the surface properties and separation performance of commercial aromatic polyamide reverse osmosis membranes. It was observed that the structure of the ILs and dipping time had a strong impact on the dense layer thickness and morphology. This can be understood in terms of the dissolubility and interaction force between ILs and the organic membrane surface, such as hydrogen bonding and π-π interactions. Among the ILs synthesized, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) showed the most promising thinning effects. It was observed that the thickness of the dense layer on the surface decreased from 127 to 67 nm after dipping treatment with [BMIM]Cl for 24 h. The water flux was enhanced by 20% at the expense of a slight decline of salt rejection. AFM, contact angle and zeta potential analyses suggest that the surface hydrophilicity and electronegativity increased, while the roughness decreased, which improved the anti-fouling properties.

  10. Removal of phenols from aqueous solutions by emulsion liquid membranes.

    Science.gov (United States)

    Reis, M Teresa A; Freitas, Ondina M F; Agarwal, Shiva; Ferreira, Licínio M; Ismael, M Rosinda C; Machado, Remígio; Carvalho, Jorge M R

    2011-09-15

    The present study deals with the extraction of phenols from aqueous solutions by using the emulsion liquid membranes technique. Besides phenol, two derivatives of phenol, i.e., tyrosol (2-(4-hydroxyphenyl)ethanol) and p-coumaric acid (4-hydroxycinnamic acid), which are typical components of the effluents produced in olive oil plants, were selected as the target solutes. The effect of the composition of the organic phase on the removal of solutes was examined. The influence of pH of feed phase on the extraction of tyrosol and p-coumaric was tested for the membrane with Cyanex 923 as an extractant. The use of 2% Cyanex 923 allowed obtaining a very high extraction of phenols (97-99%) in 5-6 min of contact time for either single solute solutions or for their mixtures. The removal efficiency of phenol and p-coumaric acid attained equivalent values by using the system with 2% isodecanol, but the removal rate of tyrosol was found greatly reduced. The extraction of tyrosol and p-coumaric acid from their binary mixture was also analysed for different operating conditions like the volume ratio of feed phase to stripping phase (sodium hydroxide), the temperature and the initial concentration of solute in the feed phase.

  11. Targeting proteins to liquid-ordered domains in lipid membranes.

    Science.gov (United States)

    Stachowiak, Jeanne C; Hayden, Carl C; Sanchez, Mari Angelica A; Wang, Julia; Bunker, Bruce C; Voigt, James A; Sasaki, Darryl Y

    2011-02-15

    We demonstrate the construction of novel protein-lipid assemblies through the design of a lipid-like molecule, DPIDA, endowed with tail-driven affinity for specific lipid membrane phases and head-driven affinity for specific proteins. In studies performed on giant unilamellar vesicles (GUVs) with varying mole fractions of dipalymitoylphosphatidylcholine (DPPC), cholesterol, and diphytanoylphosphatidyl choline (DPhPC), DPIDA selectively partitioned into the more ordered phases, either solid or liquid-ordered (L(o)) depending on membrane composition. Fluorescence imaging established the phase behavior of the resulting quaternary lipid system. Fluorescence correlation spectroscopy confirmed the fluidity of the L(o) phase containing DPIDA. In the presence of CuCl(2), the iminodiacetic acid (IDA) headgroup of DPIDA forms the Cu(II)-IDA complex that exhibits a high affinity for histidine residues. His-tagged proteins were bound specifically to domains enriched in DPIDA, demonstrating the capacity to target protein binding selectively to both solid and L(o) phases. Steric pressure from the crowding of surface-bound proteins transformed the domains into tubules with persistence lengths that depended on the phase state of the lipid domains.

  12. Facilitated catecholamine transport through bulk and polymer-supported liquid membranes

    NARCIS (Netherlands)

    Paugam, Marie-France; Bien, Jeffrey T.; Smith, Bradley D.; Chrisstoffels, L.A.J.; de Jong, Feike; Reinhoudt, David

    1996-01-01

    A series of crown boronic acids, 1-4, were synthesized and studied as carriers for catecholamine transport through bulk liquid membranes (BLMs) and supported liquid membranes (SLMs). Carrier 1 greatly facilitated the transport of primary catecholamines through BLMs; whereas, the more lipophilic anal

  13. Bilayer membrane permeability of ionic liquid-filled block copolymer vesicles in aqueous solution.

    Science.gov (United States)

    Bai, Zhifeng; Zhao, Bin; Lodge, Timothy P

    2012-07-19

    The bilayer membrane permeability of block copolymer vesicles ("polymersomes") with ionic liquid interiors dispersed in water is quantified using fluorescence quenching. Poly((1,2-butadiene)-b-ethylene oxide) (PB-PEO) block copolymer vesicles in water with their interiors filled with a common hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, were prepared containing a hydrophobic dye, Nile Red, by intact migration of dye-encapsulated vesicles from the ionic liquid to water at room temperature. A small quencher molecule, dichloroacetamide, was added to the aqueous solution of the dye-loaded vesicles, and the permeation of the quencher passing through the membrane into the interior was determined from the fluorescence quenching kinetics. Rapid permeation of the quencher across the nanoscale membrane was observed, consistent with the high fluidity of the liquid polybutadiene membrane. Two different PB-PEO copolymers were employed, in order to vary the thickness of the solvophobic membrane. A significant increase in membrane permeability was also observed with decreasing membrane thickness, which is tentatively attributable to differences in quencher solubility in the membranes. Quantitative migration of the vesicles from the aqueous phase back to an ionic liquid phase was achieved upon heating. These microscopically heterogeneous and thermoresponsive vesicles with permeable and robust membranes have potential as recyclable nanoreactors, in which the high viscosity and capital expense of an ionic liquid reaction medium can be mitigated, while retaining the desirable features of ionic liquids as reaction media, and facile catalyst recovery.

  14. Liquid general anesthetics lower critical temperatures in plasma membrane vesicles

    CERN Document Server

    Gray, Ellyn; Machta, Benjamin B; Veatch, Sarah L

    2013-01-01

    A large and diverse array of small hydrophobic molecules induce general anesthesia. Their efficacy as anesthetics has been shown to correlate both with their affinity for a hydrophobic environment and with their potency in inhibiting certain ligand gated ion channels. Here we explore the effects that n-alcohols and other liquid anesthetics have on the two-dimensional miscibility critical point observed in cell derived giant plasma membrane vesicles (GPMVs). We show that anesthetics depress the critical temperature (Tc) of these GPMVs without strongly altering the ratio of the two liquid phases found below Tc. The magnitude of this affect is consistent across n-alcohols when their concentration is rescaled by the median anesthetic concentration (AC50) for tadpole anesthesia, but not when plotted against the overall concentration in solution. At AC50 we see a 4{\\deg}C downward shift in Tc, much larger than is typically seen in the main chain transition at these anesthetic concentrations. GPMV miscibility critic...

  15. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture

    KAUST Repository

    Karunakaran, M.

    2016-11-28

    Advanced membrane systems with high flux and sufficient selectivity are required for industrial gas separation processes. In order to achieve high flux and high selectivity, the membrane material should be as thin as possible and it should have selective sieving channels and long term stability. This could be achieved by designing a three component material consisting of a blend of an ionic liquid and graphene oxide covered by a highly permeable low selective polymeric coating. By using a simple dip coating technique, we prepared high flux and CO selective ultrathin graphene oxide (GO)/ionic liquid membranes on a porous ultrafiltration support. The ultrathin composite membranes derived from GO/ionic liquid complex displays remarkable combinations of permeability (CO flux: 37 GPU) and selectivity (CO/N selectivity: 130) that surpass the upper bound of ionic liquid membranes for CO/N separation. Moreover, the membranes were stable when tested for 120 hours.

  16. High-throughput liquid-liquid extraction in 96-well format: Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Andresen, Alf Terje; Dahlgren, Anders

    2017-01-01

    , highly efficient sample cleanup, and direct compatibility with liquid chromatography–mass spectrometry (LC–MS). The consumption of hazardous organic solvents is also almost eliminated using PALME as the sample preparation technique. This article summarizes current experiences with PALME, based on work...

  17. Development and Characterization of Polysulfone/Polyvinylidene Flouride Blend Membrane Induced by Delayed Liquid-Liquid Demixing

    Directory of Open Access Journals (Sweden)

    Ruwanti Dewi Cahya Ningrum

    2016-10-01

    Full Text Available Polysulfone (PSf-Polyvinylidene fluoride (PVDF membranes were fabricated via phase inversion method and immersion precipitation technique. In particular, the effect of varied amount of NMP addition into coagulation bath on permeability, mechanical properties, chemical resistance and thermal stability of membranes were investigated. The presence of solvent in coagulation bath caused delayed liquid-liquid demixing that caused increasing chance of disoriented interactions in PSf/PVDF blend membrane thus larger pore and dominated macrovoids membranes resulted. It was found that the increase of solvent addition lead to increasing of flux and decreasing of mechanical strength whereas a remarkably and enhanced chemical resistance has been achieved which showed excellent resistance in H2SO4 but degraded upon exposure to a concentration of 15% NaOH solution. Furthermore, TGA analysis revealed that the membrane exhibit improved thermal stability while the morphology of membrane showed the formation of asymmetry structure.

  18. Transport of yttrium metal ions through fibers supported liquid membrane solvent extraction

    Institute of Scientific and Technical Information of China (English)

    A.G.Gaikwad; A.M.Rajput

    2010-01-01

    A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...

  19. On the application of a membrane air-liquid contactor for air dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Isetti, C. [Ist. di Tecnologia dell`Architettura e dell`Ambiente, Faculty of Architecture, Univ. of Genoa (Italy); Nannei, E. [Dipt. di Termoenergetica e Condizionamento Ambientale, Faculty of Engineering, Univ. of Genoa (Italy); Magrini, A. [Ist. di Tecnologia dell`Architettura e dell`Ambiente, Faculty of Architecture, Univ. of Genoa (Italy)

    1997-05-30

    This paper deals with a new approach to absorption air-handling systems working with liquid desiccants. A hydrophobic synthetic membrane, permeable to vapour but not to liquid, acts as a porous barrier between a hygroscopic solution and moist air. The results of a first series of experiments performed on a microfibre polyethylene membrane are presented and discussed in relation to an analytical model developed to analyse non-isothermal vapour flux through a hydrophobic membrane. Theoretical analysis is carried out to study the influence of different parameters affecting vapour mass flux through the membrane. The results show that considerable vapour flux can be exchanged to/from a liquid desiccant and an air stream through the membrane, suggesting the feasibility of using compact-membrane absorber and desorber units in air handling. Furthermore, membrane contactors can achieve energy saving by performing desiccant reactivation at moderate temperatures (310-330 K). (orig.)

  20. Innovative methods to stabilize liquid membranes for removal of radionuclides from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Lokhandwala, K. [Membrane Technology and Research, Inc., Menlo Park, CA (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, Membrane Technology Research, Inc., is developing a stable liquid membrane for extracting uranium and other radionuclides from groundwater. The improved membrane can also be applied to separation of other metal ions from aqueous streams in industrial operations.

  1. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 1, September 21, 1989--December 20, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  2. Diffusion coefficient of an inclusion in a liquid membrane supported by a solvent of arbitrary thickness

    OpenAIRE

    2011-01-01

    The diffusion coefficient of a circular shaped inclusion in a liquid membrane is investigated by taking into account the interaction between membranes and bulk solvents of arbitrary thickness. As illustrative examples, the diffusion coefficients of two types of inclusions - a circular domain composed of fluid with the same viscosity as the host membrane and that of a polymer chain embedded in the membrane are studied.The diffusion coefficients are expressed in terms of the hydrodynamic screen...

  3. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions.

    Science.gov (United States)

    Henmi, Masahiro; Nakatsuji, Koji; Ichikawa, Takahiro; Tomioka, Hiroki; Sakamoto, Takeshi; Yoshio, Masafumi; Kato, Takashi

    2012-05-02

    A membrane with ordered 3D ionic nanochannels constructed by in situ photopolymerization of a thermotropic liquid-crystalline monomer shows high filtration performance and ion selectivity. The nanostructured membrane exhibits water-treatment performance superior to that of an amorphous membrane prepared from the isotropic melt of the monomer. Self-organized nanostructured membranes have great potential for supplying high-quality water. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cellulose triacetate doped with ionic liquids for membrane gas separation

    Science.gov (United States)

    Lam, Benjamin Fatt Soon

    The doping of cellulose triacetate (CTA) with imidazolium based ionic liquids (ILs) is investigated in order to reduce the polymer crystallinity and enhance the affinity with CO2, thus increasing CO2 permeability and CO2/light gas selectivity. CTA membranes doped with [emim] BF4 or [emim] DCA were prepared, and the effect of the ILs loading on properties, such as crystallinity, density, degradation temperature, glass transition temperature, and gas transport properties, has been determined. In general, doping with IL reduces the crystallinity in CTA, increasing gas solubility, diffusivity and permeability. The ILs doping also increases CO 2/CH4 solubility selectivity and CO2/N2 permeability selectivity, due to the affinity of these ILs with CO2, instead of light gases such as CH4 and N2. This study provides a mechanistic understanding of interaction of ILs and CTA, and demonstrates an effective route in manipulating the morphology and gas transport properties of semi crystalline polymers by doping with ILs.

  5. Interfacial interactions in aprotic ionic liquid based protonic membrane and its correlation with high temperature conductivity and thermal properties.

    Science.gov (United States)

    Mistry, Mayur K; Subianto, Surya; Choudhury, Namita Roy; Dutta, Naba K

    2009-08-18

    Novel supported liquid membranes (SLMs) have been developed by impregnating Nafion and Hyflon membranes with ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI-BTSI). These supported liquid membranes were characterized in terms of their ionic liquid uptake behavior, leaching of ionic liquid by water, thermal stability, mechanical properties, glass transition temperature, ion exchange capacity, and proton conductivity. In general, modified membranes are more flexible than unmodified samples due to the plasticization effects of the ionic liquid. However, these supported liquid membranes exhibit a significant increase in their operational stability and proton conductivity over unmodified membranes. We also demonstrate that proton conductivity of these supported liquid membranes allows conduction of protons in anhydrous conditions with conductivity increasing with temperature. Conductivity of up to 3.58 mS cm(-1) has been achieved at 160 degrees C in dry conditions, making these materials promising for various electrochemical applications.

  6. One-step extraction of polar drugs from plasma by Parallel Artificial Liquid Membrane Extraction

    DEFF Research Database (Denmark)

    Pilařová, Veronika; Sultani, Mumtaz; Ask, Kristine Skoglund

    2017-01-01

    The new microextraction technique named parallel artificial liquid membrane extraction (PALME) was introduced as an alternative approach to liquid-liquid extraction of charged analytes from aqueous samples. The concept is based on extraction of analytes across a supported liquid membrane sustained......-throughput is achievable, in addition to the green chemistry offered by using PALME. The consumption of organic solvent is minimized to 3-5μL per sample. With a sample volume of 250μL and acceptor solution volume of 50μL, a maximal enrichment factor of five is achievable. Based on these parameters, a new method...

  7. Evaluation of transport properties of nanofiltration membranes exposed to radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R.; Bastos, Edna T.R., E-mail: eemo@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeira, RJ (Brazil); Afonso, Julio C., E-mail: Julio@iq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    The application of membrane separation processes (PSM) for treatment of radioactive waste requires the selection of a suitable membrane for the treatment of waste, as the membrane will be directly exposed to the radioactive liquid waste, and also exposed to ionizing radiation. The nanofiltration membrane is most suitable for treatment of radioactive waste, since it has high rejection of multivalent ions. Usually the membranes are made of polymers and depending on the composition of the waste, type and dose of radiation absorbed may be changes in the structure of the membrane, resulting in loss of its transport properties. We tested two commercial nanofiltration membranes: NF and SW Dow/Filmtec. The waste liquid used was obtained in the process of conversion of uranium hexafluoride gas to solid uranium dioxide, known as 'carbonated water'. The membranes were characterized as their transport properties (hydraulic permeability, permeate flux and salt rejection) before and after their immersion in the waste for 24 hours. The surface of the membranes was also evaluated by SEM and FTIR. It was observed that in both the porosity of the membrane selective layer was altered, but not the membrane surface charge, which is responsible for the selectivity of the membrane. The NF membranes and SW showed uranium ion rejection of 64% and 55% respectively. (author)

  8. Preparation of Calcium Carbonate Nanoparticles with a Continuous Gas-liquid Membrane Contactor:Particles Morphology and Membrane Fouling

    Institute of Scientific and Technical Information of China (English)

    JIA Zhiqian; CHANG Qing; QIN Jin; MAMAT Aynur

    2013-01-01

    Nanosized calcium carbonate particles were prepared with a continuous gas-liquid membrane contactor.The effects of Ca(OH)2 concentration,CO2 pressure and liquid flow velocity on the particles morphology,pressure drop and membrane fouling were studied.With rising Ca(OH)2 concentrations,the average size of the particles increased.The effects of Ca(OH)2 concentration and CO2 pressure on particles were not apparent under the experimental conditions.When the Ca(OH)2 concentration and liquid flow velocity were high,or the CO2 pressure was low,the fouling on the membrane external surface at the contactor entrance was serious due to liquid leakage,whereas the fouling was slight at exit.The fouling on the membrane inner-surface at entrance was apparent due to adsorption of raw materials.The membrane can be recovered by washing with dilute hydrochloric acid and reused for at least 6 times without performance deterioration.

  9. Enhanced Membrane System for Recovery of Water from Gas-Liquid Mixtures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas-Liquid separation is an acute microgravity problem. Existing devices use centrifugal motion on microporous membranes to separate the two phases. Centrifugal...

  10. Supported ionic liquid membranes for removal of dioxins from high-temperature vapor streams.

    Science.gov (United States)

    Kulkarni, Prashant S; Neves, Luisa A; Coelhoso, Isabel M; Afonso, Carlos A M; Crespo, João G

    2012-01-03

    Dioxins and dioxin-like chemicals are predominantly produced by thermal processes such as incineration and combustion at concentrations in the range of 10-100 ng of I-TEQ/kg (I-TEQ = international toxic equivalents). In this work, a new approach for the removal of dioxins from high-temperature vapor streams using facilitated supported ionic liquid membranes (SILMs) is proposed. The use of ceramic membranes containing specific ionic liquids, with extremely low volatility, for dioxin removal from incineration sources is proposed owing to their stability at very high temperatures. Supported liquid membranes were prepared by successfully immobilizing the ionic liquids tri-C(8)-C(10)-alkylmethylammonium dicyanamide ([Aliquat][DCA]) and 1-n-octyl-3-methylimidazolium dicyanamide ([Omim][DCA]) inside the porous structure of ceramic membranes. The porous inorganic membranes tested were made of titanium oxide (TiO(2)), with a nominal pore size of 30 nm, and aluminum oxide (Al(2)O(3)), with a nominal pore size of 100 nm. The ionic liquids were characterized, and the membrane performance was assessed for the removal of dioxins. Different materials (membrane pore size, type of ionic liquid, and dioxin) and different operating conditions (temperature and flow rate) were tested to evaluate the efficiency of SILMs for dioxin removal. All membranes prepared were stable at temperatures up to 200 °C. Experiments with model incineration gas were also carried out, and the results obtained validate the potential of using ceramic membranes with immobilized ionic liquids for the removal of dioxins from high-temperature vapor sources.

  11. Supported liquid membrane stability in chiral resolution by chemically and physically modified membranes

    Energy Technology Data Exchange (ETDEWEB)

    Molinari, R.; Argurio, P. [Arcavata di Rende Univ. of Calabria, Arcavata di Rende, CS (Italy). Dept. of Chemical and Materials Engineering

    2001-04-01

    In the present work some stability studies on Supported Liquid Membranes (SLMs) to be used for chiral separations were realized. In particular, primary aim was to determine how a modification of the support surface influences the SLM stability. First, the procedure for support modification was optimised, making a screening of various compounds (sulphuric acid, nitric acid, chromic acid, sodium dodecyl sulphate (SDS), glycerol, oleic alcohol, propylene glycol (PPG), bovine serum albumin (BSA)) and testing their performance by means of contact angle measurements. Next, a second screening was realized by permeation tests in a stirred cell. Finally, to compare the stability of modified with unmodified support in a process of interest for chemical and/or biochemical industries, some permeation tests for resolution of DNB-DL-Leucine were realized in a re-circulation system. Results showed a better surface hydrophilization of chemically modified support and better stability of the sulphonated support. However, in operating conditions a little high stability of the unmodified support was obtained. [Italian] Nel presente lavoro sono stati realizzati degli studi di stabilita' di Membrane Liquide Supportate (SLMs) da impiegare in separazioni chirali. In particolare, obiettivo principale e' stato quello di determinare l'influenza che una modifica della superficie del supporto ha sulla stabilita' della SLM. Cosi', in un primo momento, e' stata ottimizzata le procedura di modifica del supporto, facendo una selezione tra vari composti (acido solforico, acido nitrico, acido cromico, sodio dodecil solfato (SDS), glicerolo, alcool oleico, glicole propilenico (PPG), siero di albumina bovina (BSA)) basata su misure dell'angolo di contatto. Successivamente, e' stata realizzata una seconda selezione mediante prove di permeazione in una cella agitata. Infine, con lo scopo di confrontare la stabilita' della SLM con supporto modificato rispetto

  12. A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements

    CERN Document Server

    Sauer, Roger A; Corbett, Callum J

    2012-01-01

    A geometrically exact membrane formulation is presented that is based on curvilinear coordinates and isogeometric finite elements, and is suitable for both solid and liquid membranes. The curvilinear coordinate system is used to describe both the theory and the finite element equations of the membrane. In the latter case this avoids the use of local cartesian coordinates at the element level. Consequently, no transformation of derivatives is required. The formulation considers a split of the in-plane and out-of-plane membrane contributions, which allows the construction of a stable formulation for liquid membranes with constant surface tension. The proposed membrane formulation is general, and accounts for dead and live loading, as well as enclosed volume, area, and contact constraints. The new formulation is illustrated by several challenging examples, considering linear and quadratic Lagrange elements, as well as isogeometric elements based on quadratic NURBS and cubic T-splines. It is seen that the isogeom...

  13. Hollow-fiber-supported liquid membranes with improved stability for nitrate removal

    NARCIS (Netherlands)

    Kemperman, A.J.B.; Rolevink, H.H.M.; Boomgaard, van den Th.; Strathmann, H.

    1997-01-01

    This paper describes the development of a hollow-fiber-supported liquid membrane (HFSLM) for the removal of nitrate ions from water. Two different membrane modules were designed which differed in length of the fibers. In order to test the HFSLMs on nitrate flux and stability, two set-ups were used:

  14. Constructing CO2-facilitated transport highway in supported ionic liquid membranes

    Science.gov (United States)

    Sun, Xiang Jun; Luo, Ju Jie; Zhang, Meng; Li, Jin Ping

    2014-01-01

    A Carbon dioxide-facilitated transport highway (CO2-FTH) on the microporous surface of a membrane matrix was designed using the amino carrier 3-aminopropyltriethoxysilane (APTES). Owing to the reversible reaction between CO2 molecules and fixed-site carriers, this supported ionic liquid membrane was able to selectively transfer CO2 more quickly. This concept may inspire means of fabricating a highly permeable and selective membrane to break through Robeson's upper bound.

  15. Cholinium-based supported ionic liquid membranes: a sustainable route for carbon dioxide separation.

    Science.gov (United States)

    Tomé, Liliana C; Patinha, David J S; Ferreira, Rui; Garcia, Helga; Silva Pereira, Cristina; Freire, Carmen S R; Rebelo, Luís Paulo N; Marrucho, Isabel M

    2014-01-01

    Aiming at full sustainability of CO2 separation processes, a series of supported ionic liquid membranes based on environmentally friendly cholinium carboxylate ionic liquids were successfully prepared. Their gas permeation properties were measured and high permselectivities were obtained for both CO2 /CH4 and CO2 /N2 .

  16. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.

    1994-08-04

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  17. Facilitated oxygen transport in liquid membranes: review and new concepts

    NARCIS (Netherlands)

    Figoli, A.; Sager, W.F.C.; Mulder, M.H.V.

    2001-01-01

    In this paper, an overview is given on membranes with oxygen facilitated transport properties to enrich the oxygen content in air. Special emphasis is paid to recent developments of oxygen carrier systems and carrier containing membranes. Concepts leading to a structural evolution of supported liqui

  18. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli, N.M. Srivatsa

    2016-04-26

    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  19. Ionic Liquids As Self-Assembly Guide for the Formation of Nanostructured Block Copolymer Membranes

    KAUST Repository

    Madhavan, Poornima

    2015-04-30

    Nanostructured block copolymer membranes were manufactured by water induced phase inversion, using ionic liquids (ILs) as cosolvents. The effect of ionic liquids on the morphology was investigated, by using polystyrene-b-poly(4-vinyl pyridine) (PS-b-PV4P) diblock as membrane copolymer matrix and imidazolium and pyridinium based ILs. The effect of IL concentration and chemical composition was evident with particular interaction with P4VP blocks. The order of block copolymer/ILs solutions previous to the membrane casting was confirmed by cryo scanning electron microscopy and the morphologies of the manufactured nanostructured membranes were characterized by transmission and scanning electron microscopy. Non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ILs led to a lamella-structured membrane. The rheology of the IL/block copolymer solutions was investigated, evaluating the storage and loss moduli. Most membranes prepared with ionic liquid had higher water flux than pure block copolymer membranes without additives.

  20. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes

    Science.gov (United States)

    Koh, Dong-Yeun; McCool, Benjamin A.; Deckman, Harry W.; Lively, Ryan P.

    2016-08-01

    Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature.

  1. Microporous hollow fibre membrane modules as gas-liquid contactors. Part 1: Physical mass transfer processes. A specific application: mass transfer in highly viscous liquids

    NARCIS (Netherlands)

    Kreulen, H.; Versteeg, G.F.; Smolders, C.A.; Swaaij, van W.P.M.

    1993-01-01

    Gas-liquid mass transfer has been studied in a membrane module with non-wetted microporous fibres in the laminar flow regime. This new type of gas/liquid contactor can be operated stabily over a large range of gas and liquid flows because gas and liquid phase do not influence each other directly. Th

  2. Combination of Collagen Barrier Membrane with Enamel Matrix Derivative-Liquid Improves Osteoblast Adhesion and Differentiation.

    Science.gov (United States)

    Miron, Richard J; Fujioka-Kobayashi, Masako; Buser, Daniel; Zhang, Yufeng; Bosshardt, Dieter D; Sculean, Anton

    Collagen barrier membranes were first introduced to regenerative periodontal and oral surgery to prevent fast ingrowing soft tissues (ie, epithelium and connective tissue) into the defect space. More recent attempts have aimed at combining collagen membranes with various biologics/growth factors to speed up the healing process and improve the quality of regenerated tissues. Recently, a new formulation of enamel matrix derivative in a liquid carrier system (Osteogain) has demonstrated improved physico-chemical properties for the adsorption of enamel matrix derivative to facilitate protein adsorption to biomaterials. The aim of this pioneering study was to investigate the use of enamel matrix derivative in a liquid carrier system in combination with collagen barrier membranes for its ability to promote osteoblast cell behavior in vitro. Undifferentiated mouse ST2 stromal bone marrow cells were seeded onto porcine-derived collagen membranes alone (control) or porcine membranes + enamel matrix derivative in a liquid carrier system. Control and enamel matrix derivative-coated membranes were compared for cell recruitment and cell adhesion at 8 hours; cell proliferation at 1, 3, and 5 days; and real-time polymerase chain reaction (PCR) at 3 and 14 days for genes encoding Runx2, collagen1alpha2, alkaline phosphatase, and bone sialoprotein. Furthermore, alizarin red staining was used to investigate mineralization. A significant increase in cell adhesion was observed at 8 hours for barrier membranes coated with enamel matrix derivative in a liquid carrier system, whereas no significant difference could be observed for cell proliferation or cell recruitment. Enamel matrix derivative in a liquid carrier system significantly increased alkaline phosphatase mRNA levels 2.5-fold and collagen1alpha2 levels 1.7-fold at 3 days, as well as bone sialoprotein levels twofold at 14 days postseeding. Furthermore, collagen membranes coated with enamel matrix derivative in a liquid carrier

  3. Liquid but Durable: Molecular Dynamics Simulations Explain the Unique Properties of Archaeal-Like Membranes

    Science.gov (United States)

    Chugunov, Anton O.; Volynsky, Pavel E.; Krylov, Nikolay A.; Boldyrev, Ivan A.; Efremov, Roman G.

    2014-12-01

    Archaeal plasma membranes appear to be extremely durable and almost impermeable to water and ions, in contrast to the membranes of Bacteria and Eucaryota. Additionally, they remain liquid within a temperature range of 0-100°C. These are the properties that have most likely determined the evolutionary fate of Archaea, and it may be possible for bionanotechnology to adopt these from nature. In this work, we use molecular dynamics simulations to assess at the atomistic level the structure and dynamics of a series of model archaeal membranes with lipids that have tetraether chemical nature and ``branched'' hydrophobic tails. We conclude that the branched structure defines dense packing and low water permeability of archaeal-like membranes, while at the same time ensuring a liquid-crystalline state, which is vital for living cells. This makes tetraether lipid systems promising in bionanotechnology and material science, namely for design of new and unique membrane nanosystems.

  4. Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation

    Directory of Open Access Journals (Sweden)

    Ricardo Couto

    2015-01-01

    Full Text Available In this work, a supported ionic liquid membrane (SILM was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA] ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2 and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73 for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids.

  5. Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation.

    Science.gov (United States)

    Couto, Ricardo; Neves, Luísa; Simões, Pedro; Coelhoso, Isabel

    2015-01-14

    In this work, a supported ionic liquid membrane (SILM) was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA]) ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2) and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73) for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids.

  6. Stability of a nanofiltration membrane after contact with a low-level liquid radioactive waste

    Directory of Open Access Journals (Sweden)

    Elizabeth Eugenio de Mello Oliveira

    2013-01-01

    Full Text Available This study investigated the treatment of a liquid radioactive waste containing uranium (235U + 238U using nanofiltration membranes. The membranes were immersed in the waste for 24-5000 h, and their transport properties were evaluated before and after the immersion. Surface of the membranes changed after immersion in the waste. The SW5000 h specimen lost its coating layer of polyvinyl alcohol, and its rejection of sulfate ions and uranium decreased by about 35% and 30%, respectively. After immersion in the waste, the polyamide selective layer of the membranes became less thermally stable than that before immersion.

  7. Selective removal of H2S from sour gases with microporous membranes. Part II. A liquid membrane of water-free tertiary amines

    NARCIS (Netherlands)

    Kreulen, H.; Versteeg, G.F.; Swaaij, W.P.M.

    1993-01-01

    In the present study the application of a liquid membrane for selective removal of H2S from gases also containing CO2 was investigated. The liquid membrane was filled with pure methyl-di-ethanol-amine (MDEA). A theoretical model was developed to describe: (a) the chemical equilibrium between the

  8. Selective removal of H@#2@#S from sour gases with microporous membranes. Part II: A liquid membrane of water-free tertiary amines

    NARCIS (Netherlands)

    Kreulen, H.; Kreulen, H.; Versteeg, Geert; Smolders, C.A.; Smolders, C.A.; van Swaaij, Willibrordus Petrus Maria

    1993-01-01

    In the present study the application of a liquid membrane for selective removal of H2S from gases also containing CO2 was investigated. The liquid membrane was filled with pure methyl-di-ethanol-amine (MDEA). A theoretical model was developed to describe: (a) the chemical equilibrium between the

  9. One-step extraction of polar drugs from plasma by parallel artificial liquid membrane extraction.

    Science.gov (United States)

    Pilařová, Veronika; Sultani, Mumtaz; Ask, Kristine Skoglund; Nováková, Lucie; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2017-02-01

    The new microextraction technique named parallel artificial liquid membrane extraction (PALME) was introduced as an alternative approach to liquid-liquid extraction of charged analytes from aqueous samples. The concept is based on extraction of analytes across a supported liquid membrane sustained in the pores of a thin polymeric membrane, a well-known extraction principle also used in hollow fiber liquid-phase microextraction (HF-LPME). However, the new PALME technique offers a more user-friendly setup in which the supported liquid membrane is incorporated in a 96 well plate system. Thus, high-throughput is achievable, in addition to the green chemistry offered by using PALME. The consumption of organic solvent is minimized to 3-5μL per sample. With a sample volume of 250μL and acceptor solution volume of 50μL, a maximal enrichment factor of five is achievable. Based on these parameters, a new method for extraction of polar basic drugs was developed in the present work. The basic drugs hydralazine, ephedrine, metaraminol, salbutamol, and cimetidine were used as model analytes, and were extracted from alkalized human plasma into an aqueous solution via the supported liquid membrane. The extraction was promoted by a carrier dissolved in the membrane, creating a temporary ion-pair complex between the hydrophilic drug and the carrier. As the model analytes were extracted directly into an aqueous solution, there was no need for evaporation of the extract before injection into LC-MS. Hence, the sample preparation is performed in one step. With optimized conditions, the extraction recoveries were in the range 50-89% from human plasma after 45min extraction. The data from the method evaluation were satisfactory and in line with current guidelines, and revealed an extraction method with substantial potential for high throughput bioanalysis of polar basic drugs.

  10. Permeability of Rubbery and Glassy Membranes of Ionic Liquid Filled Polymersome Nanoreactors in Water.

    Science.gov (United States)

    So, Soonyong; Yao, Letitia J; Lodge, Timothy P

    2015-12-03

    Nanoemulsion-like polymer vesicles (polymersomes) having ionic liquid interiors dispersed in water are attractive for nanoreactor applications. In a previous study, we demonstrated that small molecules could pass through rubbery polybutadiene membranes on a time scale of seconds, which is practical for chemical transformations. It is of interest to determine how sensitive the rate of transport is to temperature, particularly for membranes in the vicinity of the glass transition (Tg). In this work, the molecular exchange rate of 1-butylimidazole through glassy polystyrene (PS) bilayer membranes is investigated via pulsed field gradient nuclear magnetic resonance (PFG-NMR) over the temperature range from 25 to 70 °C. The vesicles were prepared by the cosolvent method in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI]), and four different polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock polymers with varying PS molecular weights were examined. The vesicles were transferred from the ionic liquid to water at room temperature to form nanoemulsion solutions of polymer vesicles in water. The exchange rate of 1-butylimidazole added to the aqueous solutions was observed under equilibrium conditions at each temperature. The exchange rate decreased as the membrane thickness increased, and the exchange rate through the glassy membranes was three to four times slower than through the rubbery polybutadiene membranes under the same experimental conditions. These results demonstrate that the permeability through nanosized membranes depends on both the dimension and chemistry of membrane-forming blocks. Furthermore, the exchange rate was investigated as a function of temperature in the vicinity of the Tg of PS-PEO membranes. The exchange rate, however, is not a strong function of the temperature in the vicinity of the membrane Tg, due to a combination of the nanoscopic dimension of the membrane, and some degree of solvent

  11. Playing with ionic liquid mixtures to design engineered CO2 separation membranes.

    Science.gov (United States)

    Tomé, Liliana C; Florindo, Catarina; Freire, Carmen S R; Rebelo, Luís Paulo N; Marrucho, Isabel M

    2014-08-28

    Ionic liquids have been explored as attractive alternative media for CO2 separation not only due to their low volatility but also due to their highly tuneable nature. Aiming at designing highly efficient liquid phases for flue gas separation and natural gas purification, this work focuses on the use of binary ionic liquid mixtures containing sulfate and/or cyano-functionalized anions. Several mixtures were prepared and their gas transport properties through supported ionic liquid membranes (SILMs) were investigated. The thermophysical properties of these mixtures, namely viscosity and density (data presented and discussed in ESI), were also measured so that trends between transport properties and thermophysical properties could be evaluated. The results obtained indicate that depending on the anions mixed, membranes with fine-tuned gas permeabilities, diffusivities and solubilities can be obtained. Additionally, SILMs prepared with these ionic liquid mixtures are on the upper bound of the CO2/N2 separation, or even may surpass it, indicating their potential for separating CO2 in low-pressure post-combustion processes. Overall, the use of ionic liquid mixtures combining the most selective anions with the least viscous anions is a highly promising strategy to design advanced engineered liquid phases for CO2 separation membranes.

  12. Microporous hollow fibre membrane modules as gas-liquid contactors. Part 1. Physical mass transfer processes : A specific application

    NARCIS (Netherlands)

    Kreulen, H.; Versteeg, G.F.; Swaaij, W.P.M. van

    1993-01-01

    Gas-liquid mass transfer has been studied in a membrane module with non-wetted microporous fibres in the laminar flow regime. This new type of gas/liquid contactor can be operated stabily over a large range of gas and liquid flows because gas and liquid phase do not influence each other directly. Th

  13. Microporous hollow fibre membrane modules as gas-liquid contactors. Part 1. Physical mass transfer processes : A specific application

    NARCIS (Netherlands)

    Kreulen, H.; Versteeg, G.F.; Swaaij, W.P.M. van

    1993-01-01

    Gas-liquid mass transfer has been studied in a membrane module with non-wetted microporous fibres in the laminar flow regime. This new type of gas/liquid contactor can be operated stabily over a large range of gas and liquid flows because gas and liquid phase do not influence each other directly.

  14. Standard Practice for Processing Aerospace Liquid Samples for Particulate Contamination Analysis Using Membrane Filters

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice covers the processing of liquids in preparation for particulate contamination analysis using membrane filters and is limited only by the liquid-to-membrane filter compatibility. 1.2 The practice covers the procedure for filtering a measured volume of liquid through a membrane filter. When this practice is used, the particulate matter will be randomly distributed on the filter surface for subsequent contamination analysis methods. 1.3 The practice describes procedures to allow handling particles in the size range between 2 and 1000 μm with minimum losses during handling. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  15. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers.

    Science.gov (United States)

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-07-16

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems.

  16. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    Energy Technology Data Exchange (ETDEWEB)

    Groger, H. [American Research Corp. of Virginia, Radford, VA (United States)

    1997-10-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis.

  17. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, Eric Joseph

    2016-12-13

    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  18. A new approach to the spectral analysis of liquid membrane oscillators by Gábor transformation

    DEFF Research Database (Denmark)

    Płocharska-Jankowska, E.; Szpakowska, M.; Mátéfi-Tempfli, Stefan;

    2006-01-01

    Liquid membrane oscillators very frequently have an irregular oscillatory behavior. Fourier transformation cannot be used for these nonstationary oscillations to establish their power spectra. This important point seems to be overlooked in the field of chemical oscillators. A new approach...... is presented here based on Gábor transformation allowing one to obtain power spectra of any kind of oscillations that can be met experimentally. The proposed Gábor analysis is applied to a liquid membrane oscillator containing a cationic surfactant. It was found that the power spectra are strongly influenced...

  19. Geometric methods in the elastic theory of membranes in liquid crystal phases

    CERN Document Server

    Ji Xing Liu; Yu Zhang Xie

    1999-01-01

    This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic - A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations

  20. Descemet′s membrane detachment managed with perfluro-n-octane liquid

    Directory of Open Access Journals (Sweden)

    M Ashok Kumar

    2012-01-01

    Full Text Available We report the case of a 68-year-old male who developed Descemet′s membrane detachment after temporal clear corneal phacoemulsification which did not settle with air or viscoelastic injection. The Descemet′s membrane was successfully reattached with restoration of 20/50 vision with the help of perfluro-n-octane liquid. To our knowledge, this is the first such case to be reported.

  1. Liquid membrane extraction techniques for trace metal analysis and speciation in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Ndungu, Kuria

    1999-04-01

    In this thesis, liquid-membrane-based methods for the analysis of trace metal species in samples of environmental and biological origin were developed. By incorporating extracting reagents in the membrane liquid, trace metal ions were selectively separated from humic-rich natural waters and urine samples, prior to their determination using various instrumental techniques. The extractions were performed in closed flow systems thus allowing easy automation of both the sample clean-up and enrichment. An acidic organophosphorus reagent (DEHPA) and a basic tetraalkylammonium reagent (Aliquat-336) were used as extractants in the membrane liquid to selectively extract and enrich cationic and anionic metal species respectively. A speciation method for chromium species was developed that allowed the determination of cationic Cr(III) species and anionic CR(VI) species in natural water samples without the need of a chromatographic separation step prior to their detection. SLM was also coupled on-line to potentiometric stripping analysis providing a fast and sensitive method for analysis of Pb in urine samples. A microporous membrane liquid-liquid extraction (MMLLE) method was developed for the determination of organotin compounds in natural waters that reduced the number of manual steps involved in the LLE of organotin compounds prior to their CC separation. Clean extracts obtained after running unfiltered humic-rich river water samples through the MMLLE flow system allowed selective determination of all the organotin compounds in a single run using GC-MS in the selected ion monitoring mode (SIM) 171 refs, 9 figs, 4 tabs

  2. Chiroptical Measurement of Chiral Aggregates at Liquid-Liquid Interface in Centrifugal Liquid Membrane Cell by Mueller Matrix and Conventional Circular Dichroism Methods

    Directory of Open Access Journals (Sweden)

    Hitoshi Watarai

    2011-04-01

    Full Text Available The centrifugal liquid membrane (CLM cell has been utilized for chiroptical studies of liquid-liquid interfaces with a conventional circular dichroism (CD spectropolarimeter. These studies required the characterization of optical properties of the rotating cylindrical CLM glass cell, which was used under the high speed rotation. In the present study, we have measured the circular and linear dichroism (CD and LD spectra and the circular and linear birefringence (CB and LB spectra of the CLM cell itself as well as those of porphyrine aggregates formed at the liquid-liquid interface in the CLM cell, applying Mueller matrix measurement method. From the results, it was confirmed that the CLM-CD spectra of the interfacial porphyrin aggregates observed by a conventional CD spectropolarimeter should be correct irrespective of LD and LB signals in the CLM cell.

  3. Manipulating lipid membrane architecture by liquid crystal-analog curvature elasticity (Presentation Recording)

    Science.gov (United States)

    Lee, Sin-Doo

    2015-10-01

    Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.

  4. Effect of choline carboxylate ionic liquids on biological membranes.

    Science.gov (United States)

    Rengstl, Doris; Kraus, Birgit; Van Vorst, Matthew; Elliott, Gloria D; Kunz, Werner

    2014-11-01

    Choline carboxylates, ChCm, with m=2-10 and choline oleate are known as biocompatible substances, yet their influence on biological membranes is not well-known, and the effect on human skin has not previously been investigated. The short chain choline carboxylates ChCm with m=2, 4, 6 act as hydrotropes, solubilizing hydrophobic compounds in aqueous solution, while the longer chain choline carboxylates ChCm with m=8, 10 and oleate are able to form micelles. In the present study, the cytotoxicity of choline carboxylates was tested using HeLa and SK-MEL-28 cells. The influence of these substances on liposomes prepared from dipalmitoylphosphatidylcholine (DPPC) was also evaluated to provide insights on membrane interactions. It was observed that the choline carboxylates with a chain length of m>8 distinctly influence the bilayer, while the shorter ones had minimal interaction with the liposomes.

  5. A model for a liquid membrane separation stage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The coupled mixer-settlers having a common settling zone suggested for use to extract fission products from a conversion reactor blanket are analogues of membrane apparatuses and at a first glance in terms of hydrodynamics do not differ from conventional mixer-settlers. However, the common settling zone complicates both the design solutions and their modelling. For example, different emulsion types can result in mixers and it is not known how this fact will affect phenomena such as separation rates, disperse phase entrainment under conditions close to flooding. For initial studies of the feasibility of the process in principle and the primary optimization of the structure of the transfer scheme one needs to have a model and a program to calculate the statics of a multistage membrane facility of this type.

  6. Assembling Synthesis of ZnSe Orthohexagonal Slices through Emulsion Liquid Membrane System of Gas-liquid Transport

    Institute of Scientific and Technical Information of China (English)

    Lu LIU; Qing Sheng WU; Ya Ping DING; Hua Jie LIU

    2005-01-01

    Orthohexagonal slices assembled by ZnSe quantum dots were synthesized through emulsion liquid membrane system. These orthohexagonal slices were 1.5-3.5 μm in side length and were self-assembled by ZnSe quantum dots of 2-3 nm. It was proposed the surfactant molecules on ZnSe quantum dots played a key role in the self-assembly process.

  7. Dynamics of a Room Temperature Ionic Liquid in Supported Ionic Liquid Membranes vs the Bulk Liquid: 2D IR and Polarized IR Pump-Probe Experiments.

    Science.gov (United States)

    Shin, Jae Yoon; Yamada, Steven A; Fayer, Michael D

    2017-01-11

    Supported ionic liquid membranes (SILMs) are membranes that have ionic liquids impregnated in their pores. SILMs have been proposed for advanced carbon capture materials. Two-dimensional infrared (2D IR) and polarization selective IR pump-probe (PSPP) techniques were used to investigate the dynamics of reorientation and spectral diffusion of the linear triatomic anion, SeCN(-), in poly(ether sulfone) (PES) membranes and room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimNTf2). The dynamics in the bulk EmimNTf2 were compared to its dynamics in the SILM samples. Two PES membranes, PES200 and PES30, have pores with average sizes, ∼300 nm and ∼100 nm, respectively. Despite the relatively large pore sizes, the measurements reveal that the reorientation of SeCN(-) and the RTIL structural fluctuations are substantially slower in the SILMs than in the bulk liquid. The complete orientational randomization, slows from 136 ps in the bulk to 513 ps in the PES30. 2D IR measurements yield three time scales for structural spectral diffusion (SSD), that is, the time evolution of the liquid structure. The slowest decay constant increases from 140 ps in the bulk to 504 ps in the PES200 and increases further to 1660 ps in the PES30. The results suggest that changes at the interface propagate out and influence the RTIL structural dynamics even more than a hundred nanometers from the polymer surface. The differences between the IL dynamics in the bulk and in the membranes suggest that studies of bulk RTIL properties may be poor guides to their use in SILMs in carbon capture applications.

  8. Diffusion coefficient of an inclusion in a liquid membrane supported by a solvent of arbitrary thickness.

    Science.gov (United States)

    Seki, Kazuhiko; Ramachandran, Sanoop; Komura, Shigeyuki

    2011-08-01

    The diffusion coefficient of an inclusion in a liquid membrane is investigated by taking into account the interaction between membranes and bulk solvents of arbitrary thickness. As illustrative examples, the diffusion coefficients of two types of inclusions, a circular domain composed of fluid with the same viscosity as the host membrane and that of a polymer chain embedded in the membrane, are studied. The diffusion coefficients are expressed in terms of the hydrodynamic screening lengths, which vary according to the solvent thickness. When the membrane fluid is dragged by the solvent of finite thickness, via stick boundary conditions, multiple hydrodynamic screening lengths together with the weight factors to the diffusion coefficients are obtained from the characteristic equation. The conditions for which the diffusion coefficients can be approximated by the expression including only a single hydrodynamic screening length are also shown.

  9. Ion-selective supported liquid membranes placed under steady-state diffusion control.

    Science.gov (United States)

    Tompa, Károly; Birbaum, Karin; Malon, Adam; Vigassy, Tamás; Bakker, Eric; Pretsch, Ernö

    2005-12-01

    Supported liquid membranes are used here to establish steady-state concentration profiles across ion-selective membranes rapidly and reproducibly. This opens up new avenues in the area of nonequilibrium potentiometry, where reproducible accumulation and depletion processes at ion-selective membranes may be used to gain valuable analytical information about the sample. Until today, drifting signals originating from a slowly developing concentration profile across the ion-selective membrane made such approaches impractical in zero current potentiometry. Here, calcium- and silver-selective membranes were placed between two identical aqueous electrolyte solutions, and the open circuit potential was monitored upon changing the composition of one solution. Steady state was reached in approximately 1 min with 25-microm porous polypropylene membranes filled with bis(2-ethylhexyl) sebacate doped with ionophore and lipophilic ion exchanger. Ion transport across the membrane resulted on the basis of nonsymmetric ion-exchange processes at both membrane sides. The steady-state potential was calculated as the sum of the two membrane phase boundary potentials, and good correspondence to experiment was observed. Concentration polarizations in the contacting aqueous phases were confirmed with stirring experiments. It was found that interferences (barium in the case of calcium electrodes and potassium with silver electrodes) induce a larger potential change than expected with the Nicolsky equation because they influence the level of polarization of the primary ion (calcium or silver) that remains potential determining.

  10. SUPPORTED LIX-84 LIQUID MEMBRANES FOR METAL ION SEPARATION: A STUDY ON METAL ION SORPTION EQUILIBRIUM AND KINETICS

    Science.gov (United States)

    Supported 2-hydroxy-5-nonyl-acetophenone oxime (LIX-84) liquid membranes have potential applications for the removal (or recovery) of copper ions from waste streams. But, the stability of such a liquid membrane remains the major hurdle for its practical applications. Inorganic su...

  11. Boron removal from seawater by supported liquid membranes

    OpenAIRE

    Coll Ausió, Mª Teresa; Fortuny Sanromá, Agustín; Leopold, Agnieszka Ana; Sastre Requena, Ana María

    2009-01-01

    Water covers 70% of the Earth’s surface but, even so water is becoming a scarce resource. In order to achieve the target 7.c of the Millennium Development Goals, to assure potable water for the people without sustainable access to it, alternative sources must be found. Considering that the oceans contain 97.5% of the earth’s water, seawater (SW) can be use as a source of safe drinking water and for irrigation; the salts contained are usually removed by membrane techniques, espe...

  12. Electromembrane extraction with alkylated phosphites and phosphates as supported liquid membranes

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2017-01-01

    A range of alkylated phosphates and phosphites were for the first time investigated as potential supported liquid membranes (SLMs) for electromembrane extraction (EME) of basic drugs from human plasma samples. Six polar basic drugs were used as model analytes for initial testing of the different ...

  13. Activating photonic crystal membrane nanocavities by infiltrating with liquid crystals or luminescent colloidal nanocrystals

    NARCIS (Netherlands)

    Dündar, M.A.; Christova, C.; Silov, A.Y.; Karouta, F.; Nötzel, R.; Wienk, M.; Salemink, H.; Van der Heijden, R.W.

    2010-01-01

    Liquid crystal (LC, Merk 5 CB) is infiltrated into active, InAs quantum dots embedded, InGaAsP membrane type nanocavities to investigate the possible effect of the LC orientation on active cavity tuning. The tuning is demonstrated thermally and thermo-optically. The thermal tuning showed that the ca

  14. Activating photonic crystal membrane nanocavities by infiltrating with liquid crystals or luminescent colloidal nanocrystals

    NARCIS (Netherlands)

    Dündar, M.A.; Christova, C.; Silov, A.Y.; Karouta, F.; Nötzel, R.; Wienk, M.; Salemink, H.; Van der Heijden, R.

    2010-01-01

    Liquid crystal (LC, Merk 5 CB) is infiltrated into active, InAs quantum dots embedded, InGaAsP membrane type nanocavities to investigate the possible effect of the LC orientation on active cavity tuning. The tuning is demonstrated thermally and thermo-optically. The thermal tuning showed that the c

  15. Electromembrane extraction of peptides - fundamental studies on the supported liquid membrane

    DEFF Research Database (Denmark)

    Seip, Knut Fredrik; Stigsson, Jeanette; Gjelstad, Astrid;

    2011-01-01

    A large screening of different components in the supported liquid membrane (SLM) in electromembrane extraction (EME) was performed to test the extraction efficiency on eight model peptides. Electromembrane extraction from a 500 µL acidified aqueous sample containing the model peptides in the conc...

  16. Parallel artificial liquid membrane extraction of acidic drugs from human plasma

    DEFF Research Database (Denmark)

    Roldan-Pijuan, Mercedes; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2015-01-01

    The new sample preparation concept “Parallel artificial liquid membrane extraction (PALME)” was evaluated for extraction of the acidic drugs ketoprofen, fenoprofen, diclofenac, flurbiprofen, ibuprofen, and gemfibrozil from human plasma samples. Plasma samples (250 μL) were loaded into individual...

  17. MEMBRANOUS FLOWS IN GAS-LIQUID COLLECTORS-REGENERATORS OF SOLAR ABSORPTIVE SYSTEMS FEATURES

    Directory of Open Access Journals (Sweden)

    Doroshenko А.V.

    2009-12-01

    Full Text Available Article is devoted to the creation of new generation of solar collectors of the gas-liquid type, intended for use in alternative refrigerating and conditioning systems of drying-evaporating type with direct solar regeneration of absorbent. Special attention is given to the study of membranous flows features on inclined surfaces, including questions of such flows stability.

  18. Assembly Synthesis of Sheet-like Calcite Array and Stable-Vaterite by Supported Liquid Membrane

    Institute of Scientific and Technical Information of China (English)

    SUN,Dong-Mei(孙冬梅); WU,Qing-Sheng(吴庆生)

    2004-01-01

    Sheet-like calcite array and stable vaterite were synthesized by bio-mimetic supported liquid membrane system under different reaction conditions. Both of the FTIR spectra of products showed narrower peak at 1418 cm-1 than that of bulk CaCO3, and that of vaterite has a split in this peak.

  19. Liquid Membrane Transport Behavior of Functional Substituted Crown Ethers for Amino Acids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Three functional substituted crown ethers were synthesized as liquid membrane transport carriers for amino acids. The result obtained shows that this kind of ditopic ligands can transport sodium salt of amino acids in good rate value especially the one with two pyridinyl groups as binding site outside the macrocycle.

  20. How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO2 permeation?

    NARCIS (Netherlands)

    Simons, K.; Nijmeijer, D.C.; Bara, J.B.; Noble, R.D.; Wessling, M.

    2010-01-01

    Room-temperature ionic liquids (RTILs) are a class of organic solvents that have been explored as novel media for CO2 separations. Polymerized RTILs (poly(RTILs)) can be synthesized from RTIL monomers to form dense, solid gas selective membranes. It is of interest to understand the permeation proper

  1. Selectivity of NF membrane for treatment of liquid waste containing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R., E-mail: eemo@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Afonso, Julio C., E-mail: julio@iq.ufrj.br [Universidade Federal do Rio de Janeiro(UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Quimica

    2013-07-01

    The performance of two nanofiltration membranes were investigated for treatment of liquid waste containing uranium through two conditions permeation: permeation test and concentration test of the waste. In the permeation test solution permeated returned to the feed tank after collected samples each 3 hours. In the test of concentration the permeated was collected continuously until 90% reduction of the feed volume. The liquid waste ('carbonated water') was obtained during conversion of UF{sub 6} to UO{sub 2} in the cycle of nuclear fuel. This waste contains uranium concentration on average 7.0 mg L{sup -1}, and not be eliminated to the environmental. The waste was permeated using a cross-flow membrane cell in the pressure of the 1.5 MPa. The selectivity of the membranes for separation of uranium was between 83% and 90% for both tests. In the concentration tests the waste was concentrated around for 5 times. The surface layer of the membranes was evaluated before and after the tests by infrared spectroscopy (ATR-FTIR), field emission microscopy (FESEM) and atomic force spectroscopy (AFM). The membrane separation process is a technique feasible to and very satisfactory for treatment the liquid waste. (author)

  2. Pemisahan Unsur Samarium dan Yttrium dari Mineral Tanah Jarang dengan Teknik Membran Cair Berpendukung (Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Amri Amin

    2009-06-01

    Full Text Available he increasing use of rare earth elements in high technology industries needs to be supported by developmental work for the separation of elements. The research objective is fiercely attracting and challenging considering the similarity of bath physical and chemical properties among these elements. The rate separation of samarium and yttrium elements using supported liquid membrane has been studied. Polytetrafluoroethylene (PTFE with pore size of 0.45 µm has been used as the membrane and di(2-ethylhexyl phosphate (D2EHP in hexane has been used as a carrier and nitric acid solution has been used as receiving phase. Result of experiments showed that the best separation rate of samarium and yttrium elements could be obtained at feeding phase of pH 3.0, di(2-ethylhexyl phosphate (D2EHP concentration of 0.3 M, agitation rate of 700 rpm, agitation time of 2 hours, and nitric acid and its solution concentrations of 1.0 M and 0.1 M, respectively. At this condition, separation rates of samarium and yttrium were 64.4 and 67.6%, respectively.   Keywords: liquid membrane, rare earth elements, samarium, yttrium

  3. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  4. Impact of ionic liquids in aqueous solution on bacterial plasma membranes studied with molecular dynamics simulations.

    Science.gov (United States)

    Lim, Geraldine S; Zidar, Jernej; Cheong, Daniel W; Jaenicke, Stephan; Klähn, Marco

    2014-09-04

    The impact of five different imidazolium-based ionic liquids (ILs) diluted in water on the properties of a bacterial plasma membrane is investigated using molecular dynamics (MD) simulations. Cations considered are 1-octyl-3-methylimidazolium (OMIM), 1-octyloxymethyl-3-methylimidazolium (OXMIM), and 1-tetradecyl-3-methylimidazolium (TDMIM), as well as the anions chloride and lactate. The atomistic model of the membrane bilayer is designed to reproduce the lipid composition of the plasma membrane of Gram-negative Escherichia coli. Spontaneous insertion of cations into the membrane is observed in all ILs. Substantially more insertions of OMIM than of OXMIM occur and the presence of chloride reduces cation insertions compared to lactate. In contrast, anions do not adsorb onto the membrane surface nor diffuse into the bilayer. Once inserted, cations are oriented in parallel to membrane lipids with cation alkyl tails embedded into the hydrophobic membrane core, while the imidazolium-ring remains mostly exposed to the solvent. Such inserted cations are strongly associated with one to two phospholipids in the membrane. The overall order of lipids decreased after OMIM and OXMIM insertions, while on the contrary the order of lipids in the vicinity of TDMIM increased. The short alkyl tails of OMIM and OXMIM generate voids in the bilayer that are filled by curling lipids. This cation induced lipid disorder also reduces the average membrane thickness. This effect is not observed after TDMIM insertions due to the similar length of cation alkyl chain and the fatty acids of the lipids. This lipid-mimicking behavior of inserted TDMIM indicates a high membrane affinity of this cation that could lead to an enhanced accumulation of cations in the membrane over time. Overall, the simulations reveal how cations are inserted into the bacterial membrane and how such insertions change its properties. Moreover, the different roles of cations and anions are highlighted and the fundamental

  5. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 2, December 21, 1989--March 20, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  6. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 8, June 21, 1991--September 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  7. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 7, March 21, 1991--June 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  8. Synthesis of Pyrrolidinium-type Poly(Ionic Liquid) Membranes for Antibacterial Applications.

    Science.gov (United States)

    Qin, Jing; Guo, Jiangna; Xu, Qiming; Zheng, Zhiqiang; Mao, Hailei; Yan, Feng

    2017-03-08

    Pyrrolidinium-type small molecule ionic liquids (ILs), poly(ionic liquid) (PIL) homopolymers, and their corresponding PIL membranes were synthesized and used for antibacterial applications. The influences of substitutions at the N position of pyrrolidinium cation on the antimicrobial activities against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were studied by minimum inhibitory concentration (MIC). The antibacterial efficiency of both the small molecule ILs and PIL homopolymers increased with the increase of the alkyl chain length of substitutions. Furthermore, PIL homopolymers show relatively lower MIC values, indicating better antimicrobial activities than those of corresponding small molecule ILs. However, the antibacterial properties of the PIL membranes are contrary to corresponding ILs and PIL homopolymers, which reducing with the increase of alkyl chain length. Furthermore, the resultant PIL membranes show excellent hemocompatibility and low cytotoxicity towards human cells, demonstrating clinical feasibility in topical applications.

  9. Basic technology for 6Li enrichment using an ionic-liquid impregnated organic membrane

    Science.gov (United States)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-10-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% 6Li. In this paper, a new lithium isotope separation technique using an ionic-liquid impregnated organic membrane is proposed. In order to separate and concentrate lithium isotopes, only lithium ions are able to move through the membrane by electrodialysis between the cathode and the anode in lithium solutions. Preliminary experiments of lithium isotope separation were conducted using this phenomenon. Organic membranes impregnated with TMPA-TFSI and PP13-TFSI as ionic liquids were prepared, and the relationship between the 6Li separation coefficient and the applied electrodialytic conditions was evaluated using them. The results showed that the 6Li isotope separation coefficient in this method (about 1.1-1.4) was larger than that in the mercury amalgam method (about 1.06).

  10. Mechanism of proton transport in ionic-liquid-doped perfluorosulfonic acid membranes.

    Science.gov (United States)

    Kumar, Milan; Venkatnathan, Arun

    2013-11-21

    Ionic-liquid-doped perfluorosulfonic acid membranes (PFSA) are promising electrolytes for intermediate/high-temperature fuel cell applications. In the present study, we examine proton-transport pathways in a triethylammonium-triflate (TEATF) ionic liquid (IL)-doped Nafion membrane using quantum chemistry calculations. The IL-doped membrane matrix contains triflic acid (TFA), triflate anions (TFA(-)), triethylamine (TEA), and triethylammonium cations (TEAH(+)). Results show that proton abstraction from the sulfonic acid end groups in the membrane by TFA(-) facilitates TEAH(+) interaction with the side-chains. In the IL-doped PFSA membrane matrix, proton transfer from TFA to TEA and TFA to TFA(-) occurs. However, proton transfer from a tertiary amine cation (TEAH(+)) to a tertiary amine (TEA) does not occur without an interaction with an anion (TFA(-)). An anion interaction with the amine increases its basicity, and as a consequence, it takes a proton from a cation either instantly (if the cation is freely moving) or with a small activation energy barrier of 2.62 kcal/mol (if the cation is interacting with another anion). The quantum chemistry calculations predict that anions are responsible for proton-exchange between cations and neutral molecules of a tertiary amine. Results from this study can assist the experimental choice of IL to provide enhanced proton conduction in PFSA membrane environments.

  11. Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity

    Science.gov (United States)

    Zhang, Haoqin; Wu, Wenjia; Li, Yifan; Liu, Yong; Wang, Jingtao; Zhang, Bing; Liu, Jindun

    2015-04-01

    Herein, novel composite membranes are prepared by embedding methacrylic acid polyelectrolyte microcapsules (PMCs) into sulfonated poly(ether ether ketone) (SPEEK) matrix, followed by impregnating imidazole-type ionic liquids (ILs). Within the composite membrane, the lumens of PMCs act as IL reservoirs, which provide large space for IL storage and thus significantly elevate the IL uptake. The IL leaching measurement suggests that the cross-linked shells of PMCs manipulate the IL release, endowing the composite membrane with high IL retention. Moreover, the high IL retention renders the composite membrane more anhydrous hopping sites (e.g., the imidazole groups on IL and the acid-base pairs between imidazole and sulfonic acid groups), imparting a facilitated proton conduction via Grotthuss mechanism. In particular, the composite membrane containing 12% PMCs achieves a high anhydrous proton conductivity of 33.7 mS cm-1 at 150 °C. The same membrane also exhibits a surprising steady-state IL retention of 36.9% after leaching in liquid water.

  12. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 12, June 21, 1992--September 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-12-31

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  13. High temperature ceramic membrane reactors for coal liquid upgrading. Quarter report No. 9, September 21, 1991--December 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  14. An Electrochemical Sensing Platform Based on Liquid-Liquid Microinterface Arrays Formed in Laser-Ablated Glass Membranes.

    Science.gov (United States)

    Alvarez de Eulate, Eva; Strutwolf, Jörg; Liu, Yang; O'Donnell, Kane; Arrigan, Damien W M

    2016-03-01

    Arrays of microscale interfaces between two immiscible electrolyte solutions (μITIES) were formed using glass membranes perforated with microscale pores by laser ablation. Square arrays of 100 micropores in 130 μm thick borosilicate glass coverslips were functionalized with trichloro(1H,1H,2H,2H-perfluorooctyl)silane on one side, to render the surface hydrophobic and support the formation of aqueous-organic liquid-liquid microinterfaces. The pores show a conical shape, with larger radii at the laser entry side (26.5 μm) than at the laser exit side (11.5 μm). The modified surfaces were characterized by contact angle measurements and X-ray photoelectron spectroscopy. The organic phase was placed on the hydrophobic side of the membrane, enabling the array of μITIES to be located at either the wider or narrower pore mouth. The electrochemical behavior of the μITIES arrays were investigated by tetrapropylammonium ion transfer across water-1,6-dichlorohexane interfaces together with finite element computational simulations. The data suggest that the smallest microinterfaces (formed on the laser exit side) were located at the mouth of the pore in hemispherical geometry, while the larger microinterfaces (formed on the laser entry side) were flatter in shape but exhibited more instability due to the significant roughness of the glass around the pore mouths. The glass membrane-supported μITIES arrays presented here provide a new platform for chemical and biochemical sensing systems.

  15. Copper recovery in a bench-scale carrier facilitated tubular supported liquid membrane system

    Directory of Open Access Journals (Sweden)

    Makaka S.

    2010-01-01

    Full Text Available The extraction of copper ions in a tubular supported liquid membrane using LIX 984NC as a mobile carrier was studied, evaluating the effect of the feed characteristics (flowrate, density, viscosity on the feedside laminar layer of the membrane. A vertical countercurrent, double pipe perspex benchscale reactor consisting of a single hydrophobic PVDF tubular membrane mounted inside was used in all test work. The membrane was impregnated with LIX 984NC and became the support for this organic transport medium. Dilute Copper solution passed through the centre pipe and sulphuric acid as strippant passed through the shell side. Copper was successfully transported from the feedside to the stripside and from the data obtained, a relationship between Schmidt, Reynolds and Sherwood number was achieved of.

  16. Preparation and Performance of Bipolar Membranes with Liquid Ion-Exchange Medium

    Institute of Scientific and Technical Information of China (English)

    苏静; 余立新; 郝继华

    2003-01-01

    The current density is rather low in solid bipolar membranes, because the water transfer rate is relatively slow across solid bipolar membranes made of solid ion-exchange materials. This paper describes the use of polymer solutions, such as phosphatic poly(vinyl alcohol) solution, poly(acrylic acid) solution and poly(vinyl alcohol) solutions with dispersed cation/anion-exchange resin particles to prepare bipolar membranes. The 0.1 mol/L NaOH and the 0.05 mol/L H2SO4 were used to test the performance of the bipolar membranes. For a fixed liquid layer thickness, both the current density and the selectivity increase with the concentration increase of a polyelectrolyte solution. The maximum current density measured in the experiment was 1497 A/m2 with a selectivity of 96.8%.

  17. Optimization of Copper Removal from Aqueous Solutions Using Emulsion Liquid Membranes with Benzoylacetone as a Carrier

    Directory of Open Access Journals (Sweden)

    Loreto León

    2017-01-01

    Full Text Available The presence of heavy metals in aqueous solutions above certain limits represents a serious threat to the environment due to their toxicity and non-degradability. Thus, the removal of these metals from contaminated waters has received increasing attention during recent decades. This paper describes the removal of Cu(II from aqueous solutions by emulsion liquid membranes, through a carrier-facilitated counter-transport mechanism, using benzoylacetone as the carrier and HCl as the stripping agent (protons as counter-ions. To optimize the Cu(II removal process, the effect of the following operating parameters on the on the stability of the emulsion liquid membrane and on the Cu(II removal efficiency was studied: feed pH, HCl concentration in the permeate phase, carrier and emulsifier concentration in the membrane phase, feed phase/emulsion phase and permeate phase/membrane phase volume ratios, emulsification time and speed in the primary emulsion preparation and stirring speed in the whole feed phase/emulsion phase system. Typical membrane transport parameters, such as flux and permeability, were also determined. Optimal Cu(II removal conditions were: 5.5 feed pH, 10 kg/m3 benzoylacetone concentration in the membrane phase, 18.250 kg/m3 HCl concentration in the permeate phase, 50 kg/m3 Span 80 concentration in the membrane phase, 200 rpm stirring rate, 5 min emulsification time, 2700 rpm emulsification rate, 2:1 feed:emulsion volume ratio and 1:1 permeate:membrane volume ratio. In these optimal conditions, 80.3% of Cu(II was removed in 15 min with an apparent initial flux and permeability of 0.3384 kg·m−3·min−1 and 0.3208 min−1, respectively.

  18. Study on transport of Dy(Ⅲ) by dispersion supported liquid membrane

    Institute of Scientific and Technical Information of China (English)

    PEI Liang; YAO Binghua; FU Xinglong

    2009-01-01

    The transport of Dy(Ⅲ) through a dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride mem-brane (PVDF) as the liquid membrane support and dispersion solution including HC1 solution as the stripping solution and 2-ethyl hexyl phosphonic aeid-mono-2-ethyl hexyl ester (PC-88A) dissolved in kerosene as the membrane solution, was studied. The effects of pH value, initial concentration of Dy(Ⅲ) and different ionic strength in the feed phase, volume ratio of membrane solution and stripping solution, con-centration of HC1 solution, concentration of carder, different stripping agents in the dispersion phase on transport of Dy(Ⅲ) were also inves-tigated, respectively. As a result, when the concentration of HCI solution was 4.0 mol/L, concentration of PC-88A was 0.10 mol/L, and vol-ume ratio of membrane solution and stripping solution was 40:20 in the dispersion phase, and pH value was 5.0 in the feed phase, the trans-port effect of Dy(Ⅲ) was the best. Ionic strength had no obvious effect on transport of Dy(Ⅲ). Under the optimum condition studied, when initial concentration of Dy(Ⅲ) was 0.8×10-4 mol/L, the transport rate of Dy(Ⅲ) was up to 96.2% during the transport time of 95 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The diffusion coefficient of Dy(Ⅲ) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.99×10-7 m2/s and 15.97 μm, respectively. The results were in good agreement with experimental results.

  19. Lithium-Ion-Conducting Electrolytes: From an Ionic Liquid to the Polymer Membrane

    Science.gov (United States)

    Fernicola, A.; Weise, F. C.; Greenbaum, S. G.; Kagimoto, J.; Scrosati, B.; Soleto, A.

    2009-01-01

    This work concerns the design, the synthesis, and the characterization of the N-butyl-N-ethylpiperidinium N,N-bis(trifluoromethane)sulfonimide (PP24TFSI) ionic liquid (IL). To impart Li-ion transport, a suitable amount of lithium N,N-bis-(trifluoromethane)sulfonimide (LiTFSI) is added to the IL. The Li–IL mixture displays ionic conductivity values on the order of 10−4 S cm−1 and an electrochemical stability window in the range of 1.8–4.5 V vs Li+/Li. The voltammetric analysis demonstrates that the cathodic decomposition gives rise to a passivating layer on the surface of the working electrode, which kinetically extends the stability of the Li/IL interface as confirmed by electrochemical impedance spectroscopy measurements. The LiTFSI–PP24TFSI mixture is incorporated in a poly(vinylidene fluoride-co-hexafluoropropylene) matrix to form various electrolyte membranes with different LiTFSI–PP24TFSI contents. The ionic conductivity of all the membranes resembles that of the LiTFSI–IL mixture, suggesting an ionic transport mechanism similar to that of the liquid component. NMR measurements demonstrate a reduction in the mobility of all ions following the addition of LiTFSI to the PP24TFSI IL and when incorporating the mixture into the membrane. Finally, an unexpected but potentially significant enhancement in Li transference number is observed in passing from the liquid to the membrane electrolyte system. PMID:20354582

  20. Effects of alpha-lipoic acids on sperm membrane integrity during liquid storage of boar semen

    Directory of Open Access Journals (Sweden)

    Laura Parlapan

    2015-05-01

    Full Text Available Preliminary studies have shown that sperm membrane from swine shows high sensitivity to cryopreservation process, causing a dramatic reduction in sperm quality. This has been attributed to the production of reactive oxygen species, that cause lipid peroxidation in sperm membranes. The aim of the present study was to minimize the oxidative attack by adding different concentration of alpha-lipoic acid into the sperm liquid storage at 17ºC for 7 days. Freshly ejaculated boar semen was diluted with Beltsville Thawing Solution (BTS and supplemented with 5 levels of alpha-lipoic  acid (0.015, 0.02, 0.05, 0.1, 0.15 mmol/ml. The membrane integrity was evaluated at days 0, 1, 3, 5 and 7 of liquid preservation, using flow cytometer FACSCanto II (BD Biociencias systems. The experiment indicate that supplementation of alpha-lipoic  acid to the semen liquid storage extender improve sperm membrane

  1. Rare earth extraction from wet process phosphoric acid by emulsion liquid membrane

    Institute of Scientific and Technical Information of China (English)

    张利昌; 陈前林; 康超; 马昕; 杨尊良

    2016-01-01

    The recovery of rare earths (RE) during the wet processing of phosphoric acid is very important, the method of emul-sion liquid membrane (ELM) with di(2-ethylhexly) phosphate (D2EHPA) as carrier has the high selectivity while cannot provide a satisfactory extraction rate. Here novel method of emulsion liquid membrane (ELM) using Aniline as carrier to extract RE from the feed solution was proposed. The method could increase the extraction rate of RE in the real sample to 93%. The effects of dif-ferent parameters such as type and concentration of carrier and surfactant, hydrochloric acid concentration, organic to internal phase volume ratio, membrane to external phase volume ratio on extraction of RE3+ were investigated. Quantitative extraction (>93%) of RE3+ was observed with 6 vol.% Aniline and 4 vol.% T154 liquid membrane at external to internal phase volume ratio of 10 for the feed solution. The proposed method of ELM using Aniline as carrier can be expected to provide a practical, efficient, and economical method for extracting RE from phosphate leach solution with high acidity in the industry of wet process phospho-ric acid.

  2. Gas-liquid interfacial plasmas producing reactive species for cell membrane permeabilization

    Science.gov (United States)

    Kaneko, Toshiro; Sasaki, Shota; Takashima, Keisuke; Kanzaki, Makoto

    2017-01-01

    Gas-liquid interfacial atmospheric-pressure plasma jets (GLI-APPJ) are used medically for plasma-induced cell-membrane permeabilization. In an attempt to identify the dominant factors induced by GLI-APPJ responsible for enhancing cell-membrane permeability, the concentration and distribution of plasma-produced reactive species in the gas and liquid phase regions are measured. These reactive species are classified in terms of their life-span: long-lived (e.g., H2O2), short-lived (e.g., O2•−), and extremely-short-lived (e.g., •OH). The concentration of plasma-produced •OHaq in the liquid phase region decreases with an increase in solution thickness (plasma-induced cell-membrane permeabilization is found to decay markedly as the thickness of the solution increases. Furthermore, the horizontally center-localized distribution of •OHaq, resulting from the center-peaked distribution of •OH in the gas phase region, corresponds with the distribution of the permeabilized cells upon APPJ irradiation, whereas the overall plasma-produced oxidizing species such as H2O2aq in solution exhibit a doughnut-shaped horizontal distribution. These results suggest that •OHaq is likely one of the dominant factors responsible for plasma-induced cell-membrane permeabilization. PMID:28163376

  3. Synthesis and characterization of ionic liquid (EMImBF4)/Li+ - chitosan membranes for ion battery

    Science.gov (United States)

    Pasaribu, Marvin H.; Arcana, I. Made; Wahyuningrum, Deana

    2015-09-01

    Lithium ion battery has been currently developed and produced because it has a longer life time, high energycapacity, and the efficient use of lithium ion battery that is suitable for storing electrical energy. However, this battery has some drawbacks such as use liquid electrolytes that are prone to leakage and flammability during the battery charging process in high temperature. In this study, an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) containing Li+ ions was synthesized and combined with chitosan polymer host as a polymer electrolyte membrane for lithium-ion batteries to solve this problems. This ionic liquid was obtained from the anion metathesis reaction between EMImBr and LiBF4 salt, while EMImBr was synthesized from the reaction between 1-methylimidazole and ethyl bromide utilizing Microwave Assisted Organic Synthesis (MAOS) method. The ionic liquid obtained was characterized by microstructure analysis with using NMR and FTIR spectroscopy. The polymer electrolyte membrane was characterized by analysis functional groups (FTIR), ionic conductivity (EIS), and surface morphology (SEM). The analysis results of ion conductivity by the EIS method showed the increase the ionic conductivity value of membranes from 1.30 × 10-2 S cm- 1 for chitosan to 1.30 × 10-2 S cm-1 for chitosan with EMImBF4/Li+, and this result was supported by analysis the surface morphology (SEM).

  4. Parallel artificial liquid membrane extraction of acidic drugs from human plasma.

    Science.gov (United States)

    Roldán-Pijuán, Mercedes; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2015-04-01

    The new sample preparation concept "Parallel artificial liquid membrane extraction (PALME)" was evaluated for extraction of the acidic drugs ketoprofen, fenoprofen, diclofenac, flurbiprofen, ibuprofen, and gemfibrozil from human plasma samples. Plasma samples (250 μL) were loaded into individual wells in a 96-well donor plate and diluted with HCl to protonate the acidic drugs. The acidic drugs were extracted as protonated species from the individual plasma samples, through corresponding artificial liquid membranes each comprising 2 μL of dihexyl ether, and into corresponding acceptor solutions each comprising 50 μL of 25 mM ammonia solution (pH 10). The liquid membranes and the acceptor solutions were located in a 96-well filter plate, which was sandwiched with the 96-well donor plate during extraction. Parallel extraction of several samples was performed for 15 to 60 min, followed by high-performance liquid chromatography-ultraviolet detection of the individual acceptor solutions. Important PALME parameters including the chemical composition of the liquid membrane, extraction time, and sample pH were optimized, and the extraction performance was evaluated. Except for flurbiprofen, exhaustive extraction was accomplished from plasma. Linearity was obtained for all six drugs in the range 0.025-10 μg/mL, with r (2) values ranging between 0.998 and 1.000. Precision data were in the range 3-22% RSD, and accuracy data were within 72-130% with spiked plasma samples. Based on the current experiences, PALME showed substantial potential for future high-throughput bioanalysis of non-polar acidic drugs.

  5. Constructing Ionic Liquid-Filled Proton Transfer Channels within Nanocomposite Membrane by Using Functionalized Graphene Oxide.

    Science.gov (United States)

    Wu, Wenjia; Li, Yifan; Chen, Pingping; Liu, Jindun; Wang, Jingtao; Zhang, Haoqin

    2016-01-13

    Herein, nanocomposite membranes are fabricated based on functionalized graphene oxides (FGOs) and sulfonated poly(ether ether ketone) (SPEEK), followed by being impregnated with imidazole-type ionic liquid (IL). The functional groups (acidic group or basic group) on FGOs generate strong interfacial interactions with SPEEK chains and then adjust their motion and stacking. As a result, the nanocomposite membranes possess tunable interfacial domains as determined by its free volume characteristic, which provides regulated location for IL storage. The stored ILs act as hopping sites for water-free proton conduction along the FGO-constructed interfacial channels. The microstructure at SPEEK-FGO interface governs the IL uptake and distribution in nanocomposite membrane. Different from GO and vinyl imidazole functionalized GO (VGO), the presence of acidic (-SO3H) groups confers the p-styrenesulfonic acid functionalized GO (SGO) incorporated nanocomposite membrane loose interface and strong electrostatic attraction with imidazole-type IL, imparting an enhanced IL uptake and anhydrous proton conductivity. Nanocomposite membrane containing 7.5% SGO attains the maximum IL uptake of 73.7% and hence the anhydrous conductivity of 21.9 mS cm(-1) at 150 °C, more than 30 times that of SPEEK control membrane (0.69 mS cm(-1)). In addition, SGOs generate electrostatic attractions to the ILs confined within SGO-SPEEK interface, affording the nanocomposite membrane enhanced IL retention ability.

  6. Backside calibration potentiometry: ion activity measurements with selective supported liquid membranes by calibrating from the inner side of the membrane.

    Science.gov (United States)

    Malon, Adam; Bakker, Eric; Pretsch, Ernö

    2007-01-15

    In direct potentiometry, the magnitude of the measured potentials is used to determine the composition of the sample. While this places rather formidable demands on the required reproducibility of the associated potential measurements, typically on the order of microvolts, in vitro clinical analyses of blood samples are today successfully performed with direct potentiometry using ion-selective electrodes (ISEs). Unfortunately, most other analytical situations do not permit the sensor to be recalibrated every few minutes, as in environmental monitoring or in vivo measurements, and direct potentiometry is often bound to fail as an accurate method in these circumstances. This paper introduces a novel direction for potentiometric sensing, termed backside calibration potentiometry. Chemical asymmetries across thin supported liquid ISE membranes are assessed by determining the direction of potential drift upon changing the stirring rate on either side of the membrane. Disappearance of this drift indicates the disappearance of concentration gradients across the membrane and is used to determine the sample composition if the solution composition at the backside of the membrane and the interfering ion concentration in the sample are known. For practical determinations, the concentration of either the primary or the interfering ion is varied in the reference solution until the stirring effect disappears. The procedure is demonstrated with a Ca2+-selective membrane using Ba2+ as the dominant interfering ion. Another example includes the determination of Pb2+ in environmental samples where the pH is adjusted to a known level. At pH 4.0, H+ turns out to be the dominant interfering ion. The practical applicability of the method is shown with different environmental water samples, for which the results obtained with the novel method are compared with those obtained by traditional calibration using standard additions. The limitations of the novel method in terms of accuracy and

  7. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Sik [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2015-12-15

    The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst-Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

  8. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    Directory of Open Access Journals (Sweden)

    Byung-Sik Lee

    2015-12-01

    Full Text Available The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst–Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

  9. Preparation and characterization of nonaqueous proton-conducting membranes with protic ionic liquids.

    Science.gov (United States)

    Lu, Fei; Gao, Xinpei; Yan, Xiaojun; Gao, Hejun; Shi, Lijuan; Jia, Han; Zheng, Liqiang

    2013-08-14

    Hybrid Nafion membranes were successfully fabricated by incorporating with protic imidazolium ionic liquids 1-(2-aminoethyl)-3-methylimidazolium chloride ([MimAE]Cl), 1-(2-hydroxylethyl)-3-methylimidazolium chloride ([MimHE]Cl), and 1-carboxylmethyl-3-methylimidazolium chloride ([MimCM]Cl) for high-temperature fuel cells. The composite membranes were characterized by impedance spectroscopy, small-angle X-ray scattering (SAXS), scanning electronic microscopy (SEM), and thermogravimetric analysis (TGA). The incorporated protic ionic liquids enhance the doping of phosphoric acid (PA) and result in a relatively high ionic conductivity. The Nafion/10 wt % [MimAE]Cl/PA composite membrane exhibits an ionic conductivity of 6.0 mS/cm at 130 °C without humidification. [MimAE]Cl can swell the Nafion matrix more homogeneously than [MimHE]Cl or [MimCM]Cl, which results in a better ionic conductivity. It is notable that the composite Nafion/IL/PA membranes have a better thermal stability than the pristine Nafion membranes.

  10. Polymer Electrolyte Fuel Cells Membrane Hydration by Direct Liquid Water Contact

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    An effective means of providing direct liquid hydration of the membrane tends to improve performance particularly of cells with thicker membranes or at elevated temperatures. Supplying the water to the membrane from the anode flow-field through the anode backing via wicks would appear to have advantages over delivering the water through the thickness of the membrane with regards to the uniformity and stability of the supply and the use of off-the-shelf membranes or MEAs. In addition to improving cell performance, an important contribution of direct liquid hydration approaches may be that the overall fuel cell system becomes simpler and more effective. The next steps in the evolution of this approach are a demonstration of the effectiveness of this technique with larger active area cells as well as the implementation of an internal flow-field water reservoir (to eliminate the injection method). Scale-up to larger cell sizes and the use of separate water channels within the anode flow-field is described.

  11. Treatment of Zn-Containing Acidic Waste Water by Emulsion Liquid Membrane Process

    Institute of Scientific and Technical Information of China (English)

    王士柱; 何培炯; 郝东萍; 朱永贝睿

    2002-01-01

    Zn-containing waste water from a viscose staple fiber plant has been treated using the emulsion liquid membrane (ELM) process since 1995. The flow sheet and operating parameters of the ELM process are introduced. After adjusting the membrane composition, changing the emulsion phase ratio, and adding a scrubbing step, the ELM process operated normally without trouble for emulsion splitting and mass transport throughput. The splitter voltage was decreased to 3.55 kV. The zinc concentration of treated waste water was lowered to less than 10 mgL-1. More than 95% of the zinc was recovered and reused.

  12. Study on the oscillating phenomena of electrical potential across a liquid membrane

    Institute of Scientific and Technical Information of China (English)

    Jin Zhang Gao; Hong Xia Dai; Hua Chen; Jie Ren; Wu Yang

    2007-01-01

    The electrical oscillations across a liquid membrane in water/oil/water system was studied with octanol as oil phase by introducing two opposite charged surfactants in oil and aqueous phase, respectively. The sustained and rhythmic oscillation was observed. To a certain extent, the features of the oscillation (e.g. induction time, frequency, life time and orientation of the pulse pikes) strongly depend on the property of surfactant, dissolved in octanol. The mechanism may be explained by the formation and destruction of dual-ion surfactant membrane accompanying with emulsification at the interface and considering the coupling effect of diffusion and associated reaction in the vicinity of the interface.

  13. Recovery of Copper Ions from Wastewater by Hollow Fiber Supported Emulsion Liquid Membrane

    Institute of Scientific and Technical Information of China (English)

    郑辉东; 陈晶晶; 王碧玉; 赵素英

    2013-01-01

    Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effects of compositions of feed and emulsion liquid phase, flow rates on both sides of membrane, and hollow fiber module parameters were investigated. The stability of the emulsion liquid phase without surfactant and the effect of buffer in the feed phase on the extraction rate were also evaluated. It is found that the stability of the emulsion phase without surfactant is poor. Higher flow velocity gives shorter residence time for the emulsion liquid phase on the tube side, reducing the effect of particle coalescence on the separation process. The extraction rate increases with the increase of feed phase pH, carrier concentration, hydrogen ion concentration in the stripping phase, and ef-fective hollow fiber area. The phase ratio in the emulsion liquid phase has a negative effect on extraction rate. The flow rates on both sides have little influence on the extraction performance of the HFSELM, while buffer addition in the feed solution improves the extraction efficiency.

  14. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Cabin Applications

    Science.gov (United States)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Chullen, Cinda

    2016-01-01

    The development of new, robust, life support systems is critical to NASA's continued progress in space exploration. One vital function is maintaining the carbon dioxide (CO2) concentration in the cabin at levels that do not impair the health or performance of the crew. The CO2 removal assembly (CDRA) is the current CO2 control technology on-board the International Space Station (ISS). Although the CDRA has met the needs of the ISS to date, the repeated cycling of the molecular sieve sorbent causes it to break down into small particles that clog filters or generate dust in the cabin. This reduces reliability and increases maintenance requirements. Another approach that has potential advantages over the current system is a membrane that separates CO2 from air. In this approach, cabin air contacts one side of the membrane while other side of the membrane is maintained at low pressure to create a driving force for CO2 transport across the membrane. In this application, the primary power requirement is for the pump that creates the low pressure and then pumps the CO2 to the oxygen recovery system. For such a membrane to be practical, it must have high CO2 permeation rate and excellent selectivity for CO2 over air. Unfortunately, conventional gas separation membranes do not have adequate CO2 permeability and selectivity to meet the needs of this application. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over air. In a recently completed Phase II SBIR project, Reaction Systems, Inc. fabricated an SLM that is very close to meeting permeability and selectivity objectives for use in the advanced space suit portable life support system. This paper describes work carried out to evaluate its potential for use in spacecraft cabin application.

  15. Membrane-based recovery of glucose from enzymatic hydrolysis of ionic liquid pretreated cellulose.

    Science.gov (United States)

    Abels, Christian; Thimm, Kristof; Wulfhorst, Helene; Spiess, Antje Christine; Wessling, Matthias

    2013-12-01

    In this work, a membrane-based downstream process for the recovery of glucose from cellulose hydrolysis is described and evaluated. The cellulose is pretreated with the ionic liquid 1,3-dimethyl-imidazolium dimethylphosphate to reduce its crystallinity. After enzymatic conversion of cellulose to glucose the hydrolysate is filtered with an ultrafiltration membrane to remove residual particulates and enzymes. Nanofiltration is applied to purify the glucose from molecular intermediates, such as cellobiose originating from the hydrolysis reaction. Finally, the ionic liquid is removed from the hydrolysate via electrodialysis. Technically, these process steps are feasible. An economic analysis of the process reveals that the selling price of glucose from this production process is about 2.75 €/kg which is too high as compared to the current market price. Copyright © 2013. Published by Elsevier Ltd.

  16. Study on Extracting Low Concentration Cadmium from Zinc Hydrometallurgy System by Liquid Membrane Crystallizing Technique

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The extraction of low concentration cadmium from a system containing high concentration zinc was studied and got CdS product directly. A new liquid membrane system taking DIPSA, TIBPS as carriers, (NH4)2S as precipitating agent was reported. Precipitating Cd2+ in the internal aq. phase that is used to treat sulfuric acid leaching solution of zinc oxide in zinc hydrometallurgy has gotten satisfied results of extracting cadmium from high concentration zinc. After one-stage of batch process under the optimum liquid membrane conditions, 98.6% transferring rate and 98.1% extracting rate of cadmium was obtained with only less than 1.0% transferring rate of zinc, and the feed solution can be purified very well.

  17. Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes

    Science.gov (United States)

    Berrod, Q.; Ferdeghini, F.; Judeinstein, P.; Genevaz, N.; Ramos, R.; Fournier, A.; Dijon, J.; Ollivier, J.; Rols, S.; Yu, D.; Mole, R. A.; Zanotti, J.-M.

    2016-04-01

    Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators.Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01445c

  18. Extraction matrine from Radix Sopheorae Tonkinensis by non-supported liquid membrane extraction technology

    Directory of Open Access Journals (Sweden)

    Zhifeng Guo

    2016-09-01

    Full Text Available Non-Supported Liquid Membrane Extraction (NSLME is a new development extraction technology based on Supported Liquid Membrane Extraction (SLME. Sample extraction assembly is composed of three phases: an acceptor phase: phosphate–sodium dihydrogen phosphate buffer solution at the bottom; an organic phase: chloroform applied as the non-supported liquid membrane in the middle layer; and a donor phase: aqueous solution samples containing alkaloids in the upper layer. The whole system is maintained stable by density difference among the three layers that avoided the mutual interferences. The alkaloid in the donor phase can spread to the underlying acidic acceptor phase, where it is able to form water soluble salt in the acid environment, and thus cannot return to the middle organic phase. Therefore, the transmission of alkaloid is a one-way path, and the extraction of alkaloids can be achieved and enriched. In this study, the extraction of alkaloid was carried out by using matrine aqueous solution as the donor phase, and the extraction quantity and efficiency were investigated by GC/MS. This study evaluated the relationship between extracted quantity and extraction time. The effects of extraction temperature, membrane thickness, pH value of acceptor phase on extraction quantity and efficiency were also studied, and the optimal extraction condition was found. The extracted quantity achieved the largest amount at 45 °C when pure phosphoric acid was applied as the acceptor phase; the organic solvent volume was 0.2 mL. The extraction of alkaloid from Radix Sophorae Tonkinensis was performed under the optimized condition. The extraction rate of matrine was up to 54% after a four-hour extraction. A huge advantage of NSLME technology is that the extracted alkaloid enjoyed high purity compared with that extracted by the traditional Liquid–Liquid Extraction (LLE.

  19. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  20. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 11, March 21, 1992--June 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-12-31

    Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. Having the inherent capability for combining reaction and separation in a single step, they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, such as these typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. This project will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. Development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  1. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes.

    Science.gov (United States)

    Koók, László; Nemestóthy, Nándor; Bakonyi, Péter; Zhen, Guangyin; Kumar, Gopalakrishnan; Lu, Xueqin; Su, Lianghu; Saratale, Ganesh Dattatraya; Kim, Sang-Hyoun; Gubicza, László

    2017-05-01

    In this work, the performance of dual-chamber microbial fuel cells (MFCs) constructed either with commonly used Nafion(®) proton exchange membrane or supported ionic liquid membranes (SILMs) was assessed. The behavior of MFCs was followed and analyzed by taking the polarization curves and besides, their efficiency was characterized by measuring the electricity generation using various substrates such as acetate and glucose. By using the SILMs containing either [C6mim][PF6] or [Bmim][NTf2] ionic liquids, the energy production of these MFCs from glucose was comparable to that obtained with the MFC employing polymeric Nafion(®) and the same substrate. Furthermore, the MFC operated with [Bmim][NTf2]-based SILM demonstrated higher energy yield in case of low acetate loading (80.1 J g(-1) CODin m(-2) h(-1)) than the one with the polymeric Nafion(®) N115 (59 J g(-1) CODin m(-2) h(-1)). Significant difference was observed between the two SILM-MFCs, however, the characteristics of the system was similar based on the cell polarization measurements. The results suggest that membrane-engineering applying ionic liquids can be an interesting subject field for bioelectrochemical system research.

  2. REMOVAL OF COPPER IONS USING ALIQUAT 336/TBP BASED SUPPORTED LIQUID MEMBRANE

    Directory of Open Access Journals (Sweden)

    Baghdad Medjahed

    2014-03-01

    Full Text Available The sorption of copper (II present in an aqueous media using a supported liquid membrane (SLM by chloride tri-N-octylmethylammonium (Aliquat 336 and Tri-n-butylphosphate (TBP from molar ratio 1:1, with polytetrafluoroethylene (PTFE as a membrane support was studied. The effects of various parameters as initial pH, KSCN concentration and ammonium acetate concentration on the extraction yield were carried out. By a calculation program using CHEAQS V. L20.1, the determination of the percentages of the present species before and after extraction were given, in aqueous medium and on the membrane to be able to determine the relation between the nature of the extracted species and the extraction yield. The 23 factorial design achieve the best conditions of recovery procedure. The recovery of copper (II is almost quantitative (94 %, in one step.

  3. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions.

    Science.gov (United States)

    Kim, Sung Yeon; Kim, Suhan; Park, Moon Jeong

    2010-10-05

    Proton exchange fuel cells (PEFCs) have the potential to provide power for a variety of applications ranging from electronic devices to transportation vehicles. A major challenge towards economically viable PEFCs is finding an electrolyte that is both durable and easily passes protons. In this article, we study novel anhydrous proton-conducting membranes, formed by incorporating ionic liquids into synthetic block co-polymer electrolytes, poly(styrenesulphonate-b-methylbutylene) (S(n)MB(m)), as high-temperature PEFCs. The resulting membranes are transparent, flexible and thermally stable up to 180 °C. The increases in the sulphonation level of S(n)MB(m) co-polymers (proton supplier) and the concentration of the ionic liquid (proton mediator) produce an overall increase in conductivity. Morphology effects were studied by X-ray scattering and electron microscopy. Compared with membranes having discrete ionic domains (including Nafion 117), the nanostructured membranes revealed over an order of magnitude increase in conductivity with the highest conductivity of 0.045 S cm(-1) obtained at 165 °C.

  4. Study on a Novel Disphase Supplying Supported Liquid Membrane for Transport Behavior of Divalent Nickel Ions

    Institute of Scientific and Technical Information of China (English)

    裴亮; 王理明; 郭维; 赵楠

    2012-01-01

    A novel d!sphase supplying supported liquid membrane (DSSLM), containing supplying feed phase andsupplying stripping phase tor transport behavior ot NI(Ⅱ), have been studied. The supplying supported feed phase included feed solution and di(2-ethyhexyl) phosphoric acid (HDEHP) as the carrier in kerosene, and supplying stripping phase included HDEHP as the cartier in kerosene and HC1 as the stripping agent. The effects of volume ratio of membrane solution to feed solution (O/F), pH, initial concentration of Ni(Ⅱ) and ionic strength in the feedsolution, volume ratio of membrane solution to stripping solution (O/S), concentration of H2SO4 solution, HDEHP concentration in the supplying stripping phase on transport of Ni(/I), the advantages of DSSLM compared to the traditional supported liquid membrane (SLM), the system stability, the reuse of membrane solution and the reten- tion of membrane phase were studied. Experimental results indicated that the optimum transpgrt of Ni(Ⅱ) was oh-tained when H2SO4 concentration was 2.00 mol'L-', HDEHP concentration was 0.120 mol·L-1, and O/S was 4· 1 in the supplying stripping phase, O/F was 1 : 10 and pH was 5.20 in the supplying feed phase. The ionic strength in supplying feed phase had no obvious effect on transport of Ni(Ⅱ). When initial Ni(Ⅱ) concentration was 2.00x 10-4 mol/L, the transport percentage of Ni(Ⅱ) was up to 93.1% in 250 min. The kinetic equation was deduced in terms of the law of mass diffusion and the interface chemistry.

  5. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    Science.gov (United States)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  6. Predicting drug penetration across the blood-brain barrier: comparison of micellar liquid chromatography and immobilized artificial membrane liquid chromatography.

    Science.gov (United States)

    De Vrieze, Mike; Lynen, Frédéric; Chen, Kai; Szucs, Roman; Sandra, Pat

    2013-07-01

    Several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier (BBB) into the central nervous system (CNS). In this article, the performance of a variety of micellar liquid chromatographic (MLC) methods and immobilized artificial membrane (IAM) liquid chromatographic approaches were compared for a set of 45 solutes. MLC measurements were performed on a C18 column with sodium dodecyl sulfate (SDS), polyoxyethylene (23) lauryl ether (Brij35), or sodium deoxycholate (SDC) as surfactant in the micellar mobile phase. IAM liquid chromatography measurements were performed with Dulbecco's phosphate-buffered saline (DPBS) and methanol as organic modifier in the mobile phase. The corresponding retention and computed descriptor data for each solute were used for construction of models to predict transport across the blood-brain barrier (log BB). All data were correlated with experimental log BB values and the relative performance of the models was studied. SDS-based models proved most suitable for prediction of log BB values, followed closely by a simplified IAM method, in which it could be observed that extrapolation of retention data to 0% modifier in the mobile phase was unnecessary.

  7. Mechanical and optical behavior of a tunable liquid lens using a variable cross section membrane: modeling results

    Science.gov (United States)

    Flores-Bustamante, Mario C.; Rosete-Aguilar, Martha; Calixto, Sergio

    2016-03-01

    A lens containing a liquid medium and having at least one elastic membrane as one of its components is known as an elastic membrane lens (EML). The elastic membrane may have a constant or variable thickness. The optical properties of the EML change by modifying the profile of its elastic membrane(s). The EML formed of elastic constant thickness membrane(s) have been studied extensively. However, EML information using elastic membrane of variable thickness is limited. In this work, we present simulation results of the mechanical and optical behavior of two EML with variable thickness membranes (convex-plane membranes). The profile of its surfaces were modified by liquid medium volume increases. The model of the convex-plane membranes, as well as the simulation of its mechanical behavior, were performed using Solidworks® software; and surface's points of the deformed elastic lens were obtained. Experimental stress-strain data, obtained from a silicone rubber simple tensile test, according to ASTM D638 norm, were used in the simulation. Algebraic expressions, (Schwarzschild formula, up to four deformation coefficients, in a cylindrical coordinate system (r, z)), of the meridional profiles of the first and second surfaces of the deformed convex-plane membranes, were obtained using the results from Solidworks® and a program in the software Mathematica®. The optical performance of the EML was obtained by simulation using the software OSLO® and the algebraic expressions obtained in Mathematica®.

  8. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    Science.gov (United States)

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    -films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations.

  9. Global Analysis of the Membrane Subproteome of Pseudomonas aeruginosa using Liquid Chromatography-Tandem Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Blonder, Josip; Goshe, Michael B.; Xiao, Wenzhong; Camp, David G.; Wingerd, Mark A.; Davis, Ronald W.; Smith, Richard D.

    2004-05-30

    Pseudomonas aeruginosa is one of the most significant opportunistic bacterial pathogens in humans causing infections and premature death in patients with cystic fibrosis, AIDS, severe burns, organ transplants or cancer. Liquid chromatography coupled online with tandem mass spectrometry (LC-MS/MS) was used for the large-scale proteomic analysis of the P. aeruginosa membrane subproteome. Concomitantly, an affinity labeling technique, using iodoacetyl-PEO biotin to tag cysteinyl-containing proteins, permitted the enrichment and detection of lower abundance membrane proteins. The application of these approaches resulted in the identification of 786 proteins. A total of 333 proteins (42%) had a minimum of one transmembrane domain (TMD; ranging from 1 to 14) and 195 proteins were classified as hydrophobic based on their positive GRAVY values (ranging from 0.01 to 1.32). Key integral inner and outer membrane proteins involved in adaptation and antibiotic resistance were conclusively identified, including the detection of 53% of all predicted opr-type porins (outer integral membrane proteins) and all the components of the mexA-mexB-oprM transmembrane protein complex. This work represents the most comprehensive qualitative proteomic analysis of the membrane subproteome of P. aeruginosa and for prokaryotes in general to date.

  10. Pervaporation performance of PPO membranes in dehydration of highly hazardous mmh and udmh liquid propellants.

    Science.gov (United States)

    Moulik, Siddhartha; Kumar, K Praveen; Bohra, Subha; Sridhar, Sundergopal

    2015-05-15

    Polyphenylene oxide (PPO) membranes synthesized from 2,6-dimethyl phenol monomer were subjected to pervaporation-based dehydration of the highly hazardous and hypergolic monomethyl hydrazine (MMH) and unsymmetrical dimethyl hydrazine (UDMH) liquid propellants. Membranes were characterized by TGA, DSC and SEM to study the effect of temperature besides morphologies of surface and cross-section of the films, respectively. Molecular dynamics (MD) simulation was used to study the diffusion behavior of solutions within the membrane. CFD method was employed to solve the governing mass transfer equations by considering the flux coupling. The modeling results were highlighted by the experimental data and were in good agreement. High separation factors (35-70) and reasonable water fluxes (0.1-0.2 kg/m(2)h) were observed for separation of the aqueous azeotropes of MMH (35 wt%) and UDMH (20 wt%) and their further enrichment to >90% purity. Effect of feed composition, membrane thickness and permeate pressure on separation performance of PPO membranes were investigated to determine optimum operating conditions.

  11. Metal nanoparticles/ionic liquid/cellulose: polymeric membrane for hydrogenation reactions

    Directory of Open Access Journals (Sweden)

    Marcos Alexandre Gelesky

    2014-01-01

    Full Text Available Rhodium and platinum nanoparticles were supported in polymeric membranes with 10, 20 and 40 µm thickness. The polymeric membranes were prepared combining cellulose acetate and the ionic liquid (IL 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonylimide (BMI.(NTf2. The presence of metal nanoparticles induced an increase in the polymeric membrane surface areas. The increase of the IL content resulted in an improvement of elasticity and decrease in tenacity and toughness, whereas the stress at break was not affected. The presence of IL probably causes an increase in the separation between the cellulose molecules that result in a higher flexibility and processability of the polymeric membrane. The CA/IL/M(0 combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The CA/IL/M(0 polymeric membrane displays higher catalytic activity (up to 7.353 h-1 for the 20 mm of CA/IL/Pt(0 and stability than the nanoparticles dispersed only in the IL.

  12. Development of Bitter Taste Sensor Using Ionic-Liquid/Polymer Membranes

    Science.gov (United States)

    Akutagawa, Nobuyuki; Toida, Jinichi; Amano, Yoshihiko; Ikezaki, Hidekazu; Toko, Kiyoshi; Arikawa, Yukihiko

    A taste sensor is composed of several kinds of lipid/polymer membranes as transducers which convert taste information to electric signal. Thus, the role of membranes is very important to detect various taste components. In this paper, we developed novel membranes which specifically respond to quinine that is typical bitter substances. These membranes were composed of hydrophobic ionic liquid such as N, N, N-trimethyl-N-propylammonium bis(trifluoromethansulfonyl)imide, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butylpyridinium hexafluorophosphate, a plasticizer, 2-nitrophenyl octyl ether and a polymer, polyvinyl chloride. In addition to quinine, they also showed response to both several kinds of alkaloids such as caffeine and strychnine, and non-alkaloid such as phenylthiocarbamide. The order of these responses was equal to that of the tongue glossopharyngeal nerve of flog. Furthermore, there were the other alkaloids which response to these membranes. Especially in these alkaloids, they showed high response to denatonium benzoate and berberin chloride which have a strong bitter taste.

  13. Size Control and Fractionation of Ionic Liquid Filled Polymersomes with Glassy and Rubbery Bilayer Membranes.

    Science.gov (United States)

    So, Soonyong; Lodge, Timothy P

    2016-05-17

    We demonstrate control over the size of ionic liquid (IL) filled polymeric vesicles (polymersomes) by three distinct methods: mechanical extrusion, cosolvent-based processing in an IL, and fractionation of polymersomes in a biphasic system of IL and water. For the representative ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI])), the size and dispersity of polymersomes formed from 1,2-polybutadiene-b-poly(ethylene oxide) (PB-PEO) and polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock copolymers were shown to be sensitive to assembly conditions. During mechanical extrusion through a polycarbonate membrane, the relatively larger polymersomes were broken up and reorganized into vesicles with mean size comparable to the membrane pore (100 nm radius); the distribution width also decreased significantly after only a few passes. Other routes were studied using the solvent-switch or cosolvent (CS) method, whereby the initial content of the cosolvent and the PEO block length of PS-PEO were systemically changed. The nonvolatility of the ionic liquid directly led to the desired concentration of polymersomes in the ionic liquid using a single step, without the dialysis conventionally used in aqueous systems, and the mean vesicle size depended on the amount of cosolvent employed. Finally, selective phase transfer of PS-PEO polymersomes based on size was used to extract larger polymersomes from the IL to the aqueous phase via interfacial tension controlled phase transfer. The interfacial tension between the PS membrane and the aqueous phase was varied with the concentration of sodium chloride (NaCl) in the aqueous phase; then the larger polymersomes were selectively separated to the aqueous phase due to differences in shielding of the hydrophobic core (PS) coverage by the hydrophilic corona brush (PEO). This novel fractionation is a simple separation process without any special apparatus and can help to prepare monodisperse polymersomes

  14. Partial delignification of wood and membrane preparation using a quaternary ammonium ionic liquid

    Science.gov (United States)

    Miao, Jiaojiao; Yu, Yongqi; Jiang, Zeming; Tang, Lan; Zhang, Liping

    2017-01-01

    This work determined that southern yellow pine wood can almost be completely dissolved in the quaternary ammonium ionic liquid tetrabutylammonium acetate with dimethyl sulfoxide (in a 2:8 mass ratio), after minimal grinding, upon heating at 85 °C for three dissolution/reconstitution cycles, each 1.5 h. Approximately 34.6% of the native lignin and 67.4% of the native carbohydrates present in the original wood can subsequently be extracted, respectively, and were assessed. A gradual decrease in lignin with increased extraction cycles resulted in increased crystallinity index of the cellulose II in the cellulose-rich residue, as confirmed by X-ray diffraction. An increasingly homogeneous macrostructure in the cellulose-rich residue was also evident from scanning electron microscopy images. Membranes cast directly from either wood or cellulose-rich residue solutions in the same tetrabutylammonium acetate/dimethyl sulfoxide system, were prepared using a papermaking-like process. Morphological and mechanical studies indicated that lignin extraction made the membranes more uniform and flexible. Systematic increases in the fibril lengths and orientations of the recovered materials were also found with decreasing lignin contents on the basis of atomic force microscopy analysis. This work demonstrates that relatively efficient partial separation of pine wood and subsequent membrane preparation are possible using a quaternary ammonium ionic liquid. PMID:28266507

  15. Basic technology for {sup 6}Li enrichment using an ionic-liquid impregnated organic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki 311-1393 (Japan); Terai, Takayuki [The Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2011-10-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ({sup 6}Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% {sup 6}Li. In this paper, a new lithium isotope separation technique using an ionic-liquid impregnated organic membrane is proposed. In order to separate and concentrate lithium isotopes, only lithium ions are able to move through the membrane by electrodialysis between the cathode and the anode in lithium solutions. Preliminary experiments of lithium isotope separation were conducted using this phenomenon. Organic membranes impregnated with TMPA-TFSI and PP13-TFSI as ionic liquids were prepared, and the relationship between the {sup 6}Li separation coefficient and the applied electrodialytic conditions was evaluated using them. The results showed that the {sup 6}Li isotope separation coefficient in this method (about 1.1-1.4) was larger than that in the mercury amalgam method (about 1.06).

  16. Partial delignification of wood and membrane preparation using a quaternary ammonium ionic liquid

    Science.gov (United States)

    Miao, Jiaojiao; Yu, Yongqi; Jiang, Zeming; Tang, Lan; Zhang, Liping

    2017-03-01

    This work determined that southern yellow pine wood can almost be completely dissolved in the quaternary ammonium ionic liquid tetrabutylammonium acetate with dimethyl sulfoxide (in a 2:8 mass ratio), after minimal grinding, upon heating at 85 °C for three dissolution/reconstitution cycles, each 1.5 h. Approximately 34.6% of the native lignin and 67.4% of the native carbohydrates present in the original wood can subsequently be extracted, respectively, and were assessed. A gradual decrease in lignin with increased extraction cycles resulted in increased crystallinity index of the cellulose II in the cellulose-rich residue, as confirmed by X-ray diffraction. An increasingly homogeneous macrostructure in the cellulose-rich residue was also evident from scanning electron microscopy images. Membranes cast directly from either wood or cellulose-rich residue solutions in the same tetrabutylammonium acetate/dimethyl sulfoxide system, were prepared using a papermaking-like process. Morphological and mechanical studies indicated that lignin extraction made the membranes more uniform and flexible. Systematic increases in the fibril lengths and orientations of the recovered materials were also found with decreasing lignin contents on the basis of atomic force microscopy analysis. This work demonstrates that relatively efficient partial separation of pine wood and subsequent membrane preparation are possible using a quaternary ammonium ionic liquid.

  17. Determination of Dioxins in Blood Using Nano-baskets Doped in Emulsion Liquid Membranes

    Institute of Scientific and Technical Information of China (English)

    MOKHTARI Bahram; POURABDOLLAH Kobra

    2013-01-01

    Extraction of dioxins from blood samples was carried out by inclusion-facilitated emulsion liquid membrane process.The novelty of this work is the application of nano-baskets of calixarene and emulsion liquid membranes in the selective and efficient preconcentration of dioxin.For this aim,four derivatives ofp-tert-calix[4]arene bearing different sulfonamide moieties were synthesized and their inclusion-extraction parameters were optimized including the calixarene's scaffold and concentration(as the carrier/demulsifier),the diluent type in membrane,the phase and the treat ratio,mixing speed,and initial solute concentration.Determinations were followed by a gas chromatograph and the results reveal that under the optimized operating conditions,the preconcentration of dioxins was improved and the method achieved lower limit of detections(LODs).Under optimal conditions,the figures of merits were determined to be LOD 1.0 pg/L,dynamic range 0.6-112.0 pg/L,RSD 5.5%(n=5),and the maximum enrichment factor and recovery were determined to be 3.3 and 99%,respectively.

  18. Selective extraction of triazine herbicides from food samples based on a combination of a liquid membrane and molecularly imprinted polymers.

    Science.gov (United States)

    Mhaka, Byron; Cukrowska, Ewa; Bui, Bernadette Tse Sum; Ramström, Olof; Haupt, Karsten; Tutu, Hlanganani; Chimuka, Luke

    2009-10-02

    A selective extraction technique based on the combination of liquid membrane (microporous membrane liquid-liquid extraction) and molecularly imprinted polymers (MIP) was applied to triazines herbicides in food samples. Simazine, atrazine and propazine were extracted from aqueous food samples through the hydrophobic porous membrane that was impregnated with toluene, which also formed part of the acceptor phase. In the acceptor phase, the compounds were re-extracted onto MIP particles. The extraction technique was optimised for the amount of molecularly imprinted polymers particles in the organic acceptor phase, extraction time, and type of organic acceptor solvent and desorption solvent. An extraction time of 90 min and 50mg of MIP were found to be optimum parameters. Toluene as the acceptor phase was found to give higher triazines binding onto MIP particles compared to hexane and combinations of diethyl ether and hexane. 90% methanol in water was found to be the best desorption solvent compared to acetonitrile, methanol and water. The selectivity of the technique was demonstrated by extracting spiked lettuce and apple extracts where clean chromatograms were obtained compared to liquid membrane extraction alone or to the microporous membrane liquid-liquid extraction - non-imprinted polymer combination. The MIP showed a certain degree of group specificity and the extraction efficiency in lettuce extract was 79% (0.72) for simazine, 98% (1.55) for atrazine and 86% (3.08) for propazine.

  19. Liquid membrane ion-selective electrodes for potentiometric dosage of coper and nickel

    Directory of Open Access Journals (Sweden)

    MARIA PLENICEANY

    2005-02-01

    Full Text Available This paper presents experimental and theoretical data regarding the preparation and characterization of three liquid-membrane electrodes, which have not been mentioned in the specialized literature so far. The active substances, the solutions of which in nitrobenzene formed the membranes on a graphite rod, are simple complex combinations of Cu(II and Ni(II ions with an organic ligand belonging to the Schiff base class: N-[2-thienylmethilidene]-2-aminoethanol (TNAHE. The Cu2+ -selective and Ni2+ -selective electrodes were used to determine the copper and nickel ions in aqueous solutions, both by direct potentiometry and by potentiometric titration with EDTA. They were also used for the determination of Cu2+ and Ni2+ ions in industrial waters by direct potentiometry.

  20. Removal of acetic acid from simulated hemicellulosic hydrolysates by emulsion liquid membrane with organophosphorus extractants.

    Science.gov (United States)

    Lee, Sang Cheol

    2015-09-01

    Selective removal of acetic acid from simulated hemicellulosic hydrolysates containing xylose and sulfuric acid was attempted in a batch emulsion liquid membrane (ELM) system with organophosphorus extractants. Various experimental variables were used to develop a more energy-efficient ELM process. Total operation time of an ELM run with a very small quantity of trioctylphosphine oxide as the extractant was reduced to about a third of those required to attain almost the same extraction efficiency as obtained in previous ELM works without any extractant. Under specific conditions, acetic acid was selectively separated with a high degree of extraction and insignificant loss of xylose, and its purity and enrichment ratio in the stripping phase were higher than 92% and 6, respectively. Also, reused organic membrane solutions exhibited the extraction efficiency as high as fresh organic solutions did. These results showed that the current ELM process would be quite practical.

  1. Extraction of Amino-J Acid from Waste-water by Emulsion Liquid Membrane

    Institute of Scientific and Technical Information of China (English)

    潘碌亭

    2006-01-01

    The emulsion liquid membrane technique was used to extract amino-J acid from industrial dye waste-water. The effects of stirring speed, ratio of the emulsion to water (Rew), ratio of the oil to internal phase (Roi) and membrane phase components on the extraction rate were investigated and optimized. The results showed that the extraction rate of amino-J acid approached 97% when the stirring speed was 300 r/min, Rew 1:6, Roi 1:1, trioctylamine (TOA) 3 mL/100 mL kerosene, and methyl-didecyle-alcohol-acrylate (LMA-2) 3 g/100 mL kerosene, respectively. The extraction rate had not changed with the oil phase reused for times.

  2. 新型液膜振荡器%New Type of Liquid Membrane Oscillator

    Institute of Scientific and Technical Information of China (English)

    贺占博; 阎喜龙; 聂玉敏; 张凤才

    1999-01-01

    A new type of liquid membrane oscillator in which non-ionic surfactant is the key component was designed in a U type tube and monitored by a pair of Pt electrodes.The fundamental composition is 1.0% emulsifier OP (aq)/n-butanol:nitrobenzene=1∶5(V/V)/0.5mol· dm-3 NaCl(aq).The molecular formula of emulsifier OP is C8H17 ◎O(CH2CH2O)10H.The mechanism and influence factors were studied by replacing component,changing concentration,adding additive,comparison between different experimental apparatus and auxiliary experiment.The oscillatory mechanism is repetitive formation and abrupt destruction of interface membrane of the surfactant,induced by hydrogen bond between n-butanol and emulsifier OP.

  3. Racemic ofloxacin separation by supported-liquid membrane extraction with two organic phases

    Institute of Scientific and Technical Information of China (English)

    唐课文; 周春山; 蒋新宇

    2003-01-01

    Based on chemical thermodynamic theory, racemic ofloxacin is separatedin chiral systems by hollow fiber liquid-supported membrane technology combining with countercurrently fractional extraction. The two chiral solutions containing L-dibenzoyltartaric acid and D-dibenzoylta- rtaric acid in 1-octanol, flow through the lumen side and the shell side of fibers, respectively. The solution which flows through the lumen side of fibers also contains racemic ofloxacin. The wall of hollow fibers is filled with an aqueous of 0.1 mol/L Na2HPO4/H3PO4 buffer solution of pH = 6.86 containing 2 mmol/L of cetyltrimethyl ammonium bromide for 48 h. The fairly polar ofloxacin can cross the membrane back and forth, but dibenzoyltartaric acids cannot cross it. Fractional chiral extraction theory, mass transfer performance of hollow fiber membrane and enantioselectivity are investigated. Mathematical model of R/S = 0.96e0.03NTU for racemic ofloxacin separation by hollow fiber extraction, is established. The optical purity for ofloxacin enantiomers is up to 90% when 11 hollow fiber membrane modules of 22 cm in length in series are used.

  4. Absorption of Low Concentration Sulfur Dioxide Using Liquid-containing Microporous Membrane

    Institute of Scientific and Technical Information of China (English)

    薛娟琴; 兰新哲; 孟令嫒; 李伟达

    2007-01-01

    The absorption of low concentration SO2 in flue gas by using the module of liquid-containing microporous membrane which iS made up of hollow fiber and citric acid-sodium citrate buffer solution was investigated.The absorption efficiency of hydrophilic and hydrophobic membranes by using the concept of dynamic contact angle was mainly studied.The infuences on absorption efficiency from absorption time,flowrate of gas phase,SO2 concentration of gas phase,air pressure,citrate concentration,pH value of solution as well as the generation of sulfate radical in absorption solution were examined.The results indicate that the hydrophobic hollow fiber membrane is better than hydrophilic membrane,the absorption efficiency decreases with increasing absorption time,gas phase flowrate,gas phase SO2 concentration and air pressure,the absorption rate and capacity of SO2 can be improved by increasing the citrate concentration,the absorption efficiency can be improved by increasing the pH value of citrate solution,the concentration of SO4z- in absorption solution increases linearly with the absorption time at a rate around 0.192g/(L·h).

  5. Impact of membrane solid-liquid separation on design of biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ramphao, M; Wentzel, M C; Merritt, R; Ekama, G A; Young, T; Buckley, C A

    2005-03-20

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only in the design of the BNR system itself, but also in the design approach for the whole wastewater treatment plant (WWTP). In multizone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic, and aerobic zones (i.e., fixed volume fractions), the mass fractions can be controlled (within a range) with the interreactor recycle ratios. This zone mass fraction flexibility is a significant advantage in membrane BNR systems over conventional BNR systems with SSTs, because it allows for changing of the mass fractions to optimize biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios in the upper range (f(q) approximately 2.0), aerobic mass fractions in the lower range (f(maer) secondary settling tanks is not as large (40% to 60%), the cost of the membranes can be offset against sludge thickening and stabilization costs. Moving from a flow-unbalanced raw wastewater system to a flow-balanced (f(q) = 1), low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes from extended aeration to include primary sludge stabilization. The cost of primary sludge treatment then has to be paid from the savings from the increased WWTP capacity.

  6. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma

    DEFF Research Database (Denmark)

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine

    2016-01-01

    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic solv...... matrix effects were investigated with fluoxetine, fluvoxamine, and quetiapine as model analytes. No signs of matrix effects were observed. Finally, PALME was evaluated for the aforementioned drug substances, and data were in accordance with European Medicines Agency (EMA) guidelines....

  7. Note: Buoyant-force assisted liquid membrane electrochemical etching for nano-tip preparation

    Science.gov (United States)

    Zeng, Yongbin; Wang, Yufeng; Wu, Xiujuan; Xu, Kun; Qu, Ningsong

    2014-12-01

    A liquid membrane electrochemical etching process for preparing nano-tips is proposed by the introduction of buoyant force to the lower tip, in which the lower portion of the anodic wire is immersed into a floating layer. A mathematical model of this method is derived. Both calculation and experimental results demonstrate that the introduction of buoyant force can significantly decrease the tip radius. The lubricating oil and deionized water floating layers were tested for the processing of nano-tips. Further, high-aspect-ratio nano-electrodes were prepared by applying a relative vertical movement to the anodic wire.

  8. Stability Limit of Water by Metastable Vapor-Liquid Equilibrium with Nanoporous Silicon Membranes.

    Science.gov (United States)

    Chen, I-Tzu; Sessoms, David A; Sherman, Zachary; Choi, Eugene; Vincent, Olivier; Stroock, Abraham D

    2016-06-16

    Liquid can sustain mechanical tension as its pressure drops below the vapor-liquid coexistence line and becomes less than zero, until it reaches the stability limit-the pressure at which cavitation inevitably occurs. For liquid water, its stability limit is still a subject of debate: the results obtained by researchers using a variety of techniques show discrepancies between the values of the stability limit and its temperature dependence as temperature approaches 0 °C. In this work, we present a study of the stability limit of water by the metastable vapor-liquid equilibrium (MVLE) method with nanoporous silicon membranes. We also report on an experimental system which enables tests of the temperature dependence of the stability limit with MVLE. The stability limit we found increases monotonically (larger tension) as temperature approaches 0 °C; this trend contradicts the centrifugal result of Briggs but agrees with the experiments by acoustic cavitation. This result confirms that a quasi-static method can reach stability values similar to that from the dynamic stretching technique, even close to 0 °C. Nevertheless, our results fall in the range of ∼ -20 to -30 MPa, a range that is consistent with the majority of experiments but is far less negative than the limit obtained in experiments involving quartz inclusions and that predicted for homogeneous nucleation.

  9. 离子液体支撑液膜的研究及应用进展%Progress of supported liquid membrane with ionic liquids

    Institute of Scientific and Technical Information of China (English)

    沈江南; 阮慧敏; 吴东柱; 章杰

    2009-01-01

    回顾了目前为止离子液体支撑液膜的制备方法,离子液体结构,支撑膜结构对离子液体支撑液膜稳定性的影响因素,介绍了其在有机物分离,气体分离、分离反应耦合方面的应用.由于传统的单元操作很难满足污染和对过程集成的要求,对离子液体支撑液膜在未来实现清洁生产的发展方向进行了展望.%Supercritical fluids,room temperature ionic liquids,CO_2 expanded liquids and water,as well as their mixtures are currently regarded as green solvents.As substitution for volatile organic solvent,ionic liquids can be applied in separation process,chemical reaction,electrochemistry,and so on.This review summarizes the recent progress in preparation method of supported liquid membrane with ionic liquids,and the effect of the structure of ionic liquids and support membrane on the stability of the supported liquid with ionic liquids.In addition,their application in organic/organic separation,gas separation,and coupling separation with reaction are also reviewed.The supported liquid membrane with ionic liquids will be one of the ways for clean production.

  10. Effect of Ammonium- and Phosphonium-Based Ionic Liquids on the Separation of Lactic Acid by Supported Ionic Liquid Membranes (SILMs).

    Science.gov (United States)

    Matsumoto, Michiaki; Panigrahi, Abhishek; Murakami, Yuuki; Kondo, Kazuo

    2011-05-13

    Biodegradable polymers have attracted much attention from an environmental point of view. Optically pure lactic acid that can be prepared by fermentation is one of the important raw materials for biodegradable polymer. The separation and purification of lactic acid from the fermentation broth are the major portions of the production costs. We proposed the application of supported ionic liquid membranes to recovering lactic acid. In this paper, the effect of ionic liquids, such as Aliquat 336, CYPHOS IL-101, CYPHOS IL-102, CYPHOS IL-104, CYPHOS IL-109 and CYPHOS IL-111 on the lactic acid permeation have been studied. Aliquat 336, CYPHOS IL-101 and CYPHOS IL-102 were found to be the best membrane solvents as far as membrane stability and permeation of lactic acid are concerned. CYPHOS IL-109 and CYPHOS IL-111 were found to be unsuitable, as they leak out from the pores of the supported liquid membrane (SLM), thereby allowing free transport of lactic acid as well as hydrochloric acid. CYPHOS IL-102 was found to be the most adequate (Permeation rate = 60.41%) among these ionic liquids as far as the separation of lactic acid is concerned. The permeation mechanisms, by which ionic liquid-water complexes act as the carrier of lactate and hydrochloric acid, were proposed. The experimental permeation results have been obtained as opposed to the expected values from the solution-diffusion mechanism.

  11. Effect of Ammonium- and Phosphonium-Based Ionic Liquids on the Separation of Lactic Acid by Supported Ionic Liquid Membranes (SILMs

    Directory of Open Access Journals (Sweden)

    Kazuo Kondo

    2011-05-01

    Full Text Available Biodegradable polymers have attracted much attention from an environmental point of view. Optically pure lactic acid that can be prepared by fermentation is one of the important raw materials for biodegradable polymer. The separation and purification of lactic acid from the fermentation broth are the major portions of the production costs. We proposed the application of supported ionic liquid membranes to recovering lactic acid. In this paper, the effect of ionic liquids, such as Aliquat 336, CYPHOS IL-101, CYPHOS IL-102, CYPHOS IL-104, CYPHOS IL-109 and CYPHOS IL-111 on the lactic acid permeation have been studied. Aliquat 336, CYPHOS IL-101 and CYPHOS IL-102 were found to be the best membrane solvents as far as membrane stability and permeation of lactic acid are concerned. CYPHOS IL-109 and CYPHOS IL-111 were found to be unsuitable, as they leak out from the pores of the supported liquid membrane (SLM, thereby allowing free transport of lactic acid as well as hydrochloric acid. CYPHOS IL-102 was found to be the most adequate (Permeation rate = 60.41% among these ionic liquids as far as the separation of lactic acid is concerned. The permeation mechanisms, by which ionic liquid-water complexes act as the carrier of lactate and hydrochloric acid, were proposed. The experimental permeation results have been obtained as opposed to the expected values from the solution-diffusion mechanism.

  12. Towards stabilization of supported liquid membranes: preparation and characterization of polysulfone support and sulfonated poly (ether ether ketone) coated composite hollow fiber membranes

    NARCIS (Netherlands)

    He, T.

    2008-01-01

    A supported liquid membrane (SLM) contains organic solvent and organic extractant as one organic phase, and a porous support structure. It has been widely investigated for separation and purification of various chemical compounds. SLM has high permeability and selectivity, being regarded as one of t

  13. A micro-immuno supported liquid membrane assay (mu-ISLMA).

    Science.gov (United States)

    Tudorache, Madalina; Emnéus, Jenny

    2006-02-15

    A chemiluminescent (CL) based micro-immuno supported liquid membrane assay (mu-ISLMA) has been developed that enables clean up, enrichment and detection of simazine in a single miniaturised cartridge system. The mu-ISLM cartridge contains a supported liquid membrane (SLM) sandwiched between a donor and an acceptor plate (channel volumes 1.65 microL), the latter being covered by a thin layer of gold on to which anti-simazine antibodies were covalently immobilised via a self assembled monolayer (SAM) of either dithiobis(11-aminoundecane, hydrochloride) (DTAU) or beta-mercaptoethylamine (beta-MEA). The mu-ISLMA based on DTAU was characterised by both a high apparent extraction efficiency (E(app) = 136%) and high apparent enrichment factor (E(e)(app) = 544), which resulted in a very high sensitivity for simazine (LOD = 0.1 ng L(-1)). The paper discusses the influence of the different SAMs and three different anti-simazine-antibody preparations (polyclonal, affinity purified polyclonal and monoclonal) on the extraction parameters and assay sensitivity. The influence of the sample matrix (e.g. mineral water, orange juice and milk) on the simazine mu-ISLMA was also investigated.

  14. Extraction of Co(II) from aqueous solution using emulsion liquid membrane.

    Science.gov (United States)

    Gasser, M S; El-Hefny, N E; Daoud, J A

    2008-03-01

    The extraction equilibrium of Co(II) from thiocyanate medium by CYANEX 923 (mixture of straight chain alkylated phosphine oxides) in cyclohexane was studied. The stoichiometry of the extraction reaction was postulated based on slope analysis method and the extraction constant Kex was calculated. The stripping percentage of Co(II) with sulphuric acid from the loaded CYANEX 923 was found to increase with the increase in acid concentration. The extraction of Co(II) from aqueous thiocyanate medium into emulsion liquid membrane using CYANEX 923 extractant was also studied. The influence of different parameters such as stirring speed, surfactant concentration, pH of the extractant phase, carrier concentration, internal phase stripping acid concentration, initial Co(II) concentration as well as temperature on the emulsion stability were investigated. The applicability of the emulsion liquid membrane (ELM) process using CYANEX 923 as extractant and SPAN 80 as surfactant for the removal and the concentration of Co(II) from thiocyanate solution was investigated. The results show that it is possible to recover 95% of cobalt in the inner phase after 10 min of contacting time with a concentration factor of 5.

  15. Evaluation of coupled transport across a liquid membrane as an analytical preconcentration technique.

    Science.gov (United States)

    Cox, J A; Bhatnagar, A; Francis, R W

    1986-09-01

    When two aqueous solutions are separated by a liquid membrane that contains a complexing agent which is a conjugate base of a weak acid, a metal ion can be transported from the solution of the higher pH against its concentration gradient into the more acidic solution. With Cu(II) as the analyte and a liquid membrane consisting of a mixture of oximes dissolved in kerosene, enrichment factors for a prescribed dialysis time in a simple experimental apparatus were nearly independent of Cu(II) concentration over the range 10(-4)-10(-7)M. With 0.1M hydrochloric acid as the receiver, the enrichment factor was independent of ionic strength and of sample pH in the range 4-9. The effect of sample pH on the interference of Fe(III) was examined. With a pH-2.5 formate buffer, the enrichment factor for Cu(II) decreased as the Fe(III) concentration increased, but in a pH-9.3 ammonium buffer, 0.14 mM Fe(III) did not interfere with the transport of Cu(II) from a 16muM copper sample.

  16. Effect of storage duration on the rheological properties of goose liquid egg products and eggshell membranes.

    Science.gov (United States)

    Kumbar, V; Nedomova, S; Trnka, J; Buchar, J; Pytel, R

    2016-07-01

    In practice, goose eggs are increasingly used and, therefore, the rheological properties have to be known for processing. The eggs of geese (Landes Goose, Anser anser f. domestica) were stored for one, 2, 3, 4, 6, and 8 wk at a constant temperature 4°C. First of all, the egg quality parameters were described in terms of egg weight, egg weight loss, egg shape index, yolk height, albumen height, yolk index, albumen index, and Haugh units. In the next step the rheological behavior of liquid egg products (egg yolk, albumen, and whole liquid egg) was studied using a concentric cylinder viscometer. Flow curves of all liquid egg products exhibited non-Newtonian shear thinning behavior. This behavior can be described using the Herschel-Bulkley model and for technical application using the Ostwald-de Waele model. The effect of the storage duration on the rheological behavior is different for the different liquid egg products. With the exception of very low shear rates, the viscosity of the egg yolk as well as of the whole liquid egg decreases with storage time. At lower shear rates there is a tendency toward increased albumen viscosity with storage duration. The storage duration also affects the mechanical properties of the eggshell membrane. This effect has been evaluated in terms of the ultimate tensile strength, fracture strain, and fracture toughness. All these parameters increased with the loading rate, but decreased during the egg storage. These mechanical phenomena should be respected, namely in the design of the egg model for the numerical simulation of the egg behavior under different kinds of the mechanical loading.

  17. Continued Advancement of Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications

    Science.gov (United States)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Cowley, Scott W.; Chullen, Cinda

    2015-01-01

    The Development of a new, robust, portable life support system (PLSS) is currently a high NASA priority in order to support longer and safer extravehicular activity (EVA) missions that will be necessary as space travel extends to near-Earth asteroids and eventually Mars. One of the critical PLSS functions is maintaining the carbon dioxide (CO2) concentration in the suit at acceptable levels. The Metal Oxide (MetOx) canister has a finite CO2 adsorption capacity and therefore in order to extend mission times, the unit would have to be larger and heavier, which is undesirable; therefore new CO2 control technologies must be developed. While recent work has centered on the use of alternating sorbent beds that can be regenerated during the EVA, this strategy increases the system complexity and power consumption. A simpler approach is to use a membrane that vents CO2 to space but retains oxygen(O2). A membrane has many advantages over current technology: it is a continuous system with no theoretical capacity limit, it requires no consumables, and it requires no hardware for switching beds between absorption and regeneration. Conventional gas separation membranes do not have adequate selectivity for use in the PLSS, but the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous film filled with a liquid that selectively reacts with CO2 over oxygen (O2). In a recently completed Phase II Small Business Innovative Research project, Reaction Systems developed a new reactive liquid that has effectively zero vapor pressure, making it an ideal candidate for use in an SLM. Results obtained with the SLM in a flat sheet configuration with representative pressures of CO2, O2, and water (H2O) have shown that the CO2 permeation rate and CO2/O2 selectivity requirements have been met. In addition, the SLM vents moisture to space very effectively. The SLM has also been prepared and tested in a hollow fiber form, which will be

  18. Study on Membrane Microstructures and Characteristics of Infrared Spectra and Nitrogen Release of Solid-Liquid Reaction Coated Urea

    Institute of Scientific and Technical Information of China (English)

    MAO Xiao-yun; FENG Xin; WANG De-han; SUN Ke-jun; LIAO Zong-wen

    2004-01-01

    The membrane microstructures and the mechanism of two coated ureas formed through solidliquid reaction were observed by scanning electron microscope and infrared spectra, the relation of the structural characteristics with the nitrogen release feature was also discussed by combining with nitrogen dissolution in water. The results showed that the membranes were made of solid particles tightly connected to each other and were piled up layer by layer through liquid glue. Porosity and aperture of membrane were determined by compactness of piled layers and the particles in a single layer and also related to the characteristics of coating materials. Research of the infrared spectra of membrane, made of a solid powder and a liquid glue, proved that O-H on the solid surface was bonded with the double bond of the liquid glue, thus forming membrane and keeping it stable. It was found that the two coated ureas showed obvious differences in nitrogen releasing due to their membrane structures, the porosity and aperture of membrane were the critical factors for nitrogen releasing.

  19. High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki–Miyaura cross-coupling reaction

    OpenAIRE

    Gu, Yingying; Favier, Isabelle; Pradel, Christian; Gin, Douglas L.; Lahitte, Jean-Francois; Noble, Richard D.; Gómez, Montserrat; Remigy, Jean-Christophe

    2015-01-01

    International audience; The elaboration of a polymeric catalytic membrane containing palladium nanoparticles is presented. The membrane was prepared using a photo-grafting process with imidazolium-based ionic liquid monomers as modifying agent and microPES® as support membrane. Ionic liquid serves as a stabilizer and immobilizer for the catalytic species, i.e. palladium nanoparticles. The Suzuki–Miyaura cross-coupling reaction was carried out on the catalytic membrane in flow-through configur...

  20. Preparation of 6-APA by Enzymatic Bioconversion in an Emulsion Liquid Membrane Reactor

    Institute of Scientific and Technical Information of China (English)

    陆强; 胡鸣; 熊丹柳; 邓修

    2001-01-01

    Production of 6-aminopenicillanic acid (6-APA) by hydrolysis using penicillin acylase (PA) was studied as a model of an enzymatic emulsion liquid membrane (ELM) process. The loss of PA activity was examined for various membrane compositions (organic solvent, surfactant, carrier). The effects of some experimental variables on the stability of emulsion were investigated. It was found that the choice of organic solvent greatly affected tilestability of the emulsion. Increasing the concentration of the carrier in the membrane phase increases the transfer rate of substrate and products but also has a destabilizing effect on the emulsion. The recovery of 6-APA obtained by a di-carrier system (N263-N1923) was much higher than those when either of the di-carriers was used separately.The whole process was controlled both by the enzymatic reaction rate and by the transfer rate of the substrate and the products, however, the ratio of them could be changed by varying the composition of the system. For an optimum condition, it was obtained that the recovery ratio of 6-APA was over 80% and the conversion of benzyl penicillin (PG) was up to 90% in the external phase after 30 minutes. Meanwhile, the breakage percentage of the emulsion was less than 2%.

  1. Role of LiBF4 in Ionic Liquid Membranes for Facilitated CO2 Transport.

    Science.gov (United States)

    Choi, Yeji; Hong, Gil Hwan; Kang, Sang Wook

    2016-03-01

    The ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4)/LiBF4 electrolyte was prepared for highly selective facilitated CO2 transport membranes. When LiBF4 was incorporated into BMIM BF4, synergy effects by free Li+ ion and imidazolium cations is expected to enhance the separation performance for CO2/N2 and CO2/CH4. The free state of BF4- ions in BMIM BF4/LiBF4 solutions was investigated by FT-Raman spectroscopy. For the coordination of LiBF4 with BMIMBF4, thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) was utilized. Electrolyte membranes consisting of BMIM BF4 and LiBF4 showed selectivities of 8.40 and 8.25 for CO2/N2 and CO2/CH4, respectively. Neat BMIM BF4 membrane showed selectivities of 5.0 and 4.8, respectively. Enhanced separation performance was attributed to increased free Li+ and abundant free imidazolium cations.

  2. Metal-organic framework supported ionic liquid membranes for CO2 capture: anion effects.

    Science.gov (United States)

    Gupta, Krishna M; Chen, Yifei; Hu, Zhongqiao; Jiang, Jianwen

    2012-04-28

    IRMOF-1 supported ionic liquid (IL) membranes are investigated for CO(2) capture by atomistic simulation. The ILs consist of identical cation 1-n-butyl-3-methylimidazolium [BMIM](+), but four different anions, namely hexafluorophosphate [PF(6)](-), tetrafluoroborate [BF(4)](-), bis(trifluoromethylsulfonyl)imide [Tf(2)N](-), and thiocyanate [SCN](-). As compared with the cation, the anion has a stronger interaction with IRMOF-1 and a more ordered structure in IRMOF-1. The small anions [PF(6)](-), [BF(4)](-), and [SCN](-) prefer to locate near to the metal-cluster, particularly the quasi-spherical [PF(6)](-) and [BF(4)](-). In contrast, the bulky and chain-like [BMIM](+) and [Tf(2)N](-) reside near the phenyl ring. Among the four anions, [Tf(2)N](-) has the weakest interaction with IRMOF-1 and thus the strongest interaction with [BMIM](+). With increasing the weight ratio of IL to IRMOF-1 (W(IL/IRMOF-1)), the selectivity of CO(2)/N(2) at infinite dilution is enhanced. At a given W(IL/IRMOF-1), the selectivity increases as [Tf(2)N](-) membrane with W(IL/IRMOF-1) = 1, [SCN](-) is identified to be the most favorable site for CO(2) adsorption. [BMIM][SCN]/IRMOF-1 outperforms polymer membranes and polymer-supported ILs in CO(2) permeability, and its performance surpasses Robeson's upper bound. This simulation study reveals that the anion has strong effects on the microscopic properties of ILs and suggests that MOF-supported ILs are potentially intriguing for CO(2) capture.

  3. Self-assembly of azobenzene bilayer membranes in binary ionic liquid-water nanostructured media.

    Science.gov (United States)

    Kang, Tejwant Singh; Ishiba, Keita; Morikawa, Masa-aki; Kimizuka, Nobuo

    2014-03-11

    Anionic azobenzene-containing amphiphile 1 (sodium 4-[4-(N-methyl-N-dodecylamino)phenylazo]benzenesulfonate) forms ordered bilayer membranes in binary ionic liquid (1-ethyl-3-methylimidazolium ethyl sulfate, [C2mim][C2OSO3])-water mixtures. The binary [C2mim][C2OSO3]-water mixture is macroscopically homogeneous at any mixing ratio; however, it possesses fluctuating nanodomains of [C2mim][C2OSO3] molecules as observed by dynamic light scattering (DLS). These nanodomains show reversible heat-induced mixing behavior with water. Although the amphiphile 1 is substantially insoluble in pure water, it is dispersible in the [C2mim][C2OSO3]-water mixtures. The concentration of [C2mim][C2OSO3] and temperature exert significant influences on the self-assembling characteristics of 1 in the binary media, as shown by DLS, transmission electron microscopy (TEM), UV-vis spectroscopy, and zeta-potential measurements. Bilayer membranes with rod- or dotlike nanostructures were formed at a lower content of [C2mim][C2OSO3] (2-30 v/v %), in which azobenzene chromophores adopt parallel molecular orientation regardless of temperature. In contrast, when the content of [C2mim][C2OSO3] is increased above 60 v/v %, azobenzene bilayers showed thermally reversible gel-to-liquid crystalline phase transition. The self-assembly of azobenzene amphiphiles is tunable depending on the volume fraction of [C2mim][C2OSO3] and temperature, which are associated with the solvation by nanoclusters in the binary [C2mim][C2OSO3]-water media. These observations clearly indicate that mixtures of water-soluble ionic liquids and water provide unique and valiant environments for ordered molecular self-assembly.

  4. High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres.

    Science.gov (United States)

    Yu, Liang; Zhang, Yatao; Wang, Yuanming; Zhang, Haoqin; Liu, Jindun

    2015-04-28

    Silica spheres modified by poly (ionic liquid) brushes, a novel positively charged nanomaterial is prepared by atom transfer radical polymerization (ATRP). A high flux positively charged loose nanofiltration membrane is fabricated via "blending-phase inversion" method. The morphology structures, hydrophilicity, thermal and mechanical properties, permeation performance of these membranes are investigated in detail. The results reveal that the hybrid membranes have enhanced surface hydrophilicity, water permeability, thermal stability, and mechanical properties. Characterization of membrane separation properties shows that the hybrid membranes possess higher salt permeability and relatively higher rejection for reactive dyes, which may open opportunities for the recycling of reactive dyes wastewater. Moreover, such hybrid membranes have an outstanding operational stability and salts concentration showed little effect on the separation properties.

  5. Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: A review

    Science.gov (United States)

    Liu, Xunliang; Peng, Fangyuan; Lou, Guofeng; Wen, Zhi

    2015-12-01

    Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett-Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.

  6. Supported liquid membrane-liquid chromatography-mass spectrometry analysis of cyanobacterial toxins in fresh water systems

    Science.gov (United States)

    Mbukwa, Elbert A.; Msagati, Titus A. M.; Mamba, Bhekie B.

    Harmful algal blooms (HABs) are increasingly becoming of great concern to water resources worldwide due to indiscriminate waste disposal habits resulting in water pollution and eutrophication. When cyanobacterial cells lyse (burst) they release toxins called microcystins (MCs) that are well known for their hepatotoxicity (causing liver damage) and have been found in eutrophic lakes, rivers, wastewater ponds and other water reservoirs. Prolonged exposure to low concentrated MCs are equally of health importance as they are known to be bioaccumulative and even at such low concentration do exhibit toxic effects to aquatic animals, wildlife and human liver cells. The application of common treatment processes for drinking water sourced from HABs infested reservoirs have the potential to cause algal cell lyses releasing low to higher amounts of MCs in finished water. Trace microcystins in water/tissue can be analyzed and quantified using Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) following solid-phase extraction (SPE) sample clean-up procedures. However, extracting MCs from algal samples which are rich in chlorophyll pigments and other organic matrices the SPE method suffers a number of drawbacks, including cartridge clogging, long procedural steps and use of larger volumes of extraction solvents. We applied a supported liquid membrane (SLM) based technique as an alternative sample clean-up method for LC-ESI-MS analysis of MCs from both water and algal cells. Four (4) MC variants (MC-RR, -YR, -LR and -WR) from lyophilized cells of Microcystis aeruginosa and water collected from a wastewater pond were identified) and quantified using LC-ESI-MS following a SLM extraction and liquid partitioning step, however, MC-WR was not detected from water extracts. Within 45 min of SLM extraction all studied MCs were extracted and pre-concentrated in approximately 15 μL of an acceptor phase at an optimal pH 2.02 of the donor phase (sample). The highest

  7. High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Liang [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China); Zhang, Yatao, E-mail: zhangyatao@zzu.edu.cn [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China); UNESCO Center for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Yuanming; Zhang, Haoqin [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China); Liu, Jindun, E-mail: liujindun@zzu.edu.cn [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China)

    2015-04-28

    Highlights: • SiO{sub 2} spheres were modified by poly (ionic liquid) brushes via RATRP. • Positively charged NF membranes were fabricated by incorporation of SiO{sub 2}-PIL. • The membranes exhibited higher rejection for dyes and superior penetration for salts. - Abstract: Silica spheres modified by poly (ionic liquid) brushes, a novel positively charged nanomaterial is prepared by atom transfer radical polymerization (ATRP). A high flux positively charged loose nanofiltration membrane is fabricated via “blending-phase inversion” method. The morphology structures, hydrophilicity, thermal and mechanical properties, permeation performance of these membranes are investigated in detail. The results reveal that the hybrid membranes have enhanced surface hydrophilicity, water permeability, thermal stability, and mechanical properties. Characterization of membrane separation properties shows that the hybrid membranes possess higher salt permeability and relatively higher rejection for reactive dyes, which may open opportunities for the recycling of reactive dyes wastewater. Moreover, such hybrid membranes have an outstanding operational stability and salts concentration showed little effect on the separation properties.

  8. Numerical simulation of three-dimensional gas/liquid two-phase flow in a proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Weilin; ZHANG Yangjun; MING Pingwen; LAO Xingsheng; CHEN Xiao

    2007-01-01

    Investigation into the formation and transport of liquid water in proton exchange membrane fuel cells (PEMFCs) is the key to fuel cell water management.A threedimensional gas/liquid two-phase flow and heat transfer model is developed based on the multiphase mixture theory.The reactant gas flow,diffusion,and chemical reaction as well as the liquid water transport and phase change process are modeled.Numerical simulations on liquid water distribution and its effects on the performance of a PEMFC are conducted.Results show that liquid water distributes mostly in the cathode,and predicted cell performance decreases quickly at high current density due to the obstruction of liquid water to oxygen diffusion.The simulation results agree well with experimental data.

  9. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.

    Science.gov (United States)

    Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V

    2006-01-01

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.

  10. Biomimetic Synthesis of CdSe Quantum Dots through Emulsion Liquid Membrane System of Gas-Liquid Transport

    Institute of Scientific and Technical Information of China (English)

    LIU,LU(刘璐); WU,Qing-Sheng,(吴庆生); DING,Ya-Ping(丁亚平); LIU,Hua-Jie(柳华杰); ZHANG,Bao-Quan(张保权)

    2004-01-01

    The cadmium selenide quantum dots (QD) have been synthesized by template-control in an emulsion liquid membrane system.The system consisted of kerosene as solvent,L152 (dialkylene succinimide) as surfactant,N7301 (trialiphatic amine,R3N,R=Cs-C10) as carrier,0.1 mol/L CdC12 solution as internal-aqueous phase and H2Se gas as external phase.Additive organic template agent in internal-aqueous phase was necessary to form CdSe QD.The influence of the nature of template and its concentration on sizes of the formed CdSe QD has also been studied.Transmission electron microscopy showed that the sizes of the products could be controlled down to 3-4nm.X-ray diffraction analysis revealed that the crystals had cubic structure.The formation process and the optical properties of CdSe QD have also been presented.

  11. 离子液体支撑液膜应用研究进展%Application research progress of ionic liquid supported liquid membrane

    Institute of Scientific and Technical Information of China (English)

    王文治; 杨慧琳; 王瑞康; 刘冉; 许永权; 张娟; 赵地顺

    2016-01-01

    离子液体作为一种新型绿色介质,受到研究学者的广泛关注。离子液体具有不易燃、无味、无污染、无蒸汽压、可循环使用等独特性质,被广泛应用于化学化工过程中。离子液体用于膜分离技术具有不易挥发、稳定性好的特点,近来对离子液体在支撑液膜方面的研究备受关注,离子液体支撑液膜在污染性气体的吸收分离方面具有高选择性、高渗透性等优势,在有机物的分离方面具有分离效果明显、耐用性强等优势,在化学反应方面具有催化效率高、可循环使用等优势,本文介绍了离子液体支撑液膜的常用制备方法和膜基材料的选择,探讨了离子液体支撑液膜的稳定性和分离选择性的影响因素,对离子液体支撑液膜在气体分离、有机物的分离、化学反应等方面的应用研究进行了综述。%Ionic liquid, as a new kind of green solvents, have received extensive attention of researchers.Ionic liquid is widely used in chemical process because the unique features,such as nonflammable,tasteless,no pollution,no detectable vapor pressure and recyclable.Ionic liquids used in membrane separation technology have the characteristics of less volatile,immiscibility with contact phase,good stability,etc.Recently much attention has been paid to the study of ionic liquids in the supported liquid membrane,ionic liquid supported liquid membrane has the advantages of high selectivity,and high permeability in the absorption and separation of gas,has the advantages of the separation effect is obvious,strong durability in the separation of organic matter,has the advantages of high catalytic efficiency, recycled in a chemical reaction.This review provides the preparation of ionic liquid supported liquid membrane and the selection of membrane-based material.The factors affecting the stability and separation selectivity of the ionic liquid supported liquid membrane was discussed

  12. Hypothesis: could the signalling function of membrane microdomains involve a localized transition of lipids from liquid to solid state?

    Directory of Open Access Journals (Sweden)

    Joly Etienne

    2004-01-01

    Full Text Available Abstract Background Over the past decade, it has become apparent that specialised membrane microdomains, commonly called rafts, where lipids like sphingolipids and cholesterol are arranged compactly in a liquid ordered phase are involved in cell signalling. Hypothesis The core of the hypothesis presented here is that resting cells may actively maintain their plasma membrane in liquid phase, corresponding to a metastable thermodynamic state. Following a physiological stimulus such as ligands binding to their membrane receptors, the tendency of membrane components to undergo a localised transition towards a gel state would increase, resulting in initial minute solid structures. These few membrane components having undergone a liquid to solid state transition, would then act as seeds for the specific recruitment of additional membrane components whose properties are compatible with the crystalline growth of these initial docks. Cells could therefore be using the propensity of lipids to assemble selectively to generate stable platforms of particular cellular components either for intra-cellular transport or for signal transduction. Testing the hypothesis could presumably be done via biophysical approaches such as EPR spin labelling, X-ray diffraction or FRET coupled to direct microscopic observation of cells to which very localized stimuli would be delivered. Implications Such a model of selective growth of membrane docks would provide an explanation for the existence of different types of microdomains, and for the fact that, depending on the state of the cells and on the procedures used to isolate them, membrane microdomains can vary greatly in their properties and composition. Ultimately, a thorough understanding of how and why lipid domains are assembled in biological membranes will be essential for many aspects of cell biology and medicine.

  13. Continuous Hydrolysis and Liquid–Liquid Phase Separation of an Active Pharmaceutical Ingredient Intermediate Using a Miniscale Hydrophobic Membrane Separator

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Morthensen, Sofie Thage; Lewandowski, Daniel Jacob

    2012-01-01

    Continuous hydrolysis of an active pharmaceutical ingredient intermediate, and subsequent liquid–liquid (L-L) separation of the resulting organic and aqueous phases, have been achieved using a simple PTFE tube reactor connected to a miniscale hydrophobic membrane separator. An alkoxide product...... a PTFE membrane with 28 cm2 of active area. A less challenging separation of water and toluene was achieved at total flow rates as high as 80 mL/min, with potential to achieve even higher flow rates. The operability and flexibility of the membrane separator and a plate coalescer were compared...

  14. Threshold for spontaneous oscillation in a three-phase liquid membrane system involving nonionic surfactant.

    Science.gov (United States)

    Nanzai, Ben; Funazaki, Tomohisa; Igawa, Manabu

    2010-09-16

    This study of self-oscillation was conducted using a new three-phase liquid membrane system of ethanol aqueous solution, benzyl alcohol solution with nonionic surfactant, and pure water. Relations of the initial ethanol concentration to the oscillation amplitude and frequency, and to the induction period before oscillations were investigated. The oscillation amplitude is independent of the initial ethanol concentration, but the frequency and the induction period are related to it. The oscillation frequency increased concomitantly with the increased ethanol initial concentration, but the induction period before the electrical oscillations decreased with increasing concentration. To estimate the influence of ethanol diffusion on the electrical oscillations, the ethanol concentration in each phase was measured using separate experiments after different durations of oscillation. The diffusion coefficient was calculated using Fick's second law. Results show successful estimation of the threshold for oscillations. The threshold is defined in terms of the ethanol concentration at the interface between the benzyl alcohol phase and the pure water phase.

  15. Cyclic peptides-assisted trans- port of metal ions across liquid-organic membrane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The formation of alkali and alkaline-earth metal picrate complexes with cyclo(Pro-Gly)n ionophores (1, n = 3; 2, n = 4) can facilitate the migration of metal ions across a bulk liquid CH2Cl2 membrane. The migration behavior was studied by measuring the solution absorption at 356 nm, using a UV/Vis spectrophotometer, and the rates can be determined by comparing the initial absorption of donor solutions with the absorption of the corresponding receiver solutions as the function of time. It was found that cyclic peptide 1 shows higher transport activity for the studied alkali and alkaline-earth metal ions than compound 2, which is related to the backbone flexibility of the cyclic peptides. The findings in this work suggest that the rate of ionophore-facilitated ion transport depends not only on the ability of complex forma-tion in aqueous phase, but also on the ability of complex dissociation in organic phase.

  16. Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries.

    Science.gov (United States)

    Navarra, M A; Manzi, J; Lombardo, L; Panero, S; Scrosati, Bruno

    2011-01-17

    Gel-type polymer electrolytes are formed by immobilizing a solution of lithium N,N-bis(trifluoromethanesulfonyl)imide (LiTFSI) in N-n-butyl-N-ethylpyrrolidinium N,N-bis(trifluoromethanesulfonyl)imide (Py₂₄TFSI) ionic liquid (IL) with added mixtures of organic solvents, such as ethylene, propylene and dimethyl carbonates (EC, PC, and DMC, respectively), into a poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) matrix, and their properties investigated. The addition of the organic solvent mixtures results in an improvement of the ionic conductivity and in the stabilization of the interface with the lithium electrode. Conductivity values in the range of 10⁻³-10⁻²  S cm⁻¹ are obtained in a wide temperature range. These unique properties allow the effective use of these membranes as electrolytes for the development of advanced polymer batteries based on a lithium metal anode and an olivine-type lithium iron phosphate cathode.

  17. Hollow fiber liquid-supported membrane technology for enantioseparation of racemic salbutamol by combinatorial chiral selectors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Enantioseparation of salbutamol solute was carried out in liquid-supported membrane by using a polyvinylidene fluoride hollow-fiber module. The enantioselective transport of solute was facilitated by combinatorial chiral selectors, which were dissolved in toluene organic solvent. The effects of molar concentration ratios of salbutamol to combinatorial chiral selectors, and the pH value of buffer solution on enantioseparation were investigated. The results show that when the molar concentration ratio is 2: 1:1, the maximum separation factor and enantiomer excess are 1.49 and 19.74%, respectively, and the R-enantiomer flux is more than S-enantiomer; the pH value of buffer solution influences the performances of enantioseparartion obviously, and the appropriate range of pH value is7.0-7.2.

  18. Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering.

    Science.gov (United States)

    Kontro, Inkeri; Svedström, Kirsi; Duša, Filip; Ahvenainen, Patrik; Ruokonen, Suvi-Katriina; Witos, Joanna; Wiedmer, Susanne K

    2016-12-01

    The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of l-α-phosphatidylcholine (eggPC) and l-α-phosphatidylglycerol (eggPG) (80:20mol%) or eggPC, eggPG, and cholesterol (60:20:20mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes.

  19. Separation of carbon dioxide from nitrogen or methane by supported ionic liquid membranes (SILMs): influence of the cation charge of the ionic liquid.

    Science.gov (United States)

    Hojniak, Sandra D; Khan, Asim Laeeq; Hollóczki, Oldamur; Kirchner, Barbara; Vankelecom, Ivo F J; Dehaen, Wim; Binnemans, Koen

    2013-12-05

    Supported ionic liquid membranes (SILMs) are promising tools for the separation of carbon dioxide from other gases. In this paper, new imidazolium, pyrrolidinium, piperidinium, and morpholinium ionic liquids with a triethylene glycol side chain and tosylate anions, as well as their symmetrical dicationic analogues, have been synthesized and incorporated into SILMs. The selectivities for CO2/N2 and CO2/CH4 separations have been measured. The selectivities exhibited by the dicationic ionic liquids are up to two times higher than the values of the corresponding monocationic ionic liquids. Quantum chemical calculations have been used to investigate the difference in the interaction of carbon dioxide with monocationic and dicationic ionic liquids. The reason for the increased gas separation selectivity of the dicationic ionic liquids is two-fold: (1) a decrease in permeance of nitrogen and methane through the ionic liquid layer, presumably due to their less favorable interactions with the gases, while the permeance of carbon dioxide is reduced much less; (2) an increase in the number of interaction sites for the interactions with the quadrupolar carbon dioxide molecules in the dicationic ionic liquids, compared to the monocationic analogues.

  20. Drag Coefficient of a Liquid Domain in a Fluid Membrane Surrounded by Confined Three-Dimensional Fluids

    Science.gov (United States)

    Fujitani, Youhei

    2013-08-01

    It is thought that, in a biomembrane, some minor lipid constituents are concentrated in a domain called the lipid raft. Some raftlike domains in a lipid-bilayer membrane can be regarded as two-dimensional droplets. The membrane viscosities inside and outside the domain are generally different. The present author previously studied the drag coefficient of a circular liquid domain in a flat fluid membrane surrounded by three-dimensional fluids, which occupy the semi-infinite spaces on both sides of the membrane. Here we generalize this problem by assuming that the surrounding fluids are confined by container walls parallel to the membrane. Errors in the present author's previous studies are also corrected in this paper.

  1. Integration of Nine Steps into One Membrane Reactor To Produce Synthesis Gases for Ammonia and Liquid Fuel.

    Science.gov (United States)

    Li, Wenping; Zhu, Xuefeng; Chen, Shuguang; Yang, Weishen

    2016-07-18

    The synthesis of ammonia and liquid fuel are two important chemical processes in which most of the energy is consumed in the production of H2 /N2 and H2 /CO synthesis gases from natural gas (methane). Here, we report a membrane reactor with a mixed ionic-electronic conducting membrane, in which the nine steps for the production of the two types of synthesis gases are shortened to one step by using water, air, and methane as feeds. In the membrane reactor, there is no direct CO2 emission and no CO or H2 S present in the ammonia synthesis gas. The energy consumption for the production of the two synthesis gases can be reduced by 63 % by using this membrane reactor. This promising membrane reactor process has been successfully demonstrated by experiment.

  2. A New Emulsion Liquid Membrane Based on a Palm Oil for the Extraction of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Sanna Björkegren

    2015-04-01

    Full Text Available The extraction efficiency of hexavalent chromium, Cr(VI, from water has been investigated using a vegetable oil based emulsion liquid membrane (ELM technique. The main purpose of this study was to create a novel ELM formulation by choosing a more environmentally friendly and non-toxic diluent such as palm oil. The membrane phase so formulated includes the mobile carrier tri-n-octylmethylammonium chloride (TOMAC, to facilitate the metal transport, and the hydrophilic surfactant Tween 80 to facilitate the dispersion of the ELM phase in the aqueous solution. Span 80 is used as surfactant and butanol as co-surfactant. Our results demonstrate that this novel ELM formulation, using the vegetable palm oil as diluent, is useful for the removal of hexavalent chromium with an efficiency of over 99% and is thus competitive with the already existing, yet less environmentally friendly, ELM formulations. This result was achieved with an optimal concentration of 0.1 M NaOH as stripping agent and an external phase pH of 0.5. Different water qualities have also been investigated showing that the type of water (deionized, distilled, or tap water does not significantly influence the extraction rate.

  3. Treatment of cyanide wastewater by bulk liquid membrane using tricaprylamine as a carrier.

    Science.gov (United States)

    Li, Guoping; Xue, Juanqin; Liu, Nina; Yu, Lihua

    2016-01-01

    The transport of cyanide from wastewater through a bulk liquid membrane (BLM) containing tricaprylamine (TOA) as a carrier was studied. The effect of cyanide concentration in the feed solution, TOA concentration in the organic phase, the stirring speed, NaOH concentration in the stripping solution and temperature on cyanide transport was determined through BLM. Mass transfer of cyanide through BLM was analyzed by following the kinetic laws of two consecutive irreversible first-order reactions, and the kinetic parameters (k(1), k(2), R(m)(max), t(max), J(a)(max), J(d)(max)) were also calculated. Apparently, increase in membrane entrance (k(1)) and exit rate (k(2)) constants was accompanied by a rise in temperature. The values of activation energies were obtained as 35.6 kJ/mol and 18.2 kJ/mol for removal and recovery, respectively. These values showed that both removal and recovery steps in cyanide transport is controlled by the rate of the chemical complexation reaction. The optimal reaction conditions were determined by BLM using trioctylamine as the carrier: feed phase: pH 4, carrier TOA possession ratio in organic phase: 2% (V/V), stripping phase concentration of NaOH: 1% (W/V), reaction time: 60 min, stirring speed: 250 r/min. Under the above conditions, the removal rate was up to 92.96%. The experiments demonstrated that TOA was a good carrier for cyanide transport through BLM in this study.

  4. Highly Sulfonated Diamine Synthesized Polyimides and Protic Ionic Liquid Composite Membranes Improve PEM Conductivity

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2015-06-01

    Full Text Available A novel sulfonated diamine was synthesized from 1,4-bis(4-aminophenoxy benzene [pBAB]. Sulfonated polyimides (SPIs were synthesized from sulfonated pBAB, 1,4-bis(4-aminophenoxy-2-sulfonic acid benzenesulfonic acid [pBABTS], various diamines and aromatic dianhydrides. Composite proton exchange membranes (PEMs made of novel SPIs and a protic ionic liquid (PIL 1-vinyl-3-H-imidazolium trifluoromethanesulfonate [VIm][OTf] showed substantially increased conductivity. We prepared an SPI/PIL composite PEM using pBABTS, 4,4′-(9-fluorenylidene dianiline (9FDA as diamine, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA as dianhydride and 40 wt % [VIm][OTf] with a high conductivity of 16 mS/cm at 120 °C and anhydrous condition. pBABTS offered better conductivity, since the chemical structure had more sulfonated groups that provide increased conductivity. The new composite membrane could be a promising anhydrous or low-humidity PEM for intermediate or high-temperature fuel cells.

  5. Effects of ionic liquids on membrane fusion and lipid aggregation of egg-PC liposomes.

    Science.gov (United States)

    Galletti, Paola; Malferrari, Danilo; Samorì, Chiara; Sartor, Giorgio; Tagliavini, Emilio

    2015-01-01

    In this study we have explored the effects of different groups of ionic liquids (ILs) on membrane fusion. The ILs used contain different head groups: N-methylimidazolium, 3-methylpyridinium and N-methylpyrrolidinium; short alkyl or ether functionalized side chains (with one or two ethoxy functionalities), paired with chloride anion. These ILs have been compared with 1-dodecyl-3-methylimidazolium bromide as example of a highly lipophilic IL. The effect of ILs on membrane fusion was investigated through pyrene steady state fluorescence probing, using the IE factor and excimer/monomer ratio (IE/IM) as parameters. The ratio between the vibronic bands of pyrene (I1/I3 ratio) has been used to monitor the effect of ILs on the aggregation properties of egg-PC liposomes. The effect of different ILs' families was evident; the pyridinium ILs induced a greater extent of fusion than pyrrolidinium and imidazolium ILs having the same side chain. Marginal effect could be attributed to different anions. ILs with short alkyl chains were usually more effective than ether functionalized ones. The aggregation behaviors of ILs having dioxygenated chains have been measured in buffer solution.

  6. Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions.

    Science.gov (United States)

    Gelesky, Marcos A; Scheeren, Carla W; Foppa, Lucas; Pavan, Flavio A; Dias, Silvio L P; Dupont, Jairton

    2009-07-13

    Transition metal-containing membrane films of 10, 20, and 40 μm thickness were obtained by the combination of irregularly shaped nanoparticles with monomodal size distributions of 4.8 ± 1.1 nm (Rh(0)) and 3.0 ± 0.4 nm (Pt(0)) dispersed in the ionic liquid (IL) 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide (BMI·(NTf)(2)) with a syrup of cellulose acetate (CA) in acetone. The Rh(0) and Pt(0) metal concentration increased proportionally with increases in film thickness up to 20 μm, and then the material became metal saturated. The presence of small and stable Rh(0) or Pt(0) nanoparticles induced an augmentation in the CA/IL film surface areas. The augmentation of the IL content resulted in an increase of elasticity and decrease in tenacity and toughness, whereas the stress at break was not influenced. The introduction of IL probably causes an increase in the separation between the cellulose macromolecules that results in a higher flexibility, lower viscosity, and better formability of the cellulose material. The nanoparticle/IL/CA combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The nanoparticle/IL/cellulose acetate film membranes display higher catalytic activity (up to 7353 h(-1) for the 20 μm film of CA/IL/Pt(0)) and stability than the nanoparticles dispersed only in the IL.

  7. Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    1997-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  8. Improvement of Aconitum napellus micropropagation by liquid culture on floating membrane rafts.

    Science.gov (United States)

    Watad, A A; Kochba, M; Nissim, A; Gaba, V

    1995-03-01

    An efficient method was developed using floating membrane rafts (Liferaft(™)) for the micropropagation of Aconitum napellus (Ranunculaceae), a cut flower crop with a low natural propagation rate. This was achieved by introducing shoot tips into culture on Murashige and Skoog's (1962) solid medium, or liquid medium-supported rafts, supplemented by different levels of benzyl adenine (BA). Optimum shoot proliferation on solid medium required 4mg/l BA, whereas for expiants supported on rafts optimal proliferation was achieved at 0.25mg/l BA. Maximum shoot proliferation was found using the floating rafts (propagation ratio of 4.2 per month), 45% higher than the maximum value on solid medium. A similar value could be obtained on solid medium after a period of 2 months. The optimal response to BA was similar for fresh weight gain and shoot length. Growth in a shallow layer of liquid in shake flasks gives a similar shoot multiplication rate to that on floating rafts; however, submerged leaves brown and die.

  9. Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation.

    Science.gov (United States)

    Lin, Rijia; Ge, Lei; Diao, Hui; Rudolph, Victor; Zhu, Zhonghua

    2016-11-23

    Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.

  10. Micro-electromembrane extraction across free liquid membranes. Instrumentation and basic principles.

    Science.gov (United States)

    Kubáň, Pavel; Boček, Petr

    2014-06-13

    A micro-electromembrane extraction (μ-EME) technique using electrically induced transfer of charged analytes across free liquid membranes (FLMs) was presented. A disposable extraction unit was proposed and it was made of a short segment of transparent perfluoroalkoxy tubing, which was successively filled with three liquid plugs serving as acceptor solution, FLM and donor solution. These plugs formed a three-phase extraction system, which was precisely defined, that was stable and required μL to sub-μL volumes of all respective solutions. Basic instrumental set-up and extraction principles of μ-EME were examined using an anionic and a cationic dye, 4,5-dihydroxy-3-(p-sulfophenylazo)-2,7-naphthalene disulfonic acid trisodium salt (SPADNS) and crystal violet, respectively. Transfers of the charged dyes from donor into acceptor solutions across FLMs consisting of 1-pentanol were visualized by a microscope camera and quantitative measurements were performed by UV-vis spectrophotometry. The effects of operational parameters of μ-EME system were comprehensively investigated and experimental measurements were accompanied with theoretical calculations. Extraction recoveries above 60% were achieved for 5min μ-EME of 1mM SPADNS at 100V with repeatability values below 5%. Selectivity of FLMs was additionally examined by capillary electrophoretic analyses of acceptor solutions and the potential of FLMs for μ-EME pretreatment of samples with artificial complex matrices was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane

    NARCIS (Netherlands)

    Izak, P.; Schwarz, K.M.; Ruth, W.; Bahl, H.; Kragl, U.

    2008-01-01

    Pervaporation proved to be one of the best methods to remove solvents out of a solvent producing Clostridium acetobutylicum culture. By using an ionic liquid (IL)-polydimethylsiloxane (PDMS) ultrafiltration membrane (pore size 60 nm), we could guarantee high stability and selectivity during all

  12. Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane

    NARCIS (Netherlands)

    Izak, P.; Schwarz, K.M.; Ruth, W.; Bahl, H.; Kragl, U.

    2008-01-01

    Pervaporation proved to be one of the best methods to remove solvents out of a solvent producing Clostridium acetobutylicum culture. By using an ionic liquid (IL)-polydimethylsiloxane (PDMS) ultrafiltration membrane (pore size 60 nm), we could guarantee high stability and selectivity during all meas

  13. Ionic-liquid-based proton conducting membranes for anhydrous H2/Cl2 fuel-cell applications.

    Science.gov (United States)

    Liu, Sa; Zhou, Li; Wang, Pengjie; Zhang, Fangfang; Yu, Shuchun; Shao, Zhigang; Yi, Baolian

    2014-03-12

    An ionic-liquid-doped poly(benzimidazole) (PBI) proton-conducting membrane for an anhydrous H2/Cl2 fuel cell has been proposed. Compared with other ionic liquids, such as imidazole-type ionic liquids, diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) showed better electrode reaction kinetics (H2 oxidation and Cl2 reduction reaction at platinum) and was more suitable for a H2/Cl2 fuel cell. PBI polymer and [dema][TfO] were compatible with each other, and the hybrid membranes exhibited high stability and good ionic conductivity, reaching 20.73 mS cm(-1) at 160 °C. We also analyzed the proton-transfer mechanism in this ionic-liquid-based membrane and considered that both proton-hopping and diffusion mechanisms existed. In addition, this composite electrolyte worked well in a H2/Cl2 fuel cell under non-water conditions. This work would give a good path to study the novel membranes for anhydrous H2/Cl2 fuel-cell application.

  14. Elucidation and identification of amino acid containing membrane lipids using liquid chromatography/high-resolution mass spectrometry

    NARCIS (Netherlands)

    Moore, E.K.; Hopmans, E.C.; Rijpstra, W.I.C.; Villanueva, L.; Sinninghe Damsté, J.S.

    2016-01-01

    RATIONALE: Intact polar lipids (IPLs) are the building blocks of cell membranes, and amino acid containing IPLs havebeen observed to be involved in response to changing environmental conditions in various species of bacteri a. High-performance liquid chromatography/mass spectrometry (HPLC/MS) has be

  15. High temperature ceramic membrane reactors for coal liquid upgrading. Final report, September 21, 1989--November 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Liu, P.K.T. [Aluminum Co. of America, Pittsburgh, PA (United States); Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1992-12-31

    Membrane reactors are today finding extensive applications for gas and vapor phase catalytic reactions (see discussion in the introduction and recent reviews by Armor [92], Hsieh [93] and Tsotsis et al. [941]). There have not been any published reports, however, of their use in high pressure and temperature liquid-phase applications. The idea to apply membrane reactor technology to coal liquid upgrading has resulted from a series of experimental investigations by our group of petroleum and coal asphaltene transport through model membranes. Coal liquids contain polycyclic aromatic compounds, which not only present potential difficulties in upgrading, storage and coprocessing, but are also bioactive. Direct coal liquefaction is perceived today as a two-stage process, which involves a first stage of thermal (or catalytic) dissolution of coal, followed by a second stage, in which the resulting products of the first stage are catalytically upgraded. Even in the presence of hydrogen, the oil products of the second stage are thought to equilibrate with the heavier (asphaltenic and preasphaltenic) components found in the feedstream. The possibility exists for this smaller molecular fraction to recondense with the unreacted heavy components and form even heavier undesirable components like char and coke. One way to diminish these regressive reactions is to selectively remove these smaller molecular weight fractions once they are formed and prior to recondensation. This can, at least in principle, be accomplished through the use of high temperature membrane reactors, using ceramic membranes which are permselective for the desired products of the coal liquid upgrading process. An additional incentive to do so is in order to eliminate the further hydrogenation and hydrocracking of liquid products to undesirable light gases.

  16. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  17. Extraction of Lead through Supported Liquid Membrane Using Triethanolamine/Cyclohexanone Carrier and Na2SO4 strippant

    Directory of Open Access Journals (Sweden)

    Gill R.

    2013-04-01

    Full Text Available Supported liquid membranes (SLM have proved to be effective not only for removing but also for recovery of heavy metals from waste water. This work includes the study of separation and transport of Pb+2 ions through liquid membrane based on triethanolamine (TEA in cyclohexanone supported in microporous polypropylene films. Therefore, this study aims to optimize the conditions for moving the Pb+2 ions against the concentration gradient, characterize the membrane by flux measurements, for their use in various industrial plants design to recover these ions. The effect of lead ion concentration, HNO3 in feed and TEA concentration in membrane has been studied. Optimized condition of transport of this metal ion is 1.0 M acid concentration in the feed phase and 0.1M Na2SO4 as the strippant when TEA concentration is 5.25 mol/dm3 in the membrane, as the rationale of this study is to optimize the condition for the movement of lead ions from feed phase to strip phase and to recover metal ions from any industrial effluent and finally to characterize the membrane by determining the mobility and permeability of the complexed heavy metal ion to extract their respective metal ions.

  18. Helfrich model of membrane bending: from Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers.

    Science.gov (United States)

    Campelo, Felix; Arnarez, Clement; Marrink, Siewert J; Kozlov, Michael M

    2014-06-01

    Helfrich model of membrane bending elasticity has been most influential in establishment and development of Soft-Matter Physics of lipid bilayers and biological membranes. Recently, Helfrich theory has been extensively used in Cell Biology to understand the phenomena of shaping, fusion and fission of cellular membranes. The general background of Helfrich theory on the one hand, and the ways of specifying the model parameters on the other, are important for quantitative treatment of particular biologically relevant membrane phenomena. Here we present the origin of Helfrich model within the context of the general Gibbs theory of capillary interfaces, and review the strategies of computing the membrane elastic moduli based on considering a lipid monolayer as a three-dimensional thick layer characterized by trans-monolayer profiles of elastic parameters. We present the results of original computations of these profiles by a state-of-the-art numerical approach.

  19. Liquid-liquid-solid microextraction based on membrane-protected molecularly imprinted polymer fiber for trace analysis of triazines in complex aqueous samples.

    Science.gov (United States)

    Hu, Yuling; Wang, Yangyang; Hu, Yufei; Li, Gongke

    2009-11-20

    A novel liquid-liquid-solid microextraction (LLSME) technique based on porous membrane-protected molecularly imprinted polymer (MIP)-coated silica fiber has been developed. In this technique, a MIP-coated silica fiber was protected with a length of porous polypropylene hollow fiber membrane which was filled with water-immiscible organic phase. Subsequently the whole device was immersed into aqueous sample for extraction. The LLSME technique was a three-phase microextraction approach. The target analytes were firstly extracted from the aqueous sample through a few microliters of organic phase residing in the pores and lumen of the membrane, and were then finally extracted onto the MIP fiber. A terbutylazine MIP-coated silica fiber was adopted as an example to demonstrate the feasibility of the novel LLSME method. The extraction parameters such as the organic solvent, extraction and desorption time were investigated. Comparison of the LLSME technique was made with molecularly imprinted polymer based solid-phase microextraction (MIP-SPME) and hollow fiber membrane-based liquid-phase microextraction (HF-LPME), respectively. The LLSME, integrating the advantages of high selectivity of MIP-SPME and enrichment and sample cleanup capability of the HF-LPME into a single device, is a promising sample preparation method for complex samples. Moreover, the new technique overcomes the problem of disturbance from water when the MIP-SPME fiber was exposed directly to aqueous samples. Applications to analysis of triazine herbicides in sludge water, watermelon, milk and urine samples were evaluated to access the real sample application of the LLSME method by coupling with high-performance liquid chromatography (HPLC). Low limits of detection (0.006-0.02 microg L(-1)), satisfactory recoveries and good repeatability for real sample (RSD 1.2-9.6%, n = 5) were obtained. The method was demonstrated to be a fast, selective and sensitive pretreatment method for trace analysis of triazines

  20. Microcontact Printing of Thiol-Functionalized Ionic Liquid Microarrays for "Membrane-less" and "Spill-less" Gas Sensors.

    Science.gov (United States)

    Gondosiswanto, Richard; Gunawan, Christian A; Hibbert, David B; Harper, Jason B; Zhao, Chuan

    2016-11-16

    Lab-on-a-chip systems have gained significant interest for both chemical synthesis and assays at the micro-to-nanoscale with a unique set of benefits. However, solvent volatility represents one of the major hurdles to the reliability and reproducibility of the lab-on-a-chip devices for large-scale applications. Here we demonstrate a strategy of combining nonvolatile and functionalized ionic liquids with microcontact printing for fabrication of "wall-less" microreactors and microfluidics with high reproducibility and high throughput. A range of thiol-functionalized ionic liquids have been synthesized and used as inks for microcontact printing of ionic liquid microdroplet arrays onto gold chips. The covalent bonds formed between the thiol-functionalized ionic liquids and the gold substrate offer enhanced stability of the ionic liquid microdroplets, compared to conventional nonfunctionalized ionic liquids, and these microdroplets remain stable in a range of nonpolar and polar solvents, including water. We further demonstrate the use of these open ionic liquid microarrays for fabrication of "membrane-less" and "spill-less" gas sensors with enhanced reproducibility and robustness. Ionic-liquid-based microarray and microfluidics fabricated using the described microcontact printing may provide a versatile platform for a diverse number of applications at scale.

  1. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J Douglas

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  2. Voltammetry of ion transfer across a polarized room-temperature ionic liquid membrane facilitated by valinomycin: theoretical aspects and application.

    Science.gov (United States)

    Langmaier, Jan; Samec, Zdenek

    2009-08-01

    Cyclic voltammetry is used to investigate the transfer of alkali-metal cations, protons, and ammonium ions facilitated by the complex formation with valinomycin at the interface between an aqueous electrolyte solution and a room-temperature ionic liquid (RTIL) membrane. The membrane is made of a thin (approximately 112 microm) microporous filter impregnated with an RTIL that is composed of tridodecylmethylammonium cations and tetrakis[3,5-bis(trifluoromethyl)phenyl]borate anions. An extension of the existing theory of voltammetry of ion transfer across polarized liquid membranes makes it possible to evaluate the standard ion-transfer potentials for the hydrophilic cations studied, as well as the stability constants (K(i)) of their 1:1 complexes with valinomycin, as log K(i) = 9.0 (H(+)), 11.1 (Li(+)), 12.8 (Na(+)), 17.2 (K(+)), 15.7 (Rb(+)), 15.1 (Cs(+)), and 14.7 (NH(4)(+)). These data point to the remarkably enhanced stability of the valinomycin complexes within RTIL, and to the enhanced selectivity of valinomycin for K(+) over all other univalent ions studied, compared to the conventional K(+) ion-selective liquid-membrane electrodes. Selective complex formation allows one to resolve voltammetric responses of K(+) and Na(+) in the presence of an excess of Mg(2+) or Ca(2+), which is demonstrated by determination of K(+) and Na(+) in the table and tap water samples.

  3. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  4. Synthesis and characterization of ionic liquid (EMImBF{sub 4})/Li{sup +} - chitosan membranes for ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Pasaribu, Marvin H., E-mail: marvin-shady88@yahoo.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id [Department of Chemistry, Faculty of Mathematics and Natural Sciences, InstitutTeknologi Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)

    2015-09-30

    Lithium ion battery has been currently developed and produced because it has a longer life time, high energycapacity, and the efficient use of lithium ion battery that is suitable for storing electrical energy. However, this battery has some drawbacks such as use liquid electrolytes that are prone to leakage and flammability during the battery charging process in high temperature. In this study, an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) containing Li{sup +} ions was synthesized and combined with chitosan polymer host as a polymer electrolyte membrane for lithium-ion batteries to solve this problems. This ionic liquid was obtained from the anion metathesis reaction between EMImBr and LiBF4 salt, while EMImBr was synthesized from the reaction between 1-methylimidazole and ethyl bromide utilizing Microwave Assisted Organic Synthesis (MAOS) method. The ionic liquid obtained was characterized by microstructure analysis with using NMR and FTIR spectroscopy. The polymer electrolyte membrane was characterized by analysis functional groups (FTIR), ionic conductivity (EIS), and surface morphology (SEM). The analysis results of ion conductivity by the EIS method showed the increase the ionic conductivity value of membranes from 1.30 × 10{sup −2} S cm{sup −1} for chitosan to 1.30 × 10{sup −2} S cm{sup −1} for chitosan with EMImBF4/Li{sup +}, and this result was supported by analysis the surface morphology (SEM)

  5. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A., E-mail: abazylak@mie.utoronto.ca [Dept. of Mechanical & Industrial Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario (Canada); Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N. [Canadian Light Source, Saskatoon, Saskatchewan (Canada); Tabuchi, Y.; Kotaka, T. [EV System Laboratory, Research Division 2, Nissan Motor Co., Ltd., Yokosuka, Kanagawa (Japan)

    2016-07-27

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  6. Relationship between the Contents of MDA, the Activity of SOD in Serum of the Milk Goat with Fluorosis and the Erythrocytic Membrane Liquidity

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To research the relation among the erythrooytic membrane liquidity and the contents of MPA, the activity of SOD in serum of the milk goat with fluorosis. An animal model with fluorosia was constructed, and the fluorescent probe technique of DPH was used to measue the erythrocytic membrane liquidity. At the same time, the contents of MPA and the activity of SOD in serum were measured. The results showed that the erythrocytic membrane liquidity in the control group and flurosis group were 5.6742 ± 0.4417 and 3.7248 ± 0.4521 (P <0.01) respectively, the contents of MPA in serum were 2.0408 ± 0.198 and 4.494± 0.438 (P <0.01) respectively, the activities of SOD were 175.638 ± 22.201 and 113.714 ± 34.258 (P <0.01) respectively. The correlation analysis indicated that the relation between the activity of SOD and the liquidity of erythrocytic membrane was positive correlation ( r=0.7321, P <0.05), whereas the relation between the contents of MPA and the liquidity of erythrocytic membrane was negative correlation (r = -0.6438, P <0.01). The erythrocytio membrane liquidity decreased in milk goat with fluorosis, which played a role in the occurrence and development of the fluorosis. There was correlation among the erythrocytic membrane liquidity and the contents of MDA, the activity of SOD.

  7. Study on supported combined liquid membrane containing HEH(EH)P and HNO_3 for trivalent gadolinium transfer

    Institute of Scientific and Technical Information of China (English)

    Liang Pei; Li Ming Wang

    2011-01-01

    A novel kind of supported combined liquid membrane (SCLM) has been studied for the Gd(Ⅲ) transfer. SCLM contained polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and renewal solution including HNO3 solution as the stripping solution and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (HEH(EH)P) as the carrier dissolved in kerosene. The mixed solution of carrier and kerosene was membrane solution. The optimum transport conditions of Gd(Ⅲ) were that concentration of HNO3 solution was 4.00 mol/L, concentration of carrier was 0.16 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 of the renewal phase, and pH value was 4.80 of the feed phase. Under the optimum condition studied, when initial concentration of Gd(Ⅲ) was 1.00 × 10-4 mol/L, the transfer rate of Gd(Ⅲ) was 96.8% during 130 min.

  8. Design of Phosphonated Imidazolium-Based Ionic Liquids Grafted on γ-Alumina: Potential Model for Hybrid Membranes

    Science.gov (United States)

    Pizzoccaro, Marie-Alix; Drobek, Martin; Petit, Eddy; Guerrero, Gilles; Hesemann, Peter; Julbe, Anne

    2016-01-01

    Imidazolium bromide-based ionic liquids bearing phosphonyl groups on the cationic part were synthesized and grafted on γ-alumina (γ-Al2O3) powders. These powders were prepared as companion samples of conventional mesoporous γ-alumina membranes, in order to favor a possible transfer of the results to supported membrane materials, which could be used for CO2 separation applications. Effective grafting was demonstrated using energy dispersive X-ray spectrometry (EDX), N2 adsorption measurements, fourier transform infrared spectroscopy (FTIR), and special attention was paid to 31P and 13C solid state nuclear magnetic resonance spectroscopy (NMR). PMID:27472321

  9. Design of Phosphonated Imidazolium-Based Ionic Liquids Grafted on γ-Alumina: Potential Model for Hybrid Membranes

    Directory of Open Access Journals (Sweden)

    Marie-Alix Pizzoccaro

    2016-07-01

    Full Text Available Imidazolium bromide-based ionic liquids bearing phosphonyl groups on the cationic part were synthesized and grafted on γ-alumina (γ-Al2O3 powders. These powders were prepared as companion samples of conventional mesoporous γ-alumina membranes, in order to favor a possible transfer of the results to supported membrane materials, which could be used for CO2 separation applications. Effective grafting was demonstrated using energy dispersive X-ray spectrometry (EDX, N2 adsorption measurements, fourier transform infrared spectroscopy (FTIR, and special attention was paid to 31P and 13C solid state nuclear magnetic resonance spectroscopy (NMR.

  10. Design of Phosphonated Imidazolium-Based Ionic Liquids Grafted on γ-Alumina: Potential Model for Hybrid Membranes.

    Science.gov (United States)

    Pizzoccaro, Marie-Alix; Drobek, Martin; Petit, Eddy; Guerrero, Gilles; Hesemann, Peter; Julbe, Anne

    2016-07-27

    Imidazolium bromide-based ionic liquids bearing phosphonyl groups on the cationic part were synthesized and grafted on γ-alumina (γ-Al₂O₃) powders. These powders were prepared as companion samples of conventional mesoporous γ-alumina membranes, in order to favor a possible transfer of the results to supported membrane materials, which could be used for CO₂ separation applications. Effective grafting was demonstrated using energy dispersive X-ray spectrometry (EDX), N₂ adsorption measurements, fourier transform infrared spectroscopy (FTIR), and special attention was paid to (31)P and (13)C solid state nuclear magnetic resonance spectroscopy (NMR).

  11. Determination of oxytetracycline in milk samples by polymer inclusion membrane separation coupled to high performance liquid chromatography.

    Science.gov (United States)

    Pérez-Silva, Irma; Rodríguez, José A; Ramírez-Silva, Ma Teresa; Páez-Hernández, Ma Elena

    2012-03-09

    The determination of oxytetracycline in milk samples using a polymer inclusion membrane concept with high performance liquid chromatography (HPLC) was studied. The membranes developed are composed by cellulose acetate as polymer base, Cyanex 923 as carrier and o-nitrophenyl octyl ether as plasticizer. In the optimal conditions, the method exhibits good linearity in the range 0.03-0.20 mg L(-1) with a limit of detection and quantification of 8.2 and 27.3 μg L(-1) respectively. The method was successfully applied to the analysis of milk samples with high selectivity.

  12. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    Science.gov (United States)

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  13. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  14. Applicability of a liquid membrane in enrichment and determination of nickel traces from natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Lledo, F.C.; Diaz-Lopez, I.C. [University of Havana, Department of Analytical Chemistry, Faculty of Chemistry, Havana (Cuba); Galindo-Riano, Maria D.; Garcia-Vargas, M.; Granado-Castro, M.D. [University of Cadiz, Department of Analytical Chemistry, Faculty of Sciences, Cadiz (Spain)

    2007-09-15

    In this work, a bulk liquid membrane method has been applied for Ni enrichment and separation from natural waters. The carrier-mediated transport was accomplished by pyridine-2-acetaldehyde benzoylhydrazone dissolved in toluene as a complexing agent. The preconcentration was achieved through pH control of source and receiving solutions via a counterflow of protons. The main variables were optimized by using a modified simplex technique. High transport efficiencies (101.2 {+-} 1.8-99.7 {+-} 4.2%) were provided by the carrier for nickel ions in a receiving phase of 0.31 mol L{sup -1} nitric acid after 9-13 h depending on sample salinity. The precision of the method was 2.05% (without a saline matrix) and 4.04% (with 40 g L{sup -1} NaCl) at the 95% confidence level and the detection limit of the blank was 0.015 {mu}g L{sup -1} Ni for detection by atomic absorption spectroscopy. The applicability of the method was tested on certified reference and real water samples with successful results, even for saline samples. The relative errors were -0.60% for certified reference materials and ranged from -0.39 to 2.90% and from 0.3 to 11.05% for real samples, obtained by comparison of inductively coupled plasma mass spectrometry and adsorptive cathodic stripping voltammetry measurements, respectively. (orig.)

  15. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids.

    Science.gov (United States)

    Marino, M G; Kreuer, K D

    2015-02-01

    The alkaline stability of 26 different quaternary ammonium groups (QA) is investigated for temperatures up to 160 °C and NaOH concentrations up to 10 mol L(-1) with the aim to provide a basis for the selection of functional groups for hydroxide exchange membranes in alkaline fuel cells and of ionic-liquid cations stable in basic conditions. Most QAs exhibit unexpectedly high alkaline stability with the exception of aromatic cations. β-Protons are found to be far less susceptible to nucleophilic attack than previously suggested, whereas the presence of benzyl groups, nearby hetero-atoms, or other electron-withdrawing species promote degradation reactions significantly. Cyclic QAs proved to be exceptionally stable, with the piperidine-based 6-azonia-spiro[5.5]undecane featuring the highest half-life at the chosen conditions. Absolute and relative stabilities presented herein stand in contrast to literature data, the differences being ascribed to solvent effects on degradation.

  16. Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process.

    Science.gov (United States)

    Ooi, Zing-Yi; Harruddin, Norlisa; Othman, Norasikin

    2015-01-01

    Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3 ) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2-ethyl-1-hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously. © 2015 American Institute of Chemical Engineers.

  17. Study on the liquid membrane oscillation of water/oil/water system containing TTAB and picric acid

    Institute of Scientific and Technical Information of China (English)

    Li Zhou; Jiao Ning Tang; Bo Liu; Yi Guang Wu; Ai Lian Wang; Chuan Dong Liao

    2008-01-01

    The liquid membrane oscillation of a novel water (aqueous tetradecyl trimethyl ammoniumbromide,TTAB and alcohol sohition)/oil (picdcacid in chloroform sohition)/water (aqueous glucose solution) system was investigated.By using homemade device,the curves of various liquid membranes oscillation with different concentration of TTAB and picric acid,types of alcohol and other organic solvents at different temperature were measured.The results show that the water (aqueous 7 mmol/L of TTAB and 0.5 mol/L of n-propanol solution)/oil (0.5 mmol/L of picric acid in chloroform solution)/water (aqueous glucose solution) system performed sustained and stable oscillation at 30℃.And the novel system can recognise added amino acid.

  18. Liquid-liquid electro-organo-synthetic processes in a carbon nanofibre membrane microreactor: Triple phase boundary effects in the absence of intentionally added electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, John D.; Ahn, Sunyhik D.; Taylor, James E.; Bull, Steven D. [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Bulman-Page, Philip C. [School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ (United Kingdom); Marken, Frank, E-mail: F.Marken@bath.ac.uk [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2011-07-30

    Graphical abstract: Display Omitted Highlights: > Amphiphilic carbon nanofiber membrane employed in electro-synthesis. > Triple phase boundary process within a carbon membrane. > Electrochemical deuteration in a liquid|liquid micro-reactor system. > Triple phase boundary reaction zone effects in electro-synthesis. - Abstract: An amphiphilic carbon nanofibre membrane electrode (ca. 50 nm fibre diameter, 50-100 {mu}m membrane thickness) is employed as an active working electrode and separator between an aqueous electrolyte phase (with reference and counter electrode) and an immiscible organic acetonitrile phase (containing only the redox active material). Potential control is achieved with a reference and counter electrode located in the aqueous electrolyte phase, but the electrolysis is conducted in the organic acetonitrile phase in the absence of intentionally added supporting electrolyte. For the one-electron oxidation of n-butylferrocene coupled to perchlorate anion transfer from aqueous to organic phase effective electrolysis is demonstrated with an apparent mass transfer coefficient of m = 4 x 10{sup -5} m s{sup -1} and electrolysis of typically 1 mg n-butylferrocene in a 100 {mu}L volume. For the two-electron reduction of tetraethyl-ethylenetetracarboxylate the apparent mass transfer coefficient m = 4 x 10{sup -6} m s{sup -1} is lower due to a less extended triple phase boundary reaction zone in the carbon nanofibre membrane. Nevertheless, effective electrolysis of up to 6 mg tetraethyl-ethylenetetracarboxylate in a 100 {mu}L volume is demonstrated. Deuterated products are formed in the presence of D{sub 2}O electrolyte media. The triple phase boundary dominated mechanism and future microreactor design improvements are discussed.

  19. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 10, December 21, 1991--March 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL`s contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  20. Analysis and quantification of parabens in cosmetic products by utilizing hollow fibre-supported liquid membrane and high performance liquid chromatography with ultraviolet detection.

    Science.gov (United States)

    Msagati, T A M; Barri, T; Larsson, N; Jönsson, J A

    2008-08-01

    A simple and direct method based on hollow fibre-supported liquid membrane (HFSLM) extraction and liquid chromatography equipped with a UV detector was developed for analysis and quantification of parabens in cosmetic products. The parabens analysed included methyl, ethyl, propyl, isobutyl and butyl paraben. The HFSLM extraction was carried out by employing di-n-hexyl ether as organic liquid that was immobilized in the hollow fibre membrane. The HFSLM extraction is simple, cheap, minimizes the use of solvents and uses disposable material. In an investigation of 11 paraben-containing cosmetic products, the levels of parabens (sum of all parabens in a product) ranged from 0.43% to 0.79% (w/w) for skin care products, 0.07-0.44% for hair fixing gels and 0.30-0.52% for soap solutions. The levels of individual parabens in individual cosmetic products ranged between 0.03% and 0.42% w/w for skin care products, 0.07% and 0.26% w/w for hair fixing gels and between 0.11% and 0.34% w/w for soap solutions. Parabens were found in the highest concentrations in skin care products followed by soap solutions and the least amounts were found in hair fixing gels. Of the paraben-containing products tested, all of them contained methyl paraben and about 90% contained propyl paraben in addition to methyl paraben. One product contained all the parabens analysed.

  1. New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs.

    Science.gov (United States)

    Fernicola, Alessandra; Panero, Stefania; Scrosati, Bruno; Tamada, Masahiro; Ohno, Hiroyuki

    2007-05-14

    A series of ionic liquids (ILs) are prepared by neutralizing tertiary amines with N,N-bis(trifluoromethanesulfonyl)imide (HTFSI). As demonstrated by thermal and electrochemical characterizations, these ILs have very good temperature stability and a high ionic conductivity, that is, of the order of 10(-2) S cm-1. By incorporating these ILs into a poly(vinylidenfluoride-co-hexafluoropropylene) polymer matrix, membranes with a high melting temperature, high decomposition point and with an ionic conductivity of about 10(-2) S cm-1 at 140 degrees C, are obtained. These IL-based, proton-conducting membranes are proposed as new polymer electrolytes for high-temperature polymer electrolyte membrane fuel cells (PEMFCs).

  2. Liquid crystals and their interactions with colloidal particles and phospholipid membranes: Molecular simulation studies

    Science.gov (United States)

    Kim, Evelina B.

    Experimentally, liquid crystals (LC) can be used as the basis for optical biomolecular sensors that rely on LC ordering. Recently, the use of LC as a reporting medium has been extended to investigations of molecular scale processes at lipid laden aqueous-LC interfaces and at biological cell membranes. In this thesis, we present two related studies where liquid crystals are modelled at different length scales. We examine (a) the behavior of nanoscopic colloidal particles in LC systems, using Monte Carlo (MC) molecular simulations and a mesoscopic dynamic field theory (DyFT); and (b) specific interactions of two types of mesogens with a model phospholipid bilayer, using atomistic molecular dynamics (MD) at the A-nm scale. In (a), we consider colloidal particles suspended in a LC, confined between two walls. We calculate the colloid-substrate and colloid-colloid potentials of mean force (PMF). For the MC simulations, we developed a new technique (ExEDOS or Expanded Ensemble Density Of States) that ensures good sampling of phase space without prior knowledge of the energy landscape of the system. Both results, simulation and DyFT, indicate a repulsive force acting between a colloid and a wall. In contrast, both techniques indicate an overall colloid-colloid attraction and predict a new topology of the disclination lines that arises when the particles approach each other. In (b), we find that mesogens (pentylcyanobiphenyl [5CB] or difluorophenyl-pentylbicyclohexyl [5CF]) preferentially partition from the aqueous phase into a dipalmitoylphosphatidylcholine (DPPC) bilayer. We find highly favorable free energy differences for partitioning (-18kBT for 5CB, -26k BT for 5CF). We also simulated fully hydrated bilayers with embedded 5CB or 5CF at concentrations used in recent experiments (6 mol% and 20 mol%). The presence of mesogens in the bilayer enhances the order of lipid acyl tails and changes the spatial and orientational arrangement of lipid headgroup atoms. A stronger

  3. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoram Cohen

    2001-12-01

    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  4. Novel analytical procedure using a combination of hollow fiber supported liquid membrane and dispersive liquid-liquid microextraction for the determination of aflatoxins in soybean juice by high performance liquid chromatography - Fluorescence detector.

    Science.gov (United States)

    Simão, Vanessa; Merib, Josias; Dias, Adriana N; Carasek, Eduardo

    2016-04-01

    This study describes a combination between hollow fiber membrane and dispersive liquid-liquid microextraction for determination of aflatoxins in soybean juice by HPLC. The main advantage of this approach is the use of non-chlorinated solvent and small amounts of organic solvents. The optimum extraction conditions were 1-octanol as immobilized solvent; toluene and acetone at 1:5 ratio as extraction and disperser solvents (100 μL), NaCl at 2% of the sample volume and extraction time of 60 min. The optimal condition for the liquid desorption was 150 μL acetonitrile:water (50:50 v/v) and desorption time of 20 min. The linear range varied from 0.03 to 21 μg L(-1), with R(2) coefficients ranging from 0.9940 to 0.9995. The limits of detection and quantification ranged from 0.01 μg L(-1) to 0.03 μg L(-1) and from 0.03 μg L(-1) to 0.1 μg L(-1), respectively. Recovery tests ranged from 72% to 117% and accuracy between 12% and 18%.

  5. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S; Cook, J; Juratovac, J; Goodwillie, J; Burke, T

    2011-10-25

    Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities

  6. Exploiting the Phenomenon of Liquid-Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug.

    Science.gov (United States)

    Indulkar, Anura S; Gao, Yi; Raina, Shweta A; Zhang, Geoff G Z; Taylor, Lynne S

    2016-06-01

    Recent studies on aqueous supersaturated lipophilic drug solutions prepared by methods including antisolvent addition, pH swing, or dissolution of amorphous solid dispersions (ASDs) have demonstrated that when crystallization is slow, these systems undergo liquid-liquid phase separation (LLPS) when the concentration of the drug in the medium exceeds its amorphous solubility. Following LLPS, a metastable equilibrium is formed where the concentration of drug in the continuous phase corresponds to the amorphous solubility while the dispersed phase is composed of a nanosized drug-rich phase. It has been reasoned that the drug-rich phase may act as a reservoir, enabling the rate of passive transport of the drug across a membrane to be maintained at the maximum value for an extended period of time. Herein, using clotrimazole as a model drug, and a flow-through diffusion cell, the reservoir effect is demonstrated. Supersaturated clotrimazole solutions at concentrations below the amorphous solubility show a linear relationship between the maximum flux and the initial concentration. Once the concentration exceeds the amorphous solubility, the maximum flux achieved reaches a plateau. However, the duration for which the high flux persists was found to be highly dependent on the number of drug-rich nanodroplets present in the donor compartment. Macroscopic amorphous particles of clotrimazole did not lead to the same reservoir effect observed with the nanodroplets formed through the process of LLPS. A first-principles mathematical model was developed which was able to fit the experimental receiver concentration-time profiles for concentration regimes both below and above amorphous solubility, providing support for the contention that the nanodroplet phase does not directly diffuse across the membrane but, instead, rapidly replenishes the drug in the aqueous phase that has been removed by transport across the membrane. This study provides important insight into the properties of

  7. Gas/liquid membrane contactors based on disubstituted polyacetylene for CO2 absorption liquid regeneration at high pressure and temperature

    NARCIS (Netherlands)

    Trusov, A.; Legkov, S.; Broeke, L.J.P. van den; Goetheer, E.L.V.; Khotimsky, V.; Volkov, A.

    2011-01-01

    This work deals with the study of chemical stability and the general behavior of hydrophobic glassy polymers with an excess of free volume fraction, such as poly[1-(trimethylsylil)-1-propyne] (PTMSP), poly[1-(trimethylgermil)-1-propyne] (PTMGP) and poly[4-methyl-2-pentyne] (PMP). The dense membranes

  8. Study on a novel flat renewal supported liquid membrane with D2EHPA and hydrogen nitrate for neodymium extraction

    Institute of Scientific and Technical Information of China (English)

    PEI Liang; WANG Liming; YU Guoqiang

    2012-01-01

    The Nd(Ⅲ) extraction in flat renewal supported liquid membrane (FRSLM),with polyvinylidene fluoride membrane and renewal solution including HNO3 solution as the stripping solution and di(2-ethylhexyl) phosphoric acid (D2EHPA) dissolved in kerosene as the membrane solution,was investigated.The effects of pH in the feed phase,volume ratio of membrane solution to stripping solution,concentration of HNO3 solution and concentration of carrier in the renewal phase on extraction of Nd(Ⅲ) were also studied,respectively.As a result,the optimum extraction conditions of Nd(Ⅲ) were obtained when concentration of HNO3 solution was 4.00 mol/L,concentration of D2EHPA was 0.100 mol/L,and volume ratio of membrane solution to stripping solution was 1.00 in the renewal phase,and pH was 4.60 in the feed phase.When initial concentration of Nd(Ⅲ) was 2.00× 10-4 mol/L,the extraction percentage of Nd(Ⅲ) was up to 92.9% in 75 min.

  9. Tb(Ⅲ) Transport in Dispersion Supported Liquid Membran System with D2EHPA as Carrier in Kerosene

    Institute of Scientific and Technical Information of China (English)

    PEI Liang; YAO Bing-hua; WANG Li-ming; MA Zhan-ying

    2011-01-01

    The transport of Tb(Ⅲ) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb(Ⅲ) and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the transport of Tb(Ⅲ) have also been investigated, respectively. As a result, the optimum transport conditions of Tb(Ⅲ) were obtained, i.e., the concentration of HCl solution was 4.0 mol/L, the concentration of D2EHPA was 0.16 mol/L, the volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase and pH value was 4.5 in the feed phase. Ionic strength had no obvious effect on the transport of Tb(Ⅲ). Under the optimum conditions, the transport percentage of Tb(Ⅲ) was up to 96.1% in a transport time of 35 min when the initial concentration of Tb(Ⅲ) was 1.0× 10-4 mol/L. The diffusion coefficient of Tb(Ⅲ) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.82× 10 -8 m2/s and 5.61 μm, respectively. The calculated results were in good agreement with the literature data.

  10. Separation of CO2 with Supported Ionic Liquid Membrane%离子液体支撑液膜分离CO_2

    Institute of Scientific and Technical Information of China (English)

    段永超; 伍艳辉; 于世昆; 李佟茗

    2012-01-01

    Supported liquid membrane (SLM applications in many fields such as hydrometallurgy, ) is a kind of important membrane technique which has biotechnology, gas separation, etc. A thorough summary of recent developments of supported liquid membranes used in the field of CO2 separation is provided. In this paper, two kinds of supported liquid membranes with different membrane phases, conventional carriers supported liquid membranes and supported ionic liquid membranes (SILMs), are introduced respectively. And the limits of conventional carriers supported liquid membrane are pointed out. The transport mechanism of gas in the SILMs is analyzed firstly. Then the progress of different SILMs are discussed intensively. For conventional ionic liquid membranes, the discussions focus on how the structure and content of ionic liquid as well as the support material influence the membrane performance. For task-specific ionic liquid membrane, different methods of functionalization and the CO2 permeability, selectivity and the liquid membrane stability of the corresponding supported task specific ionic liquid membranes are analyzed. Two kinds of new modification methods for supported ionic liquid membrane, poly (ionic liquid) membrane and supported gelled ionic liquid membrane, are also introduced. On this basis, the possible prospects of supported ionic liquid in the future are given.%支撑液膜是一种在湿法冶金、生物技术以及气体分离等多个领域都有应用的重要膜分离技术。本文回顾了支撑液膜技术分离CO2的研究进展,按照液膜相的不同,分类介绍了常规载体支撑液膜和离子液体支撑液膜,指出了常规载体支撑液膜分离CO2的局限性,重点介绍了离子液体支撑液膜分离CO2的发展,分析了气体在离子液体支撑液膜中的传质机理以及常规离子液体结构、含量和支撑膜材料等对分离效果的影响;讨论了离子液体的功能化方法以及功能化离

  11. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes.

    Science.gov (United States)

    Bacia, Kirsten; Schwille, Petra; Kurzchalia, Teymuras

    2005-03-01

    The existence of lipid rafts in biological membranes in vivo is still debated. In contrast, the formation of domains in model systems has been well documented. In giant unilamellar vesicles (GUVs) prepared from ternary mixtures of dioleoyl-phosphatidylcholine/sphingomyelin/cholesterol, a clear separation of liquid-disordered and sphingomyelin-enriched, liquid-ordered phases could be observed. This phase separation can lead to the fission of the liquid-ordered phase from the vesicle. Here we show that in cholesterol-containing GUVs, the phase separation can involve dynamic redistribution of lipids from one phase into another as a result of a cross-linking perturbation. We found that the molecular structure of a sterol used for the preparation of GUVs determines (i) its ability to induce phase separation and (ii) the curvature (positive or negative) of the formed liquid-ordered phase. As a consequence, the latter can pinch off to the outside or inside of the vesicle. Remarkably, some mixtures of sterols induce liquid-ordered domains exhibiting both positive and negative curvature, which can lead to a new type of budding behavior in GUVs. Our findings could have implications for the role of sterols in various cell-biological processes such as budding of secretory vesicles, endocytosis, or formation of multivesicular bodies.

  12. Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid

    KAUST Repository

    Mahalingam, Dinesh. K.

    2017-07-18

    Novel high flux polyethersulfone (PES) ultrafiltration membranes were fabricated by incorporating different amounts of graphene oxide (GO) sheets to PES as nanofillers. The membranes were prepared from solutions in 50/50 1-ethyl-3-methylimidazolium-diethylphosphate/N,N-dimethyl formamide. It was observed that the water permeance increased from 550 to 800 L m-2h-1bar-1, with incorporation of 1 wt% GO, keeping a molecular weight cut-off (MWCO) of approximately 32-34 kg mol-1. Cross-sectional scanning electron microscopy images of GO/PES membranes showed the formation of ultrathin selective layer unlike pristine membranes. Contact angle measurements confirmed the increase of hydrophilicity, by increasing the GO concentration. The rejection of humic acid and bovine serum albumin was demonstrated. The mechanical properties were improved, compared with the pristine membranes. The performance was just above the trade-off relationship between permeance and separation factor for PES membranes reported in the literature.

  13. Effect of magnetized extender on sperm membrane integrity and development of oocytes in vitro fertilized with liquid storage boar semen.

    Science.gov (United States)

    Lee, Sang-Hee; Park, Choon-Keun

    2015-03-01

    The objective of this study was to evaluate the effect of a magnetized extender on sperm membrane damage and development of oocytes in vitro fertilized with liquid storage boar semen. Before semen dilution, extender was flowed through a neodymium magnet (0, 2000, 4000 and 6000G) for 5min and collected semen was preserved for 168h at 18°C. In results, plasma membrane integrity with live sperm was significantly higher in semen treated with extenders magnetized at 4000G than sperm treated with extenders magnetized at 0G during semen preservation for 120-168h (psperm was significantly lower in semen treated with extenders magnetized at 2000G than other groups during semen preservation for 168h. The ability of semen to achieve successful in vitro fertilization was also not significantly different among the groups during preservation. However, when the semen was preserved for 168h, the blastocyst formation rates were significantly higher at 6000G compared to 0 and 2000G (psperm membrane from damage, and improve the ability of rates of in vitro blastocyst development and magnetized semen diluter is beneficial for long liquid preservation of boar semen.

  14. Grafting of cellulose acetate with ionic liquids for biofuel purification by a membrane process: Influence of the cation.

    Science.gov (United States)

    Hassan Hassan Abdellatif, Faten; Babin, Jérôme; Arnal-Herault, Carole; David, Laurent; Jonquieres, Anne

    2016-08-20

    A new strategy was developed for grafting ionic liquids (ILs) onto cellulose acetate in order to avoid IL extraction and improve its performance for ethyl tert-butyl ether (ETBE) biofuel purification by the pervaporation membrane process. This work extended the scope of IL-containing membranes to the challenging separation of organic liquid mixtures, in which these ILs were soluble. The ILs contained the same bromide anion and different cations with increasing polar feature. The membrane properties were strongly improved by IL grafting. Their analysis in terms of structure-property relationships revealed the influence of the IL content, chemical structure and chemical physical parameters α, β, π* in the Kamlet-Taft polarity scale. The ammonium IL led to the best normalized flux of 0.182kg/m(2)h for a reference thickness of 5μm, a permeate ethanol content of 100% and an outstanding infinite separation factor for the azeotropic mixture EtOH/ETBE at 50°C.

  15. Fibrous Support Stabilizes Nitrification Performance of a Membrane-Aerated Biofilm: The Effect of Liquid Flow Perturbation

    DEFF Research Database (Denmark)

    Terada, Akihiko; Ito, J; Matsumoto, S

    2009-01-01

    Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming no bound......Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming...... liquid flow rate condition was 49% and 75% in the FS-MABR and MABR, exhibiting robust biofilms grown on the fibrous support. The FS-MABR provided more stable nitrification performance than the MABR irrespective of a high liquid flow rate. Both reactors have deteriorated ammonium (NH4+-N) removal without...... a high liquid flow rate condition to eliminate excessive biomass, indicating that regular maintenance is essential to eliminate excessive biofilm from a MABR for nitrification, which potentially acts as a NH4+ diffusion barrier....

  16. Structure-Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(ionic liquids) and Poly(ionic liquid) Membranes: Effect of Alkyl Chain Length and Cations.

    Science.gov (United States)

    Zheng, Zhiqiang; Xu, Qiming; Guo, Jiangna; Qin, Jing; Mao, Hailei; Wang, Bin; Yan, Feng

    2016-05-25

    The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.

  17. A strategy for the systematic development of a liquid chromatographic mass spectrometric screening method for polymer electrolyte membrane degradation products using isocratic and gradient phase optimized liquid chromatography.

    Science.gov (United States)

    Zedda, M; Tuerk, J; Teutenberg, T; Peil, S; Schmidt, T C

    2009-12-18

    Within the scope of research for target and non-target LC-MS/MS analysis of membrane degradation products of polymer electrolyte membrane fuel cells, a systematic method development for the separation of structurally similar compounds was performed by phase optimized liquid chromatography. Five different stationary phases with different selectivities were used. Isocratic separation for 4-hydroxybenzoic acid, isophthalic acid, terephthalic acid, 4-hydroxybenzaldehyde and 4-formylbenzoic acid was achieved on a C18 and a Phenyl phase. Using the PRISMA model the separation efficiency was optimized. This was achieved on a serially connected mixed stationary phase composed of 30 mm C18, 150 mm Phenyl and 60 mm C30. For the LC-MS screening of unknown degradation products from polymer electrolyte membranes in the product water of a fuel cell, a solvent gradient is mandatory for less polar or later eluting compounds. By means of 4-mercaptobenzoic acid it could be shown that a solvent gradient can be applied in order to elute later eluting compounds in a short time. The adaptability of this method for the qualitative analysis by target and non-target LC-MS/MS screening has been shown by means of 4-hydroxybenzoic acid. The combination of solvent gradient and isocratic conditions makes this approach attractive for the purpose of a screening method for known and unknown analytes in a water sample.

  18. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and

  19. Simulation studies of the membrane exchange assembly of an all-liquid, proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, Ethan D. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Everitt Laboratory, MC-702, 1406 W. Green St., Urbana, IL 61801-2918 (United States); Miley, George H. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 100C NEL, 103 S. Goodwin Ave., Urbana, IL 61801 (United States)

    2008-01-21

    A model has been designed and constructed for the all-liquid, sodium borohydride/hydrogen peroxide fuel cell under development at the University of Illinois at Urbana-Champaign. The electrochemical behavior, momentum balance, and mass balance effects within the fuel cell are modeled using the Butler-Volmer equations, Darcy's law, and Fick's law, respectively, within a finite element modeling platform. The simulations performed with the model indicate that an optimal physical design of the fuel cell's flow channel land area or current collector exists when considering the pressure differential between channels, and the diffusion layer permeability and conductivity. If properties of the diffusion layer are known, the model is an effective method of improving the fuel cell design in order to achieve higher power density. (author)

  20. Stuides on a Pb2+-selective electrode with a macrocyclic liquid membrane. Potentiometric determination of Pb2+ ions

    Directory of Open Access Journals (Sweden)

    MARIAN ISVORANU

    2006-12-01

    Full Text Available This paper presents experimental and theoretical data regarding the design, characterization and analytical applications of a non-expensive, liquid-membrane ion-selective electrode for Pb2+ ions. The membrane is a solution of the active complex formed by Pb2+ ions with dibenzo-18-crown-6-ionophore (DB-[18]-C-6 extracted in propylene carbonate (PC. The sucessful application of the developed electrode for the determination of Pb2+ ions in aqueos solution samples by direct potentiometry and potentiometric titration is presented. For the presented analytical results, there are insignificant systematic errors between the direct potentiometric method with the developed ion-selective electrode and atomic absorption spectrometry.

  1. Volumetric gas-liquid mass transfer coefficient in an external-loop airlift reactor with inserted membrane

    Directory of Open Access Journals (Sweden)

    Kojić Predrag S.

    2016-01-01

    Full Text Available The effects of the inserted membrane in the downcomer of an external-loop airlift reactor, the gas sparger type (single orifice and sinter plate and added alcohol (ethanol, n-butanol, or n-hexanol on the volumetric gas-liquid mass transfer coefficient (kLa were studied. Due to the presence of the membrane in the downcomer, kLa did not change significantly; the differences were smaller than 10%. The highest values of the kLa were obtained using the sinter plate. It was found that the addition of small amounts of alcohol increased the mass transfer. Using our experimental results and the data of other authors, the feed-forward back propagation neural network for prediction of kLa in external-loop airlift reactors with alcohol solutions was proposed. [Projekat Ministarstva nauke Republike Srbije, br. 172025

  2. Investigation of Ion Channel Activities of Gramicidin A in the Presence of Ionic Liquids Using Model Cell Membranes.

    Science.gov (United States)

    Ryu, Hyunil; Lee, Hwankyu; Iwata, Seigo; Choi, Sangbaek; Kim, Moon Ki; Kim, Young-Rok; Maruta, Shinsaku; Kim, Sun Min; Jeon, Tae-Joon

    2015-07-20

    Ionic liquids (ILs) are considered to be green solvents because of their non-volatility. Although ILs are relatively safe in the atmospheric environment, they may be toxic in other environments. Our previous research showed that the cytotoxicity of ILs to biological organisms is attributable to interference with cell membranes by IL insertion. However, the effects of ILs on ion channels, which play important roles in cell homeostasis, have not been comprehensively studied to date. In this work, we studied the interactions between ILs and lipid bilayer membranes with gramicidin A ion channels. We used two methods, namely electrical and fluorescence measurements of ions that permeate the membrane. The lifetimes of channels were increased by all the ILs tested in this work via stabilizing the compressed structure of the lipid bilayer and the rate of ion flux through gA channels was decreased by changing the membrane surface charge. The former effect, which increased the rate of ion flux, was dominant at high salt concentrations, whereas the latter, which decreased the rate of ion flux, was dominant at low salt concentrations. The effects of ILs increased with increasing concentration and alkyl chain length. The experimental results were further studied using molecular dynamics simulations.

  3. Ion-exchange-membrane-based enzyme micro-reactor coupled online with liquid chromatography-mass spectrometry for protein analysis.

    Science.gov (United States)

    Zhou, Zhigui; Yang, Youyou; Zhang, Jialing; Zhang, Zhengxiang; Bai, Yu; Liao, Yiping; Liu, Huwei

    2012-04-01

    In this article, we developed a membrane-based enzyme micro-reactor by directly using commercial polystyrene-divinylbenzene cation-exchange membrane as the support for trypsin immobilization via electrostatic and hydrophobic interactions and successfully applied it for protein digestion. The construction of the reactor can be simply achieved by continuously pumping trypsin solution through the reactor for only 2 min, which was much faster than the other enzyme immobilization methods. In addition, the membrane reactor could be rapidly regenerated within 35 min, resulting in a "new" reactor for the digestion of every protein sample, completely eliminating the cross-interference of different protein samples. The amount and the activity of immobilized trypsin were measured, and the repeatability of the reactor was tested, with an RSD of 3.2% for the sequence coverage of cytochrome c in ten digestion replicates. An integrated platform for protein analysis, including online protein digestion and peptide separation and detection, was established by coupling the membrane enzyme reactor with liquid chromatography-quadrupole time-of-flight mass spectrometry. The performance of the platform was evaluated using cytochrome c, myoglobin, and bovine serum albumin, showing that even in the short digestion time of several seconds the obtained sequence coverages was comparable to or higher than that with in-solution digestion. The system was also successfully used for the analysis of proteins from yeast cell lysate.

  4. A study of chemical modifications of a Nafion membrane by incorporation of different room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de Yuso, M.V.; Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga (Spain); Neves, L.A.; Coelhoso, I.M.; Crespo, J.G. [REQUIMTE/CQFB, Departamento de Quimica, Universidade Nova de Lisboa, Caparica (Portugal); Benavente, J. [Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga (Spain)

    2012-08-15

    Surface and bulk chemical changes in a Nafion membrane as a result of room temperature ionic liquids (RTILs) incorporation were determined by X-ray photoelectron spectroscopy (XPS) and elemental analysis, respectively. RTILs with different physicochemical properties were selected. Two imidazolium based RTIL-cations (1-octyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) were used to detect the effect of cation size on membrane modification, while the effect of the RTIL hydrophilic/hydrophobic character was also considered by choosing different anions. Angle resolved XPS measurements (ARXPS) were carried out varying the angle of analysis between 15 and 75 to get elemental information on the Nafion/RTIL-modified membranes interactions for a deepness of around 10 nm. Moreover, changes in the RTIL-modified membranes associated to thermal effect were also considered by analyzing the samples after their heating at 120 C for 24 h. Agreement between both chemical techniques, bulk and destructive elemental analysis and surface and non-destructive XPS, were obtained. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2006-03-10

    In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential

  6. Ionic conductivity of mesoporous block copolymer membranes in liquid electrolyte as a function of copolymer and homopolymer molecular weight

    Science.gov (United States)

    Wong, David; Mullin, Scott; Stone, Greg; Battaglia, Vincent; Balsara, Nitash

    2011-03-01

    Mesoporous block copolymer membranes have been synthesized using poly(styrene-block-ethylene-block-polystyrene) (SES). A series of symmetric SES copolymers and PS homopolymers have been studied at different blending fractions. Ionic conductivities of the porous films in a liquid electrolyte, 1.0 M Li PF6 in ethylene carbonate/diethyl carbonate, compare favorably to conventional battery separators and generally increase with internal surface area, as measured by nitrogen adsorption. Characterization of the effects of pore structure and SES morphology on conductivity will be presented. Support from the U.S. Department of Energy Office of Vehicles Technologies (FCVT) under the Batteries for Advanced Transportation Technologies (BATT) Program.

  7. Simulation studies of ammonia removal from water in a membrane contactor under liquid-liquid extraction mode.

    Science.gov (United States)

    Mandowara, Amish; Bhattacharya, Prashant K

    2011-01-01

    Simulation studies were carried out, in an unsteady state, for the removal of ammonia from water via a membrane contactor. The contactor had an aqueous solution of NH(3) in the lumen and sulphuric acid in the shell side. The model equations were developed considering radial and axial diffusion and convection in the lumen. The partial differential equations were converted by the finite difference technique into a series of stiff ordinary differential equations w.r.t. time and solved using MATLAB. Excellent agreement was observed between the simulation results and experimental data (from the literature) for a contactor of 75 fibres. Excellent agreement was also observed between the simulation results and laboratory-generated data from a contactor containing 10,200 fibres. Our model is more suitable than the plug-flow model for designing the operation of the membrane contactor. The plug-flow model over-predicts the fractional removal of ammonia and was observed to be limited when designing longer contactors.

  8. Monitoring of N-methyl carbamate pesticide residues in water using hollow fibre supported liquid membrane and solid phase extraction

    Science.gov (United States)

    Msagati, Titus A. M.; Mamba, Bhekie B.

    The aim of this work was to develop a method for the determination of N-methyl carbamates in water involving hollow fibre supported liquid membrane (HFSLM) and solid phase extraction (SPE) as sample preparation methods. Four N-methyl carbamate pesticides, aldicarb, carbaryl, carbofuran and methiocarb sulfoxide, were simultaneously extracted and analysed by a liquid chromatograph with a diode array detector (LC-UV/DAD) and a liquid chromatograph coupled to a ion trap quadrupole mass spectrometer (LC-ESI-MS). The high performance liquid chromatography (HPLC) separation of carabamate extracts was performed on a C18 column with water-acetonitrile as the mobile phase. The mass spectrometry analyses were carried out in the positive mode, operating under both the selected ion monitoring (SIM) and full scan modes. The solid phase recoveries of the extracts ranged between 8% and 98%, with aldicarb having the highest recoveries, followed by carbaryl, carbofuran and methiocarb had the lowest recovery. The HFSLM recovery ranged between 8% and 58% and the order of recovery was similar to the SPE trend. Factors controlling the efficiency of the HFSLM extraction such as sample pH, stripping phase pH, enrichment time, stirring speed as well as organic solvent used for entrapment of analytes, were optimised to achieve the highest enrichment factors.

  9. Fabrication of highly co2 selective metal organic framework membrane using liquid phase epitaxy approach

    KAUST Repository

    Eddaoudi, Mohamed

    2016-01-28

    Embodiments include a method of making a metal organic framework membrane comprising contacting a substrate with a solution including a metal ion and contacting the substrate with a solution including an organic ligand, sufficient to form one or more layers of a metal organic framework on a substrate. Embodiments further include a defect-free metal organic framework membrane comprising MSiF6(pyz)2, wherein M is a metal, wherein the thickness of the membrane is less than 1,000 µm, and wherein the metal organic has a growth orientation along the [110] plane relative to a substrate.

  10. Liquid Droplets Act as "Compass Needles" for the Stresses in a Deformable Membrane

    Science.gov (United States)

    Schulman, Rafael D.; Ledesma-Alonso, René; Salez, Thomas; Raphaël, Elie; Dalnoki-Veress, Kari

    2017-05-01

    We examine the shape of droplets atop deformable thin elastomeric films prepared with an anisotropic tension. As the droplets generate a deformation in the taut film through capillary forces, they assume a shape that is elongated along the high tension direction. By measuring the contact line profile, the tension in the membrane can be completely determined. Minimal theoretical arguments lead to predictions for the droplet shape and membrane deformation that are in excellent agreement with the data. On the whole, the results demonstrate that droplets can be used as probes to map out the stress field in a membrane.

  11. Characterization of carbon dioxide transfer in a hollow fiber membrane module as a solution for gas-liquid transfer in microgravity conditions.

    Science.gov (United States)

    Farges, Berangere; Duchez, David; Dussap, Claude-Gilles; Cornet, Jean-F.

    In microgravity, one of the major difficulties encountered in closed photosynthetic reactors is the gas-liquid transfer with the necessity to provide CO2 (carbon source, pH control) and to recover the produced O2 . Indeed, reduced gravity is expected to modify gas liquid transfer and liquid phase mixing characteristics inside photobioreactors conceived to regenerate atmosphere of closed life-support systems. To obtain efficient mass transfer conditions and mixing of phases, several solutions are possible: use of rotating reactor (centrifugal field), use of forced, co-current convective reactor with gas-liquid separator and use of membrane modules. In terms of space process engineering, the membrane reactor can be a valuable alternative in which the gas and liquid phases are separated with a selectively permeable membrane. The rate-limiting factors in this reactor were demonstrated to be the surface of membrane A needed for diffusion of gases and the CO2 and O2 mass transfer coefficients in the liquid phase kL. How-ever, the major advantages of the membrane reactor are that it is composed of a hydrophobic membrane (here PTFE) which showed a high hydrophobicity, an important chemical resis-tance, a very long term stability and overall which is favourable to gas transfer. Moreover, the volumetric mass transfer coefficients are sufficiently high to build compact systems with small footprints, no complex rotating devices and lighter weights. This paper describes first the development of a system enabling the accurate characterization of the mass transfer limiting step for a PTFE membrane module. This original technical apparatus, together with a technical assessment of membrane permeability to different gases, is associated with a balance model, determining thus completely the CO2 mass transfer problem between phases. First results are given and discussed for the CO2 mass transfer coefficient CO kL 2 obtained in case of an absorption experiment at pH = 8 using the

  12. Interaction of the organic tin chloride with the liquid model membranes

    Energy Technology Data Exchange (ETDEWEB)

    Podolak, M; Engel, G; Man, D [Institute of Physics, Opole University, Oleska 48, 45-052 Opole (Poland)

    2007-08-15

    The objective of the work was to investigate the effect of organic tin chloride (C{sub 3}H{sub 7}){sub 3}SnCl on the electric parameters of membranes in the form of filters of the company Synpor (Czech Republic) impregnated with various fatty acids, dissolved with carbon tetrachloride (CCl{sub 4}). Three carboxylic acids were used in the study: palmitic, arachidic and oleic, and dissolvent of the acids (CCl{sub 4}) as well as butylene ester of lauric acid. In all cases, introduction of tin chloride of constant concentration amounting to 0.15 mM to the measurement chamber resulted in induction of membrane voltage. In case of pure lauric acid and CCl{sub 4}, the voltage reached the maximum value and then decreased to a certain constant value. In the case of all acids dissolved in CCl{sub 4}, the voltage increased only up to a certain constant value. Voltage drop (below the value) was observed after application of appropriately high concentration of tin chloride, in case of membranes impregnated with the mixture of lauric acid ester with CCl{sub 4} and palmitic acid with CCl{sub 4}. The study also demonstrated that electrical resistance of membranes impregnated with carboxylic acid increased in the presence of tin chloride and decreased in case of membranes impregnated with lauric acid ester. However, electric capacities of membranes did not significant change.

  13. Interaction of the organic tin chloride with the liquid model membranes

    Science.gov (United States)

    Podolak, M.; Engel, G.; Man, D.

    2007-08-01

    The objective of the work was to investigate the effect of organic tin chloride (C3H7)3SnCl on the electric parameters of membranes in the form of filters of the company Synpor (Czech Republic) impregnated with various fatty acids, dissolved with carbon tetrachloride (CCl4). Three carboxylic acids were used in the study: palmitic, arachidic and oleic, and dissolvent of the acids (CCl4) as well as butylene ester of lauric acid. In all cases, introduction of tin chloride of constant concentration amounting to 0.15 mM to the measurement chamber resulted in induction of membrane voltage. In case of pure lauric acid and CCl4, the voltage reached the maximum value and then decreased to a certain constant value. In the case of all acids dissolved in CCl4, the voltage increased only up to a certain constant value. Voltage drop (below the value) was observed after application of appropriately high concentration of tin chloride, in case of membranes impregnated with the mixture of lauric acid ester with CCl4 and palmitic acid with CCl4. The study also demonstrated that electrical resistance of membranes impregnated with carboxylic acid increased in the presence of tin chloride and decreased in case of membranes impregnated with lauric acid ester. However, electric capacities of membranes did not significant change.

  14. 离子液体二氧化碳分离膜研究进展%Developments in ionic liquid membranes for CO2 separation

    Institute of Scientific and Technical Information of China (English)

    赵薇; 贺高红; 刘红晶; 李凤华; 张莹

    2014-01-01

    Supported ionic liquid membrane (SILM) has relatively low stability at high cross-membrane pressure difference (0.25-0.3MPa). Polymerized ionic liquid membrane and ionic liquid − polymer mixed membrane can eliminate the instability problem of the SILM. This review presented a summary on the latest developments in the research of SILM,polymerized ionic liquid membrane and ionic liquid − polymer mixed membrane used for CO2 separation with respect to the separation performance,transport mechanism and stability. The research on a three-component mixed-matrix membrane,inorganic particle−ionic liquid−polymer mixed membrane,by dispersing inorganic nano-particles in polymer matrix containing ionic liquid was also introduced. It was indicated that the challenges for the ionic liquid membranes technologies applied on an industrial scale include the trade-off between high CO2 permeation rate and high stability,and the difficulties with the structural arrangement of the mixed membrane. Significant improvements of the separation performance and stability of the ionic liquid membranes can be achieved by developing new membrane materials,improving membrane fabrication techniques to reduce membrane thickness and optimize membrane structure. Inorganic particle − ionic liquid − polymer mixed membrane showed a good prospect in CO2 separation for its higher separation performance combining with better stability. The study on the fabrication,structure,separation performance and mechanism of the new type of membrane will inevitably draw considerable attention.%离子液体支撑液膜在较大跨膜压差(0.25~0.3MPa)下的稳定性较差,具有较好稳定性的聚离子液体膜和离子液体-聚合物共混膜等逐渐被关注。本文综述了离子液体支撑液膜、聚离子液体膜、离子液体−聚合物共混膜等离子液体膜CO2分离性能、分离机理及稳定性的最新研究进展,介绍了无机颗粒-离子液体-聚合物共混膜的

  15. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2014-10-01

    Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.

  16. Lipid Raft-Mediated Membrane Tethering and Delivery of Hydrophobic Cargos from Liquid Crystal-Based Nanocarriers.

    Science.gov (United States)

    Nag, Okhil K; Naciri, Jawad; Oh, Eunkeu; Spillmann, Christopher M; Delehanty, James B

    2016-04-20

    A main goal of bionanotechnology and nanoparticle (NP)-mediated drug delivery (NMDD) continues to be the development of novel biomaterials that can controllably modulate the activity of the NP-associated therapeutic cargo. One of the desired subcellular locations for targeted delivery in NMDD is the plasma membrane. However, the controlled delivery of hydrophobic cargos to the membrane bilayer poses significant challenges including cargo precipitation and lack of specificity. Here, we employ a liquid crystal NP (LCNP)-based delivery system for the controlled partitioning of a model dye cargo from within the NP core into the plasma membrane bilayer. During synthesis of the NPs, the water-insoluble model dye cargo, 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), was efficiently incorporated into the hydrophobic LCNP core as confirmed by multiple spectroscopic analyses. Conjugation of a PEGylated cholesterol derivative to the NP surface (DiO-LCNP-PEG-Chol) facilitated the localization of the dye-loaded NPs to lipid raft microdomains in the plasma membrane in HEK 293T/17 cell. Analysis of DiO cellular internalization kinetics revealed that when delivered as a LCNP-PEG-Chol NP, the half-life of DiO membrane residence time (30 min) was twice that of free DiO (DiO(free)) (15 min) delivered from bulk solution. Time-resolved laser scanning confocal microscopy was employed to visualize the passive efflux of DiO from the LCNP core and its insertion into the plasma membrane bilayer as confirmed by Förster resonance energy transfer (FRET) imaging. Finally, the delivery of DiO as a LCNP-PEG-Chol complex resulted in the attenuation of its cytotoxicity; the NP form of DiO exhibited ∼30-40% less toxicity compared to DiO(free). Our data demonstrate the utility of the LCNP platform as an efficient vehicle for the combined membrane-targeted delivery and physicochemical modulation of molecular cargos using lipid raft-mediated tethering.

  17. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking

    Science.gov (United States)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-02-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  18. Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments

    Science.gov (United States)

    Griffin, Dale W.; Gonzalez, C.; Teigell, N.; Petrosky, T.; Northup, D.E.; Lyles, M.

    2011-01-01

    The influence of sample-collection-time on the recovery of culturable airborne microorganisms using a low-flow-rate membrane-filtration unit and a high-flow-rate liquid impinger were investigated. Differences in recoveries were investigated in four different atmospheric environments, one mid-oceanic at an altitude of ~10.0 m, one on a mountain top at an altitude of ~3,000.0 m, one at ~1.0 m altitude in Tallahassee, Florida, and one at ~1.0 m above ground in a subterranean-cave. Regarding use of membrane filtration, a common trend was observed: the shorter the collection period, the higher the recovery of culturable bacteria and fungi. These data also demonstrated that lower culturable counts were common in the more remote mid-oceanic and mountain-top atmospheric environments with bacteria, fungi, and total numbers averaging (by sample time or method categories) filtration for aeromicrobiology studies if start-up costs are not an issue and temperature permits use; (2) although membrane filtration is more cost friendly and has a 'typically' wider operational range, its limits include loss of cell viability with increased sample time and issues with effectively extracting nucleic acids for community-based analyses; (3) the ability to recover culturable microorganisms is limited in 'extreme' atmospheric environments and thus the use of a 'limited' methodology in these environments must be taken into account; and (4) the atmosphere culls, i.e., everything is not everywhere. ?? 2010 US Government.

  19. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking.

    Science.gov (United States)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-01-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  20. Stripping dispersion hollow fiber liquid membrane containing carrier PC-88A and HNO3 for the extraction of Sm3+

    Institute of Scientific and Technical Information of China (English)

    Liang Pei; Li Ming Wang; Wei Guo

    2012-01-01

    Stripping dispersion hollow fiber liquid membrane system (SDHFLM) containing feed phase adding acetate buffer solution and dispersion solution with HNO3 solution as the stripping solution and membrane solution of 2-ethyl hexyl phosphoric acid-mono-2-ethylhexyl ester (PC-88A) dissolved in kerosene,has been studied for the extraction of Sm3+.Many factors including pH value,volume ratio of membrane solution to stripping solution (O/W) and carrier concentration on Sm3+ extraction were investigated.Experimental results indicate that the optimum extraction conditions of Sm3+ were obtained as that PC-88A concentration was 0.120 mol/L,and O/W was 1.00 in the dispersion phase,and pH value was 4.80 in the feed phase.When initial Sm3+ concentration was 1.20 × 10-4 mol/L,the extraction percentage of Sm3+ was up to 92.8% in 160 min.

  1. Ionic liquids effects on the permeability of photosynthetic membranes probed by the electrochromic shift of endogenous carotenoids.

    Science.gov (United States)

    Malferrari, Marco; Malferrari, Danilo; Francia, Francesco; Galletti, Paola; Tagliavini, Emilio; Venturoli, Giovanni

    2015-11-01

    Ionic liquids (ILs) are promising materials exploited as solvents and media in many innovative applications, some already used at the industrial scale. The chemical structure and physicochemical properties of ILs can differ significantly according to the specific applications for which they have been synthesized. As a consequence, their interaction with biological entities and toxicity can vary substantially. To select highly effective and minimally harmful ILs, these properties need to be investigated. Here we use the so called chromatophores--protein-phospholipid membrane vesicles obtained from the photosynthetic bacterium Rhodobacter sphaeroides--to assess the effects of imidazolinium and pyrrolidinium ILs, with chloride or dicyanamide as counter anions, on the ionic permeability of a native biological membrane. The extent and modalities by which these ILs affect the ionic conductivity can be studied in chromatophores by analyzing the electrochromic response of endogenous carotenoids, acting as an intramembrane voltmeter at the molecular level. We show that chromatophores represent an in vitro experimental model suitable to probe permeability changes induced in cell membranes by ILs differing in chemical nature, degree of oxygenation of the cationic moiety and counter anion.

  2. Enzymatic membrane reactor for full saccharification of ionic liquid-pretreated microcrystalline cellulose.

    Science.gov (United States)

    Lozano, Pedro; Bernal, Berenice; Jara, Antonio G; Belleville, Marie-Pierre

    2014-01-01

    Ultrafiltration reactors based on polymeric or ceramic membranes were shown to be suitable catalytic systems for fast enzymatic saccharification of cellulose, allowing the full recovery and reuse of enzymes. By pre-treating cellulose with the IL 1-butyl-3-methylimidazolium chloride, the suitability of this substrate for enzymatic saccharification in a reactor based on polymeric ultrafiltration membranes was demonstrated, leading to 95% cellulose hydrolysis in 4h at 50°C. The filtration process gave a clear glucose solution (up to 113 mM) at constant permeate flow (24.7 L h(-1) m(-2)), allowing the enzyme to be reused for 9 operation cycles under semi-continuous operation, without any loss of enzyme activity. Under continuous operation mode and using ceramic ultrafiltration membranes at different residence times, the enzymatic reactor showed constant profiles in both the permeate flow rate and the glucose concentration, demonstrating the excellent suitability of the proposed approach for the saccharification of cellulose.

  3. Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture.

    Science.gov (United States)

    Ban, Yujie; Li, Zhengjie; Li, Yanshuo; Peng, Yuan; Jin, Hua; Jiao, Wenmei; Guo, Ang; Wang, Po; Yang, Qingyuan; Zhong, Chongli; Yang, Weishen

    2015-12-14

    Fine-tuning of effective pore size of microporous materials is necessary to achieve precise molecular sieving properties. Herein, we demonstrate that room temperature ionic liquids can be used as cavity occupants for modification of the microenvironment of MOF nanocages. Targeting CO2 capture applications, we tailored the effective cage size of ZIF-8 to be between CO2 and N2 by confining an imidazolium-based ionic liquid [bmim][Tf2 N] into ZIF-8's SOD cages by in-situ ionothermal synthesis. Mixed matrix membranes derived from ionic liquid-modified ZIF-8 exhibited remarkable combinations of permeability and selectivity that transcend the upper bound of polymer membranes for CO2 /N2 and CO2 /CH4 separation. We observed an unusual response of the membranes to varying pressure, that is, an increase in the CO2 /CH4 separation factor with pressure, which is highly desirable for practical applications in natural gas upgrading.

  4. Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs).

    Science.gov (United States)

    Hojniak, Sandra D; Silverwood, Ian P; Khan, Asim Laeeq; Vankelecom, Ivo F J; Dehaen, Wim; Kazarian, Sergei G; Binnemans, Koen

    2014-07-03

    Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, the two classes of ILs benefit from the presence of a nitrile group in different ways. The difunctionalized pyrrolidinium ILs exhibit an increase in CO2 permeance, whereas the permeances of the contaminant gases rise negligibly, resulting in high gas separation selectivities. In the imidazolium ILs, the presence of a nitrile group does not always increase the CO2 permeance nor does it increase the CO2 solubility, as showed in situ by the ATR-FTIR spectroscopic method. High selectivity of these ILs is caused by the considerably reduced permeances of N2 and CH4, most likely due to the ability of the -CN group to reject the nonpolar contaminant gases. Apart from the CO2 solubility, IL-CO2 interactions and IL swelling were studied with the in situ ATR-FTIR spectroscopy. Different strengths of the IL-CO2 interactions were found to be the major difference between the two classes of ILs. The difunctionalized ILs interacted stronger with CO2 than the glycol-functionalized ILs, as manifested in the smaller bandwidths of the bending mode band of CO2 for the latter.

  5. Sample clean-up, enrichment and determination of s-triazine herbicides from southern ethiopian lakes supported using liquid membrane extraction

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson

    2000-06-01

    Full Text Available The liquid membrane extraction method has been employed for selectively extracting trace quantities of s-triazine herbicides in environmental waters collected from lakes Awassa, Chamo and Abbya, located in close proximity to the agricultural farms in Southern Ethiopia. In liquid membrane extraction, the uncharged triazine compounds from the flowing donor solution diffuse through a porous poly(tetrafluoroethylene (PTFE membrane, containing a water immiscible organic solvent. The s-triazine molecules are then irreversibly trapped in the stagnant acidic acceptor phase since they become protonated. Using both di-n-hexylether and n-undecane membrane solvents, s-traizine herbicides were extracted and low detection limits of about 1 ng/L have been obtained by extraction of three liters of sample solution spiked with 0.1 g/L of each triazine. Residues of atrazine and terbutryn ranging in concentration from 0.02 to 0.05 g/L have been successfully determined.

  6. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    Science.gov (United States)

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.

  7. Identification of oxidized methionine sites in erythrocyte membrane protein by liquid chromatography/electrospray ionization mass spectrometry peptide mapping.

    Science.gov (United States)

    Li, Chunyan; Takazaki, Shinya; Jin, Xiuri; Kang, Dongchon; Abe, Yoshito; Hamasaki, Naotaka

    2006-10-03

    In this study, we used peptide mapping combined with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI MS) to examine the methionine oxidation of band 3 of erythrocyte membrane protein. Initially, we identified the methionine sites oxidized by chloramine T (N-chloro-p-toluenesulfoamide), a hydrophilic reagent. There were three oxidized methionines (Met 559, Met 741, and Met 909) in band 3, and these methionines were located in a hydrophilic region determined by previous topological studies of band 3. In addition, we found that C12E8, a polyoxyethylene detergent, leads to the oxidation of methionines in a transmembrane segment in band 3, and this oxidation occurs in a C12E8 preincubation time-dependent manner. In a previous study, it was found that peroxides accumulate in a polyoxyethylene detergent. Thus, our method enabled the direct and quantitative detection of protein damage due to detergent peroxides. Furthermore, we examined methionine oxidation in the presence of 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethyl pyrocarbonate (DEPC), which induced either an outward or an inward conformation in band 3, respectively. Our results indicated that the location of Met 741 was associated with the band 3 conformation induced by band 3-mediated anion transport. In conclusion, we found that methionine oxidation can be applied to examine membrane protein structures as follows: (1) for topological studies of membrane proteins, (2) for assessing the quality of proteins in detergent solubilization studies, and (3) for the detection of conformational changes in membrane proteins.

  8. Liquid Crystal Sulfonated Aramids as Proton Exchange Membranes for Fuel Cell Applications

    NARCIS (Netherlands)

    Gao, J.

    2015-01-01

    Two sulfonated aramids, poly(2,2’-disulfonylbenzidine terephthalamide) (PBDT) and poly(2,2’-disulfonylbenzidine isophthalamide) (PBDI) were synthesized with the aim to explore their unique morphology for proton exchange membrane applications. Due to the different polymer structures, PBDT forms a nem

  9. Liquid Crystal Sulfonated Aramids as Proton Exchange Membranes for Fuel Cell Applications

    NARCIS (Netherlands)

    Gao, J.

    2015-01-01

    Two sulfonated aramids, poly(2,2’-disulfonylbenzidine terephthalamide) (PBDT) and poly(2,2’-disulfonylbenzidine isophthalamide) (PBDI) were synthesized with the aim to explore their unique morphology for proton exchange membrane applications. Due to the different polymer structures, PBDT forms a nem

  10. X-ray and Electrochemical Impedance Spectroscopy Diagnostic Investigations of Liquid Water in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    Science.gov (United States)

    Antonacci, Patrick

    In this thesis, electrochemical impedance spectroscopy (EIS) and synchrotron x-ray radiography were utilized to characterize the impact of liquid water distributions in polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs) on fuel cell performance. These diagnostic techniques were used to quantify the effects of liquid water visualized on equivalent resistances measured through EIS. The effects of varying the thickness of the microporous layer (MPL) of GDLs were studied using these diagnostic techniques. In a first study on the feasibility of this methodology, two fuel cell cases with a 100 microm-thick and a 150 microm-thick MPL were compared under constant current density operation. In a second study with 10, 30, 50, and 100 microm-thick MPLs, the liquid water in the cathode substrate was demonstrated to affect mass transport resistance, while the liquid water content in the anode (from back diffusion) affected membrane hydration, evidenced through ohmic resistance measurements.

  11. Research Progress in Separation of CO2 by Supported Liquid Membrane With Ionic Liquid%离子液体支撑液膜分离CO2的研究进展

    Institute of Scientific and Technical Information of China (English)

    徐世博; 刘东斌; 申延明

    2013-01-01

    总结了离子液体支撑液膜分离CO2的研究进展,简要分析了气体在离子液体支撑液膜中的传质机理;介绍了离子液体支撑液膜的制备方法及影响离子液体支撑液膜稳定性的因素;指出了今后用于分离CO2的离子液体支撑液膜的发展方向。%The research progress in separation of CO2 by ionic liquid supported liquid membrane was summarized. The mass transfer mechanism of gas in the supported ionic liquid membrane was analyzed. Then the preparation method of supported ionic liquid membrane was introduced as well as the factors influencing its stability. Finally development direction of the supported ionic liquid membrane for separation of CO2 in the future was pointed out.

  12. Binding of β-Amyloid (1–42) Peptide to Negatively Charged Phospholipid Membranes in the Liquid-Ordered State: Modeling and Experimental Studies

    OpenAIRE

    Ahyayauch, Hasna; Raab, Michal; Busto, Jon V.; Andraka, Nagore; Arrondo, José-Luis R.; Masserini, Massimo; Tvaroska, Igor; Goñi, Félix M.

    2012-01-01

    To explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (Lo) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the Lo state, in the absence of the negatively charged lipids, interaction i...

  13. Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network

    OpenAIRE

    Dietmar Gerteisen; Robert Alink

    2013-01-01

    In order to model the liquid water transport in the porous materials used in polymer electrolyte membrane (PEM) fuel cells, the pore network models are often applied. The presented model is a novel approach to further develop these models towards a percolation model that is based on the fiber structure rather than the pore structure. The developed algorithm determines the stable liquid water paths in the gas diffusion layer (GDL) structure and the transitions from the paths to the subsequent ...

  14. Membrane distillation and reverse electrodialysis for near-zero liquid discharge and low energy seawater desalination

    OpenAIRE

    Tufa, R.; Curcio, E.; Brauns, E.; Van Baak, W; Fontananova, E.; Di Profio, G.

    2015-01-01

    With a total capacity of 70 million cubic meters per day, seawater desalination industry represents the most affordable source of drinking water for many people living in arid areas of the world. Seawater Reverse Osmosis (SWRO) technology, driven by the impressive development in membrane materials, modules and process design, currently shows an overall energy consumption of 3-4 kWh per m(3) of desalted water, substantially lower than thermal systems; however, the theoretical energy demand to ...

  15. Use of Ionic Liquid-filled Semipermeable Membrane for Extraction of Polycyclic Aromatic Hydrocarbons in Water

    Institute of Scientific and Technical Information of China (English)

    Wen Yan ZHAO; Meng HAN; Shu Gui DAI; Xia ZHONG

    2005-01-01

    A novel and facile sample preparation method was developed for the extraction of polycyclic aromatic hydrocarbons (PAHs) in aqueous sample solution using 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM] [PF6]) - filled semipermeable membrane. For24 hrs extraction of naphthalene, 1-methylnaphthalene, 2-chloronaphthalene, phenanthrene, the result showed that the extraction efficiency, correlation coefficient (R2) and RSD (n=5) were in the range of 67-102 %, 0.9870-0.9962, and 2.1-5.3 %, respectively.

  16. Membrane distillation and reverse electrodialysis for near-zero liquid discharge and low energy seawater desalination

    OpenAIRE

    Tufa, R.; Curcio, E.; Brauns, E.; Van Baak, W.; Fontananova, E.; Di Profio, G.

    2015-01-01

    With a total capacity of 70 million cubic meters per day, seawater desalination industry represents the most affordable source of drinking water for many people living in arid areas of the world. Seawater Reverse Osmosis (SWRO) technology, driven by the impressive development in membrane materials, modules and process design, currently shows an overall energy consumption of 3-4 kWh per m(3) of desalted water, substantially lower than thermal systems; however, the theoretical energy demand to ...

  17. Performance analysis of a liquid desiccant and membrane contactor hybrid air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bergero, Stefano; Chiari, Anna [DIPARC, Faculty of Architecture, University of Genoa, Stradone S. Agostino 37, 16123 Genova (Italy)

    2010-11-15

    The present study examines the performances of a hybrid air-conditioning system in which a vapour-compression inverse cycle is integrated with an air dehumidification system working with hygroscopic solution and hydrophobic membrane. This model may be a valid alternative to traditional summertime air-conditioning system, in which the air is cooled to below its dew-point temperature and subsequently reheated. The proposed hybrid system involves simultaneously cooling and dehumidifying the air conveyed to the conditioned ambient in an air-solution membrane contactor. An LiCl solution is cooled by means of a vapour-compression inverse cycle using the refrigerant KLEA 407C. The solution is regenerated in another membrane contactor by exploiting the heat rejected by the condenser. A SIMULINK calculation programme was designed in order to simulate the system under examination in steady-state conditions. The performances of the system were analysed on varying a few significant operating parameters, and were compared with those of a traditional direct-expansion air-conditioning plant in typical summertime conditions. The results of the simulations revealed significant energy savings, which, in particular operating conditions, may exceed 50%. (author)

  18. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Alsu A. Akhmetshina

    2015-12-01

    Full Text Available Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6] and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide ([emim][Tf2N] immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S.

  19. A moving boundary problem and orthogonal collocation in solving a dynamic liquid surfactant membrane model including osmosis and breakage

    Directory of Open Access Journals (Sweden)

    E.C. Biscaia Junior

    2001-06-01

    Full Text Available A dynamic kinetic-diffusive model for the extraction of metallic ions from aqueous liquors using liquid surfactant membranes is proposed. The model incorporates undesirable intrinsic phenomena such as swelling and breakage of the emulsion globules that have to be controlled during process operation. These phenomena change the spatial location of the chemical reaction during the course of extraction, resulting in a transient moving boundary problem. The orthogonal collocation method was used to transform the partial differential equations into an ordinary differential equation set that was solved by an implicit numerical routine. The model was found to be numerically stable and reliable in predicting the behaviour of zinc extraction with acidic extractant for long residence times.

  20. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes.

    Science.gov (United States)

    Akhmetshina, Alsu A; Davletbaeva, Ilsiya M; Grebenschikova, Ekaterina S; Sazanova, Tatyana S; Petukhov, Anton N; Atlaskin, Artem A; Razov, Evgeny N; Zaripov, Ilnaz I; Martins, Carla F; Neves, Luísa A; Vorotyntsev, Ilya V

    2015-12-30

    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF₆]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf₂N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N₂, NH₃, H₂S, and CO₂ gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF₆] and [emim][Tf₂N]. The modification of SILMs by nanosize silica particles leads to an increase of NH₃ separation relatively to CO₂ or H₂S.

  1. Synthesis and Crystal Structure of A New Armed-tetraazacrown Ether and Its Liquid Membrane Transport of Alkali Metal Cations

    Institute of Scientific and Technical Information of China (English)

    马淑兰; 朱文祥; 董淑静; 郭倩玲; 佘远斌

    2003-01-01

    A new tetra-N-substituted tetraazacrown ether derivative, 4,7,13,16-tetra ( 2-cyanobenzyl)-1, 10-dioxa-4, 7, 13, 16-tetraazacy-dooctademne, C44H48N8O2, has been synthesized and struc-turally characterized. It crystallizes in the monoclinic system,Slmeegroup P21/c with a = 1.1176(3) nm, b =2.1906(7) nm,c=0.8430(3)nm, V=2.0132(10)nm3, β = 102.740(5)°,Z=4, Dc= 1.189 g/cm3, final R1=0.0460, wR2=0.0803.The liquid membrane transports of alkali metal cations using the new macrocyde as the ion-carrier were also studied. Com-pared with some macrocyclic ligands, our newly synthesized lig.and showed a good selectivity ratio for Na Na+/Li+.

  2. Supported liquid membrane as a novel tool for driving the equilibrium of ω-transaminase catalyzed asymmetric synthesis.

    Science.gov (United States)

    Rehn, Gustav; Adlercreutz, Patrick; Grey, Carl

    2014-06-10

    An attractive option to produce chiral amines of industrial importance is through asymmetric synthesis using ω-transaminase. However, reaching high yields often requires a strategy for shifting the equilibrium position. This paper describes a novel strategy for handling this problem. It involves the use of a supported liquid membrane (SLM) together with a packed bed reactor. The reactor contains Escherichia coli cells with ω-transaminase from Arthrobacter citreus, immobilized by flocculation with chitosan. The SLM consists of a hollow fibre membrane contactor in which the pores contain undecane. The system enables continuous extraction of the amine product and was used to successfully shift the equilibrium in asymmetric synthesis of (S)-α-methylbenzylamine (MBA). A conversion of 98% was reached, compared to 50% without product extraction. Moreover, a selective extraction of the produced MBA was realized. A high product concentration of 55g/l was reached after 80h, and the system showed promising potential for continuous operation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Hollow fiber membrane-coated functionalized polymeric ionic liquid capsules for direct analysis of estrogens in milk samples.

    Science.gov (United States)

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2016-02-01

    Protein removal process is always time-consuming for the analysis of milk samples. In this work, hollow fiber membrane-coated functionalized polymeric ionic liquid (HF-PIL) capsules were synthesized and used as solid-phase microextraction (SPME) sorbent for direct analysis of estrogens in milk samples. The functionalized PIL monolith sorbent was obtained by copolymerization between 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate IL monomer and 1,6-di(3-vinylimidazolium) hexane bishexafluorophosphate IL-crosslinking agent. A group of four capsules were installed as SPME device, to determine four kinds of estrogens (estrone, diethylstilbestrol, hexestrol, and 17α-ethynylestradiol) in milk samples, coupled to high performance liquid chromatography. Extraction and desorption conditions were optimized to get satisfactory extraction efficiency. Good linearity was obtained in the range of 5-200 μg L(-1). The limits of detection were 1 μg L(-1) for diethylstilbestrol and 2 μg L(-1) for 17α-ethynylestradiol, estrone, and hexestrol. The present method was applied to analyze the model analytes in different milk samples. Relative recoveries were in the range of 85.5-112%. The HF-PIL SPME capsules showed satisfactory extraction efficiency and high resistance to sample matrix interference.

  4. EXPERIMENTAL STUDY ON THE GAS-LIQUID FLOW IN THE MEMBRANE MICROPORE AERATION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    DONG LIU

    2008-12-01

    Full Text Available Particle Image Velocimetry (PIV has been developed to measure the typical two-phase flow of various work conditions in Membrane Micropore Aeration Bioreactor (MMAB. The fluid phase is separated out using image processing techniques, which provides accurate measurements for the Bioreactor’s flow field, and makes it possible for quantitative analysis of the momentum exchange, heat exchange and the process of micro-admixture. The experimental method PIV used in this paper can preferably measure the complex flow in the reactor and initiates a new approach for the bioreactor design which mainly depends on experience at present.

  5. Mathematical modeling of a carrier-mediated transport process in a liquid membrane.

    Science.gov (United States)

    Ganesan, Subramanian; Anitha, Shanmugarajan; Subbiah, Alwarappan; Rajendran, Lakshmanan

    2013-06-01

    An analysis of the reaction diffusion in a carrier-mediated transport process through a membrane is presented. A simple approximate analytical expression of concentration profiles is derived in terms of all dimensionless parameters. Furthermore, in this work we employ the homotopy perturbation method to solve the nonlinear reaction-diffusion equations. Moreover, the analytical results have been compared to the numerical simulation using the Matlab program. The simulated results are comparable with the appropriate theories. The results obtained in this work are valid for the entire solution domain.

  6. Diglycolamide-functionalized calix[4]arene for Am(III) recovery from radioactive wastes: liquid membrane studies using a hollow fiber contactor

    NARCIS (Netherlands)

    Ansari, S.A.; Mohapatra, P.K.; Kandwal, P.; Verboom, Willem

    2016-01-01

    The transport of Am(III) from nitric acid feeds was investigated using hollow fiber supported liquid membrane (HFSLM) containing a diglycolamide-functionalized calix[4]arene (C4DGA) as the carrier extractant. The effect of feed acidity and Nd(III) concentration (used to represent Am(III)) in the

  7. Novel diglycolamide functionalized calix[4]arenes for actinide extraction and supported liquid membrane studies: Part II. Role of substituents in the pendent arms and mass transfer modeling I

    NARCIS (Netherlands)

    Ansari, S.A.; Mohapatra, P.K.; Iqbal, M.; Kandwal, P.; Huskens, J.; Verboom, W.

    2013-01-01

    Several calix[4]arene-functionalized diglycolamide (C4DGA) ligands were evaluated for the extraction as well as supported liquid membrane (SLM) transport of actinides and fission product elements from nitric acid feed solutions. The extraction efficiency of the C4DGA ligands for Am(III) was orders o

  8. Halogen-free ionic liquid as an additive in zinc(II)-selective electrode: surface analyses as correlated to the membrane activity.

    Science.gov (United States)

    Al-Asousi, Maryam F; Shoukry, Adel F; Bu-Olayan, Abdul Hadi

    2012-05-30

    Two conventional Zn(II) polyvinyl chloride (PVC) membrane electrodes have been prepared and characterized. They were based on dibenzo-24-crown-8 (DBC) as a neutral carrier, dioctyl phthalate (DOP) as a plasticizer, and potassium tetrakis (p-chlorophenyl) borate, KTpClPB or the halogen-free ionic liquid, tetraoctylammonium dodecylbenzene sulfonate [TOA][DBS] as an additive. The use of ionic liquid has been found to enhance the selectivity of the sensor. For each electrode, the surfaces of two membranes were investigated using X-ray photoelectron, ion-scattering spectroscopy and atomic force microscopy. One of the two membranes was conditioned by soaking it for 24 h in a 1.0×10(-3) M Zn(NO(3))(2) solution and the second was soaked in bi-distilled water for the same interval (24 h). Comparing the two surfaces indicated the following: (a) the high selectivity in case of using [TOA][DBS] as an additive is due to the extra mediation caused by the ionic liquid and (b) the working mechanism of the electrode is based on phase equilibrium at the surface of the membrane associated with ion transport through the bulk of the membrane.

  9. Hybrid flow analyzer for automatic hollow-fiber-assisted ionic liquid-based liquid-phase microextraction with in-line membrane regeneration.

    Science.gov (United States)

    Nitiyanontakit, Sira; Varanusupakul, Pakorn; Miró, Manuel

    2013-04-01

    The proof-of-concept of a new methodology for in-line hollow-fiber (HF)-assisted three-phase liquid-phase microextraction (LPME) allowing for handling of the feed and acceptor aqueous solutions and of minute volumes of the organic extracting phase in a programmable flow mode is reported in this paper. The flow analyzer fosters in-line anchoring of ionic-liquid-laden extracting solution (10 % (v/v) methyltrioctyl ammonium chloride in kerosene) in the pores of a single-strand microporous polypropylene HF, and regeneration of the liquid-phase membrane itself for each individual analysis cycle in a fully automated mode. Using hexavalent chromium as a model analyte and 1,5-diphenylcarbazide as a chromogenic probe in the acceptor solution, the flow-based HF-LPME hyphenated system was harnessed to the clean-up of troublesome samples (viz., domestic wastewater and soil leachates) with concomitant enrichment of target species. Distinct extraction modes and chemistries were assessed for enhanced Cr(VI) permeability. A single sample plug was subjected to a twofold backward-forward flow extraction so as to decrease the thickness of the boundary layer at the HF shell side for improved extraction efficiency. Under the optimized physicochemical variables, a limit of detection of 4.6 μg L(-1) Cr(VI), a dynamic linear range of up to 500 μg L(-1) and intermediate precision better than 10 % were obtained for a sample volume of 2.8 mL buffered at pH 4 and a volume of organic extractant of 120 μL, with an enrichment factor of ca. 11 for a sample residence time in the donor compartment of merely 4.5 min. Analyte recoveries in domestic wastewaters were ≥83 % using external calibration with relative standard deviations better than 14 %, thereby demonstrating the expedient clean-up of samples with elevated content of dissolved organic carbon. The automatic HF-LPME method was validated in terms of bias against the SRM 2701 (NIST soil) preceded by the EPA alkaline digestion method 3060A

  10. Joining of Ion Transport Membranes Using a Novel Transient Liquid Phase Process

    Energy Technology Data Exchange (ETDEWEB)

    Darryl P. Butt

    2006-08-30

    The feasibility of a novel transient liquid phase (TLP) joining method has been demonstrated in joining La{sub 0.9}Ca{sub 0.1}FeO{sub 3} materials. Metal oxide powders were processed to form the TLP compositions which were used in the joining process. The method has been successful in producing joint interfaces that effectively disappear, as they are the same material and have the same properties as the joined parts. The feasibility of the method has been demonstrated for a single system, but many systems where the method can potentially be applied have been identified.

  11. Liquid droplets on a free-standing glassy membrane: Deformation through the glass transition.

    Science.gov (United States)

    Fortais, Adam; Schulman, Rafael D; Dalnoki-Veress, Kari

    2017-07-01

    In this study, micro-droplets are placed on thin, glassy, free-standing films where the Laplace pressure of the droplet deforms the free-standing film, creating a bulge. The film's tension is modulated by changing temperature continuously from well below the glass transition into the melt state of the film. The contact angle of the liquid droplet with the planar film as well as the angle of the bulge with the film are measured and found to be consistent with the contact angles predicted by a force balance at the contact line.

  12. Evaluation of sphingomyelin, cholester, and phosphatidylcholine-based immobilized artificial membrane liquid chromatography to predict drug penetration across the blood-brain barrier.

    Science.gov (United States)

    De Vrieze, Mike; Verzele, Dieter; Szucs, Roman; Sandra, Pat; Lynen, Frédéric

    2014-10-01

    Over the past decades, several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier. So far, in high-performance liquid chromatography, most attention has been paid to micellar liquid chromatography and immobilized artificial membrane (IAM) LC. IAMLC has been described as a viable approach, since the stationary phase emulates the lipid environment of a cell membrane. However, research in IAMLC has almost exclusively been limited to phosphatidylcholine (PC)-based stationary phases, even though PC is only one of the lipids present in cell membranes. In this article, sphingomyelin and cholester stationary phases have been tested for the first time towards their ability to predict drug penetration across the blood-brain barrier. Upon comparison with the PC stationary phase, the sphingomyelin- and cholester-based columns depict similar predictive performance. Combining data from the different stationary phases did not lead to improvements of the models.

  13. Liquid and Gas Permeation Studies on the Structure and Properties of Polyamide Thin-Film Composite Membranes

    KAUST Repository

    Duan, Jintang

    2014-11-01

    This research was undertaken to improve the understanding of structure-property-performance relationships in crosslinked polyamide (PA) thin-film composite (TFC) membranes as characterized by liquid and gas permeation studies. The ultrathin PA selective layer formed by interfacial polymerization between meta-phenylene diamine and trimesoyl chloride was confirmed to contain dense polymer matrix regions and defective regions in both dry and hydrated states. The first part of this research studied the effect of non-selective convection through defective regions on water flux and solute flux in pressure-assisted forward osmosis (PAFO). Through systematic comparison with cellulose triacetate (CTA) and PEBAX-coated PA-TFC membranes, the existence of defects in pristine, hydrated PA-TFC membranes was verified, and their effects were quantified by experimental and modeling methods. In the membrane orientation of selective layer facing the draw solution, water flux increases of up to 10-fold were observed to result from application of low hydraulic pressure (1.25 bar). Convective water flux through the defects was low (< 1% of total water flux for PA-TFC membranes) and of little consequence in practical FO or reverse osmosis (RO) applications. However, it effectively mitigated the concentration polarization in PAFO and therefore greatly increased the diffusive flux through the dense regions. The second part of this research characterized the structures of the PA material and the PA selective layer by gas adsorption and gas permeation measurements. Gas adsorption isotherms (N2 at 77K, CO2 at 273K) confirmed the microporous nature of PA in comparison with dense CTA and polysulfone materials. Gas permeation through the commercial PA-TFC membranes tested occurred primarily in the defective regions, resulting in Knudsen gas selectivity for various gas pairs. Applying a Nafion coating layer effectively plugged the defects and allowed gas permeation through the dense PA regions

  14. Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste?

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Abbà, Alessandro; Bertanza, Giorgio

    2015-01-01

    This paper describes the advantages of thermophilic aerobic membrane reactor (TAMR) for the treatment of high strength wastewaters. The results were obtained from the monitoring of an industrial and a pilot scale plant. The average chemical oxygen demand (COD) removal yield was equal to 78% with an organic loading rate (OLR) up to 8-10 kgCOD m(-3) d(-1) despite significant scattering of the influent wastewater composition. Total phosphorus (TP) was removed with a rate of 90%, the most important removal mechanism being chemical precipitation (as hydroxyapatite, especially), which is improved by the continuous aeration that promotes phosphorus crystallization. Moreover, surfactants were removed with efficiency between 93% and 97%. Finally, the experimental work showed that thermophilic processes (TPPs) are complementary with respect to mesophilic treatments.

  15. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    Science.gov (United States)

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2014-09-01

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitated lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.

  16. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States)

    2014-09-15

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitated lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.

  17. Progress of Supported Ionic Liquid Membrane Technology in Gas Separation%离子液体支撑液膜技术及其在气体分离中的研究进展

    Institute of Scientific and Technical Information of China (English)

    李红海; 徐保明; 李建隆

    2012-01-01

    分析离子液体支撑液膜的气体分离机理,总结目前离子液体支撑液膜的制备方法以及不同膜材料、不同离子液体及其亲疏水性对离子液体支撑液膜稳定性的影响.介绍离子液体支撑液膜在气体分离中的应用,对离子液体支撑液膜的工业化前景进行了展望.%The gas separation mechanism of supported ionic liquid membranes was analyzed. The ways for ionic liquid used as liquid phase in supported liquid membranes and the effects of different materials of membrane, different kinds of ionic liquids, hydrophilic and hydrophobic of membrane on the instability of supported ionic liquids membrane were summarized. The application of supported ionic liquid membranes in gas separation were reviewed. In the end, the prospects for the industrialization of supported liquid membranes were presented.

  18. Design and performance of BNR activated sludge systems with flat sheet membranes for solid-liquid separation.

    Science.gov (United States)

    du Toit, G J G; Ramphao, M C; Parco, V; Wentzel, M C; Ekama, G A

    2007-01-01

    The use of immersed membranes for solid-liquid separation in biological nutrient removal activated sludge (BNRAS) systems was investigated at lab scale. Two laboratory-scale BNR activated sludge systems were run in parallel, one a MBR system and the other a conventional system with secondary settling tanks. Both systems were in 3 reactor anaerobic, anoxic, aerobic UCT configurations. The systems were set up to have, as far as possible, identical design parameters such as reactor mass fractions, recycles and sludge age. Differences were the influent flow and total reactor volumes, and the higher reactor concentrations in the MBR system. The performances of the two systems were extensively monitored and compared to identify and quantify the influence of the membranes on system response. The MBR UCT system exhibited COD, FSA, TKN, TP and TSS removals that were consistently equivalent or superior to the conventional system. Better P removal in the MBR was attributed to lower observed P uptake in the anoxic zone. High nitrate loads to the anoxic reactor appeared to be the determining factor in stimulating P uptake. The MBR UCT system had a greater sludge production than the conventional system. This was partly attributable to the retention of all solids in the MBR reactor. For steady state design this increase is accommodated by increasing the influent unbiodegradable particulate COD fraction. Additionally an attempt was made to determine the Alpha values in the oxygen transfer rate. This paper briefly summarises and compares the results from both systems, and the conclusions that can be drawn from these results.

  19. Preliminary characterization of carbon dioxide transfer in a hollow fiber membrane module as a possible solution for gas-liquid transfer in microgravity conditions

    Science.gov (United States)

    Farges, Bérangère; Duchez, David; Dussap, Claude-Gilles; Cornet, Jean-François

    2012-01-01

    In microgravity, one of the major challenge encountered in biological life support systems (BLSS) is the gas-liquid transfer with, for instance, the necessity to provide CO2 (carbon source, pH control) and to recover the evolved O2 in photobioreactors used as atmosphere bioregenerative systems.This paper describes first the development of a system enabling the accurate characterization of the mass transfer limiting step for a PTFE membrane module used as a possible efficient solution to the microgravity gas-liquid transfer. This original technical apparatus, together with a technical assessment of membrane permeability to different gases, is associated with a balance model, determining thus completely the CO2 mass transfer problem between phases. First results are given and discussed for the CO2 mass transfer coefficient kLCO obtained in case of absorption experiments at pH 8 using the hollow fiber membrane module. The consistency of the proposed method, based on a gas and liquid phase balances verifying carbon conservation enables a very accurate determination of the kLCO value as a main limiting step of the whole process. Nevertheless, further experiments are still needed to demonstrate that the proposed method could serve in the future as reference method for mass transfer coefficient determination if using membrane modules for BLSS in reduced or microgravity conditions.

  20. Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc-Air Battery Systems.

    Science.gov (United States)

    Hwang, Ho Jung; Chi, Won Seok; Kwon, Ohchan; Lee, Jin Goo; Kim, Jong Hak; Shul, Yong-Gun

    2016-10-05

    Rechargeable secondary zinc-air batteries with superior cyclic stability were developed using commercial polypropylene (PP) membrane coated with polymerized ionic liquid as separators. The anionic exchange polymer was synthesized copolymerizing 1-[(4-ethenylphenyl)methyl]-3-butylimidazolium hydroxide (EBIH) and butyl methacrylate (BMA) monomers by free radical polymerization for both functionality and structural integrity. The ionic liquid induced copolymer was coated on a commercially available PP membrane (Celguard 5550). The coat allows anionic transfer through the separator and minimizes the migration of zincate ions to the cathode compartment, which reduces electrolyte conductivity and may deteriorate catalytic activity by the formation of zinc oxide on the surface of the catalyst layer. Energy dispersive X-ray spectroscopy (EDS) data revealed the copolymer-coated separator showed less zinc element in the cathode, indicating lower zinc crossover through the membrane. Ion coupled plasma optical emission spectroscopy (ICP-OES) analysis confirmed over 96% of zincate ion crossover was reduced. In our charge/discharge setup, the constructed cell with the ionic liquid induced copolymer casted separator exhibited drastically improved durability as the battery life increased more than 281% compared to the pure commercial PP membrane. Electrochemical impedance spectroscopy (EIS) during the cycle process elucidated the premature failure of cells due to the zinc crossover for the untreated cell and revealed a substantial importance must be placed in zincate control.

  1. Morphology, Modulus, and Ionic Conductivity of a Triblock Terpolymer/Ionic Liquid Electrolyte Membrane

    Science.gov (United States)

    McIntosh, Lucas D.; Lodge, Timothy P.

    2013-03-01

    A key challenge in designing solid polymer electrolytes is increasing bulk mechanical properties such as stiffness, without sacrificing ionic conductivity. Previous work has focused on diblock copolymers, where one block is a stiff, glassy insulator and the other is a flexible ion conductor. Disadvantages of these systems include difficulty in achieving network morphologies, which minimize dead-ends for ion transport, and the necessity to operate below both the Tg of the glassy block and the order-disorder temperature. We have investigated the triblock terpolymer poly[isoprene-b-(styrene-co-norbornenylethyl styrene)-b-ethylene oxide] because it self-assembles into a triply-continuous network structure. SAXS and TEM revealed the bulk morphology of INSO to be disordered but strongly correlated after solvent casting from dichloromethane. This apparent disordered network structure was retained after chemical crosslinking and addition of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. Impedance spectroscopy confirmed the expected conductivity for ions confined to continuous PEO channels. The mechanical response before and after crosslinking showed an increase in the material modulus.

  2. Recovery of ammonia from domestic wastewater effluents as liquid fertilizers by integration of natural zeolites and hollow fibre membrane contactors.

    Science.gov (United States)

    Sancho, I; Licon, E; Valderrama, C; de Arespacochaga, N; López-Palau, S; Cortina, J L

    2017-04-15

    The integration of up-concentration processes to increase the efficiency of primary sedimentation, as a solution to achieve energy neutral wastewater treatment plants, requires further post-treatment due to the missing ammonium removal stage. This study evaluated the use of zeolites as a post-treatment step, an alternative to the biological removal process. A natural granular clinoptilolite zeolite was evaluated as a sorbent media to remove low levels (up to 100mg-N/L) of ammonium from treated wastewater using batch and fixed bed columns. After being activated to the Na-form (Z-Na), the granular zeolite shown an ammonium exchange capacity of 29±0.8mgN-NH4(+)/g in single ammonium solutions and 23±0.8mgN-NH4(+)/g in treated wastewater simulating up-concentration effluent at pH=8. The equilibrium removal data were well described by the Langmuir isotherm. The ammonium adsorption into zeolites is a very fast process when compared with polymeric materials (zeolite particle diffusion coefficient around 3×10(-12)m(2)/s). Column experiments with solutions containing 100mgN-NH4(+)/L provide effective sorption and elution rates with concentration factors between 20 and 30 in consecutive operation cycles. The loaded zeolite was regenerated using 2g NaOH/L solution and the rich ammonium/ammonia concentrates 2-3g/L in NaOH were used in a liquid-liquid membrane contactor system in a closed-loop configuration with nitric and phosphoric acid as stripping solutions. The ammonia recovery ratio exceeded 98%. Ammonia nitrate and di-ammonium phosphate concentrated solutions reached up to 2-5% wt. of N.

  3. Screening anti-tumor compounds from Ligusticum wallichii using cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry.

    Science.gov (United States)

    Zhang, Tao; Ding, Yuanyuan; An, Hongli; Feng, Liuxin; Wang, Sicen

    2015-07-14

    Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry was developed. Tyrosine 367 Cysteine-HEK293 cells were used as cell membrane stationary phase. Specificity and reproducibility of the cell membrane chromatography was evaluated using 1-tert-butyl-3-{2-[4-(diethylamino)butylamino]-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl}urea, Nimodipine and dexamethasone acetate. Then, anti-tumor components acting on Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 were screened and identified from extracts of Ligusticum wallichii. Components from the extract were retained on the cell membrane chromatographic column. The retained fraction was directly eluted into high-performance liquid chromatography with mass spectrometry system for separation and identification. Finally, Levistolide A was identified as an active component from Ligusticum wallichii extracts. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan colorimetric assay revealed that Levistolide A inhibits proliferation of overexpressing the mutated receptor cells with dose-dependent manner. Phosphorylation of fibroblast growth factor receptor 4 was also decrease under Levistolide A treatment. Flex dock simulation verified that Levistolide A could bind with the tyrosine kinase domain of fibroblast growth factor receptor 4. Therefore, Levistolide A screened by the cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry can arrest cell growth. In conclusion, the two-dimensional high-performance liquid chromatography method can screen and identify potential anti-tumor ingredients which specifically act on the tyrosine kinase domain of the mutated fibroblast growth factor receptor 4. This article is protected by copyright. All rights reserved.

  4. Modeling and simulations of polymer electrolyte membrane fuel cells with poroelastic approach for coupled liquid water transport and deformation in the membrane

    OpenAIRE

    2010-01-01

    Performance degradation and durability of polymer electrolyte membrane (PEM) fuel cells depend strongly on transport and deformation characteristics of their components especially the polymer membrane. Physical properties of membranes, such as ionic conductivity and Young's modulus, depend on the water content that varies significantly with operating conditions and during transients. Recent studies indicate that cyclic transients may induce hygrothermal fatigue that leads to the ultimate fail...

  5. Supported liquid membrane-protected molecularly imprinted beads for micro-solid phase extraction of sulfonamides in environmental waters.

    Science.gov (United States)

    Díaz-Álvarez, M; Barahona, F; Turiel, E; Martín-Esteban, A

    2014-08-29

    In this work, molecularly imprinted polymer (MIP) beads have been prepared and evaluated for the development of a supported liquid membrane-protected micro-solid phase extraction method for the analysis of sulfonamides (SAs) in aqueous samples. The performance of MIP beads was firstly evaluated in cartridges by conventional solid-phase extraction for the simultaneous analysis of SAs. Afterward, beads were packed into a polypropylene hollow fiber protected by an organic solvent immobilized in the pores of the capillary wall. During the process, the analytes were extracted from the aqueous sample to the immobilized organic solvent and then selectively retained by the MIP beads located inside the capillary. The effect of various experimental parameters as sample pH, time and stirring-rate among others, were studied for the establishment of optimum rebinding conditions. Relative recoveries for all sulfonamides tested in river and reservoir water samples by the proposed method using 100mL water sample spiked with 50μg L-1 of each sulfonamide were within 70-120%, with a relative standard deviation (RSD) <10% (n=3). The detection limits (LODs) were within 0.2-3μgL(-1), depending upon the sulfonamide and the type of water used.

  6. Formation of inverse Chladni patterns at microscale by acoustic streaming on a silicon membrane immersed in a liquid

    Science.gov (United States)

    Poulain, Cedric; Vuillermet, Gael; Casset, Fabrice

    2015-11-01

    High frequency acoustics (in the MHz range) is known to be very efficient to handle micro particles or living cells in microfluidics by taking advantage of the acoustic radiation force. Here, we will show that low frequency (~ 50kHz) together with use ultra thin silicon plate can give rise to a micro streaming that enables to move particles at will. Indeed, by means of silicon membranes excited in the low ultrasound range, we show that it is possible to form inverse two-dimensional Chladni patterns of micro-beads in liquid. Unlike the well-known effect in a gaseous environment at macroscale, where gravity effects are generally dominant, leading particles towards the nodal regions of displacement, we will show that the micro scale streaming in the vicinity of the plate tends to gather particles in antinodal regions. Moreover, a symmetry breaking effect together with the streaming can trigger a whole rotation of the beads in the fluidic cavity. We demonstrate that it is possible to make the patterns rotate at a well defined angular velocity where beads actually jump from one acoustic trap to another.

  7. Viability of Legionella pneumophila in Water Samples: A Comparison of Propidium Monoazide (PMA Treatment on Membrane Filters and in Liquid

    Directory of Open Access Journals (Sweden)

    Sara Bonetta

    2017-04-01

    Full Text Available Legionella pneumophila is a ubiquitous microorganism widely distributed in aquatic environments and can cause Legionellosis in humans. A promising approach to detect viable cells in water samples involves the use of quantitative polymerase chain reaction (qPCR in combination with photoactivatable DNA intercalator propidium monoazide (PMA. However, the PMA efficiency could be different depending on the experimental conditions used. The aim of this study was to compare two PMA exposure protocols: (A directly on the membrane filter or (B in liquid after filter washing. The overall PMA-induced qPCR means reductions in heat-killed L. pneumophila cells were 2.42 and 1.91 log units for exposure protocols A and B, respectively. A comparison between the results obtained reveals that filter exposure allows a higher PMA-qPCR signal reduction to be reached, mainly at low concentrations (p < 0.05. This confirms the potential use of this method to quantify L. pneumophila in water with low contamination.

  8. Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications.

    Science.gov (United States)

    Yasuda, Tomohiro; Nakamura, Shin-ichiro; Honda, Yoshiyuki; Kinugawa, Kei; Lee, Seung-Yul; Watanabe, Masayoshi

    2012-03-01

    To investigate the effects of polymer structure on the properties of composite membranes including a protic ionic liquid, [dema][TfO] (diethylmethylammonium trifluoromethanesulfonate), for nonhumidified fuel cell applications, we synthesized sulfonated polyimides (SPIs) with different structures as matrix polymers, which have different magnitudes of ion-exchange capacities (IECs), different sequence distributions of ionic groups, and positions of sulfonate groups in the main chain or side chain. Despite having similar IECs, multiblock copolymer SPI and random copolymer SPI having sulfonate groups in the side chain exhibit higher ionic conductivity than random copolymer SPI having sulfonate groups in the main chain, indicating that the flexibility of sulfonic acid groups and the sequence distribution of ionic groups greatly affect the ion conduction. Atomic force microscopy observation revealed that the multiblock copolymer SPI forms more developed phase separation than the others. These results indicate that the flexibility of sulfonic acid groups and the connectivity of the ion conduction channel, which greatly depends on the sequence distribution, affect the ion conduction.

  9. Separation of zinc ( Ⅱ )by emulsion liquid membrane system%乳状液膜体系分离锌(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    周冬梅; 朱山东; 柳畅先

    2012-01-01

    The separation of zinc ( II ) by emulsion liquid membrane systems was studied. The systems of span80 ( sorbitan mo-nooleate)-SDS( sodium dodecyl sulfate) and span80-AOT( AerosolOT,2-ethyIhexyl succinate sodium sulfate)were compared. The impact of concentration of surfactants on the removal rate for zinc ion and the reagent in internal phase, the ratio of milk to water and oil phase to internal phase have been discussed respectively. The separation of zinc ion from coexistence components was tested.%研究了span80(失水山梨醇单油酸脂)-SDS(十二烷基磺酸钠)与span80-AOT(2-乙基己基琥珀酸酯磺酸钠)两种乳状液膜体系对锌(Ⅱ)分离效果的比较.分别讨论了液膜体系中表面活性剂和内相试剂浓度、乳水比和油内比对锌(Ⅱ)去除率的影响.试验了锌(Ⅱ)与共存组分的分离.

  10. Detection of nuclear and membrane antigens by liquid-based cytology following long-term storage of d1 cells, karpas cells, and peripheral blood mononuclear cells.

    Science.gov (United States)

    Zappacosta, Roberta; Aiello, Francesca B; D'Antuono, Tommaso; Procopio, Antonio D; Durum, Scott K; Conti, Pio; Rosini, Sandra

    2011-01-01

    Immunofluorescence is the most frequently utilized technique to analyze protein expression. Fixed immunofluorescent cell suspensions, however, can only be stored for a week. We investigated whether liquid-based cytology could be used to detect antigens in cultured cells after a long storage period. Murine and human cells were fixed in PreservCyt solution, stored for various periods, and then used to perform an automated immunocytochemical analysis. Phosphorylation of the nuclear transcription factor Stat-5 induced by IL-7 was detected up to 4 months after IL-7 stimulation. Simultaneous nuclear positivity for the proliferation index MIB-1 and membrane positivity for the CD30 antigen were evident three months after fixation. Liquid-based cytology thus ensures long-lasting nuclear and membrane antigen immunoreactivity and permits the storage of cells from laborious experiments at room temperature for future analyses.

  11. The liquid phase epitaxy approach for the successful construction of ultra-thin and defect-free ZIF-8 membranes: Pure and mixed gas transport study

    KAUST Repository

    Shekhah, Osama

    2014-01-01

    The liquid-phase epitaxy (LPE) method was effectively implemented to deliberately grow/construct ultrathin (0.5-1 μm) continuous and defect-free ZIF-8 membranes. Permeation properties of different gas pair systems (O 2-N2, H2-CO2, CO2-CH 4, C3H6-C3H8, CH 4-n-C4H10) were studied using the time lag technique. This journal is © The Royal Society of Chemistry.

  12. 液膜法提取绿原酸的实验研究%Experimental Research of Extracting Chlorogenic Acid by Liquid Membrane Method

    Institute of Scientific and Technical Information of China (English)

    李祝; 肖诗英; 万端极

    2011-01-01

    采用液膜法提取杜仲叶中绿原酸,通过正交实验对液膜制备工艺和绿原酸提取工艺进行了研究.结果表明,液膜制备的最佳工艺条件为:NaOH浓度4 mol·L-1、吐温-20质量分数8%、搅拌速度350 r·min-1 ;绿原酸提取的最佳工艺条件为:混合时间8 min、乳水比1 ∶ 2、搅拌速度100 r·min-1、油内比3∶1.液膜法实现了对绿原酸的提取和浓缩,为进一步开发利用绿原酸提供了依据.%Chlorogenic acid was extracted from Eucommia leaves by liquid membrane method. The preparation conditions of liquid membrane and the extraction conditions of chlorogenic acid were optimized by orthogonal experiment. The results showed that the optimum preparation conditions of liquid membrane were as follows: NaOH concentration of 4 mol · L-1 ,Tween-20 mass fraction of 8%, stirring speed of 350 r · Min-1 ,the optimum extraction conditions of chlorogenic acid were as follows:the mixing time of 8 min,the emulsion/external-phase ratio of 1 : 2,stirring speed of 100 r · Min-1 ,the oil/internal-phase ratio of 3:1. By liquid membrane method,the chlorogenic acid was extracted and concentrated successfully,and provided a basis for exploiting chlorogenic acid.

  13. Nonhumidified Fuel Cells Using N-Ethyl-N-methyl-pyrrolidinium Fluorohydrogenate Ionic Liquid-poly(Vinylidene Fluoride-Hexafluoropropylene Composite Membranes

    Directory of Open Access Journals (Sweden)

    Pisit Kiatkittikul

    2015-06-01

    Full Text Available Composite membranes consisting of N-ethyl-N-methylpyrrolidinium fluoro-hydrogenate (EMPyr(FH1.7F ionic liquid and poly(vinylidene fluoride hexafluoro-propylene (PVdF-HFP copolymer were successfully prepared in weight ratios of 5:5, 6:4, and 7:3 using a casting method. The prepared membranes possessed rough surfaces, which potentially enlarged the three-phase boundary area. The EMPyr(FH1.7F/PVdF-HFP (7:3 weight ratio composite membrane had an ionic conductivity of 41 mS·cm-1 at 120 °C. For a single cell using this membrane, a maximum power density of 103 mW·cm-2 was observed at 50 °C under non-humidified conditions; this is the highest power output that has ever been reported for fluorohydrogenate fuel cells. However, the cell performance decreased at 80 °C, which was explained by penetration of the softened composite membrane into gas diffusion electrodes to partially plug gas channels in the gas diffusion layers; this was verified by in situ a.c. impedance analysis and cross-sectional SEM images of the membrane electrode assembly.

  14. Recovery Of Chromium Metal (VI) Using Supported Liquid Membrane (SLM) Method, A study of Influence of NaCl and pH in Receiving Phase on Transport

    Science.gov (United States)

    Cholid Djunaidi, Muhammad; Lusiana, Retno A.; Rahayu, Maya D.

    2017-06-01

    Chromium metal(VI) is a valuable metal but in contrary has high toxicity, so the separation and recovery from waste are very important. One method that can be used for the separation and recovery of chromium (VI) is a Supported Liquid Membrane (SLM). SLM system contains of three main components: a supporting membrane, organic solvents and carrier compounds. The supported Membrane used in this research is Polytetrafluoroethylene (PTFE), organic solvent is kerosene, and the carrier compound used is aliquat 336. The supported liquid membrane is placed between two phases, namely, feed phase as the source of analyte (Cr(VI)) and the receiving phase as the result of separation. Feed phase is the electroplating waste which contains of chromium metal with pH variation about 4, 6 and 9. Whereas the receiving phase are the solution of HCl, NaOH, HCl-NaCl and NaOH-NaCl with pH variation about 1, 3, 5 and 7. The efficiency separation is determined by measurement of chromium in the feed and the receiving phase using AAS (Atomic Absorption Spectrophotometry). The experiment results show that transport of Chrom (VI) by Supported Liquid membrane (SLM) is influenced by pH solution in feed phase and receiving phase as well as NaCl in receiving phase. The highest chromium metal is transported from feed phase about 97,78%, whereas in receiving phase shows about 58,09%. The highest chromium metal transport happens on pH 6 in feed phase, pH 7 in receiving phase with the mixture of NaOH and NaCl using carrier compound aliquat 336.

  15. Recovery of synthetic dye from simulated wastewater using emulsion liquid membrane process containing tri-dodecyl amine as a mobile carrier

    Energy Technology Data Exchange (ETDEWEB)

    Othman, N., E-mail: norasikin@cheme.utm.my [Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Zailani, S.N.; Mili, N. [Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The emulsion liquid membrane process for synthetic reactive dyes recovery was examined. Black-Right-Pointing-Pointer Mobile carriers of tri-dodycylamine and salicyclic acid was used in formulation to remove the reactive dyes from simulated wastewater. Black-Right-Pointing-Pointer Almost 100% of dye was extracted and recovered in receiving phase. Black-Right-Pointing-Pointer An electrical field was used to breakdown the emulsion to separate the liquid membrane and receiving/recovery phase. - Abstract: The extraction of Red 3BS reactive dye from aqueous solution was studied using emulsion liquid membrane (ELM). ELM is one of the processes that have very high potential in treating industrial wastewater consisting of dyes. In this research, Red 3BS reactive dye was extracted from simulated wastewater using tridodecylamine (TDA) as the carrier agent, salicyclic acid (SA) to protonate TDA, sodium chloride as the stripping agent, kerosene as the diluent and SPAN 80 as emulsifier. Experimental parameters investigated were salicyclic acid concentration, extraction time, SPAN 80 concentration, sodium chloride concentration, TDA concentration, agitation speed, homogenizer speed, emulsifying time and treat ratio. The results show almost 100% of Red 3BS was removed and stripped in the receiving phase at the optimum condition in this ELM system. High voltage coalesce was applied to break the emulsion hence, enables recovery of Red 3BS in the receiving phase.

  16. Ionic liquid-impregnated agarose film two-phase micro-electrodriven membrane extraction (IL-AF-μ-EME) for the analysis of antidepressants in water samples.

    Science.gov (United States)

    Mohamad Hanapi, Nor Suhaila; Sanagi, Mohd Marsin; Ismail, Abd Khamim; Wan Ibrahim, Wan Aini; Saim, Nor'ashikin; Wan Ibrahim, Wan Nazihah

    2017-03-01

    The aim of this study was to investigate and apply supported ionic liquid membrane (SILM) in two-phase micro-electrodriven membrane extraction combined with high performance liquid chromatography-ultraviolet detection (HPLC-UV) for pre-concentration and determination of three selected antidepressant drugs in water samples. A thin agarose film impregnated with 1-hexyl-3-methylimidazolium hexafluorophosphate, [C6MIM] [PF6], was prepared and used as supported ionic liquid membrane between aqueous sample solution and acceptor phase for extraction of imipramine, amitriptyline and chlorpromazine. Under the optimized extraction conditions, the method provided good linearity in the range of 1.0-1000μgL(-1), good coefficients of determination (r(2)=0.9974-0.9992) and low limits of detection (0.1-0.4μgL(-1)). The method showed high enrichment factors in the range of 110-150 and high relative recoveries in the range of 88.2-111.4% and 90.9-107.0%, for river water and tap water samples, respectively with RSDs of ≤7.6 (n=3). This method was successfully applied to the determination of the drugs in river and tap water samples. It is envisaged that the SILM improved the perm-selectivity by providing a pathway for targeted analytes which resulted in rapid extraction with high degree of selectivity and high enrichment factor.

  17. Novel amphiphilic polymeric ionic liquid-solid phase micro-extraction membrane for the preconcentration of aniline as degradation product of azo dye Orange G under sonication by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Cai, Mei-Qiang; Wei, Xiao-Qing; Du, Chun-Hui; Ma, Xu-Ming; Jin, Mi-Cong

    2014-07-04

    A novel amphiphilic polymeric ionic liquid membrane containing a hydrophilic bromide anion and a hydrophobic carbonyl group was synthesized in dimethylformamide (DMF) systems using the ionic liquid 1-butyl-3-vinylimidazolium bromide (BVImBr) and the methylmethacrylate (MMA) as monomers. The prepared amphiphilic ploy-methylmethacrylate-1-butyl-3-vinylimidazolium bromide (MMA-BVImBr) was characterized by a scanning electron microscope and an infrared spectrum instrument. The results of solid-phase micro-extraction membrane (SPMM) experiments showed that the adsorption capacity of membrane was about 0.76μgμg(-1) for aniline. Based on this, a sensitive method for the determination of trace aniline, as a degradation product of azo dye Orange G under sonication, was developed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The calibration curve showed a good linearity ranging from 0.5 to 10.0μgL(-1) with a correlation coefficient value of 0.9998. The limit of quantification was 0.5μgL(-1). The recoveries ranged from 90.6% to 96.1%. The intra- and inter-day relative standard deviations were less than 8.3% and 10.9%. The developed SPMM-LC-MS/MS method was used successfully for preconcentration of trace aniline produced during the sonication of Orange G solution.

  18. Simple pretreatment of non-conductive small hydrous bio-samples with choline-type ionic liquid and membrane filter for microsample mounting.

    Science.gov (United States)

    Kawai, Koji; Kaneko, Kotaro; Kawakami, Hayato; Narushima, Takashi; Yonezawa, Tetsu

    2013-02-01

    Choline-type ionic liquids (CILs), which have a molecular structure resembling that of the vitamin-like active substance choline, have high water solubility, high osmotic pressure, and high cell membrane permeability. Their physical properties make them a very useful pretreatment agent for scanning electron microscopy (SEM) observation of hydrous samples because they can replace water in the samples, causing them to retain their shapes. SEM images of pollen without dissolution of cell membranes, damage, or deformation were obtained by a simple visualization process using CILs. We also identified an easy pretreatment protocol for SEM observation of hydrous microsamples that uses a membrane filter as a sample stage to ensure correct sample placement. Bacteria were successfully observed by using this protocol. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Capillary high-performance liquid chromatography/mass spectrometric analysis of proteins from affinity-purified plasma membrane.

    Science.gov (United States)

    Zhao, Yingxin; Zhang, Wei; White, Michael A; Zhao, Yingming

    2003-08-01

    Proteomics analysis of plasma membranes is a potentially powerful strategy for the discovery of proteins involved in membrane remodeling under diverse cellular environments and identification of disease-specific membrane markers. A key factor for successful analysis is the preparation of plasma membrane fractions with low contamination from subcellular organelles. Here we report the characterization of plasma membrane prepared by an affinity-purification method, which involves biotinylation of cell-surface proteins and subsequent affinity enrichment with strepavidin beads. Western blotting analysis showed this method was able to achieve a 1600-fold relative enrichment of plasma membrane versus mitochondria and a 400-fold relative enrichment versus endoplasmic reticulum, two major contaminants in plasma membrane fractions prepared by conventional ultracentrifugation methods. Capillary-HPLC/MS analysis of 30 microg of affinity-purified plasma membrane proteins led to the identification of 918 unique proteins, which include 16.4% integral plasma membrane proteins and 45.5% cytosol proteins (including 8.6% membrane-associated proteins). Notable among the identified membrane proteins include 30 members of ras superfamily, receptors (e.g., EGF receptor, integrins), and signaling molecules. The low number of endoplasmic reticulum and mitochondria proteins (approximately 3.3% of the total) suggests the plasma membrane preparation has minimum contamination from these organelles. Given the importance of integral membrane proteins for drug design and membrane-associated proteins in the regulation cellular behaviors, the described approach will help expedite the characterization of plasma membrane subproteomes, identify signaling molecules, and discover therapeutic membrane-protein targets in diseases.

  20. Molecular view on protein sorting into liquid-ordered membrane domains mediated by gangliosides and lipid anchors

    NARCIS (Netherlands)

    de Jong, Djurre H.; Lopez, Cesar A.; Marrink, Siewert J.

    2013-01-01

    We present results from coarse grain molecular dynamics simulations of mixed model membranes consisting of saturated and unsaturated lipids together with cholesterol, in which lipid-anchored membrane proteins are embedded. The membrane proteins studied are the peripherally bound H-Ras, N-Ras, and He

  1. Simultaneous micro-electromembrane extractions of anions and cations using multiple free liquid membranes and acceptor solutions.

    Science.gov (United States)

    Kubáň, Pavel; Boček, Petr

    2016-02-18

    Micro-electromembrane extractions (μ-EMEs) across free liquid membranes (FLMs) were applied to simultaneous extractions of anions and cations. A transparent narrow-bore polymeric tubing was filled with adjacent plugs of μL volumes of aqueous and organic solutions, which formed a stable five-phase μ-EME system. For the simultaneous μ-EMEs of anions and cations, aqueous donor solution was the central phase, which was sandwiched between two organic FLMs and two aqueous acceptor solutions. On application of electric potential, anions and cations in the donor solution migrated across the two FLMs and into the two peripheral acceptor solutions in the direction of anode and cathode, respectively. Visual monitoring of anionic (tartrazine) and cationic (phenosafranine) dye confirmed their simultaneous μ-EMEs and their rapid (in less than 5 min) transfers into anolyte and catholyte, respectively. The concept of simultaneous μ-EMEs was further examined with selected model analytes; KClO4 was used for μ-EMEs of inorganic anions and cations and ibuprofen and procaine for μ-EMEs of acidic and basic drugs. Quantitative analyses of the resulting acceptor solutions were carried out by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D). Good extraction recoveries (91-94%) and repeatability of peak areas (≤6.3%) were achieved for 5 min μ-EMEs of K(+) and ClO4(-). Extraction recoveries and repeatability of peak areas for 5 min μ-EMEs of ibuprofen and procaine were also satisfactory and ranged from 35 to 63% and 7.6 to 11.3%, respectively. Suitability of the presented micro-extraction procedure was further demonstrated on simultaneous μ-EMEs with subsequent CE-C(4)D of ibuprofen and procaine from undiluted human urine samples.

  2. 聚离子液体/PVDF共混离子传导膜的制备与性能研究%Ion Conductive Membrane with Interpenetration Network (IPN) Prepared by PVDF/Poly(Ionic Liquid)s Blend

    Institute of Scientific and Technical Information of China (English)

    青格乐图; 刘平; 范永生; 徐冬清; 王保国

    2011-01-01

    Ionic liquids (ILs) are organic salts with low melting point (< 100℃), low flammability, negligible vapor pressure, high ionic conductivity and wide electrochemical window. Polymeric ionic liquids (PILs) are a class of ionic liquids that contain polymerizable groups such as double bonds. In this article, ion conductive membrane with interpenetration network (IPN) was prepared by using the polyvinylidene fluoride(PVDF) and PILs. The conductivity of the prepared membrane depends on the adding amount of ionic liquid, and also depends on the type of added ionic liquid. In addition, the adding amount of ionic liquids has a significant effect on the tensile strength of the prepared membrane. As the mass ratio of PILs to PVDF is 0.6, the membrane conductivity reaches 3.0× 10-3 S·cm-1, the tensile strength 17.38 N·mm-2.%以研究高电导率、高稳定性的新型离子传导膜为目标,为电池领域的应用奠定基础.通过选用同时具有双键和离子交换基团的离子液体单体,能够制备聚离子液体的新型离子传导膜材料.采用溶剂法将聚偏氟乙烯(PVDF)和离子液体(ILS)共混,在加温条件下使离子液体单体之间发生聚合反应,制得高分子互穿网络结构的离子传导膜.系统研究了制膜过程的成膜温度、离子液体浓度等条件对膜电导率、拉伸强度等性能的影响.结果表明PILs/PVDF共混膜具有较高电导率和拉伸强度,离子液体含量对膜性能有显著影响.当膜中PILs和PVDF的质量比为0.6时,膜电导率为3.0×10-3 S·cm-1,拉伸强度为17.38 N·mm-2.

  3. Synthesis and Characterisation of ETS-10/Acetate-based Ionic Liquid/Chitosan Mixed Matrix Membranes for CO2/N2 Permeation

    Directory of Open Access Journals (Sweden)

    Clara Casado-Coterillo

    2014-06-01

    Full Text Available Mixed matrix membranes (MMMs were prepared by incorporating organic surfactant-free hydrothermally synthesised ETS-10 and 1-ethyl-3-methylimidazolium acetate ionic liquid (IL to chitosan (CS polymer matrix. The membrane material characteristics and permselectivity performance of the two-component membranes were compared with the three-component membrane and the pure CS membrane. The addition of IL increased CO2 solubility of the polymer, and, thus, the CO2 affinity was maintained for the MMMs, which can be correlated with the crystallinity, measured by FT-IR, and void fraction calculations from differences between theoretical and experimental densities. The mechanical resistance was enhanced by the ETS-10 nanoparticles, and flexibility decreased in the two-component ETS-10/CS MMMs, but the flexibility imparted by the IL remained in three-component ETS-10/IL/CS MMMs. The results of this work provide insight into another way of facing the adhesion challenge in MMMs and obtain CO2 selective MMMs from renewable or green chemistry materials.

  4. Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4].

    Science.gov (United States)

    Shalu; Chaurasia, S K; Singh, R K; Chandra, S

    2013-01-24

    PVdF-HFP + IL(1-butyl-3-methylimidazolium tetrafluoroborate; [BMIM][BF(4)]) polymeric gel membranes containing different amounts of ionic liquid have been synthesized and characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared (FTIR), differential scanning calorimetry, thermogravimetric analysis (TGA), and complex impedance spectroscopic techniques. Incorporation of IL in PVdF-HFP polymer changes different physicochemical properties such as melting temperature (T(m)), thermal stability, structural morphology, amorphicity, and ionic transport. It is shown by FTIR, TGA (also first derivative of TGA, "DTGA") that IL partly complexes with the polymer PVdF-HFP and partly remains dispersed in the matrix. The ionic conductivity of polymeric gel membranes has been found to increase with increasing concentration of IL and attains a maximum value of 1.6 × 10(-2) S·cm(-1) for polymer gel membrane containing 90 wt % IL at room temperature. Interestingly, the values of conductivity of membranes with 80 and 90 wt % of IL were higher than that of pure IL (100 wt %). The polymer chain breathing model has been suggested to explain it. The variation of ionic conductivity with temperature of these gel polymeric membranes follows Arrhenius type thermally activated behavior.

  5. Synthesis and Characterisation of ETS-10/Acetate-based Ionic Liquid/Chitosan Mixed Matrix Membranes for CO2/N2 Permeation.

    Science.gov (United States)

    Casado-Coterillo, Clara; Del Mar López-Guerrero, María; Irabien, Angel

    2014-06-19

    Mixed matrix membranes (MMMs) were prepared by incorporating organic surfactant-free hydrothermally synthesised ETS-10 and 1-ethyl-3-methylimidazolium acetate ionic liquid (IL) to chitosan (CS) polymer matrix. The membrane material characteristics and permselectivity performance of the two-component membranes were compared with the three-component membrane and the pure CS membrane. The addition of IL increased CO2 solubility of the polymer, and, thus, the CO2 affinity was maintained for the MMMs, which can be correlated with the crystallinity, measured by FT-IR, and void fraction calculations from differences between theoretical and experimental densities. The mechanical resistance was enhanced by the ETS-10 nanoparticles, and flexibility decreased in the two-component ETS-10/CS MMMs, but the flexibility imparted by the IL remained in three-component ETS-10/IL/CS MMMs. The results of this work provide insight into another way of facing the adhesion challenge in MMMs and obtain CO2 selective MMMs from renewable or green chemistry materials.

  6. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    Science.gov (United States)

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given.

  7. Screening antiallergic components from Carthamus tinctorius using rat basophilic leukemia 2H3 cell membrane chromatography combined with high-performance liquid chromatography and tandem mass spectrometry.

    Science.gov (United States)

    Han, Shengli; Huang, Jing; Cui, Ronghua; Zhang, Tao

    2015-02-01

    Carthamus tinctorius, used in traditional Chinese medicine, has many pharmacological effects, such as anticoagulant effects, antioxidant effects, antiaging effects, regulation of gene expression, and antitumor effects. However, there is no report on the antiallergic effects of the components in C. tinctorius. In the present study, we investigated the antiallergic components of C. tinctorius and its mechanism of action. A rat basophilic leukemia 2H3/cell membrane chromatography coupled online with high-performance liquid chromatography and tandem mass spectrometry method was developed to screen antiallergic components from C. tinctorius. The screening results showed that Hydroxysafflor yellow A, from C. tinctorius, was the targeted component that retained on the rat basophilic leukemia 2H3/cell membrane chromatography column. We measured the amount of β-hexosaminidase and histamine released in mast cells and the key markers of degranulation. The release assays showed that Hydroxysafflor yellow A could attenuate the immunoglobulin E induced release of allergic cytokines without affecting cell viability from 1.0 to 50.0 μM. In conclusion, the established rat basophilic leukemia 2H3 cell membrane chromatography coupled with online high-performance liquid chromatography and tandem mass spectrometry method successfully screened and identified Hydroxysafflor yellow A from C. tinctorius as a potential antiallergic component. Pharmacological analysis elucidated that Hydroxysafflor yellow A is an effective natural component for inhibiting immunoglobulin E-antigen-mediated degranulation.

  8. A new selective liquid membrane extraction method for the determination of basic herbicides in agro-processed fruit juices and Ethiopian honey wine (Tej) samples.

    Science.gov (United States)

    Megersa, Negussie; Kassahun, Samuel

    2012-01-01

    Supported liquid membrane (SLM) extraction was optimised for trace extraction and enrichment of selected triazine herbicides from a variety of agro-processed fruit juices and Ethiopian honey wine (Tej) samples. In the extraction process, a 1:1 mixture of n-undecane and di-n-hexylether was immobilised in a thin porous PTFE membrane that forms a barrier between two aqueous phases (the donor and acceptor phases) in a flow system. The extracts constitute the selectively enriched analytes collected from the acceptor phase and were analysed by transferring to a HPLC-UV system using a diode array detector at 235 nm. High enrichment factors were obtained with very good repeatability of results, and the detection limit was lower than 3.00 µg l⁻¹ for ametryn in apple juice. The optimised method showed very good linearity of over 50-500 µg l⁻¹ with a correlation coefficient of >0.990 or better for triplicate analysis. All chromatograms gave well resolved peaks with no interfering peaks at the retention times of the selected triazines, showing high selectivity of the SLM extraction method in combination with HPLC-UV for the selected matrices. The optimised method can be used as an alternative solventless extraction method for microgram-level extraction of other triazine herbicides and a variety of pesticides from liquid and semi-liquid environmental, biological and food matrices.

  9. Determination of pesticide residues in wine by membrane-assisted solvent extraction and high-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Moeder, M; Bauer, C; Popp, P; van Pinxteren, M; Reemtsma, T

    2012-06-01

    The determination of pesticides in food products is an essential issue to guarantee food safety and minimise health risks of consumers. A protocol based on membrane-assisted solvent extraction and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) that allows the determination of 18 pesticides in red wine at minimum labour effort for sample preparation was developed and validated. Ten millilitres of wine were extracted using 100 μL of toluene filled in a non-porous polyethylene membrane bag which is immersed in the wine sample. After 150 min extraction under stirring, an aliquot of the extraction solution is analysed using HPLC-MS/MS. The limits of quantification ranged from 3 ng/L for Pirimicarb to 1.33 μg/L for Imidacloprid. Quantification by matrix-matched calibration provided relative standard deviations ≤16 % for most of the target pesticides. The linearity of calibration was given over three to four orders of magnitude, which enables the reliable measurement of a broad range of pesticide concentrations, and for each target pesticide, the sensitivity of the protocol meets the maximum residue levels set by legislations at least for wine grapes. Good agreement of results was found when the new method was compared with a standard liquid-liquid extraction protocol. In five wine samples analysed, Carbendazim and Metalaxyl were determined at micrograms per litre concentrations, even in some of the organic wines. Tebuconazol and Cyprodinitril were determined at lower abundance and concentration, followed by Spiroxamin and Diuron.

  10. An easy method for the preparation of anion exchange membranes: Graft-polymerization of ionic liquids in porous supports

    NARCIS (Netherlands)

    Merle, Geraldine; Chairuna, Annisa; Ven, van de Erik; Nijmeijer, Kitty

    2013-01-01

    A novel way for anion exchange membrane (AEM) preparation has been investigated, avoiding the use of expensive and toxic chemicals. This new synthetic approach to prepare AEMs was based on the use of a porous polybenzylimidazole membrane as support in which functionalized ILs were introduced and sub

  11. Evaluation of nanofiltration membranes for treatment of liquid radioactive waste; Avaliacao de membranas de nanofiltracao para o tratamento de rejeito radioativo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth Eugenio de Mello

    2013-07-01

    The physicochemical behavior of two nanofiltration membranes for treatment of a low-level radioactive liquid waste (carbonated water) was investigated through static, dynamic and concentration tests. This waste was produced during conversion of uranium hexafluoride (UF{sub 6}) to uranium dioxide (UO{sub 2}) in the cycle of nuclear fuel. This waste contains about 7.0 mg L{sup -1} of uranium and cannot be discarded to the environment without an adequate treatment. In static tests membrane samples were immersed in the waste for 24 to 5000 h. Their transport properties (hydraulic permeability, permeate flux, sulfate and chloride ions rejection) were evaluated before and after immersion in the waste using a permeation flux front system under 0.5 MPa. The selective layer (polyamide) was characterized by zeta potential, contact angle, scanning electron microscopy for field emission, atomic force microscopy, infrared spectroscopy, x-ray fluorescence and thermogravimetric analysis before and after static tests. In dynamic tests the waste was permeated under 0.5 MPa, and the membranes showed rejection to uranium above 85% were obtained. The short-term static tests (24-72 h) showed that the selective layer and surface charge of the membranes were not chemical changed, according infrared spectra data. After 5000 h a coating layer was released from the membranes, poly(vinyl alcohol), PVA. After this loss the rejection for uranium decreased. Permeation and concentration of the waste were carried out in permeation flux tangential system under 1.5 MPa. The rejection of uranium was around 90% for permeation tests. In concentration tests the permeated was collected continuously until about 80% reduction of the feed volume. The rejection of uranium was of the 97%. The nanofiltration membranes tested were efficient to concentrate the uranium from the waste. (author)

  12. Di(2-ethylhexyl)phosphoric acid-coconut oil supported liquid membrane for the separation of copper ions from copper plating wastewater

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Permeation of Cu(II) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of Cu(II), pH (in feed), H2SO4 (stripping) and D2EHPA (in membrane) concentrations have been investigated. The stability of the D2EHPA-coconutoil has also been evaluated. High Cu(II) concentration in the feed leads to an increase in flux from 4.1 × 10-9 to 8.9 × 10-9 mol/(m2·s) within the Cu(II) concentration range 7.8×10-4-78.6×10-4 mol/L at pH of 4.0 in the feed and 12.4 × 10-4 mol/L D2EHPA in the membrane phase. Increase in H2SO4 concentration in strip solution leads to an increase in copper ions flux up to 0.25 mol/L H2SO4, providing a maximum flux of 7.4 × 10-9 mol/(m2·s). The optimum conditions for Cu(II) transport are, pH of feed 4.0, 0.25 mol/L H2SO4 in strip phase and 12.4 × 10-4 mol/L D2EHPA (membrane) in 0.5 (m pore size polytetrafluoroethylene (PTFE) membrane. It has been observed that Cu(II) flux across the membrane tends to increase with the concentration of copper ions. Application of the method developed to copper plating bath rinse solutions has been found to be successful in the recovery of Cu(II). rane. It

  13. The stoichiometry of the TMEM16A ion channel determined in intact plasma membranes of COS-7 cells using liquid-phase electron microscopy.

    Science.gov (United States)

    Peckys, Diana B; Stoerger, Christof; Latta, Lorenz; Wissenbach, Ulrich; Flockerzi, Veit; de Jonge, Niels

    2017-08-01

    TMEM16A is a membrane protein forming a calcium-activated chloride channel. A homodimeric stoichiometry of the TMEM16 family of proteins has been reported but an important question is whether the protein resides always in a dimeric configuration in the plasma membrane or whether monomers of the protein are also present in its native state within in the intact plasma membrane. We have determined the stoichiometry of the human (h)TMEM16A within whole COS-7 cells in liquid. For the purpose of detecting TMEM16A subunits, single proteins were tagged by the streptavidin-binding peptide within extracellular loops accessible by streptavidin coated quantum dot (QD) nanoparticles. The labeled proteins were then imaged using correlative light microscopy and environmental scanning electron microscopy (ESEM) using scanning transmission electron microscopy (STEM) detection. The locations of 19,583 individual proteins were determined of which a statistical analysis using the pair correlation function revealed the presence of a dimeric conformation of the protein. The amounts of detected label pairs and single labels were compared between experiments in which the TMEM16A SBP-tag position was varied, and experiments in which tagged and non-tagged TMEM16A proteins were present. It followed that hTMEM16A resides in the plasma membrane as dimer only and is not present as monomer. This strategy may help to elucidate the stoichiometry of other membrane protein species within the context of the intact plasma membrane in future. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Maximising metal ions flux across a microdialysis membrane by incorporating poly-L-aspartic acid, poly-L-histidine, 8-hydroxyquinoline and ethylenediaminetetraacetic acid in the perfusion liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mogopodi, Dikabo [University of Botswana, Department of Chemistry, Private Bag UB 00704, Gaborone (Botswana); Torto, Nelson [University of Botswana, Department of Chemistry, Private Bag UB 00704, Gaborone (Botswana)]. E-mail: torton@mopipi.ub.bw

    2005-04-08

    This paper presents a study of quiescent microdialysis sampling of Cr{sup 3+}, Cu{sup 2+}, Ni{sup 2+} and Pb{sup 2+} involving the incorporation of poly-L-aspartic acid, poly-L-histidine, 8-hydroxyquinoline (8-HQ) and ethylenediaminetetraacetic acid (EDTA), in the perfusion liquid as an approach to maximise metal analyte flux across the microdialysis membrane. These chelating agents were individually optimised with respect to microdialysis recovery and subsequently combined in the perfusion liquid. A combination of 20% (w/v) poly-L-histidine, 0.032% (w/v) poly-L-aspartic acid and 1 mM 8-HQ achieved microdialysis recovery up to 90%. Since 1 mM EDTA achieved recoveries greater than 80% for all metals understudy, EDTA was not combined with any of the chelating agents. Under the optimal conditions of maximum metal ion flux across the microdialysis membrane, metal ions from natural and wastewater were sampled and analysed with an electrothermal atomic absorption spectrometer equipped with a Zeeman background corrector. Results showed higher concentrations of detected metal ions after microdialysis sampling compared to direct detection without sample clean-up. Incorporation of chelating agents in the microdialysis perfusion liquid enhanced metal ions recovery in real samples and achieved enrichment factors of up to 42. The study demonstrated that combining chelating agents is a good approach towards maximising metal flux across the dialysis membrane. Given that recoveries between 80 and 90% were achieved under quiescent microdialysis sampling conditions, these findings are an important development for in vivo diagnostic sampling of metal ions.

  15. Liquid-phase membrane extraction of targeted pesticides from manufacturing wastewaters in a hollow fibre contactor with feed-stream recycle.

    Science.gov (United States)

    Đorđević, Jelena; Vladisavljević, Goran T; Trtić-Petrović, Tatjana

    2017-01-01

    A two-phase membrane extraction in a hollow fibre contactor with feed-stream recycle was applied to remove selected pesticides (tebufenozide, linuron, imidacloprid, acetamiprid and dimethoate) from their mixed aqueous solutions. The contactor consisted of 50 polypropylene hollow fibres impregnated with 5% tri-n-octylphosphine oxide in di-n-hexyl ether. For low-polar pesticides with log P ≥ 2 (tebufenozide and linuron), the maximum removal efficiency increased linearly from 85% to 96% with increasing the feed flow rate. The maximum removal efficiencies of more polar pesticides were significantly higher under feed recirculation (86%) than in a continuous single-pass operation (30%). It was found from the Wilson's plot that the mass transfer resistance of the liquid membrane can be neglected for low-polar pesticides. The pesticide removals from commercial formulations were similar to those from pure pesticide solutions, indicating that built-in adjuvants did not affect the extraction process.

  16. 乳化液膜法处理含Cr(Ⅲ)废水%TREATMENT OF Cr(Ⅲ) WASTE-WATER WITH EMULSION LIQUID MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    余晓皎; 姚秉华; 周孝德

    2004-01-01

    The transfer behavior of Cr (Ⅲ) through the emulsion liquid membrane system of TBP-Span80-atoleine -kerosene was studied. The effects of membrane phase component, pH value in external phase,concentration of H2SO4 in internal phase, ratio of emulsion-water (Rew) and coexisting ions on the transport rate of Cr (Ⅲ) were investigated. The results showed that the transport rate of Cr (Ⅲ) could reach 99.5% under the optimun conditions of 7%TBP, 5% Span80, 4% atoleine, 84% kerosene, 1.0 mol·L-1 H2SO4 in internal phase and pH 3.5 in external phase. This method was applied to the treatment of Cr (Ⅲ) waste-water, and the residual concentration of Cr (Ⅲ) could be reduced to 1.0 mg·L-1 , which was below the national standard of waste-water discharge.

  17. Peptide mapping of /sup 125/I-labelled membrane protein of influenza viruses by reverse-phase high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Darveau, A.; Lecomte, J. (Centre de Recherche en Virologie, Institut Armand-Frappier, Laval, Quebec (Canada)); Seidah, N.G.; Chretien, M. (Institut de Recherches Cliniques de Montreal, Montreal (Canada))

    1982-03-01

    The resolution potential of reverse-phase high-performance liquid chromatography (HPLC) for peptide analysis of hydrophobic viral membranes has been investigated, using as a model the membrane (M) protein of influenza virus. Proteolytic digests of /sup 125/I-labelled M protein CNBr fragments, extracted from radioiodinated whole virus, have been separated on a uBondapak C/sub 18/ column with an isopropanol or acetonitrile solvent system. Peptide mapping of trypsin digests of M protein from A/PR/8/34 (H1N1) and A/chicken/Germany/N/49 (H10N7) viruses was identical, whereas Staphylococcus aureus V8 protease digests showed minor differences in at least two peptides. The results also show that HPLC is a powerful tool for the separation of proteolytic digests of viral proteins, since the peptide maps are highly reproducible and recovery was always greater than 85%.

  18. Sustainable Process for the Preparation of High-Performance Thin-Film Composite Membranes using Ionic Liquids as the Reaction Medium.

    Science.gov (United States)

    Mariën, Hanne; Bellings, Lotte; Hermans, Sanne; Vankelecom, Ivo F J

    2016-05-23

    A new form of interfacial polymerization to synthesize thin-film composite membranes realizes a more sustainable membrane preparation and improved nanofiltration performance. By introducing an ionic liquid (IL) as the organic reaction phase, the extremely different physicochemical properties to those of commonly used organic solvents influenced the top-layer formation in several beneficial ways. In addition to the elimination of hazardous solvents in the preparation, the m-phenylenediamine (MPD) concentration could be reduced 20-fold, and the use of surfactants and catalysts became redundant. Together with the more complete recycling of the organic phase in the water/IL system, these factors resulted in a 50 % decrease in the mass intensity of the top-layer formation. Moreover, a much thinner top layer with a high ethanol permeance of 0.61 L m(-2)  h(-1)  bar(-1) [99 % Rose Bengal (RB, 1017 Da) retention; 1 bar=0.1 MPa] was formed without the use of any additives. This EtOH permeance is 555 and 161 % higher than that for the conventional interfacial polymerization (without and with additives, respectively). In reverse osmosis, high NaCl retentions of 97 % could be obtained. Finally, the remarkable decrease in the membrane surface roughness indicates the potential for reduced fouling with this new type of membrane.

  19. Modulating alignment of membrane proteins in liquid-crystalline and oriented gel media by changing the size and charge of phospholipid bicelles

    Science.gov (United States)

    Lorieau, Justin L; Maltsev, Alexander S.; Louis, John M; Bax, Ad

    2013-01-01

    We demonstrate that alignment of a structured peptide or small protein solubilized in mixed phospholipid:detergent micelles or bicelles, when embedded in a compressed gel or liquid crystalline medium, can be altered by either changing the phospholipid aggregate shape, charge, or both together. For the hemagglutinin fusion peptide solubilized in bicelles, we show that bicelle shape and charge do not change its helical hairpin structure but impact its alignment relative to the alignment medium, both in charged compressed acrylamide gel and in liquid crystalline d (GpG). The method can be used to generate sets of residual dipolar couplings (RDCs) that correspond to orthogonal alignment tensors, and holds promise for high-resolution structural refinement and dynamic mapping of membrane proteins. PMID:23508769

  20. Modulating alignment of membrane proteins in liquid-crystalline and oriented gel media by changing the size and charge of phospholipid bicelles

    Energy Technology Data Exchange (ETDEWEB)

    Lorieau, Justin L.; Maltsev, Alexander S.; Louis, John M.; Bax, Ad, E-mail: bax@nih.gov [National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Laboratory of Chemical Physics (United States)

    2013-04-15

    We demonstrate that alignment of a structured peptide or small protein solubilized in mixed phospholipid:detergent micelles or bicelles, when embedded in a compressed gel or liquid crystalline medium, can be altered by either changing the phospholipid aggregate shape, charge, or both together. For the hemagglutinin fusion peptide solubilized in bicelles, we show that bicelle shape and charge do not change its helical hairpin structure but impact its alignment relative to the alignment medium, both in charged compressed acrylamide gel and in liquid crystalline d(GpG). The method can be used to generate sets of residual dipolar couplings that correspond to orthogonal alignment tensors, and holds promise for high-resolution structural refinement and dynamic mapping of membrane proteins.

  1. Application of hollow fiber supported liquid membrane as a chemical reactor for esterification of lactic acid and ethanol to ethyl lactate

    Energy Technology Data Exchange (ETDEWEB)

    Teerachaiyapat, Thanyarutt; Ramakul, Prakorn [Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom (Thailand)

    2016-01-15

    Hollow fiber supported liquid membrane was applied as a reactor to synthesize ethyl lactate from lactic acid. Lactic acid in the feed solution was extracted by tri-n-octylamine (TOA) and stripped by ethanol with p-toluene sulfonic acid acting as the catalyst to form ethyl lactate. Central composite design (CCD) was used to determine the significant factors and their interactions. The response surface was applied for optimization. An optimized yield of 30% was predicted and its validity was evaluated by comparison with experimental results at different concentrations of lactic acid in the feed solution, with good agreement achieved.

  2. Separation study of some heavy metal cations through a bulk liquid membrane containing 1,13-bis(8-quinolyl-1,4,7,10,13-pentaoxatridecane

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Rounaghi

    2016-09-01

    Full Text Available Competitive permeation of seven metal cations from an aqueous source phase containing equimolar concentrations of Co2+, Fe3+, Cd2+, Cu2+, Zn2+, Ag+ and Pb2+ metal ions at pH 5 into an aqueous receiving phase at pH 3 through an organic phase facilitated by 1,13-bis(8-quinolyl-1,4,7,10,13-pentaoxatridecane (Kryptofix5 as a carrier was studied as bulk liquid membrane transport. The obtained results show that the carrier is highly selective for Ag+ cation and under the employed experimental conditions, it transports only this metal cation among the seven studied metal cations. The effects of various organic solvents on cation transport rates have been demonstrated. Among the organic solvents involving nitrobenzene (NB, chloroform (CHCl3, dichloromethane (DCM and 1,2-dichloroethane (1,2-DCE which were used as liquid membrane, the most transport rate was obtained for silver (I cation in DCM. The sequence of transport rate for this cation in organic solvents was: DCM > CHCl3 > 1,2-DCE > NB. The competitive transport of these seven metal cations was also studied in CHCl3–NB and CHCl3–DCM binary solvents as membrane phase. The results show that the transport rate of Ag+ cation is sensitive to the solvent composition and a non-linear relationship was observed between the transport rate of Ag+ and the composition of these binary mixed non-aqueous solvents. The influence of the stearic acid, palmitic acid and oleic acid as surfactant in the membrane phase on the transport of the metal cations was also investigated.

  3. Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network

    Directory of Open Access Journals (Sweden)

    Dietmar Gerteisen

    2013-09-01

    Full Text Available In order to model the liquid water transport in the porous materials used in polymer electrolyte membrane (PEM fuel cells, the pore network models are often applied. The presented model is a novel approach to further develop these models towards a percolation model that is based on the fiber structure rather than the pore structure. The developed algorithm determines the stable liquid water paths in the gas diffusion layer (GDL structure and the transitions from the paths to the subsequent paths. The obtained water path network represents the basis for the calculation of the percolation process with low calculation efforts. A good agreement with experimental capillary pressure-saturation curves and synchrotron liquid water visualization data from other literature sources is found. The oxygen diffusivity for the GDL with liquid water saturation at breakthrough reveals that the porosity is not a crucial factor for the limiting current density. An algorithm for condensation is included into the model, which shows that condensing water is redirecting the water path in the GDL, leading to an improved oxygen diffusion by a decreased breakthrough pressure and changed saturation distribution at breakthrough.

  4. Ion-transfer voltammetric determination of the beta-blocker propranolol in a physiological matrix at silicon membrane-based liquid|liquid microinterface arrays.

    Science.gov (United States)

    Collins, Courtney J; Arrigan, Damien W M

    2009-03-15

    In this work, the ion-transfer voltammetric detection of the protonated beta-blocker propranolol in artificial saliva is presented. Cyclic voltammetry, differential pulse voltammetry, and differential pulse stripping voltammetry (DPSV) were employed in the detection of the cationic drug based on ion-transfer voltammetry across arrays of microinterfaces between artificial saliva and an organogel phase. It was found that the artificial saliva matrix decreased the available potential window for ion-transfer voltammetry at this liquid|liquid interface but transfer of protonated propranolol was still achieved. The DPSV method employed a preconditioning step as well as a preconcentration step followed by analytical signal generation based on the back-transfer of the drug across the array of microinterfaces. The DPSV peak current response was linear with drug concentration in the artificial saliva matrix over the concentration range of 0.05-1 microM (i(p) = -8.13 (nA microM(-1))(concentration) + 0.07 (nA), R = 0.9929, n = 7), and the calculated detection limit (3s(b)) was 0.02 microM. These results demonstrate that DPSV at arrays of liquid|liquid microinterfaces is a viable analytical approach for pharmaceutical determinations in biomimetic matrixes.

  5. Separation of Eu(Ⅲ) with supported dispersion liquid membrane system containing D2EHPA as carrier and HNO3 solution as stripping solution

    Institute of Scientific and Technical Information of China (English)

    PEI Liang; WANG Liming; YU Guoqiang

    2011-01-01

    The Eu(Ⅲ) separation in supported dispersion liquid membrane (SDLM), with polyvinylidene fluoride membrane (PVDF) as the support and dispersion solution containing HNO3 solution as the stripping solution and Di(2-ethylhexyl) phosphoric acid (D2EHPA) dissolved in kerosene as the membrane solution, was studied. The effects of pH value, initial concentration of Eu(Ⅲ) and different ionic strengths in the feed phase, volume ratio of membrane solution and stripping solution, concentration of H NO3 solution, concentration of carrier, different stripping agents in the dispersion phase on the separation of Eu(Ⅲ) were also investigated, respectively. As a result, the optimum separation conditions of Eu(Ⅲ) were obtained as the concentration of HNO3 solution was 4.00 mol/L, concentration of D2EHPA was 0.160 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase, and pH value was 5.00 in the feed phase. Ionic strength had no obvious effect on the separation of Eu(Ⅲ). Under the optimum conditions studied, when initial concentration of Eu(Ⅲ) was 1.00× 10 4 mol/L, the separation rate of Eu(Ⅲ) was up to 94.2% during the separation period of 35 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The results were in good agreement with the literature data.

  6. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Model simulations

    Science.gov (United States)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. In a membrane reactor process, the thermal energy needed for the endothermic hydrocarbon reforming may be provided by combustion of the membrane reject gas. The energy efficiency of the overall hydrogen generation is maximized by controlling the hydrogen product yield such that the heat value of the membrane reject gas is sufficient to provide all of the heat necessary for the integrated process. Optimization of the system temperature, pressure and operating parameters such as net hydrogen recovery is necessary to realize an efficient integrated membrane reformer suitable for compact portable hydrogen generation. This paper presents results of theoretical model simulations of the integrated membrane reformer concept elucidating the effect of operating parameters on the extent of fuel conversion to hydrogen and hydrogen product yield. Model simulations indicate that the net possible hydrogen product yield is strongly influenced by the efficiency of heat recovery from the combustion of membrane reject gas and from the hot exhaust gases. When butane is used as a fuel, a net hydrogen recovery of 68% of that stoichiometrically possible may be achieved with membrane reformer operation at 600 °C (873 K) temperature and 100 psig (0.791 MPa) pressure provided 90% of available combustion and exhaust gas heat is recovered. Operation at a greater pressure or temperature provides a marginal improvement in the performance whereas operation at a significantly lower temperature or pressure will not be able to achieve the optimal hydrogen yield. Slightly higher, up to 76%, net hydrogen recovery is possible when methanol is used as a fuel due to the lower heat

  7. Study of the kinetics of the transport of Cu(II), Cd(II) and Ni(II) ions through a liquid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Granado-Castro, Maria D.; Galindo-Riano, Maria D.; Garcia-Vargas, M. [University of Cadiz, Department of Analytical Chemistry, Faculty of Sciences, Puerto Real, Cadiz (Spain); Dominguez-Lledo, F.C.; Diaz-Lopez, C. [University of La Havana, Department of Analytical Chemistry, Faculty of Chemistry, La Havana, CP (Cuba)

    2008-06-15

    The coupled transport of Cu(II), Cd(II) and Ni(II) ions through a bulk liquid membrane (BLM) containing pyridine-2-acetaldehyde benzoylhydrazone (2-APBH) as carrier dissolved in toluene has been studied. Once the optimal conditions of extraction of each metal were established, a comparative study of the transport kinetics for these metals was performed by means of a kinetic model involving two consecutive irreversible first-order reactions. The kinetic parameters apparent rate constants of the metal extraction and re-extraction reactions (k{sub 1}, k{sub 2}), the maximum reduced concentration of the metal in the liquid membrane (R{sup max}{sub o}), the time of the maximum value of R{sub o} (t{sub max}) and the maximum entry and exit fluxes of the metal through the liquid membrane (J{sup max}{sub f} and J{sup max}{sub s}) of the extraction and stripping reactions were evaluated and results showed good agreement between experimental data and theoretical predictions. Complete transport through the membrane took place according to the following order: Cd(II)>Cu(II)>Ni(II), with similar kinetic parameters obtained for Cu(II) and Cd(III). The transport behaviour of Ni(II) was different to that of Cu(II) and Cd(III), probably due to the different stoichiometry of the nickel complex compared to those of the other metal ions and the different chemical conditions required for its formation. The influence of the sample salinity on the transport kinetics was studied. k{sub 1} values decreased slightly when the feed solution salinity was increased for Cu(II) and Ni(II), but not for Cd(II). Values of k{sub 2} were practically unaffected. The proposed BLM was applied to the preconcentration and separation of metal ions (prior to their determination) in water samples with different saline matrices (CRM, river water and seawater), and good agreement with the certified values was obtained. (orig.)

  8. Novel ceramic-polymer composite membranes for the separation of hazardous liquid waste. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Y.

    1998-06-01

    'This report summarizes the work progress over the last 1.75 years of a 3 year project. The objectives of the project have been to develop a new class of ceramic-supported polymeric membranes that could be tailored-designed for a wide-range of applications in remediation and pollution prevention. To date, a new class of chemically-modified ceramic membranes was developed for the treatment of oil-in-water emulsions and for the pervaporation removal of volatile organics from aqueous systems. These new ceramic-supported polymer (CSP) membranes are fabricated by modifying the pore surface of a ceramic membrane support by a graft polymerization process (Chaimberg and Cohen, 1994). The graft polymerization process consists of activating the membrane surface with alkoxy vinyl silanes onto which vinyl monomers are added via free-radical graft polymerization resulting in a thin surface layer of terminally anchored polymer chains. Reaction conditions are selected based on knowledge of the graft polymerization kinetics for the specific polymer/substrate system. The resultant ceramic-supported polymer (CSP) membrane is a composite structure in which mechanical strength is provided by the ceramic support and the selectivity is determined by the covalently bonded polymer brush layer. Thus, one of the unique attributes of the CSP membrane is that it can be used in environments where the polymer layer is swollen (or even completely miscible) in the mixture to be separated (Castro et al., 1993). It is important to note that the above modification process is carried out under mild conditions (e.g., temperature of about 70 C) and is well suited for large scale commercial application. In a series of studies, the applicability of a polyvinylpyrrolidone CSP membrane was demonstrated for the treatment of oil-in-water emulsion under a variety of flow conditions (Castro et al.,1996). Improved membrane performance was achieved due to minimization of surface adsorption of the oil

  9. TREATMENT OF GLYPHOSATE WASTEWATER BY EMULSION LIQUID MEMBRANE SYSTEM%乳状液膜法治理草甘膦废水

    Institute of Scientific and Technical Information of China (English)

    胡筱敏; 周宁; 欧云川; 李鹏; 宇秉勇

    2012-01-01

    采用液膜分离技术从草甘膦生产废水中回收可利用资源草甘膦,并通过实际工业废水进行验证。主要考察了外水相pH值、乳水比及内水相浓度对草甘膦去除的影响。试验结果表明:以航空煤油为溶剂,3%表面活性剂(质量分数),4%载体(体积分数),10%NaOH内水相,油内比Roi为2:1乳状液膜体系,处理初始浓度为1%的草甘膦工业废水,在pH值为2,乳水比Rew为1:5的传质条件下,草甘膦去除率可达85%以上。%Liquid membrane technique is a modern separation technique in recent year that has efficient, speedy and simple characteristics. This paper elaborates on treatment of glyphosate wastewater with emulsion liquid membrane and found appropriate conditions by experimentation. When it deal with glyphosate wastewater, glyphosate can be recovery. The optimum membrane composition and technique on extracting of glyphosate wastewater were studied. The effect on removal rate of glyphosate of the external pH concentration, the ratio of emulsion and water, the internal concentration was examined. The experimental results show that when 10% NaOH (mass fration) as internal aqueous phase; pH of external aqueous phase was 2; Roi=2:1 ; Rew = 1: 5, the removal rate of 1% glyphosate was higher than 85%.

  10. EFFECT OF MATRICES ON PERCENT EXTRACTION OF SILVER (II FROM BLACK/WHITE PRINTING PHOTOGRAPHIC WASTE USING EMULSION LIQUID MEMBRANE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Imam Santoso

    2010-06-01

    Full Text Available Extraction of silver (I has been studied from black/white printing photographic waste by emulsion liquid membrane technique. Composition emulsion at the membrane phase was cerosene as solvent, sorbitan monooleat (span 80 as surfactant, dimethyldioctadesyl-ammonium bromide as carrier and as internal phase was HNO3. Optimum condition was obtained: ratio of internal phase volume and membrane phase volume was 1:1 : concentration of surfactant was 2% (v/v : time of making emulsion was 20 second : rate of stiring emulsion was 1100 rpm : rest time emulsion was 3 second : rate of emulsion volume and external phase volume was 1:5 : emulsion contact rate 500 rpm : emulsion contact time was 40 second : concentration of silver thiosulfate as external phase was 100 ppm : pH of external phase was 3 and pH of internal phase was 1. Optimum condition was applied in silver(I extraction from black/white printing photographic waste. It was obtained 77.33% average which 56.06% silver (I average of internal phase and 22.66% in the external phase. Effect of matrices ion decreased silver(I percent extraction from 96,37% average to 77.33% average. Keyword: photographics waste, silver extraction

  11. 乳状液膜包酶制备6-APA的研究%Preparation of 6-APA by Enzymatic Bioconversion in an Emulsion Liquid Membrane Reactor

    Institute of Scientific and Technical Information of China (English)

    陆强; 胡鸣; 熊丹柳; 邓修

    2001-01-01

    Production of 6-aminopenicillanic acid (6-APA) by hydrolysis using penicillin acylase (PA) was studied as a model of an enzymatic emulsion liquid membrane (ELM) process. The loss of PA activity was examined for various membrane compositions (organic solvent, surfactant, carrier). The effects of some experimental variables on the stability of emulsion were investigated. It was found that the choice of organic solvent greatly affected the stability of the emulsion. Increasing the concentration of the carrier in the membrane phase increases the transfer rate of substrate and products but also has a destabilizing effect on the emulsion. The recovery of 6-APA obtained by a di-carrier system (N263-N1923) was much higher than those when either of the dj-carriers was used separately. The whole process was controlled both by the enzymatic reaction rate and by the transfer rate of the substrate and the products, however, the ratio of them could be changed by varying the composition of the system. For an optimum condition, it was obtained that the recovery ratio of 6-APA was over 80% and the conversion of benzyl penicillin (PG) was up to 90% in the external phase after 30 minutes. Meanwhile, the breakage percentage of the emulsion was less than 2%.``

  12. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  13. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures

    Institute of Scientific and Technical Information of China (English)

    Tengteng Fan; Wenlong Xie; Xiaoyan Ji; Chang Liu; Xin Feng; Xiaohua Lu

    2016-01-01

    The high price and toxicity of ionic liquids (ILs) have limited the design and application of supported ionic liquid membranes (SILMs) for CO2 separation in both academic and industrial fields. In this work, [Choline][Pro]/poly-ethylene glycol 200 (PEG200) mixtures were selected to prepare novel SILMs because of their green and cost-effective characterization, and the CO2/N2 separation with the prepared SILMs was investigated experimental y at temperatures from 308.15 to 343.15 K. The temperature effect on the permeability, solubility and diffusivity of CO2 was modeled with the Arrhenius equation. A competitive performance of the prepared SILMs was ob-served with high CO2 permeability ranged in 343.3-1798.6 barrer and high CO2/N2 selectivity from 7.9 to 34.8. It was also found that the CO2 permeability increased 3 times by decreasing the viscosity of liquids from 370 to 38 mPa·s. In addition, the inherent mechanism behind the significant permeability enhancement was revealed based on the diffusion-reaction theory, i.e. with the addition of PEG200, the overall resistance was substantial y decreased and the SILMs process was switched from diffusion-control to reaction-control.

  14. Liquid—liquid interface-mediated Au—ZnO composite membrane using ‘thiol-ene’ click chemistry

    Science.gov (United States)

    Ali, Mohammed; Ghosh, Sujit Kumar

    2015-07-01

    A nanoparticle-decorated composite membrane has been devised at the water/CCl4 interface based on the self-assembly of ligand-stabilized gold and zinc oxide nanoparticles, exploiting the ‘thiol-ene’ click chemistry between the thiol groups of 11-mercaptoundecanoic acid-stabilized ZnO nanoparticles and the ene functionality of cinnamic acid attached to gold nanoparticles. The interfacial assembly of ultrasmall particles leads to a multilayer film that exhibits charge-dependent permeability of amino acid molecules across the membrane.

  15. Removal of cesium from nuclear liquid waste using hybrid organic-inorganic membranes grafted by immobilized calixarenes; Synthese et caracterisation de membranes hybrides organo-minerales contenant des calixarenes. Application au traitement des effluents radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Duhart, A

    1998-07-01

    The aim of the Actinex program is to reduce massively the noxiousness of the vitrified wastes mainly due to actinides and other long-lived fission products such as {sup 129}I, {sup 99}Tc or {sup 135}Cs. Specific treatment means applicable to the industrial processes of spent fuel reprocessing have to be defined. The selective extraction of these radioelements for their transmutation or packaging in specific matrices is one of the research theme of this program. Different studies allowing the extraction of radioelements such as cesium, americium and plutonium by preferential diffusional transport through a supported liquid membrane of complexes (formed between a selective transport compound and the radioelements) are at the present time carried out in the ETPL (Effluents Treatment Processes Laboratory). Calix-4-arenes mono/bis-crown-6 are used as selective transport compounds. Meanwhile the possible losses of the selective transport compound by dissolution in the aqueous phases have oriented our researches towards a solid material in which the selective transport compound is chemically bound or trapped in the matrix. The transport compound is a calixarene, dissymmetrical and double grafted. It has been specifically synthesized for this study. It allows both to complex the cesium and to chemically bind a hetero-poly-siloxane. These monomers have poly-condensable groups which lead by sol-gel process to the formation of a three-dimensional bonds lattice. The matrix, thus obtained, can be supported either on a mineral material or on a porous organic material. Pre-polymers and the deposited layers have been characterized and correlations between the materials preparation and their properties, applied to cesium extraction, have been established. Experiments of cesium transfer through the solid membrane containing between 2 to 40% of selective transport compound, located between 2 compartments containing upstream, an acidic solution with strong salinity doped with Cs 137

  16. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet.

    Science.gov (United States)

    Dolezalova, Eva; Lukes, Petr

    2015-06-01

    Electrical discharge plasmas can efficiently inactivate various microorganisms. Inactivation mechanisms caused by plasma, however, are not fully understood because of the complexity of both the plasma and biological systems. We investigated plasma-induced inactivation of Escherichia coli in water and mechanisms by which plasma affects bacterial cell membrane integrity. Atmospheric pressure argon plasma jet generated at ambient air in direct contact with bacterial suspension was used as a plasma source. We determined significantly lower counts of E. coli after treatment by plasma when they were assayed using a conventional cultivation technique than using a fluorescence-based LIVE/DEAD staining method, which indicated that bacteria may have entered the viable-but-nonculturable state (VBNC). We did not achieve resuscitation of these non-culturable cells, however, we detected their metabolic activity through the analysis of cellular mRNA, which suggests that cells may have been rather in the active-but-nonculturable state (ABNC). We hypothesize that peroxidation of cell membrane lipids by the reactive species produced by plasma was an important pathway of bacterial inactivation. Amount of malondialdehyde and membrane permeability of E. coli to propidium iodide increased with increasing bacterial inactivation by plasma. Membrane damage was also demonstrated by detection of free DNA in plasma-treated water.

  17. Liquid pearls

    CERN Document Server

    Bremond, Nicolas; Bibette, Jérôme

    2010-01-01

    This fluid dynamics video reports how to form liquid core capsules having a thin hydrogel elastic membrane named liquid pearls. These fish-egg like structures are initially made of a millimetric liquid drop, aqueous or not, coated with an aqueous liquid film containing sodium alginate that gels once the double drop enters a calcium chloride bath. The creation of such pearls with micrometer thick membrane requires to suppress mixing until gelling takes place. Here, we show that superimposing a two dimensional surfactant precipitation at the interface confers a transient rigidity that can damp the shear induced instability at impact. Based on this, pearls containing almost any type of liquids can be created. The video focuses on the dynamics of the entry of the compound drop into the gelling bath.

  18. Treatment of Semi-coke Production Wastewater by Emulsion Liquid Membrane Process%乳状液膜法处理煤制兰炭废水

    Institute of Scientific and Technical Information of China (English)

    刘涛; 程迪; 李鹏

    2013-01-01

    The semi-coke production wastewater was treated by emulsion liquid membrane method using tributyl phosphate (TBP) as carrier,kerosene as membrane solvent,and NaOH solution as aqueous phase.The experimental results show that when the TBP volume fraction is 4%,the surfactant mass fraction is 4%,the mass concentration of NaOH in the internal phase is 12%,the volume ratio of oil to internal phase is 3 ∶ 2,the volume ratio of emulsion liquid to wastewater is 1 ∶ 5 and the extraction time is 15 min,the removal rats of phenols (calculated in phenol) and COD are above 85% and 83% respectively.%以磷酸三丁酯(TBP)为载体、煤油为膜溶剂、NaOH水溶液为内水相,采用乳状液膜法处理兰炭废水.实验结果表明:当TBP体积分数为4%、表面活性剂质量分数为4%、内水相NaOH质量分数为12%、油内比(乳状液的油相与内水相的体积比)为3∶2、乳水比为1∶5、萃取时间为15 min时,废水中的酚类(以苯酚计)去除率达到85%以上,COD去除率达83%以上.

  19. STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue.

    Science.gov (United States)

    Honigmann, Alf; Mueller, Veronika; Hell, Stefan W; Eggeling, Christian

    2013-01-01

    We have developed a bright, photostable, and far-red emitting fluorescent phosphoglycerolipid analogue to probe diffusion characteristics of lipids in membranes. The lipid analogue consists of a saturated (C18) phosphoethanolamine and a hydrophilic far-red emitting fluorescent dye (KK114) that is tethered to the head group by a long polyethylenglycol linker. In contrast to reported far-red emitting fluorescent lipid analogues, this one partitions predominantly into liquid ordered domains of phase-separated ternary bilayers. We performed fluorescence correlation spectroscopy with a super-resolution STED microscope (STED-FCS) to measure the lateral diffusion of the new lipid analogue in the liquid ordered (Lo) and disordered (Ld) phase. On a mica support, we observed micrometer large phases and found that the lipid analogue diffuses freely on all tested spatial scales (40-250 nm) in both the Ld and Lo phase with diffusion coefficients of 1.8 microm2 s(-1) and 0.7 microm2 s(-1) respectively. This indicates that the tight molecular packing of the Lo phase mainly slows down the diffusion rather than causing anomalous sub-diffusion. The same ternary mixture deposited on acid-cleaned glass forms Lo nanodomains of analogue into the nano-domains, where diffusion is slowed down. Our results suggest that STED-FCS in combination with a Lo-partitioning fluorescent lipid analogue can directly probe the presence of Lo nano-domains, which in the future should allow the study of potential lipid rafts in live-cell membranes.

  20. Analysis of liquid water formation in polymer electrolyte membrane (PEM) fuel cell flow fields with a dry cathode supply

    Science.gov (United States)

    Gößling, Sönke; Klages, Merle; Haußmann, Jan; Beckhaus, Peter; Messerschmidt, Matthias; Arlt, Tobias; Kardjilov, Nikolay; Manke, Ingo; Scholta, Joachim; Heinzel, Angelika

    2016-02-01

    PEM fuel cells can be operated within a wide range of different operating conditions. In this paper, the special case of operating a PEM fuel cell with a dry cathode supply and without external humidification of the cathode, is considered. A deeper understanding of the water management in the cells is essential for choosing the optimal operation strategy for a specific system. In this study a theoretical model is presented which aims to predict the location in the flow field at which liquid water forms at the cathode. It is validated with neutron images of a PEM fuel cell visualizing the locations at which liquid water forms in the fuel cell flow field channels. It is shown that the inclusion of the GDL diffusion resistance in the model is essential to describe the liquid water formation process inside the fuel cell. Good agreement of model predictions and measurement results has been achieved. While the model has been developed and validated especially for the operation with a dry cathode supply, the model is also applicable to fuel cells with a humidified cathode stream.

  1. Electrokinetic extraction on artificial liquid membranes of amphetamine-type stimulants from urine samples followed by high performance liquid chromatography analysis.

    Science.gov (United States)

    Seidi, Shahram; Yamini, Yadollah; Baheri, Tahmineh; Feizbakhsh, Rouhollah

    2011-07-01

    Electromembrane extraction (EME) coupled with high performance liquid chromatography and ultraviolet detection was developed for determination of amphetamine-type stimulants in human urine samples. Amphetamines migrated from 3 mL of different human urine matrices, through a thin layer of 2-nitrophenyl octyl ether (NPOE) containing 15% tris-(2-ethylhexyl) phosphate (TEHP) immobilized in the pores of a porous hollow fiber, and into a 15 μL acidic aqueous acceptor solution present inside the lumen of the fiber. Equilibrium extraction conditions were obtained after 7 min of operation. Experimental design and response surface methodology (RSM) were used for optimization of EME parameters. Under optimal conditions, amphetamines were effectively extracted with recoveries in the range of 54-70%, which corresponded to preconcentration factors in the range of 108-140. The calibration curves were investigated in the range of 0-7 μg mL(-1) and good linearity was achieved with a coefficient of estimation better than 0.991. Detection limits and inter-day precision (n=3) were less than 0.01 μg mL(-1) and 11.2%, respectively.

  2. EGFR/cell membrane chromatography-online-high performance liquid chromatography/mass spectrometry method for screening EGFR antagonists from Radix Angelicae Pubescentis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The intracellular kinase domains of the epidermal growth factor receptor(EGFR) in some tumor cells are significant targets for drug discovery.We have developed a new EGFR cell membrane chromatography(EGFR/CMC)-online-high performance liquid chromatography/mass spectrometry(HPLC/MS) method for screening anti-EGFR antagonists from medicinal herbs such as Radix Angelicae Pubescentis.In this study,the HEK293 EGFR cells with high expression of EGFR were used to prepare cell membrane stationary phase(CMSP) in the EGFR/CMC model.The retention fractions on the EGFR/CMC model were directly analyzed by combining a 10 port columns switcher with a HPLC/MS system online.As a result,osthole from Radix Angelicae Pubescentis was found to be the active component acting on EGFR like dasatinib as the control drug.There was a good relationship between their inhibiting effects on EGFR secretion and HEK293 EGFR cell growth in vitro.This new EGFR/CMC-online-HPLC/MS method can be applied for screening anti-EGFR antagonists from TCMs,for instance,Radix Angelicae Pubescentis.It will be a useful method for drug discovery with natural medicinal herbs as a leading compound resource.

  3. Quantification of lipopolysaccharides in outer membrane vesicle vaccines against meningococcal disease. High-performance liquid chromatographic determination of the constituent 3-hydroxy-lauric acid.

    Science.gov (United States)

    Lyngby, Janne; Olsen, Linda H; Eidem, Tove; Lundanes, Elsa; Jantzen, Erik

    2002-03-01

    A high-performance liquid chromatographic (HPLC) assay for quantification of lipopolysaccharides (LPSs, endotoxins) in outer membrane vesicle vaccines against meningococcal disease has been developed. The LPS constituent, 3-hydroxy-lauric acid, served as marker substance for the quantification. LPS from the vaccine was precipitated by ethanol and the fatty acid constituents, including 3-hydroxy-lauric acid, were released by acidic hydrolysis, collected and purified by solid phase extraction on C18 disc-cartridges and converted into phenacyl esters for UV detection at 240 nm. Quantification of the derivatized 3-hydroxy-lauric acid was achieved by HPLC using a Brownlee RP-18 reversed phase column with acetonitrile/water (68:32, v/v) as mobile phase. The method was found to be linear over the range 3-49 microg LPS/ml with a sensitivity of 1.6 (microg/ml)(-1). The repeatability (within-day precision) of the method at three levels (3-49 microg LPS/ml) was 6-14% relative standard deviation and the intermediate (between-day) precision was 7% relative standard deviation (at level 15 microg LPS/ml). The method has been successfully used in the quality control of a meningococcal B outer membrane vesicle vaccine, containing 4-8% LPS relative to protein (w/w), in our laboratory for three years.

  4. Liquid-phase non-thermal plasma-prepared N-doped TiO(2) for azo dye degradation with the catalyst separation system by ceramic membranes.

    Science.gov (United States)

    Cheng, Hsu-Hui; Chen, Shiao-Shing; Cheng, Yi-Wen; Tseng, Wei-Lun; Wang, Yi-Hui

    2010-01-01

    This study strived to improve the photocatalytic activity by using liquid-phase non-thermal plasma (LPNTP) technology for preparing N-doping TiO(2) as well as to separate/recover the N-dope TiO(2) particles by using ceramic ultrafiltration membrane process. The yellow color N-doped TiO(2) photocatalysts, obtained through the LPNTP process, were characterized with UV-Vis spectroscopy, X-ray diffraction (XRD), and electron spectroscopy for chemical analysis (ESCA). The UV-Vis spectrum of N-doped TiO(2) showed that the absorption band was shifted to 439 nm and the band gap was reduced to 2.82 eV. The structure analysis of XRD spectra showed that the peak positions and the crystal structure remained unchanged as anatase after plasma-treating at 13.5 W for 40 min. The photocatalytic activity of N-doped TiO(2) was evaluated by azo dyes under visible light, and 63% of them was degraded after 16 hours in a continuous-flow photocatalytic system. For membrane separation/recover system, the recovery efficiency reached 99.5% after the ultrafiltration had been carried out for 90 min, and the result indicated that the photocatalyst was able to be separated/recovered completely.

  5. Kinetic Study of Copper(II Simultaneous Extraction/Stripping from Aqueous Solutions by Bulk Liquid Membranes Using Coupled Transport Mechanisms

    Directory of Open Access Journals (Sweden)

    Loreto León

    2016-09-01

    Full Text Available Heavy metals removal/recovery from industrial wastewater has become a prime concern for both economic and environmental reasons. This paper describes a comparative kinetic study of the removal/recovery of copper(II from aqueous solutions by bulk liquid membrane using two types of coupled facilitated transport mechanisms and three carriers of different chemical nature: benzoylacetone, 8-hydroxyquinoline, and tri-n-octylamine. The results are analyzed by means of a kinetic model involving two consecutive irreversible first-order reactions (extraction and stripping. Rate constants and efficiencies of the extraction (k1, EE and the stripping (k2, SE reactions, and maximum fluxes through the membrane, were determined for the three carriers to compare their efficiency in the Cu(II removal/recovery process. Counter-facilitated transport mechanism using benzoylacetone as carrier and protons as counterions led to higher maximum flux and higher extraction and stripping efficiencies due to the higher values of both the extraction and the stripping rate constants. Acceptable linear relationships between EE and k1, and between SE and k2, were found.

  6. Reporter-free potentiometric sensing of boronic acids and their reactions by using quaternary ammonium salt-functionalized polymeric liquid membranes.

    Science.gov (United States)

    Wang, Xuewei; Yue, Dengfeng; Lv, Enguang; Wu, Lei; Qin, Wei

    2014-02-18

    The tremendous applications of boronic acids (BAs) in chemical sensing, medical chemistry, molecular assembly, and organic synthesis lead to an urgent demand for developing effective sensing methods for BAs. This paper reports a facile and sensitive potentiometric sensor scheme for heterogeneous detection of BAs based on their unexpected potential responses on quaternary ammonium salt-doped polymeric liquid membranes. (11)B NMR data reveal that a quaternary ammonium chloride can trigger the hydrolysis of an electrically neutral BA in an aprotic solvent. Using the quaternary ammonium salt as the receptor, the BA molecules can be extracted from the sample solution into the polymeric membrane phase and undergo the concomitant hydrolysis. Such salt-triggered hydrolysis generates H(+) ions, which can be coejected into the aqueous phase with the counterions (e.g., Cl(-)) owing to their high hydrophilicities. The perturbation on the ionic partition at the sample-membrane interface changes the phase boundary potential and thus enables the potentiometric sensing of BAs. In contrast to other transduction methods for BAs, for which labeled or separate reporters are exclusively required, the present heterogeneous sensing scheme allows the direct detection of BAs without using any reporter molecules. This technique shows superior detection limits for BAs (e.g., 1.0 × 10(-6) M for phenylboronic acid) as compared to previously reported methods based on colorimetry, fluorimetry, and mass spectrometry. The proposed sensing strategy has also been successfully applied to potentiometric indication of the BA reactions with hydrogen peroxide and saccharides, which allows indirect and sensitive detection of these important species.

  7. Cr(VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: system analysis and optimization through experimental design strategies.

    Science.gov (United States)

    Rodríguez de San Miguel, Eduardo; Vital, Xóchitl; de Gyves, Josefina

    2014-05-30

    Chromium(VI) transport through a supported liquid membrane (SLM) system containing the commercial ionic liquid CYPHOS IL101 as carrier was studied. A reducing stripping phase was used as a mean to increase recovery and to simultaneously transform Cr(VI) into a less toxic residue for disposal or reuse. General functions which describe the time-depending evolution of the metal fractions in the cell compartments were defined and used in data evaluation. An experimental design strategy, using factorial and central-composite design matrices, was applied to assess the influence of the extractant, NaOH and citrate concentrations in the different phases, while a desirability function scheme allowed the synchronized optimization of depletion and recovery of the analyte. The mechanism for chromium permeation was analyzed and discussed to contribute to the understanding of the transfer process. The influence of metal concentration was evaluated as well. The presence of different interfering ions (Ca(2+), Al(3+), NO3(-), SO4(2-), and Cl(-)) at several Cr(VI): interfering ion ratios was studied through the use of a Plackett and Burman experimental design matrix. Under optimized conditions 90% of recovery was obtained from a feed solution containing 7mgL(-1) of Cr(VI) in 0.01moldm(-3) HCl medium after 5h of pertraction.

  8. PURIFICATION OF THE INTEGRAL MEMBRANE-GLYCOPROTEINS-D OF HERPES-SIMPLEX VIRUS TYPE-1 AND TYPE-2, PRODUCED IN THE RECOMBINANT BACULOVIRUS EXPRESSION SYSTEM, BY ION-EXCHANGE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY

    NARCIS (Netherlands)

    DAMHOF, RA; FEIJLBRIEF, M; WELLINGWESTER, S; WELLING, GW

    1994-01-01

    Selective elution of Sendai virus integral membrane proteins by ion-exchange high-performance liquid chromatography (HPIEC) using different detergent concentrations was reported before [S. Welling-Wester, M. Feijlbrief, D.G.A.M. Koedijk, M.A. Braaksma, B.R.K. Douma and G.W. Welling, J. Chromatogr.,

  9. PURIFICATION OF THE INTEGRAL MEMBRANE-GLYCOPROTEINS-D OF HERPES-SIMPLEX VIRUS TYPE-1 AND TYPE-2, PRODUCED IN THE RECOMBINANT BACULOVIRUS EXPRESSION SYSTEM, BY ION-EXCHANGE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY

    NARCIS (Netherlands)

    DAMHOF, RA; FEIJLBRIEF, M; WELLINGWESTER, S; WELLING, GW

    1994-01-01

    Selective elution of Sendai virus integral membrane proteins by ion-exchange high-performance liquid chromatography (HPIEC) using different detergent concentrations was reported before [S. Welling-Wester, M. Feijlbrief, D.G.A.M. Koedijk, M.A. Braaksma, B.R.K. Douma and G.W. Welling, J. Chromatogr.,

  10. EFFECT OF DIFFERENT AMOUNTS OF THE NONIONIC DETERGENTS C-10E(5) AND C-12E(5) PRESENT IN ELUENTS FOR ION-EXCHANGE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY OF INTEGRAL MEMBRANE-PROTEINS OF SENDAI VIRUS

    NARCIS (Netherlands)

    WELLINGWESTER, S; FEIJLBRIEF, M; KOEDIJK, DGAM; BRAAKSMA, MA; DOUMA, BRK; WELLING, GW

    1993-01-01

    Non-ionic detergents (0.03-0.5%) are used as additives to the eluents when integral membrane proteins are subjected to ion-exchange high-performance liquid chromatography (HPIEC). It is not known whether this concentration should bear some relation to the critical micelle concentration (CMC) of a de

  11. Hollow Fiber Supported Liquid Membrane Extraction Combined with HPLC-UV for Simultaneous Preconcentration and Determination of Urinary Hippuric Acid and Mandelic Acid

    Directory of Open Access Journals (Sweden)

    Abdulrahman Bahrami

    2017-02-01

    Full Text Available This work describes a new extraction method with hollow-fiber liquid-phase microextraction based on facilitated pH gradient transport for analyzing hippuric acid and mandelic acid in aqueous samples. The factors affecting the metabolites extraction were optimized as follows: the volume of sample solution was 10 mL with pH 2 containing 0.5 mol·L−1 sodium chloride, liquid membrane containing 1-octanol with 20% (w/v tributyl phosphate as the carrier, the time of extraction was 150 min, and stirring rate was 500 rpm. The organic phase immobilized in the pores of a hollow fiber was back-extracted into 24 µL of a solution containing sodium carbonate with pH 11, which was placed inside the lumen of the fiber. Under optimized conditions, the high enrichment factors of 172 and 195 folds, detection limit of 0.007 and 0.009 µg·mL−1 were obtained. The relative standard deviation (RSD (% values for intra- and inter-day precisions were calculated at 2.5%–8.2% and 4.1%–10.7%, respectively. The proposed method was successfully applied to the analysis of these metabolites in real urine samples. The results indicated that hollow-fiber liquid-phase microextraction (HF-LPME based on facilitated pH gradient transport can be used as a sensitive and effective method for the determination of mandelic acid and hippuric acid in urine specimens.

  12. Highly Selective Liquid Membrane Sensor Based on 1,3,5-Triphenylpyrylium Perchlorate for Quick Monitoring of Sulfate Ions

    Energy Technology Data Exchange (ETDEWEB)

    Ganjali, Mohammad Reza; Ghorbani, Maryam; Daftari, Azadeh; Norouzi, Parviz; Pirelahi, Hooshang; Dargahani, Hossein Daryanavard [Tehran University, Tehran (Iran, Islamic Republic of)

    2004-02-15

    A highly selective membrane electrode based on 1,3,5-triphenylpyrylium perchlorate (TPPP) is presented. The proposed electrode shows very good selectivity for sulfate ions over a wide variety of common inorganic and organic anions. The sensor displays a nice Nernstian slope of -29.7 mV per decade. The working concentration ranges of the electrode is 1.0 x 10{sup -1} . 6.3 x 10{sup -6} M with a detection limit of 4.0 x 10{sup -6} M (480 ng per mL). The response time of the sensor in whole concentration ranges is very short (< 6 s). The response of the sensor is independent on the pH range of 2.5-9.5. The best performance was obtained with a membrane composition of 32% PVC, 59% benzyl acetate, 5% TPPP and 4% hexadecyltrimethylammonium bromide. It was successfully used as an indicator electrode for titration of sulfate ions with barium ions. The electrode was also applied for determination of salbutamol sulfate and paramomycine sulfate

  13. 支撑型离子液体膜用于捕集酸性气体研究%Application of Supported Ionic Liquid Membranes in Capturing Acid Gases

    Institute of Scientific and Technical Information of China (English)

    马玉玲; 徐琴琴; 徐刚; 银建中

    2012-01-01

    Supported ionic liquid membranes (SILMs) are widely used for capturing acid gases in recent years because of its higher mass transfer rate and stability. In this paper, preparation methods of supported ionic liquid membranes were introduced; the capture mechanism was analyzed; some factors to affect permeability and stability of the supported ionic liquid membranes were discussed in detail, such as structure of ionic liquid, properties of supported materials, operation temperature and trans-membrane pressure, water vapor in flue gas and so on; some methods to improve the stability were introduced. On this basis, some problems during application of SILMs in capturing the acid gases were put forward as well as its industrialization prospect.%烟道气中酸性气体的捕集非常重要.近年来,支撑型离子液体膜(Supported ionic liquid membranes,SILMs)因传质速率高、稳定性好等特点而广泛应用于酸性气体的捕集研究.主要综述了利用离子液体作为膜液相来制备支撑液膜的方法,分析了捕集机理,讨论了离子液体阴阳离子结构、支撑体材料性能、原料气中水蒸汽、操作温度及跨膜压差等因素对支撑型离子液体膜渗透性及稳定性的影响,叙述了目前提高稳定性的一些方法,并在此基础上提出了支撑型离子液体膜用于酸性气体捕集需要解决的问题和工业化前景.

  14. Polymer membrane based electrolytic cell and process for the direct generation of hydrogen peroxide in liquid streams

    Science.gov (United States)

    White, James H. (Inventor); Schwartz, Michael (Inventor); Sammells, Anthony F. (Inventor)

    1997-01-01

    An electrolytic cell for generating hydrogen peroxide is provided including a cathode containing a catalyst for the reduction of oxygen, and an anode containing a catalyst for the oxidation of water. A polymer membrane, semipermeable to either protons or hydroxide ions is also included and has a first face interfacing to the cathode and a second face interfacing to the anode so that when a stream of water containing dissolved oxygen or oxygen bubbles is passed over the cathode and a stream of water is passed over the anode, and an electric current is passed between the anode and the cathode, hydrogen peroxide is generated at the cathode and oxygen is generated at the anode.

  15. Membrane distillation for milk concentration

    NARCIS (Netherlands)

    Moejes, S.N.; Romero Guzman, Maria; Hanemaaijer, J.H.; Barrera, K.H.; Feenstra, L.; Boxtel, van A.J.B.

    2015-01-01

    Membrane distillation is an emerging technology to concentrate liquid products while producing high quality water as permeate. Application for desalination has been studied extensively the past years, but membrane distillation has also potential to produce concentrated food products like concentrate

  16. Novel membrane bioreactor with gas/liquid two-phase flow for high-performance degradation of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, D.; Mercier-Bonin, M.; Lindley, N.D.; Lafforgue, C. [Inst. National des Sciences Appliquees, Toulouse (France)

    1998-09-01

    The use of a membrane bioreactor with cell retention to achieve high biomass concentrations has been examined for phenol degradation by the bacteria Alcaligenes eutrophus. This process is particularly interesting for toxic substrates as the hydraulic dilution rate and the growth rate are independently controlled. In the case of a transitory excess of phenol, this potentially toxic situation can be overcome by modifying the substrate concentration or the dilute rate without any loss of cells. The injection of a gas phase at the filter inlet increased both the permeate flow rate and the oxygen transfer capacity. This has enabled the cell concentration to reach a maximum value of 60 g L{sup {minus}1} with a hydraulic dilution rate of 0.5 h{sup {minus}1} and a phenol feed concentration of 8 g L{sup {minus}1}. The volumetric productivity of this process corresponds to a phenol degradation rate approaching 100 kg m{sup {minus}3} day{sup {minus}1}. The on-line measurement of the characteristic yellow color of 2-hydroxymuconate semialdehyde, a metabolic intermediate of the phenol degradation pathway, in the permeate provides an interesting basis for process control of phenol supply into the reactor since the color intensity correlates directly to the specific rate of phenol degradation.

  17. Visual test of subparts per billion-level mercuric ion with a gold nanoparticle probe after preconcentration by hollow fiber supported liquid membrane.

    Science.gov (United States)

    Tan, Zhi-qiang; Liu, Jing-fu

    2010-05-15

    With the combination of the gold nanoparticle (AuNP)-based visual test with hollow fiber supported liquid membrane (HFSLM) extraction, a highly sensitive and selective method was developed for field detection of mercuric ion (Hg(2+)) in environmental waters. Hg(2+) in water samples was extracted through HFSLM and trapped in the aqueous acceptor and then visually detected based on the red-to-blue color change of 3-mercaptopropionic acid-functionalized AuNP (MPA-AuNP) probe. The highest extraction efficiency of Hg(2+) was obtained by using a 600 mL sample (pH 8.0, 2.0% (w/v) NaCl), approximately 35 microL of acceptor (10 mM of 2,6-pyridinedicarboxylic acid, pH 4.0) filled in the lumen of a polypropylene hollow fiber tubing (55 cm in length, 50 microm wall thickness, 280 microm inner diameter), a liquid membrane of 2.0% (w/v) trioctycphosphine oxide in undecane, and a shaking rate of 250 rpm. The chromegenic reaction was conducted by incubating the mixture of MPA-AuNP stock solution (12 microL, 15 nM), Tris-borate buffer solution (18 microL, 0.2 M, pH 9.5), and acceptor (30 microL) at 30 degrees C for 1 h. The detection limit can be adjusted to 0.8 microg/L Hg(2+) (corresponding to an enrichment factor of approximately 1000 in the HFSLM) and 2.0 microg/L Hg(2+) (the U.S. Environmental Protection Agency limit of [Hg(2+)] for drinkable water) by using extraction times of 3 and 1 h, respectively. The proposed method is extremely specific for Hg(2+) with tolerance to at least 1000-fold of other environmentally relevant heavy and transition metal ions and was successfully applied to detect Hg(2+) in a certified reference water sample, as well as real river, lake, and tap water samples.

  18. Incorporation of antimicrobial peptides into membranes: a combined liquid-state NMR and molecular dynamics study of alamethicin in DMPC/DHPC bicelles.

    Science.gov (United States)

    Dittmer, Jens; Thøgersen, Lea; Underhaug, Jarl; Bertelsen, Kresten; Vosegaard, Thomas; Pedersen, Jan M; Schiøtt, Birgit; Tajkhorshid, Emad; Skrydstrup, Troels; Nielsen, Niels Chr

    2009-05-14

    Detailed insight into the interplay between antimicrobial peptides and biological membranes is fundamental to our understanding of the mechanism of bacterial ion channels and the action of these in biological host-defense systems. To explore this interplay, we have studied the incorporation, membrane-bound structure, and conformation of the antimicrobial peptide alamethicin in lipid bilayers using a combination of 1H liquid-state NMR spectroscopy and molecular dynamics (MD) simulations. On the basis of experimental NMR data, we evaluate simple in-plane and transmembrane incorporation models as well as pore formation for alamethicin in DMPC/DHPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine/1,2-dihexanoyl-sn-glycero-3-phosphatidylcholine) bicelles. Peptide-lipid nuclear Overhauser effect (NOE) and paramagnetic relaxation enhancement (PRE) data support a transmembrane configuration of the peptide in the bilayers, but they also reveal that the system cannot be described by a single simple conformational model because there is a very high degree of dynamics and heterogeneity in the three-component system. To explore the origin of this heterogeneity and dynamics, we have compared the NOE and PRE data with MD simulations of an ensemble of alamethicin peptides in a DMPC bilayer. From all-atom MD simulations, the contacts between peptide, lipid, and water protons are quantified over a time interval up to 95 ns. The MD simulations provide a statistical base that reflects our NMR data and even can explain some initially surprising NMR results concerning specific interactions between alamethicin and the lipids.

  19. Functionalized nanoparticles based solid-phase membrane micro-tip extraction and high-performance liquid chromatography analyses of vitamin B complex in human plasma.

    Science.gov (United States)

    Ali, Imran; Kulsum, Umma; Al-Othman, Zeid A; Alwarthan, Abdulrahman; Saleem, Kishwar

    2016-07-01

    Iron nanoparticles were prepared by a green method following functionalization using 1-butyl-3-methylimidazolium bromide. 1-Butyl-3-methylimidazole iron nanoparticles were characterized using FTIR spectroscopy, energy dispersive X-ray fluorescence, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The nanoparticles were used in solid-phase membrane micro-tip extraction to separate vitamin B complex from plasma before high-performance liquid chromatography. The optimum conditions obtained were sorbent (15 mg), agitation time (30 min), pH (9.0), desorbing solvent [water (5 mL) + methanol (5 mL) + sodium hydroxide (0.1 N) + acetic acid (d = 1.05 kg/L, pH 5.5), desorbing volume (10 mL) and desorption time (30 min). The percentage recoveries of all the eight vitamin B complex were from 60 to 83%. A high-performance liquid chromatography method was developed using a PhE column (250 × 4.6 mm, 5.0 μm) and water/acetonitrile (95:5, v/v; pH 4.0 with 0.1% formic acid) mobile phase. The flow rate was 1.0 mL/min with detection at 270 and 210 nm. The values of the capacity, separation and resolution factor were 0.57-39.47, 1.12-6.00 and 1.84-26.26, respectively. The developed sample preparation and chromatographic methods were fast, selective, inexpensive, economic and reproducible. The developed method can be applied for analyzing these drugs in biological and environmental matrices.

  20. A comparison of bacterial populations in enhanced biological phosphorus removal processes using membrane filtration or gravity sedimentation for solids-liquid separation.

    Science.gov (United States)

    Hall, Eric R; Monti, Alessandro; Mohn, William W

    2010-05-01

    CEBPR system also revealed many uncultured organisms that have not been well characterized. The study demonstrated that a simple replacement of a secondary clarifier with membrane solids-liquid separation is sufficient to shift the composition of an activated sludge microbial community significantly. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Ion Exchange and Antibiofouling Properties of Poly(ether sulfone) Membranes Prepared by the Surface Immobilization of Brønsted Acidic Ionic Liquids via Double-Click Reactions.

    Science.gov (United States)

    Yi, Zhuan; Liu, Cui-Jing; Zhu, Li-Ping; Xu, You-Yi

    2015-07-28

    Brønsted acidic ionic liquids (BAILs) are unique ionic liquids that display chemical structures similar to zwitterions, and they were typically used as solvents and catalysts. In this work, an imidazole-based BAIL monolayer was fabricated onto poly(ether sulfone) (PES) membranes via surface clicking reactions, and the multifunctionality, including ion exchange and biofouling resistance to proteins and bacteria, was demonstrated, which was believed to be one of few works in which BAIL had been considered to be a novel fouling resistance layer for porous membranes. The successful immobilization of the BAILs onto a membrane surface was confirmed by X-ray photoelectron spectroscopy analysis, contact angle measurement, and ζ potential determination. The results from Raman spectroscopy showed that, as a decisive step prior to zwitterion, the BAIL was deprotonated in aqueous solution, and biofouling resistance to proteins and bacteria was found. However, BAIL displayed ion exchange ability at lower pH, and surface hydrophilicity/hydrophobicity of membranes could be tuned on purpose. Our results have demonstrated that the BAIL grafted onto membranes will not only act as an antibiofouling barrier like zwitterions but also provide a platform for surface chemical tailoring by ion exchange, the property of which will become especially important in acidic solutions where the fouling resistance performances of zwitterions are greatly weakened.

  2. Liquid/liquid heat exchanger

    Science.gov (United States)

    Miller, C. G.

    1980-01-01

    Conceptual design for heat exchanger, utilizing two immiscible liquids with dissimilar specific gravities in direct contact, is more efficient mechanism of heat transfer than conventional heat exchangers with walls or membranes. Concept could be adapted for collection of heat from solar or geothermal sources.

  3. Large scale simulation of liquid water transport in a gas diffusion layer of polymer electrolyte membrane fuel cells using the lattice Boltzmann method

    Science.gov (United States)

    Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi

    2017-09-01

    A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.

  4. Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Terzic, Senka; Senta, Ivan; Matosic, Marin; Ahel, Marijan

    2011-07-01

    Ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was applied for the identification of transformation products (TPs) of fluoroquinolone (norfloxacin and ciprofloxacin) and macrolide (azithromycin, erythromycin, and roxitromycin) antimicrobials in wastewater effluents from a Zenon hollow-fiber membrane bioreactor (MBR). The detected TPs were thoroughly characterized using the accurate mass feature for the determination of the tentative molecular formulae and MS-MS experiments for the structural elucidation of unknowns. Several novel TPs, which have not been previously reported in the literature, were identified. The TPs of azithromycin and roxithromycin, identified in MBR effluent, were conjugate compounds, which were formed by phosphorylation of desosamine moiety. Transformation of fluoroquinolones yielded two types of products: conjugates, formed by succinylation of the piperazine ring, and smaller metabolites, formed by an oxidative break-up of piperazine moiety to form the 7-[(2-carboxymethyl)amino] group. A semi-quantitative assessment of these TPs suggested that they might have contributed significantly to the overall balance of antimicrobial residues in MBR effluents and thus to the overall removal efficiency. Determination of TPs during a period of 2 months indicated a conspicuous dynamics, which warrants further research to identify microorganisms involved and treatment conditions leading to their formation.

  5. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  6. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Biomimetic membranes and methods of making biomimetic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  8. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation.

    Science.gov (United States)

    Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop

    2014-10-01

    This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612.

  9. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO₂ Separation from CH₄ and N₂.

    Science.gov (United States)

    Otvagina, Ksenia V; Mochalova, Alla E; Sazanova, Tatyana S; Petukhov, Anton N; Moskvichev, Alexandr A; Vorotyntsev, Andrey V; Afonso, Carlos A M; Vorotyntsev, Ilya V

    2016-06-09

    CO₂ separation was found to be facilitated by transport membranes based on novel chitosan (CS)-poly(styrene) (PS) and chitosan (CS)-poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF₄], [bmim][PF₆], and [bmim][Tf₂N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75-104 MPa for CS-PAN and 69-75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO₂ permeability 400 Barrers belongs to CS-b-PS/[bmim][BF₄]. The highest selectivity α (CO₂/N₂) = 15.5 was achieved for CS-b-PAN/[bmim][BF₄]. The operational temperature of the membranes is under 220 °C.

  10. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    Directory of Open Access Journals (Sweden)

    Ksenia V. Otvagina

    2016-06-01

    Full Text Available CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS–poly(styrene (PS and chitosan (CS–poly(acrylonitrile (PAN copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL. CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS. Ionic liquid (IL doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2 = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C.

  11. Research on Separation of H2 and N2 Mixed Gas with Ionic liquid Membrane%离子液膜法分离H2、N2混合气体研究

    Institute of Scientific and Technical Information of China (English)

    仲惟

    2015-01-01

    Two kinds of ionic liquid, 1-butyl 3-sold four fluoboric acid methyl imidazole salt ([BMIM]BF4) and 1-butyl 3-methyl imidazole six fluoride phosphate ([BMIM] PF6), were selected, and the ion exchange method was used to create two kinds of ionic liquid 1-butyl 3-methyl imidazole formate ([BMIM] HCOO) and 1-butyl 3-methyl imidazole acetate ([BMIM]CH3COO). Combined the advantages of ionic liquid and membrane separation, polyvinylidene fluoride, polysulfone and polyacrylonitrile membrane was chose to make ionic liquid supported liquid membrane by impregnation method. Compared the separation coefficient on different temperature of every kind of ionic liquid membrane for H2/N2 separation, it was found that the separation abilities of [BMIM] HCOO polysulfone membrane and polyacrylonitrile membrane were more bigger. The temperature conditions significantly affected the separation effect:at 30℃[BMIM]BF4 type poly-cvinylidene fluoride membrane, [BMIM]HCOO polysulfone membrane had the strong ability of H2/N2 separation, N2 could be separated off H2. 30℃in [BMIM]BF4 type polysulfone membrane separation N2/H2 ability was strong, H2 could be separated off N2.%选取2种市售离子液体1-丁基-3-甲基咪唑四氟硼酸盐([BMIM]BF4)与1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6),另采用离子交换法合成出2种离子液体1-丁基-3-甲基咪唑甲酸盐([BMIM]HCOO)与1-丁基-3-甲基咪唑乙酸盐([BMIM]CH3COO)。将离子液体与膜分离法优点相结合,选取聚偏氟乙烯膜、聚砜膜和聚丙烯腈膜并用浸渍法制备离子液体支撑液膜。比较不同温度下不同类型离子液膜对H2/N2的分离系数发现,[BMIM]HCOO型聚砜膜和聚丙烯腈膜对H2/N2分离系数较大。温度条件显著影响分离效果:30℃时[BMIM]BF4型聚偏氟乙烯膜、[BMIM]HCOO型聚砜膜分离H2/N2能力较强,可分离掉N2获得H2;30℃时[BMIM]BF4型聚砜膜分离N2/H2能力较强,可分离掉H2获得N2。

  12. Water Membrane Evaporator

    Science.gov (United States)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  13. Optimised extraction of heterocyclic aromatic amines from blood using hollow fibre membrane liquid-phase microextraction and triple quadrupole mass spectrometry.

    Science.gov (United States)

    Cooper, Kevin M; Jankhaikhot, Natcha; Cuskelly, Geraldine

    2014-09-05

    Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of proteinaceous foods, particularly meat. To assist in the ongoing search for biomarkers of HCA exposure in blood, a method is described for the extraction from human plasma of the most abundant HCAs: 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (and its isomer 7,8-DiMeIQx), using hollow fibre membrane liquid-phase microextraction. This technique employs 2.5cm lengths of porous polypropylene fibres impregnated with organic solvent to facilitate simultaneous extraction from an alkaline aqueous sample into a low volume acidic acceptor phase. This low cost protocol is extensively optimised for fibre length, extraction time, sample pH and volume. Detection is by UPLC-MS/MS using positive mode electrospray ionisation with a 3.4min runtime, with optimum peak shape, sensitivity and baseline separation being achieved at pH 9.5. To our knowledge this is the first description of HCA chromatography under alkaline conditions. Application of fixed ion ratio tolerances for confirmation of analyte identity is discussed. Assay precision is between 4.5 and 8.8% while lower limits of detection between 2 and 5pg/mL are below the concentrations postulated for acid-labile HCA-protein adducts in blood.

  14. Macromolecular liquids

    Energy Technology Data Exchange (ETDEWEB)

    Safinya, C.R.; Safran, S.A. (Exxon Research and Engineering Co., Annandale, NJ (US)); Pincus, P.A. (Univ. of California at Santa Barbara, Santa Barbara, CA (US))

    1990-01-01

    Liquids include a broad range of material systems which are of high scientific and technological interest. Generally speaking, these are partially ordered or disordered phases where the individual molecular species have organized themselves on length scales which are larger than simple fluids, typically between 10 Angstroms and several microns. The specific systems reported on in this book include membranes, microemulsions, micelles, liquid crystals, colloidal suspensions, and polymers. They have a major impact on a broad spectrum of technological industries such as displays, plastics, soap and detergents, chemicals and petroleum, and pharmaceuticals.

  15. Approximate solution to predict the enhancement factor for the reactive absorption of a gas in a liquid flowing through a microporous membrane hollow fiber

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Feron, P.H.M.; Versteeg, G.F.

    2003-01-01

    Approximate solutions for the enhancement factor (based on the traditional mass transfer theories) for gas–liquid systems with a liquid bulk have been adapted to situations where a liquid bulk may be absent and a velocity gradient is present in the mass transfer zone. Such a situation is encountered

  16. Approximate solution to predict the enhancement factor for the reactive absorption of a gas in a liquid flowing through a microporous membrane hollow fiber

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Feron, P.H.M.; Versteeg, G.F.

    2003-01-01

    Approximate solutions for the enhancement factor (based on the traditional mass transfer theories) for gas–liquid systems with a liquid bulk have been adapted to situations where a liquid bulk may be absent and a velocity gradient is present in the mass transfer zone. Such a situation is encountered

  17. Approximate solution to predict the enhancement factor for the reactive absorption of a gas in a liquid flowing through a micriporous membrane hollow fiber

    NARCIS (Netherlands)

    Kumar Paramasivam Senthil, P.S.; Hogendoorn, Kees; Feron, P.H.M.; Versteeg, Geert

    2003-01-01

    Approximate solutions for the enhancement factor (based on the traditional mass transfer theories) for gas–liquid systems with a liquid bulk have been adapted to situations where a liquid bulk may be absent and a velocity gradient is present in the mass transfer zone. Such a situation is encountered

  18. Influence of gas-liquid two-phase flow on the anti-fouling performance of tubular membranes module for microfiltration%气液两相流下膜的抗污染性能研究

    Institute of Scientific and Technical Information of China (English)

    钱光磊; 周集体; 张劲松; 刘万涛

    2012-01-01

    Concentration polarization and cake layer formation on the surface of the membrane are two significant aspects resulting in membrane fouling. Aeration in tubular membrane module can form gas liquid two-phase flow, which can increase the shear force on the surface of tubular membrane and control the membrane fouling effectively. In this study, experiments were conducted under different gas flow rates in tubular membrane module. As it was shown, bubble rate and bubble frequency increased obviously as aeration increased yet membrane fouling rate decreased gradually so as to extend the membrane filtration operation time. It was found that the injected gas can increase turbulence on the surface of membrane to slow down transmembrane pressure rate and keep membrane fouling with a low flow rate, thus it can save the energy consumption and prolonging membrane service life.%膜表面浓差极化与滤饼层形成是膜污染的重要因素.通过管式膜曝气,使膜表面形成气液两相流,增大膜表面剪切力,能有效控制膜污染行为.实验通过微滤高岭土悬浊液,观察了不同曝气量下膜组件内气液流态,发现随着曝气量的增加,膜组件内气泡单元上升速率和频率加快,膜污染速率逐渐减小,延长了膜过滤运行时间.研究发现,气体的通入使膜表面湍流程度增大,有效减缓跨膜压力增长速率,并且实现了在较低流速下控制膜污染,节省了能耗成本,延长了膜使用寿命.

  19. 陶瓷膜在卤制品加工废弃液微滤中的应用%Application of Ceramic Membrane on Microfiltration Waste Liquid in Marinating

    Institute of Scientific and Technical Information of China (English)

    李燕; 郑晓杰; 黄雪飞; 徐静

    2012-01-01

    探讨了陶瓷膜用于卤制加工废弃液微滤的工艺条件。研究不同预处理方法、膜孔径、操作温度、操作压力等因素对膜通量的影响,并通过正交实验确定微滤的最佳工艺参数为:预处理网筛300目、陶瓷膜孔径0.22μm、操作温度50℃、操作压力0.075 MPa,通过质量分数0.75%NaOH和0.5%柠檬酸复合清洗后,陶瓷膜的通量恢复率可达到94.1%。%Technical parameters of ceramic membrane microfiltration of waste liquid in marinating were studied.The effect of pretreatment method,membrane pore size,operation pressure,operation temperature on membrane flux were studied.The best parameters were determined by orthogonal experiment: pretreatment by 300mesh screen,membrane pore size 0.22 um,operation tempreature 50℃,operation pressure 0.075 MPa.The recovery percent of ceramic membrane was 94.1% after wash by 0.75% NaOH and 0.5% citric acid.

  20. Flue gas treatment with membrane gas absorption

    NARCIS (Netherlands)

    Klaassen, R.; Feron, P.H.M.; Jansen, A.E.

    1998-01-01

    Dutch researchers from the TN0 Institute have developed a technique to carry out gas-liquid contacting operations using hollow fibre membranes in combination with an absorption liquid. The method known as membrane gas absorption, aims to combine the advantages of membrane technology (compactness, fl

  1. 中空纤维膜液相微萃取技术及其应用进展%Hollow fiber membrane liquid-phase microextraction technique and its application

    Institute of Scientific and Technical Information of China (English)

    宋林; 乐健; 洪战英

    2014-01-01

    Hollow fiber membrane liquid-phase microextraction technique is a kind of environment friendly sample pretreatment technique,which integrates sampling,extraction and concentration into one.In this paper,the structure characteristics of porous hollow fiber membrane,the microextraction installation,the extraction pattern,the applications of hollow fiber membrane liquid-phase microextraction in different samples,such as environmental samples and biological body fluid were introduced,and the extraction influential factors were analyzed as well.%中空纤维膜液相微萃取技术是一种集采样、萃取和浓缩于一体,环境友好的样品前处理技术.本文介绍了多孔中空纤维膜的结构特点、微萃取装置以及萃取模式,对影响其萃取效果的因素加以分析,同时介绍了中空纤维膜液相微萃取技术在环境和生物体液等样品中的应用.

  2. Superhydrophobic Membrane Contactor for Acid Gas Removal

    Science.gov (United States)

    Faiqotul Himma, Nurul; Gede Wenten, I.

    2017-07-01

    Gas-liquid membrane contactor has gained a great attention as an alternative to conventional absorption columns in acid gas removal from natural gas or post-combustion. The membrane contactor offers high mass transfer area and excellent operational flexibility. However, hydrophobic microporous membranes commonly used are still susceptible to wetting by liquid absorbents, leading to the deterioration of absorption performance in long-term operation. Therefore, many studies were recently directed to improve the membrane wetting resistant by endowing superhydrophobicity. This article then presents a review on superhydrophobic membrane development and its application for acid gas removal using membrane contactor. An overview of gas-liquid membrane contactor is firstly presented, followed by the preparation of superhydrophobic membranes. The performances of superhydrophobic membranes in acid gas absorption are then discussed, and the recommendation for future research is finally outlined. This review may provide an insight into the further development of superhydrophobic membrane contactor.

  3. 煤气化含酚废水的液膜法处理研究%STUDIES ON THE TREATMENT OF PHENOL-CONTAINING WASTEWATER FROM GASIFIERS BY EMULSION LIQUID MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    王祥远

    2011-01-01

    采用乳状液膜法处理鲁奇炉煤气化废水,通过单因素实验,研究了表面活性剂用量、制乳转速、NaOH浓度、乳水比对乳状液膜法处理废水效果的影响.实验还比较了乳状液膜法与二异丙醚(DIPE)、甲基异丁基甲酮(MIBK)两种溶剂萃取法的处理效果.结果表明,表面活性剂用量、制乳转速、NaOH浓度、乳水比的最优条件分别是4%、5000 r/min、4%、1:1.5.乳状液膜法在脱酚效率上高于以二异丙醚和甲基异丁基甲酮为溶剂的液液萃取,但处理后废水COD较高.%Emulsion liquid membrane treatment of Lurgi coal gasification wastewater has been studied by using single factor experiments. The effect of the surfactant amount, emulsification speed, NaOH concentration, the ratio of emulsion and water, stirring speed on the extraction ratio of phenol are investigated. And the performances of emulsion liquid membrane, solvent extraction with DIPE and MIBK are compared. The experimental results indicate that the optimal conditions of the surfactant amount, emulsification speed, NaOH concentration, and the ratio of emulsion and water are 4%, 5 000 r/min, 8%, and 1 : 1. 5. The performance of phenols removal and COD removal with emulsion liquid membrane are higher and lower than that of solvent extraction with DIPE and MIBK, respectively.

  4. Research on the treatment of phenyl guanidine wastewater by emulsion liquid membrane%乳状液膜法处理苯基胍废水的试验研究

    Institute of Scientific and Technical Information of China (English)

    欧云川; 宋红; 马文静; 程迪

    2011-01-01

    The treatment method of phenyl guanidine wastewater was studied with emulsion liquid membrane technique.Factors affecting efficiency of removal of CODc,were investigated with a selected system of liquid membrane.Experimental results show that the phenylamine and the phenyl guanidine with a concentration of 2504 mg/L and 5985 mg/L separately in the wastewater from process of phenyl guanidine can be reduced by as much as 99%by the emulsion liquid membrane,under the operation conditions followed:the w(surfactant L- 113A) = 3%,φ(additive) =6%,φ(HCl solution) =10%and R_(oi)=2:1,R_(ew) of 1:8,pH 8~9 and retention time of 15minutes.The removal rate of COD_(Cr) can reach 74.5%as well.%研究了苯基胍废水的乳状液膜处理方法,选择了最佳的液膜体系,考察了各种因素对COD_(Cr)去除率的影响。结果表明:以w(表面活性剂L-113A)为3%、φ(添加剂)为6%、φ(盐酸)为10%、油内比R_(oi)为2:1的液膜体系,当乳水比R_(cw)=1:8、外水相pH值为8~9、传质15min,可使苯胺和苯基胍含量分别为2504mg/L和5985mg/L的苯基胍废水,去除率达99%以上,同时COD_(Cr)去除率达74.5%。

  5. Ion Sensor Based on Fluorous Liquid Phase Sensing Membrane with High Selectivity%基于高选择性氟液相传感膜的离子传感器

    Institute of Scientific and Technical Information of China (English)

    黄美荣; 丁永波; 施凤英; 李新贵

    2012-01-01

    本文基于国外最新研究工作,系统总结了电位型传感器中的一种新型传感膜——氟液相传感膜。对构成氟液相传感膜的所有组分:氟溶剂、溶解在氟溶剂中的亲氟离子交换剂和亲氟离子载体以及对氟溶剂起支撑作用的惰性微孔支撑膜等进行了全面归纳,重点讨论了这4种因素对传感器性能的影响。指出目前使用的亲氟离子交换剂分子和亲氟离子载体分子均含有2—8根链长为6—10的全氟碳链。氟液相传感膜具有优于传统PVC膜的检测下限,其中通过三维有序大孔碳以固体接触方式构建的氟液相传感膜电位传感器对Ag+的探测下限可达3.8×10-11mol/L。氟液相传感膜还具有十分出色的选择性,无任何离子载体的空白氟液相传感膜的选择系数对数值log Kpi,oJt的跨越宽度达16—18,比无载体的PVC膜宽8个数量级。这类全新的氟液相传感膜构建的电位型离子传感器将以其独特的优势在环境监测、食品卫生,尤其是在医疗诊断、生物物质检测中展示出不可替代的作用。%New fluorous liquid sensing membranes for the fabrication of potentiometric sensors are systematically summarized. Fluorous solvents, fluorophilic ion-exchangers and fluorophilic ionophores doped in the fluorous solvents, as well as inert fluorous porous supports, are reviewed thoroughly. The influence of the four factors on the performance of potentiometric sensors is concentrated. It is pointed out that both the fluorophilic ion- exchangers and ionophores used so far contain 2--8 perfluoroalkyl chains which are composed of 6--10 carbon atoms in each chain. Such a fluorous liquid phase sensing membrane possesses a superior lower detection limit compared with conventional poly(vinyl chloride)(PVC) membranes. For Ag( I ) potentiometric sensor based on the fluorous liquid membrane with solid contact through three-dimensionally ordered macroporous (3DOM) carbon, the lower

  6. The Molecules of the Cell Membrane.

    Science.gov (United States)

    Bretscher, Mark S.

    1985-01-01

    Cell membrane molecules form a simple, two-dimensional liquid controlling what enters and leaves the cell. Discusses cell membrane molecular architecture, plasma membranes, epithelial cells, cycles of endocytosis and exocytosis, and other topics. Indicates that some cells internalize, then recycle, membrane area equivalent to their entire surface…

  7. 乳状液膜法处理鲁奇气化含酚废水的研究%Studies on the Treatment of Phenol-containing Wastewater from Lurgi Gasifiers by Emulsion Liquid Membrane

    Institute of Scientific and Technical Information of China (English)

    盖恒军; 王祥远; 吴文颖

    2011-01-01

    采用乳状液膜法处理鲁奇炉煤气化废水,通过单因素实验,研究了表面活性剂用量、制乳转速、NaOH浓度、乳水比对乳状液膜法处理废水效果的影响.实验还比较了乳状液膜法与二异丙醚、甲基异丁基甲酮两种溶剂萃取法的处理效果.结果表明,表面活性剂用量、制乳转速、NaOH质量分数、乳水比的最优条件分别是4%、5 000r/min、4%、1∶1.5.乳状液膜法在脱酚效率上高于以二异丙醚和甲基异丁基甲酮为溶剂的液液萃取,但处理后废水COD较高.%The Emulsion liquid membrane treatment of Lurgi coal gasification wastewater has been studied by using single factor experiments. The effect of the surfactant amount, emulsification speed, NaOH concentration, the ratio of emulsion and water and the stirring speed on the extraction ratio of phenol are investigated. Besides, the performances of emulsion liquid membrane, solvent extraction with DIPE and MIBK are compared. The experimental results indicate that the optimal conditions of the surfactant amount, emulsification speed, NaOH concentration, and the ratio of emulsion and water are 4%, 5000r/min, 4%, and 1:1.5, respectively. The phenol removal efficiency of the emulsion liquid membrane method is better than that of the liquid-liquid solvent extraction method based on DIPE and MIBK, but the COD content in the treated wastewater is a bit high.

  8. Characterization of fouling of membrane contactors

    DEFF Research Database (Denmark)

    Ciurkot, Kaludia; Zarebska, Agata; Christensen, Knud Villy

    2013-01-01

    In this study liquid-liquid membrane contactors have been tested for ammonia removal from model manure solution and undigested pig manure. The aim of this work is to compare the efficiency of ammonia removal by different hydrophobic membranes including the material’s influence on mass transfer of...... to fouling than PP membranes. In both membranes the hydrophobicity decreased after running the process for 30 h, especially when undigested pig manure was used....

  9. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin

    Directory of Open Access Journals (Sweden)

    Li Weijun

    2011-01-01

    Full Text Available Abstract Background Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS to characterize potential protein-protein interactions in membrane fractions. Results Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins, which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane

  10. From channel-forming ionic liquid crystals exhibiting humidity-induced phase transitions to nanostructured ion-conducting polymer membranes (adv. Mater. 26/2013).

    Science.gov (United States)

    Zhang, Heng; Li, Lei; Möller, Martin; Zhu, Xiaomin; Rueda, Jaime J Hernandez; Rosenthal, Martin; Ivanov, Dimitri A

    2013-07-12

    A novel wedge-shaped amphiphilic molecule bearing a sulfonate group at the tip displays humidity-induced phase transitions from a hexagonal columnar structure to a bicontinuous cubic phase. The mesophases can be frozen by photopolymerization of acrylic end-groups resulting in free-standing membranes with different topology of ionic nanochannels. The obtained membranes with a well-ordered ionic channel structure hold promise for applications in separation and catalysis.

  11. Quantitative transporter proteomics by liquid chromatography with tandem mass spectrometry: addressing methodologic issues of plasma membrane isolation and expression-activity relationship.

    Science.gov (United States)

    Kumar, Vineet; Prasad, Bhagwat; Patilea, Gabriela; Gupta, Anshul; Salphati, Laurent; Evers, Raymond; Hop, Cornelis E C A; Unadkat, Jashvant D

    2015-02-01

    To predict transporter-mediated drug disposition using physiologically based pharmacokinetic models, one approach is to measure transport activity and relate it to protein expression levels in cell lines (overexpressing the transporter) and then scale these to via in vitro to in vivo extrapolation (IVIVE). This approach makes two major assumptions. First, that the expression of the transporter is predominantly in the plasma membrane. Second, that there is a linear correlation between expression level and activity of the transporter protein. The present study was conducted to test these two assumptions. We evaluated two commercially available kits that claimed to separate plasma membrane from other cell membranes. The Qiagen Qproteome kit yielded very little protein in the fraction purported to be the plasma membrane. The Abcam Phase Separation kit enriched the plasma membrane but did not separate it from other intracellular membranes. For the Abcam method, the expression level of organic anion-transporting polypeptides (OATP) 1B1/2B1 and breast cancer resistance protein (BCRP) proteins in all subcellular fractions isolated from cells or human liver tissue tracked that of Na⁺-K⁺ ATPase. Assuming that Na⁺-K⁺ ATPase is predominantly located in the plasma membrane, these data suggest that the transporters measured are also primarily located in the plasma membrane. Using short hairpin RNA, we created clones of cell lines with varying degrees of OATP1B1 or BCRP expression level. In these clones, transport activity of OATP1B1 or BCRP was highly correlated with protein expression level (r² > 0.9). These data support the use of transporter expression level data and activity data from transporter overexpressing cell lines for IVIVE of transporter-mediated disposition of drugs.

  12. Evaluation of a hollow fiber supported liquid membrane device as a chemical surrogate for the measurements of zinc (II) bioavailability using two microalgae strains as biological references.

    Science.gov (United States)

    Rodríguez-Morales, Erik A; Rodríguez de San Miguel, Eduardo; de Gyves, Josefina

    2017-03-01

    The environmental bioavailability of zinc (II), i.e., the uptake of the element by an organism, was determined using two microalgae species, Scenedesmus acutus and Pseudokirchneriella subcapitata, and estimated using hollow fiber supported liquid membrane (HF-SLM) device as the chemical surrogate. Several experimental conditions were studied including the presence of organic matter, inorganic anions and concomitant cations and pH. The results show strong positive correlation coefficients between the responses given by the HF-SLM and the microalgae species (r = 0.900 for S. acutus and r = 0.876 for P. subcapitata) in multivariate environments (changes in pH, calcium, humic and citrate concentrations). The maximum amount of zinc (II) retained by the HF-SLM (4.7 × 10(-8) mol/cm(2)) was higher than those for P. subcapitata and S. acutus (9.4 × 10(-11) mol/cm(2) and 6.2 × 10(-11) mol/cm(2), respectively). The variation in pH (pH 5.5-9) was the variable with the greatest effect on zinc internalization in all systems, increasing approximately 2.5 times for P. subcapitata and 5.5 times for S. acutus respect to pH = 5.5, while the presence of humic acids did not affect the response. The species' concentration analysis of the experimental design at pH = 5.5 indicated that the amount of internalized zinc (II) by the HF-SLM and both microalgae species is strongly dependent on the free zinc concentration (r = 0.910 for the HF-SLM, r = 0.922 for S. acutus and r = 0.954 for P. subcapitata); however, at pH = 9.0, the amount of internalized zinc (II) is strongly dependent on the sum of free zinc and labile species (r = 0.912 for the HF-SLM, r = 0.947 for S. acutus and r = 0.900 for P. subcapitata). The presence of inorganic ligands (chloride, sulfate, phosphate, carbonate, and nitrate) and metal ions (cobalt (II), copper (II), nickel (II), chromium (VI), lead (II) and cadmium (II)) produced different behaviors both in the chemical surrogate and the

  13. Impact on floating membranes

    OpenAIRE

    Vandenberghe, Nicolas; Duchemin, Laurent

    2016-01-01

    When impacted by a rigid object, a thin elastic membrane with negligible bending rigidity floating on a liquid pool deforms. Two axisymmetric waves radiating from the impact point propagate. In the first place, a longitudinal wave front -- associated with in-plane deformation of the membrane and traveling at constant speed -- separates an outward stress free domain with a stretched but flat domain. Then, in the stretched domain a dispersive transverse wave travels at a wave speed that depends...

  14. 聚丙烯纤维药液过滤膜微粒脱落的试验方法研究%Research for the Test method of Polypropylene Fiber Liquid Filtration Membrane Particles Shedding

    Institute of Scientific and Technical Information of China (English)

    宋金子; 贾彧飞; 柴玉莲; 孙丙诚; 李海心

    2011-01-01

    Through five experiments, such as "Circle", "square", "side that does not shake", "burning edge", "filter", this paper discussed the effect of different experimental methods of polypropylene fiber liquid filtration membrane particles shedding. The results show that: the particles falling off the edge of the polypropylene fiber Double-sided liquid filtration membrane are very important and must be considered off the evaluation of particle pollution.%通过五组试验(圆、方、方不晃、烧边、滤器)的对比,讨论了不同的边缘截取和试验方法等对聚丙烯纤维药液过滤膜微粒脱落试验的影响.结果表明,聚丙烯双面药液过滤膜的边缘微粒脱落现象显著,在考核其微粒污染时必须排除边缘微粒脱落对试验结果的影响.

  15. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  16. Separation of CO2 and H2 Mixed Gas with Ionic liquid Membrane%离子液膜分离CO2、H2混合气体研究

    Institute of Scientific and Technical Information of China (English)

    仲惟

    2016-01-01

    Ionic liquid [BMIM]Cl and NaBF4 was selected to synthesize [BMIM]BF4 in methanol. After OH anion exchange resin exchange, ionic liquid [BMIM]Cl was neutralized with formic acid to prepare [BMIM] HCOO. Three kinds of polymer film PVDF, PAN and PS, and four kinds of ionic liquid [BMIM] BF4, HCOO [BMIM], [BMIM] PF6 and [BMIM] CH3COO were chosed to prepare 12 kinds of supported liquid membranes. At 30℃, 40℃ and 50℃, the CO2and H2single gas permeability of 12 kinds of liquid film were test. The results showed: at 30℃, the CO2 and H2 separation performance of [BMIM] BF4 polysulfone membrane was good, separation factor was more than 14; separation factor of [BMIM] PF6 type polyacrylonitrile membrane was more than 12 at 30℃; the separation factor of [BMIM] PF6 type polyvinylidene fluoride membrane was more than 5 at 30℃. So these three kinds of ionic liquid film had a certain separation degree for CO2 and H2 gas mixture at 30℃.%选用离子液体[BMIM]Cl与NaBF4在甲醇中反应制得[BMIM]BF4,离子液体[BMIM]Cl经OH型阴离子交换树脂交换后再与甲酸进行中和制得[BMIM]HCOO。分别选用3种聚合物薄膜PVDF、PAN和PS,使其与4种离子液体[BMIM] BF4、[BMIM]HCOO、[BMIM]PF6和[BMIM]CH3COO共制成12种支撑液膜。在30℃、40℃和50℃时分别进行12种液膜的CO2、H2单一气体渗透性测试。结果显示,[BMIM]BF4型聚砜膜在30℃时对CO2与H2分离性能较好,分离系数达14以上;[BMIM]PF6型聚丙烯腈膜在30℃时分离系数达12以上;[BMIM]PF6型聚偏氟乙烯膜在30℃时分离系数达到5以上。因此这3种离子液膜在30℃时可对CO2、H2混合气体进行一定程度的分离。

  17. Dissolution and regeneration membrane of cellulose in ionic liquid%两种离子液体中制备再生棉浆纤维素膜及其性能研究

    Institute of Scientific and Technical Information of China (English)

    刘洋; 王兆梅; 肖凯军

    2013-01-01

    Cotton pulp was dissolved in ionic liquids [Bmim]CI and [Emim]Ac and regenerated membrane was successfully prepared. Its dissolution process was observed by polarizing microscope. The structural differences between cotton pulp and regenerated cellulose membrane were investigated using Fourier transform infrared (FT-IR) spectroscopy.X-ray diffraction and thermogravimetry(TG) measurements. The results showed that cotton pulp was directly dissolved by ionic liquids and its crystalline form transformed from cellulose Ⅰ to cellulose Ⅱ . The regenerated cellulose membranes obtained showed a dense and smooth structure and displayed a slight thermal stability loss. The tensile strength could be up to 94.55MPa and 39.15MPa from [Bmim]CI and [Emim]Ac. respectively.%以1-丁基-3-甲基咪唑氯盐([Bmim]Cl)和1-乙基-3-甲基咪唑醋酸盐([Emim]Ac)两种离子液体作为棉浆粕的溶解体系,并制备了再生棉浆粕纤维素膜,采用红外光谱、X射线衍射、热重分析、扫描电镜和质构仪对棉浆再生前后纤维素膜进行结构表征 结果表明,将棉浆直接溶解在离子液体中,再生后纤维素晶型由Ⅰ型向Ⅱ型的晶型转变,热稳定性略有下降 再生纤维素膜结构致密均匀,力学性能优异,在[Bmim]Cl和[Emim]Ac中拉伸强度分别可达94.55MPa和39.15MPa.

  18. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    Science.gov (United States)

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-09-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1-S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and

  19. 无机陶瓷膜在液体树脂浓缩过程中的性能分析%Performance of Inorganic Ceramic Membrane Used for Concentration of Liquid Resin

    Institute of Scientific and Technical Information of China (English)

    曾孟祥; 李元高; 严滨; 洪昱斌; 林丽华

    2012-01-01

    采用无机陶瓷膜处理液体树脂,考察分析了无机陶瓷膜过滤操作条件.结果表明无机陶瓷膜过滤操作条件为:平均进口压力400 kPa,平均出口压力200 kPa;操作温度小于50℃;浓缩倍数在40倍以上,膜通量在95~120 dm3/(m2·h)之间.用去离子水在45℃下清洗2次,膜通量可以恢复到实验前的水平.%The processing of disposing liquid inorganic ceramic membrane filtration operation resin with inorganic ceramic membrane was studied and the conditions were analyzed. The result indicated that the operation conditions were that the average inlet pressure was 4.0bar, outlet pressure was 2.0bar, the operation temperature was less than 50℃; and the average flux retained between 95 - 120 dm3/( mL h), the cycle of concentration was beyond 40times. After the experiment, the membrane flux was recovered to normal level when cleaned twice with deionized water in 45 ℃.

  20. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  1. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  2. Solvent-selective membranes for automating sequential liquid release and routing of nucleic acid purification protocols on a simple spindle motor

    OpenAIRE

    Gaughran, Jennifer; Kinahan, David J.; Mishra, Rohit; Ducrée, Jens

    2016-01-01

    By incorporating a set of membranes which selectively dissolve upon contact with aqueous or or-ganic solvents at strategic locations on a disc cartridge, we succeeded to fully automate the solid-phase extraction of nucleic acids by varying the spin rate of a low-cost spindle motor. A solvent- and phase-selective graphene oxide (GO) membrane governs the routing of flows to designated elution and waste chambers. The serial release of on-board sample and reagents is centrifugo-pneumatically con...

  3. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  4. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  5. 磺甲基化聚砜超滤膜的制备及在脱毛废液中的应用%Preparation of sulfomethyl polysulfone ultrafiltration membrane and its application to the treatment of unhairing waste liquid

    Institute of Scientific and Technical Information of China (English)

    张刚; 王鸿儒; 王倩倩; 苏小舟; 黄颖超

    2013-01-01

    Using hydroxymethyl sodium sulfonate as sulfonating agent,polysulfone ultrafiltration membrane has been modified by sulfomethylation and hydrophilization.The optimum modification mixture ratio is n(HOCH2SO3Na)∶n (PSF) =1.5 ∶1,and pH=8.0.When the operation conditions are 0.085 MPa,and temperature 25 ℃,polysulfone ultrafiltration membrane and polysulfone membrane are used respectively for the separation treatment of tannery unhairing waste liquid.Its COD,ash content,sulfide,suspended matter,pH and chroma before and after the treatment are compared.The results show that after being treated with the modified membrane,the chroma and suspended solids of the wastewater are effectively removed.The intercepting rate of COD and sulfide in wastewater could be above 94% and 71%,respectively.%以羟甲基磺酸钠为磺化剂,对聚砜超滤膜进行磺甲基化亲水化改性,最佳改性配比为n(HOCH2SO3Na)∶n(PSF)=1.5∶1,pH=8.0;在0.085 MPa、25℃下将改性聚砜超滤膜和聚砜膜分别用于工业脱毛废水的分离处理,并对比了废液处理前后的COD、灰分、硫化物、悬浮物、pH和色度等.结果表明,改性膜处理后废水的色度、悬浮物都得到有效去除,对废水中COD、硫化物的截留率分别达到了94%、71%以上.

  6. Effects of octane on the fatty acid composition and transition temperature of Pseudomonas oleovorans membrane lipids during growth in two-liquid-phase continuous cultures

    NARCIS (Netherlands)

    Chen, Qi; Nijenhuis, Atze; Preusting, Hans; Dolfing, Jan; Janssen, Dick B.; Witholt, Bernard

    1995-01-01

    Growth of Pseudomonas oleovorans GPol in continuous culture containing a bulk n-octane phase resulted in changes of the fatty acid composition of the membrane lipids. Compared to citrate-grown cells, the ratio of C-18 to C-16 fatty acids and the ratio of unsaturated to saturated fatty acids increase

  7. Effects of octane on the fatty acid composition and transition temperature of Pseudomonas oleovorans membrane lipids during growth in two-liquid-phase continuous cultures

    NARCIS (Netherlands)

    Chen, Qi; Nijenhuis, Atze; Preusting, Hans; Dolfing, Jan; Janssen, Dick B.; Witholt, Bernard

    1995-01-01

    Growth of Pseudomonas oleovorans GPol in continuous culture containing a bulk n-octane phase resulted in changes of the fatty acid composition of the membrane lipids. Compared to citrate-grown cells, the ratio of C18 to C16 fatty acids and the ratio of unsaturated to saturated fatty acids increased

  8. Development of a transient response technique for heterogeneous catalysis in liquid phase, Part 2: Applying membrane inlet mass spectrometry (MIMS) for detection of dissolved gasses.

    NARCIS (Netherlands)

    Radivojevic, D.; Ruitenbeek, M.; Seshan, Kulathuiyer; Lefferts, Leonardus

    2008-01-01

    A home-made analyzer for dissolved gasses in water, based on membrane inlet mass spectrometry (MIMS), was successfully applied for the first time as an in-line method for detection of gases dissolved in an aqueous stream, at the exit of a catalytic reactor in a transient experiment. The technique

  9. COMPARISON OF DETERGENTS FOR EXTRACTION AND ION-EXCHANGE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY OF SENDAI VIRUS MEMBRANE-PROTEINS

    NARCIS (Netherlands)

    WELLING, GW; FEIJLBRIEF, M; ORVELL, C; VANEDE, J; WELLINGWESTER, S

    1992-01-01

    The integral membrane proteins of Sendai virus, haemagglutinin-neuraminidase (HN) and fusion protein (F) were extracted from purified virions with a non-ionic and two zwitterionic detergents, i.e.. pentaethylene glycol monolauryl ether (C-12E5), lauryldimethylamine oxide (LDAO) and dodecyldimethylam

  10. Separation Of Cadmium(II), Cobalt(II) And Nickel(II) By Transport Through Polymer Inclusion Membranes With Phosphonium Ionic Liquid As Ion Carrier / Separacja Jonów Kadmu(II), Kobaltu(II) I Niklu(II) W Procesie Transportu Przez Polimerowe Membrany Inkluzyjne Zawierające Fosfoniową Ciecz Jonową W Roli Przenośnika

    OpenAIRE

    2015-01-01

    This paper presents study on the facilitated transport of cadmium(II), cobalt(II) and nickel(II) ions from aqueous chloride solutions through polymer inclusion membranes (PIMs) with phosphonium ionic liquid. Cyphos IL 101 (trihexyl(tetradecyl) phosphonium chloride) was used as a selective carrier for synthesis of cellulose triacetate membranes containing o-nitrophenyl pentyl ether (ONPPE) as a plasticizer. Effect of different parameters such as hydrochloric acid concentration in the source ph...

  11. Fabrication of green polymeric membranes

    KAUST Repository

    Kim, Dooli

    2017-06-16

    Provided herein are methods of fabricating membranes using polymers with functionalized groups such as sulfone (e.g., PSf and PES), ether (e.g., PES), acrylonitrile (e.g., PAN), fluoride(e.g., pvdf and other fluoropolymers), and imide (e.g., extem) and ionic liquids. Also provided are membranes made by the provided methods.

  12. Permeability and Selectivity of Sulfur Dioxide and Carbon Dioxide in Supported Ionic Liquid Membranes%二氧化硫和二氧化碳在离子液体支撑液膜中的渗透率和选择性

    Institute of Scientific and Technical Information of China (English)

    江滢滢; 吴有庭; 王文婷; 李磊; 周政; 张志炳

    2009-01-01

    Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [hmim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45℃ and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 or-ders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liquid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear increase of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.

  13. Hollow fibre-supported liquid membrane extraction and LC-MS/MS detection for the analysis of heterocyclic amines in urine samples

    DEFF Research Database (Denmark)

    Busquets, R.; Jonsson, J. A.; Frandsen, Henrik Lauritz

    2009-01-01

    . The analytical method consisted of extraction and clean-Lip by the novel technique liquid-phase microextraction combined with LC-MS/MS. The effect of pH during the extraction and hydrolysis step was examined. High sensitivity was achieved when the extraction was performed in raw urine adjusted to pH 5.5, 2-amino...

  14. Impact on floating membranes

    CERN Document Server

    Vandenberghe, Nicolas

    2016-01-01

    When impacted by a rigid object, a thin elastic membrane with negligible bending rigidity floating on a liquid pool deforms. Two axisymmetric waves radiating from the impact point propagate. In the first place, a longitudinal wave front -- associated with in-plane deformation of the membrane and traveling at constant speed -- separates an outward stress free domain with a stretched but flat domain. Then, in the stretched domain a dispersive transverse wave travels at a wave speed that depends on the local stretching rate. We study the dynamics of this fluid-body system and we show that the wave dynamics is similar to the capillary waves that propagate at a liquid-gas interface but with a surface tension coefficient that depends on impact speed. We emphasize the role of the stretching in the membrane in the wave dynamics but also in the development of a buckling instability that give rise to radial wrinkles.

  15. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1976-01-01

    Progress in Surface and Membrane Science, Volume 10 covers the advances in surface and membrane science. The book discusses the selective changes of cellular particles influencing sedimentation properties; and the rotating disk and ring-disk electrodes in investigations of surface phenomena at the metal-electrolyte interface. The text also describes the membrane potential of phospholipid bilayer and biological membranes; the adsorption of surfactant monolayers at gas/liquid and liquid/liquid interfaces; and the enzymes immobilized on glass. Chemists and people involved in electrochemistry will

  16. 乳化液膜法对模拟乙酸乙酯废气吸收的研究%Investigation on the acetic ether absorption of simulated exhaust gas by emulsion liquid membrane

    Institute of Scientific and Technical Information of China (English)

    王浩; 梅敏雅; 金一中

    2011-01-01

    针对水吸收法难于处理非(弱)水溶性有机废气的问题,以煤油为油相,失水山梨醇三油酸酯(Span-85)为乳化剂,制得水相/油相(W/O)乳化液膜,进行了吸收模拟乙酸乙酯废气的研究.结果表明:乳化液膜体系对乙酸乙酯废气吸收效率最高可达89%,1h内吸收效率大于50%以上;低温、低表面活性剂体积分数和高废气质量浓度有利于提高吸收速率,在实验条件下存在最佳油水比1:1.%Considering that water absorption is difficult to treat insoluble VOCs, this paper used emulsion liquid membrane (ELM), with kerosene as oil phase and Span-85 as emulsifier, as the advanced treatment agents to absorb simulated exhaust gas of acetic ether. The results showed that emulsion liquid membrane system have the highest absorption efficiency for acetic ether by 89% , and the absorption efficiency could be more than 50% in one hour. Some factors, such as low temperature, low surfactant concentration and high exhaust gas concentration, are helpful to improve the absorption rate. There was an optimal oil-water ratio of 1:1 under the condition of the experiments.

  17. Impact of liquid water on oxygen reaction in cathode catalyst layer of proton exchange membrane fuel cell: A simple and physically sound model

    Science.gov (United States)

    Zhang, Xiaoxian; Gao, Yuan

    2016-06-01

    When cells work at high current density, liquid water accumulates in their catalyst layer (CL) and the gaseous oxygen could dissolve into the water and the ionomer film simultaneously; their associated dissolved concentrations in equilibrium with the gaseous oxygen are also different. Based on a CL acquired using tomography, we present new methods in this paper to derive agglomerate models for partly saturated CL by viewing the movement and reaction of the dissolved oxygen in the two liquids (water and ionomer) and the agglomerate as two independent random processes. Oxygen dissolved in the water moves differently from oxygen dissolved in the ionomer, and to make the analysis tractable, we use an average distribution function to describe the average movement of all dissolved oxygen. A formula is proposed to describe this average distribution function, which, in combination with the exponential distribution assumed in the literature for oxygen reaction, leads to a simple yet physically sound agglomerate model. The model has three parameters which can be directly calculated from CL structure rather than by calibration. We explain how to calculate these parameters under different water contents for a given CL structure, and analyse the impact of liquid water on cell performance.

  18. 气液两相流方法对络合-超滤膜组件污染的清洗%Cleaning for Fouled Membrane Module in Complexation-Ultrafiltration Processes with Gas/Liquid Two-Phase Flow Method

    Institute of Scientific and Technical Information of China (English)

    乔玉柏; 邵嘉慧; 何义亮

    2012-01-01

    Ultrafiltiation (UF) membrane technology has become one of the most promising high-techs in water treatment. However, its applications are significantly limited because of membrane fouling. A gas/liquid two-phase flow cleaning method was put forward and its performance on cleaning membrane modules fouled in the complexation-ultrafiltration process was studied. Effects of cleaning methods (gas flushing, water backflushing, chemical backflushing and gas-liquid two-phase flow with either water or chemical as cleaning solution) on the flux recovery were compared. Results show that the gas/liquid two-phase flow method can recover the membrane flux most with the minimum cleaning time. Effects of gas pulse time (tc), gas pulse interval (ti), velocity ratio of gas to liquid (Rs/t) on gas/liquid two-phase flow performance were investigated. When ti is 10 s and Rg/1 is 20:1, the flux was recovered most with tc of 15 s and 25 s. When tc is 15 s and Rg/1 is 20:1, the flux is recovered most with 20 s ti. When tc is 15 s and ti is 10 s, the two-phase flow cleaning method with water as cleaning solution can recover the flux most with Rg/t = 80:l and the two-phase flow cleaning method with HC1 as cleaning solution can recover the flux most with Rg/1=40:1. Results indicate that the gas/liquid two-phase flow cleaning method can effectively remove UF membrane foulants in the complexation-ultrafiltration process and can be called a green membrane cleaning method.%超滤膜法是目前最有发展前途的水处理技术之一,但使用过程中不可避免的污染问题很大程度上限制了该技术的推广.该文提出特定的气液两相流清洗方法并针对络合-超滤膜组件污染清洗进行研究,比较了气体冲洗、水力反冲洗、化学试剂反冲洗和气液两相流清洗(分别以水和HCl作为清洗液)络合-超滤污染膜组件的效果.结果显示气液两相流方法的清洗效果最好,且用时最短.考察了通气时间tc、气停时间ti和

  19. 离子液体在质子交换膜中的应用研究进展%Progress on application of ionic liquids in proton exchange membrane

    Institute of Scientific and Technical Information of China (English)

    石倩茹; 陶慷; 章勤; 薛立新; 张尧剑

    2013-01-01

    质子交换膜是质子交换膜燃料电池(PEMFC)的核心元件之一,以Nafion为代表的全氟磺酸膜的电导率强烈依赖于水含量,而以磺化聚醚醚酮(SPEEK)为代表的磺化芳香族聚合物膜电导率依然有需要改善的空间,这些限制了PEMFC进一步的发展.离子液体具有较高的电导率,优异的热稳定性、电化学稳定性,且不挥发,因此可以替代水在高温下作为质子传递介质,应用于传统质子交换膜性能提升的改性,提高膜的质子电导率和使用温度.文章对近年来离子液体在SPEEK、PS、PBI、PI、PVDF、Nafion等树脂中的应用及质子传递机理进行了综述,阐述了应用中存在的问题及对策,并对研究前景进行了展望.%Proton exchange membrane is a crucial part of proton exchange membrane fuel cell (PEMFC).Perfluorosulphonic acid based membranes such as NafionTM (Dupont),which has been mainly used for polymer electrolyte of PEMFCs,failed to maintain its high ionic conductivity when used in non-humid and high temperature conditions.Sulfonated aromatic polymer membranes such as sulfonated poly(ether-ether ketone) (SPEEK) suffers from relatively low ionic conductivity.Ionic liquids (ILs) show high ionic conductivity,excellent thermal and electrochemical stability,as well as negligible vapor pressure,which make them attractive to be introduced to polymer electrolyte membranes as proton transporting media to replace water for elevated temperature operation.This review covers the application of ILs in SPEEK,PS,PBI,PI,PVDF and Nafion,and the proton transfer mechanism.Finally,the problems and developmental direction are suggested.

  20. Flue gas treatment with membrane gas absorption

    NARCIS (Netherlands)

    Klaassen, R.; Feron, P.H.M.; Jansen, A.E.

    1998-01-01

    Membrane gas absorption is a new, efficient and flexible way to carry out gas-liquid contacting operations with hollow fibre membranes. Advantages of gas absorption membranes over conventional G-L contactors are: -High specific surface area and rapid mass transfer resulting in very compact and low w