WorldWideScience

Sample records for membranes artificial

  1. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  2. Artificial Lipid Membranes: Past, Present, and Future.

    Science.gov (United States)

    Siontorou, Christina G; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Karapetis, Stefanos K

    2017-07-26

    The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life.

  3. A thin membrane artificial muscle rotary motor

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain A.; Hale, Thom; Gisby, Todd; Inamura, Tokushu; McKay, Thomas; O' Brien, Benjamin; Walbran, Scott [University of Auckland, The Biomimetics Lab, Auckland Bioengineering Institute, Auckland (New Zealand); Calius, Emilio P. [Industrial Research Ltd., P.O. Box 2225, Auckland (New Zealand)

    2010-01-15

    Desirable rotary motor attributes for robotics include the ability to develop high torque in a low mass body and to generate peak power at low rotational speeds. Electro-active polymer artificial muscles offer promise as actuator elements for robotic motors. A promising artificial muscle technology for use as a driving mechanism for rotary motion is the dielectric elastomer actuator (DEA). We present a membrane DEA motor in which phased actuation of electroded sectors of the motor membrane impart orbital motion to a central drive that turns a rotor. The motor is inherently scalable, flexible, flat, silent in operation, amenable to deposition-based manufacturing approaches, and uses relatively inexpensive materials. As a membrane it can also form part of the skin of a robot. We have investigated the torque and power of stacked membrane layers. Specific power and torque ratios when calculated using active membrane mass only were 20.8 W/kg and 4.1 Nm/kg, respectively. These numbers compare favorably with a commercially available stepper motor. Multi-membrane fabrication substantially boosts torque and power and increases the active mass of membrane relative to supporting framework. Through finite element modeling, we show the mechanisms governing the maximum torque the device can generate and how the motor can be improved. (orig.)

  4. A thin membrane artificial muscle rotary motor

    Science.gov (United States)

    Anderson, Iain A.; Hale, Thom; Gisby, Todd; Inamura, Tokushu; McKay, Thomas; O'Brien, Benjamin; Walbran, Scott; Calius, Emilio P.

    2010-01-01

    Desirable rotary motor attributes for robotics include the ability to develop high torque in a low mass body and to generate peak power at low rotational speeds. Electro-active polymer artificial muscles offer promise as actuator elements for robotic motors. A promising artificial muscle technology for use as a driving mechanism for rotary motion is the dielectric elastomer actuator (DEA). We present a membrane DEA motor in which phased actuation of electroded sectors of the motor membrane impart orbital motion to a central drive that turns a rotor. The motor is inherently scalable, flexible, flat, silent in operation, amenable to deposition-based manufacturing approaches, and uses relatively inexpensive materials. As a membrane it can also form part of the skin of a robot. We have investigated the torque and power of stacked membrane layers. Specific power and torque ratios when calculated using active membrane mass only were 20.8 W/kg and 4.1 Nm/kg, respectively. These numbers compare favorably with a commercially available stepper motor. Multi-membrane fabrication substantially boosts torque and power and increases the active mass of membrane relative to supporting framework. Through finite element modeling, we show the mechanisms governing the maximum torque the device can generate and how the motor can be improved.

  5. Artificial membranes as models in penetration investigations.

    Science.gov (United States)

    Krulikowska, M; Arct, J; Lucova, M; Cetner, B; Majewski, S

    2013-02-01

    In vitro methods used in the research of transepidermal transport of active substances generally rely on the penetration rate of test compounds through standard membranes. Models typically used in penetration experiments are specially prepared human or animal skin samples or synthetic membranes. The objective of this study was to establish if the test results for an artificial liposome membrane can be extrapolated to determine the actual bioavailability of active substances. Tests were conducted in a side-by-side diffusion cell. As model membranes, a liquid-crystal lipid membrane (LM), phospholipid membrane (PM) and pig skin sample were used. The test compounds were eight synthetic dyes used in hair colouring products. Research findings reveal that membranes composed of lipids, identical to those present in the epidermis and forming analogical liquid-crystal structures provide a close approximation of the actual bioavailability of active substances (correlation between the results obtained for pig skin and LM was significant: R = 0.95 and R = 0.93 in the presence of a 1% Sodium dodecyl sulphate in donor system). Unlike biological membranes, intercellular cement does not contain phospholipids. The observed correlation between penetration coefficients through the PM and pig skin was not significant (R = 0.82). The experiments confirm that the PM constitutes a less credible model for the studies of transepidermal transport in real life conditions. © 2012 John Wiley & Sons A/S.

  6. Nanoscale spin sensing in artificial cell membranes

    International Nuclear Information System (INIS)

    Simpson David

    2014-01-01

    The use of the nitrogen-vacancy (NV) centre in diamond as a single spin sensor or magnetometer has attracted considerable interest in recent years because of its unique combination of sensitivity, nanoscale resolution, and optical initialisation and readout at room temperature. Nanodiamonds in particular hold great promise as an optical magnetometer probe for bio applications. In this work we employ nanodiamonds containing single NV spins to detect freely diffusing Mn2+ ions by detecting changes in the transverse relaxation time (T2) of the single spin probe. We also report the detection of gadolinium spin labels present in an artificial cell membrane by measuring changes in the longitudinal relaxation time (T1) of the probe. (author)

  7. The concept of an artificial tympanic membrane

    NARCIS (Netherlands)

    Feenstra, L.; Kohn, F.E.; Feijen, Jan

    1984-01-01

    A review is given of the development of the concept of an artifical tympanic membrane. Starting with homologous tympanic membranes we compared biodegradable collagen materials (homologous and heterologous) and biodegradable synthetic materials, poly-glycolic acid, poly-lactic acid and poly-α-amino

  8. Artificial membranes for membrane protein purification, functionality and structure studies.

    Science.gov (United States)

    Parmar, Mayuriben J; Lousa, Carine De Marcos; Muench, Stephen P; Goldman, Adrian; Postis, Vincent L G

    2016-06-15

    Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  9. Formation of Cell Membrane Component Domains in Artificial Lipid Bilayer.

    Science.gov (United States)

    Tero, Ryugo; Fukumoto, Kohei; Motegi, Toshinori; Yoshida, Miyu; Niwano, Michio; Hirano-Iwata, Ayumi

    2017-12-20

    The lipid bilayer environment around membrane proteins strongly affects their structure and functions. Here, we aimed to study the fusion of proteoliposomes (PLs) derived from cultured cells with an artificial lipid bilayer membrane and the distribution of the PL components after the fusion. PLs, which were extracted as a crude membrane fraction from Chinese hamster ovary (CHO) cells, formed isolated domains in a supported lipid bilayer (SLB), comprising phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cholesterol (Chol), after the fusion. Observation with a fluorescence microscope and an atomic force microscope showed that the membrane fusion occurred selectively at microdomains in the PC + PE + Chol-SLB, and that almost all the components of the PL were retained in the domain. PLs derived from human embryonic kidney 293 (HEK) cells also formed isolated domains in the PC + PE + Chol-SLB, but their fusion kinetics was different from that of the CHO-PLs. We attempted to explain the mechanism of the PL-SLB fusion and the difference between CHO- and HEK-PLs, based on a kinetic model. The domains that contained the whole cell membrane components provided environments similar to that of natural cell membranes, and were thus effective for studying membrane proteins using artificial lipid bilayer membranes.

  10. Investigating Membranes: Using Artificial Membranes to Convey Chemistry and Biology Concepts

    Science.gov (United States)

    Zrelak, Yoshi; McCallister, Gary

    2009-01-01

    While not organic in nature, quick-"growing" artificial membranes can be a profound visual aid when teaching students about cellular processes and the chemical nature of membranes. Students are often intrigued when they see biological and chemical concepts come to life before their eyes. In this article, the authors share their approach to growing…

  11. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    Directory of Open Access Journals (Sweden)

    Qingqing Lin

    Full Text Available Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM and/or phosphatidylcholine (PC outside/phosphatidylethanolamine (PE and phosphatidylserine (PS inside, and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm" vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  12. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    Science.gov (United States)

    Lin, Qingqing; London, Erwin

    2014-01-01

    Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm") vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  13. Single channel analysis of membrane proteins in artificial bilayer membranes.

    Science.gov (United States)

    Bartsch, Philipp; Harsman, Anke; Wagner, Richard

    2013-01-01

    The planar lipid bilayer technique is a powerful experimental approach for electrical single channel recordings of pore-forming membrane proteins in a chemically well-defined and easily modifiable environment. Here we provide a general survey of the basic materials and procedures required to set up a robust bilayer system and perform electrophysiological single channel recordings of reconstituted proteins suitable for the in-depth characterization of their functional properties.

  14. Natural channel protein inserts and functions in a completely artificial, solid-supported bilayer membrane

    OpenAIRE

    Zhang, Xiaoyan; Fu, Wangyang; Palivan, Cornelia G.; Meier, Wolfgang

    2013-01-01

    Reconstitution of membrane proteins in artificial membrane systems creates a platform for exploring their potential for pharmacological or biotechnological applications. Previously, we demonstrated amphiphilic block copolymers as promising building blocks for artificial membranes with long-term stability and tailorable structural parameters. However, the insertion of membrane proteins has not previously been realized in a large-area, stable, and solid-supported artificial membrane. Here, we s...

  15. Membranes with artificial free-volume for biofuel production

    Science.gov (United States)

    Petzetakis, Nikos; Doherty, Cara M.; Thornton, Aaron W.; Chen, X. Chelsea; Cotanda, Pepa; Hill, Anita J.; Balsara, Nitash P.

    2015-01-01

    Free-volume of polymers governs transport of penetrants through polymeric films. Control over free-volume is thus important for the development of better membranes for a wide variety of applications such as gas separations, pharmaceutical purifications and energy storage. To date, methodologies used to create materials with different amounts of free-volume are based primarily on chemical synthesis of new polymers. Here we report a simple methodology for generating free-volume based on the self-assembly of polyethylene-b-polydimethylsiloxane-b-polyethylene triblock copolymers. We have used this method to fabricate a series of membranes with identical compositions but with different amounts of free-volume. We use the term artificial free-volume to refer to the additional free-volume created by self-assembly. The effect of artificial free-volume on selective transport through the membranes was tested using butanol/water and ethanol/water mixtures due to their importance in biofuel production. We found that the introduction of artificial free-volume improves both alcohol permeability and selectivity. PMID:26104672

  16. Reconstitution of lysosomal ion channels into artificial membranes.

    Science.gov (United States)

    Venturi, Elisa; Sitsapesan, Rebecca

    2015-01-01

    Ion channels that are located on intracellular organelles have always posed challenges for biophysicists seeking to measure their ion conduction, selectivity, and gating kinetics. Unlike cell surface ion channels, intracellular ion channels cannot be accessed for biophysical single-channel recordings using the patch-clamp technique while remaining in a physiological setting. Disruption of the cell is always necessary and hence experiments inevitably have a certain "artificial" nature about them. This drawback is turned to considerable advantage if the internal membranes containing the channels of interest can be isolated or if the channels can be purified because they can then be incorporated into artificial membranes of controlled composition. This approach guarantees a tight but flexible control over the biophysical and biochemical environment of the ion channel molecules. This includes the lipid composition of the membrane and the ionic solutions on both sides of the channel, thus allowing the conductance properties of the channel to be accurately measured. Since the influence of multiple unknown regulators of channel function (that could be present within the physiological membrane or in cytosolic, or intraorganelle compartments) is removed, the identification and characterization of physiological and pharmacological regulators that directly affect channel gating can also be achieved. This cannot be performed in a cellular environment. These techniques have typically been used to study the properties of channels located on endoplasmic/sarcoplasmic reticulum (ER/SR) membranes but in this chapter we describe how the techniques are also suited for ion channels of the acidic lysosomal and endolysosomal Ca(2+) stores. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. EDTA-induced membrane fluidization and destabilization: biophysical studies on artificial lipid membranes.

    Science.gov (United States)

    Prachayasittikul, Virapong; Isarankura-Na-Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Nantasenamat, Chanin; Galla, Hans-Joachim

    2007-11-01

    The molecular mechanism of ethylenediaminetetraacetic acid (EDTA)-induced membrane destabilization has been studied using a combination of four biophysical techniques on artificial lipid membranes. Data from Langmuir film balance and epifluorescence microscopy revealed the fluidization and expansion effect of EDTA on phase behavior of monolayers of either 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or mixtures of DPPC and metal-chelating lipids, such as N(alpha),N(alpha)-Bis[carboxymethyl]-N(epsilon)-[(dioctadecylamino)succinyl]-L-lysine or 1,2-dioleoyl-sn-glycero-3-[N-(5-amino-1-carboxypentyl iminodiacetic acid) succinyl]. A plausible explanation could be drawn from the electrostatic interaction between negatively charged groups of EDTA and the positively charged choline head group of DPPC. Intercalation of EDTA into the lipid membrane induced membrane curvature as elucidated by atomic force microscopy. Growth in size and shape of the membrane protrusion was found to be time-dependent upon exposure to EDTA. Further loss of material from the lipid membrane surface was monitored in real time using a quartz crystal microbalance. This indicates membrane restabilization by exclusion of the protrusions from the surface. Loss of lipid components facilitates membrane instability, leading to membrane permeabilization and lysis.

  18. Artificial membranes with selective nanochannels for protein transport

    KAUST Repository

    Sutisna, B.

    2016-09-05

    A poly(styrene-b-tert-butoxystyrene-b-styrene) copolymer was synthesized by anionic polymerization and hydrolyzed to poly(styrene-b-4-hydroxystyrene-b-styrene). Lamellar morphology was confirmed in the bulk after annealing. Membranes were fabricated by self-assembly of the hydrolyzed copolymer in solution, followed by water induced phase separation. A high density of pores of 4 to 5 nm diameter led to a water permeance of 40 L m−2 h−1 bar−1 and molecular weight cut-off around 8 kg mol−1. The morphology was controlled by tuning the polymer concentration, evaporation time, and the addition of imidazole and pyridine to stabilize the terpolymer micelles in the casting solution via hydrogen bond complexes. Transmission electron microscopy of the membrane cross-sections confirmed the formation of channels with hydroxyl groups beneficial for hydrogen-bond forming sites. The morphology evolution was investigated by time-resolved grazing incidence small angle X-ray scattering experiments. The membrane channels reject polyethylene glycol with a molecular size of 10 kg mol−1, but are permeable to proteins, such as lysozyme (14.3 kg mol−1) and cytochrome c (12.4 kg mol−1), due to the right balance of hydrogen bond interactions along the channels, electrostatic attraction, as well as the right pore sizes. Our results demonstrate that artificial channels can be designed for protein transport via block copolymer self-assembly using classical methods of membrane preparation.

  19. Assessing vehicle effects on skin absorption using artificial membrane assays.

    Science.gov (United States)

    Karadzovska, Daniela; Riviere, Jim E

    2013-12-18

    A vast number of variations in drug/vehicle combinations may come into contact with skin. Evaluating the effect of potential drug, vehicle and skin interactions for all possible combinations is a daunting task. A practical solution is a rapid screening technique amenable to high throughput approaches (e.g. 96-well plates). In this study, three artificial membranes (isopropyl myristate (IPM), certramides and Strat-M™) were evaluated for their ability to predict the skin permeability of caffeine, cortisone, diclofenac sodium, mannitol, salicylic acid and testosterone applied in propylene glycol, water and ethanol as unsaturated and saturated concentrations. Resultant absorption data was compared to porcine skin diffusion cell data. The correlations (r(2)) between membrane and diffusion cell data from saturated and unsaturated concentrations were 0.38, 0.47 and 0.56 for the Strat-M™, certramide and IPM membranes, respectively. This relationship improved when only saturated concentrations were evaluated (r(2) = 0.60, 0.63 and 0.66 for the Strat-M™, certramide and IPM membranes, respectively). A correlation between membrane retention and the amount remaining in skin had r(2) values of 0.73 (Strat-M™), 0.67 (certramides), and 0.67 (IPM). Quantitative structure-permeability relationship models for each membrane identified different physicochemical factors influencing the absorption process. Although further investigations exploring complex topical formulations are required, these results suggest potential use as an initial screening approach to assist in narrowing the selection of formulations to be evaluated with a more biologically intact model, thereby assisting in the development of new topical formulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Artificial plasma membrane models based on lipidomic profiling.

    Science.gov (United States)

    Essaid, Donia; Rosilio, Véronique; Daghildjian, Katia; Solgadi, Audrey; Vergnaud, Juliette; Kasselouri, Athena; Chaminade, Pierre

    2016-11-01

    Phospholipid monolayers are often described as membrane models for analyzing drug-lipid interactions. In many works, a single phosphatidylcholine is chosen, sometimes with one or two additional components. Drug penetration is studied at 30mN/m, a surface pressure considered as corresponding to the pressure in bilayers, independently of the density of lipid molecular packing. In this work, we have extracted, identified, and quantified the major lipids constituting the lipidome of plasma and mitochondrial membranes of retinoblastoma (Y79) and retinal pigment epithelium cells (ARPE-19), using liquid chromatography coupled to high-resolution mass spectrometry (LC-MS/MS). The results obtained from this lipidomic analysis were used in an attempt to build an artificial lipid monolayer with a composition mimicking that of the plasma membrane of Y79 cells, better than a single phospholipid. The variety and number of lipid classes and species in cell extracts monolayers exceeding by far those of the phospholipids chosen to mimic them, the π-A isotherms of model monolayers differed from those of lipid extracts in shape and apparent packing density. We propose a model monolayer based on the most abundant species identified in the extracts, with a surface compressional modulus at 30mN/m close to the one of the lipid extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Medical applications of membranes: Drug delivery, artificial organs and tissue engineering

    NARCIS (Netherlands)

    Stamatialis, Dimitrios; Papenburg, B.J.; Girones nogue, Miriam; Saiful, S.; Bettahalli Narasimha, M.S.; Schmitmeier, Stephanie; Wessling, Matthias

    2008-01-01

    This paper covers the main medical applications of artificial membranes. Specific attention is given to drug delivery systems, artificial organs and tissue engineering which seem to dominate the interest of the membrane community this period. In all cases, the materials, methods and the current

  2. Use of Membrane Potential to Achieve Transmembrane Modification with an Artificial Receptor.

    Science.gov (United States)

    Hatanaka, Wataru; Kawaguchi, Miki; Sun, Xizheng; Nagao, Yusuke; Ohshima, Hiroyuki; Hashida, Mitsuru; Higuchi, Yuriko; Kishimura, Akihiro; Katayama, Yoshiki; Mori, Takeshi

    2017-02-15

    We developed a strategy to modify cell membranes with an artificial transmembrane receptor. Coulomb force on the receptor, caused by the membrane potential, was used to achieve membrane penetration. A hydrophobically modified cationic peptide was used as a membrane potential sensitive region that was connected to biotin through a transmembrane oligoethylene glycol (OEG) chain. This artificial receptor gradually disappeared from the cell membrane via penetration despite the presence of a hydrophilic OEG chain. However, when the receptor was bound to streptavidin (SA), it remained on the cell membrane because of the large and hydrophilic nature of SA.

  3. Biomimetic Artificial Basilar Membranes for Next-Generation Cochlear Implants.

    Science.gov (United States)

    Jang, Jongmoon; Jang, Jeong Hun; Choi, Hongsoo

    2017-11-01

    Patients with sensorineural hearing loss can recover their hearing using a cochlear implant (CI). However, there is a need to develop next-generation CIs to overcome the limitations of conventional CIs caused by extracorporeal devices. Recently, artificial basilar membranes (ABMs) are actively studied for next-generation CIs. The ABM is an acoustic transducer that mimics the mechanical frequency selectivity of the BM and acoustic-to-electrical energy conversion of hair cells. This paper presents recent progress in biomimetic ABMs. First, the characteristics of frequency selectivity of the ABMs by the trapezoidal membrane and beam array are addressed. Second, to reflect the latest research of energy conversion technologies, ABMs using various piezoelectric materials and triboelectric-based ABMs are discussed. Third, in vivo evaluations of the ABMs in animal models are discussed according to the target position for implantation. Finally, future perspectives of ABM studies for the development of practical hearing devices are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SNARE-fusion mediated insertion of membrane proteins into native and artificial membranes.

    Science.gov (United States)

    Nordlund, Gustav; Brzezinski, Peter; von Ballmoos, Christoph

    2014-07-02

    Membrane proteins carry out functions such as nutrient uptake, ATP synthesis or transmembrane signal transduction. An increasing number of reports indicate that cellular processes are underpinned by regulated interactions between these proteins. Consequently, functional studies of these networks at a molecular level require co-reconstitution of the interacting components. Here, we report a SNARE protein-based method for incorporation of multiple membrane proteins into artificial membrane vesicles of well-defined composition, and for delivery of large water-soluble substrates into these vesicles. The approach is used for in vitro reconstruction of a fully functional bacterial respiratory chain from purified components. Furthermore, the method is used for functional incorporation of the entire F1F0 ATP synthase complex into native bacterial membranes from which this component had been genetically removed. The novel methodology offers a tool to investigate complex interaction networks between membrane-bound proteins at a molecular level, which is expected to generate functional insights into key cellular functions.

  5. Curvature-electric effects in artificial and natural membranes studied using patch-clamp techniques.

    Science.gov (United States)

    Petrov, A G; Ramsey, R L; Usherwood, P N

    1989-01-01

    Methods for applying sound pressure to membrane patches formed at the tips of patch-clamp pipettes have been developed. Artificial membrane patches were formed from diphytanoyl phosphatidylcholine using a pipette dipping technique. Natural membrane patches were excised (inside-out mode) from collagenase-treated locust muscle membrane. Curvature-electric signals were registered under both voltage clamp and current clamp conditions. The phenomenon of flexoelectricity in membranes has previously been attributed to curvature-induced polarization originating from the liquid crystalline properties of membranes. The estimated magnitude (2 x 10(-18) C) of the flexoelectric coefficient of the artificial lipid bilayers is consistent with previous findings while that of the muscle membrane was in certain cases several times larger. The present study is the first to report on flexoelectricity in a natural membrane and raises the question of the biological significance of this phenomenon.

  6. Silica nanoparticles for the oriented encapsulation of membrane proteins into artificial bilayer lipid membranes.

    Science.gov (United States)

    Schadauer, Florian; Geiss, Andreas F; Srajer, Johannes; Siebenhofer, Bernhard; Frank, Pinar; Reiner-Rozman, Ciril; Ludwig, Bernd; Richter, Oliver-M H; Nowak, Christoph; Naumann, Renate L C

    2015-03-03

    An artificial bilayer lipid membrane system is presented, featuring the oriented encapsulation of membrane proteins in a functionally active form. Nickel nitrilo-triacetic acid-functionalized silica nanoparticles, of a diameter of around 25 nm, are used to attach the proteins via a genetically engineered histidine tag in a uniform orientation. Subsequently, the proteins are reconstituted within a phospholipid bilayer, formed around the particles by in situ dialysis to form so-called proteo-lipobeads (PLBs). With a final size of about 50 nm, the PLBs can be employed for UV/vis spectroscopy studies, particularly of multiredox center proteins, because the effects of light scattering are negligible. As a proof of concept, we use cytochrome c oxidase (CcO) from P. denitrificans with the his tag genetically engineered to subunit I. In this orientation, the P side of CcO is directed to the outside and hence electron transfer can be initiated by reduced cytochrome c (cc). UV/vis measurements are used in order to determine the occupancy by CcO molecules encapsulated in the lipid bilayer as well as the kinetics of electron transfer between CcO and cc. The kinetic data are analyzed in terms of the Michaelis-Menten kinetics showing that the turnover rate of CcO is significantly decreased compared to that of solubilized protein, whereas the binding characteristics are improved. The data demonstrate the suitability of PLBs for functional cell-free bioassays of membrane proteins.

  7. The technique of accuracy measurement of membrane shape mapping of an artificial ventricle

    Science.gov (United States)

    Sulej, Wojciech; Grad, Leszek; Murawski, Krzysztof

    2017-08-01

    In the paper the research results, which are a continuation of work on the use of image processing techniques to determine the membrane shape of an artificial ventricle, were presented. The studies focused on developing a technique for measuring the accuracy of the membrane shape mapping. It is important to ensure the required accuracy of determining the instantaneous stroke volume of a controlled pneumatic artificial ventricular. Experiments were carried out on the following type of membrane models: convex, flat and concave. The purpose of the research was to obtain a numerical indicator, which will be used to evaluate the options to improve mapping techniques of thee shape of the membrane.

  8. Blood feeding of Ornithodoros turicata larvae using an artificial membrane system.

    Science.gov (United States)

    Kim, H J; Filatov, S; Lopez, J E; Pérez DE León, A A; Teel, P D

    2017-06-01

    An artificial membrane system was adapted to feed Ornithodoros turicata (Ixodida: Argasidae) larvae from a laboratory colony using defibrinated swine blood. Aspects related to larval feeding and moulting to the first nymphal instar were evaluated. A total of 55.6% of all larvae exposed to the artificial membrane in two experimental groups fed to repletion and 98.0% of all fed larvae moulted. Mortality rates of first instar nymphs differed significantly depending on the sorting tools used to handle engorged larvae (χ 2  = 35.578, P artificial membrane feeding system. Applications of the artificial membrane feeding system to fill gaps in current knowledge of soft tick biology and the study of soft tick-pathogen interactions are discussed. © 2017 The Royal Entomological Society.

  9. Theoretical Investigation of the Feasibility of PTD-Mediated Translocation of Proteins Across Artificial Membranes

    National Research Council Canada - National Science Library

    Kharkyanen, Valeriy N

    2006-01-01

    ...: The recent discovery of the ability of protein transduction domains (PTDs) and their synthetic analogues to transport high-molecular weight compounds through biological or artificial membranes is very promising for many applications...

  10. Transferrins selectively cause ion efflux through bacterial and artificial membranes

    NARCIS (Netherlands)

    Aguilera, O; Quiros, LM; Fierro, JF

    2003-01-01

    Serum transferrin, ovotransferrin and lactoferrin constitute the most notable members of the transferrin family. Among their multiple biological functions, they possess an important antibacterial activity. These proteins can permeate the Escherichia coli outer membrane, reaching the inner membrane

  11. Membrane concepts for blood purification : towards improved artificial kidney devices

    NARCIS (Netherlands)

    Tijink, M.S.L.

    2013-01-01

    The research presented in this thesis is about the fabrication and characterization of new membranes for blood purification. A novel membrane concept is proposed to combine diffusion and adsorption in one step to remove uremic retention solutes. A membrane with embedded functionalized particles, a

  12. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    Science.gov (United States)

    Shlyonsky, Vadim

    2013-01-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  13. Concentration of isoprene in artificial and thylakoid membranes.

    Science.gov (United States)

    Harvey, Christopher M; Li, Ziru; Tjellström, Henrik; Blanchard, Gary J; Sharkey, Thomas D

    2015-10-01

    Isoprene emission protects plants from a variety of abiotic stresses. It has been hypothesized to do so by partitioning into cellular membranes, particularly the thylakoid membrane. At sufficiently high concentrations, this partitioning may alter the physical properties of membranes. As much as several per cent of carbon taken up in photosynthesis is re-emitted as isoprene but the concentration of isoprene in the thylakoid membrane of rapidly emitting plants has seldom been considered. In this study, the intramembrane concentration of isoprene in phosphatidylcholine liposomes equilibrated to a physiologically relevant gas phase concentration of 20 μL L(-1) isoprene was less than predicted by ab initio calculations based on the octanol-water partitioning coefficient of isoprene while the concentration in thylakoid membranes was more. However, the concentration in both systems was roughly two orders of magnitude lower than previously assumed. High concentrations of isoprene (2000 μL L(-1) gas phase) failed to alter the viscosity of phosphatidylcholine liposomes as measured with perylene, a molecular probe of membrane structure. These results strongly suggest that the physiological concentration of isoprene within the leaves of highly emitting plants is too low to affect the dynamics of thylakoid membrane acyl lipids. It is speculated that isoprene may bind to and modulate the dynamics of thylakoid embedded proteins.

  14. Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators.

    Science.gov (United States)

    Walde, Peter; Umakoshi, Hiroshi; Stano, Pasquale; Mavelli, Fabio

    2014-09-14

    This article deals with artificial vesicles and their membranes as reaction promoters and regulators. Among the various molecular assemblies which can form in an aqueous medium from amphiphilic molecules, vesicle systems are unique. Vesicles compartmentalize the aqueous solution in which they exist, independent on whether the vesicles are biological vesicles (existing in living systems) or whether they are artificial vesicles (formed in vitro from natural or synthetic amphiphiles). After the formation of artificial vesicles, their aqueous interior (the endovesicular volume) may become - or may be made - chemically different from the external medium (the exovesicular solution), depending on how the vesicles are prepared. The existence of differences between endo- and exovesicular composition is one of the features on the basis of which biological vesicles contribute to the complex functioning of living organisms. Furthermore, artificial vesicles can be formed from mixtures of amphiphiles in such a way that the vesicle membranes become molecularly, compositionally and organizationally highly complex, similarly to the lipidic matrix of biological membranes. All the various properties of artificial vesicles as membranous compartment systems emerge from molecular assembly as these properties are not present in the individual molecules the system is composed of. One particular emergent property of vesicle membranes is their possible functioning as promoters and regulators of chemical reactions caused by the localization of reaction components, and possibly catalysts, within or on the surface of the membranes. This specific feature is reviewed and highlighted with a few selected examples which range from the promotion of decarboxylation reactions, the selective binding of DNA or RNA to suitable vesicle membranes, and the reactivation of fragmented enzymes to the regulation of the enzymatic synthesis of polymers. Such type of emergent properties of vesicle membranes may

  15. Physicochemical characterization of artificial nanoerythrosomes derived from erythrocyte ghost membranes.

    Science.gov (United States)

    Deák, Róbert; Mihály, Judith; Szigyártó, Imola Cs; Wacha, András; Lelkes, Gábor; Bóta, Attila

    2015-11-01

    Colloidal stabile nanoerythrosomes with 200 nm average diameter were formed from hemoglobin-free erythrocyte ghost membrane via sonication and membrane extrusion. The incorporation of extra lipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC), added to the sonicated ghosts, caused significant changes in the thermotropic character of the original membranes. As a result of the increased DPPC ratio the chain melting of the hydrated DPPC system and the characteristic small angle X-ray scattering (SAXS) of the lipid bilayers appeared. Significant morphological changes were followed by transmission electron microscopy combined with freeze fracture method (FF-TEM). After the ultrasonic treatment the large entities of erythrocyte ghosts transformed into nearly spherical nanoerythrosomes with diameters between 100 and 300 nm and at the same time a great number of 10-30 nm large membrane proteins or protein clusters were dispersed in the aqueous medium. The infrared spectroscopy (FT-IR) pointed out, that the sonication did not cause changes in the secondary structures of the membrane proteins under our preparation conditions. About fivefold of extra lipid--compared to the lipid content of the original membrane--caused homogeneous dispersion of nanoerythrosomes however the shape of the vesicles was not uniform. After the addition of about tenfold of DPPC, monoform and monodisperse nanoerythrosomes became typical. The outer surfaces of these roughly spherical objects were frequently polygonal, consisting of a net of pentagons and hexagons. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Modulation of the molecular arrangement in artificial and biological membranes by phospholipid-shelled microbubbles.

    Science.gov (United States)

    Carugo, Dario; Aron, Miles; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Kuimova, Marina K; Eggeling, Christian; Stride, Eleanor

    2017-01-01

    The transfer of material from phospholipid-coated microbubbles to cell membranes has been hypothesized to play a role in ultrasound-mediated drug delivery. In this study, we employed quantitative fluorescence microscopy techniques to investigate this phenomenon in both artificial and biological membrane bilayers in an acoustofluidic system. The results of the present study provide strong evidence for the transfer of material from microbubble coatings into cell membranes. Our results indicate that transfer of phospholipids alters the organization of molecules in cell membranes, specifically the lipid ordering or packing, which is known to be a key determinant of membrane mechanical properties, protein dynamics, and permeability. We further show that polyethylene-glycol, used in many clinical microbubble formulations, also has a major impact on both membrane lipid ordering and the extent of lipid transfer, and that this occurs even in the absence of ultrasound exposure. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. α-Lactalbumin:Oleic Acid Complex Spontaneously Delivers Oleic Acid to Artificial and Erythrocyte Membranes.

    Science.gov (United States)

    Wen, Hanzhen; Strømland, Øyvind; Halskau, Øyvind

    2015-09-25

    Human α-lactalbumin made lethal to tumor cells (HAMLET) is a tumoricidal complex consisting of human α-lactalbumin and multiple oleic acids (OAs). OA has been shown to play a key role in the activity of HAMLET and its related complexes, generally known as protein-fatty acid (PFA) complexes. In contrast to what is known about the fate of the protein component of such complexes, information about what happens to OA during their action is still lacking. We monitored the membrane, OA and protein components of bovine α-lactalbumin complexed with OA (BLAOA; a HAMLET-like substance) and how they associate with each other. Using ultracentrifugation, we found that the OA and lipid components follow each other closely. We then firmly identify a transfer of OA from BLAOA to both artificial and erythrocyte membranes, indicating that natural cells respond similarly to BLAOA treatment as artificial membranes. Uncomplexed OA is unable to similarly affect membranes at the conditions tested, even at elevated concentrations. Thus, BLAOA can spontaneously transfer OA to a lipid membrane. After the interaction with the membrane, the protein is likely to have lost most or all of its OA. We suggest a mechanism for passive import of mainly uncomplexed protein into cells, using existing models for OA's effect on membranes. Our results are consistent with a membrane destabilization mediated predominantly by OA insertion being a significant contribution to PFA cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.

  18. Parallel artificial liquid membrane extraction of acidic drugs from human plasma

    DEFF Research Database (Denmark)

    Roldan-Pijuan, Mercedes; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2015-01-01

    The new sample preparation concept “Parallel artificial liquid membrane extraction (PALME)” was evaluated for extraction of the acidic drugs ketoprofen, fenoprofen, diclofenac, flurbiprofen, ibuprofen, and gemfibrozil from human plasma samples. Plasma samples (250 μL) were loaded into individual...

  19. Parallel artificial liquid membrane extraction of new psychoactive substances in plasma and whole blood

    DEFF Research Database (Denmark)

    Vårdal, Linda; Askildsen, Hilde-Merete; Gjelstad, Astrid

    2017-01-01

    Parallel artificial liquid membrane extraction (PALME) was combined with ultra-high performance liquid chromatography-mass spectrometry (UHPLC–MS) and the potential for screening of new psychoactive substances (NPS) was investigated for the first time. PALME was performed in 96-well format compri......, accuracy, extraction recoveries, carry-over, and matrix effects. The validation results were in accordance with FDA guidelines....

  20. High-throughput liquid-liquid extraction in 96-well format: Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Andresen, Alf Terje; Dahlgren, Anders

    2017-01-01

    Parallel artificial liquid membrane extraction (PALME) is a miniaturized version of liquid–liquid extraction (LLE) and is based on two 96-well plates in a sandwich-like configuration. With a very simple workflow, 96 samples can be processed simultaneously in PALME, providing analyte enrichment...

  1. A New Artificial Network Approach for Membrane Filtration Simulation

    OpenAIRE

    Vivier, J.; Mehablia, A.

    2012-01-01

    To improve traditional neural networks, the present research used the wavelet network, a special feedforward neural network with a single hidden layer supported by the wavelet theory. Prediction performance and efficiency of the proposed network were examined with a published experimental dataset of cross-flow membrane filtration. The dataset was divided into two parts: 70 samples for training data and 330 samples for testing data. Various combinations of transmembrane pressure, filtration...

  2. A peptide derived from the rotavirus outer capsid protein VP7 permeabilizes artificial membranes.

    Science.gov (United States)

    Elaid, Sarah; Libersou, Sonia; Ouldali, Malika; Morellet, Nelly; Desbat, Bernard; Alves, Isabel D; Lepault, Jean; Bouaziz, Serge

    2014-08-01

    Biological membranes represent a physical barrier that most viruses have to cross for replication. While enveloped viruses cross membranes through a well-characterized membrane fusion mechanism, non-enveloped viruses, such as rotaviruses, require the destabilization of the host cell membrane by processes that are still poorly understood. We have identified, in the C-terminal region of the rotavirus glycoprotein VP7, a peptide that was predicted to contain a membrane domain and to fold into an amphipathic α-helix. Its structure was confirmed by circular dichroism in media mimicking the hydrophobic environment of the membrane at both acidic and neutral pHs. The helical folding of the peptide was corroborated by ATR-FTIR spectroscopy, which suggested a transmembrane orientation of the peptide. The interaction of this peptide with artificial membranes and its affinity were assessed by plasmon waveguide resonance. We have found that the peptide was able to insert into membranes and permeabilize them while the native protein VP7 did not. Finally, NMR studies revealed that in a hydrophobic environment, this helix has amphipathic properties characteristic of membrane-perforating peptides. Surprisingly, its structure varies from that of its counterpart in the structure of the native protein VP7, as was determined by X-ray. All together, our results show that a peptide released from VP7 is capable of changing its conformation and destabilizing artificial membranes. Such peptides could play an important role by facilitating membrane crossing by non-enveloped viruses during cell infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Electrokinetic migration across artificial liquid membranes. New concept for rapid sample preparation of biological fluids.

    Science.gov (United States)

    Pedersen-Bjergaard, Stig; Rasmussen, Knut Einar

    2006-03-24

    Basic drug substances were transported across a thin artificial organic liquid membrane by the application of 300 V d.c. From a 300 microl aqueous donor compartment (containing 10 mM HCl), the drugs migrated through a 200 microm artificial liquid membrane of 2-nitrophenyl octyl ether immobilized in the pores of a polypropylene hollow fiber, and into a 30 microl aqueous acceptor solution of 10 mM HCl inside the lumen of the hollow fiber. The transport was forced by an electrical potential difference sustained over the liquid membrane, resulting in electrokinetic migration of drug substances from the donor compartment to the acceptor solution. Within 5 min of operation at 300 V, pethidine, nortriptyline, methadone, haloperidol, and loperamide were extracted with recoveries in the range 70-79%, which corresponded to enrichments in the range 7.0-7.9. The chemical composition of the organic liquid membrane strongly affected the permeability, and may serve as an efficient tool for controlling the transport selectivity. Water samples, human plasma, and human urine were successfully processed, and in light of the present report, electrokinetic migration across thin artificial liquid membranes may be an interesting tool for future isolation within chemical analysis.

  4. Feeding through artificial membranes reduces fecundity for females of the blood-feeding insect, Rhodnius prolixus.

    Science.gov (United States)

    Chiang, R Gary; Chiang, Jennifer A

    2010-06-01

    The blood-feeding insect, Rhodnius prolixus, has been raised in the laboratory for close to 100 years. Various feeding techniques have been employed ranging from the use of warm-blooded hosts, to the use of previously collected blood offered through artificial membranes. This study compared the fecundity in mated and unmated females fed rabbit blood directly from the shaved belly of a rabbit to that of females fed defibrinated rabbit blood through an artificial membrane. These results confirm previous reports that this insect's feeding efficacy is reduced using an artificial membrane. It also demonstrates for the first time that the fecundity index, which measures the efficiency of turning the blood meal into eggs, is significantly reduced. We suggest that the natural feeding on a warm-blooded host may provide cues that have the short-term effect of enhancing the act of feeding and the long-term effect of increasing egg production efficiency. Until an artificial feeding method that does not interfere with feeding and fecundity is devised, experiments on reproduction in R. prolixus warrant the use of a warm-blooded host to emulate feeding in its natural setting.

  5. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma

    DEFF Research Database (Denmark)

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine

    2016-01-01

    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic...... solvent used as supported liquid membranes (SLMs), and into 50μL aqueous acceptor solutions. The acceptor solutions were subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using in-source fragmentation and monitoring the m/z 184→184 transition for investigation...

  6. Parallel artificial liquid membrane extraction of psychoactive analytes: a novel approach in therapeutic drug monitoring.

    Science.gov (United States)

    Olsen, Katharina Norgren; Ask, Kristine Skoglund; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2018-03-01

    Liquid-liquid extraction is widely used in therapeutic drug monitoring of antipsychotics, but difficulties in automation of the technique can result in long operational time. In this paper, parallel artificial liquid membrane extraction was used for extraction of serotonin- and serotonin-norepinephrine reuptake inhibitors from human plasma, and an approach to automate the technique was investigated. Eight model analytes were extracted from 125 μl human plasma with recoveries in the range 72-111% (relative standard deviation [RSD] ≤12.8%). A semiautomated pipettor was successfully utilized in the procedure, reducing the manual handling time. Real patient samples were analyzed with satisfying accuracy. A semiautomated extraction of serotonin-and serotonin-norepinephrine reuptake inhibitors by parallel artificial liquid membrane extraction extraction was successfully performed.

  7. Freestanding Artificial Synapses Based on Laterally Proton-Coupled Transistors on Chitosan Membranes.

    Science.gov (United States)

    Liu, Yang Hui; Zhu, Li Qiang; Feng, Ping; Shi, Yi; Wan, Qing

    2015-10-07

    Freestanding synaptic transistors are fabricated on solution-processed chitosan membranes. A short-term memory to long-term memory transition is observed due to proton-related electrochemical doping under repeated pulse stimulus. Moreover, freestanding artificial synaptic devices with multiple presynaptic inputs are investigated, and spiking logic operation and logic modulation are realized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Triboelectric-Based Artificial Basilar Membrane to Mimic Cochlear Tonotopy.

    Science.gov (United States)

    Jang, Jongmoon; Lee, JangWoo; Jang, Jeong Hun; Choi, Hongsoo

    2016-10-01

    A triboelectric-based artificial basilar membrane (TEABM) can mimic cochlear tonotopy by triboelectrification between Kapton film and aluminum foil. The two films are stacked and clamped to form a beam structure. The TEABM tonotopy is tested using an animal model to verify the feasibility of a self-powered acoustic sensor for a prototype cochlear implant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization of the activation of small GTPases by their GEFs on membranes using artificial membrane tethering.

    Science.gov (United States)

    Peurois, François; Veyron, Simon; Ferrandez, Yann; Ladid, Ilham; Benabdi, Sarah; Zeghouf, Mahel; Peyroche, Gérald; Cherfils, Jacqueline

    2017-03-23

    Active, GTP-bound small GTPases need to be attached to membranes by post-translational lipid modifications in order to process and propagate information in cells. However, generating and manipulating lipidated GTPases has remained difficult, which has limited our quantitative understanding of their activation by guanine nucleotide exchange factors (GEFs) and their termination by GTPase-activating proteins. Here, we replaced the lipid modification by a histidine tag in 11 full-length, human small GTPases belonging to the Arf, Rho and Rab families, which allowed to tether them to nickel-lipid-containing membranes and characterize the kinetics of their activation by GEFs. Remarkably, this strategy uncovered large effects of membranes on the efficiency and/or specificity in all systems studied. Notably, it recapitulated the release of autoinhibition of Arf1, Arf3, Arf4, Arf5 and Arf6 GTPases by membranes and revealed that all isoforms are efficiently activated by two GEFs with different regulatory regimes, ARNO and Brag2. It demonstrated that membranes stimulate the GEF activity of Trio toward RhoG by ∼30 fold and Rac1 by ∼10 fold, and uncovered a previously unknown broader specificity toward RhoA and Cdc42 that was undetectable in solution. Finally, it demonstrated that the exceptional affinity of the bacterial RabGEF DrrA for the phosphoinositide PI(4)P delimits the activation of Rab1 to the immediate vicinity of the membrane-bound GEF. Our study thus validates the histidine-tag strategy as a potent and simple means to mimic small GTPase lipidation, which opens a variety of applications to uncover regulations brought about by membranes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  10. Amyloid-β and the failure to form mitochondrial cristae: a biomimetic study involving artificial membranes.

    Science.gov (United States)

    Khalifat, Nada; Puff, Nicolas; Dliaa, Mariam; Angelova, Miglena I

    2012-01-01

    Alzheimer's disease (AD) is a degenerative disease of the central nervous system which causes irreversible damage to neuron structure and function. The main hypothesis concerning the cause of AD is excessive accumulation of amyloid-β peptides (Aβ). There has recently been a surge in studies on neuronal morphological and functional pathologies related to Aβ-induced mitochondrial dysfunctions and morphological alternations. What is the relation between the accumulation of Aβ in mitochondria, decreased production of ATP, and the large number of mitochondria with broken or scarce cristae observed in AD patients' neurons? The problem is complex, as it is now widely recognized that mitochondria function determines mitochondrial inner membrane (IM) morphology and, conversely, that IM morphology can influence mitochondrial functions. In our previous work, we designed an artificial mitochondrial IM, a minimal model system (giant unilamellar vesicle) mimicking the IM. We showed experimentally that modulation of the local pH gradient at the membrane level of cardiolipin-containing vesicles induces dynamic membrane invaginations similar to the mitochondrial cristae. In the present work we show, using our artificial IM, that Aβ renders the membrane unable to support the formation of cristae-like structures when local pH gradient occurs, leading to the failure of this cristae-like morphology. Fluorescent probe studies suggest that the dramatic change of membrane mechanical properties is due to Aβ-induced lipid bilayer dehydration, increased ordering of lipids, loss of membrane fluidity, and possibly to Aβ-induced changes in dynamic friction between the two leaflets of the lipid membrane.

  11. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes

    Science.gov (United States)

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    Background The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. Methods 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Results Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Conclusion Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents. PMID:24741305

  12. Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes.

    Science.gov (United States)

    Drašler, Barbara; Drobne, Damjana; Novak, Sara; Valant, Janez; Boljte, Sabina; Otrin, Lado; Rappolt, Michael; Sartori, Barbara; Iglič, Aleš; Kralj-Iglič, Veronika; Šuštar, Vid; Makovec, Darko; Gyergyek, Sašo; Hočevar, Matej; Godec, Matjaž; Zupanc, Jernej

    2014-01-01

    The purpose of this work is to provide experimental evidence on the interactions of suspended nanoparticles with artificial or biological membranes and to assess the possibility of suspended nanoparticles interacting with the lipid component of biological membranes. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid vesicles and human red blood cells were incubated in suspensions of magnetic bare cobalt ferrite (CoFe2O4) or citric acid (CA)-adsorbed CoFe2O4 nanoparticles dispersed in phosphate-buffered saline and glucose solution. The stability of POPC giant unilamellar vesicles after incubation in the tested nanoparticle suspensions was assessed by phase-contrast light microscopy and analyzed with computer-aided imaging. Structural changes in the POPC multilamellar vesicles were assessed by small angle X-ray scattering, and the shape transformation of red blood cells after incubation in tested suspensions of nanoparticles was observed using scanning electron microscopy and sedimentation, agglutination, and hemolysis assays. Artificial lipid membranes were disturbed more by CA-adsorbed CoFe2O4 nanoparticle suspensions than by bare CoFe2O4 nanoparticle suspensions. CA-adsorbed CoFe2O4-CA nanoparticles caused more significant shape transformation in red blood cells than bare CoFe2O4 nanoparticles. Consistent with their smaller sized agglomerates, CA-adsorbed CoFe2O4 nanoparticles demonstrate more pronounced effects on artificial and biological membranes. Larger agglomerates of nanoparticles were confirmed to be reactive against lipid membranes and thus not acceptable for use with red blood cells. This finding is significant with respect to the efficient and safe application of nanoparticles as medicinal agents.

  13. Combined application of extracorporeal membrane oxygenation and an artificial pacemaker in fulminant myocarditis in a child.

    Science.gov (United States)

    Ye, Sheng; Zhu, Lvchan; Ning, Botao; Zhang, Chenmei

    2017-06-01

    Fulminant myocarditis is severe and aggressive, but it is self-limited and usually has a favorable prognosis if the patients can survive the acute phase. When drug treatment is not effective, extracorporeal membrane oxygenation technology should be applied to support cardiopulmonary function. Extracorporeal membrane oxygenation can simultaneously support function of the left ventricle, right ventricle, and lungs, and provide stable blood circulation for patients with heart and respiratory failure, which allows sufficient time for the cardiopulmonary system to recover. Fulminant myocarditis affects cardiac systolic function, as well as the function of autorhythmic cells and the conduction system. If severe bradycardia or atrioventricular block appears, a pacemaker needs to be installed. We report a child with fulminant myocarditis who was treated with extracorporeal membrane oxygenation combined with an artificial pacemaker.

  14. Ion permeability of artificial membranes evaluated by diffusion potential and electrical resistance measurements.

    Science.gov (United States)

    Shlyonsky, Vadim

    2013-12-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and n-decane. The electrical resistance and potential difference across these membranes can be easily measured using a low-cost volt-ohm meter and home-made Ag/AgCl electrodes. The advantage of the model is the lack of ionic selectivity of the membrane, which can be modified by the introduction of different ionophores to the organic liquid mixture. A membrane treated with the mixture containing valinomycin generates voltages from -53 to -25 mV in the presence of a 10-fold KCl gradient (in to out) and from -79 to -53 mV in the presence of a bi-ionic KCl/NaCl gradient (in to out). This latter bi-ionic gradient potential reverses to a value from +9 to +20 mV when monensin is present in the organic liquid mixture. Thus, the model can be build stepwise, i.e., all factors leading to the development of diffusion potentials can be introduced sequentially, helping students to understand the quantitative relationships of ionic gradients and differential membrane permeability in the generation of cell electrical signals.

  15. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    Science.gov (United States)

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-14

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices.

  16. Translocation mechanism(s) of cell-penetrating peptides: biophysical studies using artificial membrane bilayers.

    Science.gov (United States)

    Di Pisa, Margherita; Chassaing, Gérard; Swiecicki, Jean-Marie

    2015-01-20

    The ability of cell-penetrating peptides (CPPs) to cross cell membranes has found numerous applications in the delivery of bioactive compounds to the cytosol of living cells. Their internalization mechanisms have been questioned many times, and after 20 years of intense debate, it is now widely accepted that both energy-dependent and energy-independent mechanisms account for their penetration properties. However, the energy-independent mechanisms, named "direct translocation", occurring without the requirement of the cell internalization machinery, remain to be fully rationalized at the molecular level. Using artificial membrane bilayers, recent progress has been made toward the comprehension of the direct translocation event. This review summarizes our current understanding of the translocation process, starting from the adsorption of the CPP on the membrane to the membrane crossing itself. We describe the different key steps occurring before direct translocation, because each of them can promote and/or hamper translocation of the CPP through the membrane. We then dissect the modification to the membranes induced by the presence of the CPPs. Finally, we focus on the latest studies describing the direct translocation mechanisms. These results provide an important framework within which to design new CPPs and to rationalize an eventual selectivity of CPPs in their penetration ability.

  17. The defense substance allicin from garlic permeabilizes membranes of Beta vulgaris, Rhoeo discolor, Chara corallina and artificial lipid bilayers.

    Science.gov (United States)

    Gruhlke, Martin C H; Hemmis, Birgit; Noll, Ulrike; Wagner, Richard; Lühring, Hinrich; Slusarenko, Alan J

    2015-04-01

    Allicin (diallylthiosulfinate) is the major volatile- and antimicrobial substance produced by garlic cells upon wounding. We tested the hypothesis that allicin affects membrane function and investigated 1) betanine pigment leakage from beetroot (Beta vulgaris) tissue, 2) the semipermeability of the vacuolar membrane of Rhoeo discolor cells, 3) the electrophysiology of plasmalemma and tonoplast of Chara corallina and 4) electrical conductivity of artificial lipid bilayers. Garlic juice and chemically synthesized allicin were used and betanine loss into the medium was monitored spectrophotometrically. Rhoeo cells were studied microscopically and Chara- and artificial membranes were patch clamped. Beet cell membranes were approximately 200-fold more sensitive to allicin on a mol-for-mol basis than to dimethyl sulfoxide (DMSO) and approximately 400-fold more sensitive to allicin than to ethanol. Allicin-treated Rhoeo discolor cells lost the ability to plasmolyse in an osmoticum, confirming that their membranes had lost semipermeability after allicin treatment. Furthermore, allicin and garlic juice diluted in artificial pond water caused an immediate strong depolarization, and a decrease in membrane resistance at the plasmalemma of Chara, and caused pore formation in the tonoplast and artificial lipid bilayers. Allicin increases the permeability of membranes. Since garlic is a common foodstuff the physiological effects of its constituents are important. Allicin's ability to permeabilize cell membranes may contribute to its antimicrobial activity independently of its activity as a thiol reagent. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Collagen-chitosan-glycerol bio-composite as artificial tympanic membrane for ruptured inner ear organ

    Science.gov (United States)

    Widiyanti, Prihartini; Setya Angtika, Rara; Githanadi, Brillyana; Hanif Kharisma, Ditya; Asyraf, Tarikh Omar; Wardani, Adita

    2017-05-01

    WHO data in 2012 shows that 5.3% of world population highly suffers from hearing loss and deafness. One of the deafness causes is rupture of tympanic membrane. Tympanic membrane damage which occurs often is perforated tympanic membrane, and it is also commonly known in medical term as tympanic membrane perforation. The causes, for instance, are high frequency of using earphones, traumatic accidents, noise, bacteria, viruses, and infectious microorganism. Tympanoplasty becomes the only treatment that can be widely accepted despite of deficiencies in postoperative complications. Therefore, this research aims to create artificial tympanic membrane made of natural materials such as type I collagen composited with chitosan and made of addition of glycerol to improve its mechanical strength and biodegradability. The method included the process of dissolving acetic acid in distilled water and mixation with chitosan. The solution is next added with glycerol and stirred to be homogeneous. After that, it was minted in petri dish and aerated before characterized. The sample characterization included tensile strength of which tensile test results showed that the value of the elasticity modulus tended to decrease with an increase in collagen concentration. The elasticity modulus values in a row for the variations of 7: 3, 8: 2, and 9: 1 were 35.10 MPa, 54,52MPa, and 47,45MPa respectively. The morphological test with 1000x, 2500x, and 5000x magnification showed their interaction in the formation of pores. Cytotoxicity results, moreover, showed that those samples were non-toxic and safe for the body due to the percentage of living cells. The sound absorption coefficient was between 1000 Hz - 2000 Hz which means that it could use as sound absorbing material. The antibacterial test results showed that all the sample variations were anti-bacterial due to the diameter of the clear zone. In conclusion, collagen and chitosan composite with addition of glycerol could be used for

  19. Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology.

    Science.gov (United States)

    Elani, Yuval

    2016-06-15

    The quest to construct artificial cells from the bottom-up using simple building blocks has received much attention over recent decades and is one of the grand challenges in synthetic biology. Cell mimics that are encapsulated by lipid membranes are a particularly powerful class of artificial cells due to their biocompatibility and the ability to reconstitute biological machinery within them. One of the key obstacles in the field centres on the following: how can membrane-based artificial cells be generated in a controlled way and in high-throughput? In particular, how can they be constructed to have precisely defined parameters including size, biomolecular composition and spatial organization? Microfluidic generation strategies have proved instrumental in addressing these questions. This article will outline some of the major principles underpinning membrane-based artificial cells and their construction using microfluidics, and will detail some recent landmarks that have been achieved. © 2016 The Author(s).

  20. Isotropic Versus Bipolar Functionalized Biomimetic Artificial Basement Membranes and Their Evaluation in Long-Term Human Cell Co-Culture.

    Science.gov (United States)

    Rossi, Angela; Wistlich, Laura; Heffels, Karl-Heinz; Walles, Heike; Groll, Jürgen

    2016-08-01

    In addition to dividing tissues into compartments, basement membranes are crucial as cell substrates and to regulate cellular behavior. The development of artificial basement membranes is indispensable for the ultimate formation of functional engineered tissues; however, pose a challenge due to their complex structure. Herein, biodegradable electrospun polyester meshes are presented, exhibiting isotropic or bipolar bioactivation as a biomimetic and biofunctional model of the natural basement membrane. In a one-step preparation process, reactive star-shaped prepolymer additives, which generate a hydrophilic fiber surface, are electrospun with cell-adhesion-mediating peptides, derived from major components of the basement membrane. Human skin cells adhere to the functionalized meshes, and long-term co-culture experiments confirm that the artificial basement membranes recapitulate and preserve tissue specific functions. Several layers of immortalized human keratinocytes grow on the membranes, differentiating toward the surface and expressing typical epithelial markers. Fibroblasts migrate into the reticular lamina mimicking part of the mesh. Both cells types begin to produce extracellular matrix proteins and to remodel the initial membrane. It is shown at the example of skin that the artificial basement membrane design provokes biomimetic responses of different cell types and can thus be used as basis for the future development of basement membrane containing tissues. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reversed phase parallel artificial membrane permeation assay for log P measurement

    Directory of Open Access Journals (Sweden)

    Zihao Song

    2016-03-01

    Full Text Available A reversed phase parallel artificial membrane permeation assay (RP-PAMPA was newly invented for log P measurement. An oil/water/oil sandwich was constructed using a conventional PAMPA instrument. 1 % agarose was used to improve the physical stability of the water phase. A linear correlation between log P and the apparent permeability was observed in the -0.24 < log P < 2.85 region (R2 = 0.98. RP-PAMPA was also applied to pKa measurement.

  2. Towards self-assembled hybrid artificial cells: novel bottom-up approaches to functional synthetic membranes.

    Science.gov (United States)

    Brea, Roberto J; Hardy, Michael D; Devaraj, Neal K

    2015-09-01

    There has been increasing interest in utilizing bottom-up approaches to develop synthetic cells. A popular methodology is the integration of functionalized synthetic membranes with biological systems, producing "hybrid" artificial cells. This Concept article covers recent advances and the current state-of-the-art of such hybrid systems. Specifically, we describe minimal supramolecular constructs that faithfully mimic the structure and/or function of living cells, often by controlling the assembly of highly ordered membrane architectures with defined functionality. These studies give us a deeper understanding of the nature of living systems, bring new insights into the origin of cellular life, and provide novel synthetic chassis for advancing synthetic biology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An articulated predictive model for fluid-free artificial basilar membrane as broadband frequency sensor

    Science.gov (United States)

    Ahmed, Riaz; Banerjee, Sourav

    2018-02-01

    In this article, an extremely versatile predictive model for a newly developed Basilar meta-Membrane (BM2) sensors is reported with variable engineering parameters that contribute to it's frequency selection capabilities. The predictive model reported herein is for advancement over existing method by incorporating versatile and nonhomogeneous (e.g. functionally graded) model parameters that could not only exploit the possibilities of creating complex combinations of broadband frequency sensors but also explain the unique unexplained physical phenomenon that prevails in BM2, e.g. tailgating waves. In recent years, few notable attempts were made to fabricate the artificial basilar membrane, mimicking the mechanics of the human cochlea within a very short range of frequencies. To explain the operation of these sensors a few models were proposed. But, we fundamentally argue the "fabrication to explanation" approach and proposed the model driven predictive design process for the design any (BM2) as broadband sensors. Inspired by the physics of basilar membrane, frequency domain predictive model is proposed where both the material and geometrical parameters can be arbitrarily varied. Broadband frequency is applicable in many fields of science, engineering and technology, such as, sensors for chemical, biological and acoustic applications. With the proposed model, which is three times faster than its FEM counterpart, it is possible to alter the attributes of the selected length of the designed sensor using complex combinations of model parameters, based on target frequency applications. Finally, the tailgating wave peaks in the artificial basilar membranes that prevails in the previously reported experimental studies are also explained using the proposed model.

  4. Uranium Extraction From Artificial Liquid Waste Using Continuous Extraction Liquid membrane Technique

    International Nuclear Information System (INIS)

    Rusdianasari; Buchari

    2002-01-01

    The continuous extraction of uranium from artificial liquid waste by emulsion liquid membrane was carried out using one stage mixer-settler. This emulsion liquid membrane containing di-2-ethylhexylphosphoric acid (D2EHPA) and tri-n-buthyl phosphate (TBP) as carrier were carried out using one stage mixer-settler. The optimum condition gave the ratio of emulsion velocity to the feed velocity 1:4 and steady state reached after five minutes. The optimum condition was obtained at the 90.91 % of uranium recovered from raffinate, using EDTA as the masking agent with concentration 5x10 - 2 M . The total concentration of carrier was 3% with ratio D2EHPA and TBP 3:1. The emulsion liquid membrane has high relative selectivity after steady state with separation factors were α U , N i= 115,43 and α U , Fe 328,55. The result of experiment showed that emulsion liquid membrane containing D2EHPA and TBP as carrier have good performance for continuous system

  5. Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes.

    Science.gov (United States)

    Antonenko, Yuri N; Kotova, Elena A; Omarova, Elena O; Rokitskaya, Tatyana I; Ol'shevskaya, Valentina A; Kalinin, Valery N; Nikitina, Roza G; Osipchuk, Julia S; Kaplan, Mikhail A; Ramonova, Alla A; Moisenovich, Mikhail M; Agapov, Igor I; Kirpichnikov, Mikhail P

    2014-03-01

    Photodynamic tumor-destroying activity of the boronated chlorin e6 derivative BACE (chlorin e6 13(1)-N-{2-[N-(1-carba-closo-dodecaboran-1-yl)methyl]aminoethyl}amide-15(2), 17(3)-dimethyl ester), previously described in Moisenovich et al. (2010) PLoS ONE 5(9) e12717, was shown here to be enormously higher than that of unsubstituted chlorin e6, being supported by the data on much higher photocytotoxicity of BACE in M-1 sarcoma cell culture. To validate membrane damaging effect as the basis of the enhanced tumoricidal activity, BACE was compared with unsubstituted chlorin e6 in the potency to photosensitize dye leakage from liposomes, transbilayer lipid flip-flop, inactivation of gramicidin A ionic channels in planar lipid membranes and erythrocyte hemolysis. In all the models comprising artificial and cellular membranes, the photodynamic effect of BACE exceeded that of chlorin e6. BACE substantially differed from chlorin e6 in the affinity to liposomes and erythrocytes, as monitored by fluorescence spectroscopy, flow cytometry and centrifugation. The results support the key role of membrane binding in the photodynamic effect of the boronated chlorin e6 amide. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Advances in immobilized artificial membrane (IAM) chromatography for novel drug discovery.

    Science.gov (United States)

    Tsopelas, Fotios; Vallianatou, Theodosia; Tsantili-Kakoulidou, Anna

    2016-01-01

    The development of immobilized artificial membrane (IAM) chromatography has unfolded new perspectives for the use of chromatographic techniques in drug discovery, combining simulation of the environment of cell membranes with rapid measurements. The present review describes the characteristics of phosphatidylcholine-based stationary phases and analyses the molecular factors governing IAM retention in comparison to n-octanol-water and liposomes partitioning systems as well as to reversed phase chromatography. Other biomimetic stationary phases are also briefly discussed. The potential of IAM chromatography to model permeability through the main physiological barriers and drug membrane interactions is outlined. Further applications to calculate complex pharmacokinetic properties, related to tissue binding, and to screen drug candidates for phospholipidosis, as well as to estimate cell accumulation/retention are surveyed. The ambivalent nature of IAM chromatography, as a border case between passive diffusion and binding, defines its multiple potential applications. However, despite its successful performance in many permeability and drug-membrane interactions studies, IAM chromatography is still used as a supportive and not a stand-alone technique. Further studies looking at IAM chromatography in different biological processes are still required if this technique is to have a more focused and consistent application in drug discovery.

  7. One-step extraction of polar drugs from plasma by parallel artificial liquid membrane extraction.

    Science.gov (United States)

    Pilařová, Veronika; Sultani, Mumtaz; Ask, Kristine Skoglund; Nováková, Lucie; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2017-02-01

    The new microextraction technique named parallel artificial liquid membrane extraction (PALME) was introduced as an alternative approach to liquid-liquid extraction of charged analytes from aqueous samples. The concept is based on extraction of analytes across a supported liquid membrane sustained in the pores of a thin polymeric membrane, a well-known extraction principle also used in hollow fiber liquid-phase microextraction (HF-LPME). However, the new PALME technique offers a more user-friendly setup in which the supported liquid membrane is incorporated in a 96 well plate system. Thus, high-throughput is achievable, in addition to the green chemistry offered by using PALME. The consumption of organic solvent is minimized to 3-5μL per sample. With a sample volume of 250μL and acceptor solution volume of 50μL, a maximal enrichment factor of five is achievable. Based on these parameters, a new method for extraction of polar basic drugs was developed in the present work. The basic drugs hydralazine, ephedrine, metaraminol, salbutamol, and cimetidine were used as model analytes, and were extracted from alkalized human plasma into an aqueous solution via the supported liquid membrane. The extraction was promoted by a carrier dissolved in the membrane, creating a temporary ion-pair complex between the hydrophilic drug and the carrier. As the model analytes were extracted directly into an aqueous solution, there was no need for evaporation of the extract before injection into LC-MS. Hence, the sample preparation is performed in one step. With optimized conditions, the extraction recoveries were in the range 50-89% from human plasma after 45min extraction. The data from the method evaluation were satisfactory and in line with current guidelines, and revealed an extraction method with substantial potential for high throughput bioanalysis of polar basic drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Measure of pore size in micro filtration polymeric membrane using ultrasonic technique and artificial neural networks

    International Nuclear Information System (INIS)

    Lucas, Carla de Souza

    2009-01-01

    This work presents a study of the pore size in micro filtration polymeric membranes, used in the nuclear area for the filtration of radioactive liquid effluent, in the residual water treatment of the petrochemical industry, in the electronic industry for the ultrapure water production for the manufacture of conductors and laundering of microcircuits and in many other processes of separation. Diverse processes for measures of pores sizes in membranes exist, amongst these, electronic microscopy, of bubble point and mercury intrusion porosimetry, however the majority of these uses destructive techniques, of high cost or great time of analysis. The proposal of this work is to measure so great of pore being used ultrasonic technique in the time domain of the frequency and artificial neural networks. A receiving/generator of ultrasonic pulses, a immersion transducer of 25 MHz was used, a tank of immersion and microporous membranes of pores sizes of 0,2 μm, 0,4 μm, 0,6 μm, 8 μm, 10 μm and 12 μm. The ultrasonic signals after to cover the membrane, come back to the transducer (emitting/receiving) bringing information of the interaction of the signal with the membranes. These signals had been used for the training of neural networks, and these had supplied the necessary precision the distinction of the same ones. Soon after, technique with the one of electronic microscopy of sweepings was made the comparison of this. The experiment showed very resulted next to the results gotten with the MEV, what it indicated that the studied technique is ideal for measure of pore size in membranes for being not destructive and of this form to be able to be used also on-line of production. (author)

  9. Molecular commonality detection using an artificial enzyme membrane for in situ one-stop biosurveillance.

    Science.gov (United States)

    Ikeno, Shinya; Asakawa, Hitoshi; Haruyama, Tetsuya

    2007-08-01

    Biodetection and biosensing have been developed based on the concept of sensitivity toward specific molecules. However, current demand may require more levelheaded or far-sighted methods, especially in the field of biological safety and security. In the fields of hygiene, public safety, and security including fighting bioterrorism, the detection of biological contaminants, e.g., microorganisms, spores, and viruses, is a constant challenge. However, there is as yet no sophisticated method of detecting such contaminants in situ without oversight. The authors focused their attention on diphosphoric acid anhydride, which is a structure common to all biological phosphoric substances. Interestingly, biological phosphoric substances are peculiar substances present in all living things and include many different substances, e.g., ATP, ADP, dNTP, pyrophosphate, and so forth, all of which have a diphosphoric acid anhydride structure. The authors took this common structure as the basis of their development of an artificial enzyme membrane with selectivity for the structure common to all biological phosphoric substances and studied the possibility of its application to in situ biosurveillance sensors. The artificial enzyme membrane-based amperometric biosensor developed by the authors can detect various biological phosphoric substances, because it has a comprehensive molecular selectivity for the structure of these biological phosphoric substances. This in situ detection method of the common diphosphoric acid anhydride structure brings a unique advantage to the fabrication of in situ biosurveillance sensors for monitoring biological contaminants, e.g., microorganism, spores, and viruses, without an oversight, even if they were transformed.

  10. Investigation of the Efficacy of Transdermal Penetration Enhancers Through the Use of Human Skin and a Skin Mimic Artificial Membrane.

    Science.gov (United States)

    Balázs, Boglárka; Vizserálek, Gábor; Berkó, Szilvia; Budai-Szűcs, Mária; Kelemen, András; Sinkó, Bálint; Takács-Novák, Krisztina; Szabó-Révész, Piroska; Csányi, Erzsébet

    2016-03-01

    The aim of this study was to investigate the behavior of promising penetration enhancers through the use of 2 different skin test systems. Hydrogel-based transdermal formulations were developed with ibuprofen as a nonsteroidal anti-inflammatory drug. Transcutol and sucrose esters were used as biocompatible penetration enhancers. The permeability measurements were performed with ex vivo Franz diffusion cell methods and a newly developed Skin Parallel Artificial Membrane Permeability Assays (PAMPA) model. Franz diffusion measurement is commonly used as a research tool in studies of diffusion through synthetic membranes in vitro or penetration through ex vivo human skin, whereas Skin PAMPA involves recently published artificial membrane-based technology for the fast prediction of skin penetration. It is a 96-well plate-based model with optimized artificial membrane structure containing free fatty acid, cholesterol, and synthetic ceramide analog compounds to mimic the stratum corneum barrier function. Transdermal preparations containing 2.64% of different sucrose esters and/or Transcutol and a constant (5%) of ibuprofen were investigated to determine the effects of these penetration enhancers. The study demonstrated the good correlation of the permeability data obtained through use of human skin membrane and the in vitro Skin PAMPA system. The Skin PAMPA artificial membrane serves as quick and relatively deep tool in the early stages of transdermal delivery systems, through which the enhancing efficacy of excipients can be screened so as to facilitate the choice of effective penetration components. Copyright © 2016. Published by Elsevier Inc.

  11. Assessment of Passive Intestinal Permeability Using an Artificial Membrane Insert System.

    Science.gov (United States)

    Berben, Philippe; Brouwers, Joachim; Augustijns, Patrick

    2018-01-01

    Despite reasonable predictive power of current cell-based and cell-free absorption models for the assessment of intestinal drug permeability, high costs and lengthy preparation steps hamper their use. The use of a simple artificial membrane (without any lipids present) as intestinal barrier substitute would overcome these hurdles. In the present study, a set of 14 poorly water-soluble drugs, dissolved in 2 different media (fasted state simulated/human intestinal fluids [FaSSIF/FaHIF]), were applied to the donor compartment of an artificial membrane insert system (AMI-system) containing a regenerated cellulose membrane. Furthermore, to investigate the predictive capacity of the AMI-system as substitute for the well-established Caco-2 system to assess intestinal permeability, the same set of 14 drugs dissolved in FaHIF were applied to the donor compartment of a Caco-2 system. For 14 drugs, covering a broad range of physicochemical parameters, a reasonable correlation between both absorption systems was observed, characterized by a Pearson correlation coefficient r of 0.95 (FaHIF). Using the AMI-system, an excellent predictive capacity of FaSSIF as surrogate medium for FaHIF was demonstrated (r = 0.96). Based on the acquired data, the AMI-system appears to be a time- and cost-effective tool for the early-stage estimation of passive intestinal permeability for poorly water-soluble drugs. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2014-06-01

    Full Text Available To improve the efficacy and safety of dural repair in neurosurgical procedures, a new dural material derived from bacterial cellulose (BC was evaluated in a rabbit model with dural defects. We prepared artificial dura mater using bacterial cellulose which was incubated and fermented from Acetobacter xylinum. The dural defects of the rabbit model were repaired with BC membranes. All surgeries were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. All animals were humanely euthanized by intravenous injection of phenobarbitone, at each time point, after the operation. Then, the histocompatibility and inflammatory effects of BC were examined by histological examination, real-time fluorescent quantitative polymerase chain reaction (PCR and Western Blot. BC membranes evenly covered the surface of brain without adhesion. There were seldom inflammatory cells surrounding the membrane during the early postoperative period. The expression of inflammatory cytokines IL-1β, IL-6 and TNF-α as well as iNOS and COX-2 were lower in the BC group compared to the control group at 7, 14 and 21 days after implantation. BC can repair dural defects in rabbit and has a decreased inflammatory response compared to traditional materials. However, the long-term effects need to be validated in larger animals.

  13. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography.

    Science.gov (United States)

    Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin

    2017-01-06

    This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Artificial Formation and Tuning of Glycoprotein Networks on Live Cell Membranes: A Single-Molecule Tracking Study.

    Science.gov (United States)

    Möckl, Leonhard; Lindhorst, Thisbe K; Bräuchle, Christoph

    2016-03-16

    We present a method to artificially induce network formation of membrane glycoproteins and show the precise tuning of their interconnection on living cells. For this, membrane glycans are first metabolically labeled with azido sugars and then tagged with biotin by copper-free click chemistry. Finally, these biotin-tagged membrane proteins are interconnected with streptavidin (SA) to form an artificial protein network in analogy to a lectin-induced lattice. The degree of network formation can be controlled by the concentration of SA, its valency, and the concentration of biotin on membrane proteins. This was verified by investigation of the spatiotemporal dynamics of the SA-protein networks employing single-molecule tracking. It was also proven that this network formation strongly influences the biologically relevant process of endocytosis as it is known from natural lattices on the cell surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    Science.gov (United States)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon

  16. Development of Multichannel Artificial Lipid-Polymer Membrane Sensor for Phytomedicine Application

    Science.gov (United States)

    Ahmad, Mohd Noor; Ismail, Zhari; Chew, Oon–Sim; Islam, AKM Shafiqul; Shakaff, Ali Yeon Md

    2006-01-01

    Quality control of herbal medicines remain a challenging issue towards integrating phytomedicine into the primary health care system. As medicinal plants is a complicated system of mixtures, a rapid and cost-effective evaluation method to characterize the chemical fingerprint of the plant without performing laborious sample preparation procedure is reported. A novel research methodology based on an in-house fabricated multichannel sensor incorporating an array of artificial lipid-polymer membrane as a fingerprinting device for quality evaluation of a highly sought after herbal medicine in the Asean Region namely Eurycoma longifolia (Tongkat Ali). The sensor array is based on the principle of the bioelectronic tongue that mimics the human gustatory system through the incorporation of artificial lipid material as sensing element. The eight non-specific sensors have partially overlapping selectivity and cross-sensitivity towards the targeted analyte. Hence, electrical potential response represented by radar plot is used to characterize extracts from different parts of plant, age, batch-to-batch variation and mode of extraction of E. longifolia through the obtained potentiometric fingerprint profile. Classification model was also developed classifying various E. longifolia extracts with the aid of chemometric pattern recognition tools namely hierarchical cluster analysis (HCA) and principal component analysis (PCA). The sensor seems to be a promising analytical device for quality control based on potentiometric fingerprint analysis of phytomedicine.

  17. A new in vitro system for evaluation of passive intestinal drug absorption: establishment of a double artificial membrane permeation assay.

    Science.gov (United States)

    Kataoka, Makoto; Tsuneishi, Saki; Maeda, Yukako; Masaoka, Yoshie; Sakuma, Shinji; Yamashita, Shinji

    2014-11-01

    The aim of this present study was to establish a new in vitro assay, double artificial membrane permeation assay (DAMPA), to evaluate the human intestinal permeability of drugs. A double artificial membrane with an intracellular compartment was constructed in side-by-side chambers by sandwiching a filter containing buffer solution with impregnated lipophilic filters with dodecane containing 2w/v% phosphatidylcholine. Permeation data of ionic compounds clearly indicated that not only the pH value of the apical solution but also that of the intracellular compartment affected the permeability across the double artificial membrane. DAMPA was performed with 20 compounds at physiological pH (apical; 6.5, intracellular and basal; 7.4). Paracellular and transcellular permeabilities of compounds in human epithelium were estimated based on the characteristics of the paracellular pathway using physicochemical properties of compounds with the Renkin function and the area factor i.e. the difference in the effective surface area between human epithelium and the double artificial membrane, respectively. The human intestinal permeability of each compound was predicted by the sum of estimated transcellular and paracellular permeabilities. Predicted human intestinal permeability was significantly correlated with the fraction of absorbed dose in humans, indicating that DAMPA has the potential to predict oral absorption of drugs in humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. MEMS flexible artificial basilar membrane fabricated from piezoelectric aluminum nitride on an SU-8 substrate

    Science.gov (United States)

    Jang, Jongmoon; Jang, Jeong Hun; Choi, Hongsoo

    2017-07-01

    In this paper, we present a flexible artificial basilar membrane (FABM) that mimics the passive mechanical frequency selectivity of the basilar membrane. The FABM is composed of a cantilever array made of piezoelectric aluminum nitride (AlN) on an SU-8 substrate. We analyzed the orientations of the AlN crystals using scanning electron microscopy and x-ray diffraction. The AIN crystals are oriented in the c-axis (0 0 2) plane and effective piezoelectric coefficient was measured as 3.52 pm V-1. To characterize the frequency selectivity of the FABM, mechanical displacements were measured using a scanning laser Doppler vibrometer. When electrical and acoustic stimuli were applied, the measured resonance frequencies were in the ranges of 663.0-2369 Hz and 659.4-2375 Hz, respectively. These results demonstrate that the mechanical frequency selectivity of this piezoelectric FABM is close to the human communication frequency range (300-3000 Hz), which is a vital feature of potential auditory prostheses.

  19. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma.

    Science.gov (United States)

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine; Halvorsen, Trine Grønhaug; Øiestad, Elisabeth Leere; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2016-09-10

    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic solvent used as supported liquid membranes (SLMs), and into 50μL aqueous acceptor solutions. The acceptor solutions were subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using in-source fragmentation and monitoring the m/z 184→184 transition for investigation of phosphatidylcholines (PC), sphingomyelins (SM), and lysophosphatidylcholines (Lyso-PC). In both generic methods, no phospholipids were detected in the acceptor solutions. Thus, PALME appeared to be highly efficient for phospholipid removal. To further support this, qualitative (post-column infusion) and quantitative matrix effects were investigated with fluoxetine, fluvoxamine, and quetiapine as model analytes. No signs of matrix effects were observed. Finally, PALME was evaluated for the aforementioned drug substances, and data were in accordance with European Medicines Agency (EMA) guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. An angiogenesis platform using a cubic artificial eggshell with patterned blood vessels on chicken chorioallantoic membrane.

    Science.gov (United States)

    Huang, Wenjing; Itayama, Makoto; Arai, Fumihito; Furukawa, Katsuko S; Ushida, Takashi; Kawahara, Tomohiro

    2017-01-01

    The chorioallantoic membrane (CAM) containing tiny blood vessels is an alternative to large animals for studies involving angiogenesis and tissue engineering. However, there is no technique to design the direction of growing blood vessels on the CAM at the microscale level for tissue engineering experiments. Here, a methodology is provided to direct blood vessel formation on the surface of a three-dimensional egg yolk using a cubic artificial eggshell with six functionalized membranes. A structure on the lateral side of the eggshell containing a straight channel and an interlinked chamber was designed, and the direction and formation area of blood vessels with blood flow was artfully defined by channels with widths of 70-2000 μm, without sharply reducing embryo viability. The relationship between the size of interlinked chamber and the induction of blood vessels was investigated to establish a theory of design. Role of negative and positive pressure in the induction of CAM with blood vessels was investigated, and air pressure change in the culture chamber was measured to demonstrate the mechanism for blood vessel induction. Histological evaluation showed that components of CAM including chorionic membrane and blood vessels were induced into the channels. Based on our design theory, blood vessels were induced into arrayed channels, and channel-specific injection and screening were realized, which demonstrated proposed applications. The platform with position- and space-controlled blood vessels is therefore a powerful tool for biomedical research, which may afford exciting applications in studies involved in local stimulation of blood vessel networks and those necessary to establish a living system with blood flow from a beating heart.

  1. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network

    International Nuclear Information System (INIS)

    Pendashteh, Ali Reza; Fakhru'l-Razi, A.; Chaibakhsh, Naz; Abdullah, Luqman Chuah; Madaeni, Sayed Siavash; Abidin, Zurina Zainal

    2011-01-01

    Highlights: → Hypersaline oily wastewater was treated in a membrane bioreactor. → The effects of salinity and organic loading rate were evaluated. → The system was modeled by neural network and optimized by genetic algorithm. → The model prediction agrees well with experimental values. → The model can be used to obtain effluent characteristics less than discharge limits. - Abstract: A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000 mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372 kg COD/(m 3 day)) and cyclic time (12, 24, and 48 h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O and G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44 kg COD/(m 3 day), TDS of 78,000 mg/L and reaction time (RT) of 40 h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100 mg/L and met the discharge limits.

  2. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography.

    Science.gov (United States)

    Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto

    2016-06-10

    The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Nanopore formation process in artificial cell membrane induced by plasma-generated reactive oxygen species.

    Science.gov (United States)

    Tero, Ryugo; Yamashita, Ryuma; Hashizume, Hiroshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Hori, Masaru; Ito, Masafumi

    2016-09-01

    We investigated morphological change of an artificial lipid bilayer membrane induced by oxygen radicals which were generated by non-equilibrium atmospheric pressure plasma. Neutral oxygen species, O((3)Pj) and O2((1)Δg), were irradiated of a supported lipid bilayer existing under a buffer solution at various conditions of dose time and distances, at which the dose amounts of the oxygen species were calculated quantitatively. Observation using an atomic force microscope and a fluorescence microscope revealed that dose of the neutral oxygen species generated nanopores with the diameter of 10-50 nm in a phospholipid bilayer, and finally destructed the bilayer structure. We found that protrusions appeared on the lipid bilayer surface prior to the formation of nanopores, and we attributed the protrusions to the precursor of the nanopores. We propose a mechanism of the pore formation induced by lipid oxidation on the basis of previous experimental and theoretical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Retention behavior of flavonoids on immobilized artificial membrane chromatography and correlation with cell-based permeability.

    Science.gov (United States)

    Tsopelas, Fotios; Tsagkrasouli, Maria; Poursanidis, Pavlos; Pitsaki, Maria; Vasios, George; Danias, Panagiotis; Panderi, Irene; Tsantili-Kakoulidou, Anna; Giaginis, Constantinos

    2018-03-01

    The aim of the study was to investigate the immobilized artificial membrane (IAM) retention mechanism for a set of flavonoids and to evaluate the potential of IAM chromatography to model Caco-2 permeability. For this purpose, the retention behavior of 41 flavonoid analogs on two IAM stationary phases, IAM.PC.MG and IAM.PC.DD2, was investigated. Correlations between retention factors, logk w(IAM) and octanol-water partitioning (logP) were established and the role of hydroxyl groups of flavonoids to the underlying retention mechanism was explored. IAM retention and logP values were used to establish sound linear models with Caco-2 permeability (logP app ) taken from the literature. Both stepwise regression and multivariate analysis confirmed the contribution of hydrogen bond descriptors, as additional parameters in the either logk w(IAM) or logP models. Retention factors on both IAM stationary phases showed comparable performance with n-octanol-water partitioning towards Caco-2 permeability. Copyright © 2017 John Wiley & Sons, Ltd.

  5. The artificial membrane insert system as predictive tool for formulation performance evaluation.

    Science.gov (United States)

    Berben, Philippe; Brouwers, Joachim; Augustijns, Patrick

    2018-02-15

    In view of the increasing interest of pharmaceutical companies for cell- and tissue-free models to implement permeation into formulation testing, this study explored the capability of an artificial membrane insert system (AMI-system) as predictive tool to evaluate the performance of absorption-enabling formulations. Firstly, to explore the usefulness of the AMI-system in supersaturation assessment, permeation was monitored after induction of different degrees of loviride supersaturation. Secondly, to explore the usefulness of the AMI-system in formulation evaluation, a two-stage dissolution test was performed prior to permeation assessment. Different case examples were selected based on the availability of in vivo (intraluminal and systemic) data: (i) a suspension of posaconazole (Noxafil ® ), (ii) a cyclodextrin-based formulation of itraconazole (Sporanox ® ), and (iii) a micronized (Lipanthyl ® ) and nanosized (Lipanthylnano ® ) formulation of fenofibrate. The obtained results demonstrate that the AMI-system is able to capture the impact of loviride supersaturation on permeation. Furthermore, the AMI-system correctly predicted the effects of (i) formulation pH on posaconazole absorption, (ii) dilution on cyclodextrin-based itraconazole absorption, and (iii) food intake on fenofibrate absorption. Based on the applied in vivo/in vitro approach, the AMI-system combined with simple dissolution testing appears to be a time- and cost-effective tool for the early-stage evaluation of absorption-enabling formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Investigating the effects of membrane deformability on artificial capsule adhesion to the functionalized surface.

    Science.gov (United States)

    Balsara, Hiren D; Banton, Rohan J; Eggleton, Charles D

    2016-10-01

    Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the cell directly affects the rolling and adhesion behavior under viscous linear shear flow conditions. To that end, the primary objective of the present study was to investigate numerically the influence of capsule membrane's nonlinear material behavior (i.e. elastic-plastic to strain hardening) on the rolling and adhesion behavior of representative artificial capsules. Specifically, spherical capsules with radius of [Formula: see text] were represented using an elastic membrane governed by a Mooney-Rivlin strain energy functions. The surfaces of the capsules were coated with P-selectin glycoprotein-ligand-1 to initiate binding interaction with P-selectin-coated planar surface with density of [Formula: see text] under linear shear flow varying from 100 to [Formula: see text]. The numerical model is based on the Immersed Boundary Method for rolling of deformable capsule in shear flow coupled with Monte Carlo simulation for receptor/ligand interaction modeled using Bell model. The results reveal that the mechanical properties of the capsule play an important role in the rolling behavior and the binding kinetics between the capsule contact surface and the substrate. The rolling behavior of the strain hardening capsules is relatively smoother and slower compared to the elastic-plastic capsules. The strain hardening capsules exhibits higher contact area at any given shear rate compared to elastic-plastic capsules. The increase in contact area leads to decrease in rolling velocity. The capsule contact surface is not in complete contact with the substrate because of thin lubrication film that is trapped between the capsule and substrate. This creates a concave shape on the bottom

  7. A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model

    OpenAIRE

    Jongmoon Jang; JangWoo Lee; Seongyong Woo; David J. Sly; Luke J. Campbell; Jin-Ho Cho; Stephen J. O’Leary; Min-Hyun Park; Sungmin Han; Ji-Wong Choi; Jeong Hun Jang; Hongsoo Choi

    2015-01-01

    We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92?12.6?kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert ...

  8. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes.

    Science.gov (United States)

    Kappes, Matthew A; Miller, Cathy L; Faaberg, Kay S

    2015-07-01

    The membrane insertion and topology of nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) strain VR-2332 was assessed using a cell free translation system in the presence or absence of artificial membranes. Expression of PRRSV nsp2 in the absence of all other viral factors resulted in the genesis of both full-length nsp2 as well as a select number of C-terminal nsp2 isoforms. Addition of membranes to the translation stabilized the translation reaction, resulting in predominantly full-length nsp2 as assessed by immunoprecipitation. Analysis further showed full-length nsp2 strongly associates with membranes, along with two additional large nsp2 isoforms. Membrane integration of full-length nsp2 was confirmed through high-speed density fractionation, protection from protease digestion, and immunoprecipitation. The results demonstrated that nsp2 integrated into the membranes with an unexpected topology, where the amino (N)-terminal (cytoplasmic) and C-terminal (luminal) domains were orientated on opposite sides of the membrane surface. Published by Elsevier Inc.

  9. Artificial-enzyme gel membrane-based biosurveillance sensor with high reproducibility and long-term storage stability.

    Science.gov (United States)

    Ikeno, Shinya; Yoshida, Tetsuya; Haruyama, Tetsuya

    2009-02-01

    We propose that the most sophisticated strategy for primary biosurveillance is to exploit structural commonality through the detection of biologically relevant phosphoric substances. A novel assay, an artificial-enzyme membrane was designed and synthesized for sensor fabrication. This artificial-enzyme catalyzes the hydrolysis of the diphosphoric acid anhydride structure. This structure-selective, albeit not molecule-selective, catalytic hydrolysis was successfully coupled with amperometric detection. Since the catalytic reaction produces a dephosphorylation product (PO(4)(3-)), it can be reduced by an electrode potential of -250 mV vs. Ag/AgCl. Owing to the structural selectivity of the artificial-enzyme membrane, the sensor can detect biological phosphoric substances comprehensively that have the diphosphoric acid anhydride structure. The sensor successfully determined various biological phosphoric substances at concentrations in the micromolar (microM) to millimolar (mM) range, and it showed good functional stability and reproducibility in terms of sensor responses. This sensor was used to detect Escherichia coli lysed by heat treatment, and the response increased with increasing bacterial numbers. This unique technique for analyzing molecular commonality can be applied to the surveillance of biocontaminants, e.g. microorganisms, spores and viruses. Artificial-enzyme-based detection is a novel strategy for practical biosurveillance in the front line.

  10. Parallel artificial liquid membrane extraction of new psychoactive substances in plasma and whole blood.

    Science.gov (United States)

    Vårdal, Linda; Askildsen, Hilde-Merete; Gjelstad, Astrid; Øiestad, Elisabeth Leere; Edvardsen, Hilde Marie Erøy; Pedersen-Bjergaard, Stig

    2017-03-24

    Parallel artificial liquid membrane extraction (PALME) was combined with ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) and the potential for screening of new psychoactive substances (NPS) was investigated for the first time. PALME was performed in 96-well format comprising a donor plate, a supported liquid membrane (SLM), and an acceptor plate. Uncharged NPS were extracted from plasma or whole blood, across an organic SLM, and into an aqueous acceptor solution, facilitated by a pH gradient. MDAI (5,6-methylenedioxy-2-aminoindane), methylone, PFA (para-fluoroamphetamine), mCPP (meta-chlorophenylpiperazine), pentedrone, methoxetamine, MDPV (methylenedioxypyrovalerone), ethylphenidate, 2C-E (2,5-dimethoxy-4-ethylphenethylamine), bromo-dragonfly, and AH-7921 (3,4-dichloro-N-{[1-(dimethylamino)cyclohexyl]methyl}benzamide) were selected as representative NPS. Optimization of operational parameters was necessary as the NPS were novel to PALME, and because PALME was performed from whole blood for the very first time. In the PALME method developed for plasma, NPS were extracted from a 250μL alkalized donor solution consisting of 125μL plasma sample, 115μL 40mM NaOH, and 10μL internal standard. In the PALME method from whole blood, the 250μL alkalized donor solution consisted of 100μL whole blood, 50μL deionized water, 75μL 80mM NaOH, and 25μL internal standard. In both methods, extraction was accomplished across an SLM of 5μL dodecyl acetate with 1% trioctylamine (w/w), and further into an acidic acceptor solution of 50μL 20mM formic acid. The extraction was promoted by agitation at 900rpm and was carried out for 120min. Method validation was performed and the following parameters were considered: linearity, limits of quantification (LOQ), intra- and inter-day precision, accuracy, extraction recoveries, carry-over, and matrix effects. The validation results were in accordance with FDA guidelines. Copyright © 2017 Elsevier B.V. All

  11. Effects of the Membrane Action of Tetralin on the Functional and Structural Properties of Artificial and Bacterial Membranes

    NARCIS (Netherlands)

    SIKKEMA, J; POOLMAN, B; KONINGS, WN; DEBONT, JAM

    Tetralin is toxic to bacterial cells at concentrations below 100-mu-mol/liter. To assess the inhibitory action of tetralin on bacterial membranes, a membrane model system, consisting of proteoliposomes in which beef heart cytochrome c oxidase was reconstituted as the proton motive force-generating

  12. Construction of functional pancreatic artificial islet tissue composed of fibroblast-modified polylactic- co-glycolic acid membrane and pancreatic stem cells.

    Science.gov (United States)

    Liu, Liping; Tan, Jing; Li, Baoyuan; Xie, Qian; Sun, Junwen; Pu, Hongli; Zhang, Li

    2017-09-01

    Objective To improve the biocompatibility between polylactic- co-glycolic acid membrane and pancreatic stem cells, rat fibroblasts were used to modify the polylactic- co-glycolic acid membrane. Meanwhile, we constructed artificial islet tissue by compound culturing the pancreatic stem cells and the fibroblast-modified polylactic- co-glycolic acid membrane and explored the function of artificial islets in diabetic nude mice. Methods Pancreatic stem cells were cultured on the fibroblast-modified polylactic- co-glycolic acid membrane in dulbecco's modified eagle medium containing activin-A, β-catenin, and exendin-4. The differentiated pancreatic stem cells combined with modified polylactic- co-glycolic acid membrane were implanted subcutaneously in diabetic nude mice. The function of artificial islet tissue was explored by detecting blood levels of glucose and insulin in diabetic nude mice. Moreover, the proliferation and differentiation of pancreatic stem cells on modified polylactic- co-glycolic acid membrane as well as the changes on the tissue structure of artificial islets were investigated by immunofluorescence and haematoxylin and eosin staining. Results The pancreatic stem cells differentiated into islet-like cells and secreted insulin when cultured on fibroblast-modified polylactic- co-glycolic acid membrane. Furthermore, when the artificial islet tissues were implanted into diabetic nude mice, the pancreatic stem cells combined with polylactic- co-glycolic acid membrane modified by fibroblasts proliferated, differentiated, and secreted insulin to reduce blood glucose levels in diabetic nude mice. Conclusion Pancreatic stem cells can be induced to differentiate into islet-like cells in vitro. In vivo, the artificial islet tissue can effectively regulate the blood glucose level in nude mice within a short period. However, as time increased, the structure of the artificial islets was destroyed due to the erosion of blood cells that resulted in the gradual

  13. Prediction of the Passive Intestinal Absorption of Medicinal Plant Extract Constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA).

    Science.gov (United States)

    Petit, Charlotte; Bujard, Alban; Skalicka-Woźniak, Krystyna; Cretton, Sylvian; Houriet, Joëlle; Christen, Philippe; Carrupt, Pierre-Alain; Wolfender, Jean-Luc

    2016-03-01

    At the early drug discovery stage, the high-throughput parallel artificial membrane permeability assay is one of the most frequently used in vitro models to predict transcellular passive absorption. While thousands of new chemical entities have been screened with the parallel artificial membrane permeability assay, in general, permeation properties of natural products have been scarcely evaluated. In this study, the parallel artificial membrane permeability assay through a hexadecane membrane was used to predict the passive intestinal absorption of a representative set of frequently occurring natural products. Since natural products are usually ingested for medicinal use as components of complex extracts in traditional herbal preparations or as phytopharmaceuticals, the applicability of such an assay to study the constituents directly in medicinal crude plant extracts was further investigated. Three representative crude plant extracts with different natural product compositions were chosen for this study. The first extract was composed of furanocoumarins (Angelica archangelica), the second extract included alkaloids (Waltheria indica), and the third extract contained flavonoid glycosides (Pueraria montana var. lobata). For each medicinal plant, the effective passive permeability values Pe (cm/s) of the main natural products of interest were rapidly calculated thanks to a generic ultrahigh-pressure liquid chromatography-UV detection method and because Pe calculations do not require knowing precisely the concentration of each natural product within the extracts. The original parallel artificial membrane permeability assay through a hexadecane membrane was found to keep its predictive power when applied to constituents directly in crude plant extracts provided that higher quantities of the extract were initially loaded in the assay in order to ensure suitable detection of the individual constituents of the extracts. Such an approach is thus valuable for the high

  14. [Incorporation of glycoproteins of the Aujeszky's disease virus ( Suid herpesvirus 1) into artificial liposome membranes and their interaction with cells].

    Science.gov (United States)

    Vrublevskaia, V V; Vinokurov, M G; Kholodkov, O A; Kornev, A N; Morenkov, O S

    2004-01-01

    The purpose of the case study was to investigate the interplay between liposomes, containing the in-built glycoproteins of the Aujeszky disease virus (ADV, Suid herpesvirus 1) with plasmatic membranes of sensitive cells. The conditions of reconstructing the ADV glycoproteins into artificial-liposome membranes were optimized. The above liposomes (virosomes), 40 x 200 nm, were impermeable to univalent ions, which confirmed the virosome membranes were intact. The gE and gB glycoproteins (90-98% of them) were located, inside the liposome membrane with the outwards orientation of their ecto-domain fragments. Virosomes were binding with cells in the dose-dependent mode. The purified ADV virions, the ADV gB glycoproteins and heparin inhibited such binding process of virosomes with cells, which denoted the specificity of their interaction with cells. An effective internalization of cell-binding virosomes was observed at 37 degrees C. The conclusion is that the ADV glycoproteins, constructed into the liposome membranes, simulate adequately enough the viral receptor structures and that the thus obtained virosomes could be used to investigate the interplay between alpha-herpes viruses and cells.

  15. Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid.

    Science.gov (United States)

    Arefi-Oskoui, Samira; Khataee, Alireza; Vatanpour, Vahid

    2017-07-10

    In this research, MgAl-CO 3 2- nanolayered double hydroxide (NLDH) was synthesized through a facile coprecipitation method, followed by a hydrothermal treatment. The prepared NLDHs were used as a hydrophilic nanofiller for improving the performance of the PVDF-based ultrafiltration membranes. The main objective of this research was to obtain the optimized formula of NLDH/PVDF nanocomposite membrane presenting the best performance using computational techniques as a cost-effective method. For this aim, an artificial neural network (ANN) model was developed for modeling and expressing the relationship between the performance of the nanocomposite membrane (pure water flux, protein flux and flux recovery ratio) and the affecting parameters including the NLDH, PVP 29000 and polymer concentrations. The effects of the mentioned parameters and the interaction between the parameters were investigated using the contour plot predicted with the developed model. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle techniques were applied to characterize the nanocomposite membranes and to interpret the predictions of the ANN model. The developed ANN model was introduced to genetic algorithm (GA) as a bioinspired optimizer to determine the optimum values of input parameters leading to high pure water flux, protein flux, and flux recovery ratio. The optimum values for NLDH, PVP 29000 and the PVDF concentration were determined to be 0.54, 1, and 18 wt %, respectively. The performance of the nanocomposite membrane prepared using the optimum values proposed by GA was investigated experimentally, in which the results were in good agreement with the values predicted by ANN model with error lower than 6%. This good agreement confirmed that the nanocomposite membranes prformance could be successfully modeled and optimized by ANN-GA system.

  16. FUSION OF ARTIFICIAL MEMBRANES WITH MAMMALIAN SPERMATOZOA - SPECIFIC INVOLVEMENT OF THE EQUATORIAL SEGMENT AFTER ACROSOME REACTION

    NARCIS (Netherlands)

    ARTS, EGJM; KUIKEN, J; JAGER, S; HOEKSTRA, D

    1993-01-01

    The fusogenic properties of bovine and human spermatozoa membranes were investigated, using phospholipid bilayers (liposomes) as target membranes. Fusion was monitored by following lipid mixing, as revealed by an assay based on resonance-energy transfer. In addition, fusion was visualized by

  17. The Effect of Tethers on Artificial Cell Membranes: A Coarse-Grained Molecular Dynamics Study.

    Directory of Open Access Journals (Sweden)

    William Hoiles

    Full Text Available Tethered bilayer lipid membranes (tBLMs provide a stable platform for modeling the dynamics and order of biological membranes where the tethers mimic the cytoskeletal supports present in biological cell membranes. In this paper coarse-grained molecular dynamics (CGMD is applied to study the effects of tethers on lipid membrane properties. Using results from the CGMD model and the overdamped Fokker-Planck equation, we show that the diffusion tensor and particle density of water in the tBLM is spatially dependent. Further, it is shown that the membrane thickness, lipid diffusion, defect density, free energy of lipid flip-flop, and membrane dielectric permittivity are all dependent on the tether density. The numerically computed results from the CGMD model are in agreement with the experimentally measured results from tBLMs containing different tether densities and lipids derived from Archaebacteria. Additionally, using experimental measurements from Escherichia coli bacteria and Saccharomyces Cerevisiae yeast tethered membranes, we illustrate how previous molecular dynamics results can be combined with the proposed model to estimate the dielectric permittivity and defect density of these membranes as a function of tether density.

  18. The Effect of Tethers on Artificial Cell Membranes: A Coarse-Grained Molecular Dynamics Study.

    Science.gov (United States)

    Hoiles, William; Gupta, Rini; Cornell, Bruce; Cranfield, Charles; Krishnamurthy, Vikram

    2016-01-01

    Tethered bilayer lipid membranes (tBLMs) provide a stable platform for modeling the dynamics and order of biological membranes where the tethers mimic the cytoskeletal supports present in biological cell membranes. In this paper coarse-grained molecular dynamics (CGMD) is applied to study the effects of tethers on lipid membrane properties. Using results from the CGMD model and the overdamped Fokker-Planck equation, we show that the diffusion tensor and particle density of water in the tBLM is spatially dependent. Further, it is shown that the membrane thickness, lipid diffusion, defect density, free energy of lipid flip-flop, and membrane dielectric permittivity are all dependent on the tether density. The numerically computed results from the CGMD model are in agreement with the experimentally measured results from tBLMs containing different tether densities and lipids derived from Archaebacteria. Additionally, using experimental measurements from Escherichia coli bacteria and Saccharomyces Cerevisiae yeast tethered membranes, we illustrate how previous molecular dynamics results can be combined with the proposed model to estimate the dielectric permittivity and defect density of these membranes as a function of tether density.

  19. Employment of Voltammetry in Studies of Transport Processes across Artificial Phospholipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Šestáková, Ivana; Navrátil, Tomáš; Josypčuk, Bohdan

    2016-01-01

    Roč. 28, č. 11 (2016), s. 2754-2759 ISSN 1040-0397 Institutional support: RVO:61388955 Keywords : phospholipid membrane * cadmium * calcium ionophore (calcimycin) Subject RIV: CG - Electrochemistry Impact factor: 2.851, year: 2016

  20. Coating membranes for a sorbent-based artificial liver: adsorption characteristics

    NARCIS (Netherlands)

    de Koning, H. W.; Chamuleau, R. A.; Bantjes, A.

    1982-01-01

    Techniques are described for the coating of sorbents to be used in an artificial liver support system based on mixed sorbent bed hemoperfusion. Activated charcoal has been coated with cellulose acetate (CA) by solvent evaporation. With Amberlite XAD-4, the Wurster technique was used for coating with

  1. Protein permeation through polymer membranes for hybrid-type artificial pancreas

    International Nuclear Information System (INIS)

    Burczak, K.; Fujisato, Toshiya; Ikada, Yoshito; Hatada, Motoyoshi.

    1991-01-01

    Hydrogel membranes were prepared by radiation crosslinking of poly (vinyl alcohol) (PVA) in aqueous solutions. Effects of PVA concentration, PVA molecular weight, and radiation dose on the permeation of insulin and immunoglobulin through the membranes were investigated. Glucose permeation was also studied. The crosslinking density affected the size of macromolecular mesh of hydrogel network as well as the water content of membrane responsible for the diffusion of the solutes. The diffusion coefficient linearly increased for all the solutes with the increasing water content in PVA hydrogels, indicating that diffusion occurs primarily through the water hydrating the polymer network. The increase in crosslinking density of hydrogels by changing PVA molecular weight brought about the decrease in mesh size of the hydrogels, which, in turn, had an influence on the diffusion of immunoglobulin, but not of insulin and glucose. (author)

  2. Catalytic, Conductive Bipolar Membrane Interfaces through Layer-by-Layer Deposition for the Design of Membrane-Integrated Artificial Photosynthesis Systems.

    Science.gov (United States)

    McDonald, Michael B; Freund, Michael S; Hammond, Paula T

    2017-11-23

    In the presence of an electric field, bipolar membranes (BPMs) are capable of initiating water disassociation (WD) within the interfacial region, which can make water splitting for renewable energy in the presence of a pH gradient possible. In addition to WD catalytic efficiency, there is also the need for electronic conductivity in this region for membrane-integrated artificial photosynthesis (AP) systems. Graphene oxide (GO) was shown to catalyze WD and to be controllably reduced, which resulted in electronic conductivity. Layer-by-layer (LbL) film deposition was employed to improve GO film uniformity in the interfacial region to enhance WD catalysis and, through the addition of a conducting polymer in the process, add electronic conductivity in a hybrid film. Three different deposition methods were tested to optimize conducting polymer synthesis with the oxidant in a metastable solution and to yield the best film properties. It was found that an approach that included substrate dipping in a solution containing the expected final monomer/oxidant ratio provided the most predictable film growth and smoothest films (by UV/Vis spectroscopy and atomic force microscopy/scanning electron microscopy, respectively), whereas dipping in excess oxidant or co-spraying the oxidant and monomer produced heterogeneous films. Optimized films were found to be electronically conductive and produced a membrane ohmic drop that was acceptable for AP applications. Films were integrated into the interfacial region of BPMs and revealed superior WD efficiency (≥1.4 V at 10 mA cm -2 ) for thinner films (<10 bilayers≈100 nm) than for either the pure GO catalyst or conducting polymer individually, which indicated that there was a synergistic effect between these materials in the structure configured by the LbL method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The influence of cholesterol precursor--desmosterol--on artificial lipid membranes.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Węder, Karolina; Mach, Marzena; Flasiński, Michał; Wydro, Paweł

    2015-08-01

    The disorders in cholesterol biosynthesis pathway and various diseases manifest in the accumulation of cholesterol precursors in the human tissues and cellular membranes. In this paper the effect of desmosterol--one of cholesterol precursors--on model lipid membranes was studied. The investigations were performed for binary SM/desmo and POPC/desmo and ternary SM/POPC/desmo monolayers. Moreover, the experiments based on the gradual substitution of cholesterol by desmosterol in SM/POPC/chol=1:1:1 system were done. The obtained results allowed one to conclude that desmosterol is of lower domains promoting and stabilizing properties and packs less tightly with the lipids in monolayers. Moreover, desmosterol probably could replace cholesterol in model membranes, but only at its low proportion in the system (2%), however, at a higher degree of cholesterol substitution a significant decrease of the monolayer stability and packing and alterations in the film morphology were detected. The results collected in this work together with those from previous experiments allowed one to analyze the effect of a double bond in the sterol side chain as well as its position in the ring system on membrane activity of the molecule and to verify Bloch hypothesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Role of membrane potential on artificial transformation of E. coli with plasmid DNA.

    Science.gov (United States)

    Panja, Subrata; Saha, Swati; Jana, Bimal; Basu, Tarakdas

    2006-12-15

    The standard method of transformation of Escherichea coli with plasmid DNA involves two important steps: cells are first suspended in 100mM CaCl(2) at 0 degrees C (in which DNA is added), followed by the administration of a heat-pulse from 0 to 42 degrees C for 90s [Cohen, S., Chang, A., Hsu, L., 1972. Nonchromosomal antibiotic resistance in bacteria. Proc. Natl. Acad. Sci. U.S.A., 69, 2110-2114]. The first step makes the cells competent for uptake of DNA and the second step is believed to facilitate the DNA entry into the cells by an unknown mechanism. In this study, the measure of membrane potential of the intact competent cells, at different steps of transformation process, either by the method of spectrofluorimetry or that of flow cytometry, indicates that the heat-pulse step (0-->42 degrees C) heavily decreases the membrane potential. A subsequent cold shock (42-->0 degrees C) raises the potential further to its original value. Moreover, the efficiency of transformation of E. coli XL1 Blue cells with plasmid pUC19 DNA remains unaltered when the heat-pulse step is replaced by the incubation of the DNA-adsorbed competent cells with 10 microM carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for 90s at 0 degrees C. Since the CCCP, a well-known protonophore, reduces membrane potential by dissipating the proton-motive-force (PMF) across E. coli plasma membrane, our experimental results suggest that the heat-pulse step of the standard transformation procedure facilitates DNA entry into the cells by lowering the membrane potential.

  5. Erythrocyte-Membrane-Enveloped Perfluorocarbon as Nanoscale Artificial Red Blood Cells to Relieve Tumor Hypoxia and Enhance Cancer Radiotherapy.

    Science.gov (United States)

    Gao, Min; Liang, Chao; Song, Xuejiao; Chen, Qian; Jin, Qiutong; Wang, Chao; Liu, Zhuang

    2017-09-01

    Hypoxia, a common feature within many types of solid tumors, is known to be closely associated with limited efficacy for cancer therapies, including radiotherapy (RT) in which oxygen is essential to promote radiation-induced cell damage. Here, an artificial nanoscale red-blood-cell system is designed by encapsulating perfluorocarbon (PFC), a commonly used artificial blood substitute, within biocompatible poly(d,l-lactide-co-glycolide) (PLGA), obtaining PFC@PLGA nanoparticles, which are further coated with a red-blood-cell membrane (RBCM). The developed PFC@PLGA-RBCM nanoparticles with the PFC core show rather efficient loading of oxygen, as well as greatly prolonged blood circulation time owing to the coating of RBCM. With significantly improved extravascular diffusion within the tumor mass, owing to their much smaller nanoscale sizes compared to native RBCs with micrometer sizes, PFC@PLGA-RBCM nanoparticles are able to effectively deliver oxygen into tumors after intravenous injection, leading to greatly relieved tumor hypoxia and thus remarkably enhanced treatment efficacy during RT. This work thus presents a unique type of nanoscale RBC mimic for efficient oxygen delivery into solid tumors, favorable for cancer treatment by RT, and potentially other types of therapy as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. One-step extraction of polar drugs from plasma by Parallel Artificial Liquid Membrane Extraction

    DEFF Research Database (Denmark)

    Pilařová, Veronika; Sultani, Mumtaz; Ask, Kristine Skoglund

    2017-01-01

    -throughput is achievable, in addition to the green chemistry offered by using PALME. The consumption of organic solvent is minimized to 3-5μL per sample. With a sample volume of 250μL and acceptor solution volume of 50μL, a maximal enrichment factor of five is achievable. Based on these parameters, a new method...... for extraction of polar basic drugs was developed in the present work. The basic drugs hydralazine, ephedrine, metaraminol, salbutamol, and cimetidine were used as model analytes, and were extracted from alkalized human plasma into an aqueous solution via the supported liquid membrane. The extraction...... was promoted by a carrier dissolved in the membrane, creating a temporary ion-pair complex between the hydrophilic drug and the carrier. As the model analytes were extracted directly into an aqueous solution, there was no need for evaporation of the extract before injection into LC-MS. Hence, the sample...

  7. Hollow Fiber Membrane Modification with Functional Zwitterionic Macromolecules for Improved Thromboresistance in Artificial Lungs

    OpenAIRE

    Ye, Sang-Ho; Arazawa, David T.; Zhu, Yang; Shankarraman, Venkat; Malkin, Alexander D.; Kimmel, Jeremy D.; Gamble, Lara J.; Ishihara, Kazuhiko; Federspiel, William J.; Wagner, William R.

    2015-01-01

    Respiratory assist devices seek optimized performance in terms of gas transfer efficiency and thromboresistance to minimize device size and reduce complications associated with inadequate blood biocompatibility. The exchange of gas with blood occurs at the surface of the hollow fiber membranes (HFMs) used in these devices. In this study, three zwitterionic macromolecules were attached to HFM surfaces to putatively improve thromboresistance: (1) carboxyl-functionalized zwitterionic phosphorylc...

  8. Development of Multichannel Artificial Lipid-Polymer Membrane Sensor for Phytomedicine Application

    Directory of Open Access Journals (Sweden)

    Ali Yeon Md Shakaff

    2006-10-01

    Full Text Available Quality control of herbal medicines remain a challenging issue towardsintegrating phytomedicine into the primary health care system. As medicinal plants is acomplicated system of mixtures, a rapid and cost-effective evaluation method tocharacterize the chemical fingerprint of the plant without performing laborious samplepreparation procedure is reported. A novel research methodology based on an in-housefabricated multichannel sensor incorporating an array of artificial lipid-polymer membraneas a fingerprinting device for quality evaluation of a highly sought after herbal medicine inthe Asean Region namely Eurycoma longifolia (Tongkat Ali. The sensor array is based onthe principle of the bioelectronic tongue that mimics the human gustatory system throughthe incorporation of artificial lipid material as sensing element. The eight non-specificsensors have partially overlapping selectivity and cross-sensitivity towards the targetedanalyte. Hence, electrical potential response represented by radar plot is used to characterizeextracts from different parts of plant, age, batch-to-batch variation and mode of extraction ofE. longifolia through the obtained potentiometric fingerprint profile. Classification modelwas also developed classifying various E. longifolia extracts with the aid of chemometricpattern recognition tools namely hierarchical cluster analysis (HCA and principalcomponent analysis (PCA. The sensor seems to be a promising analytical device for qualitycontrol based on potentiometric fingerprint analysis of phytomedicine.

  9. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy.

    Science.gov (United States)

    Ando, Jun; Kinoshita, Masanao; Cui, Jin; Yamakoshi, Hiroyuki; Dodo, Kosuke; Fujita, Katsumasa; Murata, Michio; Sodeoka, Mikiko

    2015-04-14

    Sphingomyelin (SM) and cholesterol (chol)-rich domains in cell membranes, called lipid rafts, are thought to have important biological functions related to membrane signaling and protein trafficking. To visualize the distribution of SM in lipid rafts by means of Raman microscopy, we designed and synthesized an SM analog tagged with a Raman-active diyne moiety (diyne-SM). Diyne-SM showed a strong peak in a Raman silent region that is free of interference from intrinsic vibrational modes of lipids and did not appear to alter the properties of SM-containing monolayers. Therefore, we used Raman microscopy to directly visualize the distribution of diyne-SM in raft-mimicking domains formed in SM/dioleoylphosphatidylcholine/chol ternary monolayers. Raman images visualized a heterogeneous distribution of diyne-SM, which showed marked variation, even within a single ordered domain. Specifically, diyne-SM was enriched in the central area of raft domains compared with the peripheral area. These results seem incompatible with the generally accepted raft model, in which the raft and nonraft phases show a clear biphasic separation. One of the possible reasons is that gradual changes of SM concentration occur between SM-rich and -poor regions to minimize hydrophobic mismatch. We believe that our technique of hyperspectral Raman imaging of a single lipid monolayer opens the door to quantitative analysis of lipid membranes by providing both chemical information and spatial distribution with high (diffraction-limited) spatial resolution.

  10. Multilayered microfilter using a nanoporous PES membrane and applicable as the dialyzer of a wearable artificial kidney

    Science.gov (United States)

    Gu, Ye; Miki, Norihisa

    2009-06-01

    We present a multilayered microfilter for use as a dialyzer of a wearable artificial kidney separating metabolic wastes such as urea, uric acid and creatinine from blood. The microfilter device is assembled by alternately bonding chamber layers made of Ti by wet etching and semipermeable polymeric membranes made of polyethersulfone (PES) by the wet phase inversion method. The PES membranes sandwiched between each two chamber layers act as barriers to molecules larger than 1.7 nm. The multilayered microfilter was geometrically optimized with respect to our theoretical equations and experimental results in order to obtain kidney-competitive performance. Each diffusing unit of our device, which is only 24 × 24 × 0.4 mm3 in size, was proved experimentally to be capable of allowing a flow rate of up to 1 ml min-1 under an input pressure of only 10 kPa, which is the hydrostatic pressure in human renal arteries, while having a urea removal rate of 18 µg min-1.

  11. Multilayered microfilter using a nanoporous PES membrane and applicable as the dialyzer of a wearable artificial kidney

    International Nuclear Information System (INIS)

    Gu, Ye; Miki, Norihisa

    2009-01-01

    We present a multilayered microfilter for use as a dialyzer of a wearable artificial kidney separating metabolic wastes such as urea, uric acid and creatinine from blood. The microfilter device is assembled by alternately bonding chamber layers made of Ti by wet etching and semipermeable polymeric membranes made of polyethersulfone (PES) by the wet phase inversion method. The PES membranes sandwiched between each two chamber layers act as barriers to molecules larger than 1.7 nm. The multilayered microfilter was geometrically optimized with respect to our theoretical equations and experimental results in order to obtain kidney-competitive performance. Each diffusing unit of our device, which is only 24 × 24 × 0.4 mm 3 in size, was proved experimentally to be capable of allowing a flow rate of up to 1 ml min −1 under an input pressure of only 10 kPa, which is the hydrostatic pressure in human renal arteries, while having a urea removal rate of 18 µg min −1

  12. Effect of Esters on the Permeation of Chemicals with Different Polarities through Synthetic Artificial Membranes Using a High-Throughput Diffusion Cell Array.

    Science.gov (United States)

    Uchida, Takashi; Nishioka, Keisuke; Motoki, Anzu; Yakumaru, Masafumi; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji

    2016-01-01

    This study investigated the effects of 25 kinds of esters that are used in cosmetics on the permeation of four model compounds with different polarities (caffeine [CF], aminopyrine [AMP], benzoic acid [BA], and flurbiprofen [FP]). The amount of each model compound that permeated through two types of artificial membrane (silicone and Strat-M ® ) was measured and correlated with the physicochemical properties of the esters, including their solubility, viscosity, wettability, surface tension, and uptake. The amount of each model compound that permeated through the silicone membrane was not significantly correlated with the solubility of the esters but was significantly correlated with all other measured physical properties of the esters. Similar correlations were observed for the amounts of AMP, BA, and FP that passed through the Strat-M ® membrane. However, the amount of CF that permeated through the Strat-M ® membrane also correlated with the solubility of the esters. There was a highly significant correlation between the amount permeating through the silicone and Strat-M ® membranes because the model compounds had high lipophilicity. These findings demonstrated that to control the permeation of various chemicals through artificial membranes, it is important to consider the uptake of the esters and that the solubility of the esters is also an important consideration when using a more complex membrane.

  13. An artificial neural network for membrane-bound catechol-O-methyltransferase biosynthesis with Pichia pastoris methanol-induced cultures.

    Science.gov (United States)

    Pedro, Augusto Q; Martins, Luís M; Dias, João M L; Bonifácio, Maria J; Queiroz, João A; Passarinha, Luís A

    2015-08-07

    Membrane proteins are important drug targets in many human diseases and gathering structural information regarding these proteins encourages the pharmaceutical industry to develop new molecules using structure-based drug design studies. Specifically, membrane-bound catechol-O-methyltransferase (MBCOMT) is an integral membrane protein that catalyzes the methylation of catechol substrates and has been linked to several diseases such as Parkinson's disease and Schizophrenia. Thereby, improvements in the clinical outcome of the therapy to these diseases may come from structure-based drug design where reaching MBCOMT samples in milligram quantities are crucial for acquiring structural information regarding this target protein. Therefore, the main aim of this work was to optimize the temperature, dimethylsulfoxide (DMSO) concentration and the methanol flow-rate for the biosynthesis of recombinant MBCOMT by Pichia pastoris bioreactor methanol-induced cultures using artificial neural networks (ANN). The optimization trials intended to evaluate MBCOMT expression by P. pastoris bioreactor cultures led to the development of a first standard strategy for MBCOMT bioreactor biosynthesis with a batch growth on glycerol until the dissolved oxygen spike, 3 h of glycerol feeding and 12 h of methanol induction. The ANN modeling of the aforementioned fermentation parameters predicted a maximum MBCOMT specific activity of 384.8 nmol/h/mg of protein at 30°C, 2.9 mL/L/H methanol constant flow-rate and with the addition of 6% (v/v) DMSO with almost 90% of healthy cells at the end of the induction phase. These results allowed an improvement of MBCOMT specific activity of 6.4-fold in comparison to that from the small-scale biosynthesis in baffled shake-flasks. The ANN model was able to describe the effects of temperature, DMSO concentration and methanol flow-rate on MBCOMT specific activity, as shown by the good fitness between predicted and observed values. This experimental procedure

  14. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells.

    Science.gov (United States)

    Lorent, Joseph H; Quetin-Leclercq, Joëlle; Mingeot-Leclercq, Marie-Paule

    2014-11-28

    Saponins, amphiphiles of natural origin with numerous biological activities, are widely used in the cosmetic and pharmaceutical industry. Some saponins exhibit relatively selective cytotoxic effects on cancer cells but the tendency of saponins to induce hemolysis limits their anticancer potential. This review focused on the effects of saponin activity on membranes and consequent implications for red blood and cancer cells. This activity seems to be strongly related to the amphiphilic character of saponins that gives them the ability to self-aggregate and interact with membrane components such as cholesterol and phospholipids. Membrane interactions of saponins with artificial membrane models, red blood and cancer cells are reviewed with respect to their molecular structures. The review considered the mechanisms of these membrane interactions and their consequences including the modulation of membrane dynamics, interaction with membrane rafts, and membrane lysis. We summarized current knowledge concerning the mechanisms involved in the interactions of saponins with membrane lipids and examined the structure activity relationship of saponins regarding hemolysis and cancer cell death. A critical analysis of these findings speculates on their potential to further develop new anticancer compounds.

  15. Effect of artificial and natural phospholipid membranes on rate of sperm whale oxymyoglobin autooxidation.

    Science.gov (United States)

    Postnikova, G B; Shekhovtsova, E A

    2013-03-01

    We were the first to show that MbO2 deoxygenation in the cell occurs only upon interaction of myoglobin with mitochondrial membrane, which must be accompanied by changes in the heme cavity conformation of the protein and its affinity for the ligand. Under aerobic conditions, some changes in the equilibrium O2 dissociation constant (Kdis) can be detected by changes of the rate of MbO2 autooxidation, i.e. spontaneous turning it into metMb (kox), as far as a direct correlation between Kdis and kox is experimentally shown. In this work, we studied the effect on MbO2 autooxidation rate of phospholipid liposomes from neutral soybean phosphatidylcholine (lecithin) and from negatively charged 1-palmitoyl-2-oleylphosphatidylglycerol (POPG) at various phospholipid/MbO2 ratios from 25 : 1 to 100 : 1, and also the effect of rat liver mitochondria at concentration of 1 and 2 mg/ml mitochondrial protein (at 22 and 37°C). In all cases, kox was found to increase due to interaction of the protein with phospholipid membranes. The effect of negatively charged liposomes from POPG on kox is significantly greater than that of neutral lecithin liposomes. At the POPG/MbO2 molar ratio of 25 : 1, MbO2 autooxidation rate is almost 25-fold increased compared to the control, whereas in the presence of 50-fold molar excess of lecithin, kox is only ~10 times higher (10 mM buffer, pH 7.2, 22°C). With the same phospholipid/MbO2 ratio of 100 : 1, kox is 7 times higher for the POPG than for lecithin liposomes. In the presence of mitochondria inhibited by antimycin A, kox grows proportionally to their concentration (about 10-fold per 1 mg/ml of mitochondrial protein), and practically does not change after adding superoxide dismutase in the reaction mixture. The kox value decreases markedly at high ionic strength, thus suggesting an important role of coulombic electrostatics in the myoglobin-mitochondrial interaction. The increase in the autooxidation rate of MbO2 (and hence its Kdis) due to the

  16. Fabrication of Core-Shell Nanotube Array for Artificial Photosynthesis Featuring an Ultrathin Composite Separation Membrane.

    Science.gov (United States)

    Edri, Eran; Aloni, Shaul; Frei, Heinz

    2018-01-23

    Macroscale arrays of cobalt oxide-silica core-shell nanotubes with high aspect ratio and ultrathin walls of less than 20 nm have been fabricated. The silica shells feature embedded oligo-para(phenylenevinylene) molecules for charge transport across the insulating silica layer, which is tightly controlled by their electronic properties. The assembly is based on the use of a sacrificial Si nanorod array template combined with atomic layer deposition, covalent anchoring of organic wire molecules, and dry cryo-etching. High-resolution TEM imaging of samples prepared by microtome affords structural details of single core-shell nanotubes. The integrity of silica-embedded organic wire molecules exposed to atomic layer deposition, thermal treatment, and harsh etching procedures is demonstrated by grazing angle ATR FT-IR, FT-Raman, and XPS spectroscopy. The inorganic oxide-based core-shell nanotubes with ultrathin gas-impermeable, proton-conducting silica shells functionalized by molecular wires enable complete nanoscale photosynthetic units for CO 2 reduction by H 2 O under membrane separation. Arrays of massive numbers of such core-shell nanotube units afford a design that extends the separation of the incompatible H 2 O oxidation and CO 2 reduction catalysis environments across the continuum of length scales from nanometers to centimeters.

  17. Characterization of a Piezoelectric AlN Beam Array in Air and Fluid for an Artificial Basilar Membrane

    Science.gov (United States)

    Jeon, Hyejin; Jang, Jongmoon; Kim, Sangwon; Choi, Hongsoo

    2018-02-01

    In this study, we present a piezoelectric artificial basilar membrane (ABM) composed of a 10-channel aluminum nitride beam array. Each beam varies in length from 1306 to 3194 μm for mimicking the frequency selectivity of the cochlea. To characterize the frequency selectivity of the ABM, we measured the mechanical displacement and piezoelectric output while applying acoustic stimulus at 100 dB sound pressure level in the range of 500 Hz-40 kHz. The resonance frequencies measured by mechanical displacement and piezoelectric output were in the range of 10.56-36.5 and 10.9-37.0 kHz, respectively. In addition, the electrical stimulus was applied to the ABMs to compare the mechanical responses in air and fluid. The measured resonance frequencies were in the range of 11.1-47.7 kHz in the air and 3.10-11.9 kHz in the fluid. Understanding the characteristics of the ABM is important for its potential use as a key technology for auditory prostheses.

  18. A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model

    Science.gov (United States)

    Jang, Jongmoon; Lee, JangWoo; Woo, Seongyong; Sly, David J.; Campbell, Luke J.; Cho, Jin-Ho; O’Leary, Stephen J.; Park, Min-Hyun; Han, Sungmin; Choi, Ji-Wong; Hun Jang, Jeong; Choi, Hongsoo

    2015-01-01

    We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92–12.6 kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert the piezoelectric output from the ABM to an electrical stimulus for auditory neurons. The electrical stimulus for auditory neurons was delivered through an implanted intra-cochlear electrode array. The amplitude of the electrical stimulus was modulated in the range of 0.15 to 3.5 V with incoming sound pressure levels (SPL) of 70.1 to 94.8 dB SPL. The electrical stimulus was used to elicit an electrically evoked auditory brainstem response (EABR) from deafened guinea pigs. EABRs were successfully measured and their magnitude increased upon application of acoustic stimuli from 75 to 95 dB SPL. The frequency selectivity of the ABM was estimated by measuring the magnitude of EABRs while applying sound pressure at the resonance and off-resonance frequencies of the corresponding cantilever of the selected channel. In this study, we demonstrated a novel piezoelectric ABM and verified its characteristics by measuring EABRs. PMID:26227924

  19. Improving the Distillate Prediction of a Membrane Distillation Unit in a Trigeneration Scheme by Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Luis Acevedo

    2018-03-01

    Full Text Available An Artificial Neural Network (ANN has been developed to predict the distillate produced in a permeate gap membrane distillation (PGMD module with process operating conditions (temperatures at the condenser and evaporator inlets, and feed seawater flow. Real data obtained from experimental tests were used for the ANN training and further validation and testing. This PGMD module constitutes part of an isolated trigeneration pilot unit fully supplied by solar and wind energy, which also provides power and sanitary hot water (SHW for a typical single family home. PGMD production was previously estimated with published data from the MD module manufacturer by means of a new type in the framework of Trnsys® simulation within the design of the complete trigeneration scheme. The performance of the ANN model was studied and improved through a parametric study varying the number of neurons in the hidden layer, the number of experimental datasets and by using different activation functions. The ANN obtained can be easily exported to be used in simulation, control or process analysis and optimization. Here, the ANN was finally used to implement a new type to estimate the PGMD production of the unit by using the inlet parameters obtained by the complete simulation model of the trigeneration unit based on Renewable Energy Sources (RES.

  20. Survival and reproduction of the cat flea (Siphonaptera: Pulicidae) fed human blood on an artificial membrane system.

    Science.gov (United States)

    Pullen, S R; Meola, R W

    1995-07-01

    Adult cat fleas, Ctenocephalides felis (Bouché), survive and reproduce when fed human blood through an artificial membrane system. When a dog hair substrate was included in cages with the fleas, mean adult mortality was 2.4 after 12 d of bloodfeeding. Egg production began after 3 d and was continuous for 12 d, ranging from 3 to 4 eggs per female per day. In cages without hair, mean adult mortality was 61.2% after 12 d of bloodfeeding. Egg production began after 2 d, reached a maximum of two eggs per female per day after 7 d, and decreased thereafter. No significant differences in egg hatch were seen in treatment groups sampled from 5 to 7 d after the onset of bloodfeeding. After 7 d, however, egg hatch for fleas maintained in cages without hair was significantly lower than in cages where fleas were maintained on dog hair. Adult emergence from these larvae did not differ significantly between the two groups. Egg hatch and adult emergence in both groups of fleas fed on human blood did not differ significantly from egg hatch and adult emergence in fleas fed on colony cats.

  1. Transmission of Ehrlichia canis by Rhipicephalus sanguineus ticks feeding on dogs and on artificial membranes.

    Science.gov (United States)

    Fourie, Josephus J; Stanneck, Dorothee; Luus, Herman G; Beugnet, Frederic; Wijnveld, Michiel; Jongejan, Frans

    2013-11-08

    A South African strain of Ehrlichia canis was isolated and used to infect a laboratory-bred Beagle dog. Rhipicephalus sanguineus nymphs, which fed on this dog, moulted to adult ticks which carried infection rates of E. canis between 12% and 19% and were used in a series of in vivo and in vitro experiments. Five groups of 6 dogs were challenged with the infected R. sanguineus ticks, which were removed 24h, 12h, 6h or 3h after the ticks had been released onto the dogs. The animals were monitored for fever and thrombocytopenia and were considered infected if they became serologically positive for E. canis antibodies as well as PCR positive for E. canis DNA. Seven dogs became infected with E. canis in the following groups: Group 1 (24h tick challenge) 1 out of 6; Group 2 (12h) 1 of 6; Group 3 (6h) 2 of 6; Group 4 (6h) 2 of 6 and Group 5 (3h) 1 out of 6. Six of those 7 infected dogs developed fever and a significant thrombocytopenia. One dog did not show any symptoms, but seroconverted and was found PCR positive on several occasions. Five additional dogs were PCR positive on one test sample only but were not considered infected because they did not develop any specific E. canis antibodies. In vitro, R. sanguineus ticks attached and fed on bovine blood through silicone membranes with attachment rates up to 72.5% after 24h increasing to 84.2% at 72 h. The ticks transmitted E. canis as soon as 8h post application as demonstrated by E. canis DNA found in the nutritive blood medium. In conclusion, transmission of E. canis by R. sanguineus ticks starts within a few hours after attachment, which is earlier than previously thought. These findings underpin the need for acaricides to provide either a repellent, an anti-attachment and/or a rapid killing effect against ticks in order to decrease the risk of transmission of E. canis. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effects of variation of chitosan concentration on the characteristics of membrane cellulose bacteria-chitosan biocomposites as candidates for artificial dura mater

    Science.gov (United States)

    Widiyanti, Prihartini; Jabbar, Hajria; Rudyardjo, Djony Izak

    2017-02-01

    This study was conducted to determine the effect of variation in concentration of chitosan on the physical and biological characteristics of the membrane of bacterial cellulose-chitosan biocomposites through immersion precipitation method. Bacterial cellulose membrane was soaked in a solution of chitosan whose concentration variation are 0.1%; 0.3%; 0.5% and 0.7%. The characterization tests which were conducted included the analysis of functional groups (FTIR), tensile strength test, morphology test (SEM), and cytotoxicity assay using MTT Assay method. Based on the cluster analysis test, the results of FTIR spectra indicate changes in the physical bond which means that there is interaction between the bacterial cellulose membrane with chitosan on each sample. The bacteria produced cellulose membrane with tensile strength of 10.53 ± 0.19 MPa while the microbial cellulose membrane by adding 0.5% chitosan concentration had tensile strength value of 8:58 ± 0.19 MPa. It shows that with the addition of chitosan it would decrease the tensile strength in microbial cellulose membrane. This was shown by 496.2 nm - 2,032 µm pore size with a thickness (mm) of 0:35 ± 0.33 to 0.81 ± 0.26. Based on the test results of the analysis of functional groups, tensile strength test, and morphology test, membrane microbial cellulose-chitosan biocomposites have the potential to be used as artificial dura mater candidate.

  3. Dried blood spots and parallel artificial liquid membrane extraction-A simple combination of microsampling and microextraction.

    Science.gov (United States)

    Ask, Kristine Skoglund; Øiestad, Elisabeth Leere; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2018-06-07

    In this paper, parallel artificial liquid membrane extraction (PALME) was used for the first time to clean-up dried blood spots (DBS) prior to ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Fundamental studies exploring amongst others desorption from the DBS in alkaline or acidic aqueous conditions, total extraction time and absolute recoveries were executed. Desorption and PALME were performed using a set of two 96-well plates, one of them housing the sample and the other comprising the supported liquid membrane (SLM) and the acceptor solution. In one procedure, amitriptyline and quetiapine (basic model analytes) were desorbed from the DBS using 250 μL of 10 mM sodium hydroxide solution (aqueous), and subsequently extracted through the SLM consisting of 4 μL of 1% trioctylamine in dodecyl acetate, and further into an acceptor solution consisting of 50 μL of 20 mM formic acid. In a second procedure, ketoprofen, fenoprofen, flurbiprofen, and ibuprofen (acidic model analytes) were desorbed from the DBS into 20 mM formic acid, extracted through an SLM with dihexyl ether, and further into an acceptor solution of 25 mM ammonia. Within 60 min of PALME, both basic and acidic model analytes were effectively desorbed from the DBS and extracted into the acceptor solution, which was injected directly into the analytical instrument. Recoveries between 63 and 85% for the six model analytes were obtained. PALME provided excellent clean-up from the DBS samples, and acceptor solutions were free from phospholipids. Linearity was obtained with r 2  > 0.99 for five of the six analytes. Accuracy, precision and UHPLC-MS/MS matrix effects were in accordance with the European Medicines Agency (EMA) guideline. Based on these experiments, PALME shows great potential for future processing of DBS in a short and simple way, and with the presented setup, up to 96 DBS can be processed within a total extraction time of 60

  4. Influence of artificially aged gas diffusion layers on the water management of polymer electrolyte membrane fuel cells analyzed with in-operando synchrotron imaging

    International Nuclear Information System (INIS)

    Arlt, Tobias; Klages, Merle; Messerschmidt, Matthias; Scholta, Joachim; Manke, Ingo

    2017-01-01

    The influence of artificial ageing of gas diffusion layers (GDLs) on the cell performance was investigated using high resolution synchrotron radiography. State-of-the-art GDLs of the type SIGRACET ® SGL 25BC were aged for 0 h, 16 h and 24 h in a hydrogen peroxide solution before they were assembled in the fuel cells. In-operando radiographic measurements were combined with voltage and contact angle measurements. Correlations between applied ageing conditions, GDL water saturation and cell performance were revealed. Hereby, all cell operating conditions were tested several times to estimate the reproducibility of in-operando radiographic fuel cell measurements. Water films at the GDL-membrane and at the GDL-flow field interfaces were found and attributed to MPL cracks and large pores in the GDL structure. The combination of these cracks and pores are assumed to play a crucial role for blocked gas paths, leading to an undersupply with reactants and an increased humidification of the membrane. It is shown that water agglomerations directly impact the membrane resistance. We assume that the hydrophobicity of the fibers inside the GDL is more important for the cell performance than water agglomerations at the membrane-GDL interface. - Highlights: • Influence of ageing of gas diffusion layers on cell performance was investigated. • Cell performance decreased using artificially aged GDLs. • Performance decrease correlated to altered water distribution. • Reproducibility of water thickness measurements with synchrotron imaging.

  5. Evaluation of sphingomyelin, cholester, and phosphatidylcholine-based immobilized artificial membrane liquid chromatography to predict drug penetration across the blood-brain barrier.

    Science.gov (United States)

    De Vrieze, Mike; Verzele, Dieter; Szucs, Roman; Sandra, Pat; Lynen, Frédéric

    2014-10-01

    Over the past decades, several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier. So far, in high-performance liquid chromatography, most attention has been paid to micellar liquid chromatography and immobilized artificial membrane (IAM) LC. IAMLC has been described as a viable approach, since the stationary phase emulates the lipid environment of a cell membrane. However, research in IAMLC has almost exclusively been limited to phosphatidylcholine (PC)-based stationary phases, even though PC is only one of the lipids present in cell membranes. In this article, sphingomyelin and cholester stationary phases have been tested for the first time towards their ability to predict drug penetration across the blood-brain barrier. Upon comparison with the PC stationary phase, the sphingomyelin- and cholester-based columns depict similar predictive performance. Combining data from the different stationary phases did not lead to improvements of the models.

  6. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes

    Science.gov (United States)

    Membrane modification of host subcellular compartments is critical to the replication of many RNA viruses. Enveloped viruses additionally require the ability to requisition cellular membranes during egress for the development of infectious progeny. Porcine reproductive and respiratory syndrome virus...

  7. Structural characterization of tick cement cones collected from in vivo and artificial membrane blood-fed Lone Star ticks (Amblyomma americanum).

    Science.gov (United States)

    Bullard, Rebekah; Allen, Paige; Chao, Chien-Chung; Douglas, Jessica; Das, Pradipta; Morgan, Sarah E; Ching, Wei-Mei; Karim, Shahid

    2016-07-01

    The Lone Star tick, Amblyomma americanum, is endemic to the southeastern United States and capable of transmitting pathogenic diseases and causing non-pathogenic conditions. To remain firmly attached to the host, the tick secretes a proteinaceous matrix termed the cement cone which hardens around the tick's mouthparts to assist in the attachment of the tick as well as to protect the mouthparts from the host immune system. Cement cones collected from ticks on a host are commonly contaminated with host skin and hair making analysis of the cone difficult. To reduce the contamination found in the cement cone, we have adapted an artificial membrane feeding system used to feed long mouthpart ticks. Cones collected from in vivo and membrane fed ticks are analyzed to determine changes in the cone morphology. Comparisons of the cement cones using light microscopy shows similar structures and color however using scanning electron microscopy the cones have drastically different structures. The in vivo cones contain fibrils, sheets, and are heavily textured whereas cones from membrane fed ticks are remarkably smooth with no distinct structures. Analysis of the secondary protein structures using FTIR-ATR show both in vivo and membrane fed cement cones contain β sheets but only in vivo cement cones contain helical protein structures. Additionally, proteomic analysis using LC-MS/MS identifies many proteins including glycine rich proteins, metalloproteases, and protease inhibitors. Proteomic analysis of the cones identified both secreted and non-secreted tick proteins. Artificial membrane feeding is a suitable model for increased collection of cement cones for proteomic analysis however, structurally there are significant differences. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Interaction analysis of chimeric metal-binding green fluorescent protein and artificial solid-supported lipid membrane by quartz crystal microbalance and atomic force microscopy

    International Nuclear Information System (INIS)

    Prachayasittikul, Virapong; Na Ayudhya, Chartchalerm Isarankura; Hilterhaus, Lutz; Hinz, Andreas; Tantimongcolwat, Tanawut; Galla, Hans-Joachim

    2005-01-01

    Non-specific adsorption and specific interaction between a chimeric green fluorescent protein (GFP) carrying metal-binding region and the immobilized zinc ions on artificial solid-supported lipid membranes was investigated using the quartz crystal microbalance technique and the atomic force microscopy (AFM). Supported lipid bilayer, composed of octanethiol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[N- (5-amino-1-carboxypentyl iminodiacetic acid)succinyl] (NTA-DOGS)-Zn 2+ , was formed on the gold electrode of quartz resonator (5 MHz). Binding of the chimeric GFP to zinc ions resulted in a rapid decrease of resonance frequency. Reversibility of the process was demonstrated via the removal of metal ions by EDTA. Nanoscale structural orientation of the chimeric GFP on the membrane was imaged by AFM. Association constant of the specific binding to metal ions was 2- to 3-fold higher than that of the non-specific adsorption, which was caused by the fluidization effect of the metal-chelating lipid molecules as well as the steric hindrance effect. This infers a possibility for a further development of biofunctionalized membrane. However, maximization is needed in order to attain closer advancement to a membrane-based sensor device

  9. Effect of the surface charge of artificial model membranes on the aggregation of amyloid β-peptide.

    Science.gov (United States)

    Sabaté, Raimon; Espargaró, Alba; Barbosa-Barros, Lucyanna; Ventura, Salvador; Estelrich, Joan

    2012-08-01

    The neurotoxicity effect of the β-amyloid (Aβ) peptide, the primary constituent of senile plaques in Alzheimer's disease, occurs through interactions with neuronal membranes. Here, we attempt to clarify the mechanisms and consequences of the interaction of Aβ with lipid membranes. We have used liposomes as a model of biological membrane, and have devoted particular attention to the bilayer charge effect. Our results show that insertion and surface association of peptide with membrane, increased in a membrane charge-dependent manner, lead to a reduction of Aβ soluble species, lag time elongation and an increase in the inter-molecular β-sheet ratio of amyloid fibrils. In addition, our findings suggest that the fine balance between peptide insertion and surface association modulates Aβ aggregation, influencing the amyloid fibrils concentration as well as their morphology. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Assessment of the Blood-Brain Barrier Permeability of Potential Neuroprotective Aurones in Parallel Artificial Membrane Permeability Assay and Porcine Brain Endothelial Cell Models.

    Science.gov (United States)

    Liew, Kok-Fui; Hanapi, Nur Aziah; Chan, Kit-Lam; Yusof, Siti R; Lee, Chong-Yew

    2017-02-01

    Previously, several aurone derivatives were identified with promising neuroprotective activities. In developing these compounds to target the central nervous system (CNS), an assessment of their blood-brain barrier (BBB) permeability was performed using in vitro BBB models: parallel artificial membrane permeability assay-BBB which measures passive permeability and primary porcine brain endothelial cell model which enables determination of the involvement of active transport mechanism. Parallel artificial membrane permeability assay-BBB identified most compounds with high passive permeability, with 3 aurones having exceptional P e values highlighting the importance of basic amine moieties and optimal lipophilicity for good passive permeability. Bidirectional permeability assays with porcine brain endothelial cell showed a significant net influx permeation of the aurones indicating a facilitated uptake mechanism in contrast to donepezil, a CNS drug included in the evaluation which only displayed passive permeation. From pH-dependent permeability assay coupled with data analysis using pCEL-X software, intrinsic transcellular permeability (P o ) of a representative aurone 4-3 was determined, considering factors such as the aqueous boundary layer that may hinder accurate in vitro to in vivo correlation. The P o  value determined supported the in vivo feasibility of the aurone as a CNS-active compound. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells?

    Science.gov (United States)

    Rosetti, Carla M; Mangiarotti, Agustín; Wilke, Natalia

    2017-05-01

    In model lipid membranes with phase coexistence, domain sizes distribute in a very wide range, from the nanometer (reported in vesicles and supported films) to the micrometer (observed in many model membranes). Domain growth by coalescence and Ostwald ripening is slow (minutes to hours), the domain size being correlated with the size of the capture region. Domain sizes thus strongly depend on the number of domains which, in the case of a nucleation process, depends on the oversaturation of the system, on line tension and on the perturbation rate in relation to the membrane dynamics. Here, an overview is given of the factors that affect nucleation or spinodal decomposition and domain growth, and their influence on the distribution of domain sizes in different model membranes is discussed. The parameters analyzed respond to very general physical rules, and we therefore propose a similar behavior for the rafts in the plasma membrane of cells, but with obstructed mobility and with a continuously changing environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ligand-lipid and ligand-core affinity control the interaction of gold nanoparticles with artificial lipid bilayers and cell membranes.

    Science.gov (United States)

    Broda, Janine; Setzler, Julia; Leifert, Annika; Steitz, Julia; Benz, Roland; Simon, Ulrich; Wenzel, Wolfgang

    2016-07-01

    Interactions between nanoparticles (NPs) and biomembranes depend on the physicochemical properties of the NPs, such as size and surface charge. Here we report on the size-dependent interaction of gold nanoparticles (AuNPs), stabilized with ligands differing in charge, i.e. sodium 3-(diphenylphosphino)benzene sulfonate (TPPMS) and sodium 3,3',3″-triphenylphosphine sulfonate (TPPTS), respectively, with artificial membranes (black lipid membranes; BLMs) and HeLa cells. The TPPTS-stabilized AuNPs affect BLMs at lower size than TPPMS-stabilized ones. On HeLa cells we found decreasing cytotoxicity with increasing particle size, however, with an overall lower cytotoxicity for TPPTS-stabilized AuNPs. We attribute size-dependent BLM properties as well as reduced cytotoxicity of TPPTS-stabilized AuNPs to weaker shielding of the AuNP core when stabilized with TPPTS. We hypothesize that the partially unshielded hydrophobic gold core can embed into the hydrophobic membrane interior. Thereby we demonstrate that ligand-dependent cytotoxicity of NP can occur even when the NPs are not translocated through the membrane. The use of nanoparticles (NPs) in the clinical setting means that there will be interactions between NPs and cell membranes. The authors investigated the underlying processes concerning cellular uptake and potential toxicity of gold nanoparticles (AuNPs) using particles with ligands different sizes and charges. The findings should further enhance existing knowledge on future design of safer NPs in the clinic. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A conjugate of decyltriphenylphosphonium with plastoquinone can carry cyclic adenosine monophosphate, but not cyclic guanosine monophosphate, across artificial and natural membranes.

    Science.gov (United States)

    Firsov, Alexander M; Rybalkina, Irina G; Kotova, Elena A; Rokitskaya, Tatyana I; Tashlitsky, Vadim N; Korshunova, Galina A; Rybalkin, Sergei D; Antonenko, Yuri N

    2018-02-01

    The present study demonstrated for the first time the interaction between adenosine 3',5'-cyclic monophosphate (cAMP), one of the most important signaling compounds in living organisms, and the mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1). The data obtained on model liquid membranes and human platelets revealed the ability of SkQ1 to selectively transport cAMP, but not guanosine 3',5'-cyclic monophosphate (cGMP), across both artificial and natural membranes. In particular, SkQ1 elicited translocation of cAMP from the source to the receiving phase of a Pressman-type cell, while showing low activity with cGMP. Importantly, only conjugate with plastoquinone, but not dodecyl-triphenylphosphonium, was effective in carrying cAMP. In human platelets, SkQ1 also appeared to serve as a carrier of cAMP, but not cGMP, from outside to inside the cell, as measured by phosphorylation of the vasodilator stimulated phosphoprotein. The SkQ1-induced transfer of cAMP across the plasma membrane found here can be tentatively suggested to interfere with cAMP signaling pathways in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Determination of in Vitro and in Silico Indexes for the Modeling of Blood-Brain Barrier Partitioning of Drugs via Micellar and Immobilized Artificial Membrane Liquid Chromatography.

    Science.gov (United States)

    Russo, Giacomo; Grumetto, Lucia; Szucs, Roman; Barbato, Francesco; Lynen, Frederic

    2017-05-11

    In the present work, 79 structurally unrelated analytes were taken into account and their chromatographic retention coefficients, measured by immobilized artificial membrane liquid chromatography (IAM-LC) and by micellar liquid chromatography (MLC) employing sodium dodecyl sulfate (SDS) as surfactant, were determined. Such indexes, along with topological and physicochemical parameters calculated in silico, were subsequently used for the development of blood-brain barrier passage-predictive statistical models using partial least-squares (PLS) regression. Highly significant relationships were observed either using IAM (r 2 (n - 1) = 0.78) or MLC (r 2 (n - 1) = 0.83) derived indexes along with in silico descriptors. This hybrid approach proved fast and effective in the development of highly predictive BBB passage oriented models, and therefore, it can be of interest for pharmaceutical industries as a high-throughput BBB penetration oriented screening method. Finally, it shed new light into the molecular mechanism involved in the BBB uptake of therapeutics.

  15. In vitro blood-brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms.

    Science.gov (United States)

    Banerjee, Jayati; Shi, Yejiao; Azevedo, Helena S

    2016-09-01

    In vitro blood-brain barrier (BBB) models are indispensable screening tools for obtaining early information about the brain-penetrating behaviour of promising drug candidates. Until now, in vitro BBB models have focused on investigating the interplay among cellular components of neurovascular units and the effect of fluidic sheer stress in sustaining normal BBB phenotype and functions. However, an area that has received less recognition is the role of the noncellular basement membrane (BM) in modulating BBB physiology. This review describes the state-of-the-art on in vitro BBB models relevant in drug discovery research and highlights their strengths, weaknesses and the utility potential of some of these models in testing the permeability of nanocarriers as vectors for delivering therapeutics to the brain. Importantly, our review also introduces a new concept of engineering artificial BM platforms for reconstituting BBB models in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Molecular aspects of the interaction between Mason-Pfizer monkey virus matrix protein and artificial phospholipid membrane

    Czech Academy of Sciences Publication Activity Database

    Junková, P.; Prchal, J.; Spiwok, V.; Pleskot, Roman; Kadlec, Jan; Krásný, L.; Hynek, R.; Hrabal, R.; Ruml, T.

    2016-01-01

    Roč. 84, č. 11 (2016), s. 1717-1727 ISSN 0887-3585 Institutional support: RVO:61388963 Keywords : covalent labelling * mass spectrometry * multiscale molecular dynamics * protein-membrane interaction * phosphatidylinositol-(4,5)-bisphosphate * liposomes Subject RIV: CE - Biochemistry Impact factor: 2.289, year: 2016

  17. Molecular aspects of the interaction between MasonPfizer monkey virus matrix protein and artificial phospholipid membrane

    Czech Academy of Sciences Publication Activity Database

    Junková, P.; Prchal, J.; Spiwok, V.; Pleskot, Roman; Kadlec, J.; Krásný, Libor; Hynek, R.; Hrabal, R.; Ruml, T.

    2016-01-01

    Roč. 84, č. 11 (2016), s. 1717-1727 ISSN 0887-3585 Institutional support: RVO:61389030 ; RVO:61388971 Keywords : d-type retrovirus * force-field * nucleotide-sequence * myristate exposure * plasma-membrane * rhesus monkey Subject RIV: EB - Genetics ; Molecular Biology; EE - Microbiology, Virology (MBU-M) Impact factor: 2.289, year: 2016

  18. The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field

    Directory of Open Access Journals (Sweden)

    Ge Xianxi

    2006-04-01

    Full Text Available Abstract Background Sensorineural hearing loss, a subset of all clinical hearing loss, may be correctable through the use of gene therapy. We are testing a delivery system of therapeutics through a 3 cell-layer round window membrane model (RWM model that may provide an entry of drugs or genes to the inner ear. We designed an in vitro RWM model similar to the RWM (will be referred to throughout the paper as RWM model to determine the feasibility of using superparamagnetic iron oxide (Fe3O4 nanoparticles (SPION for targeted delivery of therapeutics to the inner ear. The RWM model is a 3 cell-layer model with epithelial cells cultured on both sides of a small intestinal submucosal (SIS matrix and fibroblasts seeded in between. Dextran encapsulated nanoparticle clusters 130 nm in diameter were pulled through the RWM model using permanent magnets with flux density 0.410 Tesla at the pole face. The SIS membranes were harvested at day 7 and then fixed in 4% paraformaldehyde. Transmission electron microscopy and fluorescence spectrophotometry were used to verify transepithelial transport of the SPION across the cell-culture model. Histological sections were examined for evidence of SPION toxicity, as well to generate a timeline of the position of the SPION at different times. SPION also were added to cells in culture to assess in vitro toxicity. Results Transepithelial electrical resistance measurements confirmed epithelial confluence, as SPION crossed a membrane consisting of three co-cultured layers of cells, under the influence of a magnetic field. Micrographs showed SPION distributed throughout the membrane model, in between cell layers, and sometimes on the surface of cells. TEM verified that the SPION were pulled through the membrane into the culture well below. Fluorescence spectrophotometry quantified the number of SPION that went through the SIS membrane. SPION showed no toxicity to cells in culture. Conclusion A three-cell layer model of the

  19. Sticholysin II: a pore-forming toxin as a probe to recognize sphingomyelin in artificial and cellular membranes.

    Science.gov (United States)

    Garcia, Paloma Sanchez; Chieppa, Gabriele; Desideri, Alessandro; Cannata, Stefano; Romano, Elena; Luly, Paolo; Rufini, Stefano

    2012-10-01

    Sphingomyelin is a major component of membrane rafts, and also is a precursor of many bioactive molecules. The sphingomyelin plays important biological roles and alterations of its metabolism are the basis of some genetic disorders such as the Niemann Pick disease. A complete understanding of its biological role is frustrated by the lack of efficient tools for its recognition in the cell. Sticholysin II (StnII) is a 20 kDa protein from the sea-anemone Stichodactyla helianthus which shows a cytotoxic activity by forming oligomeric aqueous pores in the cell plasma membrane. A recent NMR analysis indicates that the sticholysin II binds specifically to sphingomyelin by two domains that recognize respectively the hydrophilic (i.e. phosphorylcholine) and the hydrophobic (i.e. ceramide) moieties of the molecule. Aim of our research has been to verify the possible employ of an antibody against the StnII to investigate the localization and the dynamics of sphingomyelin in cell membranes. For this purpose, we developed a monoclonal antibody (named A10) against the toxin and we tested its ability to bind StnII after binding to sphingomyelin. A10 antibody is able to recognize the sticholysin II both in its native form and after SDS treatment, being the protein still suitable for many analytic techniques such as ELISA, western blotting and immunofluorescence. The high affinity of the toxin for the sphingomyelin in cell membranes has been demonstrated by microscopic immuno-localization and western blot analysis; both methods confirmed that sphingomyelin is the molecular acceptor for StnII also in cell membranes. Finally, we studied the specificity of the toxin for sphingomyelin by a cell membrane-double labelling method, using cholera toxin, specific for the ganglioside GM1, and sticholysin II. The results obtained show that there is no cross-reactivity between the two toxins, confirming that sticholysin II is able to discriminate among membrane domains with sphingomyelin with

  20. Comparative analysis of the uropathogenic Escherichia coli surface proteome by tandem mass-spectrometry of artificially induced outer membrane vesicles.

    Science.gov (United States)

    Wurpel, Daniël J; Moriel, Danilo G; Totsika, Makrina; Easton, Donna M; Schembri, Mark A

    2015-02-06

    Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections. For successful colonisation of the urinary tract, UPEC employ multiple surface-exposed or secreted virulence factors, including adhesins and iron uptake systems. Whilst individual UPEC strains and their virulence factors have been the focus of extensive research, there have been no outer membrane (OM) proteomic studies based on large clinical UPEC collections, primarily due to limitations of traditional methods. In this study, a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles (OMVs) was developed for the characterisation of the UPEC surface-associated proteome. The method was applied to compare the OM proteome of fifty-four UPEC isolates, resulting in the identification of 8789 proteins, consisting of 619 unique proteins, which were subsequently interrogated for their subcellular origin, prevalence and homology to characterised virulence factors. Multiple distinct virulence-associated proteins were identified, including two novel putative iron uptake proteins, an uncharacterised type of chaperone-usher fimbriae and various highly prevalent hypothetical proteins. Our results give fundamental insight into the physiology of UPEC and provide a framework for understanding the composition of the UPEC OM proteome. In this study a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles was used to define the outer membrane proteome of a large uropathogenic E. coli (UPEC) collection. Our results provide an inventory of proteins expressed on the surface of UPEC, and provide a framework for understanding the composition of the UPEC OM proteome. The method enables the rapid characterisation of the E. coli surface proteome and could easily be applied to the large-scale outer membrane protein profiling of other Gram-negative bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Transmembrane Signalling: Membrane messengers

    Science.gov (United States)

    Cockroft, Scott L.

    2017-05-01

    Life has evolved elaborate means of communicating essential chemical information across cell membranes. Inspired by biology, two new artificial mechanisms have now been developed that use synthetic messenger molecules to relay chemical signals into or across lipid membranes.

  2. Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity.

    Science.gov (United States)

    Valko, Klara; Nunhuck, Shenaz; Bevan, Chris; Abraham, Michael H; Reynolds, Derek P

    2003-11-01

    A fast gradient HPLC method (cycle time 15 min) has been developed to determine Human Serum Albumin (HSA) binding of discovery compounds using chemically bonded protein stationary phases. The HSA binding values were derived from the gradient retention times that were converted to the logarithm of the equilibrium constants (logK HSA) using data from a calibration set of molecules. The method has been validated using literature plasma protein binding data of 68 known drug molecules. The method is fully automated, and has been used for lead optimization in more than 20 company projects. The HSA binding data obtained for more than 4000 compounds were suitable to set up global and project specific quantitative structure binding relationships that helped compound design in early drug discovery. The obtained HSA binding of known drug molecules were compared to the Immobilized Artificial Membrane binding data (CHI IAM) obtained by our previously described HPLC-based method. The solvation equation approach has been used to characterize the normal binding ability of HSA, and this relationship shows that compound lipophilicity is a significant factor. It was found that the selectivity of the "baseline" lipophilicity governing HSA binding, membrane interaction, and octanol/water partition are very similar. However, the effect of the presence of positive or negative charges have very different effects. It was found that negatively charged compounds bind more strongly to HSA than it would be expected from the lipophilicity of the ionized species at pH 7.4. Several compounds showed stronger HSA binding than can be expected from their lipophilicity alone, and comparison between predicted and experimental binding affinity allows the identification of compounds that have good complementarities with any of the known binding sites. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:2236-2248, 2003

  3. Quantitative structure-retention relationship studies using immobilized artificial membrane chromatography I: amended linear solvation energy relationships with the introduction of a molecular electronic factor.

    Science.gov (United States)

    Li, Jie; Sun, Jin; Cui, Shengmiao; He, Zhonggui

    2006-11-03

    Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.

  4. Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks.

    Science.gov (United States)

    Mirbagheri, Seyed Ahmad; Bagheri, Majid; Boudaghpour, Siamak; Ehteshami, Majid; Bagheri, Zahra

    2015-01-01

    Treatment process models are efficient tools to assure proper operation and better control of wastewater treatment systems. The current research was an effort to evaluate performance of a submerged membrane bioreactor (SMBR) treating combined municipal and industrial wastewater and to simulate effluent quality parameters of the SMBR using a radial basis function artificial neural network (RBFANN). The results showed that the treatment efficiencies increase and hydraulic retention time (HRT) decreases for combined wastewater compared with municipal and industrial wastewaters. The BOD, COD, [Formula: see text] and total phosphorous (TP) removal efficiencies for combined wastewater at HRT of 7 hours were 96.9%, 96%, 96.7% and 92%, respectively. As desirable criteria for treating wastewater, the TBOD/TP ratio increased, the BOD and COD concentrations decreased to 700 and 1000 mg/L, respectively and the BOD/COD ratio was about 0.5 for combined wastewater. The training procedures of the RBFANN models were successful for all predicted components. The train and test models showed an almost perfect match between the experimental and predicted values of effluent BOD, COD, [Formula: see text] and TP. The coefficient of determination (R(2)) values were higher than 0.98 and root mean squared error (RMSE) values did not exceed 7% for train and test models.

  5. Immobilized Artificial Membrane HPLC Derived Parameters vs PAMPA-BBB Data in Estimating in Situ Measured Blood-Brain Barrier Permeation of Drugs.

    Science.gov (United States)

    Grumetto, Lucia; Russo, Giacomo; Barbato, Francesco

    2016-08-01

    The affinity indexes for phospholipids (log kW(IAM)) for 42 compounds were measured by high performance liquid chromatography (HPLC) on two different phospholipid-based stationary phases (immobilized artificial membrane, IAM), i.e., IAM.PC.MG and IAM.PC.DD2. The polar/electrostatic interaction forces between analytes and membrane phospholipids (Δlog kW(IAM)) were calculated as the differences between the experimental values of log kW(IAM) and those expected for isolipophilic neutral compounds having polar surface area (PSA) = 0. The values of passage through a porcine brain lipid extract (PBLE) artificial membrane for 36 out of the 42 compounds considered, measured by the so-called PAMPA-BBB technique, were taken from the literature (P0(PAMPA-BBB)). The values of blood-brain barrier (BBB) passage measured in situ, P0(in situ), for 38 out of the 42 compounds considered, taken from the literature, represented the permeability of the neutral forms on "efflux minimized" rodent models. The present work was aimed at verifying the soundness of Δlog kW(IAM) at describing the potential of passage through the BBB as compared to data achieved by the PAMPA-BBB technique. In a first instance, the values of log P0(PAMPA-BBB) (32 data points) were found significantly related to the n-octanol lipophilicity values of the neutral forms (log P(N)) (r(2) = 0.782) whereas no significant relationship (r(2) = 0.246) was found with lipophilicity values of the mixtures of ionized and neutral forms existing at the experimental pH 7.4 (log D(7.4)) as well as with either log kW(IAM) or Δlog kW(IAM) values. log P0(PAMPA-BBB) related moderately to log P0(in situ) values (r(2) = 0.604). The latter did not relate with either n-octanol lipophilicity indexes (log P(N) and log D(7.4)) or phospholipid affinity indexes (log kW(IAM)). In contrast, significant inverse linear relationships were observed between log P0(in situ) (38 data points) and Δlog kW(IAM) values for all the compounds but

  6. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  7. Extracorporeal membrane oxygenation

    Science.gov (United States)

    Extracorporeal membrane oxygenation (ECMO) is a treatment that uses a pump to circulate blood through an artificial lung back into the bloodstream of a very ill baby. This system provides heart-lung bypass support ...

  8. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature.

    Science.gov (United States)

    Katayama, Sayaka; Nakase, Ikuhiko; Yano, Yoshiaki; Murayama, Tomo; Nakata, Yasushi; Matsuzaki, Katsumi; Futaki, Shiroh

    2013-09-01

    Arginine-rich cell-penetrating peptides, including octaarginine (R8) and HIV-1 TAT peptides, have the ability to translocate through cell membranes and transport exogenous bioactive molecules into cells. Hydrophobic counteranions such as pyrenebutyrate (PyB) have been reported to markedly promote the membrane translocation of these peptides. In this study, using model membranes having liquid-ordered (Lo) and liquid-disordered (Ld) phases, we explored the effects of PyB on the promotion of R8 translocation. Confocal microscopic observations of giant unilamellar vesicles (GUVs) showed that PyB significantly accelerated the accumulation of R8 on membranes containing negatively charged lipids, leading to the internalization of R8 without collapse of the GUV structures. PyB displayed an alternative activity, increasing the fluidity of the negatively charged membranes, which diminished the distinct Lo/Ld phase separation on GUVs. This was supported by the decrease in fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH). Additionally, PyB induced membrane curvature, which has been suggested as a possible mechanism of membrane translocation for R8. Taken together, our results indicate that PyB may have multiple effects that promote R8 translocation through cell membranes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Chitosan Membrane Embedded With ZnO/CuO Nanocomposites for the Photodegradation of Fast Green Dye Under Artificial and Solar Irradiation.

    Science.gov (United States)

    Alzahrani, Eman

    2018-01-01

    Fast Green (FCF) dye is commonly used in both cytology and histology applications. Previous studies have found that it can cause mutagenic and tumorigenic effects in experimental human and animal populations. It can also be a source of skin, eye, respiratory, and digestive irritation. The purpose of this study was to examine the use of thin film membranes to degrade FCF. A thin film membrane of chitosan (CS) was fabricated and subsequently filled with zinc oxide nanoparticles (ZnO) or ZnO/CuO-heterostructured nanocomposites. The CS membrane was used as a matrix, and the nanomaterials were used as photocatalysts. The prepared membranes were characterised by four analytical techniques: atomic force microscopy, scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analyses. The photocatalytic activity of the fabricated membranes was evaluated by performing experiments in which aqueous solutions of FCF dye that contained the fabricated membrane were irradiated with solar light or UV light. The photodegradation percentage was spectrophotometrically determined by monitoring the maximum wavelengths (λ max ) of FCF at 623 nm for different irradiation times. The decolourisation percentages of the dye under solar light were 57.90% and 60.23% using the CS-ZnO and CS-ZnO/CuO membranes, respectively. When UV light irradiation was employed as the source of irradiation, the photodegradation percentages of FCF were 71.45% and 91.21% using the CS-ZnO and CS-ZnO/CuO membranes, respectively. These results indicated that the best photocatalytic system for the degradation of FCF dye was CS-ZnO/CuO membrane in combination with UV light irradiation. The study also found that it was easy to separate the prepared membranes after the reaction without the need for a centrifuge or magnet. The results demonstrate the potential for CS-ZnO and CS-ZnO/CuO membranes for use as effective sorbents during the process of photodegradation of harmful dyes within waste water

  10. Towards bio-silicon interfaces: formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase.

    Science.gov (United States)

    Retamal, María J; Cisternas, Marcelo A; Gutierrez-Maldonado, Sebastian E; Perez-Acle, Tomas; Seifert, Birger; Busch, Mark; Huber, Patrick; Volkmann, Ulrich G

    2014-09-14

    The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (~25 Å) and DPPC (~60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.

  11. Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

    Energy Technology Data Exchange (ETDEWEB)

    Retamal, María J., E-mail: moretama@uc.cl; Cisternas, Marcelo A.; Seifert, Birger; Volkmann, Ulrich G. [Instituto de Física, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, 7820436 Santiago (Chile); Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, 7820436 Santiago (Chile); Gutierrez-Maldonado, Sebastian E.; Perez-Acle, Tomas [Computational Biology Lab (DLab), Fundación Ciencia y Vida, Av. Zañartu 1482, Santiago (Chile); Centro Interdisciplinario de Neurociencias de Valparaiso (CINV), Universidad de Valparaiso, Pasaje Harrington 287, Valparaiso (Chile); Busch, Mark; Huber, Patrick [Institute of Materials Physics and Technology, Hamburg University of Technology (TUHH), D-21073 Hamburg-Harburg (Germany)

    2014-09-14

    The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (∼25 Å) and DPPC (∼60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.

  12. Direct estimation of the permeation of topical excipients through artificial membranes and human skin with non-invasive Terahertz time-domain techniques.

    Science.gov (United States)

    Lopez-Dominguez, Victor; Boix-Montañes, Antoni; Redo-Sanchez, Albert; Tejada-Palacios, Javier

    2016-07-01

    Drug permeation through skin, or a synthetic membrane, from locally acting pharmaceutical products can be influenced by the permeation behaviour of pharmaceutical excipients. Terahertz time-domain technology is investigated as a non-invasive method for a direct and accurate measurement of excipients permeation through synthetic membranes or human skin. A series of in-vitro release and skin permeation experiments of liquid excipients (e.g. propylene glycol and polyethylene glycol 400) has been conducted with vertical diffusion cells. The permeation profiles of excipients through different synthetic membranes or skin were obtained using Terahertz pulses providing a direct measurement. Corresponding permeation flux and permeability coefficient values were calculated based on temporal changes of the terahertz pulses. The influence of different experimental conditions, such as the polarity of the membrane and the viscosity of the permeant, was assessed in release experiments. Specific transmembrane flux values of those excipients were directly calculated with statistical differences between cases. Finally, an attempt to estimate the skin permeation of propylene glycol with this technique was also achieved. All these permeation results were likely comparable to those obtained by other authors with usual analytical techniques. Terahertz time-domain technology is shown to be a suitable technique for an accurate and non-destructive measurement of the permeation of liquid substances through different synthetic membranes or even human skin. © 2016 Royal Pharmaceutical Society.

  13. A Mechanistic Study to Determine the Structural Similarities Between Artificial Membrane Strat-M™ and Biological Membranes and Its Application to Carry Out Skin Permeation Study of Amphotericin B Nanoformulations.

    Science.gov (United States)

    Kaur, Lakhvir; Singh, Kanwaldeep; Paul, Surinder; Singh, Sukhprit; Singh, Shashank; Jain, Subheet Kumar

    2018-02-27

    Type of biological membrane used in skin permeation experiment significantly affects skin permeation and deposition potential of tested formulations. In this study, a comparative study has been carried out to evaluate the potential of a synthetic membrane (Strat-M™) with rat, human, and porcine ear skin to carry out skin permeation study of nanoformulations of a high molecular weight drug, amphotericin B. Results demonstrated that the permeation of this high molecular weight drug through Strat-M™ showed close similitude to human skin. Value of correlation coefficient (R 2 ) of log diffusion between Strat-M™ and human skin was found to be 0.99 which demonstrated the similarities of Strat-M™ membrane to the human skin. In similarity factor analysis, the value of f 2 was also found to be 85, which further demonstrated the similarities of Strat-M™ membrane to human skin. Moreover, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis of synthetic and biological membranes depicted almost similar morphological features (thickness, pore size, surface morphology, and diameter) of synthetic membrane with human skin. The results of the study demonstrated Strat-M™ as a better alternative to carry out skin permeation experiment due to the consistent results, reproducibility, easy availability, and minimum variability with human skin.

  14. The Permeability of an Artificial Membrane for Wide Range of pH in Human Gastrointestinal Tract: Experimental Measurements and Quantitative StructureActivity Relationship.

    Science.gov (United States)

    Oja, Mare; Maran, Uko

    2015-06-01

    In silico models for membrane permeability have been based on values measured for single pH. Depending on the diet (fasted/fed state) and part of human intestine the range of pH varies approximately from 2.4 to 8.0. This motivated to study and model the membrane permeability of chemicals considering the whole range of pH in the human intestine. For this, effective membrane permeability values were measured for 65 drugs and drug-like compounds using PAMPA method at four pHs (3, 5, 7.4, 9) over 48 h, introducing technological innovations for the time-dependence measurement. The highest permeability value of a compound from four pHs was used to derive QSAR analyzing a large pool of molecular descriptors and introducing new descriptor. Using stepwise forward selection approach a significant QSAR model was derived that included only two mechanistically relevant descriptors, the logarithmic octanol-water partition coefficient and hydrogen bonding surface area. Prediction confidence of the model was blind tested with a true external validation set of 15 compounds. The resulting QSAR model shows potential to combine permeability values from various pH-s into one descriptive and predictive model for estimating maximum permeability in human gastrointestinal tract. The QSAR model and data are available through the QsarDB repository (http://dx.doi.org/10.15152/QDB.137). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Artificial Consciousness or Artificial Intelligence

    OpenAIRE

    Spanache Florin

    2017-01-01

    Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus a...

  16. Dialysis membranes for blood purification.

    Science.gov (United States)

    Sakai, K

    2000-01-01

    All of the artificial membranes in industrial use, such as a reverse-osmosis membrane, dialysis membrane, ultrafiltration membrane, microfiltration membrane and gas separation membrane, also have therapeutic applications. The most commonly used artificial organ is the artificial kidney, a machine that performs treatment known as hemodialysis. This process cleanses the body of a patient with renal failure by dialysis and filtration, simple physicochemical processes. Hemodialysis membranes are used to remove accumulated uremic toxins, excess ions and water from the patient via the dialysate, and to supply (deficit) insufficient ions from the dialysate. Dialysis membranes used clinically in the treatment of patients with renal failure account for by far the largest volume of membranes used worldwide; more than 70 million square meters are used a year. Almost all dialyzers now in use are of the hollow-fiber type. A hollow-fiber dialyzer contains a bundle of approximately 10000 hollow fibers, each with an inner diameter of about 200 microm when wet. The membrane thickness is about 20-45 microm, and the length is 160-250 mm. The walls of the hollow fibers function as the dialysis membrane. Various materials, including cellulose-based materials and synthetic polymers, are used for dialysis membranes. This paper reviews blood purification, hemodialysis and dialysis membranes.

  17. Artificial intelligence

    CERN Document Server

    Ennals, J R

    1987-01-01

    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  18. Artificial Reefs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  19. Artificial Metalloenzymes

    NARCIS (Netherlands)

    Rosati, Fiora; Roelfes, Gerard

    Artificial metalloenzymes have emerged as a promising approach to merge the attractive properties of homogeneous catalysis and biocatalysis. The activity and selectivity, including enantioselectivity, of natural metalloenzymes are due to the second coordination sphere interactions provided by the

  20. Artificial sweeteners

    DEFF Research Database (Denmark)

    Raben, Anne Birgitte; Richelsen, Bjørn

    2012-01-01

    Artificial sweeteners can be a helpful tool to reduce energy intake and body weight and thereby risk for diabetes and cardiovascular diseases (CVD). Considering the prevailing diabesity (obesity and diabetes) epidemic, this can, therefore, be an important alternative to natural, calorie......-containing sweeteners. The purpose of this review is to summarize the current evidence on the effect of artificial sweeteners on body weight, appetite, and risk markers for diabetes and CVD in humans....

  1. Screening therapeutics according to their uptake across the blood-brain barrier: A high throughput method based on immobilized artificial membrane liquid chromatography-diode-array-detection coupled to electrospray-time-of-flight mass spectrometry.

    Science.gov (United States)

    Russo, Giacomo; Grumetto, Lucia; Szucs, Roman; Barbato, Francesco; Lynen, Frederic

    2018-02-07

    The Blood-Brain Barrier (BBB) plays an essential role in protecting the brain tissues against possible injurious substances. In the present work, 79 neutral, basic, acidic and amphoteric structurally unrelated analytes were considered and their chromatographic retention coefficients on immobilized artificial membrane (IAM) stationary phase were determined employing a mass spectrometry (MS) -compatible buffer based on ammonium acetate. Their BBB passage predictive strength was evaluated and the statistical models based on IAM indexes and in silico physico-chemical descriptors showed solid statistics (r 2 (n-1) = 0.78). The predictive strength of the indexes achieved by the MS-compatible method was comparable to that achieved by employing the more "biomimetic" Dulbecco's phosphate buffered saline, even if some differences in the elution order were observed. The method was transferred to the MS, employing a diode-array-detection coupled to an electrospray ionization source and a time-of-flight analyzer. This setup allowed the simultaneous analysis of up to eight analytes, yielding a remarkable acceleration of the analysis time. Copyright © 2018. Published by Elsevier B.V.

  2. Artificial intelligence

    International Nuclear Information System (INIS)

    Perret-Galix, D.

    1992-01-01

    A vivid example of the growing need for frontier physics experiments to make use of frontier technology is in the field of artificial intelligence and related themes. This was reflected in the second international workshop on 'Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics' which took place from 13-18 January at France Telecom's Agelonde site at La Londe des Maures, Provence. It was the second in a series, the first having been held at Lyon in 1990

  3. Artificial Intelligence

    CERN Document Server

    Warwick, Kevin

    2011-01-01

    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  4. Artificial Intelligence.

    Science.gov (United States)

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  5. Artificial Intelligence.

    Science.gov (United States)

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  6. Artificial intelligence

    OpenAIRE

    Duda, Antonín

    2009-01-01

    Abstract : Issue of this work is to acquaint the reader with the history of artificial inteligence, esspecialy branch of chess computing. Main attention is given to progress from fifties to the present. The work also deals with fighting chess programs against each other, and against human opponents. The greatest attention is focused on 1997 and duel Garry Kasparov against chess program Deep Blue. The work is divided into chapters according to chronological order.

  7. Artificial Wormhole

    OpenAIRE

    Kirillov, A. A.; Savelova, E. P.

    2012-01-01

    It is shown that recently reported result by the OPERA Collaboration (arXive:1109.4897) of an early arrival time of muon neutrinos with respect to the speed of light in vacuum does not violate standard physical laws. We show that vacuum polarization effects in intensive external fields may form a wormhole-like object. The simplest theory of such an effect is presented and basic principles of formation of an artificial wormhole are also considered.

  8. Artificial vision.

    Science.gov (United States)

    Zarbin, M; Montemagno, C; Leary, J; Ritch, R

    2011-09-01

    A number treatment options are emerging for patients with retinal degenerative disease, including gene therapy, trophic factor therapy, visual cycle inhibitors (e.g., for patients with Stargardt disease and allied conditions), and cell transplantation. A radically different approach, which will augment but not replace these options, is termed neural prosthetics ("artificial vision"). Although rewiring of inner retinal circuits and inner retinal neuronal degeneration occur in association with photoreceptor degeneration in retinitis pigmentosa (RP), it is possible to create visually useful percepts by stimulating retinal ganglion cells electrically. This fact has lead to the development of techniques to induce photosensitivity in cells that are not light sensitive normally as well as to the development of the bionic retina. Advances in artificial vision continue at a robust pace. These advances are based on the use of molecular engineering and nanotechnology to render cells light-sensitive, to target ion channels to the appropriate cell type (e.g., bipolar cell) and/or cell region (e.g., dendritic tree vs. soma), and on sophisticated image processing algorithms that take advantage of our knowledge of signal processing in the retina. Combined with advances in gene therapy, pathway-based therapy, and cell-based therapy, "artificial vision" technologies create a powerful armamentarium with which ophthalmologists will be able to treat blindness in patients who have a variety of degenerative retinal diseases.

  9. Artificial Red Cells with Polyhemoglobin Membranes.

    Science.gov (United States)

    1981-09-01

    orF I NOV IS OII 110LZTI 1 CMTY CLASIFICATION OF THIS PAGE (Sfien Veto fttwoo -r No I. SUMMARY In support of the Army’s program to improve the...with a single-speed, 20,000- rpm motor and a semi-micro, stainless- steel container with 25-ml minimum capacity was assembled from components in the

  10. Artificial Gravity

    CERN Document Server

    Clément, Gilles

    2007-01-01

    Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term reduced gravity during surface operations will require effective, multi-system countermeasures. Artificial gravity, which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by short-radius human centrifuge devices within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient

  11. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  12. The implantable artificial kidney.

    Science.gov (United States)

    Fissell, William H; Roy, Shuvo

    2009-01-01

    The confluence of an increasing prevalence of end-stage renal disease (ESRD), clinical trial data suggestive of benefit from quotidian dialysis, and ongoing cost/benefit reanalysis of healthcare spending have stimulated interest in technological improvements in provision of ESRD care. For the last decade, our group has focused on enabling technologies that would permit a paradigm shift in dialysis care similar to that brought by implantable defibrillators to arrhythmia management. Two significant barriers to wearable or implantable dialysis persist: package size of the dialyzer and water requirements for preparation of dialysate. Decades of independent research into highly efficient membranes and cell-based bioreactors culminated in a team effort to develop an implantable version of the University of Michigan Renal Assist Device. In this review, the rationale for the design of the implantable artificial kidney is described.

  13. Biopores/membrane proteins in synthetic polymer membranes.

    Science.gov (United States)

    Garni, Martina; Thamboo, Sagana; Schoenenberger, Cora-Ann; Palivan, Cornelia G

    2017-04-01

    Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016. Published by Elsevier B.V.

  14. Artificial rheotaxis.

    Science.gov (United States)

    Palacci, Jérémie; Sacanna, Stefano; Abramian, Anaïs; Barral, Jérémie; Hanson, Kasey; Grosberg, Alexander Y; Pine, David J; Chaikin, Paul M

    2015-05-01

    Motility is a basic feature of living microorganisms, and how it works is often determined by environmental cues. Recent efforts have focused on developing artificial systems that can mimic microorganisms, in particular their self-propulsion. We report on the design and characterization of synthetic self-propelled particles that migrate upstream, known as positive rheotaxis. This phenomenon results from a purely physical mechanism involving the interplay between the polarity of the particles and their alignment by a viscous torque. We show quantitative agreement between experimental data and a simple model of an overdamped Brownian pendulum. The model notably predicts the existence of a stagnation point in a diverging flow. We take advantage of this property to demonstrate that our active particles can sense and predictably organize in an imposed flow. Our colloidal system represents an important step toward the realization of biomimetic microsystems with the ability to sense and respond to environmental changes.

  15. Inflatable artificial sphincter

    Science.gov (United States)

    ... procedures to treat urine leakage and incontinence include: Anterior vaginal wall repair Urethral bulking with artificial material ... urinary incontinence Images Inflatable artificial sphincter Anal sphincter anatomy Inflatable artificial sphincter - series References Adams MC, Joseph ...

  16. Flexidrive: a soft artificial muscle motor

    Science.gov (United States)

    Anderson, Iain A.; Tse, Tony C. H.; Inamura, Tokushu; O'Brien, Benjamin; McKay, Thomas; Gisby, Todd

    2011-04-01

    We use our thumbs and forefingers to rotate an object such as a control knob on a stereo system by moving our finger relative to our thumb. Motion is imparted without sliding and in a precise manner. In this paper we demonstrate how an artificial muscle membrane can be used to mimic this action. This is achieved by embedding a soft gear within the membrane. Deformation of the membrane results in deformation of the polymer gear and this can be used for motor actuation by rotating the shaft. The soft motors were fabricated from 3M VHB4905 membranes 0.5mm thick that were pre-stretched equibiaxially to a final thickness of 31 μm. Each membrane had polymer acrylic soft gears inserted at the center. Sectors of each membrane (60° sector) were painted on both sides with conducting carbon grease leaving gaps between adjoining sectors to avoid arcing between them. Each sector was electrically connected to a power supply electrode on the rigid acrylic frame via narrow avenues of carbon-grease. The motors were supported in rigid acrylic frames aligned concentrically. A flexible shaft was inserted through both gears. Membranes were charged using a step wave PWM voltage signal delivered using a Biomimetics Lab EAP Control unit. Both membrane viscoelasticity and the resisting torque on the shaft influence motor speed by changing the effective circumference of the flexible gear. This new soft motor opens the door to artificial muscle machines molded as a single part.

  17. Shape of red blood cells in contact with artificial surfaces.

    Science.gov (United States)

    Grzhibovskis, Richards; Krämer, Elisabeth; Bernhardt, Ingolf; Kemper, Björn; Zanden, Carl; Repin, Nikolay V; Tkachuk, Bogdan V; Voinova, Marina V

    2017-03-01

    The phenomenon of physical contact between red blood cells and artificial surfaces is considered. A fully three-dimensional mathematical model of a bilayer membrane in contact with an artificial surface is presented. Numerical results for the different geometries and adhesion intensities are found to be in agreement with experimentally observed geometries obtained by means of digital holographic microscopy.

  18. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...

  19. Membrane engineering in biotechnology: quo vamus?

    Science.gov (United States)

    Rios, Gilbert M; Belleville, Marie-Pierre; Paolucci-Jeanjean, Delphine

    2007-06-01

    Membranes are essential to a range of applications, including the production of potable water, energy generation, tissue repair, pharmaceutical production, food packaging, and the separations needed for the manufacture of chemicals, electronics and a range of other products. Therefore, they are considered to be "dominant technologies" by governments and industry in several prominent countries--for example, USA, Japan and China. When combined with catalysts, membranes are at the basis of life, and membrane-based biomimetism is a key tool to obtain better quality products and environmentally friendly developments for our societies. Biology has a main part in this global landscape because it simultaneously provides the "model" (with natural biological membranes) and represents a considerable field of applications for new artificial membranes (biotreatments, bioconversions and artificial organs). In this article, our objective is to open up this enthralling area and to give our views about the future of membranes in biotechnology.

  20. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  1. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various

  2. Artificial Disc Replacement

    Science.gov (United States)

    ... Spondylolisthesis BLOG FIND A SPECIALIST Treatments Artificial Disc Replacement (ADR) Patient Education Committee Jamie Baisden The disc ... Disc An artificial disc (also called a disc replacement, disc prosthesis or spine arthroplasty device) is a ...

  3. Trends in Artificial Intelligence.

    Science.gov (United States)

    Hayes, Patrick

    1978-01-01

    Discusses the foundations of artificial intelligence as a science and the types of answers that may be given to the question, "What is intelligence?" The paradigms of artificial intelligence and general systems theory are compared. (Author/VT)

  4. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  5. Artificial life and Piaget.

    Science.gov (United States)

    Mueller, Ulrich; Grobman, K H.

    2003-04-01

    Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.

  6. artificial neural network (ann)

    African Journals Online (AJOL)

    2004-08-18

    Aug 18, 2004 ... forecasting models and artificial intelligence techniques and have become one of the major research fields (Kher and Joshin, 2003). (a) Artificial Neural Network and Electrical Load. Prediction. Neural network analysis is an Artificial Intelligence. (AI) approach to mathematical modeling. Neural. Networks ...

  7. Membranous nephropathy

    Science.gov (United States)

    ... check for hepatitis B, hepatitis C, and syphilis Complement levels Cryoglobulin test Treatment The goal of treatment ... not as helpful for people with membranous nephropathy. Medicines used treat membranous nephropathy include: Angiotensin-converting enzyme ( ...

  8. Formation and characterization of artificial lipid bilayers on optical fibers

    Science.gov (United States)

    Toussaint, Pauline; Dreesen, Laurent

    Transports across cellular membranes are at the basis of a lot of biological processes such as the transmission of information in neurons. Their characterization is therefore of crucial interest. As they are equivalent to biological membranes, artificial lipid bilayers can be created to study membranes and transmembrane proteins properties or transmembrane transports. The aim of this work is to develop a new method for the fabrication of artificial membranes, based on the use of optical fibers as support for the bilayer, and for their characterization by fluorescence measurements. We use microfluidics on fibers to create two phospholipid monolayers that we approach close enough to form a bilayer. The membrane formation is checked using fluorescein or a fluorescent sodium probe, Tetra (tetramethylammonium) salt (sodium green), whose optical signal depends on sodium concentration.

  9. Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection.

    Science.gov (United States)

    Gielen, Ellen; Smisdom, Nick; vandeVen, Martin; De Clercq, Ben; Gratton, Enrico; Digman, Michelle; Rigo, Jean-Michel; Hofkens, Johan; Engelborghs, Yves; Ameloot, Marcel

    2009-05-05

    The heterogeneity in composition and interaction within the cellular membrane translates into a wide range of diffusion coefficients of its constituents. Therefore, several complementary microfluorimetric techniques such as fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP) and single-particle tracking (SPT) have to be applied to explore the dynamics of membrane components. The recently introduced raster image correlation spectroscopy (RICS) offers a much wider dynamic range than each of these methods separately and allows for spatial mapping of the dynamic properties. RICS is implemented on a confocal laser-scanning microscope (CLSM), and the wide dynamic range is achieved by exploiting the inherent time information carried by the scanning laser beam in the generation of the confocal images. The original introduction of RICS used two-photon excitation and photon counting detection. However, most CLSM systems are based on one-photon excitation with analog detection. Here we report on the performance of such a commercial CLSM (Zeiss LSM 510 META) in the study of the diffusion of the fluorescent lipid analog 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indodicarbocyanine perchlorate (DiI-C(18)(5)) both in giant unilamellar vesicles and in the plasma membrane of living oligodendrocytes, i.e., the myelin-producing cells of the central nervous system. It is shown that RICS on a commercial CLSM with analog detection allows for reliable results in the study of membrane diffusion by removal of unwanted correlations introduced by the analog detection system. The results obtained compare well with those collected by FRAP and FCS.

  10. The influence of hypoxia-hypercapnia on the structural state of cellular membranes of rat hepatocytes

    Directory of Open Access Journals (Sweden)

    Світлана Володимирівна Хижняк

    2015-10-01

    Full Text Available The structural and dynamic state of cellular membranes of rat hepatocytes under the influence of hypoxia, hypercapnia and hypothermia factors (artificial hypobiosis was investigated using the method of fluorescent probes. The diverse changes of the structure and physical properties of these membranes (especially of inner mitochondrial membrane were shown. The structural reorganization of the membrane surface area, the decrease of the lipid structural orderliness and conformational modification of proteins occur during artificial hypobiosis

  11. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  12. Synthetic Biology: A Bridge between Artificial and Natural Cells

    Science.gov (United States)

    Ding, Yunfeng; Wu, Fan; Tan, Cheemeng

    2014-01-01

    Artificial cells are simple cell-like entities that possess certain properties of natural cells. In general, artificial cells are constructed using three parts: (1) biological membranes that serve as protective barriers, while allowing communication between the cells and the environment; (2) transcription and translation machinery that synthesize proteins based on genetic sequences; and (3) genetic modules that control the dynamics of the whole cell. Artificial cells are minimal and well-defined systems that can be more easily engineered and controlled when compared to natural cells. Artificial cells can be used as biomimetic systems to study and understand natural dynamics of cells with minimal interference from cellular complexity. However, there remain significant gaps between artificial and natural cells. How much information can we encode into artificial cells? What is the minimal number of factors that are necessary to achieve robust functioning of artificial cells? Can artificial cells communicate with their environments efficiently? Can artificial cells replicate, divide or even evolve? Here, we review synthetic biological methods that could shrink the gaps between artificial and natural cells. The closure of these gaps will lead to advancement in synthetic biology, cellular biology and biomedical applications. PMID:25532531

  13. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair

    DEFF Research Database (Denmark)

    Boye, Theresa Louise; Maeda, Kenji; Pezeshkian, Weria

    2017-01-01

    that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane......Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate...... curvature near the edges. We propose that curvature force is utilized together with annexin A6-mediated constriction force to pull the wound edges together for eventual fusion. We show that annexin A4 can counteract various plasma membrane disruptions including holes of several micrometers indicating...

  14. Artificial Intelligence in Astronomy

    Science.gov (United States)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  15. Quo Vadis, Artificial Intelligence?

    OpenAIRE

    Berrar, Daniel; Sato, Naoyuki; Schuster, Alfons

    2010-01-01

    Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervou...

  16. Artificial cognition architectures

    CERN Document Server

    Crowder, James A; Friess, Shelli A

    2013-01-01

    The goal of this book is to establish the foundation, principles, theory, and concepts that are the backbone of real, autonomous Artificial Intelligence. Presented here are some basic human intelligence concepts framed for Artificial Intelligence systems. These include concepts like Metacognition and Metamemory, along with architectural constructs for Artificial Intelligence versions of human brain functions like the prefrontal cortex. Also presented are possible hardware and software architectures that lend themselves to learning, reasoning, and self-evolution

  17. An artificial muscle computer

    Science.gov (United States)

    Marc O'Brien, Benjamin; Alexander Anderson, Iain

    2013-03-01

    We have built an artificial muscle computer based on Wolfram's "2, 3" Turing machine architecture, the simplest known universal Turing machine. Our computer uses artificial muscles for its instruction set, output buffers, and memory write and addressing mechanisms. The computer is very slow and large (0.15 Hz, ˜1 m3); however by using only 13 artificial muscle relays, it is capable of solving any computable problem given sufficient memory, time, and reliability. The development of this computer shows that artificial muscles can think—paving the way for soft robots with reflexes like those seen in nature.

  18. Ultrastructure of Reissner's membrane in the rabbit

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, J; Bretlau, P

    1994-01-01

    The ultrastructure of Reissner's membrane in the rabbit is described following vascular perfusion-fixation of live, anesthetized and artificially respirated healthy animals. A new and improved technique of fixation is employed that includes a pressure feedback controlled peristaltic pump and an o......The ultrastructure of Reissner's membrane in the rabbit is described following vascular perfusion-fixation of live, anesthetized and artificially respirated healthy animals. A new and improved technique of fixation is employed that includes a pressure feedback controlled peristaltic pump...

  19. Artificial life and life artificialization in Tron

    Directory of Open Access Journals (Sweden)

    Carolina Dantas Figueiredo

    2012-12-01

    Full Text Available Cinema constantly shows the struggle between the men and artificial intelligences. Fiction, and more specifically fiction films, lends itself to explore possibilities asking “what if?”. “What if”, in this case, is related to the eventual rebellion of artificial intelligences, theme explored in the movies Tron (1982 and Tron Legacy (2010 trat portray the conflict between programs and users. The present paper examines these films, observing particularly the possibility programs empowering. Finally, is briefly mentioned the concept of cyborg as a possibility of response to human concerns.

  20. Engineering Lipid Bilayer Membranes for Protein Studies

    Science.gov (United States)

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Williams, John Dalton

    2013-01-01

    Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM) fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi) surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS) data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques. PMID:24185908

  1. Artificial insemination in poultry

    Science.gov (United States)

    Artificial insemination is a relative simple yet powerful tool geneticists can employ for the propagation of economically important traits in livestock and poultry. In this chapter, we address the fundamental methods of the artificial insemination of poultry, including semen collection, semen evalu...

  2. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  3. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  4. Mathematical problems in modeling artificial heart

    Directory of Open Access Journals (Sweden)

    Ahmed N. U.

    1995-01-01

    Full Text Available In this paper we discuss some problems arising in mathematical modeling of artificial hearts. The hydrodynamics of blood flow in an artificial heart chamber is governed by the Navier-Stokes equation, coupled with an equation of hyperbolic type subject to moving boundary conditions. The flow is induced by the motion of a diaphragm (membrane inside the heart chamber attached to a part of the boundary and driven by a compressor (pusher plate. On one side of the diaphragm is the blood and on the other side is the compressor fluid. For a complete mathematical model it is necessary to write the equation of motion of the diaphragm and all the dynamic couplings that exist between its position, velocity and the blood flow in the heart chamber. This gives rise to a system of coupled nonlinear partial differential equations; the Navier-Stokes equation being of parabolic type and the equation for the membrane being of hyperbolic type. The system is completed by introducing all the necessary static and dynamic boundary conditions. The ultimate objective is to control the flow pattern so as to minimize hemolysis (damage to red blood cells by optimal choice of geometry, and by optimal control of the membrane for a given geometry. The other clinical problems, such as compatibility of the material used in the construction of the heart chamber, and the membrane, are not considered in this paper. Also the dynamics of the valve is not considered here, though it is also an important element in the overall design of an artificial heart. We hope to model the valve dynamics in later paper.

  5. Artificial intelligence in medicine.

    Science.gov (United States)

    Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J

    2004-09-01

    Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.

  6. Artificial intelligence in medicine.

    Science.gov (United States)

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  7. Quo Vadis, Artificial Intelligence?

    Directory of Open Access Journals (Sweden)

    Daniel Berrar

    2010-01-01

    Full Text Available Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervous systems of biological organisms and systems biology with its longing to comprehend, holistically, the multitude of complex interactions in biological systems are two such fields. They target ideals artificial intelligence has dreamt about for a long time including the computer simulation of an entire biological brain or the creation of new life forms from manipulations of cellular and genetic information in the laboratory. The scope for artificial intelligence in neuroscience and systems biology is extremely wide. This article investigates the standing of artificial intelligence in relation to neuroscience and systems biology and provides an outlook at new and exciting challenges for artificial intelligence in these fields. These challenges include, but are not necessarily limited to, the ability to learn from other projects and to be inventive, to understand the potential and exploit novel computing paradigms and environments, to specify and adhere to stringent standards and robust statistical frameworks, to be integrative, and to embrace openness principles.

  8. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  9. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond.

    Science.gov (United States)

    Chang, Thomas M S

    2012-06-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymer membrane. Extensions into oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics.

  10. CRC 1114 - Report Membrane Deformation by N-BAR Proteins: Extraction of membrane geometry and protein diffusion characteristics from MD simulations

    OpenAIRE

    Peters, Jan Henning; Gräser, Carsten; Klein, Rupert

    2017-01-01

    We describe simulations of Proteins and artificial pseudo-molecules interacting and shaping lipid bilayer membranes. We extract protein diffusion Parameters, membrane deformation profiles and the elastic properties of the used membrane models in preparation of calculations based on a large scale continuum model.

  11. Intelligence: Real or artificial?

    Science.gov (United States)

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051

  12. Relationship between sperm plasma membrane integrity and ...

    African Journals Online (AJOL)

    Sperm quality plays an important role in determining fertility. The aim of the study was to examine the relationship between sperm plasma membrane integrity and morphology, and fertility following artificial insemination (AI). A total of 16 ejaculates were collected from three Large White boars using the gloved hand ...

  13. Predicting flux decline of reverse osmosis membranes

    NARCIS (Netherlands)

    Schippers, J.C.; Hanemaayer, J.H.; Smolders, C.A.; Kostense, A.

    1981-01-01

    A mathematical model predicting flux decline of reverse osmosis membranes due to colloidal fouling has been verified. This mathema- tical model is based on the theory of cake or gel filtration and the Modified Fouling Index (MFI). Research was conducted using artificial colloidal solutions and a

  14. Principles of artificial intelligence

    CERN Document Server

    Nilsson, Nils J

    1980-01-01

    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  15. Artificial intelligence in cardiology

    OpenAIRE

    Bonderman, Diana

    2017-01-01

    Summary Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiol...

  16. Artificial intelligence in medicine.

    OpenAIRE

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of ...

  17. Intelligence: Real or artificial?

    OpenAIRE

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally r...

  18. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1973-01-01

    Progress in Surface and Membrane Science, Volume 6 covers the developments in the study of surface and membrane science. The book discusses the progress in surface and membrane science; the solid state chemistry of the silver halide surface; and the experimental and theoretical aspects of the double layer at the mercury-solution interface. The text also describes contact-angle hysteresis; ion binding and ion transport produced by neutral lipid-soluble molecules; and the biophysical interactions of blood proteins with polymeric and artificial surfaces. Physical chemists, biophysicists, and phys

  19. Inspection of an artificial heart by the neutron radiography technique

    CERN Document Server

    Pugliesi, R; Andrade, M L G; Menezes, M O; Pereira, M A S; Maizato, M J S

    1999-01-01

    The neutron radiography technique was employed to inspect an artificial heart prototype which is being developed to provide blood circulation for patients expecting heart transplant surgery. The radiographs have been obtained by the direct method with a gadolinium converter screen along with the double coated Kodak-AA emulsion film. The artificial heart consists of a flexible plastic membrane located inside a welded metallic cavity, which is employed for blood pumping purposes. The main objective of the present inspection was to identify possible damages in this plastic membrane, produced during the welding process of the metallic cavity. The obtained radiographs were digitized as well as analysed in a PC and the improved images clearly identify several damages in the plastic membrane, suggesting changes in the welding process.

  20. Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch.

    Science.gov (United States)

    Itel, Fabian; Najer, Adrian; Palivan, Cornelia G; Meier, Wolfgang

    2015-06-10

    The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.

  1. Effect of geometrical dimension, shape, thickness, material & applied pressure on nanopore thin filtration membrane strength

    Science.gov (United States)

    Mustafa, Kamarul Asyikin; Yunas, Jumril; Hamzah, Azrul Azlan; Majlis, Burhanuddin Yeop

    2017-09-01

    Filtration membrane is an essential part in an artificial kidney device functioning as a channel to pass through all wastes from blood. This paper focuses on the effect of dimension, shape, thickness, material and applied pressure on the artificial filtration membrane to be used in terms of its mechanical strength. Studied parameters important for consideration of an actual filtration membrane design for the artificial kidney. The stress and deflection at the center of the membrane is studied using COMSOL Multiphysics simulation tool using "Solid Mechanics" physics module. The results shows that maximum deflection happens at the center of the membrane. Higher applied pressure causes more membrane deflection from the initial state while thicker membrane shows a better withstand towards applied pressure. Circle shape pores has lower stress and deflection compared to slit pores whereas filtration pore size does not give much impact on the stress and deflection of the membrane. Silicon Nitride filtration membrane is the most robust compared to Silicon and Silicon Dioxide membrane evaluated. To conclude, thicker Silicon Nitride membrane with arrays of uniform circle pores will result to a more stable filtration membrane that would be able to withstand simulated blood stream pressure of 10 until 55 mmHg in an artificial kidney.

  2. Artificial intelligence in nanotechnology

    International Nuclear Information System (INIS)

    Sacha, G M; Varona, P

    2013-01-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  3. Artificial organ engineering

    CERN Document Server

    Annesini, Maria Cristina; Piemonte, Vincenzo; Turchetti, Luca

    2017-01-01

    Artificial organs may be considered as small-scale process plants, in which heat, mass and momentum transfer operations and, possibly, chemical transformations are carried out. This book proposes a novel analysis of artificial organs based on the typical bottom-up approach used in process engineering. Starting from a description of the fundamental physico-chemical phenomena involved in the process, the whole system is rebuilt as an interconnected ensemble of elemental unit operations. Each artificial organ is presented with a short introduction provided by expert clinicians. Devices commonly used in clinical practice are reviewed and their performance is assessed and compared by using a mathematical model based approach. Whilst mathematical modelling is a fundamental tool for quantitative descriptions of clinical devices, models are kept simple to remain focused on the essential features of each process. Postgraduate students and researchers in the field of chemical and biomedical engineering will find that t...

  4. Artificial intelligence in nanotechnology.

    Science.gov (United States)

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  5. Artificial intelligence in cardiology.

    Science.gov (United States)

    Bonderman, Diana

    2017-12-01

    Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiology are reviewed. The text also touches on the ethical issues and speculates on the future roles of automated algorithms versus clinicians in cardiology and medicine in general.

  6. Artificial intelligence executive summary

    International Nuclear Information System (INIS)

    Wamsley, S.J.; Purvis, E.E. III

    1984-01-01

    Artificial intelligence (AI) is a high technology field that can be used to provide problem solving diagnosis, guidance and for support resolution of problems. It is not a stand alone discipline, but can also be applied to develop data bases for retention of the expertise that is required for its own knowledge base. This provides a way to retain knowledge that otherwise may be lost. Artificial Intelligence Methodology can provide an automated construction management decision support system, thereby restoring the manager's emphasis to project management

  7. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  8. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  9. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  10. Artificial intelligence within AFSC

    Science.gov (United States)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  11. Generality in Artificial Intelligence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Generality in Artificial Intelligence. John McCarthy. Classics Volume 19 Issue 3 March 2014 pp 283-296. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/019/03/0283-0296. Author Affiliations.

  12. Artificial Gravity Research Plan

    Science.gov (United States)

    Gilbert, Charlene

    2014-01-01

    This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.

  13. Artificial Intelligence and CALL.

    Science.gov (United States)

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  14. Generality in Artificial Intelligence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Generality in Artificial Intelligence. John McCarthy. Classics Volume 19 Issue 3 March 2014 pp 283-296. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/03/0283-0296. Author Affiliations.

  15. Efficacy of Blood Sources and Artificial Blood Feeding Methods in Rearing of Aedes aegypti (Diptera: Culicidae) for Sterile Insect Technique and Incompatible Insect Technique Approaches in Sri Lanka

    OpenAIRE

    Nayana Gunathilaka; Tharaka Ranathunge; Lahiru Udayanga; Wimaladharma Abeyewickreme

    2017-01-01

    Introduction Selection of the artificial membrane feeding technique and blood meal source has been recognized as key considerations in mass rearing of vectors. Methodology Artificial membrane feeding techniques, namely, glass plate, metal plate, and Hemotek membrane feeding method, and three blood sources (human, cattle, and chicken) were evaluated based on feeding rates, fecundity, and hatching rates of Aedes aegypti. Significance in the variations among blood feeding was investigated by one...

  16. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  17. Criminal Aspects of Artificial Abortion

    OpenAIRE

    Hartmanová, Leona

    2016-01-01

    Criminal Aspects of Artificial Abortion This diploma thesis deals with the issue of artificial abortion, especially its criminal aspects. Legal aspects are not the most important aspects of artificial abortion. Social, ethical or ideological aspects are of the same importance but this diploma thesis cannot analyse all of them. The main issue with artificial abortion is whether it is possible to force a pregnant woman to carry a child and give birth to a child when she cannot or does not want ...

  18. Examining hemodialyzer membrane performance using proteomic technologies.

    Science.gov (United States)

    Bonomini, Mario; Pieroni, Luisa; Di Liberato, Lorenzo; Sirolli, Vittorio; Urbani, Andrea

    2018-01-01

    The success and the quality of hemodialysis therapy are mainly related to both clearance and biocompatibility properties of the artificial membrane packed in the hemodialyzer. Performance of a membrane is strongly influenced by its interaction with the plasma protein repertoire during the extracorporeal procedure. Recognition that a number of medium-high molecular weight solutes, including proteins and protein-bound molecules, are potentially toxic has prompted the development of more permeable membranes. Such membrane engineering, however, may cause loss of vital proteins, with membrane removal being nonspecific. In addition, plasma proteins can be adsorbed onto the membrane surface upon blood contact during dialysis. Adsorption can contribute to the removal of toxic compounds and governs the biocompatibility of a membrane, since surface-adsorbed proteins may trigger a variety of biologic blood pathways with pathophysiologic consequences. Over the last years, use of proteomic approaches has allowed polypeptide spectrum involved in the process of hemodialysis, a key issue previously hampered by lack of suitable technology, to be assessed in an unbiased manner and in its full complexity. Proteomics has been successfully applied to identify and quantify proteins in complex mixtures such as dialysis outflow fluid and fluid desorbed from dialysis membrane containing adsorbed proteins. The identified proteins can also be characterized by their involvement in metabolic and signaling pathways, molecular networks, and biologic processes through application of bioinformatics tools. Proteomics may thus provide an actual functional definition as to the effect of a membrane material on plasma proteins during hemodialysis. Here, we review the results of proteomic studies on the performance of hemodialysis membranes, as evaluated in terms of solute removal efficiency and blood-membrane interactions. The evidence collected indicates that the information provided by proteomic

  19. Artificial Intelligence and Information Retrieval.

    Science.gov (United States)

    Teodorescu, Ioana

    1987-01-01

    Compares artificial intelligence and information retrieval paradigms for natural language understanding, reviews progress to date, and outlines the applicability of artificial intelligence to question answering systems. A list of principal artificial intelligence software for database front end systems is appended. (CLB)

  20. Microfluidic devices for investigation of biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna

    The term biomimetic membrane denotes membrane that mimics biological cell membrane. Artificially made membranes are powerful tools for the fundamental biophysical studies of membrane proteins. Moreover, they may be used in biomedicine, serving as biosensors in high-throughput screening of potential...... drug candidates and in separation technologies, where an exciting example is water purification device based on biomimetic membranes containing aquaporins (highly water selective proteins). However, there are many challenges that must be overcome in order to build biomimetic membrane-based devices...... for industrial applications. Among them are the inherent fragility of lipid membranes, the challenge of up-scaling the effective membrane area and the quantification of the protein delivery to the lipid membrane which may determined the biomimetic membrane application. This PhD thesis addresses the above...

  1. Delivery of Timolol through Artificial Membranes and Pig Stratum Corneum

    NARCIS (Netherlands)

    Stamatialis, Dimitrios; Rolevink, Hendrikus H.M.; Koops, G.H.

    2003-01-01

    The in vitro passive and iontophoretic (applied current density: 0.5 mA/cm2) timolol (TM) permeability from a liquid solution through pig stratum corneum (SC) is found to be 0.9 ± 0.5 × 10-6 and 3.9 ± 0.9 × 10-6 cm/s, respectively. The in vitro iontophoretic TM delivery through the combination of

  2. Disrupted yeast mitochondria can import precursor proteins directly through their inner membrane

    OpenAIRE

    1989-01-01

    Import of precursor proteins into the yeast mitochondrial matrix can occur directly across the inner membrane. First, disruption of the outer membrane restores protein import to mitochondria whose normal import sites have been blocked by an antibody against the outer membrane or by a chimeric, incompletely translocated precursor protein. Second, a potential- and ATP-dependent import of authentic or artificial precursor proteins is observed with purified inner membrane vesicles virtually free ...

  3. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction....... It reviews calibration procedures, outlines the computational algorithms, and summarizes examplary applications. Four different platforms for BD and DPD simulations are presented that differ in their focus, features, and complexity....

  4. Wide Band Artificial Pulsar

    Science.gov (United States)

    Parsons, Zackary

    2017-01-01

    The Wide Band Artificial Pulsar (WBAP) is an instrument verification device designed and built by the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virgina. The site currently operates the Green Bank Ultimate Pulsar Processing Instrument (GUPPI) and the Versatile Green Bank Astronomical Spectrometer (VEGAS) digital backends for their radio telescopes. The commissioning and continued support for these sophisticated backends has demonstrated a need for a device capable of producing an accurate artificial pulsar signal. The WBAP is designed to provide a very close approximation to an actual pulsar signal. This presentation is intended to provide an overview of the current hardware and software implementations and to also share the current results from testing using the WBAP.

  5. Artificial structures on Mars

    Science.gov (United States)

    Van Flandern, T.

    2002-05-01

    Approximately 70,000 images of the surface of Mars at a resolution of up to 1.4 meters per pixel, taken by the Mars Global Surveyor spacecraft, are now in public archives. Approximately 1% of those images show features that can be broadly described as `special shapes', `tracks, trails, and possible vegetation', `spots, stripes, and tubes', `artistic imagery', and `patterns and symbols'. Rather than optical illusions and tricks of light and shadow, most of these have the character that, if photographed on Earth, no one would doubt that they were the products of large biology and intelligence. In a few cases, relationships, context, and fulfillment of a priori predictions provide objective evidence of artificiality that is exempt from the influence of experimenter biases. Only controlled test results can be trusted because biases are strong and operate both for and against artificiality.

  6. Essentials of artificial intelligence

    CERN Document Server

    Ginsberg, Matt

    1993-01-01

    Since its publication, Essentials of Artificial Intelligence has beenadopted at numerous universities and colleges offering introductory AIcourses at the graduate and undergraduate levels. Based on the author'scourse at Stanford University, the book is an integrated, cohesiveintroduction to the field. The author has a fresh, entertaining writingstyle that combines clear presentations with humor and AI anecdotes. At thesame time, as an active AI researcher, he presents the materialauthoritatively and with insight that reflects a contemporary, first hand

  7. Intelligence in Artificial Intelligence

    OpenAIRE

    Datta, Shoumen Palit Austin

    2016-01-01

    The elusive quest for intelligence in artificial intelligence prompts us to consider that instituting human-level intelligence in systems may be (still) in the realm of utopia. In about a quarter century, we have witnessed the winter of AI (1990) being transformed and transported to the zenith of tabloid fodder about AI (2015). The discussion at hand is about the elements that constitute the canonical idea of intelligence. The delivery of intelligence as a pay-per-use-service, popping out of ...

  8. Intelligence, Artificial and Otherwise

    OpenAIRE

    Chace, William M.

    1984-01-01

    I rise now to speak with the assumption that all of you know very well what I am going to say. I am the humanist here, the professor of English. We humanists, when asked to speak on questions of science and technology, are notorious for offering an embarrassed and ignorant respect toward those matters, a respect, however, which can all too quickly degenerate into insolent condescension. Face to face with the reality of computer technology, say, or with "artificial intelligence," we humanists ...

  9. Impacts of Artificial Intelligence

    OpenAIRE

    Trappl, R.

    1986-01-01

    This book, which is intended to serve as the first stage in an iterative process of detecting, predicting, and assessing the impacts of Artificial Intelligence opens with a short "one-hour course" in AI, which is intended to provide a nontechnical informative introduction to the material which follows. Next comes an overview chapter which is based on an extensive literature search, the position papers, and discussions. The next section of the book contains position papers whose richness...

  10. Ethical Artificial Intelligence

    OpenAIRE

    Hibbard, Bill

    2014-01-01

    This book-length article combines several peer reviewed papers and new material to analyze the issues of ethical artificial intelligence (AI). The behavior of future AI systems can be described by mathematical equations, which are adapted to analyze possible unintended AI behaviors and ways that AI designs can avoid them. This article makes the case for utility-maximizing agents and for avoiding infinite sets in agent definitions. It shows how to avoid agent self-delusion using model-based ut...

  11. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  12. Modeling artificial leaf

    OpenAIRE

    Raucci, Umberto

    2016-01-01

    The development of efficient artificial leaves relies on the subtle combination of the electronic structure of molecular assemblies able to absorbing sunlight, converting light energy into electrochemical potential energy and finally transducing it into chemical accessible energy. The electronical design of these charge transfer molecular machine is crucial to build up a complex supramolecular architecture for the light energy conversion. The theoretical computational approach represent...

  13. Artificial perception and consciousness

    Science.gov (United States)

    Caulfield, H. John; Johnson, John L.

    2000-06-01

    Perception has both unconscious and conscious aspects. In all cases, however, what we perceive is a model of reality. By brain construction through evolution, we divide the world into two parts--our body and the outside world. But the process is the same in both cases. We perceive a construct usually governed by sensed data but always involving memory, goals, fears, expectations, etc. As a first step toward Artificial Perception in man-made systems, we examine perception in general here.

  14. Artificial sweetener; Jinko kanmiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The patents related to the artificial sweetener that it is introduced to the public in 3 years from 1996 until 1998 are 115 cases. The sugar quality which makes an oligosaccharide and sugar alcohol the subject is greatly over 28 cases of the non-sugar quality in the one by the kind as a general tendency of these patents at 73 cases in such cases as the Aspartame. The method of manufacture patent, which included new material around other peptides, the oligosaccharide and sugar alcohol isn`t inferior to 56 cases of the formation thing patent at 43 cases, and pays attention to the thing, which is many by the method of manufacture, formation. There is most improvement of the quality of sweetness with 31 cases in badness of the aftertaste which is characteristic of the artificial sweetener and so on, and much stability including the improvement in the flavor of food by the artificial sweetener, a long time and dissolution, fluid nature and productivity and improvement of the economy such as a cost are seen with effect on a purpose. (NEDO)

  15. Protein-stimulated exchange of phosphatidylcholine between intact erythrocytes and various membrane systems

    NARCIS (Netherlands)

    Meer, G. van; Lange, L.G.; Kamp, J.A.F. op den; Deenen, L.L.M. van

    1980-01-01

    Phosphatidylcholine specific exchange protein from beef liver was found to catalyze the exchange of phosphatidylcholine between intact rat and human erythrocytes and various artificial membranes. Both multilamellar liposomes and single bilayer vesicles prepared from egg lecithin, cholesterol and

  16. Novel Ultrathin Membranes Composed of Organic Ions

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Verspeek, Bram; Khandelia, Himanshu

    2013-01-01

    of artificial bilayers composed of long-chained organic ions, such as dodecyltrimethylammonium (DMA(+)) and perfluorooctaonate (PFO-). Various ratios of DMA/PFO surfactants result in bilayers of different stability, thickness, area per molecule, and density profiles. In our quest for water filtration, we...... incorporated aquaporin protein into the DMA/PFO bilayer but did not observe sufficient stability of the system. We discuss further steps to utilize these surfactant bilayers as highly selective, salt-impermeable membranes....

  17. Artificial Leaf Based on Artificial Photosynthesis for Solar Fuel Production

    Science.gov (United States)

    2017-06-30

    demonstration that the conversion efficiency of CO2 to formic acid in a photo reduction reactor combining a photosensitizer and formate dehydrogenase (FDH) was...We believe that this contribution is theoretically and practically relevant because the artificial photosynthetic system developed has potential...based on the artificial photosynthesis, “artificial leaf” are proposed as for an example illustrated in Scheme 1: 1) CO2 reduction to chemical

  18. Environment-sensitive ion-track membranes

    International Nuclear Information System (INIS)

    Yoshida, Masaru

    1996-01-01

    Development of an environment-sensitive porous membrane from ion-track membranes may realize by combining the techniques of ion beam radiation and those of molecular designing and synthesis for intelligent materials. Now, the development of such membrane is progressing with an aim at selecting some specific substances and accurately control its pore size in response to any small environmental stimulus such as temperature change. The authors have been studying the molecular design, synthesis and functional expression of intelligent materials, which are called here as environment-sensitive gels. In this report, the outlines of the apparatus for the production of such porous membrane was described. An organic polymer membrane was irradiated with an ion beam and followed by chemical etching to make ion track pores. Scanning electron microscopic observation for the cross section of the membrane showed that the pore shape varies greatly depending on the ion nuclide used. The characteristics of newly produced porous membranes consisting of CR-30/A-ProDMe and polyethylene-telephtharate were investigated in respect of pore size change responding to temperature. These studies of design, synthesis and functions of such gels would enable to substitute artificial materials for the functions of human sensors. (M.N.). 54 refs

  19. Artificial intelligence in hematology.

    Science.gov (United States)

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  20. Artificial mismatch hybridization

    Science.gov (United States)

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  1. Uncertainty in artificial intelligence

    CERN Document Server

    Kanal, LN

    1986-01-01

    How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.

  2. The artificial bladder.

    Science.gov (United States)

    Desgrandchamps, F; Griffith, D P

    1999-04-01

    An artificial bladder should provide adequate urine storage, allow volitional complete evacuation of urine and preserve renal function. Moreover, its structure has to be biocompatible, resistant to urinary encrustation and tolerant to bacterial infection. Various solutions have been proposed over the years to achieve these multiple requirements. However, most of these solutions and their corresponding prototypes did not advance beyond the stage of a preliminary report of experimental data. This review will bring out the 'proof of principal' in alloplastic prosthetic bladder, including type of alloplast and design concept and the recent development in tissue engineering approaches.

  3. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  4. Mechanism of artificial heart

    CERN Document Server

    Yamane, Takashi

    2016-01-01

    This book first describes medical devices in relation to regenerative medicine before turning to a more specific topic: artificial heart technologies. Not only the pump mechanisms but also the bearing, motor mechanisms, and materials are described, including expert information. Design methods are described to enhance hemocompatibility: main concerns are reduction of blood cell damage and protein break, as well as prevention of blood clotting. Regulatory science from R&D to clinical trials is also discussed to verify the safety and efficacy of the devices.

  5. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...

  6. Artificial intelligence in cardiology

    Directory of Open Access Journals (Sweden)

    Srishti Sharma

    2017-01-01

    Full Text Available Artificial intelligence (AI provides machines with the ability to learn and respond the way humans do and is also referred to as machine learning. The step to building an AI system is to provide the data to learn from so that it can map relations between inputs and outputs and set up parameters such as “weights”/decision boundaries to predict responses for inputs in the future. Then, the model is tested on a second data set. This article outlines the promise this analytic approach has in medicine and cardiology.

  7. Experiences with the artificial kidney as laboratory exercise for students of medicine

    Science.gov (United States)

    Ambach, W.; Rehwald, W.

    1982-11-01

    A laboratory experiment with an artificial kidney is described. The intention is to stimulate the teaching of elementary physics in premedical education by means of clinical examples. The instructional objective is to provide experiences in handling exponential functions. From graphical representation of the measured data, clearance and membrane permeability of the artificial kidney are calculated. The apparative setup is simple and the costs of the necessary equipment are low.

  8. Artificial Intelligence and Economic Theories

    OpenAIRE

    Marwala, Tshilidzi; Hurwitz, Evan

    2017-01-01

    The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence such as the swarming of birds, the working of the brain and the pathfinding of the ants. These techniques have impact on economic theories. This book studies the impact of artificial intelligence on economic theories, a subject that has not been extensively studied. The theories that...

  9. Artificial Intelligence in Space Platforms.

    Science.gov (United States)

    1984-12-01

    computer algorithms, there still appears to be a need for Artificial Inteligence techniques in the navigation area. The reason is that navigaion, in...RD-RI32 679 ARTIFICIAL INTELLIGENCE IN SPACE PLRTFORNSMU AIR FORCE 1/𔃼 INST OF TECH WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGINEERING M A WRIGHT DEC 94...i4 Preface The purpose of this study was to analyze the feasibility of implementing Artificial Intelligence techniques to increase autonomy for

  10. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  11. [Artificial neural networks in Neurosciences].

    Science.gov (United States)

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  12. Artificial Blood for Dogs.

    Science.gov (United States)

    Yamada, Kana; Yokomaku, Kyoko; Kureishi, Moeka; Akiyama, Motofusa; Kihira, Kiyohito; Komatsu, Teruyuki

    2016-11-10

    There is no blood bank for pet animals. Consequently, veterinarians themselves must obtain "blood" for transfusion therapy. Among the blood components, serum albumin and red blood cells (RBCs) are particularly important to save lives. This paper reports the synthesis, structure, and properties of artificial blood for the exclusive use of dogs. First, recombinant canine serum albumin (rCSA) was produced using genetic engineering with Pichia yeast. The proteins showed identical features to those of the native CSA derived from canine plasma. Furthermore, we ascertained the crystal structure of rCSA at 3.2 Å resolution. Pure rCSA can be used widely for numerous clinical and pharmaceutical applications. Second, hemoglobin wrapped covalently with rCSA, hemoglobin-albumin cluster (Hb-rCSA 3 ), was synthesized as an artificial O 2 -carrier for the RBC substitute. This cluster possesses satisfactorily negative surface net charge (pI = 4.7), which supports enfolding of the Hb core by rCSA shells. The anti-CSA antibody recognized the rCSA exterior quantitatively. The O 2 -binding affinity was high (P 50  = 9 Torr) compared to that of the native Hb. The Hb-rCSA 3 cluster is anticipated for use as an alternative material for RBC transfusion, and as an O 2 therapeutic reagent that can be exploited in various veterinary medicine situations.

  13. Monitoring membrane hydration with 2-(dimethylamino)-6-acylnaphtalenes fluorescent probes

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2015-01-01

    comparative studies. This chapter presents a short historical overview about these fluorescent reporters, discusses on different models proposed to explain their sensitivity to membrane hydration, and includes relevant examples from experiments performed in artificial and biological membranes......., were used to study membrane lateral structure and associated dynamics. Once incorporated into membranes, the (nanosecond) fluorescent decay of these probes is strongly affected by changes in the local polarity and relaxation dynamics of restricted water molecules existing at the membrane....../water interface. For instance, when glycerophospholipid containing membranes undertake a solid ordered (gel) to liquid disordered phase transition the fluorescence emission maximum of these probes shift ~ 50 nm with a significant change in their fluorescence lifetime. Furthermore, the fluorescence parameters...

  14. Hierarchical Inorganic Assemblies for Artificial Photosynthesis.

    Science.gov (United States)

    Kim, Wooyul; Edri, Eran; Frei, Heinz

    2016-09-20

    photocatalytic conditions for guiding performance improvements. Separation of the water oxidation and carbon dioxide reduction half reactions by a membrane is essential for efficient photoreduction of CO2 by H2O to liquid fuel products. A concept of a macroscale artificial photosystem consisting of arrays of Co oxide-silica core-shell nanotubes is introduced in which each tube operates as a complete, independent photosynthetic unit with built-in membrane separation. The ultrathin amorphous silica shell with embedded molecular wires functions as a proton conducting, molecule impermeable membrane. Photoelectrochemical and transient optical measurements confirm tight control of charge transport through the membrane by the orbital energetics of the wire molecules. Hierarchical arrangement of the components is accomplished by a combination of photodeposition, controlled anchoring, and atomic layer deposition methods.

  15. AMNIOTIC MEMBRANE TRANSPLANTATION FOR KERATITIS.

    Directory of Open Access Journals (Sweden)

    Snezhana Murgova

    2015-06-01

    Full Text Available Keratitis without proper management tends to perforate the cornea, resulting in severe adverse consequences. In recent studies, amniotic membrane is reported to have anti-inflammatory effect and promote wound healing of corneal ulcer. Purpose: To report on the efficacy of permanent amniotic membrane transplantation (AMT in the treatment of keratitis. Case report: A 58-year-old man with severe keratitis in both eyes caused by long term administration of topical anesthetic (alcaine for electric ophthalmia. Single layer of amniotic membrane (AM was placed on the defect and secured to the limbus with interrupted 10-0 nylon sutures. A bandage contact lens was applied on the AM. Postoperative medication included topical antibiotic, artificial tears and mydriatic. Three months later corticosteroid was included. There was an immediate decrease of patient’s pain after surgery. Complete epithelialization was noted after 1 month. Conclusion: AMT is an alternative adjunctive method of treatment of keratitis; it promotes epithelialization process, decreased inflammation, corneal haze and neovascularization.

  16. Generative Artificial Intelligence : Philosophy and Theory of Artificial Intelligence

    NARCIS (Netherlands)

    van der Zant, Tijn; Kouw, Matthijs; Schomaker, Lambertus; Mueller, Vincent C.

    2013-01-01

    The closed systems of contemporary Artificial Intelligence do not seem to lead to intelligent machines in the near future. What is needed are open-ended systems with non-linear properties in order to create interesting properties for the scaffolding of an artificial mind. Using post-structuralistic

  17. Artificial organs: recent progress in artificial hearing and vision.

    Science.gov (United States)

    Ifukube, Tohru

    2009-01-01

    Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas.

  18. Colonization of Lutzomyia shannoni (Diptera: Psychodidae) utilizing an artificial blood feeding technique.

    Science.gov (United States)

    Mann, Rajinder S; Kaufman, Phillip E

    2010-12-01

    Laboratory colonization of hematophagous insects must include an efficient method of blood feeding, preferably by artificial means. Strict rules for obtaining animal use permits, extensive animal maintenance costs, and indirect anesthesia effects on animal health warrant the development of an artificial membrane feeding technique for sand fly colonization in laboratories. An attempt was made to colonize Lutzomyia shannoni using an artificial blood feeding membrane to replace the use of live animals commonly used for sand fly blood-feeding purposes. Lutzomyia shannoni readily fed through a pig intestine membrane exposed at an angle of 45°. However, it did not feed through a chicken skin membrane. Olfactory attractants were unable to improve blood-feeding efficiency. Plaster of Paris was the most suitable oviposition substrate. Female L. shannoni adults laid no eggs on moist sand substrate. Sand fly adults held in groups of ten or more laid higher numbers of eggs than did individually maintained sand flies. Inclusion of the L. longipalpis oviposition hormone dodecanoic acid or the presence of previously laid eggs did not stimulate L. shannoni oviposition. The average L. shannoni egg, larval, and pupal duration were 9.3, 36.7, and 17.8 days, respectively. The addition of a 20% sugar solution improved adult female longevity. Females survived longer (14.8 days) than males (11.9 days). Lutzomyia shannoni was successfully colonized in the laboratory for up to four generations using this artificial membrane technique. © 2010 The Society for Vector Ecology.

  19. Artificial leaf device for solar fuel production.

    Science.gov (United States)

    Amao, Yutaka; Shuto, Naho; Furuno, Kana; Obata, Asami; Fuchino, Yoshiko; Uemura, Keiko; Kajino, Tsutomu; Sekito, Takeshi; Iwai, Satoshi; Miyamoto, Yasushi; Matsuda, Masatoshi

    2012-01-01

    Solar fuels, such as hydrogen gas produced from water and methanol produced from carbon dioxide reduction by artificial photosynthesis, have received considerable attention. In natural leaves the photosynthetic proteins are well-organized in the thylakoid membrane. To develop an artificial leaf device for solar low-carbon fuel production from CO2, a chlorophyll derivative chlorin-e6 (Chl-e6; photosensitizer), 1-carboxylundecanoyl-1'-methyl-4,4'-bipyrizinium bromide, iodide (CH3V(CH2)9COOH; the electron carrier) and formate dehydrogenase (FDH) (the catalyst) immobilised onto a silica-gel-based thin layer chromatography plate (the Chl-V-FDH device) was investigated. From luminescence spectroscopy measurements, the photoexcited triplet state of Chl-e6 was quenched by the CH3V(CH2)9COOH moiety on the device, indicating the photoinduced electron transfer from the photoexcited triplet state of Chl-e6 to the CH3V(CH2)9COOH moiety. When the CO2-saturated sample solution containing NADPH (the electron donor) was flowed onto the Chl-V-FDH device under visible light irradiation, the formic acid concentration increased with increasing irradiation time.

  20. Artificial Intelligence and brain.

    Science.gov (United States)

    Shapshak, Paul

    2018-01-01

    From the start, Kurt Godel observed that computer and brain paradigms were considered on a par by researchers and that researchers had misunderstood his theorems. He hailed with displeasure that the brain transcends computers. In this brief article, we point out that Artificial Intelligence (AI) comprises multitudes of human-made methodologies, systems, and languages, and implemented with computer technology. These advances enhance development in the electron and quantum realms. In the biological realm, animal neurons function, also utilizing electron flow, and are products of evolution. Mirror neurons are an important paradigm in neuroscience research. Moreover, the paradigm shift proposed here - 'hall of mirror neurons' - is a potentially further productive research tactic. These concepts further expand AI and brain research.

  1. Artificial Diets for Mosquitoes

    Directory of Open Access Journals (Sweden)

    Kristina K. Gonzales

    2016-12-01

    Full Text Available Mosquito-borne diseases are responsible for more than a million human deaths every year. Modern mosquito control strategies such as sterile insect technique (SIT, release of insects carrying a dominant lethal (RIDL, population replacement strategies (PR, and Wolbachia-based strategies require the rearing of large numbers of mosquitoes in culture for continuous release over an extended period of time. Anautogenous mosquitoes require essential nutrients for egg production, which they obtain through the acquisition and digestion of a protein-rich blood meal. Therefore, mosquito mass production in laboratories and other facilities relies on vertebrate blood from live animal hosts. However, vertebrate blood is expensive to acquire and hard to store for longer times especially under field conditions. This review discusses older and recent studies that were aimed at the development of artificial diets for mosquitoes in order to replace vertebrate blood.

  2. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  3. Hydraulically actuated artificial muscles

    Science.gov (United States)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  4. A programmable artificial retina

    International Nuclear Information System (INIS)

    Bernard, T.M.; Zavidovique, B.Y.; Devos, F.J.

    1993-01-01

    An artificial retina is a device that intimately associates an imager with processing facilities on a monolithic circuit. Yet, except for simple environments and applications, analog hardware will not suffice to process and compact the raw image flow from the photosensitive array. To solve this output problem, an on-chip array of bare Boolean processors with halftoning facilities might be used, providing versatility from programmability. By setting the pixel memory size to 3 b, the authors have demonstrated both the technological practicality and the computational efficiency of this programmable Boolean retina concept. Using semi-static shifting structures together with some interaction circuitry, a minimal retina Boolean processor can be built with less than 30 transistors and controlled by as few as 6 global clock signals. The successful design, integration, and test of such a 65x76 Boolean retina on a 50-mm 2 CMOS 2-μm circuit are presented

  5. Artificial resuspension studies

    International Nuclear Information System (INIS)

    Cooper, B.M.; Marchall, K.B.; Thomas, K.A.; Tracy, B.L.

    1990-01-01

    Artificial resuspension studies on a range of Taranaki and other major trial site soils were performed by use of a mechanical dust-raising apparatus. A cascade impactor was used to analyse airborne dust in terms of mass and 241 Am activities for particle sizes less than 7 μm. Plutonium and americium activities were found to be enhanced in the respirable fraction. Reported enhancement factors (defined as the ratio of activity concentration of the respirable fraction to that of the total soil) ranged from 3.7 to 32.5 for Taranaki soils with an average value of 6 appearing reasonable for general application in outer (plume) areas. Values close to unity were measured at major trial sites , One Tree and Tadje. Results of some experiments where uncontamined dust was raised by activities such as walking and driving over dusty ground are also presented. 7 refs., 9 tabs., 4 figs

  6. In Pursuit of Artificial Intelligence.

    Science.gov (United States)

    Watstein, Sarah; Kesselman, Martin

    1986-01-01

    Defines artificial intelligence and reviews current research in natural language processing, expert systems, and robotics and sensory systems. Discussion covers current commercial applications of artificial intelligence and projections of uses and limitations in library technical and public services, e.g., in cataloging and online information and…

  7. Artificial Ligaments: Promise or Panacea?

    Science.gov (United States)

    Lubell, Adele

    1987-01-01

    The Food and Drug Administration has approved a prosthetic ligament for limited use in persons with damaged anterior cruciate ligaments (ACL). This article addresses ligament repair, ACL tears, current treatment, development of the Gore-Tex artificial ligament, other artificial ligaments in process, and arguments for and against their use.…

  8. Development of artificial articular cartilage

    Indian Academy of Sciences (India)

    (UHMWPE) has been choice of orthopaedic bearing material in total joint replacement surgery since 1962, but wear of UHMWPE remains major problem facing the long term success and survival of the artificial joint. One of the main reasons of failure of the artificial joint fixation into the host bone is cellular reaction against ...

  9. Sucrose compared with artificial sweeteners

    DEFF Research Database (Denmark)

    Sørensen, Lone Brinkmann; Vasilaras, Tatjana H; Astrup, Arne

    2014-01-01

    There is a lack of appetite studies in free-living subjects supplying the habitual diet with either sucrose or artificially sweetened beverages and foods. Furthermore, the focus of artificial sweeteners has only been on the energy intake (EI) side of the energy-balance equation. The data are from...

  10. Artificial Intelligence and Language Comprehension.

    Science.gov (United States)

    National Inst. of Education (DHEW), Washington, DC. Basic Skills Group. Learning Div.

    The three papers in this volume concerning artificial intelligence and language comprehension were commissioned by the National Institute of Education to further the understanding of the cognitive processes that enable people to comprehend what they read. The first paper, "Artificial Intelligence and Language Comprehension," by Terry Winograd,…

  11. Instructional Applications of Artificial Intelligence.

    Science.gov (United States)

    Halff, Henry M.

    1986-01-01

    Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…

  12. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    Biological membranes are essential and complex structures in every living cell consisting of a fluid lipid bilayer sheet and membrane proteins. Its significance makes biological membranes not only interesting for medical research, but also has made it a target for toxins in the course of evolution....... Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... mechanisms of membrane compounds, including compounds associated with membranes, are still unknown due to the challenges that arise when probing the hydrophobic nature of the membrane's interior. For integral membrane proteins that span through the entire membrane, the amphiphilic environment is essential...

  13. Beyond AI: Artificial Dreams Conference

    CERN Document Server

    Zackova, Eva; Kelemen, Jozef; Beyond Artificial Intelligence : The Disappearing Human-Machine Divide

    2015-01-01

    This book is an edited collection of chapters based on the papers presented at the conference “Beyond AI: Artificial Dreams” held in Pilsen in November 2012. The aim of the conference was to question deep-rooted ideas of artificial intelligence and cast critical reflection on methods standing at its foundations.  Artificial Dreams epitomize our controversial quest for non-biological intelligence, and therefore the contributors of this book tried to fully exploit such a controversy in their respective chapters, which resulted in an interdisciplinary dialogue between experts from engineering, natural sciences and humanities.   While pursuing the Artificial Dreams, it has become clear that it is still more and more difficult to draw a clear divide between human and machine. And therefore this book tries to portrait such an image of what lies beyond artificial intelligence: we can see the disappearing human-machine divide, a very important phenomenon of nowadays technological society, the phenomenon which i...

  14. Soft computing in artificial intelligence

    CERN Document Server

    Matson, Eric

    2014-01-01

    This book explores the concept of artificial intelligence based on knowledge-based algorithms. Given the current hardware and software technologies and artificial intelligence theories, we can think of how efficient to provide a solution, how best to implement a model and how successful to achieve it. This edition provides readers with the most recent progress and novel solutions in artificial intelligence. This book aims at presenting the research results and solutions of applications in relevance with artificial intelligence technologies. We propose to researchers and practitioners some methods to advance the intelligent systems and apply artificial intelligence to specific or general purpose. This book consists of 13 contributions that feature fuzzy (r, s)-minimal pre- and β-open sets, handling big coocurrence matrices, Xie-Beni-type fuzzy cluster validation, fuzzy c-regression models, combination of genetic algorithm and ant colony optimization, building expert system, fuzzy logic and neural network, ind...

  15. Cricket inspired sensory hairs on suspended membranes with capacitive displacement detection

    NARCIS (Netherlands)

    van Baar, J.J.J.; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2004-01-01

    This paper presents the fabrication of artificial hairs of siliconnitride and SU-8 on suspended membranes for flow sensing applications. The suspended membranes contain electrodes for capacitive sensing of the rotation of the hairs. For the siliconnitride hairs a silicon wafer is used as mould and

  16. BLOOD COMPATIBILITY OF 2 DIFFERENT TYPES OF MEMBRANE-OXYGENATOR DURING CARDIOPULMONARY BYPASS IN INFANTS

    NARCIS (Netherlands)

    GU, YJ; BOONSTRA, PW; AKKERMAN, C; MUNGROOP, H; TIGCHELAAR, [No Value; VANOEVEREN, W

    1994-01-01

    The contact of blood with the artificial extracorporeal circuit causes a systemic inflammatory response due to blood activation. In this study, we compared two different paediatric membrane oxygenators used for extracorporeal circulation: a hollow fibre membrane oxygenator (Dideco Masterflo D-701,

  17. Apparent flexoelectricity in lipid bilayer membranes due to external charge and dipolar distributions.

    Science.gov (United States)

    Ahmadpoor, F; Deng, Q; Liu, L P; Sharma, P

    2013-11-01

    In this Rapid Communication we show that the interplay between the deformation geometric-nonlinearity and distributions of external charges and dipoles lead to the renormalization of the membrane's native flexoelectric response. Our work provides a framework for a mesoscopic interpretation of flexoelectricity and if necessary, artificially "design" tailored flexoelectricity in membranes. Comparisons with experiments indicate reasonable quantitative agreement.

  18. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets

    Science.gov (United States)

    Dijkstra, M.; van Baar, J. J.; Wiegerink, R. J.; Lammerink, T. S. J.; de Boer, J. H.; Krijnen, G. J. M.

    2005-07-01

    This paper presents the modelling, design, fabrication and characterization of flow sensors based on the wind-receptor hairs of crickets. Cricket sensory hairs are highly sensitive to drag-forces exerted on the hair shaft. Artificial sensory hairs have been realized in SU-8 on suspended SixNy membranes. The movement of the membranes is detected capacitively. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept.

  19. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces

    Directory of Open Access Journals (Sweden)

    Yasuhiko Iwasaki

    2012-01-01

    Full Text Available This review article describes fundamental aspects of cell membrane-inspired phospholipid polymers and their usefulness in the development of medical devices. Since the early 1990s, polymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC units have been considered in the preparation of biomaterials. MPC polymers can provide an artificial cell membrane structure at the surface and serve as excellent biointerfaces between artificial and biological systems. They have also been applied in the surface modification of some medical devices including long-term implantable artificial organs. An MPC polymer biointerface can suppress unfavorable biological reactions such as protein adsorption and cell adhesion – in other words, specific biomolecules immobilized on an MPC polymer surface retain their original functions. MPC polymers are also being increasingly used for creating biointerfaces with artificial cell membrane structures.

  20. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  1. The artificial leaf.

    Science.gov (United States)

    Nocera, Daniel G

    2012-05-15

    To convert the energy of sunlight into chemical energy, the leaf splits water via the photosynthetic process to produce molecular oxygen and hydrogen, which is in a form of separated protons and electrons. The primary steps of natural photosynthesis involve the absorption of sunlight and its conversion into spatially separated electron-hole pairs. The holes of this wireless current are captured by the oxygen evolving complex (OEC) of photosystem II (PSII) to oxidize water to oxygen. The electrons and protons produced as a byproduct of the OEC reaction are captured by ferrodoxin of photosystem I. With the aid of ferrodoxin-NADP(+) reductase, they are used to produce hydrogen in the form of NADPH. For a synthetic material to realize the solar energy conversion function of the leaf, the light-absorbing material must capture a solar photon to generate a wireless current that is harnessed by catalysts, which drive the four electron/hole fuel-forming water-splitting reaction under benign conditions and under 1 sun (100 mW/cm(2)) illumination. This Account describes the construction of an artificial leaf comprising earth-abundant elements by interfacing a triple junction, amorphous silicon photovoltaic with hydrogen- and oxygen-evolving catalysts made from a ternary alloy (NiMoZn) and a cobalt-phosphate cluster (Co-OEC), respectively. The latter captures the structural and functional attributes of the PSII-OEC. Similar to the PSII-OEC, the Co-OEC self-assembles upon oxidation of an earth-abundant metal ion from 2+ to 3+, may operate in natural water at room temperature, and is self-healing. The Co-OEC also activates H(2)O by a proton-coupled electron transfer mechanism in which the Co-OEC is increased by four hole equivalents akin to the S-state pumping of the Kok cycle of PSII. X-ray absorption spectroscopy studies have established that the Co-OEC is a structural relative of Mn(3)CaO(4)-Mn cubane of the PSII-OEC, where Co replaces Mn and the cubane is extended in a

  2. natural or artificial diets

    Directory of Open Access Journals (Sweden)

    A. O. Meyer-Willerer

    2005-01-01

    Full Text Available Se probaron alimentos artificiales y naturales con larva de camarón (Litopenaeus vannamei cultivados en diferentes recipientes. Estos fueron ocho frascos cónicos con 15L, ocho acuarios con 50L y como grupo control, seis tanques de fibra de vidrio con 1500L; todos con agua marina fresca y filtrada. La densidad inicial en todos los recipientes fue de 70 nauplios/L. Aquellos en frascos y acuarios recibieron ya sea dieta natural o artificial. El grupo control fue cultivado con dieta natural en los tanques grandes que utilizan los laboratorios para la producción masiva de postlarvas. El principal producto de excreción de larva de camarón es el ión amonio, que es tóxico cuando está presente en concentraciones elevadas. Se determinó diariamente con el método colorimétrico del indofenol. Los resultados muestran diferencias en la concentración del ión amonio y en la sobrevivencia de larvas entre las diferentes dietas y también entre los diferentes recipientes. En aquellos con volúmenes pequeños comparados con los grandes, se presentó mayor concentración de amonio (500 a 750µg/L, en aquellos con dietas naturales, debido a que este ión sirve de fertilizante a las algas adicionadas, necesitando efectuar recambios diarios de agua posteriores al noveno día de cultivo para mantener este ión a una concentración subletal. Se obtuvo una baja cosecha de postlarvas (menor a 15% con el alimento artificial larvario, debido a la presencia de protozoarios, alimentándose con el producto comercial precipitado en el fondo de los frascos o acuarios. Los acuarios con larvas alimentadas con dieta natural también mostraron concentraciones subletales de amonio al noveno día; sin embargo, la sobrevivencia fue cuatro veces mayor que con dietas artificiales. Los tanques control con dietas naturales presentaron tasas de sobrevivencia (70 ± 5% similares a la reportada por otros laboratorios.

  3. Discriminating lysosomal membrane protein types using dynamic neural network.

    Science.gov (United States)

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  4. Polymeric Membrane Reactors

    OpenAIRE

    José M. Sousa; Luís M. Madeira; João C. Santos; Adélio Mendes

    2008-01-01

    The aim of this chapter is the study of membrane reactors with polymeric membranes, particularly catalytic polymeric membranes. After an introduction where the main advantages and disadvantages of the use of polymeric membranes are summarised, a review of the main areas where they have been applied, integrated in chemical reactors, is presented. This excludes the field of bio-membranes processes, which is analysed in a specific chapter of this book. Particular attention is then given to model...

  5. Mode of Action of Membrane Perturbing Agents: Snake Venom Cardiotoxins and Phospholipases A

    Science.gov (United States)

    1990-06-15

    diglyceride synthesis. Cardiotoxin and melittin interactions with snake and bee venon PLA2 in artificial membranes CTX and melittin share similar...Action of Membrane Perturbing Agents: Snake Venom Cardiotoxins and Phospholipases A 12. PERSONAL AUJTHOR(S) Jeffrey E. Fletcher 13a. TYPE OF REPORT...GR OU -- Membrane Active Compounds, Phospholipase A, 06 01 Snake Venom Cardiotoxins, Toxins -- I ý9. ABSTRACT (Continue on reverse if necessary andi

  6. [The artificial heart. Current experiences].

    Science.gov (United States)

    Loisance, D; Deleuze, P

    1989-06-01

    Various assistance or replacement systems, usually including pneumatic pumps, are now used in human medicine to treat irreversible shocks. These systems are still very far from the ideal artificial heart, but they enable the ventricular work to be partially or totally achieved for a limited length of time, thus ensuring the patient's survival pending heart transplantation. The two systems most frequently used nowadays, i.e. orthotopic ventricular prosthesis or "internal artificial heart" and ventricular shunt or "external artificial heart" are described. The clinical experience available provides a first evaluation of the true performance of these systems.

  7. Artificial intelligence in medicine.

    Science.gov (United States)

    Hamet, Pavel; Tremblay, Johanne

    2017-04-01

    Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application. Copyright © 2017. Published by Elsevier Inc.

  8. Nanostructured artificial nacre

    Science.gov (United States)

    Tang, Zhiyong; Kotov, Nicholas A.; Magonov, Sergei; Ozturk, Birol

    2003-06-01

    Finding a synthetic pathway to artificial analogs of nacre and bones represents a fundamental milestone in the development of composite materials. The ordered brick-and-mortar arrangement of organic and inorganic layers is believed to be the most essential strength- and toughness-determining structural feature of nacre. It has also been found that the ionic crosslinking of tightly folded macromolecules is equally important. Here, we demonstrate that both structural features can be reproduced by sequential deposition of polyelectrolytes and clays. This simple process results in a nanoscale version of nacre with alternating organic and inorganic layers. The macromolecular folding effect reveals itself in the unique saw-tooth pattern of differential stretching curves attributed to the gradual breakage of ionic crosslinks in polyelectrolyte chains. The tensile strength of the prepared multilayers approached that of nacre, whereas their ultimate Young modulus was similar to that of lamellar bones. Structural and functional resemblance makes clay- polyelectrolyte multilayers a close replica of natural biocomposites. Their nanoscale nature enables elucidation of molecular processes occurring under stress.

  9. BioArtificial polymers

    Science.gov (United States)

    Szałata, Kamila; Gumi, Tania

    2017-07-01

    Nowadays, the polymer science has impact in practically all life areas. Countless benefits coming from the usage of materials with high mechanical and chemical resistance, variety of functionalities and potentiality of modification drive to the development of new application fields. Novel approaches of combining these synthetic substances with biomolecules lead to obtain multifunctional hybrid conjugates which merge the bioactivity of natural component with outstanding properties of artificial polymer. Over the decades, an immense progress in bioartificial composites domain allowed to reach a high level of knowledge in terms of natural-like systems engineering, leading to diverse strategies of biomolecule immobilization. Together with different available options, including covalent and noncovalent attachment, come various challenges, related mainly with maintaining the biological activity of fixed molecules. Even though the amount of applications that achieve commercial status is still not substantial, and is expanding continuously in the disciplines like "smart materials," biosensors, delivery systems, nanoreactors and many others. A huge number of remarkable developments reported in the literature present a potential of bioartificial conjugates as a fabrics with highly controllable structure and multiple functionalities, serving as a powerful nanotechnological tool. This novel approach brings closer biologists, chemists and engineers, who sharing their effort and complementing the knowledge can revolutionize the field of bioartificial polymer science.

  10. The interactions of squalene, alkanes and other mineral oils with model membranes; effects on membrane heterogeneity and function.

    Science.gov (United States)

    Richens, Joanna L; Lane, Jordan S; Mather, Melissa L; O'Shea, Paul

    2015-11-01

    Droplet interface bilayers (DIBs) offer many favourable facets as an artificial membrane system but the influence of any residual oil that remains in the bilayer following preparation is ill-defined. In this study the fluorescent membrane probes di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (Di-8-ANEPPS) and Fluoresceinphosphatidylethanolamine (FPE) were used to help understand the nature of the phospholipid-oil interaction and to examine any structural and functional consequences of such interactions on membrane bilayer properties. Concentration-dependent modifications of the membrane dipole potential were found to occur in phospholipid vesicles exposed to a variety of different oils. Incorporation of oil into the lipid bilayer was shown to have no significant effect on the movement of fatty acids across the lipid bilayer. Changes in membrane heterogeneity were, however, demonstrated with increased microdomain formation being visible in the bilayer following exposure to mineral oil, pentadecane and squalene. As it is important that artificial systems provide an accurate representation of the membrane environment, careful consideration should be taken prior to the application of DIBs in studies of membrane structure and organisation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The artificial synapse chip: From proteins to prostheses

    Science.gov (United States)

    Peterman, Mark Charles

    Most retinal prostheses use an electric field to stimulate retinal circuitry, yet information transfer in the retina is primarily through neurotransmitters. To address this difference, this thesis describes a proof of concept retinal interface based on localized chemical delivery. This system, the Artificial Synapse Chip, is based on a 5 mum aperture in a silicon nitride membrane overlying a microfluidic channel. The effectiveness of this interface is demonstrated by ejecting bradykinin on cultured excitable cells. Even with manual fluidic control, the relationship between the extent of stimulation and concentration is linear, providing enough control to limit stimulation to individual cells. A neurotransmitter-based prosthesis will require advanced fluidic control. This thesis reports the use of electroosmosis to eject or withdraw fluid from an aperture in a channel wall. This effect is demonstrated experimentally, and numerically, using a finite-element method. Our primary device is a prototype interface with four individually addressable apertures in a 2 x 2 array. Using this array, we demonstrate stimulation of both PC12 and retinal ganglion cells. This demonstration of localized chemical stimulation of excitable cells illustrates the potential of this technology for retinal prostheses. As a final application of the Artificial Synapse Chip, we applied the concept to lipid bilayer membranes and membrane-bound proteins. Not only are membrane-bound proteins crucial to the function of biological synapses, but also are important from a technological point of view. In this thesis, we use a Langmuir-Blodgett technique to producing lipid bilayers across apertures in a modified version of the Artificial Synapse Chip. These bilayers display many of the same properties as bilayers across apertures in Teflon films. In addition, these bilayers remain unbroken at transmembrane potentials over +/-400 mV, higher than Teflon-supported bilayers. We also demonstrate single

  12. Tension-induced fusion of bilayer membranes and vesicles

    Science.gov (United States)

    Shillcock, Julian C.; Lipowsky, Reinhard

    2005-03-01

    Maintaining the integrity of their protective plasma membrane is a primary requirement of cells. Accordingly, cellular events that breach the membrane are tightly regulated. Artificial vesicles used in drug delivery must also stay intact until they have reached the desired target. In both cases, the intrinsic resistance of the membrane to rupture must be overcome to allow the efflux of the vesicle's contents. Here, we use mesoscopic simulations to study the fusion of 28-nm-diameter vesicles to 50 × 50 nm2 planar membrane patches over 2 μs. We monitor the time evolution of 93 different fusion attempts. This allows us to construct a global morphology diagram, using the initial tensions of the vesicle and the planar membrane patch as control parameters, and to determine the corresponding fusion statistics. All successful fusion events are observed to occur within 350 ns, which reflects the presence of alternative pathways for the tension relaxation.

  13. Sheet Membrane Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  14. Tetrapyrrole singlet excited state quenching by carotenoids in an artificial photosynthetic antenna

    NARCIS (Netherlands)

    Palacios, R.E.; Kodis, G.; Herrero, C.; Ochoa, E.M.; Gervaldo, M.; Gould, S.L.; Kennis, J.T.M.; Gust, D.; Moore, T.A.; Moore, A.L.

    2006-01-01

    Two artificial photosynthetic antenna models consisting of a Si phthalocyanine (Pc) bearing two axially attached carotenoid moieties having either 9 or 10 conjugated double bonds are used to illustrate some of the function of carotenoids in photosynthetic membranes. Both models studied in toluene,

  15. Artificial Intelligence and Expert Systems.

    Science.gov (United States)

    Wilson, Harold O.; Burford, Anna Marie

    1990-01-01

    Delineates artificial intelligence/expert systems (AI/ES) concepts; provides an exposition of some business application areas; relates progress; and creates an awareness of the benefits, limitations, and reservations of AI/ES. (Author)

  16. Artificial Intelligence in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Pengzhen Lu

    2012-01-01

    Full Text Available Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.

  17. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  18. The handbook of artificial intelligence

    CERN Document Server

    Barr, Avron

    1982-01-01

    The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine

  19. Artificial Intelligence in Civil Engineering

    OpenAIRE

    Lu, Pengzhen; Chen, Shengyong; Zheng, Yujun

    2012-01-01

    Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applicati...

  20. Medical applications of artificial intelligence

    CERN Document Server

    Agah, Arvin

    2013-01-01

    Enhanced, more reliable, and better understood than in the past, artificial intelligence (AI) systems can make providing healthcare more accurate, affordable, accessible, consistent, and efficient. However, AI technologies have not been as well integrated into medicine as predicted. In order to succeed, medical and computational scientists must develop hybrid systems that can effectively and efficiently integrate the experience of medical care professionals with capabilities of AI systems. After providing a general overview of artificial intelligence concepts, tools, and techniques, Medical Ap

  1. [Histomorphologic lung findings in long-term artificial respiration with special reference to extreme continuous artificial respiration using pure oxygen].

    Science.gov (United States)

    Ritter, C; Weiler, G; Adebahr, G

    1985-01-01

    The respirator lung is characterized histologically in the first exudative phase by capillary congestion, intra-alveolary edema, hyaline membranes and in most cases by concomitant inflammatory alterations. In the following irreversible phase, fibrous organization processes dominate and show a variable tendency towards pulmonary fibrosis. In 27 cases with long-term artificial respiration from 4 days to 12 weeks, mainly the proliferative alterations were investigated. In 18 cases, the histopathological findings indicated fibrosis of the alveolar septa with disseminated distribution. In 9 cases, focal fibrosis with obliterations of alveoli prevailed. The extent of pathological results in the lungs does not correlate with the duration of artificial respiration. In cases of artificial respiration with pure oxygen, there is a special toxic component, which is illustrated by a young woman with polytraumatism who was administered artificial respiration for 5 weeks with pure oxygen. She died from respiratory insufficiency with severe pulmonary fibrosis. As different pathogenetic factors may cause irreversible pulmonary fibrosis, histomorphological classification is difficult later and, moreover, forensic problems result.

  2. Synthetic Biological Membrane (SBM)

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate goal of the Synthetic Biological Membrane project is to develop a new type of membrane that will enable the wastewater treatment system required on...

  3. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  4. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  5. Premature rupture of membranes

    Science.gov (United States)

    ... gov/ency/patientinstructions/000512.htm Premature rupture of membranes To use the sharing features on this page, ... water that surrounds your baby in the womb. Membranes or layers of tissue hold in this fluid. ...

  6. Recent Theoretical Approaches to Minimal Artificial Cells

    Directory of Open Access Journals (Sweden)

    Fabio Mavelli

    2014-05-01

    Full Text Available Minimal artificial cells (MACs are self-assembled chemical systems able to mimic the behavior of living cells at a minimal level, i.e. to exhibit self-maintenance, self-reproduction and the capability of evolution. The bottom-up approach to the construction of MACs is mainly based on the encapsulation of chemical reacting systems inside lipid vesicles, i.e. chemical systems enclosed (compartmentalized by a double-layered lipid membrane. Several researchers are currently interested in synthesizing such simple cellular models for biotechnological purposes or for investigating origin of life scenarios. Within this context, the properties of lipid vesicles (e.g., their stability, permeability, growth dynamics, potential to host reactions or undergo division processes… play a central role, in combination with the dynamics of the encapsulated chemical or biochemical networks. Thus, from a theoretical standpoint, it is very important to develop kinetic equations in order to explore first—and specify later—the conditions that allow the robust implementation of these complex chemically reacting systems, as well as their controlled reproduction. Due to being compartmentalized in small volumes, the population of reacting molecules can be very low in terms of the number of molecules and therefore their behavior becomes highly affected by stochastic effects both in the time course of reactions and in occupancy distribution among the vesicle population. In this short review we report our mathematical approaches to model artificial cell systems in this complex scenario by giving a summary of three recent simulations studies on the topic of primitive cell (protocell systems.

  7. Colorimetric Detection and Identification of Natural and Artificial Sweeteners

    Science.gov (United States)

    Musto, Christopher J.; Lim, Sung H.; Suslick, Kenneth S.

    2009-01-01

    A disposable, low-cost colorimetric sensor array has been created by pin-printing onto a hydrophilic membrane 16 chemically responsive nanoporous pigments made from indicators immobilized in an organically modified silane (ormosil). The array has been used to detect and identify 14 different natural and artificial sweeteners at millimolar concentrations as well as commonly used individual serving sweetener packets. The array has shown excellent reproducibility and long shelf-life and has been optimized to work in the biological pH regime. PMID:20337402

  8. Measurement of shape mapping accuracy of a flaccid membrane of a heart assist pump

    Directory of Open Access Journals (Sweden)

    Wojciech Sulej

    2017-12-01

    Full Text Available The paper presents the research results which are a continuation of work on the use of image processing techniques to determine the membrane shape of the artificial ventricle. The studies were focused on developing a technique for measuring the accuracy of the membrane shape mapping. It is important in view of ensuring the required accuracy of determining the instantaneous stroke volume of controlled pneumatic artificial ventricular. Experiments were carried out on the models of convex, concave, and flat membranes. The purpose of the research was to obtain a numerical indicator, which will be used to evaluate the options to improve mapping techniques of the membrane shape. Keywords: accuracy measurement, membrane shape mapping, optical sensor

  9. Idiopathic epiretinal membrane

    NARCIS (Netherlands)

    Bu, Shao-Chong; Kuijer, Roelof; Li, Xiao-Rong; Hooymans, Johanna M M; Los, Leonoor I

    2014-01-01

    Background: Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. Methods: Analysis of the current literature

  10. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  11. Membrane contactor applications

    NARCIS (Netherlands)

    Klaassen, R.; Feron, P.H.M.; Jansen, A.

    2008-01-01

    In a membrane contactor the membrane separation is completely integrated with an extraction or absorption operation in order to exploit the benefits of both technologies fully. Membrane contactor applications that have been developed can be found in both water and gas treatment. Several recently

  12. On "spinning" membrane models

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Townsend, P.K.

    1988-01-01

    Several alternative actions for a bosonic membrane have recently been proposed. We show that a linearly realized locally world-volume-supersymmetric (spinning membrane) extension of any of these actions implies an analogous extension of the standard Dirac membrane action. We further show that a

  13. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  14. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  15. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    membrane include ABC transporters, vacuolar (V-type) H+ pumps, and P-type pumps. These pumps all utilize ATP as a fuel for energizing pumping. This review focuses on the physiological roles of plasma membrane P-type pumps, as they represent the major ATP hydrolytic activity in this membrane....

  16. Artificial Gravity Research Project

    Science.gov (United States)

    Kamman, Michelle R.; Paloski, William H.

    2005-01-01

    Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term hypogravity during surface operations will require effective, multi-system countermeasures. Artificial gravity (AG), which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by a human centrifuge device within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient, multi-system countermeasure and its potential for improving the environment and simplifying operational activities (e.g., WCS, galley, etc.), much still needs to be learned regarding the human response to rotating environments before AG can be successfully implemented. This paper will describe our approach for developing and implementing a rigorous AG Research Project to address the key biomedical research questions that must be answered before developing effective AG countermeasure implementation strategies for exploration-class missions. The AG Research Project will be performed at JSC, ARC, extramural academic and government research venues, and international partner facilities maintained by DLR and IMBP. The Project includes three major ground-based human research subprojects that will lead to flight testing of intermittent short-radius AG in ISS crewmembers after 201 0, continuous long-radius AG in CEV crews transiting to and from the Moon, and intermittent short-radius AG plus exercise in lunar habitats. These human ground-based subprojects include: 1) a directed, managed international short-radius project to investigate the multi-system effectiveness of intermittent AG in human subjects deconditioned by bed rest, 2) a directed, managed long-radius project to investigate the capacity of humans to live and work for extended periods in rotating environments, and 3) a focused

  17. Spatiotemporal Organization of Spin-Coated Supported Model Membranes

    Science.gov (United States)

    Simonsen, Adam Cohen

    biomembranes is randomly organized to facilitate membrane function. However, during the last 10-20 years it has become increasingly clear that the components of biomembranes are not randomly organized but that the lateral distribution is heterogeneous and time dependent. A picture is emerging where the interactions among membrane components and between membranes and external structures give rise to dynamically maintained domains with distinct sizes and compositions. Such domains are coupled to membrane function through their regulation of membrane-bound proteins. Experimentally, the investigation of domain structures in artificial and natural membranes have been enhanced by the proposition of the so-called raft hypothesis [5-7]. According to this hypothesis, rafts are nanoscale regions of biological membranes that are linked to important cellular processes and signaling pathways [8,9]. Rafts originated as insoluble membrane fragments upon treatment of cellular membranes with cold detergent [10].

  18. Artificial sweeteners: safe or unsafe?

    Science.gov (United States)

    Qurrat-ul-Ain; Khan, Sohaib Ahmed

    2015-02-01

    Artificial sweeteners or intense sweeteners are sugar substitutes that are used as an alternative to table sugar. They are many times sweeter than natural sugar and as they contain no calories, they may be used to control weight and obesity. Extensive scientific research has demonstrated the safety of the six low-calorie sweeteners currently approved for use in foods in the U.S. and Europe (stevia, acesulfame-K, aspartame, neotame, saccharin and sucralose), if taken in acceptable quantities daily. There is some ongoing debate over whether artificial sweetener usage poses a health threat .This review article aims to cover thehealth benefits, and risks, of consuming artificial sweeteners, and discusses natural sweeteners which can be used as alternatives.

  19. Computational aerodynamics and artificial intelligence

    Science.gov (United States)

    Kutler, P.; Mehta, U. B.

    1984-01-01

    Some aspects of artificial intelligence are considered and questions are speculated on, including how knowledge-based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use 'expert' systems and how expert systems may speed the design and development process. The anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements are examined for using artificial intelligence in computational fluid dynamics and aerodynamics. Considering two of the essentials of computational aerodynamics - reasoniing and calculating - it is believed that a substantial part of the reasoning can be achieved with artificial intelligence, with computers being used as reasoning machines to set the stage for calculating. Expert systems will probably be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  20. Destabilization of artificial biomembrane induced by the penetration of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liuhua [Department of Chemistry, Tongji University, Shanghai 200092 (China); Gan Lihua, E-mail: ganlh@tongji.edu.cn [Department of Chemistry, Tongji University, Shanghai 200092 (China); Liu Mingxian; Fan Rong; Xu Zijie; Hao Zhixian; Chen Longwu [Department of Chemistry, Tongji University, Shanghai 200092 (China)

    2011-03-15

    The effect of tryptophan on the membrane stability was studied by using three artificial biological membranes including liposome, Langmuir monolayer and solid supported bilayer lipid membrane (s-BLM) as models. All the results indicate that the penetration of tryptophan can destabilize different artificial biological membranes. The diameter of liposome and the leakage of calcein from liposome increased with the increase of tryptophan concentration because the penetration of tryptophan was beneficial for dehydrating the polar head groups of lipids and the formation of fusion intermediates. {pi}-A isotherms of lecithin on the subphase of tryptophan solution further confirm that tryptophan can penetrate into lipid monolayer and reduce the stability of lipid monolayer. When the concentration of tryptophan increased from 0 to 2 x 10{sup -3} mol L{sup -1}, the limiting molecular area of lecithin increased from 110.5 to 138.5 A{sup 2}, but the collapse pressure of the monolayer decreased from 47.6 to 42.3 mN m{sup -1}, indicating the destabilization of lipid monolayer caused by the penetration of tryptophan. The resistance spectra of s-BLM demonstrate that the existence of tryptophan leads to the formation of some defects in s-BLM and the destabilization of s-BLM. The values of electron-transfer resistance and double layer capacitance respectively decreased from 5.765 x 10{sup 6} {Omega} and 3.573 x 10{sup -8} F to 1.391 x 10{sup 6} {Omega} and 3.340 x 10{sup -8} F when the concentration of tryptophan increased from 0 to 2 x 10{sup -3} mol L{sup -1}. Correspondingly, the breakdown voltage of s-BLM decreased from 2.51 to 1.72 V.

  1. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  2. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

  3. Development of supported biomimetic membranes for insertion of aquaporin protein water channels for novel water filtration applications

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard

    Aquaporins represent a class of membrane protein channels found in all living organisms that selectively transport water molecules across biological membranes. The work presented in this thesis was motivated by the conceptual idea of incorporating aquaporin water channels into biomimetic membranes...... to develop novel water separation technologies. To accomplish this, it is necessary to construct an efficient platform to handle biomimetic membranes. Moreover, general methods are required to reliable and controllable reconstitute membrane proteins into artificially made model membranes....... These are the topics of this thesis, and are divided into three main chapters. Chapter 2 reviews recent advances in the design and construction of biomimetic membrane arrays. Moreover, current and novel strategies for the reconstitution of membrane proteins into biomimetic membranes are reviewed. Chapter 3 presents...

  4. Fecundación artificial

    OpenAIRE

    Ochoa., Fidel

    2013-01-01

    Por Fecundación artificial se entiende, la fecundación de una hembra sin el servicio directo del macho, es decir la introducción al aparato genital femenino, del esperma que se ha recogido por medios artificiales. Esta fecundación, practicada en debidas condiciones, tiene el mismo efecto de la fecundación natural, con las ventajas que veremos más adelante. La fecundación artificial permite explotar un reproductor a su máximum de capacidad, ya que se considera, para no hacer cálculo...

  5. The reality of artificial viscosity

    Science.gov (United States)

    Margolin, L. G.

    2018-02-01

    Artificial viscosity is used in the computer simulation of high Reynolds number flows and is one of the oldest numerical artifices. In this paper, I will describe the origin and the interpretation of artificial viscosity as a physical phenomenon. The basis of this interpretation is the finite scale theory, which describes the evolution of integral averages of the fluid solution over finite (length) scales. I will outline the derivation of finite scale Navier-Stokes equations and highlight the particular properties of the equations that depend on the finite scales. Those properties include enslavement, inviscid dissipation, and a law concerning the partition of total flux of conserved quantities into advective and diffusive components.

  6. Artificial radioactivity in Lough Foyle

    International Nuclear Information System (INIS)

    Cunningham, J.D.; Ryan, T.P.; Lyons, S.; Smith, V.; McGarry, A.; Mitchell, P.I.; Leon Vintro, L.; Larmour, R.A.; Ledgerwood, F.K.

    1996-04-01

    The purpose of this study was to assess the extent to which the marine environment of Lough Foyle, situated on the north coast of Ireland, has been affected by artificial radioactivity released from Sellafield. Although traces of plutonium, americium and radiocaesium from Sellafield are detectable in Lough Foyle, the concentrations in various marine media are significantly lower than those found along the NE coast of Ireland and in the western Irish Sea. The minute quantities of artificial radioactivity found in Lough Foyle are of negligible radiological significance

  7. Artificial Promoters for Metabolic Optimization

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Hammer, Karin

    1998-01-01

    In this article, we review some of the expression systems that are available for Metabolic Control Analysis and Metabolic Engineering, and examine their advantages and disadvantages in different contexts. In a recent approach, artificial promoters for modulating gene expression in micro-organisms......In this article, we review some of the expression systems that are available for Metabolic Control Analysis and Metabolic Engineering, and examine their advantages and disadvantages in different contexts. In a recent approach, artificial promoters for modulating gene expression in micro...

  8. Artificial neural/chemical networks

    Science.gov (United States)

    Caulfield, H. John

    2001-11-01

    What strikes the attention of a neural network designer is that the chemicals seem to work not so much on individual neural circuits as on neural cell assemblies. These are large blocks of neural networks that carry out high level tasks using their constituent networks as needed. It follows to us that we might seek ways of achieving that same sort of behavior in an artificial neural network. In what follows, we provide two examples of how that might be done in an artificial system.

  9. Artificial intelligence techniques in Prolog

    CERN Document Server

    Shoham, Yoav

    1993-01-01

    Artificial Intelligence Techniques in Prolog introduces the reader to the use of well-established algorithmic techniques in the field of artificial intelligence (AI), with Prolog as the implementation language. The techniques considered cover general areas such as search, rule-based systems, and truth maintenance, as well as constraint satisfaction and uncertainty management. Specific application domains such as temporal reasoning, machine learning, and natural language are also discussed.Comprised of 10 chapters, this book begins with an overview of Prolog, paying particular attention to Prol

  10. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  11. Supported ionic liquid membrane in membrane reactor

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-01-01

    Membrane reactor is a device that integrates membrane based separation and (catalytic) chemical reaction vessel in a single device. Ionic liquids, considered to be a relatively recent magical chemical due to their unique properties, have a large variety of applications in all areas of chemical industries. Moreover, the ionic liquid can be used as membrane separation layer and/or catalytically active site. This paper will review utilization of ionic liquid in membrane reactor related applications especially Fischer-Tropsch, hydrogenation, and dehydrogenation reaction. This paper also reviews about the capability of ionic liquid in equilibrium reaction that produces CO2 product so that the reaction will move towards the product. Water gas shift reaction in ammonia production also direct Dimethyl Ether (DME) synthesis that produces CO2 product will be discussed. Based on a review of numerous articles on supported ionic liquid membrane (SILM) indicate that ionic liquids have the potential to support the process of chemical reaction and separation in a membrane reactor.

  12. Processivity and collectivity of biomolecular motors extracting membrane nanotubes

    Science.gov (United States)

    Fontenele Araujo, Francisco; Storm, Cornelis

    2012-07-01

    Biomolecular motors can pull and viscously drag membranes. The resulting elongations include cell protrusions, tether networks, and sensorial tentacles. Here we focus on the extraction of a single tube from a vesicle. Via a force balance coupled to binding kinetics, we analytically determine the phase diagram of tube formation as function of the motor processivity, the surface viscosity of the membrane ηm', and the density of motors on the vesicle ρ. Three tubulation mechanisms are identified: (i) tip pulling, due to the accumulation of motors at the leading edge of the membrane, (ii) viscous drag, emergent from the translation of motors along the tube, and (iii) hybrid extraction, such that tip pulling and viscous drag are equally important. For experimental values of ηm' and ρ, we find that the growth of bionanotubes tends to be driven by viscous forces, whereas artificial membranes are dominated by tip pulling.

  13. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2017-05-01

    Full Text Available This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.

  14. Membrane solubility of chlorpromazine. Hygroscopic desorption and centrifugation methods yield comparable results.

    Science.gov (United States)

    Luxnat, M; Müller, H J; Galla, H J

    1984-01-01

    Binding of the positively charged drug chlorpromazine to artificial and erythrocyte bilayer membranes was investigated by the filtration method called hygroscopic desorption [Conrad & Singer (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 5202-5206] and by the conventional centrifugation method. Only minor differences in the partition coefficients were observed using the two methods. Our finding is not consistent with the observation of Conrad & Singer that amphipaths are completely excluded from biological membranes. However, the partition coefficient is dependent on membrane composition, which means dependent on the physical properties of a membrane. PMID:6525170

  15. Smart gating membranes with in situ self-assembled responsive nanogels as functional gates

    Science.gov (United States)

    Luo, Feng; Xie, Rui; Liu, Zhuang; Ju, Xiao-Jie; Wang, Wei; Lin, Shuo; Chu, Liang-Yin

    2015-01-01

    Smart gating membranes, inspired by the gating function of ion channels across cell membranes, are artificial membranes composed of non-responsive porous membrane substrates and responsive gates in the membrane pores that are able to dramatically regulate the trans-membrane transport of substances in response to environmental stimuli. Easy fabrication, high flux, significant response and strong mechanical strength are critical for the versatility of such smart gating membranes. Here we show a novel and simple strategy for one-step fabrication of smart gating membranes with three-dimensionally interconnected networks of functional gates, by self-assembling responsive nanogels on membrane pore surfaces in situ during a vapor-induced phase separation process for membrane formation. The smart gating membranes with in situ self-assembled responsive nanogels as functional gates show large flux, significant response and excellent mechanical property simultaneously. Because of the easy fabrication method as well as the concurrent enhancement of flux, response and mechanical property, the proposed smart gating membranes will expand the scope of membrane applications, and provide ever better performances in their applications. PMID:26434387

  16. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  17. Artificial Neural Networks·

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Artificial Neural Networks A Brief Introduction. Jitendra R Raol Sunilkumar S Mankame. General Article Volume 1 Issue 2 February 1996 pp 47-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. CLASSICS Generality in Artificial Intelligence

    Indian Academy of Sciences (India)

    IAS Admin

    My 1971 Turing Award Lecture was entitled “Generality in Artificial Intelligence.” The topic turned out to have been overambitious in that I discovered I was unable to put my thoughts on the subject in a satisfactory written form at that time. It would have been better to have reviewed my previous work rather than attempt ...

  19. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  20. Artificial Intelligence and Authority Control.

    Science.gov (United States)

    Burger, Robert H.

    1984-01-01

    Four artificial intelligence (AI) concepts that have relevance for information retrieval systems are discussed and applied to area of authority control in automated catalogs--pattern recognition, representation, problem solving, learning. Existing automated authority control systems are analyzed using two other AI concepts, augmentation and…

  1. Artificial Seeds and their Applications

    Indian Academy of Sciences (India)

    ripening in mango and banana and on molecular markets. G V S Saiprasad. Plant propagation using artificial or synthetic seeds devel- oped from somatic and not zygotic embryos opens up new ... Somatic embryos are structurally similar to zygotic embryos ... somatic embryos, are not the limiting factors for development of.

  2. Artificial Intelligence and Expert Systems.

    Science.gov (United States)

    Lawlor, Joseph

    Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…

  3. Artificial Seeds and their Applications

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Artificial Seeds and their Applications. G V S Saiprasad. General Article Volume 6 Issue 5 May 2001 pp 39-47. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/05/0039-0047. Author Affiliations.

  4. Hybrid Applications Of Artificial Intelligence

    Science.gov (United States)

    Borchardt, Gary C.

    1988-01-01

    STAR, Simple Tool for Automated Reasoning, is interactive, interpreted programming language for development and operation of artificial-intelligence application systems. Couples symbolic processing with compiled-language functions and data structures. Written in C language and currently available in UNIX version (NPO-16832), and VMS version (NPO-16965).

  5. Artificial Intelligence: Applications in Education.

    Science.gov (United States)

    Thorkildsen, Ron J.; And Others

    1986-01-01

    Artificial intelligence techniques are used in computer programs to search out rapidly and retrieve information from very large databases. Programing advances have also led to the development of systems that provide expert consultation (expert systems). These systems, as applied to education, are the primary emphasis of this article. (LMO)

  6. Backchannel Strategies for Artificial Listeners

    NARCIS (Netherlands)

    Poppe, Ronald Walter; Truong, Khiet Phuong; Reidsma, Dennis; Heylen, Dirk K.J.; Allbeck, Jan; Badler, Norman; Bickmore, Timothy; Pelachaud, Catherine; Safonova, Alla

    We evaluate multimodal rule-based strategies for backchannel (BC) generation in face-to-face conversations. Such strategies can be used by artificial listeners to determine when to produce a BC in dialogs with human speakers. In this research, we consider features from the speaker’s speech and gaze.

  7. What Is Artificial Intelligence Anyway?

    Science.gov (United States)

    Kurzweil, Raymond

    1985-01-01

    Examines the past, present, and future status of Artificial Intelligence (AI). Acknowledges the limitations of AI but proposes possible areas of application and further development. Urges a concentration on the unique strengths of machine intelligence rather than a copying of human intelligence. (ML)

  8. Artificial life, the new paradigm

    International Nuclear Information System (INIS)

    Martinez Paez, Jose Jesus

    1998-01-01

    A chronological synthesis of the most important facts is presented in the theoretical development and computational simulation that they have taken to the formation of a new paradigm that is known as artificial life; their characteristics and their main investigation lines are analyzed. Finally, a description of its work is made in the National University of Colombia

  9. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  10. Artificial Neural Networks·

    Indian Academy of Sciences (India)

    works. They have the ability to learn from empirical datal information. They find use in computer science and control engineering fields. In recent years artificial ... However there are vast differences between biological neural networks (BNNs) of the brain and ANN s. A thorough understanding of biologically derived NNs ...

  11. Artificial intelligence approaches in statistics

    International Nuclear Information System (INIS)

    Phelps, R.I.; Musgrove, P.B.

    1986-01-01

    The role of pattern recognition and knowledge representation methods from Artificial Intelligence within statistics is considered. Two areas of potential use are identified and one, data exploration, is used to illustrate the possibilities. A method is presented to identify and separate overlapping groups within cluster analysis, using an AI approach. The potential of such ''intelligent'' approaches is stressed

  12. Artificial Seeds and their Applications

    Indian Academy of Sciences (India)

    and nutrition for zygotic embryos in developing seeds. To augment these deficiencies, addition of nutrients and growth regulators to the encapsulation matrix is desired, which serves as an artificial endosperm. GENERAL I ARTICLE. Principle and Conditions for Encapsulation with. Alginate Matrix. Alginate is a straight chain, ...

  13. Structural adaptations of proteins to different biological membranes

    Science.gov (United States)

    Pogozheva, Irina D.; Tristram-Nagle, Stephanie; Mosberg, Henry I.; Lomize, Andrei L.

    2013-01-01

    To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31 Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5 Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22 Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4 Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8 Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds. PMID:23811361

  14. Influence of cholesterol and its esters on [125I] hCG binding to rat testicular membranes and their ordering effect on membranes and liposomes

    International Nuclear Information System (INIS)

    Horkovics-Kovats, S.; Kolena, J.

    1986-01-01

    The influence of cholesterol, cholesterol acetate and cholesterol hemisuccinate on specific binding of [ 125 I] hCG to rat testicular membranes was studied. The increase of specific binding of [ 125 I] hCG only in the presence of cholesterol hemisuccinate in the membranes was observed. The influence of sterols on the ordering of membranes and liposomes prepared from egg phosphatidylcholine was further studied at three depths of the membranes by means of ESR spectroscopy in the temperature range 5-30 0 C. A different effect of cholesterol was observed when compared with its two above-mentioned esters in biological and artificial membranes in the hydrophilic part of the membrane as detected by the CAT 16 spin probe. (author)

  15. Establishment of an Artificial Tick Feeding System to Study Theileria lestoquardi Infection.

    Directory of Open Access Journals (Sweden)

    Shahin Tajeri

    Full Text Available The establishment of good experimental models for Theileria sp. infection is important for theileriosis research. Routinely, infection of ticks is accomplished by feeding on parasite-infected animals (sheep, cows and horses, which raises practical and ethical problems, driving the search for alternative methods of tick infection. Artificial tick feeding systems are based mainly on rearing ticks on host-derived or hand-made artificial membranes. We developed a modified feeding assay for infecting nymphal stages of Hyalomma anatolicum ticks with Theileria lestoquardi, a highly pathogenic parasite of sheep. We compared two different membranes: an artificial silicone membrane and a natural alternative using mouse skin. We observed high attachment rates with mouse skin, whereas in vitro feeding of H. anatolicum nymphs on silicone membranes was unsuccessful. We could infect H. anatolicum nymphs with T. lestoquardi and the emerging adult ticks transmitted infective parasites to sheep. In contrast, similar infections with Rhipicephalus bursa, a representative tick with short mouth-parts that was proposed as a vector for T. lestoquardi, appeared not to be a competent vector tick species. This is the first report of an experimentally controlled infection of H. anatolicum with T. lestoquardi and opens avenues to explore tick-parasite dynamics in detail.

  16. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  17. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  18. Artificial humidification for the mechanically ventilated patient.

    Science.gov (United States)

    Selvaraj, N

    Caring for patients who are mechanically ventilated poses many challenges for critical care nurses. It is important to humidify the patient's airways artificially to prevent complications such as ventilator-associated pneumonia. There is no gold standard to determine which type of humidification is best for patients who are artificially ventilated. This article provides an overview of commonly used artificial humidification for mechanically ventilated patients and discusses nurses' responsibilities in caring for patients receiving artificial humidification.

  19. Artificial insemination history: hurdles and milestones

    OpenAIRE

    Ombelet, W.; Van Robays, J.

    2015-01-01

    Artificial insemination with homologous (AIH) or donor semen (AID) is nowadays a very popular treatment procedure used for many subfertile women worldwide. The rationale behind artificial insemination is to increase gamete density at the site of fertilisation. The sequence of events leading to today's common use of artificial insemination traces back to scientific studies and experimentation many centuries ago. Modern techniques used in human artificial insemination programmes are mostly adap...

  20. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  1. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  2. Polyarylether composition and membrane

    Science.gov (United States)

    Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  3. GLTP Mediated Non-Vesicular GM1 Transport between Native Membranes

    Science.gov (United States)

    Mjumjunov-Crncevic, Esmina; Walrafen, David; Spitta, Luis; Thiele, Christoph; Lang, Thorsten

    2013-01-01

    Lipid transfer proteins (LTPs) are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP), we examined GM1 (monosialotetrahexosyl-ganglioside) transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes. PMID:23555818

  4. GLTP mediated non-vesicular GM1 transport between native membranes.

    Directory of Open Access Journals (Sweden)

    Ines Lauria

    Full Text Available Lipid transfer proteins (LTPs are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP, we examined GM1 (monosialotetrahexosyl-ganglioside transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes.

  5. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  6. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  7. 21 CFR 886.3200 - Artificial eye.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Artificial eye. 886.3200 Section 886.3200 Food and... OPHTHALMIC DEVICES Prosthetic Devices § 886.3200 Artificial eye. (a) Identification. An artificial eye is a device resembling the anterior portion of the eye, usually made of glass or plastic, intended to be...

  8. Impact of Artificial Intelligence on Economic Theory

    OpenAIRE

    Marwala, Tshilidzi

    2015-01-01

    Artificial intelligence has impacted many aspects of human life. This paper studies the impact of artificial intelligence on economic theory. In particular we study the impact of artificial intelligence on the theory of bounded rationality, efficient market hypothesis and prospect theory.

  9. Artificial Intelligence and Its Importance in Education.

    Science.gov (United States)

    Tilmann, Martha J.

    Artificial intelligence, or the study of ideas that enable computers to be intelligent, is discussed in terms of what it is, what it has done, what it can do, and how it may affect the teaching of tomorrow. An extensive overview of artificial intelligence examines its goals and applications and types of artificial intelligence including (1) expert…

  10. Modified Artificial Viscosity in Smooth Particle Hydrodynamics

    OpenAIRE

    Selhammar, Magnus

    1996-01-01

    Artificial viscosity is needed in Smooth Particle Hydrodynamics to prevent interparticle penetration, to allow shocks to form and to damp post shock oscillations. Artificial viscosity may, however, lead to problems such as unwanted heating and unphysical solutions. A modification of the standard artificial viscosity recipe is proposed which reduces these problems. Some test cases discussed.

  11. Northeast Artificial Intelligence Consortium Annual Report. 1988 Artificial Intelligence Applications to Speech Recognition. Volume 8

    Science.gov (United States)

    1989-10-01

    1988 Artificial Intelligence Applications to Speech Recognition Syracuse University Harvey E. Rhody, Thomas R. Ridley, John A. ,les DTIC S ELECTE FEB...Include Security Oiewftction) NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT - 1988 Artificial Intelligence Applications to Speech...Intelligence Consortium 1988 Annual Report Volume 8 Artificial Intelligence Applications to Speech Recognition Harvey E. Rhody Thomas R. Ridley John A

  12. Hybrid membrane contactor system for creating semi-breathing air

    Science.gov (United States)

    Timofeev, D. V.

    2012-02-01

    Typically, the equipment to create an artificial climate does not involve changing the composition of the respiratory air. In particular in medical institutions assumes the existence of plant of artificial climate and disinfection in operating rooms and intensive care wards. The use of a hybrid membrane-absorption systems for the generation of artificial atmospheres are improving the respiratory system, blood is enriched or depleted of various gases, resulting in increased stamina, there is a better, faster or slower metabolism, improves concentration and memory. Application of the system contributes to easy and rapid recovery after the operation. By adding a special component, with drug activity, air ionization, and adjust its composition, you can create a special, more favorable for patients with the atmosphere. These factors allow for the treatment and rehabilitation of patients and reduce mortality of heavy patients.

  13. Artificial Intelligence Information Sources for the Beginner and Expert

    Science.gov (United States)

    1991-05-01

    Electronics Engineers) sponsors a number of artificial intelli- gence conferences, including the Conference on Artificial Intelligence Applications and the...Artificial Intelligence and Legal Reasoning Intelligent Tutoring Systems Artificial Intelligence Applications for Nil- Technologies itary Logistics

  14. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  15. Membrane-Assisted Growth of DNA Origami Nanostructure Arrays

    Science.gov (United States)

    2015-01-01

    Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors—a three-layered rectangular block and a Y-shaped DNA structure—to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes. PMID:25734977

  16. Investigation into response characteristics of the chitosan gel artificial muscle

    Science.gov (United States)

    Zhao, Gang; Yang, Junjie; Wang, Yujian; Zhao, Honghao; Fu, Yu; Zhang, Guangli; Yu, Shuqin; Wu, Yuda; Wei, Chengye; Liu, Xuxiong; Wang, Zhijie

    2018-01-01

    Bionic artificial muscle made from chitosan gel is an emerging type of the ionic electro active polymer with advantages of large deformation, low cost and environmental protection etc, which leads to a research focus and wide application in the fields of bionic engineering and intelligence material recently. In this paper, effects and improvement mechanisms of the direct casting and genipin cross-linking processes on response speed properties of the chitosan gel artificial muscle (CGAM) were mainly studied. Based on in-depth analysis of the CGAM response mechanism, a platform was built for testing the response performance of the CGAM, then its equivalent circuit and mathematical models were also established. Furthermore, control experiments were carried out to test and analyze several performances of the CGAM on response speed, electrical conductivity, mechanical properties and microstructure with different control variables. The experimental results illustrated that the CGAM assembled by direct casting enabled its electric actuating membrane and non-metallic electrode membrane tightly attached together with low contact resistance, which dramatically promoted the electrical conductivity of the CGAM resulting in nearly doubled response speed. Besides, different concentrations of genipin were adopted to cross-link the CGAM actuating membranes, and then it was found that the response speed of the uncross-linked CGAM was fast in the initial stage, but as time increased, it declined rapidly with poor steadiness. While there was no obvious decrease over time on the response speed of the CGAM cross-linked with low genipin concentration. Namely, its stability was getting better and better. In addition, the response speed of the CGAM cross-linked with low concentration of genipin was roughly the same as uncross-linked CGAM, which was quicker than that of high concentration. In this work, its internal mechanisms, feasible assembly technique and green modification method were

  17. Computer automation and artificial intelligence

    International Nuclear Information System (INIS)

    Hasnain, S.B.

    1992-01-01

    Rapid advances in computing, resulting from micro chip revolution has increased its application manifold particularly for computer automation. Yet the level of automation available, has limited its application to more complex and dynamic systems which require an intelligent computer control. In this paper a review of Artificial intelligence techniques used to augment automation is presented. The current sequential processing approach usually adopted in artificial intelligence has succeeded in emulating the symbolic processing part of intelligence, but the processing power required to get more elusive aspects of intelligence leads towards parallel processing. An overview of parallel processing with emphasis on transputer is also provided. A Fuzzy knowledge based controller for amination drug delivery in muscle relaxant anesthesia on transputer is described. 4 figs. (author)

  18. Efficacy of Blood Sources and Artificial Blood Feeding Methods in Rearing of Aedes aegypti (Diptera: Culicidae for Sterile Insect Technique and Incompatible Insect Technique Approaches in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Nayana Gunathilaka

    2017-01-01

    Full Text Available Introduction. Selection of the artificial membrane feeding technique and blood meal source has been recognized as key considerations in mass rearing of vectors. Methodology. Artificial membrane feeding techniques, namely, glass plate, metal plate, and Hemotek membrane feeding method, and three blood sources (human, cattle, and chicken were evaluated based on feeding rates, fecundity, and hatching rates of Aedes aegypti. Significance in the variations among blood feeding was investigated by one-way ANOVA, cluster analysis of variance (ANOSIM, and principal coordinates (PCO analysis. Results. Feeding rates of Ae. aegypti significantly differed among the membrane feeding techniques as suggested by one-way ANOVA (p0.05. Conclusions. Metal plate method could be recommended as the most effective membrane feeding technique for mass rearing of Ae. aegypti, due to its high feeding rate and cost effectiveness. Cattle blood could be recommended for mass rearing Ae. aegypti.

  19. Important Themas in Artificial Intelligence

    OpenAIRE

    Šudoma, Petr

    2013-01-01

    The paper studies description logics as a method of field of artificial intelligence, describes history of knowledge representation as series of events leading to founding of description logics. Furthermore the paper compares description logics with their predecessor, the frame systems. Syntax, semantics and description logics naming convention is also presented and algorithms solving common knowledge representation tasks with usage of description logics are described. Paper compares computat...

  20. Anesthesiology, automation, and artificial intelligence.

    Science.gov (United States)

    Alexander, John C; Joshi, Girish P

    2018-01-01

    There have been many attempts to incorporate automation into the practice of anesthesiology, though none have been successful. Fundamentally, these failures are due to the underlying complexity of anesthesia practice and the inability of rule-based feedback loops to fully master it. Recent innovations in artificial intelligence, especially machine learning, may usher in a new era of automation across many industries, including anesthesiology. It would be wise to consider the implications of such potential changes before they have been fully realized.

  1. Artificial Intelligence, Employment, and Income

    OpenAIRE

    Nilsson, Nils J.

    1984-01-01

    Artificial intelligence (AI) will have profound societal effects. It promises potential benefits (and may also pose risks) in education, defense, business, law and science. In this article we explore how AI is likely to affect employment and the distribution of income. We argue that AI will indeed reduce drastically the need of human toil. We also note that some people fear the automation of work by machines and the resulting of unemployment. Yet, since the majority of us probably would rathe...

  2. Automated Scheduling Via Artificial Intelligence

    Science.gov (United States)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  3. Artificial wetlands - yes or no?

    Czech Academy of Sciences Publication Activity Database

    Horák, Václav; Lusk, Stanislav; Halačka, Karel; Lusková, Věra

    2004-01-01

    Roč. 4, č. 2 (2004), s. 119-127 ISSN 1642-3593. [International Symposium on the Ecology of Fluvial Fishes /9./. Lodz, 23.06.2003-26.06.2003] R&D Projects: GA AV ČR IBS6093007; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6093917 Keywords : floodplain * artificial wetlands * fish communities Subject RIV: EH - Ecology, Behaviour

  4. Artificial Sweeteners versus Natural Sweeteners

    Directory of Open Access Journals (Sweden)

    Neacsu, N.A.

    2014-06-01

    Full Text Available Carbohydrates are an important dietary nutrient which is mostly used to supply energy to the body, as well as a carbon source for synthesis of other needed chemicals. In addition, mono- and disaccharides are craved because of their sweetness. We present different types of sweeteners, which are the basic contents of foods which we consume every day and are demonstrated the positive and negative effects of natural and artificial sweeteners.

  5. An Artificial Muscle Ring Oscillator

    OpenAIRE

    O’Brien, Benjamin Marc; Anderson, Iain Alexander

    2012-01-01

    Dielectric elastomer artificialmuscles have great potential for the creation of novel pumps, motors, and circuitry. Control of these devices requires an oscillator, either as a driver or clock circuit, which is typically provided as part of bulky, rigid, and costly external electronics. Oscillator circuits based on piezo-resistive dielectric elastomer switch technology provide a way to embed oscillatory behavior into artificial muscle devices. Previous oscillator circuits were not digital, ab...

  6. Artificial anisotropy and polarizing filters.

    Science.gov (United States)

    Flory, François; Escoubas, Ludovic; Lazaridès, Basile

    2002-06-01

    The calculated spectral transmittance of a multilayer laser mirror is used to determine the effective index of the single layer equivalent to the multilayer stack. We measure the artificial anisotropy of photoresist thin films whose structure is a one-dimensional, subwavelength grating obtained from interference fringes. The limitation of the theory of the first-order effective index homogenization is discussed. We designed normal-incidence, polarizing coating and a polarization rotator by embedding anisotropic films in simple multilayer structures.

  7. Artificial intelligence and computer vision

    CERN Document Server

    Li, Yujie

    2017-01-01

    This edited book presents essential findings in the research fields of artificial intelligence and computer vision, with a primary focus on new research ideas and results for mathematical problems involved in computer vision systems. The book provides an international forum for researchers to summarize the most recent developments and ideas in the field, with a special emphasis on the technical and observational results obtained in the past few years.

  8. Artificial Neural Networks for Beginners

    OpenAIRE

    Gershenson, Carlos

    2003-01-01

    The scope of this teaching package is to make a brief induction to Artificial Neural Networks (ANNs) for people who have no previous knowledge of them. We first make a brief introduction to models of networks, for then describing in general terms ANNs. As an application, we explain the backpropagation algorithm, since it is widely used and many other algorithms are derived from it. The user should know algebra and the handling of functions and vectors. Differential calculus is recommendable, ...

  9. Enantioseparation with liquid membranes

    NARCIS (Netherlands)

    Gössi, Angelo; Riedl, Wolfgang; Schuur, Boelo

    Chiral resolution of racemic products is a challenging and important task in the pharmaceutical, agrochemical, flavor, polymer and fragrances industries. One of the options for these challenging separations is to use liquid membranes. Although liquid membranes have been known for almost four decades

  10. Porous ceramic membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined

  11. Polymide gas separation membranes

    Science.gov (United States)

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  12. Membrane module assembly

    Science.gov (United States)

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  13. Artificial life: The coming evolution

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.D. (Los Alamos National Lab., NM (USA) Santa Fe Inst., NM (USA)); Belin, A.d' A. (Shute, Mihaly, and Weinberger, Santa Fe, NM (USA))

    1990-01-01

    Within fifty to a hundred years a new class of organisms is likely to emerge. These organisms will be artificial in the sense that they will originally be designed by humans. However, they will reproduce, and will evolve into something other than their initial form; they will be alive'' under any reasonable definition of the word. These organisms will evolve in a fundamentally different manner than contemporary biological organisms, since their reproduction will be under at least partial conscious control, giving it a Lamarckian component. The pace of evolutionary change consequently will be extremely rapid. The advent of artificial life will be the most significant historical event since the emergence of human beings. The impact on humanity and the biosphere could be enormous, larger than the industrial revolution, nuclear weapons, or environmental pollution. We must take steps now to shape the emergence of artificial organisms; they have potential to be either the ugliest terrestrial disaster, or the most beautiful creation of humanity. 22 refs., 3 figs.

  14. PIXE Analysis of Artificial Turf

    Science.gov (United States)

    Conlan, Skye; Chalise, Sajju; Porat, Zachary; Labrake, Scott; Vineyard, Michael

    2017-09-01

    In recent years, there has been debate regarding the use of the crumb rubber infill in artificial turf on high school and college campuses due to the potential presence of heavy metals and carcinogenic chemicals. We performed Proton-Induced X-Ray Emission (PIXE) analysis of artificial turf infill and blade samples collected from high school and college campuses around the Capital District of NYS to search for potentially toxic substances. Crumb rubber pellets were made by mixing 1g of rubber infill and 1g of epoxy. The pellets and the turf blades were bombarded with 2.2 MeV proton beams from a 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory and x-ray energy spectra were collected with an Amptek silicon drift detector. We analyzed the spectra using GUPIX software to determine the elemental concentrations of the samples. The turf infill showed significant levels of Ti, Fe, Co, Ni, Cu, Zn, Br, and Pb. The highest concentration of Br in the crumb rubber was 1500 +/-100 ppm while the highest detectable amount of Pb concentration was 110 +/-20 ppm. The artificial turf blades showed significant levels of Ti, Fe, and Zn with only the yellow blade showing concentrations of V and Bi.

  15. Artificial insemination history: hurdles and milestones.

    Science.gov (United States)

    Ombelet, W; Van Robays, J

    2015-01-01

    Artificial insemination with homologous (AIH) or donor semen (AID) is nowadays a very popular treatment procedure used for many subfertile women worldwide. The rationale behind artificial insemination is to increase gamete density at the site of fertilisation. The sequence of events leading to today's common use of artificial insemination traces back to scientific studies and experimentation many centuries ago. Modern techniques used in human artificial insemination programmes are mostly adapted from the work on cattle by dairy farmers wishing to improve milk production by using artificial insemination with sperm of selected bulls with well chosen genetic traits. The main reason for the renewed interest in artificial insemination in human was associated with the refinement of techniques for the preparation of washed motile spermatozoa in the early years of IVF. The history of artificial insemination is reviewed with particular interest to the most important hurdles and milestones.

  16. Artificial insemination history: hurdles and milestones

    Science.gov (United States)

    Ombelet, W.; Van Robays, J.

    2015-01-01

    Artificial insemination with homologous (AIH) or donor semen (AID) is nowadays a very popular treatment procedure used for many subfertile women worldwide. The rationale behind artificial insemination is to increase gamete density at the site of fertilisation. The sequence of events leading to today’s common use of artificial insemination traces back to scientific studies and experimentation many centuries ago. Modern techniques used in human artificial insemination programmes are mostly adapted from the work on cattle by dairy farmers wishing to improve milk production by using artificial insemination with sperm of selected bulls with well chosen genetic traits. The main reason for the renewed interest in artificial insemination in human was associated with the refinement of techniques for the preparation of washed motile spermatozoa in the early years of IVF. The history of artificial insemination is reviewed with particular interest to the most important hurdles and milestones. PMID:26175891

  17. Elastic membranes in confinement.

    Science.gov (United States)

    Bostwick, J B; Miksis, M J; Davis, S H

    2016-07-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. © 2016 The Author(s).

  18. Membrane projection lithography

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  19. Membrane technology and applications

    International Nuclear Information System (INIS)

    Khalil, F.H.

    1997-01-01

    The main purpose of this dissertation is to prepare and characterize some synthetic membranes obtained by radiation-induced graft copolymerization of and A Am unitary and binary system onto nylon-6 films. The optimum conditions at which the grafting process proceeded homogeneously were determined. Some selected properties of the prepared membranes were studied. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), x-ray diffraction (XRD), mechanical properties and U.V./vis, instruments and techniques were used to characterize the prepared membranes. The use of such membranes for the decontamination of radioactive waste and some heavy metal ions as water pollutants were investigated. These grafted membranes showed good cation exchange properties and may be of practical interest in waste water treatment whether this water was radioactive or not. 4 tabs., 68 figs., 146 refs

  20. Mechanical and Electrical Characterization of Piezoelectric Artificial Cochlear Device and Biocompatible Packaging

    Directory of Open Access Journals (Sweden)

    Youngdo Jung

    2015-07-01

    Full Text Available This paper presents the development of a piezoelectric artificial cochlea (PAC device capable of analyzing vibratory signal inputs and converting them into electrical signal outputs without an external power source by mimicking the function of human cochlea within an audible frequency range. The PAC consists of an artificial basilar membrane (ABM part and an implantable packaged part. The packaged part provides a liquid environment through which incoming vibrations are transmitted to the membrane part. The membrane part responds to the transmitted signal, and the local area of the ABM part vibrates differently depending on its local resonant frequency. The membrane was designed to have a logarithmically varying width from 0.97 mm to 8.0 mm along the 28 mm length. By incorporating a micro-actuator in an experimental platform for the package part that mimics the function of a stapes bone in the middle ear, we created a similar experimental environment to cochlea where the human basilar membrane vibrates. The mechanical and electrical responses of fabricated PAC were measured with a laser Doppler vibrometer and a data acquisition system, and were compared with simulation results. Finally, the fabricated PAC in a biocompatible package was developed and its mechanical and electrical characteristics were measured. The experimental results shows successful frequency separation of incoming mechanical signal from micro-actuator into frequency bandwidth within the 0.4 kHz–5 kHz range.

  1. Fecundación Artificial

    Directory of Open Access Journals (Sweden)

    Ochoa. Fidel

    1939-10-01

    Full Text Available Por Fecundación artificial se entiende, la fecundación de una hembra sin el servicio directo del macho, es decir la introducción al aparato genital femenino, del esperma que se ha recogido por medios artificiales. Esta fecundación, practicada en debidas condiciones, tiene el mismo efecto de la fecundación natural, con las ventajas que veremos más adelante. La fecundación artificial permite explotar un reproductor a su máximum de capacidad, ya que se considera, para no hacer cálculos alegres, que un servicio de un caballo puede servir, diluido, por lo menos para cuatro yeguas, según los autores americanos, y para 10 a 15, según otros autores. El toro y el carnero pueden dar esperma suficiente en un servicio para fecundar de 10 a 12 hembras, según,los americanos, y según otros autores, hasta para 40. Los investigadores rusos han podido fecundar hasta 60 vacas con un solo servicio y han logrado con reproductores valiosos, fecundar 10.263 vacas por toro, a pesar de que éstos sólo han servido, durante un periodo de monta de sólo dos meses. Estos mismos han logrado fecundar artificialmente 2.733 ovejas con un solo carnero, y 1.403 con otro Los investigadores americanos han contado 22 servicios a un carnero vigoroso en un periodo de ocho horas, y durante este tiempo produjo esperma suficiente para haber fecundado 200 ovejas artificialmente. La fecundación artificial sirve para evitar la trasmisión de enfermedades que se contagian por el coito, tales como la durina, enfermedad ésta producida por un tripanosoma que por fortuna no existe entre nosotros. A las estaciones de monta llevan con frecuencia hembras afectadas de enfermedades como la vaginitis granulosa de la vaca, que se contagia al toro y de éste a otras hembras. Como el control sanitario de toda hembra llevada al servicio de un reproductor de estas estaciones de monta no siempre puede efectuarse por dificultades de distinta índole, mediante la fecundación artificial

  2. Novel biocompatible transversal pneumatic artificial muscles made of PDMS/PET satin composite

    Directory of Open Access Journals (Sweden)

    Szmechtyk Tomasz

    2016-06-01

    Full Text Available In this study novel transversal pneumatic artificial muscles (TPAM, made from composite – poly(dimethylsiloxane (PDMS matrix membrane and poly(ethylene terephthalate (PET satin reinforcement, are presented. Miniature TPAM consists of a flexible internal braid (IB reinforcing the membrane and the external braid (EB. EB, with fibers arranged transversely to the IB, is placed laterally. Differently prepared TPAMs were tested for their effectiveness as actuators for robot drive and the PDMS/PET composite suitability was evaluated for applications in human gastrointestinal tract (chemical resistance, thermal characteristic. FT-IR spectra of the composite were compared for study PDMS impregnation process of PET satin and effect of immersion in selected solution. The composite shows outstanding biocompatibility and the muscles have competitive static load characteristics in comparison with other pneumatic artificial muscles (PAM. These results lead to believe, that in the near future painless examination of the gastrointestinal tract using a secure robot will be possible.

  3. Small, low cost, artificial kidney

    Science.gov (United States)

    Lavender, A. R.; Markley, F. W.

    1972-01-01

    Disposable hemodialyzer is described that can be used at home by non-medically trained personnel. Short lengths of semipermeable membrane tubes are arranged in parallel, supported by plastic mesh and encased in epoxy at ends. Tubes are connected to input and output blood manifolds which are separated by dialysate chamber. Daily dialysis requires only two hours or less.

  4. Soft Plastic Robots and Artificial Muscles

    Directory of Open Access Journals (Sweden)

    Mohsen Shahinpoor

    2008-11-01

    Full Text Available Ionic polymeric materials suitably made into a functionally-graded composite with a conductor such as a metal, graphite or synthetic metal such as conductive polymers that act as a distributed electrode can exhibit large dynamic deformation if placed in a time-varying electric field (see Fig.s 1and 2 [Shahinpoor 1992, 1993, Adolf, Shahinpoor, Segalman and Witkowski, 1993]. A recent book by Shahinpoor, Kim and Mojarrad (2004 and 4 fundamental review papers by Shahinpoor and Kim (2001, 2003, 2004 and 2005 presents a thorough coverage of the existing knowledge in connection with ionic polymeric cond uctor composites (IPCC?s including ionic polymeric metal composites (IPMC?s as biomimetic distributed nanosensors, nanoactuators and artificial muscles and electrically controllable polymeric network structures. Furthermore, in reference [Shahinpoor, Kim and Mojarrad, 2004], methods of fabrication of several electrically and chemically active ionic polymeric gel muscles such as polyacrylonitrile (PAN, poly(2- acrylamido-2-methyl-1-propane sulfonic acid (PAMPS, and polyacrylic-acid-bis-acrylamide (PAAM as well as a new class of electrically active composite muscle such as Ionic Polymeric Conductor Composites (IPCC?s or Ionic Polymer Metal Composites (IPMC?s made with perfluorinated sulfonic or carboxylic ionic membranes (chlor-alkali family are introduced and investigated that have resulted in seven US patents regarding their fabrication and application capabilities as distributed biomimetic nanoactuators, nanotransducers, nanorobots and nanosensors. Theories and numerical simulations associated with ionic polymer gels electrodynamics and chemodynamics are also discussed, analyzed and modeled for the manufactured material.

  5. Internet advertising of artificial tanning in Australia.

    Science.gov (United States)

    Team, Victoria; Markovic, Milica

    2006-08-01

    Artificial tanning, defined as deliberate exposure to ultraviolet rays produced by artificial tanning devices, is a new and emerging public health issue in Australia and globally. Epidemiological research suggests that artificial tanning may contribute to the incidence of melanoma, nonmelanoma skin cancer as well as other health problems. Given that Australia has a high incidence of skin cancer, we have undertaken a study to explore how artificial tanning has been promoted to its users. The aim was to analyze the completeness and accuracy of information about artificial tanning. A content analysis of web sites of tanning salons and distributors of tanning equipment in Australia was conducted. A total of 22 web sites were analyzed. None of the solarium operators or distributors of equipment provided full information about the risks of artificial tanning. Fifty-nine percent of web advertisements had no information and 41% provided only partial information regarding the risks of artificial tanning. Pictures with the image of bronze-tanned bodies, predominantly women, were used by all web advertisers. In light of the success of sun-safety campaigns in Australia, the findings of future epidemiological research on the prevalence of artificial tanning and sociological and anthropological research on why people utilize artificial tanning should be a basis for developing effective targeted health promotion on the elimination of artificial tanning in the country.

  6. Recycling of NAD(P) by multienzyme systems immobilized by microencapsulation in artificial cells.

    Science.gov (United States)

    Chang, T M

    1987-01-01

    Multistep enzyme systems can be immobilized in solution within semipermeable microcapsules. With the ability to recycle cofactors, a number of potentially useful systems have been made possible. Furthermore NAD+ can be retained inside the microcapsules by two approaches. (1) NAD+ can be linked to macromolecules such as dextran or polyethyleneimine. However, in this form, there are significant increases in steric hindrance and diffusion restrictions. (2) "Artificial cells" consisting of lipid-polyamide membrane microcapsules containing multienzyme systems, cofactors, and substrates can retain NAD+ in the free form. Analogous to the intracellular environments of red blood cells, free NAD+ in solution inside the microcapsules is effectively recycled by the multistep enzyme systems which are also in solution. Enzymes in the microcapsules are in high concentrations and in close proximity to one another. Any number and any concentration of different enzyme systems can be microencapsulated all within one artificial cell, within the limit of solubility of the total amount of enzymes. Products of sequential reactions inside the microcapsules are at much higher concentrations than outside. All these factors result in an optimal intracellular environment for multistep enzyme reactions. External substrates in the form of lipophilic or small hydrophilic molecules can equilibrate across the membrane to participate as initial substrates in the multistep reactions in the microcapsules. A number of potential applications are possible using this approach. The lipid-polyamide membrane artificial cell can also be used in basic research as a biochemical cell model for the simpler types of biological cells such as erythrocytes.

  7. Artificial organic networks artificial intelligence based on carbon networks

    CERN Document Server

    Ponce-Espinosa, Hiram; Molina, Arturo

    2014-01-01

    This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        class...

  8. The quintuple-shape memory effect in electrospun nanofiber membranes

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  9. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma

    Science.gov (United States)

    Ki, S. H.; Park, J. K.; Sung, C.; Lee, C. B.; Uhm, H.; Choi, E. H.; Baik, K. Y.

    2016-03-01

    Artificial cell-like model systems can provide information which is hard to obtain with real biological cells. Giant unilamellar vesicles (GUV) containing intra-membrane DNA or OH radical-binding molecules are used to visualize the cytolytic activity of OH radicals. Changes in the GUV membrane are observed by microscopy or flow cytometry as performed for animal cells after non-thermal plasma treatment. The experimental data shows that OH radicals can be detected inside the membrane, although the biological effects are not as significant as for H2O2. This artificial model system can provide a systemic means to elucidate the complex interactions between biological materials and non-thermal plasma.

  10. FPGA controlled artificial vascular system

    Directory of Open Access Journals (Sweden)

    Laqua D.

    2015-09-01

    Full Text Available Monitoring the oxygen saturation of an unborn child is an invasive procedure, so far. Transabdominal fetal pulse oximetry is a promising method under research, used to estimate the oxygen saturation of a fetus noninvasively. Due to the nature of the method, the fetal information needs to be extracted from a mixed signal. To properly evaluate signal processing algorithms, a phantom modeling fetal and maternal blood circuits and tissue layers is necessary. This paper presents an improved hardware concept for an artificial vascular system, utilizing an FPGA based CompactRIO System from National Instruments. The experimental model to simulate the maternal and fetal blood pressure curve consists of two identical hydraulic circuits. Each of these circuits consists of a pre-pressure system and an artificial vascular system. Pulse curves are generated by proportional valves, separating these two systems. The dilation of the fetal and maternal artificial vessels in tissue substitutes is measured by transmissive and reflective photoplethysmography. The measurement results from the pressure sensors and the transmissive optical sensors are visualized to show the functionality of the pulse generating systems. The trigger frequency for the maternal valve was set to 1 per second, the fetal valve was actuated at 0.7 per second for validation. The reflective curve, capturing pulsations of the fetal and maternal circuit, was obtained with a high power LED (905 nm as light source. The results show that the system generates pulse curves, similar to its physiological equivalent. Further, the acquired reflective optical signal is modulated by the alternating diameter of the tubes of both circuits, allowing for tests of signal processing algorithms.

  11. Artificial intelligence a beginner's guide

    CERN Document Server

    Whitby, Blay

    2012-01-01

    Tomorrow begins right here as we embark on an enthralling and jargon-free journey into the world of computers and the inner recesses of the human mind. Readers encounter everything from the nanotechnology used to make insect-like robots, to computers that perform surgery, in addition to discovering the biggest controversies to dog the field of AI. Blay Whitby is a Lecturer on Cognitive Science and Artificial Intelligence at the University of Sussex UK. He is the author of two books and numerous papers.

  12. Neuroscience-Inspired Artificial Intelligence.

    Science.gov (United States)

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  13. Slope protection for artificial island

    Energy Technology Data Exchange (ETDEWEB)

    Czerniak, M.T.; Collins, J.I.; Shak, A.T.

    1981-08-01

    The technology under development to protect artificial-island production platforms from Arctic sea and ice damage involves three major considerations: (1) sea conditions during the ice-free season, (2) ice conditions during winter, and (3) construction constraints imposed by material availability, transportation problems, and length of the construction season. So far, researchers have evaluated 15 different slope-protection systems on the basis of reliability, construction-cost, and maintenance-cost factors, choosing 8 candidates for wave and ice model testing. The cases of interest involve exploration and production islands in shallow and deeper water applications.

  14. Improving designer productivity. [artificial intelligence

    Science.gov (United States)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  15. Vida artificial, el nuevo paradigma

    OpenAIRE

    José Jesús Martínez Páez

    2011-01-01

    Se presenta una síntesis cronológica de los hechos más importantes en el desarrollo teórico y de simulación computacional, que han llevado a la formación de un nuevo paradigma que se conoce como vida artificial; se analizan sus características y sus príncipales líneas de investigación. Finalmente, se hace una descripción de su trabajo en laUniversidad Nacional.

  16. Vida artificial, el nuevo paradigma

    Directory of Open Access Journals (Sweden)

    José Jesús Martínez Páez

    1998-05-01

    Full Text Available Se presenta una síntesis cronológica de los hechos más importantes en el desarrollo teórico y de simulación computacional, que han llevado a la formación de un nuevo paradigma que se conoce como vida artificial; se analizan sus características y sus príncipales líneas de investigación. Finalmente, se hace una descripción de su trabajo en la Universidad Nacional.

  17. Logical Foundations Of Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-04-01

    Full Text Available The procedures of searching solutions to problems, in Artificial Intelligence, can be brought about, in many occasions, without knowledge of the Domain, and in other situations, with knowledge of it. This last procedure is usually called Heuristic Search. In such methods the matrix techniques reveal themselves as essential. Their introduction can give us an easy and precise way in the search of solution. Our paper explains how the matrix theory appears and fruitfully participates in A I, with feasible applications to Game Theory.

  18. Cybersecurity in Artificial Pancreas Experiments.

    Science.gov (United States)

    O'Keeffe, Derek T; Maraka, Spyridoula; Basu, Ananda; Keith-Hynes, Patrick; Kudva, Yogish C

    2015-09-01

    Medical devices have transformed modern health care, and ongoing experimental medical technology trials (such as the artificial pancreas) have the potential to significantly improve the treatment of several chronic conditions, including diabetes mellitus. However, we suggest that, to date, the essential concept of cybersecurity has not been adequately addressed in this field. This article discusses several key issues of cybersecurity in medical devices and proposes some solutions. In addition, it outlines the current requirements and efforts of regulatory agencies to increase awareness of this topic and to improve cybersecurity.

  19. Artificial intelligence methods for diagnostic

    International Nuclear Information System (INIS)

    Dourgnon-Hanoune, A.; Porcheron, M.; Ricard, B.

    1996-01-01

    To assist in diagnosis of its nuclear power plants, the Research and Development Division of Electricite de France has been developing skills in Artificial Intelligence for about a decade. Different diagnostic expert systems have been designed. Among them, SILEX for control rods cabinet troubleshooting, DIVA for turbine generator diagnosis, DIAPO for reactor coolant pump diagnosis. This know how in expert knowledge modeling and acquisition is direct result of experience gained during developments and of a more general reflection on knowledge based system development. We have been able to reuse this results for other developments such as a guide for auxiliary rotating machines diagnosis. (authors)

  20. PERSISTENT PUPILLARY MEMBRANE OR ACCESSORY IRIS MEMBRANE?.

    Science.gov (United States)

    Gavriş, Monica; Horge, Ioan; Avram, Elena; Belicioiu, Roxana; Olteanu, Ioana Alexandra; Kedves, Hanga

    2015-01-01

    Frequently, in literature and curent practice, accessory iris membrane (AIM) and persistant pupillary membrane (PPM) are confused. Both AIM and PPM are congenital iris anomalies in which fine or thick iris strands arrise form the collarette and obscure the pupil. AIM, which is also called iris duplication, closely resembles the normal iris tissue in color and thickness and presents a virtual second pseudopupil aperture in the centre while PPM even in its extreme forms presents as a translucent or opaque membranous structure that extends across the pupil and has no pseudopupil. Mydriatiscs, laser treatment or surgery is used to clear the visual axis and optimize visual development. Surgical intervention is reserved for large, dense AIMs and PPMs. Our patient, a 29 year old male, has come with bilateral dense AIM, bilateral compound hyperopic astigmatism, BCVA OD = 0.6, BCVA OS = 0.4, IOP OU = 17 mmHg. To improve the visual acuity of the patient we decided to do a bilateral membranectomy, restoring in this way transparency of the visual axis. After surgery, the visual acuity improved to BCVA OD= 0.8, BCVA OS=0.8.

  1. Fuel cell membrane humidification

    Science.gov (United States)

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  2. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  3. Artificial Seeds (Principle, Aspects and Applications

    Directory of Open Access Journals (Sweden)

    Hail Z. Rihan

    2017-11-01

    Full Text Available Artificial seeds are artificially encapsulated somatic embryos (usually or other vegetative parts such as shoot buds, cell aggregates, auxiliary buds, or any other micropropagules which can be sown as a seed and converted into a plant under in vitro or in vivo conditions. An improved artificial seed production technique is considered a valuable alternate technology of propagation in many commercially important crops and a significant method for mass propagation of elite plant genotypes. The production of plant clones multiplied by tissue culture and distributed as artificial seeds could be a useful alternative to the costly F1 hybrids for different plant crops. The delivery of artificial seeds also facilitates issues such as undertaking several ways for scaling up in vitro cultures and acclimatization to ex vitro conditions. The development of an artificial seed technique also provides a great approach for the improvement of various plant species such as trees and crops.

  4. Artificial humidification for the mechanically ventilated patient

    OpenAIRE

    Selvaraj, Nelson

    2010-01-01

    Caring for patients who are mechanically ventilated poses many\\ud challenges for critical care nurses. It is important to humidify the\\ud patient’s airways artificially to prevent complications such as\\ud ventilator-associated pneumonia. There is no gold standard to\\ud determine which type of humidification is best for patients who\\ud are artificially ventilated. This article provides an overview of\\ud commonly used artificial humidification for mechanically ventilated\\ud patients and discuss...

  5. Readings in artificial intelligence and software engineering

    CERN Document Server

    Rich, Charles

    1986-01-01

    Readings in Artificial Intelligence and Software Engineering covers the main techniques and application of artificial intelligence and software engineering. The ultimate goal of artificial intelligence applied to software engineering is automatic programming. Automatic programming would allow a user to simply say what is wanted and have a program produced completely automatically. This book is organized into 11 parts encompassing 34 chapters that specifically tackle the topics of deductive synthesis, program transformations, program verification, and programming tutors. The opening parts p

  6. Ethical Considerations in Artificial Intelligence Courses

    OpenAIRE

    Burton, Emanuelle; Goldsmith, Judy; Koenig, Sven; Kuipers, Benjamin; Mattei, Nicholas; Walsh, Toby

    2017-01-01

    The recent surge in interest in ethics in artificial intelligence may leave many educators wondering how to address moral, ethical, and philosophical issues in their AI courses. As instructors we want to develop curriculum that not only prepares students to be artificial intelligence practitioners, but also to understand the moral, ethical, and philosophical impacts that artificial intelligence will have on society. In this article we provide practical case studies and links to resources for ...

  7. Artificial Immune Networks: Models and Applications

    Directory of Open Access Journals (Sweden)

    Xian Shen

    2008-06-01

    Full Text Available Artificial Immune Systems (AIS, which is inspired by the nature immune system, has been applied for solving complex computational problems in classification, pattern rec- ognition, and optimization. In this paper, the theory of the natural immune system is first briefly introduced. Next, we compare some well-known AIS and their applications. Several representative artificial immune networks models are also dis- cussed. Moreover, we demonstrate the applications of artificial immune networks in various engineering fields.

  8. The Nexus between Artificial Intelligence and Economics

    OpenAIRE

    van de Gevel, A.J.W.; Noussair, C.N.

    2012-01-01

    This book is organized as follows. Section 2 introduces the notion of the Singularity, a stage in development in which technological progress and economic growth increase at a near-infinite rate. Section 3 describes what artificial intelligence is and how it has been applied. Section 4 considers artificial happiness and the likelihood that artificial intelligence might increase human happiness. Section 5 discusses some prominent related concepts and issues. Section 6 describes the use of arti...

  9. Of Artificial Intelligence and Legal Reasoning

    OpenAIRE

    Sunstein, Cass Robert

    2014-01-01

    Can computers, or artificial intelligence, reason by analogy? This essay urges that they cannot, because they are unable to engage in the crucial task of identifying the normative principle that links or separates cases. Current claims, about the ability of artificial intelligence to reason analogically, rest on an inadequate picture of what legal reasoning actually is. For the most part, artificial intelligence now operates as a kind of advanced version of LEXIS, offering research assistance...

  10. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  12. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  13. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  14. Pulmonary Changes in Preterm Neonates with Hyaline Membrane Disease (a Clinicomorphological Study

    Directory of Open Access Journals (Sweden)

    A. M. Golubev

    2009-01-01

    Full Text Available Objective: to reveal lung morphological changes in preterm neonatal infants with hyaline membrane disease (HMD in the use of exogenous surfactants and artificial ventilation. Materials and methods. Case histories and autopsy protocols were analyzed in 90 preterm neonates who had died from severe respiratory failure. All the neonates were divided into 4 groups: 1 20 (22.2% infants who had received the exogenous surfactant Curosurf in the combined therapy of HMD; 2 19 (21.1% babies with HMD who had taken Surfactant BL; 3 25 (27.8% surfactant-untreated infants who had died from HMD; 4 26 (28.9% very preterm neonates with extremely low birth weight who had died within the first hour of life. The lungs were histologically and morphometrically examined. Results. The study demonstrated the specific course of HMD when exogenous surfactants and artificial ventilation were used. The contributors to the development of the disease are intranatal amniotic fluid aspiration and intranatal fetal hypoxia. Conclusion. Artificial ventilation and the use of exogenous surfactants do not block the generation of hyaline membranes. The latter differ in formation time, form, and location. The differences in a cell response to hyaline membranes were found in the neonatal infants receiving exogenous surfactants. The characteristic morphological signs of the disease for all the neonates enrolled in the study are alveolar and bronchial epithelial damages and microcirculatory disorders. Key words: preterm neonatal infants, hyaline membrane disease, exogenous surfactants, artificial ventilation, histology, morphometry.

  15. An investigation into solvent-membrane interactions when assessing drug release from organic vehicles using regenerated cellulose membranes.

    Science.gov (United States)

    Reid, Monica L; Brown, Marc B; Moss, Gary P; Jones, Stuart A

    2008-09-01

    The influence of organic solvents on artificial membranes when assessing drug release from topical formulations is, generally, poorly characterised yet current guidelines require no characterisation of the membrane before, during or after an experiment. Therefore, the aim of this study was to determine the effect of solvent-membrane interactions when using in-vitro Franz cell methods for the assessment of corticosteroid release and to assess compliance or otherwise with Higuchi's equation. The rate of beclometasone dipropionate monohydrate (BDP) and betamethasone 17-valerate (BMV) release across a regenerated cellulose membrane (RCM), from both saturated solutions and commercial formulations, was determined. Increasing the ratio of organic solvent, compared with aqueous phase, in the donor fluid (DF) resulted in up to a 416-fold increase in steady-state flux. Further, alterations in the receiver fluid (RF) composition caused, in some cases, 337-fold increases in flux. Analysis indicated that the RCM remained chemically unchanged, that its pore size remained constant and that no drug partitioned into the membrane, regardless of the DF or RF employed. However, it was observed that the organic solvents had a thinning effect on the RCM, resulting in enhanced flux, which was potentially due to the variation in the diffusional path length. Such findings raise issues of the veracity of data produced from any membrane release study involving a comparison of formulations with differing solvent content.

  16. Artificial Neural Networks and Concentration Residual Augmented ...

    African Journals Online (AJOL)

    Artificial Neural Networks and Concentration Residual Augmented Classical Least Squares for the Simultaneous Determination of Diphenhydramine, Benzonatate, Guaifenesin and Phenylephrine in their Quaternary Mixture.

  17. Artificial reefs: “Attraction versus Production”

    Directory of Open Access Journals (Sweden)

    Eduardo Barros Fagundes Netto

    2011-04-01

    Full Text Available The production of fish is the most common reason for the construction and installation of an artificial reef. More recently, environmental concerns and conservation of biological resources have been instrumental to the formulation of new goals of the research. One of the issues to be resolved is the biological function of “attraction vs. production” as a result of the use of artificial reefs. The uncertainty as to the answer to the question whether the artificial reefs will or not benefit the development of fish stocks could be solved if the artificial reefs would be managed as marine protected areas.

  18. Economic reasoning and artificial intelligence.

    Science.gov (United States)

    Parkes, David C; Wellman, Michael P

    2015-07-17

    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people. Copyright © 2015, American Association for the Advancement of Science.

  19. [Kolff and the artificial kidney].

    Science.gov (United States)

    van Gijn, Jan; Gijselhart, Joost P; Nurmohamed, S Azam

    2013-01-01

    Willem Kolff (1911-2009), son of a physician, studied medicine in Leiden and specialised in internal medicine in Groningen. It was there that he started attempts to apply the phenomenon of dialysis in patients suffering from renal failure. He built the first prototypes of dialysis machines after his appointment as an internist in the municipal hospital in Kampen, during the Second World War. Indeed, in the first 15 patients he managed to decrease urea levels, resulting in temporary clinical improvement, but eventually they all died. It was not until after the war that dialysis helped a patient survive an episode of acute glomerulonephritis. After 1950 he continued his work on artificial organs in the United States (first in Cleveland and later, after 1967, in Salt Lake City). Although most of his work from then on revolved around the development of an artificial heart, he also contributed to the design of a compact, disposable apparatus for dialysis, the 'twin coil'. Haemodialysis also became feasible for patients with chronic renal failure after the 'Scribner shunt' (1960) provided easy access to the circulation. Peritoneal dialysis is another option. Excess mortality, mainly from cardiovascular disease, is still a largely unsolved problem.

  20. Artificial Organisms with Human Language

    Science.gov (United States)

    Parisi, Domenico

    If artificial organisms are constructed with the goal to better understand the behaviour of real organisms, artificial organisms that resemble human beings should possess a communication system with the same properties of human language. This chapter tries to identify nine such properties and for each of them to describe what has been done and what has to be done. Human language: (1) is made up of signals which are arbitrarily connected to their meanings, (2) has syntax and, more generally, its signals are made up of smaller signals, (3) is culturally transmitted and culturally evolved, (4) is used to communicate with oneself and not only with others, (5) is particularly sophisticated for communicating information about the external environment, (6) uses displaced signals, (7) is intentional and requires recognition of intentions in others, (8) is the product of a complex nervous system, (9) influences human cognition. Communication presupposes a shared worldview which depends on the brain, body, and adaptive pattern of the organisms that want to communicate, and this represents a critical challenge also for communication between robots and us.

  1. Artificial vision: principles and prospects.

    Science.gov (United States)

    Gilhooley, Michael J; Acheson, James

    2017-02-01

    The aim of this article is to give an overview of the strategies and technologies currently under development to return vision to blind patients and will answer the question: What options exist for artificial vision in patients blind from retinal disease; how close are these to clinical practice? Retinal approaches will be the focus of this review as they are most advanced in terms not only of development, but entry into the imagination of the general public; they are technologies patients ask about, but may be less familiar to practicing neurologists.The prerequisites for retinal survivor cell stimulation are discussed, followed by consideration of the state of the art of four promising methods making use of this principle: electronic prostheses, stem cells, gene therapy and the developing field of ophthalmic optogenetics. Human applications of artificial vision by survivor cell stimulation are certainly with us in the research clinic and very close to commercialization and general use. This, together with their place in the public consciousness, makes the overview provided by this review particularly helpful to practicing neurologists.

  2. Development of artificial soft rock

    International Nuclear Information System (INIS)

    Kishi, Kiyoshi

    1995-01-01

    When foundation base rocks are deeper than the level of installing structures or there exist weathered rocks and crushed rocks in a part of base rocks, often sound artificial base rocks are made by substituting the part with concrete. But in the construction of Kashiwazaki Kariwa Nuclear Power Station of Tokyo Electric Power Co., Inc., the foundation base rocks consist of mudstone, and the stiffness of concrete is large as compared with the surrounding base rocks. As the quality of the substituting material, the nearly same stiffness as that of the surrounding soft rocks and long term stability are suitable, and the excellent workability and economical efficiency are required, therefore, artificial soft rocks were developed. As the substituting material, the soil mortar that can obtain the physical property values in stable form, which are similar to those of Nishiyama mudstone, was selected. The mechanism of its hardening and the long term stability, and the manufacturing plant are reported. As for its application to the base rocks of Kashiwazaki Kariwa Nuclear Power Station, the verification test at the site and the application to the base rocks for No. 7 plant reactor building and other places are described. (K.I.)

  3. Artificial Flora (AF Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Long Cheng

    2018-02-01

    Full Text Available Inspired by the process of migration and reproduction of flora, this paper proposes a novel artificial flora (AF algorithm. This algorithm can be used to solve some complex, non-linear, discrete optimization problems. Although a plant cannot move, it can spread seeds within a certain range to let offspring to find the most suitable environment. The stochastic process is easy to copy, and the spreading space is vast; therefore, it is suitable for applying in intelligent optimization algorithm. First, the algorithm randomly generates the original plant, including its position and the propagation distance. Then, the position and the propagation distance of the original plant as parameters are substituted in the propagation function to generate offspring plants. Finally, the optimal offspring is selected as a new original plant through the selection function. The previous original plant becomes the former plant. The iteration continues until we find out optimal solution. In this paper, six classical evaluation functions are used as the benchmark functions. The simulation results show that proposed algorithm has high accuracy and stability compared with the classical particle swarm optimization and artificial bee colony algorithm.

  4. CO2 Permeability of Biological Membranes and Role of CO2 Channels

    Science.gov (United States)

    Endeward, Volker; Arias-Hidalgo, Mariela; Al-Samir, Samer; Gros, Gerolf

    2017-01-01

    We summarize here, mainly for mammalian systems, the present knowledge of (a) the membrane CO2 permeabilities in various tissues; (b) the physiological significance of the value of the CO2 permeability; (c) the mechanisms by which membrane CO2 permeability is modulated; (d) the role of the intracellular diffusivity of CO2 for the quantitative significance of cell membrane CO2 permeability; (e) the available evidence for the existence of CO2 channels in mammalian and artificial systems, with a brief view on CO2 channels in fishes and plants; and, (f) the possible significance of CO2 channels in mammalian systems. PMID:29064458

  5. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  6. A Pathway to Artificial Metalloenzymes

    KAUST Repository

    Fischer, Johannes

    2015-12-01

    The advancement of catalytic systems and the application thereof has proven to be the key to overcome traditional limitations of industrial-scale synthetic processes. Converging organometallic and biocatalytic principles lead to the development of Artificial Metalloenzymes (ArMs) that comprise a synthetic metal catalyst embedded in a protein scaffold, thereby combining the reactivity of the former with the versatility of the latter. This synergistic approach introduces rationally designed building blocks for the catalytic site and the host protein to assemble enzyme-like structures that follow regio-, chemo-, enantio- and substrate-selective principles. Yet, the identification of suitable protein scaffolds has thus far been challenging. Herein we report a rationally optimized fluorescent protein host, mTFP*, that was engineered to have no intrinsic metal binding capability and, owing to its robust nature, can act as scaffold for the design of novel ArMs. We demonstrate the potential of site-specific modifications within the protein host, use protein X-Ray analysis to validate the respective scaffolds and show how artificial mutant binding sites can be introduced. Transition metal Förster Resonance Energy transfer (tmFRET) methodologies help to evaluate micromolar dissociation constants and reveal structural rearrangements upon coordination of the metal centers. In conjunction with molecular insights from X-Ray crystallographic structure determination, dynamics of the binding pocket can be inferred. The versatile subset of different binding motifs paired with transition metal catalysts create artificial metalloenzymes that provide reactivities which otherwise do not exist in nature. As a proof of concept, Diels-Alder cycloadditions highlight the potential of the present mTFP* based catalysts by stereoselectively converting azachalcone and cyclopentadiene substrates. Screens indicate an enantiomeric excess of up to 60% and provide insights into the electronic and

  7. Characterization of insulin adsorption behavior of dialyzer membranes used in hemodialysis.

    Science.gov (United States)

    Abe, Masanori; Okada, Kazuyoshi; Ikeda, Kazuya; Matsumoto, Shiro; Soma, Masayoshi; Matsumoto, Koichi

    2011-04-01

    Although it has been reported that plasma insulin is removed by hemodialysis (HD), the mechanism for this has not been elucidated. We investigated the mechanism of insulin removal during HD treatment and the characteristics of insulin removal with three high-flux membranes. In our in vivo study, 20 stable diabetic patients on HD were randomly selected for three HD sessions with three different membranes: polysulfone (PS), cellulose triacetate (CTA), and polyester polymer alloy (PEPA). Blood samples were obtained from the blood tubing at the arterial (A) site at the beginning and end of the sixth HD session to investigate insulin reduction in patients. At 1 h after the initiation of dialysis, blood samples were obtained from both the A and venous sites of the dialyzer to investigate the insulin clearance with the different membranes. There was a significant reduction in patients' plasma insulin at each time point with each of the three membranes. The insulin clearance with the PS membrane was significantly higher than that with the CTA and PEPA membranes. Although no difference was observed in the plasma insulin reduction rate between the three membranes in the total subject group, there was a significantly higher reduction rate with the PS membrane in insulin-dependent diabetes mellitus subjects. The clearance of insulin in in vitro tests was significantly higher with the PS and PEPA membranes than with the CTA membrane in both new and clinically used dialyzers. Insulin was not detected in the dialysate or ultrafiltration fluids in either the in vivo or in vitro studies. The mechanism of plasma insulin clearance by HD is mainly by adsorption, and the amount of insulin adsorbed differed depending on the dialyzer membrane used. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Enhancement in biological response of Ag-nano composite polymer membranes using plasma treatment for fabrication of efficient bio materials

    Science.gov (United States)

    Agrawal, Narendra Kumar; Sharma, Tamanna Kumari; Chauhan, Manish; Agarwal, Ravi; Vijay, Y. K.; Swami, K. C.

    2016-05-01

    Biomaterials are nonviable material used in medical devices, intended to interact with biological systems, which are becoming necessary for the development of artificial material for biological systems such as artificial skin diaphragm, valves for heart and kidney, lenses for eye etc. Polymers having novel properties like antibacterial, antimicrobial, high adhesion, blood compatibility and wettability are most suitable for synthesis of biomaterial, but all of these properties does not exist in any natural or artificial polymeric material. Nano particles and plasma treatment can offer these properties to the polymers. Hence a new nano-biomaterial has been developed by modifying the surface and chemical properties of Ag nanocomposite polymer membranes (NCPM) by Argon ion plasma treatment. These membranes were characterized using different techniques for surface and chemical modifications occurred. Bacterial adhesion and wettability were also tested for these membranes, to show direct use of this new class of nano-biomaterial for biomedical applications.

  9. A wearable artificial kidney: technical requirements and potential solutions.

    Science.gov (United States)

    Kim, Jeong Chul; Garzotto, Francesco; Nalesso, Federico; Cruz, Dinna; Kim, Ji Hyun; Kang, Eungtaek; Kim, Hee Chan; Ronco, Claudio

    2011-09-01

    Recently, new approaches for miniaturization and transportability of medical devices have been developed, paving the way for wearability and the possibility of implantation, for renal replacement therapies. A wearable artificial kidney (WAK) is a medical device that supports renal function during ambulation or social activities out of hospital. With the aim of improving dialysis patients' quality of life, WAK systems have been developed for several decades. However, at present there are a lot of technical issues confronting the attempt to apply WAK systems in clinical practice. This article focuses on technical requirements and potential solutions for WAKs and reviews up-to-date approaches related to dialysis membrane, dialysate regeneration, vascular access, patient-monitoring systems and power sources for WAKs.

  10. High power fuel cell simulator based on artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Ramirez, Abraham U.; Munoz-Guerrero, Roberto [Departamento de Ingenieria Electrica, CINVESTAV-IPN. Av. Instituto Politecnico Nacional No. 2508, D.F. CP 07360 (Mexico); Duron-Torres, S.M. [Unidad Academica de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Campus Siglo XXI, Edif. 6 (Mexico); Ferraro, M.; Brunaccini, G.; Sergi, F.; Antonucci, V. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5-98126 Messina (Italy); Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, Queretaro (Mexico)

    2010-11-15

    Artificial Neural Network (ANN) has become a powerful modeling tool for predicting the performance of complex systems with no well-known variable relationships due to the inherent properties. A commercial Polymeric Electrolyte Membrane fuel cell (PEMFC) stack (5 kW) was modeled successfully using this tool, increasing the number of test into the 7 inputs - 2 outputs-dimensional spaces in the shortest time, acquiring only a small amount of experimental data. Some parameters could not be measured easily on the real system in experimental tests; however, by receiving the data from PEMFC, the ANN could be trained to learn the internal relationships that govern this system, and predict its behavior without any physical equations. Confident accuracy was achieved in this work making possible to import this tool to complex systems and applications. (author)

  11. Differences in predators of artificial and real songbirds nests: Evidence of bias in artificial nest studies

    Science.gov (United States)

    Frank R. Thompson; Dirk E. Burhans

    2004-01-01

    In the past two decades, many researchers have used artificial nest to measure relative rates of nest predation. Recent comparisons show that real and artificial nests may not be depredated at the same rate, but no one has examined the mechanisms underlying these patterns. We determined differences in predator-specific predation rates of real and artificial nests. we...

  12. Northeast Artificial Intelligence Consortium Annual Report 1987. Volume 6. Artificial Intelligence Applications to Speech Recognition

    Science.gov (United States)

    1989-03-01

    ARTIFICIAL INTELLIGENCE’CONSORTIUM ANNUAL REPORT 1987 Artificial Intelligence Applications to Speech Recognition 12. PERSONAL AUTHOR(S) H. E. Rhody, J. A...obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 6 ARTIFICIAL INTELLIGENCE APPLICATIONS TO SPEECH RECOGNITION Report submitted by: Harvey E

  13. Membrane separation using nano-pores; Nano poa wo riyoshita makubunri

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, S. [Fukuoka Women`s Univ., Fukuoka (Japan)

    1995-08-01

    The membrane constituted by nano-pore only (NF membrane) is sold on the market recently as the membranes used for the matter separations in addition to the reverse osmosis membrane for changing seawater into fresh water, dialysis membrane used for artificial kidney, ultrafiltration membrane used for the separation and condensation of protein and the micro-filter used for removing microbe. It is possible for the membrane constituted by nano-pore to remove the virus with the size being from 20 to 300 nm. In this paper, the pore structure of NF membrane is explained, and then its application as the membrane for removing virus is described. Especially, it is possible for NF membrane to remove the virus with smallest size (parvovirus, etc.), prion albumen (bovine serum pathogen, etc.) and the special gene such as cancer, and it is further applied to the condensation and refining of virus and genes. The broader application of nano-pore to the control of the transportation of micro-particles in the future is expected. 3 refs., 2 figs.

  14. The application and development of artificial intelligence in smart clothing

    Science.gov (United States)

    Wei, Xiong

    2018-03-01

    This paper mainly introduces the application of artificial intelligence in intelligent clothing. Starting from the development trend of artificial intelligence, analysis the prospects for development in smart clothing with artificial intelligence. Summarize the design key of artificial intelligence in smart clothing. Analysis the feasibility of artificial intelligence in smart clothing.

  15. Diffusion properties of model compounds in artificial sebum.

    Science.gov (United States)

    Valiveti, Satyanarayana; Lu, Guang Wei

    2007-12-10

    Sebaceous glands secrete an oily sebum into the hair follicle. Hence, it is necessary to understand the drug partition and diffusion properties in the sebum for the targeted delivery of therapeutic agents into the sebum-filled hair follicle. A new method was developed and used for determination of sebum flux of topical therapeutic agents and other model compounds. The drug transport through artificial sebum was conducted using sebum loaded filter (Transwell) as a membrane, drug suspensions as donor phases and HP-beta-CD buffer solution as a receiver phase. The experiment was performed at 37 degrees C for 2h. The results of the drug transport studies indicate that the flux (J(sebum)) through the artificial sebum is compound dependent and a bell-shaped curve was observed when logJ(s) versus alkyl side chain length of the compounds that proved to be different from the curves obtained upon plotting logJ skin versus clogP for the same compounds, indicating the possibility to select appropriate compounds for sebum targeted delivery based on the differences in the skin flux and sebum transport profiles of the molecules.

  16. Isolation of pathogenic Naegleria from artificially heated waters

    Energy Technology Data Exchange (ETDEWEB)

    Tyndall, R L; Willaert, E; Stevens, A R; Coutant, C C

    1977-01-01

    Investigations were undertaken to determine whether heated waters facilitate the proliferation of free-living amoeba that cause primary amoebic meningoencephalitis. Water samples were taken close to the discharges of power plants situated on lakes or rivers in Florida and Texas and from cooling towers in Tennessee. The water temperatures ranged from 29 to 42/sup 0/C. Water samples were also taken from several lakes in Florida and Texas without associated power plants. The water temperatures of these ranged from 30/sup 0/ to 34/sup 0/C. Twenty-five-250-ml samples were filtered through membranes. Samples taken from the control lakes and cooling towers showed no growth of pathogenic amoeba, whereas growth was obtained from 2 of the 8 lakes and rivers in Florida and from 1 of the 7 man-made lakes in Texas that were artificially heated. The amoebae were identified as belonging to the genus Naegleria from their trophozoite and cyst structure, ability to grow at 45/sup 0/C, to transform into flagellates, and to produce primary amebic meningoencephalitis (PAME) in mice after intranasal instillation. Their identification as N. fowleri was confirmed by indirect immunofluorescent analysis with antiserum produced against N. fowleri. These findings indicate that artificial heating of waters may facilitate the growth of pathogenic free living amoeba.

  17. Early photolysis intermediates of gecko and bovine artificial visual pigments.

    Science.gov (United States)

    Lewis, J W; Liang, J; Ebrey, T G; Sheves, M; Livnah, N; Kuwata, O; Jäger, S; Kliger, D S

    1997-11-25

    Nanosecond laser photolysis measurements were conducted on digitonin extracts of artificial pigments prepared from the cone-type visual pigment, P521, of the Tokay gecko (Gekko gekko) retina. Artificial pigments were prepared by regeneration of bleached gecko photoreceptor membranes with 9-cis-retinal, 9-cis-14-methylretinal, or 9-cis-alpha-retinal. Absorbance difference spectra were recorded at a sequence of time delays from 30 ns to 60 microseconds following excitation with a pulse of 477-nm actinic light. Global analysis showed the kinetic data for all three artificial gecko pigments to be best fit by two-exponential processes. These two-exponential decays correspond to similar decays observed after photolysis of P521 itself, with the first process being the decay of the equilibrated P521 BathoP521 BSI mixture to P521 Lumi and the second process being the decay of P521 Lumi to P521 Meta I. In spite of its large blue shift relative to P521, iso-P521 displays a normal chloride depletion induced blue shift. Iso-P521's early intermediates up to Lumi were also blue-shifted, with the P521 BathoP521 BSI equilibrated mixture being 15 nm blue-shifted and P521 Lumi being 8 nm blue-shifted relative to the intermediates formed after P521 photolysis. The blue shift associated with the iso-pigment is reduced or disappears entirely by P521 Meta I. Similar blue shifts were observed for the early intermediates observed after photolysis of bovine isorhodopsin, with the Lumi intermediate blue-shifted 5 nm compared to the Lumi intermediate formed after photolysis of bovine rhodopsin. These shifts indicate that a difference exists between the binding sites of 9- and 11-cis pigments which persists for microseconds at 20 degrees C.

  18. Expression of Trans-Membrane Proteins in vitro Using a Cell Free System

    Science.gov (United States)

    Weisse, Natalie; Noireaux, Vincent; Chalmeau, Jerome

    2010-10-01

    Trans-membrane proteins represent a significant portion of the proteins expressed by cells. The expression of proteins in vitro, however, remains a challenge. Numerous expression approaches have been developed with cell free expression (CFE) being one of the most promising. CFE is based on a transcription-translation system that has been extracted from E. coli bacteria. Adding the desired DNA allows expression of a selected protein, and in the presence of phospholipids the expression of trans-membrane proteins becomes possible. In order to express trans-membrane proteins in a closed native environment, the cell free system (CFS) is encapsulated with a phospholipid bilayer, creating an artificial cell. To verify protein expression, AquaporinZ (AqpZ), a well-known trans-membrane protein tagged with a green fluorescent protein (eGFP), was used so the expressed proteins could be seen under a fluorescent microscope. These artificial cells will serve as an experimental platform for testing the viability of the expressed trans-membrane proteins. Results from the manipulation of these artificial cells by attaching them to the slide surface through streptavidin-biotin bonding will be presented.

  19. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  20. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  1. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  2. Physics of biological membranes

    Science.gov (United States)

    Mouritsen, Ole G.

    The biological membrane is a complex system consisting of an aqueous biomolecular planar aggregate of predominantly lipid and protein molecules. At physiological temperatures, the membrane may be considered a thin (˜50Å) slab of anisotropic fluid characterized by a high lateral mobility of the various molecular components. A substantial fraction of biological activity takes place in association with membranes. As a very lively piece of condensed matter, the biological membrane is a challenging research topic for both the experimental and theoretical physicists who are facing a number of fundamental physical problems including molecular self-organization, macromolecular structure and dynamics, inter-macromolecular interactions, structure-function relationships, transport of energy and matter, and interfacial forces. This paper will present a brief review of recent theoretical and experimental progress on such problems, with special emphasis on lipid bilayer structure and dynamics, lipid phase transitions, lipid-protein and lipid-cholesterol interactions, intermembrane forces, and the physical constraints imposed on biomembrane function and evolution. The paper advocates the dual point of view that there are a number of interesting physics problems in membranology and, at the same time, that the physical properties of biomembranes are important regulators of membrane function.

  3. Membranes and Fluorescence microscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2009-01-01

    Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence spectrosc......Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence...... spectroscopy approaches provide very valuable structurally and dynamically related information on membranes, they generally produce mean parameters from data collected on bulk solutions of many vesicles and lack direct information on the spatial organization at the level of single membranes, a quality that can...... be provided by microscopy-related techniques. In this chapter, I will attempt to summarize representative examples concerning how microscopy (which provides information on membrane lateral organization by direct visualization) and spectroscopy techniques (which provides information about molecular interaction...

  4. Artificial intelligence and process management

    International Nuclear Information System (INIS)

    Epton, J.B.A.

    1989-01-01

    Techniques derived from work in artificial intelligence over the past few decades are beginning to change the approach in applying computers to process management. To explore this new approach and gain real practical experience of its potential a programme of experimental applications was initiated by Sira in collaboration with the process industry. This programme encompassed a family of experimental applications ranging from process monitoring, through supervisory control and troubleshooting to planning and scheduling. The experience gained has led to a number of conclusions regarding the present level of maturity of the technology, the potential for further developments and the measures required to secure the levels of system integrity necessary in on-line applications to critical processes. (author)

  5. [Artificial Intelligence in Drug Discovery].

    Science.gov (United States)

    Fujiwara, Takeshi; Kamada, Mayumi; Okuno, Yasushi

    2018-04-01

    According to the increase of data generated from analytical instruments, application of artificial intelligence(AI)technology in medical field is indispensable. In particular, practical application of AI technology is strongly required in "genomic medicine" and "genomic drug discovery" that conduct medical practice and novel drug development based on individual genomic information. In our laboratory, we have been developing a database to integrate genome data and clinical information obtained by clinical genome analysis and a computational support system for clinical interpretation of variants using AI. In addition, with the aim of creating new therapeutic targets in genomic drug discovery, we have been also working on the development of a binding affinity prediction system for mutated proteins and drugs by molecular dynamics simulation using supercomputer "Kei". We also have tackled for problems in a drug virtual screening. Our developed AI technology has successfully generated virtual compound library, and deep learning method has enabled us to predict interaction between compound and target protein.

  6. Perspectives on artificial intelligence programming.

    Science.gov (United States)

    Bobrow, D G; Stefik, M J

    1986-02-28

    Programs are judged not only by whether they faithfully carry out the intended processing but also by whether they are understandable and easily changed. Programming systems for artificial intelligence applications use specialized languages, environments, and knowledge-based tools to reduce the complexity of the programming task. Language styles based on procedures, objects, logic, rules, and constraints reflect different models for organizing programs and facilitate program evolution and understandability. To make programming easier, multiple styles can be integrated as sublanguages in a programming environment. Programming environments provide tools that analyze programs and create informative displays of their structure. Programs can be modified by direct interaction with these displays. These tools and languages are helping computer scientists to regain a sense of control over systems that have become increasingly complex.

  7. An artificial neuro-anatomist

    International Nuclear Information System (INIS)

    Mangin, J.F.

    2006-01-01

    The fact that the human brain visual system is based on stereo-vision is a real handicap when analysing dense 3D representations of the human brain. The success of the methods of analysis based on the 3D proportional system has shown the advantage of using computer based system to interpret such complex images. The underlying strategy, however, is restricted to low level vision, which can not address any issue. Our approach advocates for the development of complete computer vision systems dedicated to the brain, which may be of great help for the future of neuroimaging. In our opinion, indeed, brain imaging is sufficiently focused to be a promising niche for the development of artificial intelligence. (N.C.)

  8. Innovative applications of artificial intelligence

    Science.gov (United States)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  9. Apartes desde la inteligencia artificial

    Directory of Open Access Journals (Sweden)

    Luis Carlos Torres Soler

    1998-05-01

    Full Text Available El estudio y desarrollo de la inteligencia artificial no debe centrarse sólo en la creación de software o hardware que permita realizar procesos algorítmicos o heurísticos en el computador, de tal forma que produzcan soluciones óptimas y eficientes al resolver un problema complejo, ya sea de manejo de información o de toma de decisiones, o crear máquinas que tengan buena apariencia del ser humano; se debe, sobre todo, analizar la parte neurológica y sicológica que presenta el individuo al solucionar problemas. Además, es importante conocer la capacidad intelectual de la persona, de ahí la variedad de carreras profesionales que existen; no puede quedar por fuera de los sistemas inteligentes la concepción del amor o admiración.

  10. Theories of artificial grammar learning.

    Science.gov (United States)

    Pothos, Emmanuel M

    2007-03-01

    Artificial grammar learning (AGL) is one of the most commonly used paradigms for the study of implicit learning and the contrast between rules, similarity, and associative learning. Despite five decades of extensive research, however, a satisfactory theoretical consensus has not been forthcoming. Theoretical accounts of AGL are reviewed, together with relevant human experimental and neuroscience data. The author concludes that satisfactory understanding of AGL requires (a) an understanding of implicit knowledge as knowledge that is not consciously activated at the time of a cognitive operation; this could be because the corresponding representations are impoverished or they cannot be concurrently supported in working memory with other representations or operations, and (b) adopting a frequency-independent view of rule knowledge and contrasting rule knowledge with specific similarity and associative learning (co-occurrence) knowledge.

  11. Web Intelligence and Artificial Intelligence in Education

    Science.gov (United States)

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  12. (Bunaji) breeds of cattle following artificial insemination

    African Journals Online (AJOL)

    The study was carried out to evaluate the fertility rate of white Fulani (Bunaji) and Friesian breeds of cattle following artificial insemination (A. I). Artificial insemination was performed following Oestrus synchronization using prostaglandin F2a (PGF2a) in 368 white Fulani and 230 Friesian cows at West Africa Milk Company ...

  13. Effects of timed artificial insemination following estrus ...

    African Journals Online (AJOL)

    The objectives of this study were to evaluate estrus response and pregnancy rates resulting from timed artificial insemination (AI) following estrus synchronization using CIDR in postpartum beef cattle. A total of 100 cows were randomly divided into three groups. Groups 1, 2 and 3 were artificially inseminated at 48-50 h ...

  14. Artificial Intelligence Approaches To UCAV Autonomy

    OpenAIRE

    Husain, Amir; Porter, Bruce

    2017-01-01

    This paper covers a number of approaches that leverage Artificial Intelligence algorithms and techniques to aid Unmanned Combat Aerial Vehicle (UCAV) autonomy. An analysis of current approaches to autonomous control is provided followed by an exploration of how these techniques can be extended and enriched with AI techniques including Artificial Neural Networks (ANN), Ensembling and Reinforcement Learning (RL) to evolve control strategies for UCAVs.

  15. Artificial Intelligence Applications for Nuclear Survivability Validation

    Science.gov (United States)

    1992-11-01

    AD-A259 394 IIIIIt~l111 11 11 11 1 1hIf L- E, Defense Nuclear Agency Alexandria, VA 22310-3398 DNA-TR-92-82 Artificial Intelligence Applications for...TYPE AND DATES COVERED 921101 Technical 920101 -920408 4. TITLE AND SUBTITLE 5, FUNDING NUMBERS Artificial Intelligence Applications for Nuclear

  16. A Hierarchical Artificial Intelligence Maintenance Advisor

    Science.gov (United States)

    1991-07-08

    Lee Kline, and Mr. Thomas Gattis for their enthusiasm for the project. 7 Appendix ARTIFICIAL INTELLIGENCE APPLICATIONS FOR MILITARY LOGISTICS This...Appendix contains the visuals and summarizes commentary presented at the Defense Preparedness Association conference on " Artificial Intelligence Applications for

  17. The artificial pancreas : From logic to life

    NARCIS (Netherlands)

    Kropff, J.

    2017-01-01

    In this thesis we investigated the efficacy of real-life use of an artificial pancreas starting with use of these systems in a hotel setting and finally 24/7 long-term use at home. We investigated the accuracy of continuous glucose monitoring (CGM) systems that act as input for the artificial

  18. The Education Professorate: Teaching an "Artificial" Science.

    Science.gov (United States)

    Wagener, James W.

    This paper argues that conceiving the education professor's role in higher education as that of teaching an "artificial" science is a helpful metaphor for re-contextualizing this mission. How the use of the metaphor of an artificial science bears on the role of the education professorate is examined by applying the purposive-inner…

  19. Artificial Intelligence--Applications in Education.

    Science.gov (United States)

    Poirot, James L.; Norris, Cathleen A.

    1987-01-01

    This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…

  20. The Artificial Intelligence Applications to Learning Programme.

    Science.gov (United States)

    Williams, Noel

    1992-01-01

    Explains the Artificial Intelligence Applications to Learning Programme, which was developed in the United Kingdom to explore and accelerate the use of artificial intelligence (AI) technologies in learning in both the educational and industrial sectors. Highlights include program evaluation, marketing, ownership of information, consortia, and cost…