WorldWideScience

Sample records for membrane proteins p2

  1. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Directory of Open Access Journals (Sweden)

    Laulumaa Saara

    2015-01-01

    Full Text Available Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  2. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2

    Science.gov (United States)

    Laulumaa, Saara; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin is a multilayered proteolipid membrane structure surrounding selected axons in the vertebrate nervous system, which allows the rapid saltatory conduction of nerve impulses. Deficits in myelin formation and maintenance may lead to chronic neurological disease. P2 is an abundant myelin protein from peripheral nerves, binding between two apposing lipid bilayers. We studied the dynamics of the human myelin protein P2 and its mutated P38G variant in hydrated powders using elastic incoherent neutron scattering. The local harmonic vibrations at low temperatures were very similar for both samples, but the mutant protein had increased flexibility and softness close to physiological temperatures. The results indicate that a drastic mutation of proline to glycine at a functional site can affect protein dynamics, and in the case of P2, they may explain functional differences between the two proteins.

  3. Production, crystallization and neutron diffraction of fully deuterated human myelin peripheral membrane protein P2.

    Science.gov (United States)

    Laulumaa, Saara; Blakeley, Matthew P; Raasakka, Arne; Moulin, Martine; Härtlein, Michael; Kursula, Petri

    2015-11-01

    The molecular details of the formation of the myelin sheath, a multilayered membrane in the nervous system, are to a large extent unknown. P2 is a peripheral membrane protein from peripheral nervous system myelin, which is believed to play a role in this process. X-ray crystallographic studies and complementary experiments have provided information on the structure-function relationships in P2. In this study, a fully deuterated sample of human P2 was produced. Crystals that were large enough for neutron diffraction were grown by a ten-month procedure of feeding, and neutron diffraction data were collected to a resolution of 2.4 Å from a crystal of 0.09 mm(3) in volume. The neutron crystal structure will allow the positions of H atoms in P2 and its fatty-acid ligand to be visualized, as well as shedding light on the fine details of the hydrogen-bonding networks within the P2 ligand-binding cavity.

  4. Atomic resolution view into the structure-function relationships of the human myelin peripheral membrane protein P2.

    Science.gov (United States)

    Ruskamo, Salla; Yadav, Ravi P; Sharma, Satyan; Lehtimäki, Mari; Laulumaa, Saara; Aggarwal, Shweta; Simons, Mikael; Bürck, Jochen; Ulrich, Anne S; Juffer, André H; Kursula, Inari; Kursula, Petri

    2014-01-01

    P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.

  5. Production and crystallization of a panel of structure-based mutants of the human myelin peripheral membrane protein P2.

    Science.gov (United States)

    Lehtimäki, Mari; Laulumaa, Saara; Ruskamo, Salla; Kursula, Petri

    2012-11-01

    The myelin sheath is a multilayered membrane that surrounds and insulates axons in the nervous system. One of the proteins specific to the peripheral nerve myelin is P2, a protein that is able to stack lipid bilayers. With the goal of obtaining detailed information on the structure-function relationship of P2, 14 structure-based mutated variants of human P2 were generated and produced. The mutants were designed to potentially affect the binding of lipid bilayers by P2. All mutated variants were also crystallized and preliminary crystallographic data are presented. The structural data from the mutants will be combined with diverse functional assays in order to elucidate the fine details of P2 function at the molecular level.

  6. Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane

    NARCIS (Netherlands)

    Heijden, van der M.W.; Carette, J.E.; Reinhoud, P.J.; Haegi, A.; Bol, J.F.

    2001-01-01

    Replication of Alfalfa mosaic virus (AMV) RNAs depends on the virus-encoded proteins P1 and P2. P1 contains methyltransferase- and helicase-like domains, and P2 contains a polymerase-like domain. Coimmunoprecipitation experiments revealed an interaction between in vitro translated-P1 and P2 and show

  7. Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering--A Comparison between Wild-Type Protein and a Hinge Mutant.

    Science.gov (United States)

    Laulumaa, Saara; Nieminen, Tuomo; Lehtimäki, Mari; Aggarwal, Shweta; Simons, Mikael; Koza, Michael M; Vattulainen, Ilpo; Kursula, Petri; Natali, Francesca

    2015-01-01

    Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS). The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations.

  8. Self assembly of HIV-1 Gag protein on lipid membranes generates PI(4,5)P2/Cholesterol nanoclusters

    Science.gov (United States)

    Yandrapalli, Naresh; Lubart, Quentin; Tanwar, Hanumant S.; Picart, Catherine; Mak, Johnson; Muriaux, Delphine; Favard, Cyril

    2016-01-01

    The self-assembly of HIV-1 Gag polyprotein at the inner leaflet of the cell host plasma membrane is the key orchestrator of virus assembly. The binding between Gag and the plasma membrane is mediated by specific interaction of the Gag matrix domain and the PI(4,5)P2 lipid (PIP2). It is unknown whether this interaction could lead to local reorganization of the plasma membrane lipids. In this study, using model membranes, we examined the ability of Gag to segregate specific lipids upon self-assembly. We show for the first time that Gag self-assembly is responsible for the formation of PIP2 lipid nanoclusters, enriched in cholesterol but not in sphingomyelin. We also show that Gag mainly partition into liquid-disordered domains of these lipid membranes. Our work strongly suggests that, instead of targeting pre-existing plasma membrane lipid domains, Gag is more prone to generate PIP2/Cholesterol lipid nanodomains at the inner leaflet of the plasma membrane during early events of virus assembly. PMID:28008947

  9. Emerging roles of PtdIns(4,5)P2--beyond the plasma membrane.

    Science.gov (United States)

    Tan, Xiaojun; Thapa, Narendra; Choi, Suyong; Anderson, Richard A

    2015-11-15

    Phosphoinositides are a collection of lipid messengers that regulate most subcellular processes. Amongst the seven phosphoinositide species, the roles for phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at the plasma membrane, such as in endocytosis, exocytosis, actin polymerization and focal adhesion assembly, have been extensively studied. Recent studies have argued for the existence of PtdIns(4,5)P2 at multiple intracellular compartments, including the nucleus, endosomes, lysosomes, autolysosomes, autophagic precursor membranes, ER, mitochondria and the Golgi complex. Although the generation, regulation and functions of PtdIns(4,5)P2 are less well-defined in most other intracellular compartments, accumulating evidence demonstrates crucial roles for PtdIns(4,5)P2 in endolysosomal trafficking, endosomal recycling, as well as autophagosomal pathways, which are the focus of this Commentary. We summarize and discuss how phosphatidylinositol phosphate kinases, PtdIns(4,5)P2 and PtdIns(4,5)P2-effectors regulate these intracellular protein and membrane trafficking events.

  10. Synaptosomal protein synthesis in P2 and Ficoll purified fractions.

    Science.gov (United States)

    Eyman, Maria; Cefaliello, Carolina; Bruno, Anna Paola; Bruno, Annapaola; Crispino, Marianna; Giuditta, Antonio

    2012-01-30

    Cytoplasmic protein synthesis of brain synaptosomes has generally been determined in the Ficoll purified fraction which contains fewer contaminating mitochondria, microsomes and myelin fragments than the parent P2 fraction. Using a highly selective assay of this activity we have compared the total translation activity and the specific activity of the proteins synthesized by either fraction in control rats and in rats trained for a two-way active avoidance task. In control rats the specific activity remained essentially the same in both fractions but in trained rats the value of the Ficoll fraction was markedly lower (38.5%) than in the P2 fraction. Furthermore, the total translation activity of the Ficoll fraction was 30% lower than in the P2 fraction in control rats and 62% lower in trained rats. These decrements indicate that a large proportion of active synaptosomes present in the P2 fraction is not recovered in the Ficoll fraction, notably in rats undergoing plastic brain changes. We conclude that cytoplasmic protein synthesis of brain synaptosomes is better preserved in the P2 fraction.

  11. Porous Photocatalytic Membrane Microreactor (P2M2): A new reactor concept for photochemistry

    NARCIS (Netherlands)

    Aran, H.C.; Salamon, D.; Rijnaarts, T.; Mul, G.; Wessling, M.; Lammertink, R.G.H.

    2011-01-01

    In this study, a new membrane microreactor concept for multiphase photocatalytic reactions is demonstrated. Microfabrication, photocatalyst immobilization and surface modification steps were performed to develop a Porous Photocatalytic Membrane Microreactor (P2M2). This concept benefits from a stabl

  12. Porous Photocatalytic Membrane Microreactor (P2M2): A new reactor concept for photochemistry

    NARCIS (Netherlands)

    Aran, H.C.; Salamon, David; Rijnaarts, Timon; Rijnaarts, T.; Mul, Guido; Wessling, Matthias; Lammertink, Rob G.H.

    2011-01-01

    In this study, a new membrane microreactor concept for multiphase photocatalytic reactions is demonstrated. Microfabrication, photocatalyst immobilization and surface modification steps were performed to develop a Porous Photocatalytic Membrane Microreactor (P2M2). This concept benefits from a

  13. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region

    Energy Technology Data Exchange (ETDEWEB)

    Bienz, K.; Egger, D.; Troxler, M.; Pasamontes, L. (Univ. of Basel (Switzerland))

    1990-03-01

    Transcriptionally active replication complexes bound to smooth membrane vesicles were isolated from poliovirus-infected cells. In electron microscopic, negatively stained preparations, the replication complex appeared as an irregularly shaped, oblong structure attached to several virus-induced vesicles of a rosettelike arrangement. Electron microscopic immunocytochemistry of such preparations demonstrated that the poliovirus replication complex contains the proteins coded by the P2 genomic region (P2 proteins) in a membrane-associated form. In addition, the P2 proteins are also associated with viral RNA, and they can be cross-linked to viral RNA by UV irradiation. Guanidine hydrochloride prevented the P2 proteins from becoming membrane bound but did not change their association with viral RNA. The findings allow the conclusion that the protein 2C or 2C-containing precursor(s) is responsible for the attachment of the viral RNA to the vesicular membrane and for the spatial organization of the replication complex necessary for its proper functioning in viral transcription. A model for the structure of the viral replication complex and for the function of the 2C-containing P2 protein(s) and the vesicular membranes is proposed.

  14. Humoral and Cell-mediated Autoimmune Reactions to Human Acidic Ribosomal P2 Protein in Individuals Sensitized to Aspergillus fumigatus P2 Protein

    Science.gov (United States)

    Mayer, Christina; Appenzeller, Ulrich; Seelbach, Heike; Achatz, Gernot; Oberkofler, Hannes; Breitenbach, Michael; Blaser, Kurt; Crameri, Reto

    1999-01-01

    A panel of cDNAs encoding allergenic proteins was isolated from an Aspergillus fumigatus cDNA library displayed on the surface of filamentous phage. Solid phase–immobilized serum immunoglobulin E (IgE) from A. fumigatus–allergic individuals was used to enrich phage displaying IgE-binding molecules. One of the cDNAs encoded a 11.1-kD protein that was identified as acidic ribosomal phosphoprotein type 2 (P2 protein). The allergen, formally termed rAsp f 8, shares >62% sequence identity and >84% sequence homology to corresponding eukaryotic P2 proteins, including human P2 protein. The sequences encoding human and fungal P2 protein were subcloned, expressed in Escherichia coli as His6-tagged fusion proteins, and purified by Ni2+–chelate affinity chromatography. Both recombinant P2 proteins were recognized by IgE antibodies from allergic individuals sensitized to the A. fumigatus P2 protein and elicited strong type 1–specific skin reactions in these individuals. Moreover, human and fungal P2 proteins induced proliferative responses in peripheral blood mononuclear cells of A. fumigatus– allergic subjects sensitized to the fungal P2 protein. These data provide strong evidence for in vitro and in vivo humoral and cell-mediated autoreactivity to human P2 protein in patients suffering from chronic A. fumigatus allergy. PMID:10224291

  15. Extracellular ATP in the lymphohematopoietic system: P2Z purinoceptors and membrane permeabilization

    Directory of Open Access Journals (Sweden)

    Persechini P.M.

    1998-01-01

    Full Text Available The effects of extracellular nucleosides and nucleotides on many organs and systems have been recognized for almost 50 years. The effects of extracellular ATP (ATPo, UTPo, ADPo, and other agonists are mediated by P2 purinoceptors. One of the most dramatic effects of ATPo is the permeabilization of plasma membranes to low molecular mass solutes of up to 900 Da. This effect is evident in several cells of the lymphohematopoietic system and is supposed to be mediated by P2Z, an ATP4--activated purinoceptor. Here, we review some basic information concerning P2 purinoceptors and focus our attention on P2Z-associated phenomena displayed by macrophages. Using fluorescent dye uptake, measurement of free intracellular Ca2+ concentration and electrophysiological recordings, we elucidate some of the events that follow the application of ATP to the extracellular surface of macrophages. We propose a regulatory mechanism for the P2Z-associated permeabilization pore. The presence of P2 purinoceptors in cells of the lymphohematopoietic system makes them potential candidates to mediate immunoregulatory events

  16. Activation of P2X7 receptors causes isoform-specific translocation of protein kinase C in osteoclasts.

    Science.gov (United States)

    Armstrong, Souzan; Pereverzev, Alexey; Dixon, S Jeffrey; Sims, Stephen M

    2009-01-01

    Nucleotides, released in response to mechanical or inflammatory stimuli, signal through P2 nucleotide receptors in many cell types. Osteoclasts express P2X7 receptors (encoded by P2rx7) - Ca(2+)-permeable channels that are activated by high concentrations of extracellular ATP. Genetic disruption of P2rx7 leads to increased resorption and reduced skeletal response to mechanical stimuli. To investigate whether P2X7 receptors couple to activation of protein kinase C (PKC), RAW 264.7 cells were differentiated into multinucleated osteoclast-like cells and live-cell confocal imaging was used to localize enhanced green fluorescent protein (EGFP)-tagged PKC. Benzoylbenzoyl-ATP (BzATP; a P2X7 agonist) induced transient translocation of PKCalpha to the basolateral membrane. UTP or ATP (10 microM), which activate P2 receptors other than P2X7, failed to induce translocation. Moreover, BzATP failed to induce PKC translocation in osteoclasts derived from the bone marrow of P2rx7(-/-) mice, demonstrating specificity for P2X7. BzATP induced a transient rise of cytosolic Ca(2+), and removal of extracellular Ca(2+) abolished the translocation of PKCalpha that was induced by BzATP (but not by phorbol ester). We examined the isoform specificity of this response, and observed translocation of the Ca(2+)-dependent isoforms PKCalpha and PKCbetaI, but not the Ca(2+)-independent isoform PKCdelta. Thus, activation of P2X7 receptors specifically induces Ca(2+)-dependent translocation of PKC to the basolateral membrane domain of osteoclasts, an aspect of spatiotemporal signaling not previously recognized.

  17. Erythrocyte membrane proteins and membrane skeleton

    Institute of Scientific and Technical Information of China (English)

    LU Yiqin; LIU Junfan

    2007-01-01

    Considerable advances in the research field of erythrocyte membrane were achieved in the recent two decades.New findings in the structure-function correlation and interactions of erythrocyte membrane proteins have attracted extensive attention.Interesting progress was also made in the molecular pathogenesis of erythrocyte membrane disorders.Advances in the composition,function and interaction of erythrocyte membrane proteins,erythrocyte membrane skeleton,and relevant diseases are briefly described and summarized here on the basis of domestic and world literatures.

  18. Evolutionary origins of membrane proteins

    Science.gov (United States)

    Mulkidjanian, Armen Y.; Galperin, Michael Y.

    Although the genes that encode membrane proteins make about 30% of the sequenced genomes, the evolution of membrane proteins and their origins are still poorly understood. Here we address this topic by taking a closer look at those membrane proteins the ancestors of which were present in the Last Universal Common Ancestor, and in particular, the F/V-type rotating ATPases. Reconstruction of their evolutionary history provides hints for understanding not only the origin of membrane proteins, but also of membranes themselves. We argue that the evolution of biological membranes could occur as a process of coevolution of lipid bilayers and membrane proteins, where the increase in the ion-tightness of the membrane bilayer may have been accompanied by a transition from amphiphilic, pore-forming membrane proteins to highly hydrophobic integral membrane complexes.

  19. Structural insight into DNA binding and oligomerization of the multifunctional Cox protein of bacteriophage P2.

    Science.gov (United States)

    Berntsson, Ronnie P-A; Odegrip, Richard; Sehlén, Wilhelmina; Skaar, Karin; Svensson, Linda M; Massad, Tariq; Högbom, Martin; Haggård-Ljungquist, Elisabeth; Stenmark, Pål

    2014-02-01

    The Cox protein from bacteriophage P2 is a small multifunctional DNA-binding protein. It is involved in site-specific recombination leading to P2 prophage excision and functions as a transcriptional repressor of the P2 Pc promoter. Furthermore, it transcriptionally activates the unrelated, defective prophage P4 that depends on phage P2 late gene products for lytic growth. In this article, we have investigated the structural determinants to understand how P2 Cox performs these different functions. We have solved the structure of P2 Cox to 2.4 Å resolution. Interestingly, P2 Cox crystallized in a continuous oligomeric spiral with its DNA-binding helix and wing positioned outwards. The extended C-terminal part of P2 Cox is largely responsible for the oligomerization in the structure. The spacing between the repeating DNA-binding elements along the helical P2 Cox filament is consistent with DNA binding along the filament. Functional analyses of alanine mutants in P2 Cox argue for the importance of key residues for protein function. We here present the first structure from the Cox protein family and, together with previous biochemical observations, propose that P2 Cox achieves its various functions by specific binding of DNA while wrapping the DNA around its helical oligomer.

  20. Peripheral nerve P2 basic protein and the Guillain-Barre syndrome : In vitro demonstration of P2-specific antibody-secreting cells

    NARCIS (Netherlands)

    Luijten, J.A.F.M.; Jong, W.A.C. de; Demel, R.A.; Heijnen, C.J.; Ballieux, R.E.

    1984-01-01

    An immune response to the peripheral nerve basic protein P2 may be operative in the pathogenesis of the Guillain-Barré syndrome (GBS). A method is described for the purification of P2 of human origin. Purified P2 was used to investigate whether lymphocytes derived from peripheral blood of GBS

  1. Peripheral nerve P2 basic protein and the Guillain-Barre syndrome : In vitro demonstration of P2-specific antibody-secreting cells

    NARCIS (Netherlands)

    Luijten, J.A.F.M.; Jong, W.A.C. de; Demel, R.A.; Heijnen, C.J.; Ballieux, R.E.

    1984-01-01

    An immune response to the peripheral nerve basic protein P2 may be operative in the pathogenesis of the Guillain-Barré syndrome (GBS). A method is described for the purification of P2 of human origin. Purified P2 was used to investigate whether lymphocytes derived from peripheral blood of GBS patien

  2. Peripheral nerve P2 basic protein and the Guillain-Barre syndrome : In vitro demonstration of P2-specific antibody-secreting cells

    NARCIS (Netherlands)

    Luijten, J.A.F.M.; Jong, W.A.C. de; Demel, R.A.; Heijnen, C.J.; Ballieux, R.E.

    1984-01-01

    An immune response to the peripheral nerve basic protein P2 may be operative in the pathogenesis of the Guillain-Barré syndrome (GBS). A method is described for the purification of P2 of human origin. Purified P2 was used to investigate whether lymphocytes derived from peripheral blood of GBS patien

  3. Ribosomal protein P2 localizes to the parasite zoite-surface and is a target for invasion inhibitory antibodies in Toxoplasma gondii and Plasmodium falciparum.

    Science.gov (United States)

    Sudarsan, Rajagopal; Chopra, Reshma Korde; Khan, Mudassar Ali; Sharma, Shobhona

    2015-02-01

    In the malarial parasite Plasmodium falciparum, the conserved ribosomal stalk protein P2 (PfP2) exhibits extra-ribosomal stage-specific oligomerization and trafficking to the host red cell membrane. Antibodies directed against PfP2 arrested cell division. We sought to examine whether P2 from a closely related Apicomplexan parasite, Toxoplasma gondii, exhibits similar properties in terms of its oligomeric status as well as such unique host-cell localization. Circular dichroism spectroscopy of recombinant P2 from T. gondii (TgP2) showed a structure similar to that of PfP2, but unlike PfP2, which forms SDS- and DTT-resistant oligomers, TgP2 exhibited only a weak SDS-resistant dimerization. Also, unlike PfP2 localization to the infected erythrocyte surface, TgP2 did not localize to the host membrane in T. gondii infected human foreskin fibroblast cells. However, P2 protein was detected on the free tachyzoite surface, corroborated by localization of epitope-tagged P2 transfected in T. gondii. The presence of P2 on the surface of P. falciparum merozoites was also observed, and specific antibodies raised against the P2 protein blocked both T. gondii and P. falciparum zoite invasion of the host cells. Thus, although certain moonlighting functions of the acidic ribosomal protein P2 are different amongst P. falciparum and T. gondii, the P2 protein localizes to the surface of the invasive zoite form, and appears to constitute a potential target for host cell invasion inhibition in both the Apicomplexan infections.

  4. Tracking membrane protein association in model membranes.

    Directory of Open Access Journals (Sweden)

    Myriam Reffay

    Full Text Available Membrane proteins are essential in the exchange processes of cells. In spite of great breakthrough in soluble proteins studies, membrane proteins structures, functions and interactions are still a challenge because of the difficulties related to their hydrophobic properties. Most of the experiments are performed with detergent-solubilized membrane proteins. However widely used micellar systems are far from the biological two-dimensions membrane. The development of new biomimetic membrane systems is fundamental to tackle this issue.We present an original approach that combines the Fluorescence Recovery After fringe Pattern Photobleaching technique and the use of a versatile sponge phase that makes it possible to extract crucial informations about interactions between membrane proteins embedded in the bilayers of a sponge phase. The clear advantage lies in the ability to adjust at will the spacing between two adjacent bilayers. When the membranes are far apart, the only possible interactions occur laterally between proteins embedded within the same bilayer, whereas when membranes get closer to each other, interactions between proteins embedded in facing membranes may occur as well.After validating our approach on the streptavidin-biotinylated peptide complex, we study the interactions between two membrane proteins, MexA and OprM, from a Pseudomonas aeruginosa efflux pump. The mode of interaction, the size of the protein complex and its potential stoichiometry are determined. In particular, we demonstrate that: MexA is effectively embedded in the bilayer; MexA and OprM do not interact laterally but can form a complex if they are embedded in opposite bilayers; the population of bound proteins is at its maximum for bilayers separated by a distance of about 200 A, which is the periplasmic thickness of Pseudomonas aeruginosa. We also show that the MexA-OprM association is enhanced when the position and orientation of the protein is restricted by the

  5. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly...... affected by the lipid environment. Theoretical predictions are pointed out, and compared to experimental findings, if available. Among others, the following phenomena are discussed: interactions of interfacially adsorbed peptides, pore-forming amphipathic peptides, adsorption of charged proteins onto...... oppositely charged lipid membranes, lipid-induced tilting of proteins embedded in lipid bilayers, protein-induced bilayer deformations, protein insertion and assembly, and lipid-controlled functioning of membrane proteins....

  6. Proteins causing membrane fouling in membrane bioreactors.

    Science.gov (United States)

    Miyoshi, Taro; Nagai, Yuhei; Aizawa, Tomoyasu; Kimura, Katsuki; Watanabe, Yoshimasa

    2015-01-01

    In this study, the details of proteins causing membrane fouling in membrane bioreactors (MBRs) treating real municipal wastewater were investigated. Two separate pilot-scale MBRs were continuously operated under significantly different operating conditions; one MBR was a submerged type whereas the other was a side-stream type. The submerged and side-stream MBRs were operated for 20 and 10 days, respectively. At the end of continuous operation, the foulants were extracted from the fouled membranes. The proteins contained in the extracted foulants were enriched by using the combination of crude concentration with an ultrafiltration membrane and trichloroacetic acid precipitation, and then separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The N-terminal amino acid sequencing analysis of the proteins which formed intensive spots on the 2D-PAGE gels allowed us to partially identify one protein (OmpA family protein originated from genus Brevundimonas or Riemerella anatipestifer) from the foulant obtained from the submerged MBR, and two proteins (OprD and OprF originated from genus Pseudomonas) from that obtained from the side-stream MBR. Despite the significant difference in operating conditions of the two MBRs, all proteins identified in this study belong to β-barrel protein. These findings strongly suggest the importance of β-barrel proteins in developing membrane fouling in MBRs.

  7. Protein kinase A regulation of P2X(4) receptors: requirement for a specific motif in the C-terminus.

    Science.gov (United States)

    Brown, David A; Yule, David I

    2010-02-01

    The P2X purinergic receptor sub-family of ligand-gated ion channels are subject to protein kinase modulation. We have previously demonstrated that P2X(4)R signaling can be positively regulated by increasing intracellular cAMP levels. The molecular mechanism underlying this effect was, however, unknown. The present study initially addressed whether protein kinase A (PKA) activation was required. Subsequently a mutational approach was utilized to determine which region of the receptor was required for this potentiation. In both DT-40 3KO and HEK-293 cells transiently expressing P2X(4)R, forskolin treatment enhanced ATP-mediated signaling. Specific PKA inhibitors prevented the forskolin-induced enhancement of ATP-mediated inward currents in P2X(4)R expressing HEK-293 cells. To define which region of the P2X(4)R was required for the potentiation, mutations were generated in the cytoplasmic C-terminal tail. It was determined that a limited region of the C-terminus, consisting of a non-canonical tyrosine based sorting motif, was required for the effects of PKA. Of note, this region does not harbor any recognizable PKA phosphorylation motifs, and no direct phosphorylation of P2X(4)R was detected, suggesting that PKA phosphorylation of an accessory protein interacts with the endocytosis motif in the C-terminus of the P2X(4)R. In support of this notion, using Total Internal Reflection Fluorescence Microscopy (TIRF)\\ P2X(4)-EGFP was shown to accumulate at/near the plasma membrane following forskolin treatment. In addition, disrupting the endocytosis machinery using a dominant-negative dynamin construct also prevented the PKA-mediated enhancement of ATP-stimulated Ca(2+) signals. Our results are consistent with a novel mechanism of P2XR regulation, whereby PKA activity, without directly phosphorylating P2X(4)R, markedly enhances ATP-stimulated P2X(4)R currents and hence cytosolic Ca(2+) signals. This may occur at least in part, by altering the trafficking of a population of

  8. The P2 of Wheat yellow mosaic virus rearranges the endoplasmic reticulum and recruits other viral proteins into replication-associated inclusion bodies.

    Science.gov (United States)

    Sun, Liying; Andika, Ida Bagus; Shen, Jiangfeng; Yang, Di; Chen, Jianping

    2014-06-01

    Viruses commonly modify host endomembranes to facilitate biological processes in the viral life cycle. Infection by viruses belonging to the genus Bymovirus (family Potyviridae) has long been known to induce the formation of large membranous inclusion bodies in host cells, but their assembly and biological roles are still unclear. Immunoelectron microscopy of cells infected with the bymovirus Wheat yellow mosaic virus (WYMV) showed that P1, P2 and P3 are the major viral protein constituents of the membranous inclusions, whereas NIa-Pro (nuclear inclusion-a protease) and VPg (viral protein genome-linked) are probable minor components. P1, P2 and P3 associated with the endoplasmic reticulum (ER), but only P2 was able to rearrange ER and form large aggregate structures. Bioinformatic analyses and chemical experiments showed that P2 is an integral membrane protein and depends on the active secretory pathway to form aggregates of ER membranes. In planta and in vitro assays demonstrated that P2 interacts with P1, P3, NIa-Pro or VPg and recruits these proteins into the aggregates. In vivo RNA labelling using WYMV-infected wheat protoplasts showed that the synthesis of viral RNAs occurs in the P2-associated inclusions. Our results suggest that P2 plays a major role in the formation of membranous compartments that house the genomic replication of WYMV.

  9. PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome.

    Science.gov (United States)

    Dong, Xian-ping; Shen, Dongbiao; Wang, Xiang; Dawson, Taylor; Li, Xinran; Zhang, Qi; Cheng, Xiping; Zhang, Yanling; Weisman, Lois S; Delling, Markus; Xu, Haoxing

    2010-07-13

    Membrane fusion and fission events in intracellular trafficking are controlled by both intraluminal Ca(2+) release and phosphoinositide (PIP) signalling. However, the molecular identities of the Ca(2+) release channels and the target proteins of PIPs are elusive. In this paper, by direct patch-clamping of the endolysosomal membrane, we report that PI(3,5)P(2), an endolysosome-specific PIP, binds and activates endolysosome-localized mucolipin transient receptor potential (TRPML) channels with specificity and potency. Both PI(3,5)P(2)-deficient cells and cells that lack TRPML1 exhibited enlarged endolysosomes/vacuoles and trafficking defects in the late endocytic pathway. We find that the enlarged vacuole phenotype observed in PI(3,5)P(2)-deficient mouse fibroblasts is suppressed by overexpression of TRPML1. Notably, this PI(3,5)P(2)-dependent regulation of TRPML1 is evolutionarily conserved. In budding yeast, hyperosmotic stress induces Ca(2+) release from the vacuole. In this study, we show that this release requires both PI(3,5)P(2) production and a yeast functional TRPML homologue. We propose that TRPMLs regulate membrane trafficking by transducing information regarding PI(3,5)P(2) levels into changes in juxtaorganellar Ca(2+), thereby triggering membrane fusion/fission events.

  10. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2.

    Science.gov (United States)

    Bukiya, Anna N; Rosenhouse-Dantsker, Avia

    2017-07-01

    G-protein gated inwardly rectifying potassium (GIRK or Kir3) channels play a major role in the control of the heart rate, and require the membrane phospholipid phosphatidylinositol-bis-phosphate (PI(4,5)P2) for activation. Recently, we have shown that the activity of the heterotetrameric Kir3.1/Kir3.4 channel that underlies atrial KACh currents was enhanced by cholesterol. Similarly, the activities of both the Kir3.4 homomer and its active pore mutant Kir3.4* (Kir3.4_S143T) were also enhanced by cholesterol. Here we employ planar lipid bilayers to investigate the crosstalk between PI(4,5)P2 and cholesterol, and demonstrate that these two lipids act synergistically to activate Kir3.4* currents. Further studies using the Xenopus oocytes heterologous expression system suggest that PI(4,5)P2 and cholesterol act via distinct binding sites. Whereas PI(4,5)P2 binds to the cytosolic domain of the channel, the putative binding region of cholesterol is located at the center of the transmembrane domain overlapping the central glycine hinge region of the channel. Together, our data suggest that changes in the levels of two key membrane lipids - cholesterol and PI(4,5)P2 - could act in concert to provide fine-tuning of Kir3 channel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Distinct plasma-membrane PtdIns(4)P and PtdIns(4,5)P2 dynamics in secretagogue-stimulated beta-cells.

    Science.gov (United States)

    Wuttke, Anne; Sågetorp, Jenny; Tengholm, Anders

    2010-05-01

    Phosphoinositides regulate numerous processes in various subcellular compartments. Whereas many stimuli trigger changes in the plasma-membrane PtdIns(4,5)P(2) concentration, little is known about its precursor, PtdIns(4)P, in particular whether there are stimulus-induced alterations independent of those of PtdIns(4,5)P(2). We investigated plasma-membrane PtdIns(4)P and PtdIns(4,5)P(2) dynamics in insulin-secreting MIN6 cells using fluorescent translocation biosensors and total internal reflection microscopy. Loss of PtdIns(4,5)P(2) induced by phospholipase C (PLC)-activating receptor agonists or stimulatory glucose concentrations was paralleled by increased PtdIns(4)P levels. In addition, glucose-stimulated cells regularly showed anti-synchronous oscillations of the two lipids. Whereas glucose-induced PtdIns(4)P elevation required voltage-gated Ca(2+) entry and was mimicked by membrane-depolarizing stimuli, the receptor-induced response was Ca(2+) independent, but sensitive to protein kinase C (PKC) inhibition and mimicked by phorbol ester stimulation. We conclude that glucose and PLC-activating receptor stimuli trigger Ca(2+)- and PKC-dependent changes in the plasma-membrane PtdIns(4)P concentration that are independent of the effects on PtdIns(4,5)P(2). These findings indicate that enhanced formation of PtdIns(4)P, apart from ensuring efficient replenishment of the PtdIns(4,5)P(2) pool, might serve an independent signalling function by regulating the association of PtdIns(4)P-binding proteins with the plasma membrane.

  12. Nuclear localization of Sindbis virus nonstructural protein nsP2

    Institute of Scientific and Technical Information of China (English)

    WANGXIAOZHONG; MINGXIAODING

    1993-01-01

    In early infection, approximately 10% of nonstructural protein nsP2 of Sindbis virus was transported into the nuclei of virus-infected BHK-21 cells. Nuclear asP2 was dominantly associated with nuclear matrix. During the course of infection, increasing amounts of nsP2 accumulated in the nuclear fraction. A prominent accumulation of nuclear nsP2 occurred early in infection, from 1 h to 3 h postinfection. Meanwhile. a weak NTPase activity was found to be associated with the immunocomplexed nsP2. Nuclear localization of nsP2 and its possible role were diseussed in relation to the inhibition of host macromolecular synthesis.

  13. Abrin P2 suppresses proliferation and induces apoptosis of colon cancer cells via mitochondrial membrane depolarization and caspase activation.

    Science.gov (United States)

    Yu, Ying; Yang, Runmei; Zhao, Xiuyun; Qin, Dandan; Liu, Zhaoyang; Liu, Fang; Song, Xin; Li, Liqin; Feng, Renqing; Gao, Nannan

    2016-05-01

    To explore the cytotoxic mechanism of abrin P2 on human colon cancer HCT-8 cells, abrin P2 was isolated from the seed of Abrus precatorius L. It was found that abrin P2 exhibited cytotoxicity toward 12 different human cancer cell lines. Our results demonstrated that abrin P2 suppressed the proliferation of human colon cancer cells (HCT-8 cells) and induced cell cycle arrest at the S and G2/M phases. The mechanism by which abrin P2 inhibited cell proliferation was via the down-regulation of cyclin B1, proliferating cell nuclear antigen and Ki67, as well as the up-regulation of P21. In addition, abrin P2 induced a dose- and time-dependent increase in the rate of HCT-8 cell apoptosis. Treatment with both Z-VAD-FMK, a broad-spectrum caspase inhibitor, and abrin P2 demonstrated that abrin P2 induced HCT-8 cell apoptosis via the activation of caspases. Together, our results revealed that abrin P2-induced apoptosis in HCT-8 cells was associated with the activation of caspases-3/-8/-9, the reduction in the Bcl-2/Bax ratio, the loss of mitochondrial membrane potential, and the increase in cytochrome c release. We further showed that abrin P2 administration effectively suppressed the growth of colon cancer xenografts in nude mice. This is the first report that abrin P2 effectively inhibits colon cancer cell growth in vivo and in vitro by suppressing proliferation and inducing apoptosis.

  14. The nucleotide receptor P2X7 mediates actin reorganization and membrane blebbing in RAW 264.7 macrophages via p38 MAP kinase and Rho.

    Science.gov (United States)

    Pfeiffer, Zachary A; Aga, Mini; Prabhu, Usha; Watters, Jyoti J; Hall, David J; Bertics, Paul J

    2004-06-01

    Extracellular nucleotides regulate macrophage function via P2X nucleotide receptors that form ligand-gated ion channels. In particular, P2X7 activation is characterized by pore formation, membrane blebbing, and cytokine release. P2X7 is also linked to mitogen-activated protein kinases (MAPK) and Rho-dependent pathways, which are known to affect cytoskeletal structure in other systems. As cytoskeletal function is critical for macrophage behavior, we have tested the importance of these pathways in actin filament reorganization during P2X7 stimulation in RAW 264.7 macrophages. We observed that the P2X7 agonists adenosine 5'-triphosphate (ATP) and 3'-O-(4-benzoylbenzoyl) ATP (BzATP) stimulated actin reorganization and concomitant membrane blebbing within 5 min. Disruption of actin filaments with cytochalasin D attenuated membrane blebbing but not P2X7-dependent pore formation or extracellular-regulated kinase (ERK)1/ERK2 and p38 activation, suggesting that these latter processes do not require intact actin filaments. However, we provide evidence that p38 MAPK and Rho activation but not ERK1/ERK2 activation is important for P2X7-mediated actin reorganization and membrane blebbing. First, activation of p38 and Rho was detected within 5 min of BzATP treatment, which is coincident with membrane blebbing. Second, the p38 inhibitors SB202190 and SB203580 reduced nucleotide-induced blebbing and actin reorganization, whereas the MAPK kinase-1/2 inhibitor U0126, which blocks ERK1/ERK2 activation, had no discernable effect. Third, the Rho-selective inhibitor C3 exoenzyme and the Rho effector kinase, Rho-associated coiled-coil kinase, inhibitor Y-27632, markedly attenuated BzATP-stimulated actin reorganization and membrane blebbing. These data support a model wherein p38- and Rho-dependent pathways are critical for P2X7-dependent actin reorganization and membrane blebbing, thereby facilitating P2X7 involvement in macrophage inflammatory responses.

  15. Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current.

    Science.gov (United States)

    Dickson, Eamonn J; Jensen, Jill B; Hille, Bertil

    2014-06-03

    Plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many ion channels and other membrane-associated proteins. To determine precursor sources of the PM PI(4,5)P2 pool in tsA-201 cells, we monitored KCNQ2/3 channel currents and translocation of PHPLCδ1 domains as real-time indicators of PM PI(4,5)P2, and translocation of PHOSH2×2, and PHOSH1 domains as indicators of PM and Golgi phosphatidylinositol 4-phosphate [PI(4)P], respectively. We selectively depleted PI(4)P pools at the PM, Golgi, or both using the rapamycin-recruitable lipid 4-phosphatases. Depleting PI(4)P at the PM with a recruitable 4-phosphatase (Sac1) results in a decrease of PI(4,5)P2 measured by electrical or optical indicators. Depleting PI(4)P at the Golgi with the 4-phosphatase or disrupting membrane-transporting motors induces a decline in PM PI(4,5)P2. Depleting PI(4)P simultaneously at both the Golgi and the PM induces a larger decrease of PI(4,5)P2. The decline of PI(4,5)P2 following 4-phosphatase recruitment takes 1-2 min. Recruiting the endoplasmic reticulum (ER) toward the Golgi membranes mimics the effects of depleting PI(4)P at the Golgi, apparently due to the trans actions of endogenous ER Sac1. Thus, maintenance of the PM pool of PI(4,5)P2 appears to depend on precursor pools of PI(4)P both in the PM and in the Golgi. The decrease in PM PI(4,5)P2 when Sac1 is recruited to the Golgi suggests that the Golgi contribution is ongoing and that PI(4,5)P2 production may be coupled to important cell biological processes such as membrane trafficking or lipid transfer activity.

  16. Structural and dynamical properties of reconstituted myelin sheaths in the presence of myelin proteins MBP and P2 studied by neutron scattering.

    Science.gov (United States)

    Knoll, Wiebke; Peters, Judith; Kursula, Petri; Gerelli, Yuri; Ollivier, Jacques; Demé, Bruno; Telling, Mark; Kemner, Ewout; Natali, Francesca

    2014-01-21

    The myelin sheath is a tightly packed, multilayered membrane structure wrapped around selected nerve axons in the central and the peripheral nervous system. Because of its electrical insulation of the axons, which allows fast, saltatory nerve impulse conduction, myelin is crucial for the proper functioning of the vertebrate nervous system. A subset of myelin-specific proteins is well-defined, but their influence on membrane dynamics, i.e. myelin stability, has not yet been explored in detail. We investigated the structure and the dynamics of reconstituted myelin membranes on a pico- to nanosecond timescale, influenced by myelin basic protein (MBP) and myelin protein 2 (P2), using neutron diffraction and quasi-elastic neutron scattering. A model for the scattering function describing molecular lipid motions is suggested. Although dynamical properties are not affected significantly by MBP and P2 proteins, they act in a highly synergistic manner influencing the membrane structure.

  17. Modelling of proteins in membranes

    DEFF Research Database (Denmark)

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.

    2006-01-01

    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly ...

  18. Arrest of Nuclear Division in Plasmodium through Blockage of Erythrocyte Surface Exposed Ribosomal Protein P2

    Science.gov (United States)

    Das, Sudipta; Basu, Himanish; Korde, Reshma; Tewari, Rita; Sharma, Shobhona

    2012-01-01

    Malaria parasites reside inside erythrocytes and the disease manifestations are linked to the growth inside infected erythrocytes (IE). The growth of the parasite is mostly confined to the trophozoite stage during which nuclear division occurs followed by the formation of cell bodies (schizogony). The mechanism and regulation of schizogony are poorly understood. Here we show a novel role for a Plasmodium falciparum 60S stalk ribosomal acidic protein P2 (PfP2) (PFC0400w), which gets exported to the IE surface for 6–8 hrs during early schizogony, starting around 26–28 hrs post-merozoite invasion. The surface exposure is demonstrated using multiple PfP2-specific monoclonal antibodies, and is confirmed through transfection using PfP2-GFP. The IE surface-exposed PfP2-protein occurs mainly as SDS-resistant P2-homo-tetramers. Treatment with anti-PfP2 monoclonals causes arrest of IEs at the first nuclear division. Upon removal of the antibodies, about 80–85% of synchronized parasites can be released even after 24 hrs of antibody treatment. It has been reported that a tubovesicular network (TVN) is set up in early trophozoites which is used for nutrient import. Anti-P2 monoclonal antibodies cause a complete fragmentation of TVN by 36 hrs, and impairs lipid import in IEs. These may be downstream causes for the cell-cycle arrest. Upon antibody removal, the TVN is reconstituted, and the cell division progresses. Each of the above properties is observed in the rodent malaria parasite species P. yoelii and P. berghei. The translocation of the P2 protein to the IE surface is therefore likely to be of fundamental importance in Plasmodium cell division. PMID:22912579

  19. Assembly of Saccharomyces cerevisiae ribosomal stalk: binding of P1 proteins is required for the interaction of P2 proteins.

    Science.gov (United States)

    Zurdo, J; Parada, P; van den Berg, A; Nusspaumer, G; Jimenez-Diaz, A; Remacha, M; Ballesta, J P

    2000-08-01

    The yeast ribosomal stalk is formed by a protein pentamer made of the 38 kDa P0 and four 12 kDa acidic P1/P2. The interaction of recombinant acidic proteins P1 alpha and P2 beta with ribosomes from Saccharomyces cerevisiae D4567, lacking all the 12 kDa stalk components, has been used to study the in vitro assembly of this important ribosomal structure. Stimulation of the ribosome activity was obtained by incubating simultaneously the particles with both proteins, which were nonphosphorylated initially and remained unmodified afterward. The N-terminus state, free or blocked, did not affect either the binding or reactivating activity of both proteins. Independent incubation with each protein did not affect the activity of the particles, however, protein P2 beta alone was unable to bind the ribosome whereas P1 alpha could. The binding of P1 alpha alone is a saturable process in acidic-protein-deficient ribosomes and does not take place in complete wild-type particles. Binding of P1 proteins in the absence of P2 proteins takes also place in vivo, when protein P1 beta is overexpressed in S. cerevisiae. In contrast, protein P2 beta is not detected in the ribosome in the P1-deficient D67 strain despite being accumulated in the cytoplasm. The results confirm that neither phosphorylation nor N-terminal blocking of the 12 kDa acidic proteins is required for the assembly and function of the yeast stalk. More importantly, and regardless of the involvement of other elements, they indicate that stalk assembling is a coordinated process, in which P1 proteins would provide a ribosomal anchorage to P2 proteins, and P2 components would confer functionality to the complex.

  20. SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration in 1321 N1 glioblastoma cells.

    Science.gov (United States)

    Elong Edimo, William's; Ghosh, Somadri; Derua, Rita; Janssens, Veerle; Waelkens, Etienne; Vanderwinden, Jean-Marie; Robe, Pierre; Erneux, Christophe

    2016-03-15

    Phosphoinositides, particularly phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], are recognized by SHIP2 (also known as INPPL1) a member of the inositol polyphosphate 5-phosphatase family. SHIP2 dephosphorylates PI(3,4,5)P3 to form PI(3,4)P2; the latter interacts with specific target proteins (e.g. lamellipodin). Although the preferred SHIP2 substrate is PI(3,4,5)P3, PI(4,5)P2 can also be dephosphorylated by this enzyme to phosphatidylinositol 4-phosphate (PI4P). Through depletion of SHIP2 in the glioblastoma cell line 1321 N1, we show that SHIP2 inhibits cell migration. In different glioblastoma cell lines and primary cultures, SHIP2 staining at the plasma membrane partly overlaps with PI(4,5)P2 immunoreactivity. PI(4,5)P2 was upregulated in SHIP2-deficient N1 cells as compared to control cells; in contrast, PI4P was very much decreased in SHIP2-deficient cells. Therefore, SHIP2 controls both PI(3,4,5)P3 and PI(4,5)P2 levels in intact cells. In 1321 N1 cells, the PI(4,5)P2-binding protein myosin-1c was identified as a new interactor of SHIP2. Regulation of PI(4,5)P2 and PI4P content by SHIP2 controls 1321 N1 cell migration through the organization of focal adhesions. Thus, our results reveal a new role of SHIP2 in the control of PI(4,5)P2, PI4P and cell migration in PTEN-deficient glioblastoma 1321 N1 cells.

  1. Molecular dynamics of membrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Thomas B. (Johns Hopkins University School of Medicine, Baltimore, MD); Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  2. Electron microscopic imaging revealed the flexible filamentous structure of the cell attachment protein P2 of Rice dwarf virus located around the icosahedral 5-fold axes.

    Science.gov (United States)

    Miyazaki, Naoyuki; Higashiura, Akifumi; Higashiura, Tomoko; Akita, Fusamichi; Hibino, Hiroyuki; Omura, Toshihiro; Nakagawa, Atsushi; Iwasaki, Kenji

    2016-02-01

    The minor outer capsid protein P2 of Rice dwarf virus (RDV), a member of the genus Phytoreovirus in the family Reoviridae, is essential for viral cell entry. Here, we clarified the structure of P2 and the interactions to host insect cells. Negative stain electron microscopy (EM) showed that P2 proteins are monomeric and flexible L-shaped filamentous structures of ∼20 nm in length. Cryo-EM structure revealed the spatial arrangement of P2 in the capsid, which was prescribed by the characteristic virion structure. The P2 proteins were visualized as partial rod-shaped structures of ∼10 nm in length in the cryo-EM map and accommodated in crevasses on the viral surface around icosahedral 5-fold axes with hydrophobic interactions. The remaining disordered region of P2 assumed to be extended to the radial direction towards exterior. Electron tomography clearly showed that RDV particles were away from the cellular membrane at a uniform distance and several spike-like densities, probably corresponding to P2, connecting a viral particle to the host cellular membrane during cell entry. By combining the in vitro and in vivo structural information, we could gain new insights into the detailed mechanism of the cell entry of RDV.

  3. NTPase and 5'-RNA triphosphatase activities of Chikungunya virus nsP2 protein.

    Science.gov (United States)

    Karpe, Yogesh A; Aher, Pankaj P; Lole, Kavita S

    2011-01-01

    Chikungunya virus (CHIKV) is an insect borne virus (genus: Alphavirus) which causes acute febrile illness in humans followed by a prolonged arthralgic disease that affects the joints of the extremities. Re-emergence of the virus in the form of outbreaks in last 6-7 years has posed a serious public health problem. CHIKV has a positive sense single stranded RNA genome of about 12,000 nt. Open reading frame 1 of the viral genome encodes a polyprotein precursor, nsP1234, which is processed further into different non structural proteins (nsP1, nsP2, nsP3 and nsP4). Sequence based analyses have shown helicase domain at the N-terminus and protease domain at C-terminus of nsP2. A detailed biochemical analysis of NTPase/RNA helicase and 5'-RNA phosphatase activities of recombinant CHIKV-nsP2T protein (containing conserved NTPase/helicase motifs in the N-terminus and partial papain like protease domain at the C-terminus) was carried out. The protein could hydrolyze all NTPs except dTTP and showed better efficiency for ATP, dATP, GTP and dGTP hydrolysis. ATP was the most preferred substrate by the enzyme. CHIKV-nsP2T also showed 5'-triphosphatase (RTPase) activity that specifically removes the γ-phosphate from the 5' end of RNA. Both NTPase and RTPase activities of the protein were completely dependent on Mg(2+) ions. RTPase activity was inhibited by ATP showing sharing of the binding motif by NTP and RNA. Both enzymatic activities were drastically reduced by mutations in the NTP binding motif (GKT) and co-factor, Mg(2+) ion binding motif (DEXX) suggesting that they have a common catalytic site.

  4. NTPase and 5'-RNA triphosphatase activities of Chikungunya virus nsP2 protein.

    Directory of Open Access Journals (Sweden)

    Yogesh A Karpe

    Full Text Available Chikungunya virus (CHIKV is an insect borne virus (genus: Alphavirus which causes acute febrile illness in humans followed by a prolonged arthralgic disease that affects the joints of the extremities. Re-emergence of the virus in the form of outbreaks in last 6-7 years has posed a serious public health problem. CHIKV has a positive sense single stranded RNA genome of about 12,000 nt. Open reading frame 1 of the viral genome encodes a polyprotein precursor, nsP1234, which is processed further into different non structural proteins (nsP1, nsP2, nsP3 and nsP4. Sequence based analyses have shown helicase domain at the N-terminus and protease domain at C-terminus of nsP2. A detailed biochemical analysis of NTPase/RNA helicase and 5'-RNA phosphatase activities of recombinant CHIKV-nsP2T protein (containing conserved NTPase/helicase motifs in the N-terminus and partial papain like protease domain at the C-terminus was carried out. The protein could hydrolyze all NTPs except dTTP and showed better efficiency for ATP, dATP, GTP and dGTP hydrolysis. ATP was the most preferred substrate by the enzyme. CHIKV-nsP2T also showed 5'-triphosphatase (RTPase activity that specifically removes the γ-phosphate from the 5' end of RNA. Both NTPase and RTPase activities of the protein were completely dependent on Mg(2+ ions. RTPase activity was inhibited by ATP showing sharing of the binding motif by NTP and RNA. Both enzymatic activities were drastically reduced by mutations in the NTP binding motif (GKT and co-factor, Mg(2+ ion binding motif (DEXX suggesting that they have a common catalytic site.

  5. Thermodynamic competition between membrane protein oligomeric states

    Science.gov (United States)

    Kahraman, Osman; Haselwandter, Christoph A.

    2016-10-01

    Self-assembly of protein monomers into distinct membrane protein oligomers provides a general mechanism for diversity in the molecular architectures, and resulting biological functions, of membrane proteins. We develop a general physical framework describing the thermodynamic competition between different oligomeric states of membrane proteins. Using the mechanosensitive channel of large conductance as a model system, we show how the dominant oligomeric states of membrane proteins emerge from the interplay of protein concentration in the cell membrane, protein-induced lipid bilayer deformations, and direct monomer-monomer interactions. Our results suggest general physical mechanisms and principles underlying regulation of protein function via control of membrane protein oligomeric state.

  6. Thermodynamic competition between membrane protein oligomeric states

    CERN Document Server

    Kahraman, Osman

    2016-01-01

    Self-assembly of protein monomers into distinct membrane protein oligomers provides a general mechanism for diversity in the molecular architectures, and resulting biological functions, of membrane proteins. We develop a general physical framework describing the thermodynamic competition between different oligomeric states of membrane proteins. Using the mechanosensitive channel of large conductance as a model system, we show how the dominant oligomeric states of membrane proteins emerge from the interplay of protein concentration in the cell membrane, protein-induced lipid bilayer deformations, and direct monomer-monomer interactions. Our results suggest general physical mechanisms and principles underlying regulation of protein function via control of membrane protein oligomeric state.

  7. A phenotypic assay to identify Chikungunya virus inhibitors targeting the nonstructural protein nsP2.

    Science.gov (United States)

    Lucas-Hourani, Marianne; Lupan, Alexandru; Desprès, Philippe; Thoret, Sylviane; Pamlard, Olivier; Dubois, Joëlle; Guillou, Catherine; Tangy, Frédéric; Vidalain, Pierre-Olivier; Munier-Lehmann, Hélène

    2013-02-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted pathogen responsible for an acute infection of abrupt onset, characterized by high fever, polyarthralgia, myalgia, headaches, chills, and rash. In 2006, CHIKV was responsible for an epidemic outbreak of unprecedented magnitude in the Indian Ocean, stressing the need for therapeutic approaches. Since then, we have acquired a better understanding of CHIKV biology, but we are still missing active molecules against this reemerging pathogen. We recently reported that the nonstructural nsP2 protein of CHIKV induces a transcriptional shutoff that allows the virus to block cellular antiviral response. This was demonstrated using various luciferase-based reporter gene assays, including a trans-reporter system where Gal4 DNA binding domain is fused to Fos transcription factor. Here, we turned this assay into a high-throughput screening system to identify small molecules targeting nsP2-mediated shutoff. Among 3040 molecules tested, we identified one natural compound that partially blocks nsP2 activity and inhibits CHIKV replication in vitro. This proof of concept suggests that similar functional assays could be developed to target other viral proteins mediating a cellular shutoff and identify innovative therapeutic molecules.

  8. Effect of membrane curvature on lateral distribution of membrane proteins

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Several membrane proteins exhibit interesting shapes that increases their preference for certain membrane curvatures. Both peripheral and transmembrane proteins are tested with respect to their affinity for a spectrum of high membrane curvatures. We generate high membrane curvatures by pulling...... membrane tubes out of Giant Unilamellar lipid Vesicles (GUVs). The tube diameter can be tuned by aspirating the GUV into a micropipette for controlling the membrane tension. By using fluorescently labled proteins we have shown that sorting of proteins like e.g. FBAR onto tubes is significantly increased...

  9. Structure Prediction of Membrane Proteins

    Institute of Scientific and Technical Information of China (English)

    Chunlong Zhou; Yao Zheng; Yan Zhou

    2004-01-01

    There is a large gap between the number of membrane protein (MP) sequences and that of their decoded 3D structures, especially high-resolution structures, due to difficulties in crystal preparation of MPs. However, detailed knowledge of the 3D structure is required for the fundamental understanding of the function of an MP and the interactions between the protein and its inhibitors or activators. In this paper, some computational approaches that have been used to predict MP structures are discussed and compared.

  10. Identification of Toxoplasma TgPH1, a pleckstrin homology domain-containing protein that binds to the phosphoinositide PI(3,5)P2.

    Science.gov (United States)

    Daher, Wassim; Morlon-Guyot, Juliette; Alayi, Tchilabalo Dilezitoko; Tomavo, Stan; Wengelnik, Kai; Lebrun, Maryse

    2016-05-01

    The phosphoinositide phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) plays crucial roles in the maintenance of lysosome/vacuole morphology, membrane trafficking and regulation of endolysosome-localized membrane channel activity. In Toxoplasma gondii, we previously reported that PI(3,5)P2 is essential for parasite survival by controlling homeostasis of the apicoplast, a particular organelle of algal origin. Here, by using a phosphoinositide pull-down assay, we identified TgPH1 in Toxoplasma a protein conserved in many apicomplexan parasites. TgPH1 binds specifically to PI(3,5)P2, shows punctate intracellular localization, but plays no vital role for tachyzoite growth in vitro. TgPH1 is a protein predominantly formed by a pleckstrin homology (PH) domain. So far, PH domains have been described to bind preferentially to bis- or trisphosphate phosphoinositides containing two adjacent phosphates (i.e. PI(3,4)P2, PI(4,5)P2, PI(3,4,5)P3). Therefore, our study reveals an unusual feature of TgPH1 which binds preferentially to PI(3,5)P2.

  11. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  12. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  13. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    Science.gov (United States)

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane

  14. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2X4 Receptors

    Directory of Open Access Journals (Sweden)

    Ramón A. Lorca

    2011-01-01

    Full Text Available Although the physiological function of the cellular prion protein (PrPC remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+.

  15. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2X4 Receptors

    Science.gov (United States)

    Lorca, Ramón A.; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.; Huidobro-Toro, J. Pablo

    2011-01-01

    Although the physiological function of the cellular prion protein (PrPC) remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP)-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+. PMID:22114745

  16. Expression and structural analysis of membrane proteins

    OpenAIRE

    Eifler, Nora

    2006-01-01

    1.1 Membrane Proteins Between one quarter and one third of all genes in eukaryotic and prokaryotic organisms code for integral membrane proteins (IMPs) (Essen, 2002). These proteins are essential parts of biological membranes and confer various functions, such as energy conversion, transport, biosynthesis of lipids, signal transduction, or cell recognition. The enormous economical potential of membrane proteins is highlighted by the family of G-protein-coupled receptors (GPC...

  17. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  18. Drosophila TRPML forms PI(3,5)P2-activated cation channels in both endolysosomes and plasma membrane.

    Science.gov (United States)

    Feng, Xinghua; Huang, Yu; Lu, Yungang; Xiong, Jian; Wong, Ching-On; Yang, Pu; Xia, Jintang; Chen, De; Du, Guangwei; Venkatachalam, Kartik; Xia, Xuefeng; Zhu, Michael X

    2014-02-14

    Transient Receptor Potential mucolipin (TRPML) channels are implicated in endolysosomal trafficking, lysosomal Ca(2+) and Fe(2+) release, lysosomal biogenesis, and autophagy. Mutations in human TRPML1 cause the lysosome storage disease, mucolipidosis type IV (MLIV). Unlike vertebrates, which express three TRPML genes, TRPML1-3, the Drosophila genome encodes a single trpml gene. Although the trpml-deficient flies exhibit cellular defects similar to those in mammalian TRPML1 mutants, the biophysical properties of Drosophila TRPML channel remained uncharacterized. Here, we show that transgenic expression of human TRPML1 in the neurons of Drosophila trpml mutants partially suppressed the pupal lethality phenotype. When expressed in HEK293 cells, Drosophila TRPML was localized in both endolysosomes and plasma membrane and was activated by phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) applied to the cytoplasmic side in whole lysosomes and inside-out patches excised from plasma membrane. The PI(3,5)P2-evoked currents were blocked by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), but not other phosphoinositides. Using TRPML A487P, which mimics the varitint-waddler (Va) mutant of mouse TRPML3 with constitutive whole-cell currents, we show that TRPML is biphasically regulated by extracytosolic pH, with an optimal pH about 0.6 pH unit higher than that of human TRPML1. In addition to monovalent cations, TRPML exhibits high permeability to Ca(2+), Mn(2+), and Fe(2+), but not Fe(3+). The TRPML currents were inhibited by trivalent cations Fe(3+), La(3+), and Gd(3+). These features resemble more closely to mammalian TRPML1 than TRPML2 and TRPML3, but with some obvious differences. Together, our data support the use of Drosophila for assessing functional significance of TRPML1 in cell physiology.

  19. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...... interactions between proteins and lipids. First, interactions of soluble proteins with membranes and specific lipids were studied, using two proteins: Annexin V and Tma1. The protein was first subjected to a lipid/protein overlay assay to identify candidate interaction partners in a fast and efficient way...

  20. Computational modeling of membrane proteins.

    Science.gov (United States)

    Koehler Leman, Julia; Ulmschneider, Martin B; Gray, Jeffrey J

    2015-01-01

    The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade.

  1. Novel Tripod Amphiphiles for Membrane Protein Analysis

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Kruse, Andrew C; Gotfryd, Kamil

    2013-01-01

    Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution...

  2. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  3. Characterization of an immunomodulatory Der p 2-FIP-fve fusion protein produced in transformed rice suspension cell culture.

    Science.gov (United States)

    Su, Chin-Fen; Kuo, I-Chun; Chen, Peng-Wen; Huang, Chiung-Hui; Seow, See Voon; Chua, Kaw Yan; Yu, Su-May

    2012-02-01

    Der p 2, a major allergen of Dermatophagoides pteronyssinus mites, is one of the most clinically relevant allergens to allergic patients worldwide. FIP-fve protein (Fve) from the golden needle mushroom (Flammulina velutipes) is an immunomodulatory protein with potential Th1-skewed adjuvant properties. Here, we produced and immunologically evaluated a Der p 2-Fve fusion protein as a potential immunotherapeutic for allergic diseases. Using an inducible expression system in cultured rice suspension cells, the recombinant Der p 2-Fve fusion protein (designated as OsDp2Fve) was expressed in rice cells under the control of an α-amylase gene (αAmy8) promoter and secreted under sucrose starvation. OsDp2Fve was partially purified from the cultured medium. The conformation of Der p 2 in OsDp2Fve remains intact as reflected by its unaltered allergenicity, as assessed by human IgE ELISA and histamine release assays, compared to non-fusion Der p 2 protein. Furthermore, the Fve protein expressed in OsDp2Fve retains its in vitro lymphoproliferative activity but loses its hemagglutination and lymphoagglutination effects compared to the native protein. Notably, in vivo evaluation showed that mice administered with OsDp2Fve possessed an enhanced production of Der p 2-specific IgG antibodies without potentiating the production of Der p 2-specific IgE and Th2 effector cytokines in comparison with mice co-administered with native Fve and Der p 2 proteins. These results suggest that the recombinant Der p 2-Fve fusion protein produced in rice suspension cell cultures has a great potential for allergy immunotherapy.

  4. The allergenic protein Tha p 2 of processionary moths of the genus Thaumetopoea (Thaumetopoeinae, Notodontidae, Lepidoptera): Characterization and evolution.

    Science.gov (United States)

    Berardi, Laura; Battisti, Andrea; Negrisolo, Enrico

    2015-12-15

    The allergenic Tha p 2 protein has been extracted recently from the urticating setae of the pine processionary moth Thaumetopoea pityocampa. In the present paper, we test for the occurrence of this protein in other Thaumetopoeinae, with a particular focus on members of the genus Thaumetopoea, as well as unrelated moth species, to better understand the physicochemical properties of the protein, the nature of encoding genes and their evolutionary history. Tha p 2 is encoded by the intronless gene Tha p 2 that is restricted to the processionary moths (Thaumetopoeinae, Notodontidae, Lepidoptera). Most of the species present two isoforms of Tha p 2 that can be interpreted as the result of heterozygosity in the single gene. The only exception is represented by Thaumetopoea wilkinsoni, in which 20 different isoforms occur in a single specimen, leading to the conclusion that, at least in this species, multiple copies of Tha p 2 exist. Serine, glycine, cysteine and leucine are abundant in Tha p 2, a protein well conserved among processionary moths. The predicted secondary structures of Tha p 2 indicate the presence of 3 α-helices and six β-barrels. Finally, the evolution of the gene and the protein was characterized by a combination of positive and negative selection, with the latter being more evident.

  5. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions....... Discovered interactions were then probed on the level of the membrane using liposome-based assays. In the second part, a transmembrane protein was investigated. Assays to probe activity of the plasma membrane ATPase (Arabidopsis thaliana H+ -ATPase isoform 2 (AHA2)) in single liposomes using both giant...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...

  6. DIFFERENT APPROACHES TO CRYSTALLIZATION OF MEMBRANE PROTEINS

    Directory of Open Access Journals (Sweden)

    Prakash G. Doiphode

    2012-01-01

    Full Text Available Crystallography is more like an art than science. Crystallizing membrane proteins are a big challenge; membrane proteins are present in the cell membrane and serve as cell support. The most important feature of membrane protein is that it contains both hydrophobic and hydrophilic regions on its surface. They are generally much more difficult to study than soluble proteins. The problem becomes more difficult when trying to obtain crystals to determine the high resolution structures of membrane proteins. We want to utilize this opportunity to briefly examine various approaches for crystallization of membrane proteins. The important factors for determining the success of crystallization experiments for membrane proteins lies in the purification, preparation of membrane samples, the environment in which the crystals are grown and the technique used to grow the crystals. All the X-ray structures of membrane protein are grown from preparations of detergents by different methods developed to crystallize. In this review different techniques for the crystallization of membrane proteins are being described. The cubic phase method also known as in meso method is discussed along with other methods to understand about the crystallization of membrane proteins, its general applicability, salt, detergent and screening effects on crystallization. Low volumes as nano-liter of samples can be used for crystallization. The effects of different detergents on the crystallization of membrane protein, as well as the use of surfactants like polyoxyethylene. Approach based on the detergent complexation to prove the ability of cyclodextrins to remove detergent from ternary mixtures in order to get 2D crystals. Crystallization of membrane proteins using non-ionic surfactants as well as Lipidic sponge phase and with swollen lipidic mesophases is discussed to better understand the crystallization of membrane proteins.

  7. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by usin...

  8. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by using...

  9. Cleavage sites in the polypeptide precursors of poliovirus protein P2-X

    Energy Technology Data Exchange (ETDEWEB)

    Selmer, B.L. (State Univ. of New York, Stony Brook); Hanecak, R.; Anderson, C.W.; Wimmer, E.

    1981-01-01

    Partial amino-terminal sequence analysis has been performed on the three major polypeptide products (P2-3b, P2-5b, and P2-X) from the central region (P2) of the poliovirus polyprotein, and this analysis precisely locates the amino termini of these products with respect to the nucleotide sequence of the poliovirus RNA genome. Like most of the products of the replicase region (P3), the amino termini of P2-5b and P2-X are generated by cleavage between glutamine and glycine residues. Thus, P2-5b and P2-X are probably both produced by the action of a singly (virus-encoded.) proteinase. The amino terminus of P2-3b, on the other hand, is produced by a cleavage between the carboxy-terminal tyrosine of VP1 and the glycine encoded by nucleotides 3381-3383. This result may suggest that more than one proteolytic activity is required for the complete processing of the poliovirus polyprotein.

  10. Zebrafish prion protein PrP2 controls collective migration process during lateral line sensory system development.

    Directory of Open Access Journals (Sweden)

    Sylvaine Huc-Brandt

    Full Text Available Prion protein is involved in severe neurodegenerative disorders but its physiological role is still in debate due to an absence of major developmental defects in knockout mice. Previous reports in zebrafish indicate that the two prion genes, PrP1 and PrP2, are both involved in several steps of embryonic development thus providing a unique route to discover prion protein function. Here we investigate the role of PrP2 during development of a mechano-sensory system, the posterior lateral line, using morpholino knockdown and PrP2 targeted inactivation. We confirm the efficiency of the translation blocking morpholino at the protein level. Development of the posterior lateral line is altered in PrP2 morphants, including nerve axonal outgrowth and primordium migration defects. Reduced neuromast deposition was observed in PrP2 morphants as well as in PrP2-/- mutants. Rosette formation defects were observed in PrP2 morphants, strongly suggesting an abnormal primordium organization and reflecting loss of cell cohesion during migration of the primordium. In addition, the adherens junction proteins, E-cadherin and ß-catenin, were mis-localized after reduction of PrP2 expression and thus contribute to the primordium disorganization. Consequently, hair cell differentiation and number were affected and this resulted in reduced functional neuromasts. At later developmental stages, myelination of the posterior lateral line nerve was altered. Altogether, our study reports an essential role of PrP2 in collective migration process of the primordium and in neuromast formation, further implicating a role for prion protein in cell adhesion.

  11. Kinetics and Thermodynamics of Membrane Protein Folding

    Directory of Open Access Journals (Sweden)

    Ernesto A. Roman

    2014-03-01

    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  12. Structural characterization of yeast acidic ribosomal P proteins forming the P1A-P2B heterocomplex.

    Science.gov (United States)

    Tchórzewski, Marek; Krokowski, Dawid; Boguszewska, Aleksandra; Liljas, Anders; Grankowski, Nikodem

    2003-04-01

    Acidic ribosomal P proteins form a distinct lateral protuberance on the 60S ribosomal subunit. In yeast, this structure is composed of two heterocomplexes (P1A-P2B and P1B-P2A) attached to the ribosome with the aid of the P0 protein. In solution, the isolated P proteins P1A and P2B have a flexible structure with some characteristics of a molten globule [Zurdo, J., et al. (2000) Biochemistry 39, 8935-8943]. In this report, the structure of P1A-P2B heterocomplex from Saccharomyces cerevisiae is investigated by means of size-exclusion chromatography, chemical cross-linking, circular dichroism, light scattering, and fluorescence spectroscopy. The circular dichroism experiment shows that the complex could be ranked in the tertiary class of all-alpha proteins, with an average alpha-helical content of approximately 65%. Heat and urea denaturation experiments reveal that the P1A-P2B complex, unlike the isolated proteins, has a full cooperative transition which can be fitted into a two-state folding-unfolding model. The behavior of the complex in the presence of 2,2,2-trifluoroethanol also resembles a two-state folding-unfolding transition, further supporting the idea that the heterocomplex contains well-packed side chains. In conclusion, the P1A-P2B heterocomplex, unlike the isolated proteins, has a well-defined hydrophobic core. Consequently, the complex can put up its structure without additional ribosomal components, so the heterodimeric complex reflects the intrinsic properties of the two analyzed proteins, indicating thus that this is the only possible configuration of the P1A and P2B proteins on the ribosomal stalk structure.

  13. Eukaryotic membrane protein overproduction in Lactococcus lactis

    NARCIS (Netherlands)

    Kunji, Edmund R.S.; Chan, Ka Wai; Slotboom, Dirk Jan; Floyd, Suzanne; O’Connor, Rosemary; Monné, Magnus

    2005-01-01

    Eukaryotic membrane proteins play many vital roles in the cell and are important drug targets. Approximately 25% of all genes identified in the genome are known to encode membrane proteins, but the vast majority have no assigned function. Although the generation of structures of soluble proteins has

  14. Isomeric Detergent Comparison for Membrane Protein Stability

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.;

    2016-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope...... and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta...... and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability...

  15. The purinergic receptor P2X7 triggers alpha-secretase-dependent processing of the amyloid precursor protein.

    Science.gov (United States)

    Delarasse, Cécile; Auger, Rodolphe; Gonnord, Pauline; Fontaine, Bertrand; Kanellopoulos, Jean M

    2011-01-28

    The amyloid precursor protein (APP) is cleaved by β- and γ-secretases to generate the β-amyloid (Aβ) peptides, which are present in large amounts in the amyloid plaques of Alzheimer disease (AD) patient brains. Non-amyloidogenic processing of APP by α-secretases leads to proteolytic cleavage within the Aβ peptide sequence and shedding of the soluble APP ectodomain (sAPPα), which has been reported to be endowed with neuroprotective properties. In this work, we have shown that activation of the purinergic receptor P2X7 (P2X7R) stimulates sAPPα release from mouse neuroblastoma cells expressing human APP, from human neuroblastoma cells and from mouse primary astrocytes or neural progenitor cells. sAPPα shedding is inhibited by P2X7R antagonists or knockdown of P2X7R with specific small interfering RNA (siRNA) and is not observed in neural cells from P2X7R-deficient mice. P2X7R-dependent APP-cleavage is independent of extracellular calcium and strongly inhibited by hydroxamate-based metalloprotease inhibitors, TAPI-2 and GM6001. However, knockdown of a disintegrin and metalloproteinase-9 (ADAM9), ADAM10 and ADAM17 by specific siRNA, known to have α-secretase activity, does not block the P2X7R-dependent non-amyloidogenic pathway. Using several specific pharmacological inhibitors, we demonstrate that the mitogen-activated protein kinase modules Erk1/2 and JNK are involved in P2X7R-dependent α-secretase activity. Our study suggests that P2X7R, which is expressed in hippocampal neurons and glial cells, is a potential therapeutic target in AD.

  16. The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system.

    Science.gov (United States)

    García-Huerta, Paula; Díaz-Hernandez, Miguel; Delicado, Esmerilda G; Pimentel-Santillana, María; Miras-Portugal, M Teresa; Gómez-Villafuertes, Rosa

    2012-12-28

    P2X7 receptors are involved not only in physiological functions but also in pathological brain processes. Although an increasing number of findings indicate that altered receptor expression has a causative role in neurodegenerative diseases and cancer, little is known about how expression of P2rx7 gene is controlled. Here we reported the first molecular and functional evidence that Specificity protein 1 (Sp1) transcription factor plays a pivotal role in the transcriptional regulation of P2X7 receptor. We delimited a minimal region in the murine P2rx7 promoter containing four SP1 sites, two of them being highly conserved in mammals. The functionality of these SP1 sites was confirmed by site-directed mutagenesis and Sp1 overexpression/down-regulation in neuroblastoma cells. Inhibition of Sp1-mediated transcriptional activation by mithramycin A reduced endogenous P2X7 receptor levels in primary cultures of cortical neurons and astrocytes. Using P2rx7-EGFP transgenic mice that express enhanced green fluorescent protein under the control of P2rx7 promoter, we found a high correlation between reporter expression and Sp1 levels in the brain, demonstrating that Sp1 is a key element in the transcriptional regulation of P2X7 receptor in the nervous system. Finally, we found that Sp1 mediates P2X7 receptor up-regulation in neuroblastoma cells cultured in the absence of serum, a condition that enhances chromatin accessibility and facilitates the exposure of SP1 binding sites.

  17. Membrane topology of transmembrane proteins: determinants and experimental tools.

    Science.gov (United States)

    Lee, Hunsang; Kim, Hyun

    2014-10-17

    Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.

  18. P2RP: a Web-based framework for the identification and analysis of regulatory proteins in prokaryotic genomes.

    Science.gov (United States)

    Barakat, Mohamed; Ortet, Philippe; Whitworth, David E

    2013-04-20

    Regulatory proteins (RPs) such as transcription factors (TFs) and two-component system (TCS) proteins control how prokaryotic cells respond to changes in their external and/or internal state. Identification and annotation of TFs and TCSs is non-trivial, and between-genome comparisons are often confounded by different standards in annotation. There is a need for user-friendly, fast and convenient tools to allow researchers to overcome the inherent variability in annotation between genome sequences. We have developed the web-server P2RP (Predicted Prokaryotic Regulatory Proteins), which enables users to identify and annotate TFs and TCS proteins within their sequences of interest. Users can input amino acid or genomic DNA sequences, and predicted proteins therein are scanned for the possession of DNA-binding domains and/or TCS domains. RPs identified in this manner are categorised into families, unambiguously annotated, and a detailed description of their features generated, using an integrated software pipeline. P2RP results can then be outputted in user-specified formats. Biologists have an increasing need for fast and intuitively usable tools, which is why P2RP has been developed as an interactive system. As well as assisting experimental biologists to interrogate novel sequence data, it is hoped that P2RP will be built into genome annotation pipelines and re-annotation processes, to increase the consistency of RP annotation in public genomic sequences. P2RP is the first publicly available tool for predicting and analysing RP proteins in users' sequences. The server is freely available and can be accessed along with documentation at http://www.p2rp.org.

  19. Membrane protein structure determination in membrana.

    Science.gov (United States)

    Ding, Yi; Yao, Yong; Marassi, Francesca M

    2013-09-17

    The two principal components of biological membranes, the lipid bilayer and the proteins integrated within it, have coevolved for specific functions that mediate the interactions of cells with their environment. Molecular structures can provide very significant insights about protein function. In the case of membrane proteins, the physical and chemical properties of lipids and proteins are highly interdependent; therefore structure determination should include the membrane environment. Considering the membrane alongside the protein eliminates the possibility that crystal contacts or detergent molecules could distort protein structure, dynamics, and function and enables ligand binding studies to be performed in a natural setting. Solid-state NMR spectroscopy is compatible with three-dimensional structure determination of membrane proteins in phospholipid bilayer membranes under physiological conditions and has played an important role in elucidating the physical and chemical properties of biological membranes, providing key information about the structure and dynamics of the phospholipid components. Recently, developments in the recombinant expression of membrane proteins, sample preparation, pulse sequences for high-resolution spectroscopy, radio frequency probes, high-field magnets, and computational methods have enabled a number of membrane protein structures to be determined in lipid bilayer membranes. In this Account, we illustrate solid-state NMR methods with examples from two bacterial outer membrane proteins (OmpX and Ail) that form integral membrane β-barrels. The ability to measure orientation-dependent frequencies in the solid-state NMR spectra of membrane-embedded proteins provides the foundation for a powerful approach to structure determination based primarily on orientation restraints. Orientation restraints are particularly useful for NMR structural studies of membrane proteins because they provide information about both three-dimensional structure

  20. Tandem Facial Amphiphiles for Membrane Protein Stabilization

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Gotfryd, Kamil; Pacyna, Jennifer

    2010-01-01

    We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles....

  1. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice.

    Science.gov (United States)

    Chatterjee, Saurabh; Rana, Ritu; Corbett, Jean; Kadiiska, Maria B; Goldstein, Joyce; Mason, Ronald P

    2012-05-01

    While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl(4)-treated hepatocytes and generating redox-mediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and posttranslational nitration, primarily in Kupffer cells, at 24h post-CCl(4) administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase and P2X7 receptor-dependent, correlated well with the release of TNF-α and MCP-2 from Kupffer cells. The Kupffer cells in CCl(4)-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms.

  2. Cell-penetrating peptide derived from human eosinophil cationic protein inhibits mite allergen Der p 2 induced inflammasome activation.

    Directory of Open Access Journals (Sweden)

    Sheng-Jie Yu

    Full Text Available Newly discovered cell penetration peptides derived from human eosinophil cationic proteins (CPPecp have the characteristic of cell internalization, but the effect of CPPecp on immunomodulation has not been clarified. House dust mite (HDM major allergen, Der p 2, can induce proinflammatory cytokine production which contributes to airway inflammation and allergic asthma. However, the mechanism of Der p 2 on NLRP3 inflammasome activation remains unclear. The aim of this study was to investigate the immunomodulatory effect of CPPecp on inhibition of Der p 2 induced inflammasome activation. We showed that proinflammatory cytokines IL-1β, IL-6 and IL-8 were significantly upregulated in peripheral blood mononuclear cells (PBMCs derived from HDM allergic patients after Der p 2 stimulation. Expression of NLRP3, ASC, Caspase-1, IL-1β and Caspase-1 activity was upregulated in THP-1 cells after Der p 2 stimulation. Proinflammatory cytokine production, NLRP3 inflammasome activation and caspase-1 activity were downregulated in THP-1 cells and CD14+ cells co-cultured with Der p 2 and CPPecp. The immunomodulatory effect of CPPecp was through upregulation of IFN-α production but not induction of autophagy. These results suggested Der p 2 plays an important role in NLRP3 inflammasome activation and CPPecp has the potential to be a novel anti-inflammatory agent for allergic inflammation treatment in the future.

  3. Activity assay of membrane transport proteins

    Institute of Scientific and Technical Information of China (English)

    Hao Xie

    2008-01-01

    Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters,transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiological assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.

  4. Structural differences between Saccharomyces cerevisiae ribosomal stalk proteins P1 and P2 support their functional diversity.

    Science.gov (United States)

    Zurdo, J; González, C; Sanz, J M; Rico, M; Remacha, M; Ballesta, J P

    2000-08-01

    The eukaryotic acidic P1 and P2 proteins modulate the activity of the ribosomal stalk but playing distinct roles. The aim of this work was to analyze the structural features that are behind their different function. A structural characterization of Saccharomyces cerevisaie P1 alpha and P2 beta proteins was performed by circular dichroism, nuclear magnetic resonance, fluorescence spectroscopy, thermal denaturation, and protease sensitivity. The results confirm the low structure present in both proteins but reveal clear differences between them. P1 alpha shows a virtually unordered secondary structure with a residual helical content that disappears below 30 degrees C and a clear tendency to acquire secondary structure at low pH and in the presence of trifluoroethanol. In agreement with this higher disorder P1 alpha has a fully solvent-accessible tryptophan residue and, in contrast to P2 beta, is highly sensitive to protease degradation. An interaction between both proteins was observed, which induces an increase in the global secondary structure content of both proteins. Moreover, mixing of both proteins causes a shift of the P1 alpha tryptophan 40 signal, pointing to an involvement of this region in the interaction. This evidence directly proves an interaction between P1 alpha and P2 beta before ribosome binding and suggests a functional complementation between them. On a whole, the results provide structural support for the different functional roles played by the proteins of the two groups showing, at the same time, that relatively small structural differences between the two stalk acidic protein types can result in significant functional changes.

  5. Lateral proton transfer between the membrane and a membrane protein.

    Science.gov (United States)

    Ojemyr, Linda; Sandén, Tor; Widengren, Jerker; Brzezinski, Peter

    2009-03-17

    Proton transport across biological membranes is a key step of the energy conservation machinery in living organisms, and it has been proposed that the membrane itself plays an important role in this process. In the present study we have investigated the effect of incorporation of a proton transporter, cytochrome c oxidase, into a membrane on the protonation kinetics of a fluorescent pH-sensitive probe attached at the surface of the protein. The results show that proton transfer to the probe was slightly accelerated upon attachment at the protein surface (approximately 7 x 1010 s(-1) M(-1), compared to the expected value of (1-2) x 10(10) s(-1) M(-1)), which is presumably due to the presence of acidic/His groups in the vicinity. Upon incorporation of the protein into small unilamellar phospholipid vesicles the rate increased by more than a factor of 400 to approximately 3 x 10(13) s(-1) M(-1), which indicates that the protein-attached probe is in rapid protonic contact with the membrane surface. The results indicate that the membrane acts to accelerate proton uptake by the membrane-bound proton transporter.

  6. Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Amr [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Present address: Genomics Facility, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619 (Egypt); Hutchens, Heather M. [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States); Howard Berg, R. [Integrated Microscopy Facility, Donald Danforth Plant Science Center, Saint Louis, MO 63132 (United States); Sue Loesch-Fries, L., E-mail: loeschfr@purdue.edu [Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 (United States)

    2012-11-25

    To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed with P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.

  7. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly.

    Science.gov (United States)

    Knowles, Timothy J; Scott-Tucker, Anthony; Overduin, Michael; Henderson, Ian R

    2009-03-01

    The folding of transmembrane proteins into the outer membrane presents formidable challenges to Gram-negative bacteria. These proteins must migrate from the cytoplasm, through the inner membrane and into the periplasm, before being recognized by the beta-barrel assembly machinery, which mediates efficient insertion of folded beta-barrels into the outer membrane. Recent discoveries of component structures and accessory interactions of this complex are yielding insights into how cells fold membrane proteins. Here, we discuss how these structures illuminate the mechanisms responsible for the biogenesis of outer membrane proteins.

  8. Thermostabilisation of membrane proteins for structural studies

    Science.gov (United States)

    Magnani, Francesca; Serrano-Vega, Maria J.; Shibata, Yoko; Abdul-Hussein, Saba; Lebon, Guillaume; Miller-Gallacher, Jennifer; Singhal, Ankita; Strege, Annette; Thomas, Jennifer A.; Tate, Christopher G.

    2017-01-01

    The thermostability of an integral membrane protein in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals suitable for structure determination. However, many mammalian membrane proteins are too unstable for crystallisation. We developed a thermostabilisation strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes approximately 6-12 months to thermostabilise a G protein-coupled receptor (GPCR) containing 300 amino acid residues. The resulting thermostabilised membrane proteins are more easily crystallised and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs, because it is possible to determine multiple structures of the thermostabilised receptors bound to low affinity ligands. Protocols and advice are given on how to develop thermostability assays for membrane proteins and how to combine mutations to make an optimally stable mutant suitable for structural studies. PMID:27466713

  9. Solid-state NMR and Membrane Proteins

    Science.gov (United States)

    Opella, Stanley J.

    2015-01-01

    The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers. PMID:25681966

  10. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met...... this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor....../separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...

  11. Flagellar membrane proteins in kinetoplastid parasites.

    Science.gov (United States)

    Landfear, Scott M; Tran, Khoa D; Sanchez, Marco A

    2015-09-01

    All kinetoplastid parasites, including protozoa such as Leishmania species, Trypanosoma brucei, and Trypanosoma cruzi that cause devastating diseases in humans and animals, are flagellated throughout their life cycles. Although flagella were originally thought of primarily as motility organelles, flagellar functions in other critical processes, especially in sensing and signal transduction, have become more fully appreciated in the recent past. The flagellar membrane is a highly specialized subdomain of the surface membrane, and flagellar membrane proteins are likely to be critical components for all the biologically important roles of flagella. In this review, we summarize recent discoveries relevant to flagellar membrane proteins in these parasites, including the identification of such proteins, investigation of their biological functions, and mechanisms of selective trafficking to the flagellar membrane. Prospects for future investigations and current unsolved problems are highlighted.

  12. Protein transfer to membranes upon shape deformation

    NARCIS (Netherlands)

    Sagis, L.M.C.; Bijl, E.; Antono, L.; Ruijter, de N.C.A.; Valenberg, van H.J.F.

    2013-01-01

    Red blood cells, milk fat droplets, or liposomes all have interfaces consisting of lipid membranes. These particles show significant shape deformations as a result of flow. Here we show that these shape deformations can induce adsorption of proteins to the membrane. Red blood cell deformability is a

  13. Protein profiles of hatchery egg shell membrane

    Science.gov (United States)

    Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...

  14. Cloning and Characterization of the Acidic Ribosomal Protein P2 of Cryptosporidium parvum, a New 17-Kilodalton Antigen▿

    Science.gov (United States)

    Priest, Jeffrey W.; Kwon, James P.; Montgomery, Joel M.; Bern, Caryn; Moss, Delynn M.; Freeman, Amanda R.; Jones, Cara C.; Arrowood, Michael J.; Won, Kimberly Y.; Lammie, Patrick J.; Gilman, Robert H.; Mead, Jan R.

    2010-01-01

    Cryptosporidium infection is commonly observed among children and immunocompromised individuals in developing countries, but large-scale outbreaks of disease among adults have not been reported. In contrast, outbreaks of cryptosporidiosis in the United States and Canada are increasingly common among patients of all ages. Thus, it seems likely that residents of regions where Cryptosporidium is highly endemic acquire some level of immunity, while residents of the developed world do not. A new immunodominant Cryptosporidium parvum antigen in the 15- to 17-kDa size range was identified as the Cryptosporidium parvum 60S acidic ribosomal protein P2 (CpP2). We developed a recombinant protein-based enzyme-linked immunosorbent assay for serologic population surveillance for antibodies that was 89% sensitive and 92% specific relative to the results of the large-format Western blot assay. The human IgG response is directed almost exclusively toward the highly conserved, carboxy-terminal 15 amino acids of the protein. Although IgG antibody cross-reactivity was documented with sera from patients with acute babesiosis, the development of an anti-CpP2 antibody response in our Peru study population correlated better with Cryptosporidium infection than with infection by any other parasitic protozoan. In Haiti, the prevalence of antibodies to CpP2 plateaus at 11 to 20 years of age. Because anti-CpP2 IgG antibodies were found only among residents of countries in the developing world where Cryptosporidium infection occurs early and often, we propose that this response may be a proxy for the intensity of infection and for acquired immunity. PMID:20410328

  15. Mapping of Chikungunya virus interactions with host proteins identified nsP2 as a highly connected viral component.

    Science.gov (United States)

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Tangy, Frédéric; Vidalain, Pierre-Olivier

    2012-03-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus.

  16. Helix-packing motifs in membrane proteins.

    Science.gov (United States)

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  17. The subcellular distribution of the human ribosomal "stalk" components: P1, P2 and P0 proteins

    DEFF Research Database (Denmark)

    Tchórzewski, Marek; Krokowski, Dawid; Rzeski, Wojciech;

    2003-01-01

    The ribosomal "stalk" structure is a distinct lateral protuberance located on the large ribosomal subunit in prokaryotic, as well as in eukaryotic cells. In eukaryotes, this ribosomal structure is composed of the acidic ribosomal P proteins, forming two hetero-dimers (P1/P2) attached......-proteins that are not actively transported into the nucleus; moreover, this might imply that the "stalk" constituents are assembled onto the ribosomal particle at the very last step of ribosomal maturation, which takes part in the cell cytoplasm....

  18. Differential expression of porins OmpP2A and OmpP2B of Haemophilus ducreyi.

    Science.gov (United States)

    Prather, Derrick T; Bains, Manjeet; Hancock, Robert E W; Filiatrault, Melanie J; Campagnari, Anthony A

    2004-11-01

    Haemophilus ducreyi is a strict human pathogen and the causative agent of the sexually transmitted disease chancroid. The genome of the human-passaged strain of H. ducreyi (35000HP) contains two homologous genes whose protein products have estimated molecular masses of 46 and 43 kDa. A comparative analysis of the deduced amino acid sequences revealed that these proteins share 27 to 33% identity to the outer membrane protein P2 (OmpP2), a major porin of Haemophilus influenzae. Therefore, these proteins have been designated OmpP2A and OmpP2B, respectively. The detection of ompP2A and ompP2B transcripts by reverse transcriptase PCR indicated that these genes were independently transcribed in H. ducreyi 35000HP. Western blot analysis of outer membrane proteins isolated from a geographically diverse collection of H. ducreyi clinical isolates revealed that OmpP2A and OmpP2B were differentially expressed among these strains. Although PCR analysis suggested that ompP2A and ompP2B were conserved among the strains tested, the differential expression observed was due to nucleotide additions and partial gene deletions. Purified OmpP2A and OmpP2B were isolated under nondenaturing conditions, and subsequent analysis demonstrated that these two proteins exhibited porin activity. OmpP2A and OmpP2B are the first porins described for H. ducreyi.

  19. Intrinsically disordered proteins drive membrane curvature

    Science.gov (United States)

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-07-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  20. Lipid Directed Intrinsic Membrane Protein Segregation

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Thompson, James R.; Helix Nielsen, Claus;

    2013-01-01

    We demonstrate a new approach for direct reconstitution of membrane proteins during giant vesicle formation. We show that it is straightforward to create a tissue-like giant vesicle film swelled with membrane protein using aquaporin SoPIP2;1 as an illustration. These vesicles can also be easily h...... harvested for individual study. By controlling the lipid composition we are able to direct the aquaporin into specific immiscible liquid domains in giant vesicles. The oligomeric α-helical protein cosegregates with the cholesterol-poor domains in phase separating ternary mixtures....

  1. Crystallization of Membrane Proteins by Vapor Diffusion

    Science.gov (United States)

    Delmar, Jared A.; Bolla, Jani Reddy; Su, Chih-Chia; Yu, Edward W.

    2016-01-01

    X-ray crystallography remains the most robust method to determine protein structure at the atomic level. However, the bottlenecks of protein expression and purification often discourage further study. In this chapter, we address the most common problems encountered at these stages. Based on our experiences in expressing and purifying antimicrobial efflux proteins, we explain how a pure and homogenous protein sample can be successfully crystallized by the vapor diffusion method. We present our current protocols and methodologies for this technique. Case studies show step-by-step how we have overcome problems related to expression and diffraction, eventually producing high quality membrane protein crystals for structural determinations. It is our hope that a rational approach can be made of the often anecdotal process of membrane protein crystallization. PMID:25950974

  2. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor...... or as sensor devices based on e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix...... will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport contribution from both protein and biomimetic support matrix. Also the biomimetic matrix must be encapsulated in order to protect it and make...

  3. Correlation between Urothelial Differentiation and Sensory Proteins P2X3, P2X5, TRPV1, and TRPV4 in Normal Urothelium and Papillary Carcinoma of Human Bladder

    Directory of Open Access Journals (Sweden)

    Igor Sterle

    2014-01-01

    Full Text Available Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5 and transient receptor potential vanilloid channels (TRPV1, and TRPV4. Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns.

  4. Model-building codes for membrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, David Noyes; Hunt, Thomas W.; Brown, W. Michael; Schoeniger, Joseph S. (Sandia National Laboratories, Livermore, CA); Slepoy, Alexander; Sale, Kenneth L. (Sandia National Laboratories, Livermore, CA); Young, Malin M. (Sandia National Laboratories, Livermore, CA); Faulon, Jean-Loup Michel; Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA)

    2005-01-01

    We have developed a novel approach to modeling the transmembrane spanning helical bundles of integral membrane proteins using only a sparse set of distance constraints, such as those derived from MS3-D, dipolar-EPR and FRET experiments. Algorithms have been written for searching the conformational space of membrane protein folds matching the set of distance constraints, which provides initial structures for local conformational searches. Local conformation search is achieved by optimizing these candidates against a custom penalty function that incorporates both measures derived from statistical analysis of solved membrane protein structures and distance constraints obtained from experiments. This results in refined helical bundles to which the interhelical loops and amino acid side-chains are added. Using a set of only 27 distance constraints extracted from the literature, our methods successfully recover the structure of dark-adapted rhodopsin to within 3.2 {angstrom} of the crystal structure.

  5. Transmembrane protein sorting driven by membrane curvature

    Science.gov (United States)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  6. Proteomics characterization of abundant Golgi membrane proteins.

    Science.gov (United States)

    Bell, A W; Ward, M A; Blackstock, W P; Freeman, H N; Choudhary, J S; Lewis, A P; Chotai, D; Fazel, A; Gushue, J N; Paiement, J; Palcy, S; Chevet, E; Lafrenière-Roula, M; Solari, R; Thomas, D Y; Rowley, A; Bergeron, J J

    2001-02-16

    A mass spectrometric analysis of proteins partitioning into Triton X-114 from purified hepatic Golgi apparatus (84% purity by morphometry, 122-fold enrichment over the homogenate for the Golgi marker galactosyl transferase) led to the unambiguous identification of 81 proteins including a novel Golgi-associated protein of 34 kDa (GPP34). The membrane protein complement was resolved by SDS-polyacrylamide gel electrophoresis and subjected to a hierarchical approach using delayed extraction matrix-assisted laser desorption ionization mass spectrometry characterization by peptide mass fingerprinting, tandem mass spectrometry to generate sequence tags, and Edman sequencing of proteins. Major membrane proteins corresponded to known Golgi residents, a Golgi lectin, anterograde cargo, and an abundance of trafficking proteins including KDEL receptors, p24 family members, SNAREs, Rabs, a single ARF-guanine nucleotide exchange factor, and two SCAMPs. Analytical fractionation and gold immunolabeling of proteins in the purified Golgi fraction were used to assess the intra-Golgi and total cellular distribution of GPP34, two SNAREs, SCAMPs, and the trafficking proteins GBF1, BAP31, and alpha(2)P24 identified by the proteomics approach as well as the endoplasmic reticulum contaminant calnexin. Although GPP34 has never previously been identified as a protein, the localization of GPP34 to the Golgi complex, the conservation of GPP34 from yeast to humans, and the cytosolically exposed location of GPP34 predict a role for a novel coat protein in Golgi trafficking.

  7. Protein permeation through an electrically tunable membrane

    Science.gov (United States)

    Jou, Ining A.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2016-05-01

    Protein filtration is important in many fields of science and technology such as medicine, biology, chemistry, and engineering. Recently, protein separation and filtering with nanoporous membranes has attracted interest due to the possibility of fast separation and high throughput volume. This, however, requires understanding of the protein’s dynamics inside and in the vicinity of the nanopore. In this work, we utilize a Brownian dynamics approach to study the motion of the model protein insulin in the membrane-electrolyte electrostatic potential. We compare the results of the atomic model of the protein with the results of a coarse-grained and a single-bead model, and find that the coarse-grained representation of protein strikes the best balance between the accuracy of the results and the computational effort required. Contrary to common belief, we find that to adequately describe the protein, a single-bead model cannot be utilized without a significant effort to tabulate the simulation parameters. Similar to results for nanoparticle dynamics, our findings also indicate that the electric field and the electro-osmotic flow due to the applied membrane and electrolyte biases affect the capture and translocation of the biomolecule by either attracting or repelling it to or from the nanopore. Our computational model can also be applied to other types of proteins and separation conditions.

  8. Electrophoretic separation method for membrane pore-forming proteins in multilayer lipid membranes.

    Science.gov (United States)

    Okamoto, Yukihiro; Tsujimoto, Yusuke; Umakoshi, Hiroshi

    2016-03-01

    In this paper, we report on a novel electrophoretic separation and analysis method for membrane pore-forming proteins in multilayer lipid membranes (MLMs) in order to overcome the problems related to current separation and analysis methods of membrane proteins, and to obtain a high-performance separation method on the basis of specific properties of the lipid membranes. We constructed MLMs, and subsequently characterized membrane pore-forming protein behavior in MLMs. Through the use of these MLMs, we were able to successfully separate and analyze membrane pore-forming proteins in MLMs. To the best of our knowledge, this research is the first example of membrane pore-forming protein separation in lipid membranes. Our method can be expected to be applied for the separation and analysis of other membrane proteins including intrinsic membrane proteins and to result in high-performance by utilizing the specific properties of lipid membranes.

  9. Engineering Lipid Bilayer Membranes for Protein Studies

    Directory of Open Access Journals (Sweden)

    Muhammad Shuja Khan

    2013-10-01

    Full Text Available Lipid membranes regulate the flow of nutrients and communication signaling between cells and protect the sub-cellular structures. Recent attempts to fabricate artificial systems using nanostructures that mimic the physiological properties of natural lipid bilayer membranes (LBM fused with transmembrane proteins have helped demonstrate the importance of temperature, pH, ionic strength, adsorption behavior, conformational reorientation and surface density in cellular membranes which all affect the incorporation of proteins on solid surfaces. Much of this work is performed on artificial templates made of polymer sponges or porous materials based on alumina, mica, and porous silicon (PSi surfaces. For example, porous silicon materials have high biocompatibility, biodegradability, and photoluminescence, which allow them to be used both as a support structure for lipid bilayers or a template to measure the electrochemical functionality of living cells grown over the surface as in vivo. The variety of these media, coupled with the complex physiological conditions present in living systems, warrant a summary and prospectus detailing which artificial systems provide the most promise for different biological conditions. This study summarizes the use of electrochemical impedance spectroscopy (EIS data on artificial biological membranes that are closely matched with previously published biological systems using both black lipid membrane and patch clamp techniques.

  10. A framework for protein and membrane interactions

    CERN Document Server

    Bacci, Giorgio; Miculan, Marino; 10.4204/EPTCS.11.2

    2009-01-01

    We introduce the BioBeta Framework, a meta-model for both protein-level and membrane-level interactions of living cells. This formalism aims to provide a formal setting where to encode, compare and merge models at different abstraction levels; in particular, higher-level (e.g. membrane) activities can be given a formal biological justification in terms of low-level (i.e., protein) interactions. A BioBeta specification provides a protein signature together a set of protein reactions, in the spirit of the kappa-calculus. Moreover, the specification describes when a protein configuration triggers one of the only two membrane interaction allowed, that is "pinch" and "fuse". In this paper we define the syntax and semantics of BioBeta, analyse its properties, give it an interpretation as biobigraphical reactive systems, and discuss its expressivity by comparing with kappa-calculus and modelling significant examples. Notably, BioBeta has been designed after a bigraphical metamodel for the same purposes. Hence, each ...

  11. Subdiffusion of proteins and oligomers on membranes

    Science.gov (United States)

    Lepzelter, David; Zaman, Muhammad

    2012-11-01

    Diffusion of proteins on lipid membranes plays a central role in cell signaling processes. From a mathematical perspective, most membrane diffusion processes are explained by the Saffman-Delbrück theory. However, recent studies have suggested a major limitation in the theoretical framework, the lack of complexity in the modeled lipid membrane. Lipid domains (sometimes termed membrane rafts) are known to slow protein diffusion, but there have been no quantitative theoretical examinations of how much diffusion is slowed in a general case. We provide an overall theoretical framework for confined-domain ("corralled") diffusion. Further, there have been multiple apparent contradictions of the basic conclusions of Saffman and Delbrück, each involving cases in which a single protein or an oligomer has multiple transmembrane regions passing through a lipid phase barrier. We present a set of corrections to the Saffman-Delbrück theory to account for these experimental observations. Our corrections are able to provide a quantitative explanation of numerous cellular signaling processes that have been considered beyond the scope of the Saffman-Delbrück theory, and may be extendable to other forms of subdiffusion.

  12. Chemically Stable Lipids for Membrane Protein Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Ishchenko, Andrii; Peng, Lingling; Zinovev, Egor; Vlasov, Alexey; Lee, Sung Chang; Kuklin, Alexander; Mishin, Alexey; Borshchevskiy, Valentin; Zhang, Qinghai; Cherezov, Vadim (MIPT); (USC); (Scripps)

    2017-05-01

    The lipidic cubic phase (LCP) has been widely recognized as a promising membrane-mimicking matrix for biophysical studies of membrane proteins and their crystallization in a lipidic environment. Application of this material to a wide variety of membrane proteins, however, is hindered due to a limited number of available host lipids, mostly monoacylglycerols (MAGs). Here, we designed, synthesized, and characterized a series of chemically stable lipids resistant to hydrolysis, with properties complementary to the widely used MAGs. In order to assess their potential to serve as host lipids for crystallization, we characterized the phase properties and lattice parameters of mesophases made of two most promising lipids at a variety of different conditions by polarized light microscopy and small-angle X-ray scattering. Both lipids showed remarkable chemical stability and an extended LCP region in the phase diagram covering a wide range of temperatures down to 4 °C. One of these lipids has been used for crystallization and structure determination of a prototypical membrane protein bacteriorhodopsin at 4 and 20 °C.

  13. 2P2IHUNTER: a tool for filtering orthosteric protein–protein interaction modulators via a dedicated support vector machine

    Science.gov (United States)

    Hamon, Véronique; Bourgeas, Raphael; Ducrot, Pierre; Theret, Isabelle; Xuereb, Laura; Basse, Marie Jeanne; Brunel, Jean Michel; Combes, Sebastien; Morelli, Xavier; Roche, Philippe

    2014-01-01

    Over the last 10 years, protein–protein interactions (PPIs) have shown increasing potential as new therapeutic targets. As a consequence, PPIs are today the most screened target class in high-throughput screening (HTS). The development of broad chemical libraries dedicated to these particular targets is essential; however, the chemical space associated with this ‘high-hanging fruit’ is still under debate. Here, we analyse the properties of 40 non-redundant small molecules present in the 2P2I database (http://2p2idb.cnrs-mrs.fr/) to define a general profile of orthosteric inhibitors and propose an original protocol to filter general screening libraries using a support vector machine (SVM) with 11 standard Dragon molecular descriptors. The filtering protocol has been validated using external datasets from PubChem BioAssay and results from in-house screening campaigns. This external blind validation demonstrated the ability of the SVM model to reduce the size of the filtered chemical library by eliminating up to 96% of the compounds as well as enhancing the proportion of active compounds by up to a factor of 8. We believe that the resulting chemical space identified in this paper will provide the scientific community with a concrete support to search for PPI inhibitors during HTS campaigns. PMID:24196694

  14. Combinatorial method for overexpression of membrane proteins in Escherichia coli.

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-07-30

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.

  15. Combinatorial Method for Overexpression of Membrane Proteins in Escherichia coli*

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-01-01

    Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters. PMID:20525689

  16. Membrane topology and insertion of membrane proteins : Search for topogenic signals

    NARCIS (Netherlands)

    Geest, Marleen van; Lolkema, Juke S.

    2000-01-01

    Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain s

  17. Suppressing membrane height fluctuations leads to a membrane-mediated interaction among proteins.

    Science.gov (United States)

    Sapp, Kayla; Maibaum, Lutz

    2016-11-01

    Membrane-induced interactions can play a significant role in the spatial distribution of membrane-bound proteins. We develop a model that combines a continuum description of lipid bilayers with a discrete particle model of proteins to probe the emerging structure of the combined membrane-protein system. Our model takes into account the membrane's elastic behavior, the steric repulsion between proteins, and the quenching of membrane shape fluctuations due to the presence of the proteins. We employ coupled Langevin equations to describe the dynamics of the system. We show that coupling to the membrane induces an attractive interaction among proteins, which may contribute to the clustering of proteins in biological membranes. We investigate the lateral protein diffusion and find that it is reduced due to transient fluctuations in membrane shape.

  18. Suppressing membrane height fluctuations leads to a membrane-mediated interaction among proteins

    Science.gov (United States)

    Sapp, Kayla; Maibaum, Lutz

    2016-11-01

    Membrane-induced interactions can play a significant role in the spatial distribution of membrane-bound proteins. We develop a model that combines a continuum description of lipid bilayers with a discrete particle model of proteins to probe the emerging structure of the combined membrane-protein system. Our model takes into account the membrane's elastic behavior, the steric repulsion between proteins, and the quenching of membrane shape fluctuations due to the presence of the proteins. We employ coupled Langevin equations to describe the dynamics of the system. We show that coupling to the membrane induces an attractive interaction among proteins, which may contribute to the clustering of proteins in biological membranes. We investigate the lateral protein diffusion and find that it is reduced due to transient fluctuations in membrane shape.

  19. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  20. Integral Membrane Protein Expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Stroud, Robert M; Hays, Franklin A

    2016-01-01

    Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.

  1. Stochastic single-molecule dynamics of synaptic membrane protein domains

    CERN Document Server

    Kahraman, Osman; Haselwandter, Christoph A

    2016-01-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  2. Organization and Dynamics of Receptor Proteins in a Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Sansom, Mark S P

    2015-11-25

    The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.

  3. Xanthophylls as modulators of membrane protein function.

    Science.gov (United States)

    Ruban, Alexander V; Johnson, Matthew P

    2010-12-01

    This review discusses the structural aspect of the role of photosynthetic antenna xanthophylls. It argues that xanthophyll hydrophobicity/polarity could explain the reason for xanthophyll variety and help to understand their recently emerging function--control of membrane organization and the work of membrane proteins. The structure of a xanthophyll molecule is discussed in relation to other amphiphilic compounds like lipids, detergents, etc. Xanthophyll composition of membrane proteins, the role of their variety in protein function are discussed using as an example for the major light harvesting antenna complex of photosystem II, LHCII, from higher plants. A new empirical parameter, hydrophobicity parameter (H-parameter), has been introduced as an effective measure of the hydrophobicity of the xanthophyll complement of LHCII from different xanthophyll biosynthesis mutants of Arabidopsis. Photosystem II quantum efficiency was found to correlate well with the H-parameter of LHCII xanthophylls. PSII down-regulation by non-photochemical chlorophyll fluorescence quenching, NPQ, had optimum corresponding to the wild-type xanthophyll composition, where lutein occupies intrinsic sites, L1 and L2. Xanthophyll polarity/hydrophobicity alteration by the activity of the xanthophyll cycle explains the allosteric character of NPQ regulation, memory of illumination history and the hysteretic nature of the relationship between the triggering factor, ΔpH, and the energy dissipation process. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    Science.gov (United States)

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  5. Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

    Science.gov (United States)

    Chisari, Mariangela; Saini, Deepak Kumar; Kalyanaraman, Vani; Gautam, Narasimhan

    2007-08-17

    Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytoplasmic surfaces of the plasma membrane and endomembranes to maintain G protein pools in intracellular membranes to establish direct communication between receptors and endomembranes.

  6. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    Science.gov (United States)

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.

  7. Designing mimics of membrane active proteins.

    Science.gov (United States)

    Sgolastra, Federica; Deronde, Brittany M; Sarapas, Joel M; Som, Abhigyan; Tew, Gregory N

    2013-12-17

    As a semipermeable barrier that controls the flux of biomolecules in and out the cell, the plasma membrane is critical in cell function and survival. Many proteins interact with the plasma membrane and modulate its physiology. Within this large landscape of membrane-active molecules, researchers have focused significant attention on two specific classes of peptides, antimicrobial peptides (AMPs) and cell penetrating peptides (CPPs), because of their unique properties. In this Account, we describe our efforts over the last decade to build and understand synthetic mimics of antimicrobial peptides (SMAMPs). These endeavors represent one specific example of a much larger effort to understand how synthetic molecules interact with and manipulate the plasma membrane. Using both defined molecular weight oligomers and easier to produce, but heterogeneous, polymers, we have generated scaffolds with biological potency exceeding that of the natural analogues. One of these compounds has progressed through a phase II clinical trial for pan-staph infections. Modern biophysical assays have highlighted the interplay between the synthetic scaffold and lipid composition: a negative Gaussian curvature is required both for pore formation and for the initiation of endosome creation. Although work remains to better resolve the complexity of this interplay between lipids, other bilayer components, and the scaffolds, significant new insights have been discovered. These results point to the importance of considering the various aspects of permeation and how these are related to "pore formation". More recently, our efforts have expanded toward protein transduction domains, or mimics of cell penetrating peptides. Using a combination of unique molecular scaffolds and guanidinium-rich side chains, we have produced an array of polymers with robust membrane (and delivery) activity. In this new area, researchers are just beginning to understand the fundamental interactions between these new

  8. Cystoviral polymerase complex protein P7 uses its acidic C-terminal tail to regulate the RNA-directed RNA polymerase P2.

    Science.gov (United States)

    Alphonse, Sébastien; Arnold, Jamie J; Bhattacharya, Shibani; Wang, Hsin; Kloss, Brian; Cameron, Craig E; Ghose, Ranajeet

    2014-07-15

    In bacteriophages of the cystovirus family, the polymerase complex (PX) encodes a 75-kDa RNA-directed RNA polymerase (P2) that transcribes the double-stranded RNA genome. Also a constituent of the PX is the essential protein P7 that, in addition to accelerating PX assembly and facilitating genome packaging, plays a regulatory role in transcription. Deletion of P7 from the PX leads to aberrant plus-strand synthesis suggesting its influence on the transcriptase activity of P2. Here, using solution NMR techniques and the P2 and P7 proteins from cystovirus ϕ12, we demonstrate their largely electrostatic interaction in vitro. Chemical shift perturbations on P7 in the presence of P2 suggest that this interaction involves the dynamic C-terminal tail of P7, more specifically an acidic cluster therein. Patterns of chemical shift changes induced on P2 by the P7 C-terminus resemble those seen in the presence of single-stranded RNA suggesting similarities in binding. This association between P2 and P7 reduces the affinity of the former toward template RNA and results in its decreased activity both in de novo RNA synthesis and in extending a short primer. Given the presence of C-terminal acidic tracts on all cystoviral P7 proteins, the electrostatic nature of the P2/P7 interaction is likely conserved within the family and could constitute a mechanism through which P7 regulates transcription in cystoviruses.

  9. Membrane shape instabilities induced by BAR domain proteins

    Science.gov (United States)

    Baumgart, Tobias

    2014-03-01

    Membrane curvature has developed into a forefront of membrane biophysics. Numerous proteins involved in membrane curvature sensing and membrane curvature generation have recently been discovered, including proteins containing the crescent-shaped BAR domain as membrane binding and shaping module. Accordingly, the structure determination of these proteins and their multimeric complexes is increasingly well-understood. Substantially less understood, however, are thermodynamic and kinetic aspects and the detailed mechanisms of how these proteins interact with membranes in a curvature-dependent manner. New experimental approaches need to be combined with established techniques to be able to fill in these missing details. Here we use model membrane systems in combination with a variety of biophysical techniques to characterize mechanistic aspects of BAR domain protein function. This includes a characterization of membrane curvature sensing and membrane generation. We also establish kinetic and thermodynamic aspects of BAR protein dimerization in solution, and investigate kinetic aspects of membrane binding. We present two new approaches to investigate membrane shape instabilities and demonstrate that membrane shape instabilities can be controlled by protein binding and lateral membrane tension. This work is supported through NIH grant GM-097552 and NSF grant CBET-1053857.

  10. Research progress on Helicobacter pyloriouter membrane protein

    Institute of Scientific and Technical Information of China (English)

    Shi-He Shao; Hua Wang; Shun-Gen Chai; Li-Mei Liu

    2005-01-01

    Helicobacter pylori (H pylori), one of the most common bacterial pathogens on human beings, colonizes the gastric mucosa. In its 95 paralogous gene families, there is a large outer membrane protein (OMP) family. It includes 32 members. These OMP are important for the diagnosis, protective immunity, pathogenicity of H pylori and so on. They are significantly associated with high H pylori density,the damage of gastric mucosa, high mucosal IL-8 levels and severe neutrophil infiltration. We introduce their research progress on pathogenicity.

  11. Bilayer-thickness-mediated interactions between integral membrane proteins

    CERN Document Server

    Kahraman, Osman; Klug, William S; Haselwandter, Christoph A

    2016-01-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology al...

  12. Proteopolymersomes: in vitro production of a membrane protein in polymersome membranes.

    Science.gov (United States)

    Nallani, Madhavan; Andreasson-Ochsner, Mirjam; Tan, Cherng-Wen Darren; Sinner, Eva-Kathrin; Wisantoso, Yudi; Geifman-Shochat, Susana; Hunziker, Walter

    2011-12-01

    Polymersomes are stable self-assembled architectures which mimic cell membranes. For characterization, membrane proteins can be incorporated into such bio-mimetic membranes by reconstitution methods, leading to so-called proteopolymersomes. In this work, we demonstrate the direct incorporation of a membrane protein into polymersome membranes by a cell-free expression system. Firstly, we demonstrate pore formation in the preformed polymersome membrane using α-hemolysin. Secondly, we use claudin-2, a protein involved in cell-cell interactions, to demonstrate the in vitro expression of a membrane protein into these polymersomes. Surface plasmon resonance (Biacore) binding studies with the claudin-2 proteopolymersomes and claudin-2 specific antibodies are performed to show the presence of the in vitro expressed protein in polymersome membranes.

  13. Membrane Proteins : The Key Players of a Cancer Cell

    NARCIS (Netherlands)

    Kampen, Kim R.

    2011-01-01

    Membrane proteins are involved in the prognosis of the most common forms of cancer. Membrane proteins are the hallmark of a cancer cell. The overexpressed membrane receptors are becoming increasingly important in cancer cell therapy. Current renewing therapy approaches based on receptor overexpressi

  14. Membrane Proteins : The Key Players of a Cancer Cell

    NARCIS (Netherlands)

    Kampen, Kim R.

    Membrane proteins are involved in the prognosis of the most common forms of cancer. Membrane proteins are the hallmark of a cancer cell. The overexpressed membrane receptors are becoming increasingly important in cancer cell therapy. Current renewing therapy approaches based on receptor

  15. Biogenesis of inner membrane proteins in Escherichia coli.

    Science.gov (United States)

    Luirink, Joen; Yu, Zhong; Wagner, Samuel; de Gier, Jan-Willem

    2012-06-01

    The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.

  16. Durable vesicles for reconstitution of membrane proteins in biotechnology

    Science.gov (United States)

    Khan, Sanobar; Muench, Stephen P.; Jeuken, Lars J.C.

    2017-01-01

    The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with. PMID:28202656

  17. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (HII) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    Science.gov (United States)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  19. Directional interactions and cooperativity between mechanosensitive membrane proteins

    Science.gov (United States)

    Haselwandter, Christoph A.; Phillips, Rob

    2013-01-01

    While modern structural biology has provided us with a rich and diverse picture of membrane proteins, the biological function of membrane proteins is often influenced by the mechanical properties of the surrounding lipid bilayer. Here we explore the relation between the shape of membrane proteins and the cooperative function of membrane proteins induced by membrane-mediated elastic interactions. For the experimental model system of mechanosensitive ion channels we find that the sign and strength of elastic interactions depend on the protein shape, yielding distinct cooperative gating curves for distinct protein orientations. Our approach predicts how directional elastic interactions affect the molecular structure, organization, and biological function of proteins in crowded membranes. PMID:25309021

  20. Determination of membrane protein glycation in diabetic tissue

    OpenAIRE

    Zhang, Eric Y.; Swaan, Peter W.

    1999-01-01

    Diabetes-associated hyperglycemia causes glycation of proteins at reactive amino groups, which can adversely affect protein function Although the effects of glycation on soluble proteins are well characterized, there is no information regarding membrane-associated proteins, mainly because of the lack of reproducible methods to determine protein glycation in vivo. The current study was conducted to establish such a method and to compare the glycation levels of membrane-associated proteins deri...

  1. Structural and Molecular Modeling Features of P2X Receptors

    Directory of Open Access Journals (Sweden)

    Luiz Anastacio Alves

    2014-03-01

    Full Text Available Currently, adenosine 5'-triphosphate (ATP is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors.

  2. Cutting edge: the nucleotide receptor P2X7 contains multiple protein- and lipid-interaction motifs including a potential binding site for bacterial lipopolysaccharide.

    Science.gov (United States)

    Denlinger, L C; Fisette, P L; Sommer, J A; Watters, J J; Prabhu, U; Dubyak, G R; Proctor, R A; Bertics, P J

    2001-08-15

    The nucleotide receptor P2X7 has been shown to modulate LPS-induced macrophage production of numerous inflammatory mediators. Although the C-terminal portion of P2X7 is thought to be essential for multiple receptor functions, little is known regarding the structural motifs that lie within this region. We show here that the P2X7 C-terminal domain contains several apparent protein-protein and protein-lipid interaction motifs with potential importance to macrophage signaling and LPS action. Surprisingly, P2X7 also contains a conserved LPS-binding domain. In this report, we demonstrate that peptides derived from this P2X7 sequence bind LPS in vitro. Moreover, these peptides neutralize the ability of LPS to activate the extracellular signal-regulated kinases (ERK1, ERK2) and to promote the degradation of the inhibitor of kappaB-alpha isoform (IkappaB-alpha) in RAW 264.7 macrophages. Collectively, these data suggest that the C-terminal domain of P2X7 may directly coordinate several signal transduction events related to macrophage function and LPS action.

  3. 2P2I HUNTER: a tool for filtering orthosteric protein-protein interaction modulators via a dedicated support vector machine.

    Science.gov (United States)

    Hamon, Véronique; Bourgeas, Raphael; Ducrot, Pierre; Theret, Isabelle; Xuereb, Laura; Basse, Marie Jeanne; Brunel, Jean Michel; Combes, Sebastien; Morelli, Xavier; Roche, Philippe

    2014-01-06

    Over the last 10 years, protein-protein interactions (PPIs) have shown increasing potential as new therapeutic targets. As a consequence, PPIs are today the most screened target class in high-throughput screening (HTS). The development of broad chemical libraries dedicated to these particular targets is essential; however, the chemical space associated with this 'high-hanging fruit' is still under debate. Here, we analyse the properties of 40 non-redundant small molecules present in the 2P2I database (http://2p2idb.cnrs-mrs.fr/) to define a general profile of orthosteric inhibitors and propose an original protocol to filter general screening libraries using a support vector machine (SVM) with 11 standard Dragon molecular descriptors. The filtering protocol has been validated using external datasets from PubChem BioAssay and results from in-house screening campaigns. This external blind validation demonstrated the ability of the SVM model to reduce the size of the filtered chemical library by eliminating up to 96% of the compounds as well as enhancing the proportion of active compounds by up to a factor of 8. We believe that the resulting chemical space identified in this paper will provide the scientific community with a concrete support to search for PPI inhibitors during HTS campaigns.

  4. Analysis of chikungunya virus proteins reveals that non-structural proteins nsP2 and nsP3 exhibit RNA interference (RNAi) suppressor activity.

    Science.gov (United States)

    Mathur, Kalika; Anand, Abhishek; Dubey, Sunil Kumar; Sanan-Mishra, Neeti; Bhatnagar, Raj K; Sunil, Sujatha

    2016-11-30

    RNAi pathway is an antiviral defence mechanism employed by insects that result in degradation of viral RNA thereby curbing infection. Several viruses including flaviviruses encode viral suppressors of RNAi (VSRs) to counteract the antiviral RNAi pathway. Till date, no VSR has been reported in alphaviruses. The present study was undertaken to evaluate chikungunya virus (CHIKV) proteins for RNAi suppressor activity. We systematically analyzed all nine CHIKV proteins for RNAi suppressor activity using Sf21 RNAi sensor cell line based assay. Two non-structural proteins, namely, nsP2 and nsP3 were found to exhibit RNAi suppressor activity. We further validated the findings in natural hosts, namely in Aedes and in mammalian cell lines and further through EMSA and Agrobacterium infiltration in GFP silenced transgenic tobacco plants. Domains responsible for maximum RNAi suppressor activity were also identified within these proteins. RNA binding motifs in these domains were identified and their participation in RNAi suppression evaluated using site directed mutagenesis. Sequence alignment of these motifs across all species of known alphaviruses revealed conservation of these motifs emphasizing on a similar role of action in other species of alphaviruses as well. Further validation of RNAi suppressor activity of these proteins awaits establishment of specific virus infection models.

  5. Testing protein permeability of dialysis membranes using SDS-PAGE.

    Science.gov (United States)

    Mann, H; Melzer, H; Al-Bashir, A; Xu, X Q; Stiller, S

    2002-05-01

    Permeability of dialysis membranes for high molecular weight compounds should be similar to that of the glomerular membrane in order to remove uremic toxins like the human kidney does. In order to evaluate permeability of high-flux dialysis membranes SDS-PAGE is applied for examination of filtrate of dialysers during routine dialysis with different membranes. SDS-PAGE analysis is performed with silver staining method according to the modification of Melzer (5) and consecutive laser densitometry. The protein pattern of filtrate from dialysis membranes is similar to that of the glomerular membrane containing IgG, transferrin, albumin, alpha-1-microglobulin, retinol binding protein and beta-2-microglobulin. Comparing different membranes there are considerable differences depending on cut-off, charge and adsorption capacity of the particular membrane. In all membranes tested permeability of proteins decreases during one treatment session. Protein permeability of high-flux dialysis membranes is similar to the gloemerular membrane but modified according to pore-size, surface charge, adsorption and time on dialysis. In contrast to the glomerular membrane in each of the investigated membranes protein permeability decreases during function.

  6. Zein synthesis and processing on zein protein body membranes. [Maize proteins

    Energy Technology Data Exchange (ETDEWEB)

    Burr, F A

    1978-01-01

    The storage protein of maize, zein, is translated from messenger RNA on ribosomes bound to the outer membrane of the zein protein bodies. No other proteins appear to be made on this membrane. Before zein is transported through the protein body membrane it undergoes at least two post-translational modifications, which are discussed.

  7. Expression, Solubilization, and Purification of Bacterial Membrane Proteins.

    Science.gov (United States)

    Jeffery, Constance J

    2016-02-02

    Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.

  8. The response of Lactococcus lactis to membrane protein production

    NARCIS (Netherlands)

    Marreddy, Ravi K. R.; Coelho Pinto, Joao; Wolters, Justina C.; Geertsma, Eric R.; Fusetti, Fabrizia; Permentier, Hjalmar P.; Kuipers, Oscar P.; Kok, Jan; Poolman, Bert

    2011-01-01

    Background: The biogenesis of membrane proteins is more complex than that of water-soluble proteins, and recombinant expression of membrane proteins in functional form and in amounts high enough for structural and functional studies is often problematic. To better engineer cells towards efficient

  9. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain;

    2014-01-01

    New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self-assemble in combinat...

  10. High-throughput production of prokaryotic membrane proteins.

    Science.gov (United States)

    Dobrovetsky, Elena; Lu, Ming Liang; Andorn-Broza, Ronit; Khutoreskaya, Galina; Bray, James E; Savchenko, Alexei; Arrowsmith, Cheryl H; Edwards, Aled M; Koth, Christopher M

    2005-01-01

    Membrane proteins constitute ~30% of prokaryotic and eukaryotic genomes but comprise a small fraction of the entries in protein structural databases. A number of features of membrane proteins render them challenging targets for the structural biologist, among which the most important is the difficulty in obtaining sufficient quantities of purified protein. We are exploring procedures to express and purify large numbers of prokaryotic membrane proteins. A set of 280 membrane proteins from Escherichia coli and Thermotoga maritima, a thermophile, was cloned and tested for expression in Escherichia coli. Under a set of standard conditions, expression could be detected in the membrane fraction for approximately 30% of the cloned targets. About 22 of the highest expressing membrane proteins were purified, typically in just two chromatographic steps. There was a clear correlation between the number of predicted transmembrane domains in a given target and its propensity to express and purify. Accordingly, the vast majority of successfully expressed and purified proteins had six or fewer transmembrane domains. We did not observe any clear advantage to the use of thermophilic targets. Two of the purified membrane proteins formed crystals. By comparison with protein production efforts for soluble proteins, where approximately 70% of cloned targets express and approximately 25% can be readily purified for structural studies [Christendat et al. (2000) Nat. Struct. Biol., 7, 903], our results demonstrate that a similar approach will succeed for membrane proteins, albeit with an expected higher attrition rate.

  11. NMR-based screening of membrane protein ligands

    NARCIS (Netherlands)

    Yanamala, Naveena; Dutta, Arpana; Beck, Barbara; Van Fleet, Bart; Hay, Kelly; Yazbak, Ahmad; Ishima, Rieko; Doemling, Alexander; Klein-Seetharaman, Judith

    2010-01-01

    Membrane proteins pose problems for the application of NMR-based ligand-screening methods because of the need to maintain the proteins in a membrane mimetic environment such as detergent micelles: they add to the molecular weight of the protein, increase the viscosity of the solution, interact with

  12. The response of Lactococcus lactis to membrane protein production

    NARCIS (Netherlands)

    Marreddy, Ravi K. R.; Coelho Pinto, Joao; Wolters, Justina C.; Geertsma, Eric R.; Fusetti, Fabrizia; Permentier, Hjalmar P.; Kuipers, Oscar P.; Kok, Jan; Poolman, Bert

    2011-01-01

    Background: The biogenesis of membrane proteins is more complex than that of water-soluble proteins, and recombinant expression of membrane proteins in functional form and in amounts high enough for structural and functional studies is often problematic. To better engineer cells towards efficient pr

  13. Studying Membrane Protein Structure and Function Using Nanodiscs

    DEFF Research Database (Denmark)

    Huda, Pie

    The structure and dynamic of membrane proteins can provide valuable information about general functions, diseases and effects of various drugs. Studying membrane proteins are a challenge as an amphiphilic environment is necessary to stabilise the protein in a functionally and structurally relevan...

  14. Imaging of membrane proteins using antenna-based optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppener, Christiane; Novotny, Lukas [Institute of Optics and Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 (United States)], E-mail: novotny@optics.rochester.edu

    2008-09-24

    The localization and identification of individual proteins is of key importance for the understanding of biological processes on the molecular scale. Here, we demonstrate near-field fluorescence imaging of single proteins in their native cell membrane. Incident laser radiation is localized and enhanced with an optical antenna in the form of a spherical gold particle attached to a pointed dielectric tip. Individual proteins can be identified with a diffraction-unlimited spatial resolution of {approx}50 nm. Besides determining the concentration and distribution of specific membrane proteins, this approach makes it possible to study the colocalization of different membrane proteins. Moreover, it enables a simultaneous recording of the membrane topology. Protein distributions can be correlated with the local membrane topology, thereby providing important information on the chemical and structural organization of cellular membranes.

  15. A novel lipoprotein nanoparticle system for membrane proteins

    Science.gov (United States)

    Frauenfeld, Jens; Löving, Robin; Armache, Jean-Paul; Sonnen, Andreas; Guettou, Fatma; Moberg, Per; Zhu, Lin; Jegerschöld, Caroline; Flayhan, Ali; Briggs, John A.G.; Garoff, Henrik; Löw, Christian; Cheng, Yifan; Nordlund, Pär

    2016-01-01

    Membrane proteins are of outstanding importance in biology, drug discovery and vaccination. A common limiting factor in research and applications involving membrane proteins is the ability to solubilize and stabilize membrane proteins. Although detergents represent the major means for solubilizing membrane proteins, they are often associated with protein instability and poor applicability in structural and biophysical studies. Here, we present a novel lipoprotein nanoparticle system that allows for the reconstitution of membrane proteins into a lipid environment that is stabilized by a scaffold of Saposin proteins. We showcase the applicability of the method on two purified membrane protein complexes as well as the direct solubilization and nanoparticle-incorporation of a viral membrane protein complex from the virus membrane. We also demonstrate that this lipid nanoparticle methodology facilitates high-resolution structural studies of membrane proteins in a lipid environment by single-particle electron cryo-microscopy (cryo-EM) and allows for the stabilization of the HIV-envelope glycoprotein in a functional state. PMID:26950744

  16. Membrane-mediated interaction between strongly anisotropic protein scaffolds.

    Directory of Open Access Journals (Sweden)

    Yonatan Schweitzer

    2015-02-01

    Full Text Available Specialized proteins serve as scaffolds sculpting strongly curved membranes of intracellular organelles. Effective membrane shaping requires segregation of these proteins into domains and is, therefore, critically dependent on the protein-protein interaction. Interactions mediated by membrane elastic deformations have been extensively analyzed within approximations of large inter-protein distances, small extents of the protein-mediated membrane bending and small deviations of the protein shapes from isotropic spherical segments. At the same time, important classes of the realistic membrane-shaping proteins have strongly elongated shapes with large and highly anisotropic curvature. Here we investigated, computationally, the membrane mediated interaction between proteins or protein oligomers representing membrane scaffolds with strongly anisotropic curvature, and addressed, quantitatively, a specific case of the scaffold geometrical parameters characterizing BAR domains, which are crucial for membrane shaping in endocytosis. In addition to the previously analyzed contributions to the interaction, we considered a repulsive force stemming from the entropy of the scaffold orientation. We computed this interaction to be of the same order of magnitude as the well-known attractive force related to the entropy of membrane undulations. We demonstrated the scaffold shape anisotropy to cause a mutual aligning of the scaffolds and to generate a strong attractive interaction bringing the scaffolds close to each other to equilibrium distances much smaller than the scaffold size. We computed the energy of interaction between scaffolds of a realistic geometry to constitute tens of kBT, which guarantees a robust segregation of the scaffolds into domains.

  17. Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins.

    Science.gov (United States)

    Mellgren, Ronald L

    2008-04-24

    HEK293 cell detergent-resistant membranes (DRMs) isolated by the standard homogenization protocol employing a Teflon pestle homogenizer yielded a prominent opaque band at approximately 16% sucrose upon density gradient ultracentrifugation. In contrast, cell disruption using a ground glass tissue homogenizer generated three distinct DRM populations migrating at approximately 10%, 14%, and 20% sucrose, named DRM subfractions A, B, and C, respectively. Separation of the DRM subfractions by mechanical disruption suggested that they are physically associated within the cellular environment, but can be dissociated by shear forces generated during vigorous homogenization. All three DRM subfractions possessed cholesterol and ganglioside GM1, but differed in protein composition. Subfraction A was enriched in flotillin-1 and contained little caveolin-1. In contrast, subfractions B and C were enriched in caveolin-1. Subfraction C contained several mitochondrial membrane proteins, including mitofilin and porins. Only subfraction B appeared to contain significant amounts of plasma membrane-associated proteins, as revealed by cell surface labeling studies. A similar distribution of DRM subfractions, as assessed by separation of flotillin-1 and caveolin-1 immunoreactivities, was observed in CHO cells, in 3T3-L1 adipocytes, and in HEK293 cells lysed in detergent-free carbonate. Teflon pestle homogenization of HEK293 cells in the presence of the actin-disrupting agent latrunculin B generated DRM subfractions A-C. The microtubule-disrupting agent vinblastine did not facilitate DRM subfraction separation, and DRMs prepared from fibroblasts of vimentin-null mice were present as a single major band on sucrose gradients, unless pre-treated with latrunculin B. These results suggest that the DRM subfractions are interconnected by the actin cytoskeleton, and not by microtubes or vimentin intermediate filaments. The subfractions described may prove useful in studying discrete protein

  18. Chitosan-based membrane chromatography for protein adsorption and separation.

    Science.gov (United States)

    Liu, Yezhuo; Feng, Zhicheng; Shao, Zhengzhong; Chen, Xin

    2012-08-01

    A chitosan-based membrane chromatography was set up by using natural chitosan/carboxymethylchitosan (CS/CMCS) blend membrane as the matrix. The dynamic adsorption property for protein (lysozyme as model protein) was detailed discussed with the change in pore size of the membrane, the flow rate and the initial concentration of the feed solution, and the layer of membrane in membrane stack. The best dynamic adsorption capacity of lysozyme on the CS/CMCS membrane chromatography was found to be 15.3mg/mL under the optimal flow conditions. Moreover, the CS/CMCS membrane chromatography exhibited good repeatability and reusability with the desorption efficiency of ~90%. As an application, lysozyme and ovalbumin were successfully separated from their binary mixture through the CS/CMCS membrane chromatography. This implies that such a natural chitosan-based membrane chromatography may have great potential on the bioseparation field in the future.

  19. Effects of protein deprivation and re-feeding on P2X_2 receptors in enteric neurons

    Institute of Scientific and Technical Information of China (English)

    Rúbia; Misawa; Priscila; Azevedo; Girotti; Márcia; Sanae; Mizuno; Edson; Aparecido; Liberti; John; Barton; Furness; Patricia; Castelucci

    2010-01-01

    AIM:To investigate the effects of malnutrition and refeeding on the P2X2 receptor,nitric oxide synthase(NOS),calretinin,calbindin and choline acetyltransferase(ChAT) in neurons of the rat ileum.METHODS:We analyzed the co-localization,numbers and sizes of P2X2-expressing neurons in relation to NOS-immunoreactive(IR),calbindin-IR,ChAT-IR,and calretinin-IR neurons of the myenteric and submucosal plexus.The experimental groups consisted of:(1) rats maintained on normal feed throughout pregnancy until 42 d post-...

  20. Structural Requirements for Membrane Assembly of Proteins Spanning the Membrane Several Times

    OpenAIRE

    Lipp, Joachim; Flint, Nicholas; Haeuptle, Marie-Theres; Dobberstein, Bernhard

    1989-01-01

    We have investigated the structural requirements for the biogenesis of proteins spanning the membrane several times. Proteins containing various combinations of topological signals (signal anchor and stop transfer sequences) were synthesized in a cell-free translation system and their membrane topology was determined. Proteins spanning the membrane twice were obtained when a signal anchor sequence was followed by either a stop transfer sequence or a second signal anchor sequence. Thus, a sig...

  1. Challenges in the Development of Functional Assays of Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Sophie Demarche

    2012-11-01

    Full Text Available Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  2. An Integrated Framework Advancing Membrane Protein Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2015-09-01

    Full Text Available Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1 prediction of free energy changes upon mutation; (2 high-resolution structural refinement; (3 protein-protein docking; and (4 assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design.

  3. Membrane interacting regions of Dengue virus NS2A protein.

    Science.gov (United States)

    Nemésio, Henrique; Villalaín, José

    2014-08-28

    The Dengue virus (DENV) NS2A protein, essential for viral replication, is a poorly characterized membrane protein. NS2A displays both protein/protein and membrane/protein interactions, yet neither its functions in the viral cycle nor its active regions are known with certainty. To highlight the different membrane-active regions of NS2A, we characterized the effects of peptides derived from a peptide library encompassing this protein's full length on different membranes by measuring their membrane leakage induction and modulation of lipid phase behavior. Following this initial screening, one region, peptide dens25, had interesting effects on membranes; therefore, we sought to thoroughly characterize this region's interaction with membranes. This peptide presents an interfacial/hydrophobic pattern characteristic of a membrane-proximal segment. We show that dens25 strongly interacts with membranes that contain a large proportion of lipid molecules with a formal negative charge, and that this effect has a major electrostatic contribution. Considering its membrane modulating capabilities, this region might be involved in membrane rearrangements and thus be important for the viral cycle.

  4. Detergent-Specific Membrane Protein Crystallization Screens

    Science.gov (United States)

    Wiener, Michael

    2007-01-01

    A suite of reagents has been developed for three-dimensional crystallization of integral membranes present in solution as protein-detergent complexes (PDCs). The compositions of these reagents have been determined in part by proximity to the phase boundaries (lower consolute boundaries) of the detergents present in the PDCs. The acquisition of some of the requisite phase-boundary data and the preliminary design of several of the detergent- specific screens was supported by a NASA contract. At the time of expiration of the contract, a partial set of preliminary screens had been developed. This work has since been extended under non-NASA sponsorship, leading to near completion of a set of 20 to 30 different and unique detergent- specific 96-condition screens.

  5. Heat shock protein 90 positively regulates Chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection.

    Directory of Open Access Journals (Sweden)

    Indrani Das

    Full Text Available BACKGROUND: The high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV emphasize the need to understand the biology of the virus for developing effective antiviral therapies. METHODS AND FINDINGS: In this study, an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90 mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27 and Indian outbreak strain of 2006 (DRDE-06. Our results showed that Hsp90 is required at a very early stage of viral replication and Hsp90 inhibitor Geldanamycin (GA can abrogate new virus particle formation more effectively in the case of S 27 than that of DRDE-06. Further analysis revealed that CHIKV nsP2 protein level is specifically reduced by GA treatment as well as HSP90-siRNA transfection; however, viral RNA remains unaltered. Immunoprecipitation analysis showed that nsP2 interacts with Hsp90 during infection; however this interaction is reduced in the presence of GA. In addition, our analysis on Hsp90 associated PI3K/Akt/mTOR signaling pathway demonstrated that CHIKV infection stabilizes Raf1 and activates Hsp90 client protein Akt, which in turn phosphorylates mTOR. Subsequently, this phosphorylation leads to the activation of two important downstream effectors, S6K and 4EBP1, which may facilitate translation of viral as well as cellular mRNAs. Hence, the data suggests that CHIKV infection is regulated by Hsp90 associated Akt phosphorylation and DRDE-06 is more efficient than S 27 in enhancing the activation of host signaling molecules for its efficient replication and virus production. CONCLUSION: Hsp90 positively regulates Chikungunya virus replication by stabilizing CHIKV-nsP2 through its interaction during infection. The study highlights the possible molecular mechanism of GA mediated inhibition of CHIKV replication and differential effect of this drug on S 27 and DRDE-06

  6. Fusion protein His-Hsp65-6IA2P2 prevents type 1 diabetes through nasal immunization in NOD Mice.

    Science.gov (United States)

    Lu, Shiping; Li, Guoliang; Liu, Kunfeng; Yang, Xue; Cao, Rongyue; Zong, Li; Long, Jun; Jin, Liang; Wu, Jie

    2016-06-01

    Human heat shock protein 60 (Hsp60), is an endogenous β-cells autoantigen, it could postpone the onset of insulitis and sooner type 1 diabetes mellitus. P277 is one of Hsp65 determinants at position 437-469 of amino acids cascaded. Meanwhile, it's already well-known that there were several better anti-diabetic B epitopes, such as insulinoma antigen-2 (IA-2). Currently, fusion protein IA2P2 has constructed in order to enhance its pharmacological efficacy. In addition, added homologous bacterial-derived Hsp65 and His tag were beneficial to protein immunogenicity and purification separately. So, finally we examined a fusion protein His-Hsp65-6IA2P2 could regulate Th2 immune response and reduce natural diabetic incidence in NOD mice. We constructed two express vector pET28a-His-Hsp65-6P277 and pET28a-His-Hsp65-6IA2P2. After purification, we observed that triple intranasal administration of these two fusion protein in 4-week-old NOD mice maintained normal blood glucose and weight, with a lower diabetic or insulitis incidence. Consistent with induced splenic T cells proliferation and tolerance, His-Hsp65-6IA2P2-treated mice performed reduced IFN-γ and increased IL-10 level. In conclusion, we suggested that fusion protein His-Hsp65-6IA2P2 could be reconstructed and purified successively. Furthermore, nasal administration of this fusion protein could rebalance T cells population and prevent T1DM.

  7. Bilayer-thickness-mediated interactions between integral membrane proteins.

    Science.gov (United States)

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  8. UTP reduces infarct size and improves mice heart function after myocardial infarct via P2Y2 receptor

    DEFF Research Database (Denmark)

    Cohen, A; Shainberg, Asher; Hochhauser, E;

    2011-01-01

    Pyrimidine nucleotides are signaling molecules, which activate G protein-coupled membrane receptors of the P2Y family. P2Y(2) and P2Y(4) receptors are part of the P2Y family, which is composed of 8 subtypes that have been cloned and functionally defined. We have previously found that uridine-5...

  9. Discriminating lysosomal membrane protein types using dynamic neural network.

    Science.gov (United States)

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  10. Microdomains of SNARE proteins in the plasma membrane

    NARCIS (Netherlands)

    Bogaart, G. van den; Lang, T.; Jahn, R.

    2013-01-01

    Exocytosis is catalyzed by the engagement of SNARE proteins embedded in the plasma membrane with complementary SNAREs in the membrane of trafficking vesicles undergoing exocytosis. In most cells studied so far, SNAREs are not randomly distributed across the plasma membrane but are clustered and

  11. ADP stimulates human endothelial cell migration via P2Y1 nucleotide receptor-mediated mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Shen, Jianzhong; DiCorleto, Paul E

    2008-02-29

    Extensive research on the role of ADP in platelet activation led to the design of new anti-thrombotic drugs, such as clopidogrel (Plavix; sanofi-aventis); however, very little is known about the ADP-preferring nucleotide receptors (P2Y1, P2Y12, and P2Y13) in endothelium. Here, we show that ADP stimulates migration of cultured human umbilical vein endothelial cells (HUVECs) in both Boyden chamber and in vitro wound repair assays. This promigratory effect was mimicked by 2-MeSADP, but not by AMP, and was inhibited by MRS2179 (P2Y1 receptor antagonist) but not by AR-C69931MX (P2Y12/13 receptor antagonist). RT-PCR revealed abundant P2Y1, barely detectable P2Y12, and absent P2Y13 receptor message in these cells. In addition, both ADP and 2-MeSADP, but not AMP, activated the mitogen-activated protein kinase pathways as evidenced by increased phosphorylation of extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK), and p38 kinase. ADP also stimulated phosphorylation of p90RSK, a downstream substrate of phosphorylated ERK1/2, and induced phosphorylation of such transcription factors downstream of the JNK and p38 pathways as c-Jun and activating transcription factor-2. These signaling events were inhibited by MRS2179 but not by AR-C69931MX. Furthermore, blockade of the ERK or JNK pathways by U0126 and SP600125, respectively, abolished ADP- and 2-MeSADP-stimulated HUVEC migration. However, inhibition of the p38 pathway by SB203580 partially suppressed ADP- and 2-MeSADP-induced HUVEC migration. We conclude that ADP promotes human endothelial cell migration by activating P2Y1 receptor-mediated MAPK pathways, possibly contributing to reendothelialization and angiogenesis after vascular injury.

  12. Membrane interaction of retroviral Gag proteins

    Directory of Open Access Journals (Sweden)

    Robert Alfred Dick

    2014-04-01

    Full Text Available Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses-- MA, CA, and NC-- provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

  13. Engineering Escherichia coli for Functional Expression of Membrane Proteins

    NARCIS (Netherlands)

    Ho, Franz Y; Poolman, Bert

    2015-01-01

    A major bottleneck in the characterization of membrane proteins is low yield of functional protein in recombinant expression. Microorganisms are widely used for recombinant protein production, because of ease of cultivation and high protein yield. However, the target proteins do not always obtain th

  14. Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules.

    Science.gov (United States)

    Han, Huijong; Myllykoski, Matti; Ruskamo, Salla; Wang, Chaozhan; Kursula, Petri

    2013-01-01

    The myelin sheath is a multilayered membrane in the nervous system, which has unique biochemical properties. Myelin carries a set of specific high-abundance proteins, the structure and function of which are still poorly understood. The proteins of the myelin sheath are involved in a number of neurological diseases, including autoimmune diseases and inherited neuropathies. In this review, we briefly discuss the structural properties and functions of selected myelin-specific proteins (P0, myelin oligodendrocyte glycoprotein, myelin-associated glycoprotein, myelin basic protein, myelin-associated oligodendrocytic basic protein, P2, proteolipid protein, peripheral myelin protein of 22 kDa, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and periaxin); such properties include, for example, interactions with lipid bilayers and the presence of large intrinsically disordered regions in some myelin proteins. A detailed understanding of myelin protein structure and function at the molecular level will be required to fully grasp their physiological roles in the myelin sheath.

  15. High-resolution Structures of Protein-Membrane Complexes by Neutron Reflection and MD Simulation: Membrane Association of the PTEN Tumor Suppressor

    Science.gov (United States)

    Lösche, Matthias

    2012-02-01

    The lipid matrix of biomembranes is an in-plane fluid, thermally and compositionally disordered leaflet of 5 nm thickness and notoriously difficult to characterize in structural terms. Yet, biomembranes are ubiquitous in the cell, and membrane-bound proteins are implicated in a variety of signaling pathways and intra-cellular transport. We developed methodology to study proteins associated with model membranes using neutron reflection measurements and showed recently that this approach can resolve the penetration depth and orientation of membrane proteins with ångstrom resolution if their crystal or NMR structure is known. Here we apply this technology to determine the membrane bindung and unravel functional details of the PTEN phosphatase, a key player in the PI3K apoptosis pathway. PTEN is an important regulatory protein and tumor suppressor that performs its phosphatase activity as an interfacial enzyme at the plasma membrane-cytoplasm boundary. Acting as an antagonist to phosphoinositide-3-kinase (PI3K) in cell signaling, it is deleted in many human cancers. Despite its importance in regulating the levels of the phosphoinositoltriphosphate PI(3,4,5)P3, there is little understanding of how PTEN binds to membranes, is activated and then acts as a phosphatase. We investigated the structure and function of PTEN by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act synergetically in attracting the enzyme to the membrane surface. Membrane affinities depend strongly on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase ``scoots'' along the membrane surface (penetration protein, ˜ 60 å away from the bilayer surface, in a rather compact

  16. Abnormal erythrocyte membrane protein pattern in severe megaloblastic anemia.

    Science.gov (United States)

    Ballas, S K

    1978-01-01

    The erythrocyte membrane protein pattern of patients with megaloblastic anemia was determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. In severe megaloblastic anemia, secondary either to folic acid or vitamin B12 deficiency, the erythrocyte membrane protein pattern was grossly abnormal, lacking bands 1, 2 (spectrin), and 3 and having several diffuse, faster migrating bands. After adequate vitamin replacement therapy, the erythrocyte membrane protein pattern returned to normal. In mild megaloblastic anemia, secondary either to folic acid of vitamin B12 deficiency, and in severe iron deficiency anemia, the erythrocyte membrane protein pattern was normal. Erythrocyte membrane protein pattern of normal membranes did not change after mixing with abnormal membranes before polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Protease activity extracted from membranes of megalocytes was not different from normal. These findings indicate that the erythrocyte membrane protein pattern is abnormal in severe megaloblastic anemia and that this abnormality is not secondary to increased activity of the endogenous erythrocyte membrane proteinase. Images PMID:659579

  17. Anomalous diffusion of proteins in sheared lipid membranes

    CERN Document Server

    Khoshnood, Atefeh

    2013-01-01

    We use coarse grained molecular dynamics simulations to investigate diffusion properties of sheared lipid membranes with embedded transmembrane proteins. In membranes without proteins, we find normal in-plane diffusion of lipids in all flow conditions. Protein embedded membranes behave quite differently: by imposing a simple shear flow and sliding the monolayers of the membrane over each other, the motion of protein clusters becomes strongly superdiffusive in the shear direction. In such a circumstance, subdiffusion regime is predominant perpendicular to the flow. We show that superdiffusion is a result of accelerated chaotic motions of protein--lipid complexes within the membrane voids, which are generated by hydrophobic mismatch or the transport of lipids by proteins.

  18. Size-dependent protein segregation at membrane interfaces

    Science.gov (United States)

    Schmid, Eva M.; Bakalar, Matthew H.; Choudhuri, Kaushik; Weichsel, Julian; Ann, Hyoung Sook; Geissler, Phillip L.; Dustin, Michael L.; Fletcher, Daniel A.

    2016-07-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell-cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.

  19. Molecular aspects of the interaction between Mason-Pfizer monkey virus matrix protein and artificial phospholipid membrane.

    Science.gov (United States)

    Junková, P; Prchal, J; Spiwok, V; Pleskot, R; Kadlec, J; Krásný, L; Hynek, R; Hrabal, R; Ruml, T

    2016-11-01

    The Mason-Pfizer monkey virus is a type D retrovirus, which assembles its immature particles in the cytoplasm prior to their transport to the host cell membrane. The association with the membrane is mediated by the N-terminally myristoylated matrix protein. To reveal the role of particular residues which are involved in the capsid-membrane interaction, covalent labelling of arginine, lysine and tyrosine residues of the Mason-Pfizer monkey virus matrix protein bound to artificial liposomes containing 95% of phosphatidylcholine and 5% phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2 ) was performed. The experimental results were interpreted by multiscale molecular dynamics simulations. The application of these two complementary approaches helped us to reveal that matrix protein specifically recognizes the PI(4,5)P2 molecule by the residues K20, K25, K27, K74, and Y28, while the residues K92 and K93 stabilizes the matrix protein orientation on the membrane by the interaction with another PI(4,5)P2 molecule. Residues K33, K39, K54, Y66, Y67, and K87 appear to be involved in the matrix protein oligomerization. All arginine residues remained accessible during the interaction with liposomes which indicates that they neither contribute to the interaction with membrane nor are involved in protein oligomerization. Proteins 2016; 84:1717-1727. © 2016 Wiley Periodicals, Inc.

  20. Assembly of outer-membrane proteins in bacteria and mitochondria.

    Science.gov (United States)

    Tommassen, Jan

    2010-09-01

    The cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobic alpha-helices, integral outer-membrane proteins (OMPs) form beta-barrels. Similar beta-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How these beta-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly of beta-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrial beta-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.

  1. Membrane protein crystallization in lipidic mesophases: detergent effects.

    OpenAIRE

    Ai, X.; Caffrey, M.

    2000-01-01

    The "cubic phase method" for growing crystals of membrane proteins uses a complex mixture of water, lipid, protein, and other components. The current view is that the cubic phase is integral to the process. Thus additives from whatever source introduce the possibility of destabilizing the phase, thereby compromising the crystallization process. Detergents are used to solubilize membrane proteins and are likely to be ported into the cubic medium with the target protein. Depending on the identi...

  2. Tandem neopentyl glycol maltosides (TNMs) for membrane protein stabilisation

    DEFF Research Database (Denmark)

    Bae, Hyoung Eun; Mortensen, Jonas S; Ribeiro, Orquidea

    2016-01-01

    A novel class of detergents, designated tandem neopentyl glycol maltosides (TNMs), were evaluated with four target membrane proteins. The best detergent varied depending on the target, but TNM-C12L and TNM-C11S were notable for their ability to confer increased membrane protein stability compared...

  3. Optimization of membrane protein overexpression and purification using GFP fusions

    NARCIS (Netherlands)

    Drew, David; Lerch, Mirjam; Kunji, Edmund; Slotboom, Dirk-Jan; de Gier, Jan-Willem

    2006-01-01

    Optimizing conditions for the overexpression and purification of membrane proteins for functional and structural studies is usually a Laborious and time-consuming process. This process can be accelerated using membrane protein-GFP fusions(1-3), which allows direct monitoring and visualization of mem

  4. Scaffolding proteins in membrane trafficking : the role of ELKS

    NARCIS (Netherlands)

    Yu, K.L.

    2015-01-01

    Intracellular membrane trafficking is an essential cellular process that involves cooperation of many factors such as scaffolding proteins, GTPases and SNAREs. These proteins work together to ensure proper delivery of different membrane-enclosed cargoes to specific cellular destinations. In this the

  5. Study and prediction of secondary structure for membrane proteins

    NARCIS (Netherlands)

    Amirova, Svetlana R.; Milchevsky, Juri V.; Filatov, Ivan V.; Esipova, Natalia G.; Tumanyan, Vladimir G.

    2007-01-01

    In this paper we present a novel approach to membrane protein secondary structure prediction based on the statistical stepwise discriminant analysis method. A new aspect of our approach is the possibility to derive physical -chemical properties that may affect the formation of membrane protein secon

  6. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins

    DEFF Research Database (Denmark)

    Elortza, Felix; Nühse, Thomas S; Foster, Leonard J

    2003-01-01

    Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a functionally and structurally diverse family of post-translationally modified membrane proteins found mostly in the outer leaflet of the plasma membrane in a variety of eukaryotic cells. Although the general role of GPI-APs remains un...

  7. Separation of the outer membrane and identification of major outer membrane proteins from Porphyromonas gingivalis.

    Science.gov (United States)

    Murakami, Yukitaka; Imai, Masashi; Nakamura, Hiroshi; Yoshimura, Fuminobu

    2002-04-01

    The outer membrane of Porphyromonas gingivalis, an oral strict anaerobe, was isolated by sucrose density gradient centrifugation. The outer membrane obtained by the differential detergent extraction method, previously reported, showed an essentially similar protein pattern on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), confirming that the latter method is suitable for the study of outer membrane proteins in this organism. N-terminal amino acid sequence analysis revealed that major outer membrane proteins in this organism included Arg-gingipain, Lys-gingipain, RagA (a TonB-linked receptor), and putative porins that were homologous to Escherichia coli OmpA.

  8. Recombinant Dengue virus protein NS2B alters membrane permeability in different membrane models

    OpenAIRE

    León-Juárez, Moisés; Martínez-Castillo, Macario; Shrivastava, Gaurav; García-Cordero, Julio; Villegas-Sepulveda, Nicolás; Mondragón-Castelán, Mónica; Mondragón-Flores, Ricardo; Cedillo-Barrón, Leticia

    2016-01-01

    Background One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investiga...

  9. Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes

    Directory of Open Access Journals (Sweden)

    Bunai Christine L

    2009-02-01

    Full Text Available Abstract Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr, an alkaline solution (180 mM Na2CO3, pH 11.3 and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14. Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries; (ii peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries; (iii cytoplasmic or ribosomal membrane-contaminating proteins (80 entries. Thirty-one proteins were experimentally associated with the outer membrane (OM. Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high Mr fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM proteins with two or more predicted transmembrane domains (TMDs were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six β-barrel OM protein families and 25 distinct IM transporter families.

  10. Membrane-Protein Crystallography and Potentiality for Drug Design

    Science.gov (United States)

    Yamashita, Atsuko

    Structure-based drug design for membrane proteins is far behind that for soluble proteins due to difficulty in crystallographic structure determination, despite the fact that about 60% of FDA-approved drugs target membrane proteins located at the cell surface. Stable homologs for a membrane protein of interest, such as prokaryotic neurotransmitter transporter homolog LeuT, might enable cooperative analyses by crystallography and functional assays, provide useful information for functional mechanisms, and thus serve as important probes for drug design based on mechanisms as well as structures.

  11. Folding membrane proteins by deep transfer learning

    KAUST Repository

    Wang, Sheng

    2017-08-29

    Computational elucidation of membrane protein (MP) structures is challenging partially due to lack of sufficient solved structures for homology modeling. Here, we describe a high-throughput deep transfer learning method that first predicts MP contacts by learning from non-MPs and then predicts 3D structure models using the predicted contacts as distance restraints. Tested on 510 non-redundant MPs, our method has contact prediction accuracy at least 0.18 better than existing methods, predicts correct folds for 218 MPs, and generates 3D models with root-mean-square deviation (RMSD) less than 4 and 5 Å for 57 and 108 MPs, respectively. A rigorous blind test in the continuous automated model evaluation project shows that our method predicted high-resolution 3D models for two recent test MPs of 210 residues with RMSD ∼2 Å. We estimated that our method could predict correct folds for 1,345-1,871 reviewed human multi-pass MPs including a few hundred new folds, which shall facilitate the discovery of drugs targeting at MPs.

  12. Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles*

    Science.gov (United States)

    Haurat, M. Florencia; Aduse-Opoku, Joseph; Rangarajan, Minnie; Dorobantu, Loredana; Gray, Murray R.; Curtis, Michael A.; Feldman, Mario F.

    2011-01-01

    In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions. PMID:21056982

  13. TOF-SIMS imaging of protein adsorption on dialysis membrane

    Science.gov (United States)

    Aoyagi, Satoka; Hayama, Msayo; Hasegawa, Urara; Sakai, Kiyotaka; Hoshi, Takahiro; Kudo, Masahiro

    2004-06-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples such as hollow-fiber dialysis membranes. Albumin loss and a lowering of diffusive permeability caused by protein adsorption on dialysis membranes should be reduced in order to enhance dialysis adequacy of the patients. Bovine serum albumin (BSA)-adsorbed hollow-fiber dialysis membranes were tested in the present study. TOF-SIMS images and spectra of both native membranes and BSA-adsorbed membranes were compared in order to identify secondary ions related to BSA and membranes. Peaks of secondary ions related to BSA and each membrane were selected by means of information theory, and they are characterized by principal component analysis (PCA). Chemical images of BSA adsorption on both native and treated membranes were obtained to find that BSA permeability and interaction between the membranes and BSA definitely depend on the properties of a membrane. TOF-SIMS imaging obtained with information theory is a powerful tool to estimate protein adsorption on the dialysis membranes.

  14. Applications of solid-state NMR to membrane proteins.

    Science.gov (United States)

    Ladizhansky, Vladimir

    2017-07-12

    Membrane proteins mediate flow of molecules, signals, and energy between cells and intracellular compartments. Understanding membrane protein function requires a detailed understanding of the structural and dynamic properties involved. Lipid bilayers provide a native-like environment for structure-function investigations of membrane proteins. In this review we give a general discourse on the recent progress in the field of solid-state NMR of membrane proteins. Solid-state NMR is a variation of NMR spectroscopy that is applicable to molecular systems with restricted mobility, such as high molecular weight proteins and protein complexes, supramolecular assemblies, or membrane proteins in a phospholipid environment. We highlight recent advances in applications of solid-state NMR to membrane proteins, specifically focusing on the recent developments in the field of Dynamic Nuclear Polarization, proton detection, and solid-state NMR applications in situ (in cell membranes). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Lipids, membrane proteins and natural membranes studied by neutron scattering and diffraction: A review

    Science.gov (United States)

    Zaccai, Giuseppe

    1986-02-01

    Diffraction first observed from myelin 50 years ago was correctly attributed to a fluid crystal of lipids, because similar patterns were observed from extracted lipid preparations. Following on more recent X-ray work which characterized a variety of lipid-water structures, neutron diffraction experiments have provided detailed descriptions of the molecular conformations in lipid bilayers. For a long time, however, the molecular structure of membrane proteins remained elusive and the development of detergents for the extraction of active membrane proteins, and the discovery of naturally crystalline purple membrane were important breakthroughs in this field. Structural parameters of membrane proteins solubilised in detergent have been measured by neutron scattering with contrast variation techniques. Purple membrane has been studied extensively by neutron diffraction. It is an excellent illustration of the use of deuterium labeling by different approaches to address specific questions of molecular structure. These studies are reviewed with a special emphasis on aspects which are applicable to membranes in general.

  16. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II.

    Science.gov (United States)

    Akhrymuk, Ivan; Kulemzin, Sergey V; Frolova, Elena I

    2012-07-01

    The Old World alphaviruses are emerging human pathogens with an ability to cause widespread epidemics. The latest epidemic of Chikungunya virus, from 2005 to 2007, affected over 40 countries in Africa, Asia, and Europe. The Old World alphaviruses are highly cytopathic and known to evade the cellular antiviral response by inducing global inhibition of transcription in vertebrate cells. This function was shown to be mediated by their nonstructural nsP2 protein; however, the detailed mechanism of this phenomenon has remained unknown. Here, we report that nsP2 proteins of Sindbis, Semliki Forest, and Chikungunya viruses inhibit cellular transcription by inducing rapid degradation of Rpb1, a catalytic subunit of the RNAPII complex. This degradation of Rpb1 is independent of the nsP2-associated protease activity, but, instead, it proceeds through nsP2-mediated Rpb1 ubiquitination. This function of nsP2 depends on the integrity of the helicase and S-adenosylmethionine (SAM)-dependent methyltransferase-like domains, and point mutations in either of these domains abolish Rpb1 degradation. We go on to show that complete degradation of Rpb1 in alphavirus-infected cells occurs within 6 h postinfection, before other previously described virus-induced changes in cell physiology, such as apoptosis, autophagy, and inhibition of STAT1 phosphorylation, are detected. Since Rpb1 is a subunit that catalyzes the polymerase reaction during RNA transcription, degradation of Rpb1 plays an indispensable role in blocking the activation of cellular genes and downregulating cellular antiviral response. This indicates that the nsP2-induced degradation of Rpb1 is a critical mechanism utilized by the Old World alphaviruses to subvert the cellular antiviral response.

  17. The Origin and Early Evolution of Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  18. Protein-membrane interactions: blood clotting on nanoscale bilayers.

    Science.gov (United States)

    Morrissey, J H; Pureza, V; Davis-Harrison, R L; Sligar, S G; Rienstra, C M; Kijac, A Z; Ohkubo, Y Z; Tajkhorshid, E

    2009-07-01

    The clotting cascade requires the assembly of protease-cofactor complexes on membranes with exposed anionic phospholipids. Despite their importance, protein-membrane interactions in clotting remain relatively poorly understood. Calcium ions are known to induce anionic phospholipids to cluster, and we propose that clotting proteins assemble preferentially on such anionic lipid-rich microdomains. Until recently, there was no way to control the partitioning of clotting proteins into or out of specific membrane microdomains, so experimenters only knew the average contributions of phospholipids to blood clotting. The development of nanoscale membrane bilayers (Nanodiscs) has now allowed us to probe, with nanometer resolution, how local variations in phospholipid composition regulate the activity of key protease-cofactor complexes in blood clotting. Furthermore, exciting new progress in solid-state NMR and large-scale molecular dynamics simulations allow structural insights into interactions between proteins and membrane surfaces with atomic resolution.

  19. Membrane protein insertion: mixing eukaryotic and prokaryotic concepts.

    Science.gov (United States)

    Schleiff, Enrico; Soll, Jürgen

    2005-11-01

    Proteins are translocated across or inserted into membranes by machines that are composed of soluble and membrane-anchored subunits. The molecular action of these machines and their evolutionary origin are at present the focus of intense research. For instance, our understanding of the mode of insertion of beta-barrel membrane proteins into the outer membrane of endosymbiotically derived organelles has increased rapidly during the past few years. In particular, the identification of the Omp85/YaeT-involving pathways in Neisseria meningitidis, Escherichia coli and cyanobacteria, and homologues of Omp85/YaeT in chloroplasts and mitochondria, has provided new clues about the ancestral beta-barrel protein insertion pathway. This review focuses on recent advances in the elucidation of the evolutionarily conserved concepts that underlie the translocation and insertion of beta-barrel membrane proteins.

  20. Polyclonal Antibody Production for Membrane Proteins via Genetic Immunization.

    Science.gov (United States)

    Hansen, Debra T; Robida, Mark D; Craciunescu, Felicia M; Loskutov, Andrey V; Dörner, Katerina; Rodenberry, John-Charles; Wang, Xiao; Olson, Tien L; Patel, Hetal; Fromme, Petra; Sykes, Kathryn F

    2016-02-24

    Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone produced antibodies against 71% (n = 17) of the bacterial and viral targets. Antibody production correlated with prior reports of target immunogenicity in host organisms, underscoring the efficiency of this DNA-gold micronanoplex approach. To generate each antigen for antibody characterization, we also developed a simple in vitro membrane protein expression and capture method. Antibody specificity was demonstrated upon identifying, for the first time, membrane-directed heterologous expression of the native sequences of the FopA and FTT1525 virulence determinants from the select agent Francisella tularensis SCHU S4. These approaches will accelerate future structural and functional investigations of therapeutically-relevant membrane proteins.

  1. Protein adsorption and separation on amphoteric chitosan/carboxymethylcellulose membranes.

    Science.gov (United States)

    Feng, Zhicheng; Shao, Zhengzhong; Yao, Jinrong; Chen, Xin

    2008-09-01

    This article reported the preparation of an amphoteric natural polymeric membrane-macroporous chitosan (CS)/carboxymethylcellulose (CMC) blend membrane and the utilization of such a membrane on the membrane chromatography for bioseparation. The membranes were prepared by solution blending of CS and CMC solution, and using silica particles as porogen. Both glutaraldehyde and epichlorohydrin were used as crosslinking agent to increase its chemical stability in aqueous solution. Such a natural polymeric membrane can be served as an amphoteric membrane because of the amino group on CS and the carboxymethyl group on CMC, in which the surface charge can be changed with the environmental pH. Ovalbumin (pI = 4.6) and lysozyme (pI = 11) were selected as model proteins. These two proteins adsorption on different CS/CMC blend membranes with different initial protein concentrations at different pH values were investigated in batch systems. The results indicated that the maximum adsorption for lysozyme and ovalbumin was at pH 9.2 and 4.8 respectively, and the adsorption capacity on the membrane both increased with the increase of initial protein concentration. Though the adsorption mechanism of lysozyme and ovalbumin was found not the same, the maximum adsorption capacity of two proteins on the membranes was quite similar (about 250 mg/g). Moreover, the desorption ratio of both proteins was found to be more than 90% that implied CS/CMC blend membrane could separate proteins by adsorption-desorption process. Finally, both lysozyme and ovalbumin were successfully separated from their binary mixture only by adjusting the pH of the feed and the desorption solution.

  2. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs.

    Science.gov (United States)

    Fox, Philip D; Haberkorn, Christopher J; Weigel, Aubrey V; Higgins, Jenny L; Akin, Elizabeth J; Kennedy, Matthew J; Krapf, Diego; Tamkun, Michael M

    2013-09-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.

  3. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.

    Science.gov (United States)

    Weierstall, Uwe; James, Daniel; Wang, Chong; White, Thomas A; Wang, Dingjie; Liu, Wei; Spence, John C H; Bruce Doak, R; Nelson, Garrett; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Kupitz, Christopher; Zatsepin, Nadia A; Liu, Haiguang; Basu, Shibom; Wacker, Daniel; Han, Gye Won; Katritch, Vsevolod; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Koglin, Jason E; Marvin Seibert, M; Klinker, Markus; Gati, Cornelius; Shoeman, Robert L; Barty, Anton; Chapman, Henry N; Kirian, Richard A; Beyerlein, Kenneth R; Stevens, Raymond C; Li, Dianfan; Shah, Syed T A; Howe, Nicole; Caffrey, Martin; Cherezov, Vadim

    2014-01-01

    Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.

  4. SURVEY REGARDING THE ULTRAFILTRATION OF PROTEINES THROUGH MEMBRANE BASED PROCEDURES

    Directory of Open Access Journals (Sweden)

    CAMELIA HODOSAN

    2013-12-01

    Full Text Available This work is based on examples that emphasize the complexity of the proteins ultrafiltration process, pointing out the first 10-15 minutes of ultrafiltration. The knowledgement of the factors that influence the separation through ultrafiltration of proteins will allow to choose the right type of membrane, the frequent use of the same membrane and the operation in mechanical and chemical conditions adequate to the ultrafiltration system, when it is separated a protein with certain molecular weight.

  5. Quenching of fluorescence in membrane protein by hypocrellin B.

    Science.gov (United States)

    Yue, J; Pang, S

    1997-04-01

    The hypocrellin B (HB) was used as a fluorescence quencher to study the basic physical charactcristics of HB in membrane systems, including the diffusion speed of quencher from aqueous phase into membrane phase, the partition coefficient (P) of quenchtr between membrane and water, and the fluorescence quenching constant of protein (K(sv); K(q),). The experimental results show that the quenching of fluorescence in membrane protein by HB can be determined by the principle of dynamic quenching. The experimental process of fluorescence quenching was observed in detail by using the ESR technique. The signal of HB- was found to arise from an electron transfer from excited trytophan to HB.

  6. Quenching of fluorescence in membrane protein by hypocrellin B

    Institute of Scientific and Technical Information of China (English)

    乐加昌; 庞素珍

    1997-01-01

    The hypocrellin B (HB) was used as a fluorescence quencher to study the basic physical characteris-tics of HB in membrane systems, including the diffusion speed of quencher from aqueous phase into membrane phase, the partition coefficient (P) of quencher between membrane and water, and the fluorescence quenching constant of protein (Ksv; Kq). The experimental results show that the quenching of fluorescence in membrane protein by HB can be determined by the principle of dynamic quenching. The experimental process of fluorescence quenching was ob-served in detail by using the ESR technique. The signal of HB" was found to arise from an electron transfer from ex-cited trytophan to HB.

  7. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  8. Evasion of the Innate Immune Response: the Old World Alphavirus nsP2 Protein Induces Rapid Degradation of Rpb1, a Catalytic Subunit of RNA Polymerase II

    OpenAIRE

    Akhrymuk, Ivan; Kulemzin, Sergey V.; Frolova, Elena I.

    2012-01-01

    The Old World alphaviruses are emerging human pathogens with an ability to cause widespread epidemics. The latest epidemic of Chikungunya virus, from 2005 to 2007, affected over 40 countries in Africa, Asia, and Europe. The Old World alphaviruses are highly cytopathic and known to evade the cellular antiviral response by inducing global inhibition of transcription in vertebrate cells. This function was shown to be mediated by their nonstructural nsP2 protein; however, the detailed mechanism o...

  9. Nanodisc-Tm: Rapid functional assessment of nanodisc reconstituted membrane proteins by CPM assay

    National Research Council Canada - National Science Library

    Ashok, Yashwanth; Jaakola, Veli-Pekka

    2016-01-01

    Membrane proteins are generally unstable in detergents. Therefore, biochemical and biophysical studies of membrane proteins in lipidic environments provides a near native-like environment suitable for membrane proteins...

  10. Integral membrane protein structure determination using pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Crick, Duncan J.; Wang, Jue X. [University of Cambridge, Department of Biochemistry (United Kingdom); Graham, Bim; Swarbrick, James D. [Monash University, Monash Institute of Pharmaceutical Sciences (Australia); Mott, Helen R.; Nietlispach, Daniel, E-mail: dn206@cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2015-04-15

    Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary strategies highly beneficial for successful structure elucidation. Recently, lanthanide-induced pseudocontact shifts (PCSs) have been established as a structural tool for globular proteins. Here, we demonstrate that a PCS-based approach can be successfully applied for the structure determination of integral membrane proteins. Using the 7TM α-helical microbial receptor pSRII, we show that PCS-derived restraints from lanthanide binding tags attached to four different positions of the protein facilitate the backbone structure determination when combined with a limited set of NOEs. In contrast, the same set of NOEs fails to determine the correct 3D fold. The latter situation is frequently encountered in polytopical α-helical membrane proteins and a PCS approach is thus suitable even for this particularly challenging class of membrane proteins. The ease of measuring PCSs makes this an attractive route for structure determination of large membrane proteins in general.

  11. Stabilization of membranes upon interaction of amphipathic polymers with membrane proteins.

    Science.gov (United States)

    Picard, Martin; Duval-Terrié, Caroline; Dé, Emmanuelle; Champeil, Philippe

    2004-11-01

    Amphipathic polymers derived from polysaccharides, namely hydrophobically modified pullulans, were previously suggested to be useful as polymeric substitutes of ordinary surfactants for efficient and structure-conserving solubilization of membrane proteins, and one such polymer, 18C(10), was optimized for solubilization of proteins derived from bacterial outer membranes (Duval-Terrie et al. 2003). We asked whether a similar ability to solubilize proteins could also be demonstrated in eukaryotic membranes, namely sarcoplasmic reticulum (SR) fragments, the major protein of which is SERCA1a, an integral membrane protein with Ca(2+)-dependent ATPase and Ca(2+)-pumping activity. We found that 18C(10)-mediated solubilization of these SR membranes did not occur. Simultaneously, however, we found that low amounts of this hydrophobically modified pullulan were very efficient at preventing long-term aggregation of these SR membranes. This presumably occurred because the negatively charged polymer coated the membranous vesicles with a hydrophilic corona (a property shared by many other amphipathic polymers), and thus minimized their flocculation. Reminiscent of the old Arabic gum, which stabilizes Indian ink by coating charcoal particles, the newly designed amphipathic polymers might therefore unintentionally prove useful also for stabilization of membrane suspensions.

  12. Durable vesicles for reconstitution of membrane proteins in biotechnology.

    Science.gov (United States)

    Beales, Paul A; Khan, Sanobar; Muench, Stephen P; Jeuken, Lars J C

    2017-02-08

    The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with. © 2017 The Author(s).

  13. Electron crystallography for structural and functional studies of membrane proteins.

    Science.gov (United States)

    Fujiyoshi, Yoshinori

    2011-01-01

    Membrane proteins are important research targets for basic biological sciences and drug design, but studies of their structure and function are considered difficult to perform. Studies of membrane structures have been greatly facilitated by technological and instrumental advancements in electron microscopy together with methodological advancements in biology. Electron crystallography is especially useful in studying the structure and function of membrane proteins. Electron crystallography is now an established method of analyzing the structures of membrane proteins in lipid bilayers, which resembles their natural biological environment. To better understand the neural system function from a structural point of view, we developed the cryo-electron microscope with a helium-cooled specimen stage, which allows for analysis of the structures of membrane proteins at a resolution higher than 3 Å. This review introduces recent instrumental advances in cryo-electron microscopy and presents some examples of structure analyses of membrane proteins, such as bacteriorhodopsin, water channels and gap junction channels. This review has two objectives: first, to provide a personal historical background to describe how we came to develop the cryo-electron microscope and second, to discuss some of the technology required for the structural analysis of membrane proteins based on cryo-electron microscopy.

  14. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Solid-State NMR-Restrained Ensemble Dynamics of a Membrane Protein in Explicit Membranes.

    Science.gov (United States)

    Cheng, Xi; Jo, Sunhwan; Qi, Yifei; Marassi, Francesca M; Im, Wonpil

    2015-04-21

    Solid-state NMR has been used to determine the structures of membrane proteins in native-like lipid bilayer environments. Most structure calculations based on solid-state NMR observables are performed using simulated annealing with restrained molecular dynamics and an energy function, where all nonbonded interactions are represented by a single, purely repulsive term with no contributions from van der Waals attractive, electrostatic, or solvation energy. To our knowledge, this is the first application of an ensemble dynamics technique performed in explicit membranes that uses experimental solid-state NMR observables to obtain the refined structure of a membrane protein together with information about its dynamics and its interactions with lipids. Using the membrane-bound form of the fd coat protein as a model membrane protein and its experimental solid-state NMR data, we performed restrained ensemble dynamics simulations with different ensemble sizes in explicit membranes. For comparison, a molecular dynamics simulation of fd coat protein was also performed without any restraints. The average orientation of each protein helix is similar to a structure determined by traditional single-conformer approaches. However, their variations are limited in the resulting ensemble of structures with one or two replicas, as they are under the strong influence of solid-state NMR restraints. Although highly consistent with all solid-state NMR observables, the ensembles of more than two replicas show larger orientational variations similar to those observed in the molecular dynamics simulation without restraints. In particular, in these explicit membrane simulations, Lys(40), residing at the C-terminal side of the transmembrane helix, is observed to cause local membrane curvature. Therefore, compared to traditional single-conformer approaches in implicit environments, solid-state NMR restrained ensemble simulations in explicit membranes readily characterize not only protein

  16. Analysis of protein interactions at native chloroplast membranes by ellipsometry.

    Directory of Open Access Journals (Sweden)

    Verena Kriechbaumer

    Full Text Available Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE. We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.

  17. Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins

    DEFF Research Database (Denmark)

    Gonzalez-Perez, A.; Jensen, Karin Bagger Stibius; Vissing, Thomas

    2009-01-01

    , we avoid low molecular weight solvents such as chloroform and toluene, which are strong protein denaturants. The membranes show a low ionic conductance and a long lifetime at room temperature. Contrast phase microscopy shows the presence of a polymer region delimited by a Plateau-Gibbs border similar...... to what is observed in black lipid membranes. The ion-channel gramicidin A was successfully incorporated into the membrane in a functional form....

  18. Transport proteins of the plant plasma membrane

    Science.gov (United States)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  19. Peroxisome Fission is Associated with Reorganization of Specific Membrane Proteins

    NARCIS (Netherlands)

    Krygowska, Malgorzata; Veenhuis, Marten; Klei, Ida J. van der; Nagotu, Shirisha

    2011-01-01

    Membrane remodeling is an important aspect in organelle biogenesis. We show that different peroxisome membrane proteins that play a role in organelle biogenesis and proliferation (Pex8, Pex10, Pex14, Pex25 and Pex11) are subject to spatiotemporal behavior during organelle development. Using fluoresc

  20. Lactococcus lactis as host for overproduction of functional membrane proteins

    NARCIS (Netherlands)

    Kunji, ERS; Slotboom, DJ; Poolman, B

    2003-01-01

    Lactococcus lactis has many properties that are ideal for enhanced expression of membrane proteins. The organism is easy and inexpensive to culture, has a single membrane and relatively mild proteolytic activity. Methods for genetic manipulation are fully established and a tightly controlled

  1. Membrane tube formation by motor proteins : forces and dynamics

    NARCIS (Netherlands)

    Koster, Gerbrand

    2005-01-01

    Membrane tubes are ubiquitous within cells. They have a diameter of approximately 50 nanometers, and are formed when a sufficiently large localized force is exerted on a membrane. Important generators of this force are the motor proteins that can move along cytoskeletal filaments. We studied

  2. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, Maria-Elena; Borneman, Zandrie; Wessling, Matthias

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an ethyle

  3. Lactococcus lactis as host for overproduction of functional membrane proteins

    NARCIS (Netherlands)

    Kunji, ERS; Slotboom, DJ; Poolman, B

    2003-01-01

    Lactococcus lactis has many properties that are ideal for enhanced expression of membrane proteins. The organism is easy and inexpensive to culture, has a single membrane and relatively mild proteolytic activity. Methods for genetic manipulation are fully established and a tightly controlled promote

  4. P2 purinoceptors: Renal pathophysiology and therapeutic potential.

    Science.gov (United States)

    Booth, John W R; Tam, Frederick W K; Unwin, Robert J

    2012-08-01

    P2 purinoceptors, categorized into P2X and P2Y receptors, bind extracellular ATP and related di- and tri-phosphate nucleotides and are expressed throughout the kidney. P2X receptors are non-selective cation channels and P2Y receptors are metabotropic G protein-coupled receptors. Both families may couple to a range of second messenger systems and provoke outcomes including cell proliferation, cytokine secretion, membrane channel regulation and cell death. The cellular response to ATP release may vary widely and depends on both the pattern of local receptor expression and the action of ectonucleotidases altering agonist availability, creating a finely tuned network. P2 signaling participates in disparate physiological processes, including control of water and solute transport and autoregulation of renal blood flow. Given the ubiquity, complexity and diversity of the P2 network, it is not surprising that P2 signaling also contributes to mechanisms of renal disease. This review summarizes the current evidence for P2 receptor involvement in a range of kidney diseases, and highlights areas that may lead to potential therapeutic advances. Particular attention is paid to the pro-inflammatory P2X7 receptor, currently at the heart of renal P2 pathophysiology and for which selective receptor antagonists are now available.

  5. Organization and dynamics of SNARE proteins in the presynaptic membrane

    Directory of Open Access Journals (Sweden)

    Dragomir eMilovanovic

    2015-03-01

    Full Text Available Our view of the lateral organization of lipids and proteins in the plasma membrane has evolved substantially in the last few decades. It is widely accepted that many, if not all, plasma membrane proteins and lipids are organized in specific domains. These domains vary widely in size, composition, and stability, and they represent platforms governing diverse cell functions. The presynaptic plasma membrane is a well-studied example of a membrane which undergoes rearrangements, especially during exo- and endocytosis. Many proteins and lipids involved in presynaptic function are known, and major efforts have been made to understand their spatial organization and dynamics. Here, we focus on the mechanisms underlying the organization of SNAREs, the key proteins of the fusion machinery, in distinct domains, and we discuss the functional significance of these clusters.

  6. Architecture and Function of Mechanosensitive Membrane Protein Lattices

    CERN Document Server

    Kahraman, Osman; Klug, William S; Haselwandter, Christoph A

    2016-01-01

    Experiments have revealed that membrane proteins can form two-dimensional clusters with regular translational and orientational protein arrangements, which may allow cells to modulate protein function. However, the physical mechanisms yielding supramolecular organization and collective function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic interactions between membrane proteins can yield regular and distinctive lattice architectures of protein clusters, and may provide a link between lattice architecture and lattice function. Using the mechanosensitive channel of large conductance (MscL) as a model system, we obtain relations between the shape of MscL and the supramolecular architecture of MscL lattices. We predict that the tetrameric and pentameric MscL symmetries observed in previous structural studies yield distinct lattice architectures of MscL clusters and that, in turn, these distinct MscL lattice architectures yield distinct lattice activation barriers. Our res...

  7. Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores.

    Science.gov (United States)

    Petrosyan, Rafayel; Bippes, Christian A; Walheim, Stefan; Harder, Daniel; Fotiadis, Dimitrios; Schimmel, Thomas; Alsteens, David; Müller, Daniel J

    2015-05-13

    Single-molecule force spectroscopy (SMFS) provides detailed insight into the mechanical (un)folding pathways and structural stability of membrane proteins. So far, SMFS could only be applied to membrane proteins embedded in native or synthetic membranes adsorbed to solid supports. This adsorption causes experimental limitations and raises the question to what extent the support influences the results obtained by SMFS. Therefore, we introduce here SMFS from native purple membrane freely spanning across nanopores. We show that correct analysis of the SMFS data requires extending the worm-like chain model, which describes the mechanical stretching of a polypeptide, by the cubic extension model, which describes the bending of a purple membrane exposed to mechanical stress. This new experimental and theoretical approach allows to characterize the stepwise (un)folding of the membrane protein bacteriorhodopsin and to assign the stability of single and grouped secondary structures. The (un)folding and stability of bacteriorhodopsin shows no significant difference between freely spanning and directly supported purple membranes. Importantly, the novel experimental SMFS setup opens an avenue to characterize any protein from freely spanning cellular or synthetic membranes.

  8. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lindsay A. [University of Oxford, Oxford Particle Imaging Centre, The Wellcome Trust Centre for Human Genetics, Division of Structural Biology, Nuffield Department of Medicine (United Kingdom); Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-06-15

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR.

  9. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast.

    Science.gov (United States)

    Grossmann, Guido; Opekarová, Miroslava; Malinsky, Jan; Weig-Meckl, Ina; Tanner, Widmar

    2007-01-10

    The plasma membrane potential is mainly considered as the driving force for ion and nutrient translocation. Using the yeast Saccharomyces cerevisiae as a model organism, we have discovered a novel role of the membrane potential in the organization of the plasma membrane. Within the yeast plasma membrane, two non-overlapping sub-compartments can be visualized. The first one, represented by a network-like structure, is occupied by the proton ATPase, Pma1, and the second one, forming 300-nm patches, houses a number of proton symporters (Can1, Fur4, Tat2 and HUP1) and Sur7, a component of the recently described eisosomes. Evidence is presented that sterols, the main lipid constituent of the plasma membrane, also accumulate within the patchy compartment. It is documented that this compartmentation is highly dependent on the energization of the membrane. Plasma membrane depolarization causes reversible dispersion of the H(+)-symporters, not however of the Sur7 protein. Mitochondrial mutants, affected in plasma membrane energization, show a significantly lower degree of membrane protein segregation. In accordance with these observations, depolarized membranes also considerably change their physical properties (detergent sensitivity).

  10. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  11. Detergent selection for enhanced extraction of membrane proteins.

    Science.gov (United States)

    Arachea, Buenafe T; Sun, Zhen; Potente, Nina; Malik, Radhika; Isailovic, Dragan; Viola, Ronald E

    2012-11-01

    Generating stable conditions for membrane proteins after extraction from their lipid bilayer environment is essential for subsequent characterization. Detergents are the most widely used means to obtain this stable environment; however, different types of membrane proteins have been found to require detergents with varying properties for optimal extraction efficiency and stability after extraction. The extraction profiles of several detergent types have been examined for membranes isolated from bacteria and yeast, and for a set of recombinant target proteins. The extraction efficiencies of these detergents increase at higher concentrations, and were shown to correlate with their respective CMC values. Two alkyl sugar detergents, octyl-β-d-glucoside (OG) and 5-cyclohexyl-1-pentyl-β-d-maltoside (Cymal-5), and a zwitterionic surfactant, N-decylphosphocholine (Fos-choline-10), were generally effective in the extraction of a broad range of membrane proteins. However, certain detergents were more effective than others in the extraction of specific classes of integral membrane proteins, offering guidelines for initial detergent selection. The differences in extraction efficiencies among this small set of detergents supports the value of detergent screening and optimization to increase the yields of targeted membrane proteins.

  12. Optimal separation of jojoba protein using membrane processes

    Energy Technology Data Exchange (ETDEWEB)

    Nabetani, Hiroshi; Abbott, T.P.; Kleiman, R. [National Center for Agricultural Utilization Research, Peoria, IL (United States)

    1995-05-01

    The efficiency of a pilot-scale membrane system for purifying and concentrating jojoba protein was estimated. In this system, a jojoba extract was first clarified with a microfiltration membrane. The clarified extract was diafiltrated and the protein was purified with an ultrafiltration membrane. Then the protein solution was concentrated with the ultrafiltration membrane. Permeate flux during microfiltration was essentially independent of solids concentration in the feed, in contrast with the permeate flux during ultrafiltration which was a function of protein concentration. Based on these results, a mathematical model which describes the batchwise concentration process with ultrafiltration membranes was developed. Using this model, the combination of batchwise concentration with diafiltration was optimized, and an industrial-scale process was designed. The effect of ethylenediaminetetraacetic acid (EDTA) on the performance of the membrane system was also investigated. The addition of EDTA increased the concentration of protein in the extract and improved the recovery of protein in the final products. The quality of the final product (color and solubility) was also improved. However, EDTA decreased permeate flux during ultrafiltration.

  13. Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization

    Science.gov (United States)

    Duval-Terrié, Caroline; Cosette, Pascal; Molle, Gérard; Muller, Guy; Dé, Emmanuelle

    2003-01-01

    The aim of this study was to develop new surfactants for membrane protein solubilization, from a natural, biodegradable polymer: the polysaccharide pullulan. A set of amphiphilic pullulans (HMCMPs), differing in hydrophobic modification ratio, charge ratio, and the nature of the hydrophobic chains introduced, were synthesized and tested in solubilization experiments with outer membranes of Pseudomonas fluorescens. The membrane proteins were precipitated, and then resolubilized with various HMCMPs. The decyl alkyl chain (C10) was the hydrophobic graft that gave the highest level of solubilization. Decyl alkyl chain-bearing HMCMPs were also able to extract integral membrane proteins from their lipid environment. The best results were obtained with an amphiphilic pullulan bearing 18% decyl groups (18C10). Circular dichroism spectroscopy and membrane reconstitution experiments were used to test the structural and functional integrity of 18C10-solubilized proteins (OmpF from Escherichia coli and bacteriorhodopsin from Halobacterium halobium). Whatever their structure type (α or β), 18C10 did not alter either the structure or the function of the proteins analyzed. Thus, HMCMPs appear to constitute a promising new class of polymeric surfactants for membrane protein studies. PMID:12649425

  14. Isothermal Titration Calorimetry of Membrane Proteins – Progress and Challenges

    Science.gov (United States)

    Rajarathnam, Krishna; Rösgen, Jörg

    2013-01-01

    Summary Integral membrane proteins, including G protein-coupled receptors (GPCR) and ion channels, mediate diverse biological functions that are crucial to all aspects of life. The knowledge of the molecular mechanisms, and in particular, the thermodynamic basis of the binding interactions of the extracellular ligands and intracellular effector proteins is essential to understand the workings of these remarkable nanomachines. In this review, we describe how isothermal titration calorimetry (ITC) can be effectively used to gain valuable insights into the thermodynamic signatures (enthalpy, entropy, affinity, and stoichiometry), which would be most useful for drug discovery studies, considering that more than 30% of the current drugs target membrane proteins. PMID:23747362

  15. Determining the Topology of Membrane-Bound Proteins Using PEGylation.

    Science.gov (United States)

    Howe, Vicky; Brown, Andrew J

    2017-01-01

    Biochemical methods can help elucidate the membrane topology of hydrophobic membrane proteins where X-ray crystallography is difficult or impractical, providing important structural data. Here, we describe the method of PEGylation, which uses a cysteine-reactive molecule, maleimide polyethylene glycol (mPEG), to determine the cytosolic accessibility of introduced cysteine residues. This accessibility is visualized using Western blotting to detect a band shift that indicates cysteine labeling by mPEG. Using scanning cysteine mutagenesis, followed by PEGylation, one can map the accessibility of the introduced cysteines, hence inferring the membrane topology of the protein.We used PEGylation to determine the membrane topology of the sterol regulatory domain of a cholesterol synthesis enzyme, squalene monooxygenase, identifying that it is anchored to the membrane via a re-entrant loop.

  16. Predictive energy landscapes for folding membrane protein assemblies

    Science.gov (United States)

    Truong, Ha H.; Kim, Bobby L.; Schafer, Nicholas P.; Wolynes, Peter G.

    2015-12-01

    We study the energy landscapes for membrane protein oligomerization using the Associative memory, Water mediated, Structure and Energy Model with an implicit membrane potential (AWSEM-membrane), a coarse-grained molecular dynamics model previously optimized under the assumption that the energy landscapes for folding α-helical membrane protein monomers are funneled once their native topology within the membrane is established. In this study we show that the AWSEM-membrane force field is able to sample near native binding interfaces of several oligomeric systems. By predicting candidate structures using simulated annealing, we further show that degeneracies in predicting structures of membrane protein monomers are generally resolved in the folding of the higher order assemblies as is the case in the assemblies of both nicotinic acetylcholine receptor and V-type Na+-ATPase dimers. The physics of the phenomenon resembles domain swapping, which is consistent with the landscape following the principle of minimal frustration. We revisit also the classic Khorana study of the reconstitution of bacteriorhodopsin from its fragments, which is the close analogue of the early Anfinsen experiment on globular proteins. Here, we show the retinal cofactor likely plays a major role in selecting the final functional assembly.

  17. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    Science.gov (United States)

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information.

  18. Isothermal titration calorimetry of membrane proteins - progress and challenges.

    Science.gov (United States)

    Rajarathnam, Krishna; Rösgen, Jörg

    2014-01-01

    Integral membrane proteins, including G protein-coupled receptors (GPCR) and ion channels, mediate diverse biological functions that are crucial to all aspects of life. The knowledge of the molecular mechanisms, and in particular, the thermodynamic basis of the binding interactions of the extracellular ligands and intracellular effector proteins is essential to understand the workings of these remarkable nanomachines. In this review, we describe how isothermal titration calorimetry (ITC) can be effectively used to gain valuable insights into the thermodynamic signatures (enthalpy, entropy, affinity, and stoichiometry), which would be most useful for drug discovery studies, considering that more than 30% of the current drugs target membrane proteins. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Atomic force microscopy and spectroscopy of native membrane proteins.

    Science.gov (United States)

    Müller, Daniel J; Engel, Andreas

    2007-01-01

    Membrane proteins comprise 30% of the proteome of higher organisms. They mediate energy conversion, signal transduction, solute transport and secretion. Their native environment is a bilayer in a physiological buffer solution, hence their structure and function are preferably assessed in this environment. The surface structure of single membrane proteins can be determined in buffer solutions by atomic force microscopy (AFM) at a lateral resolution of less than 1 nm and a vertical resolution of 0.1-0.2 nm. Moreover, single proteins can be directly addressed, stuck to the AFM stylus and subsequently unfolded, revealing the molecular interactions of the protein studied. The examples discussed here illustrate the power of AFM in the structural analysis of membrane proteins in a native environment.

  20. Protein receptor-independent plasma membrane remodeling by HAMLET

    DEFF Research Database (Denmark)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.

    2015-01-01

    in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range...... of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a "receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET...... accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features...

  1. The dynamics of plant plasma membrane proteins: PINs and beyond.

    Science.gov (United States)

    Luschnig, Christian; Vert, Grégory

    2014-08-01

    Plants are permanently situated in a fixed location and thus are well adapted to sense and respond to environmental stimuli and developmental cues. At the cellular level, several of these responses require delicate adjustments that affect the activity and steady-state levels of plasma membrane proteins. These adjustments involve both vesicular transport to the plasma membrane and protein internalization via endocytic sorting. A substantial part of our current knowledge of plant plasma membrane protein sorting is based on studies of PIN-FORMED (PIN) auxin transport proteins, which are found at distinct plasma membrane domains and have been implicated in directional efflux of the plant hormone auxin. Here, we discuss the mechanisms involved in establishing such polar protein distributions, focusing on PINs and other key plant plasma membrane proteins, and we highlight the pathways that allow for dynamic adjustments in protein distribution and turnover, which together constitute a versatile framework that underlies the remarkable capabilities of plants to adjust growth and development in their ever-changing environment.

  2. An overview of membrane transport proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Andre, B

    1995-12-01

    All eukaryotic cells contain a wide variety of proteins embedded in the plasma and internal membranes, which ensure transmembrane solute transport. It is now established that a large proportion of these transport proteins can be grouped into families apparently conserved throughout organisms. This article presents the data of an in silicio analysis aimed at establishing a preliminary classification of membrane transport proteins in Saccharomyces cerevisiae. This analysis was conducted at a time when about 65% of all yeast genes were available in public databases. In addition to approximately 60 transport proteins whose function was at least partially known, approximately 100 deduced protein sequences of unknown function display significant sequence similarity to membrane transport proteins characterized in yeast and/or other organisms. While some protein families have been well characterized by classical genetic experimental approaches, others have largely if not totally escaped characterization. The proteins revealed by this in silicio analysis also include a putative K+ channel, proteins similar to aquaporins of plant and animal origin, proteins similar to Na+-solute symporters, a protein very similar to electroneural cation-chloride cotransporters, and a putative Na+-H+ antiporter. A new research area is anticipated: the functional analysis of many transport proteins whose existence was revealed by genome sequencing.

  3. Polyene antibiotic that inhibits membrane transport proteins

    NARCIS (Netherlands)

    Te Welscher, Y.M.; van Leeuwen, M.R.; de Kruijff, B.; Dijksterhuis, J.; Breukink, E.

    2012-01-01

    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific inter

  4. Codon optimizing for increased membrane protein production

    DEFF Research Database (Denmark)

    Mirzadeh, K.; Toddo, S.; Nørholm, Morten

    2016-01-01

    . As demonstrated with two membrane-embedded transporters in Escherichia coli, the method was more effective than optimizing the entire coding sequence. The method we present is PCR based and requires three simple steps: (1) the design of two PCR primers, one of which is degenerate; (2) the amplification...

  5. Nonstructural protein 2 (nsP2) of Chikungunya virus (CHIKV) enhances protective immunity mediated by a CHIKV envelope protein expressing DNA Vaccine.

    Science.gov (United States)

    Bao, Huihui; Ramanathan, Aarti A; Kawalakar, Omkar; Sundaram, Senthil G; Tingey, Colleen; Bian, Charoran B; Muruganandam, Nagarajan; Vijayachari, Paluru; Sardesai, Niranjan Y; Weiner, David B; Ugen, Kenneth E; Muthumani, Karuppiah

    2013-02-01

    Chikungunya virus (CHIKV) is an important emerging mosquito-borne alphavirus, indigenous to tropical Africa and Asia. It can cause epidemic fever and acute illness characterized by fever and arthralgias. The epidemic cycle of this infection is similar to dengue and urban yellow fever viral infections. The generation of an efficient vaccine against CHIKV is necessary to prevent and/or control the disease manifestations of the infection. In this report, we studied immune response against a CHIKV-envelope DNA vaccine (pEnv) and the role of the CHIKV nonstructural gene 2 (nsP2) as an adjuvant for the induction of protective immune responses in a relevant mouse challenge model. When injected with the CHIKV pEnv alone, 70% of the immunized mice survived CHIKV challenge, whereas when co-injected with pEnv+pnsP2, 90% of the mice survived viral challenge. Mice also exhibited a delayed onset signs of illness, and a marked decrease in morbidity, suggesting a nsP2 mediated adjuvant effect. Co-injection of the pnsP2 adjuvant with pEnv also qualitatively and quantitatively increased antigen specific neutralizing antibody responses compared to vaccination with pEnv alone. In sum, these novel data imply that the addition of nsP2 to the pEnv vaccine enhances anti-CHIKV-Env immune responses and maybe useful to include in future CHIKV clinical vaccination strategies.

  6. MreB-Dependent Organization of the E. coli Cytoplasmic Membrane Controls Membrane Protein Diffusion.

    Science.gov (United States)

    Oswald, Felix; Varadarajan, Aravindan; Lill, Holger; Peterman, Erwin J G; Bollen, Yves J M

    2016-03-08

    The functional organization of prokaryotic cell membranes, which is essential for many cellular processes, has been challenging to analyze due to the small size and nonflat geometry of bacterial cells. Here, we use single-molecule fluorescence microscopy and three-dimensional quantitative analyses in live Escherichia coli to demonstrate that its cytoplasmic membrane contains microdomains with distinct physical properties. We show that the stability of these microdomains depends on the integrity of the MreB cytoskeletal network underneath the membrane. We explore how the interplay between cytoskeleton and membrane affects trans-membrane protein (TMP) diffusion and reveal that the mobility of the TMPs tested is subdiffusive, most likely caused by confinement of TMP mobility by the submembranous MreB network. Our findings demonstrate that the dynamic architecture of prokaryotic cell membranes is controlled by the MreB cytoskeleton and regulates the mobility of TMPs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Vaccinia virus virion membrane biogenesis protein A11 associates with viral membranes in a manner that requires the expression of another membrane biogenesis protein, A6.

    Science.gov (United States)

    Wu, Xiang; Meng, Xiangzhi; Yan, Bo; Rose, Lloyd; Deng, Junpeng; Xiang, Yan

    2012-10-01

    A group of vaccinia virus (VACV) proteins, including A11, L2, and A6, are required for biogenesis of the primary envelope of VACV, specifically, for the acquisition of viral membrane precursors. However, the interconnection among these proteins is unknown and, with the exception of L2, the connection of these proteins with membranes is also unknown. In this study, prompted by the findings that A6 coprecipitated A11 and that the cellular distribution of A11 was dramatically altered by repression of A6 expression, we studied the localization of A11 in cells by using immunofluorescence and cell fractionation analysis. A11 was found to associate with membranes and colocalize with virion membrane proteins in viral replication factories during normal VACV replication. A11 partitioned almost equally between the detergent and aqueous phases upon Triton X-114 phase separation, demonstrating an intrinsic affinity with lipids. However, in the absence of infection or VACV late protein synthesis, A11 did not associate with cellular membranes. Furthermore, when A6 expression was repressed, A11 did not colocalize with any viral membrane proteins or associate with membranes. In contrast, when virion envelope formation was blocked at a later step by repression of A14 expression or by rifampin treatment, A11 colocalized with virion membrane proteins in the factories. Altogether, our data showed that A11 associates with viral membranes during VACV replication, and this association requires A6 expression. This study provides a physical connection between A11 and viral membranes and suggests that A6 regulates A11 membrane association.

  8. Quantification of functional dynamics of membrane proteins reconstituted in nanodiscs membranes by single turnover functional readout

    DEFF Research Database (Denmark)

    Moses, Matias Emil; Hedegård, Per; Hatzakis, Nikos

    2016-01-01

    and quantification of the activity, abundance, and lifetime of multiple states and transient intermediates in the energy landscape that are typically averaged out in nonsynchronized ensemble measurements. Studying the function of membrane proteins at the single-molecule level remains a formidable challenge......, and to date there is limited number of available functional assays. In this chapter, we describe in detail our recently developed methodology to reconstitute membrane proteins such as the integral membrane protein cytochrome P450 oxidoreductase on membrane systems such as Nanodiscs and study their functional...... dynamics by recordings at the fundamental resolution of individual catalytic turnovers using prefluorescent substrate analogues. We initially describe the methodology for reconstitution, surface immobilization, and data acquisition of individual enzyme catalytic turnovers. We then explain in detail...

  9. Effect of Adsorbed Protein on the Hydraulic Permeability, Membrane and Streaming Potential Values Measured across a Microporous Membrane

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    1998-01-01

    different experimental conditions may be attributed to different mechanisms for the adsorption of proteins in the membrane: (i) a protein deposition on the membrane pores; () an adsorbed layer of protein on the membrane surface. In this latter case, the whole membrane system can be considered......The effect of the adsorption of a protein, bovine serum albumin (BSA), on the membrane potential, flux reduction and streaming potential measured across a microporous polysulphone membrane with different NaCl solutions and pH values is studied. From electrokinetic phenomena, information about...

  10. The Multifaceted Role of SNARE Proteins in Membrane Fusion.

    Science.gov (United States)

    Han, Jing; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-01-01

    Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.

  11. Role of rab proteins in epithelial membrane traffic

    NARCIS (Netherlands)

    van Ijzendoorn, SCD; Mostov, KE; Hoekstra, D

    2003-01-01

    Small GTPase rab proteins play an important role in various aspects of membrane traffic, including cargo selection, vesicle budding, vesicle motility, tethering, docking, and fusion. Recent data suggest also that rabs, and their divalent effector proteins, organize organelle subdomains and as such m

  12. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins

    DEFF Research Database (Denmark)

    Schwacke, Rainer; Schneider, Anja; van der Graaff, Eric

    2003-01-01

    A specialized database (DB) for Arabidopsis membrane proteins, ARAMEMNON, was designed that facilitates the interpretation of gene and protein sequence data by integrating features that are presently only available from individual sources. Using several publicly available prediction programs, put...... is accessible at the URL http://aramemnon.botanik.uni-koeln.de....

  13. Denaturation of membrane proteins and hyperthermic cell killing

    NARCIS (Netherlands)

    Burgman, Paulus Wilhelmus Johannes Jozef

    1993-01-01

    Summarizing: heat induced denaturation of membrane proteins is probably related to hyperthermic cell killing. Induced resistance of heat sensitive proteins seems to be involved in the development of thermotolerance. Although many questions remain still to be answered, it appears that HSP72, when

  14. Identification of outer membrane proteins of Yersinia pestis through biotinylation

    NARCIS (Netherlands)

    Smither, S.J.; Hill, J.; Baar, B.L.M. van; Hulst, A.G.; Jong, A.L. de; Titball, R.W.

    2007-01-01

    The outer membrane of Gram-negative bacteria contains proteins that might be good targets for vaccines, antimicrobials or detection systems. The identification of surface located proteins using traditional methods is often difficult. Yersinia pestis, the causative agent of plague, was labelled with

  15. Molecular dynamics simulations of a membrane protein/amphipol complex.

    Science.gov (United States)

    Perlmutter, Jason D; Popot, Jean-Luc; Sachs, Jonathan N

    2014-10-01

    Amphipathic polymers known as "amphipols" provide a highly stabilizing environment for handling membrane proteins in aqueous solutions. A8-35, an amphipol with a polyacrylate backbone and hydrophobic grafts, has been extensively characterized and widely employed for structural and functional studies of membrane proteins using biochemical and biophysical approaches. Given the sensitivity of membrane proteins to their environment, it is important to examine what effects amphipols may have on the structure and dynamics of the proteins they complex. Here we present the first molecular dynamics study of an amphipol-stabilized membrane protein, using Escherichia coli OmpX as a model. We begin by describing the structure of the complexes formed by supplementing OmpX with increasing amounts of A8-35, in order to determine how the amphipol interacts with the transmembrane and extramembrane surfaces of the protein. We then compare the dynamics of the protein in either A8-35, a detergent, or a lipid bilayer. We find that protein dynamics on all accessible length scales is restrained by A8-35, which provides a basis to understanding some of the stabilizing and functional effects of amphipols that have been experimentally observed.

  16. Identification of outer membrane proteins of Yersinia pestis through biotinylation

    NARCIS (Netherlands)

    Smither, S.J.; Hill, J.; Baar, B.L.M. van; Hulst, A.G.; Jong, A.L. de; Titball, R.W.

    2007-01-01

    The outer membrane of Gram-negative bacteria contains proteins that might be good targets for vaccines, antimicrobials or detection systems. The identification of surface located proteins using traditional methods is often difficult. Yersinia pestis, the causative agent of plague, was labelled with

  17. VAMP-1: a synaptic vesicle-associated integral membrane protein.

    Science.gov (United States)

    Trimble, W S; Cowan, D M; Scheller, R H

    1988-01-01

    Several proteins are associated with, or are integral components of, the lipid bilayer that forms the delineating membrane of neuronal synaptic vesicles. To characterize these molecules, we used a polyclonal antiserum raised against purified cholinergic synaptic vesicles from Torpedo to screen a cDNA expression library constructed from mRNA of the electromotor nucleus. One clone encodes VAMP-1 (vesicle-associated membrane protein 1), a nervous-system-specific protein of 120 amino acids whose primary sequence can be divided into three domains: a proline-rich amino terminus, a highly charged internal region, and a hydrophobic carboxyl-terminal domain that is predicted to comprise a membrane anchor. Tryptic digestion of intact and lysed vesicles suggests that the protein faces the cytoplasm, where it may play a role in packaging, transport, or release of neurotransmitters. Images PMID:3380805

  18. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  19. Novel silk protein barrier membranes for guided bone regeneration.

    Science.gov (United States)

    Smeets, Ralf; Knabe, Christine; Kolk, Andreas; Rheinnecker, Michael; Gröbe, Alexander; Heiland, Max; Zehbe, Rolf; Sachse, Manuela; Große-Siestrup, Christian; Wöltje, Michael; Hanken, Henning

    2016-10-12

    This study assesses the biocompatibility of novel silk protein membranes with and without modification, and evaluates their effect on facilitating bone formation and defect repair in guided bone regeneration. Two calvarian bone defects 12 mm in diameter were created in each of a total of 38 rabbits. Four different types of membranes, (silk-, hydroxyapatite-modified silk-, β-TCP-modified silk- and commonly clinically used collagen-membranes) were implanted to cover one of the two defects in each animal. Histologic analysis did not show any adverse tissue reactions in any of the defect sites indicating good biocompatibility of all silk protein membranes. Histomorphometric and histologic evaluation revealed that collagen and β-TCP modified silk membranes supported bone formation (collagen: bone area fraction p = 0.025; significant; β-TCP modified silk membranes bone area fraction: p = 0.24, not significant), guided bone regeneration and defect bridging. The bone, which had formed in defects covered by β-TCP modified silk membranes, displayed a more advanced stage of bone tissue maturation with restoration of the original calvarial bone microarchitecture when compared to the bone which had formed in defects, for which any of the other test membranes were used. Micro-CT analysis did not reveal any differences in the amount of bone formation between defects with and without membranes. In contrast to the collagen membranes, β-TCP modified silk membranes were visible in all cases and may therefore be advantageous for further supporting bone formation beyond 10 weeks and preventing soft tissue ingrowth from the periphery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  20. Characterization of the major integral protein of vacuolar membrane.

    Science.gov (United States)

    Maeshima, M

    1992-04-01

    The vacuolar membrane of radish (Raphanus sativus) taproot contained a large quantity of a protein of 23 kilodaltons that accounted for more than 25% of the total membrane proteins. The protein, tentatively named VM 23, was purified and characterized. VM 23 tends to aggregate at high temperature even in the presence of 1% sodium dodecyl sulfate. The apparent molecular size of VM 23 was estimated to be about 400 kilodaltons by polyacrylamide gel electrophoresis in the presence of 0.1% Triton X-100. VM 23 was partially extracted from the vacuolar membranes with chloroform:methanol, indicating its high hydrophobicity. The hydrophobic carboxyl modifier N,N'-dicyclohexylcarbodiimide bound covalently to VM 23. The results suggest that VM 23 may act as a secondary transport system coupled with the proton transport. The antibody against radish VM 23 reacted with the major proteins in the vacuolar membranes of mung bean (Vigna radiata) and castor bean (Ricinus communis) hypocotyls and pumpkin (Cucurbita moschata) epicotyl, but not with that of sugar beet (Beta vulgaris) taproot. VM 23 comigrated with vacuolar H(+)-pyrophosphatase on sucrose density gradient centrifugation after sonication of membranes, indicating that it is associated with the vacuolar membrane.

  1. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-10-23

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  2. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    Directory of Open Access Journals (Sweden)

    Marc Lenoir

    2015-10-01

    Full Text Available The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH and Tec homology (TH domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  3. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    Science.gov (United States)

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes.

  4. Solid-state NMR structures of integral membrane proteins.

    Science.gov (United States)

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.

  5. ARAMEMNON, a Novel Database for Arabidopsis Integral Membrane Proteins1

    Science.gov (United States)

    Schwacke, Rainer; Schneider, Anja; van der Graaff, Eric; Fischer, Karsten; Catoni, Elisabetta; Desimone, Marcelo; Frommer, Wolf B.; Flügge, Ulf-Ingo; Kunze, Reinhard

    2003-01-01

    A specialized database (DB) for Arabidopsis membrane proteins, ARAMEMNON, was designed that facilitates the interpretation of gene and protein sequence data by integrating features that are presently only available from individual sources. Using several publicly available prediction programs, putative integral membrane proteins were identified among the approximately 25,500 proteins in the Arabidopsis genome DBs. By averaging the predictions from seven programs, approximately 6,500 proteins were classified as transmembrane (TM) candidate proteins. Some 1,800 of these contain at least four TM spans and are possibly linked to transport functions. The ARAMEMNON DB enables direct comparison of the predictions of seven different TM span computation programs and the predictions of subcellular localization by eight signal peptide recognition programs. A special function displays the proteins related to the query and dynamically generates a protein family structure. As a first set of proteins from other organisms, all of the approximately 700 putative membrane proteins were extracted from the genome of the cyanobacterium Synechocystis sp. and incorporated in the ARAMEMNON DB. The ARAMEMNON DB is accessible at the URL http://aramemnon.botanik.uni-koeln.de. PMID:12529511

  6. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  7. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins

    DEFF Research Database (Denmark)

    Bhatia, Vikram Kjøller; Hatzakis, Nikos; Stamou, Dimitrios

    2010-01-01

    unrelated motifs: BAR domains, amphipathic helices and membrane-anchored proteins. We discuss the conclusion that the curvature of the BAR dimer is not responsible for sensing and that the sensing properties of all three motifs can be rationalized by the physicochemical properties of the curved membrane......The discovery of proteins that recognize membrane curvature created a paradigm shift by suggesting that membrane shape may act as a cue for protein localization that is independent of lipid or protein composition. Here we review recent data on membrane curvature sensing by three structurally...... itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology....

  8. Antibody to Sulfatide and P2 myelin proteins in chronic inflammatory demyelinating polyradiculoneuropathy%CIDP患者血清和脑脊液中硫脂抗体、P2蛋白抗体的临床意义

    Institute of Scientific and Technical Information of China (English)

    吴德云; 李晓光; 郭玉璞; 陈琳; 李存江

    2003-01-01

    目的通过测定慢性炎性脱髓鞘性多发性神经病(CIDP)患者血清和脑脊液(CSF)中抗硫脂抗体及P2蛋白抗体水平,探讨其临床意义和可能的致病机制.方法应用ELISA法检测24例CIDP患者血清和脑脊液中抗硫脂抗体和P2蛋白抗体水平.结果 (1)CIDP组血清中高滴度抗硫脂抗体与其它周围神经病(OPN)组和其它神经系统疾病(OND)组比较无显著的差异(P>0.05);脑脊液中IgM-抗硫脂抗体与各对照组比较差异有显著性(P0.05);脑脊液中抗P2抗体与各对照组比较有显著性差异(P0.05).结论 CIDP患者脑脊液中IgM-抗硫脂抗体可以作为感觉轴索型周围神经病的临床诊断参考指标;血清和脑脊液中P2抗体的检测对CIDP诊断参考价值不大,可能与疾病的修复有关.

  9. Symmetry and size of membrane protein polyhedral nanoparticles

    CERN Document Server

    Li, Di; Haselwandter, Christoph A

    2016-01-01

    In recent experiments [T. Basta et al., Proc. Natl. Acad. Sci. U.S.A. 111, 670 (2014)] lipids and membrane proteins were observed to self-assemble into membrane protein polyhedral nanoparticles (MPPNs) with a well-defined polyhedral protein arrangement and characteristic size. We develop a model of MPPN self-assembly in which the preferred symmetry and size of MPPNs emerge from the interplay of protein-induced lipid bilayer deformations, topological defects in protein packing, and thermal effects. With all model parameters determined directly from experiments, our model correctly predicts the observed symmetry and size of MPPNs. Our model suggests how key lipid and protein properties can be modified to produce a range of MPPN symmetries and sizes in experiments.

  10. Methylation of specific CpG sites in the P2 promoter of parathyroid hormone-related protein determines the invasive potential of breast cancer cell lines.

    Science.gov (United States)

    Tost, Jörg; Hamzaoui, Hinda; Busato, Florence; Neyret, Aymeric; Mourah, Samia; Dupont, Jean-Michel; Bouizar, Zhor

    2011-08-01

    Parathyroid hormone-related protein (PTHrP) is upregulated in primary breast cancers and a major candidate for osteoclastic bone resorption present at sites of breast cancer to bone metastases. Using a human model of mammary epithelial cell lines differing in tumorigenicity and PTHrP expression, we investigated the role of epigenetic modifications for PTHrP expression. Quantitative analysis of the DNA methylation patterns at a total of 104 CpGs in the promoter region of PTHrP by pyrosequencing showed the absence of methylation in all analyzed cell lines in the large CpG island upstream of exon 1C. In the second intron of promoter 2 (P2) a region was identified containing 4 CpG nucleotides for which differential methylation correlated with the PTHrP expression level. The functional importance of this control mechanism was confirmed by the ability of the demethylating agent 5'-azacytidine to induce PTHrP mRNA and iPTHrP protein expression in previously non-expressing cell lines and increase their production by metastatic NS2T2A1 cells. In particular, transcription from P2 was activated non-tumoral S1T3 cells upon treatment with 5'-azacytidine. Our findings support the hypothesis that the methylation status of specific CpG dinucleotides is the dominant mechanism involved in silencing of PTHrP expression rather than the overall methylation of the CpG island. Methylation of the PTHrP P2 is a potential marker of breast cancer progression and might be used to evaluate the metastatic potential of breast tumors.

  11. Membrane proteins structure and dynamics by nuclear magnetic resonance.

    Science.gov (United States)

    Maltsev, Sergey; Lorigan, Gary A

    2011-10-01

    Membrane proteins represent a challenging class of biological systems to study. They are extremely difficult to crystallize and in most cases they retain their structure and functions only in membrane environments. Therefore, commonly used diffraction methods fail to give detailed molecular structure and other approaches have to be utilized to obtain biologically relevant information. Nuclear magnetic resonance (NMR) spectroscopy, however, can provide powerful structural and dynamical constraints on these complicated systems. Solution- and solid-state NMR are powerful methods for investigating membrane proteins studies. In this work, we briefly review both solution and solid-state NMR techniques for membrane protein studies and illustrate the applications of these methods to elucidate proteins structure, conformation, topology, dynamics, and function. Recent advances in electronics, biological sample preparation, and spectral processing provided opportunities for complex biological systems, such as membrane proteins inside lipid vesicles, to be studied faster and with outstanding quality. New analysis methods therefore have emerged, that benefit from the combination of sample preparation and corresponding specific high-end NMR techniques, which give access to more structural and dynamic information.

  12. Assembly of β-barrel proteins into bacterial outer membranes.

    Science.gov (United States)

    Selkrig, Joel; Leyton, Denisse L; Webb, Chaille T; Lithgow, Trevor

    2014-08-01

    Membrane proteins with a β-barrel topology are found in the outer membranes of Gram-negative bacteria and in the plastids and mitochondria of eukaryotic cells. The assembly of these membrane proteins depends on a protein folding reaction (to create the barrel) and an insertion reaction (to integrate the barrel within the outer membrane). Experimental approaches using biophysics and biochemistry are detailing the steps in the assembly pathway, while genetics and bioinformatics have revealed a sophisticated production line of cellular components that catalyze the assembly pathway in vivo. This includes the modular BAM complex, several molecular chaperones and the translocation and assembly module (the TAM). Recent screens also suggest that further components of the pathway might remain to be discovered. We review what is known about the process of β-barrel protein assembly into membranes, and the components of the β-barrel assembly machinery. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

  13. Prediction of transmembrane helix orientation in polytopic membrane proteins

    Directory of Open Access Journals (Sweden)

    Liang Jie

    2006-06-01

    Full Text Available Abstract Background Membrane proteins compose up to 30% of coding sequences within genomes. However, their structure determination is lagging behind compared with soluble proteins due to the experimental difficulties. Therefore, it is important to develop reliable computational methods to predict structures of membrane proteins. Results We present a method for prediction of the TM helix orientation, which is an essential step in ab initio modeling of membrane proteins. Our method is based on a canonical model of the heptad repeat originally developed for coiled coils. We identify the helical surface patches that interface with lipid molecules at an accuracy of about 88% from the sequence information alone, using an empirical scoring function LIPS (LIPid-facing Surface, which combines lipophilicity and conservation of residues in the helix. We test and discuss results of prediction of helix-lipid interfaces on 162 transmembrane helices from 18 polytopic membrane proteins and present predicted orientations of TM helices in TRPV1 channel. We also apply our method to two structures of homologous cytochrome b6f complexes and find discrepancy in the assignment of TM helices from subunits PetG, PetN and PetL. The results of LIPS calculations and analysis of packing and H-bonding interactions support the helix assignment found in the cytochrome b6f structure from green alga but not the assignment of TM helices in the cyanobacterium b6f structure. Conclusion LIPS calculations can be used for the prediction of helix orientation in ab initio modeling of polytopic membrane proteins. We also show with the example of two cytochrome b6f structures that our method can identify questionable helix assignments in membrane proteins. The LIPS server is available online at http://gila.bioengr.uic.edu/lab/larisa/lips.html.

  14. Protein adsorption through Chitosan–Alginate membranes for potential applications

    OpenAIRE

    Murguía Flores, Dennise A.; Bonilla Ríos, Jaime; Canales Fiscal, Martha R.; Sánchez Fernández, Antonio

    2016-01-01

    Abstract Background Chitosan and Alginate were used as biopolymers to prepare membranes for protein adsorption. The network requires a cross-linker able to form bridges between polymeric chains. Viscopearl-mini® (VM) was used as a support to synthesize them. Six different types of membranes were prepared using the main compounds of the matrix: VM, Chitosan of low and medium molecular weight, and Alginate. Results Experiments were carried out to analyze the interactions within the matrix a...

  15. The role of interfacial lipids in stabilizing membrane protein oligomers.

    Science.gov (United States)

    Gupta, Kallol; Donlan, Joseph A C; Hopper, Jonathan T S; Uzdavinys, Povilas; Landreh, Michael; Struwe, Weston B; Drew, David; Baldwin, Andrew J; Stansfeld, Phillip J; Robinson, Carol V

    2017-01-19

    Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways but is often difficult to define or predict. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na(+)/H(+) antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors.

  16. Plasma membrane microdomains regulate turnover of transport proteins in yeast

    Science.gov (United States)

    Grossmann, Guido; Malinsky, Jan; Stahlschmidt, Wiebke; Loibl, Martin; Weig-Meckl, Ina; Frommer, Wolf B.; Opekarová, Miroslava; Tanner, Widmar

    2008-01-01

    In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins. PMID:19064668

  17. Major integral membrane protein immunogens of Treponema pallidum are proteolipids

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, N.R.; Brandt, M.E.; Erwin, A.L.; Radolf, J.D.; Norgard, M.V. (Univ. of Texas Southwestern Medical Center, Dallas (USA))

    1989-09-01

    A number of the major pathogen-specific immunogens of Treponema pallidum were characterized recently as amphiphilic, integral membrane proteins by phase partitioning with Triton X-114. In the present study, we demonstrated that the same membrane immunogens (designated as detergent phase proteins (DPPs)) become radiolabeled upon in vitro incubation of T. pallidum with various {sup 3}H-labeled fatty acids. Radioimmunoprecipitation with a monoclonal antibody confirmed that the {sup 3}H-labeled 47-kilodalton protein corresponded to the well-characterized treponemal antigen with the identical apparent molecular mass. Failure to detect {sup 3}H-labeled DPPs following incubation with erythromycin confirmed that protein acylation required de novo protein synthesis by the bacteria. When treponemes were incubated with ({sup 3}H)myristate, ({sup 3}H)palmitate, or ({sup 3}H)oleate, radiolabeled proteins corresponding to the DPPs were detected upon autoradiography. Demonstration that a number of the abundant membrane immunogens of T. pallidum are proteolipids provides information to help clarify their membrane association(s) and may serve to explain their extraordinary immunogenicity.

  18. Data on diverse roles of helix perturbations in membrane proteins

    Directory of Open Access Journals (Sweden)

    Ashish Shelar

    2016-12-01

    Full Text Available The various structural variations observed in TM helices of membrane proteins have been deconstructed into 9 distinct types of helix perturbations. These perturbations are defined by the deviation of TM helices from the predominantly observed linear α-helical conformation, to form 310- and π-helices, as well as adopting curved and kinked geometries. The data presented here supplements the article ‘Helix perturbations in Membrane Proteins Assist in Inter-helical Interactions and Optimal Helix Positioning in the Bilayer’ (A. Shelar, M. Bansal, 2016 [1]. This data provides strong evidence for the role of various helix perturbations in influencing backbone torsion angles of helices, mediating inter-helical interactions, oligomer formation and accommodation of hydrophobic residues within the bilayer. The methodology used for creation of various datasets of membrane protein families (Sodium/Calcium exchanger and Heme Copper Oxidase has also been mentioned.

  19. The Single-Molecule Approach to Membrane Protein Stoichiometry.

    Science.gov (United States)

    Nichols, Michael G; Hallworth, Richard

    2016-01-01

    The advent of techniques for imaging solitary fluorescent molecules has made possible many new kinds of biological experiments. Here, we describe the application of single-molecule imaging to the problem of subunit stoichiometry in membrane proteins. A membrane protein of unknown stoichiometry, prestin, is coupled to the fluorescent enhanced green fluorescent protein (eGFP) and synthesized in the human embryonic kidney (HEK) cell line. We prepare adherent membrane fragments containing prestin-eGFP by osmotic lysis. The molecules are then exposed to continuous low-level excitation until their fluorescence reaches background levels. Their fluorescence decreases in discrete equal-amplitude steps, consistent with the photobleaching of single fluorophores. We count the number of steps required to photobleach each molecule. The molecular stoichiometry is then deduced using a binomial model.

  20. Pathogen receptor discovery with a microfluidic human membrane protein array

    Science.gov (United States)

    Glick, Yair; Ben-Ari, Ya’ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella

    2016-01-01

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein–pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism. PMID:27044079

  1. Helix kinks are equally prevalent in soluble and membrane proteins.

    Science.gov (United States)

    Wilman, Henry R; Shi, Jiye; Deane, Charlotte M

    2014-09-01

    Helix kinks are a common feature of α-helical membrane proteins, but are thought to be rare in soluble proteins. In this study we find that kinks are a feature of long α-helices in both soluble and membrane proteins, rather than just transmembrane α-helices. The apparent rarity of kinks in soluble proteins is due to the relative infrequency of long helices (≥20 residues) in these proteins. We compare length-matched sets of soluble and membrane helices, and find that the frequency of kinks, the role of Proline, the patterns of other amino acid around kinks (allowing for the expected differences in amino acid distributions between the two types of protein), and the effects of hydrogen bonds are the same for the two types of helices. In both types of protein, helices that contain Proline in the second and subsequent turns are very frequently kinked. However, there are a sizeable proportion of kinked helices that do not contain a Proline in either their sequence or sequence homolog. Moreover, we observe that in soluble proteins, kinked helices have a structural preference in that they typically point into the solvent.

  2. Influence of the Secondary Cell Wall Polymer on the Reassembly, Recrystallization, and Stability Properties of the S-Layer Protein from Bacillus stearothermophilus PV72/p2

    Science.gov (United States)

    Sára, Margit; Dekitsch, Christine; Mayer, Harald F.; Egelseer, Eva M.; Sleytr, Uwe B.

    1998-01-01

    The high-molecular-weight secondary cell wall polymer (SCWP) from Bacillus stearothermophilus PV72/p2 is mainly composed of N-acetylglucosamine (GlcNAc) and N-acetylmannosamine (ManNAc) and is involved in anchoring the S-layer protein via its N-terminal region to the rigid cell wall layer. In addition to this binding function, the SCWP was found to inhibit the formation of self-assembly products during dialysis of the guanidine hydrochloride (GHCl)-extracted S-layer protein. The degree of assembly (DA; percent assembled from total S-layer protein) that could be achieved strongly depended on the amount of SCWP added to the GHCl-extracted S-layer protein and decreased from 90 to 10% when the concentration of the SCWP was increased from 10 to 120 μg/mg of S-layer protein. The SCWP kept the S-layer protein in the water-soluble state and favored its recrystallization on solid supports such as poly-l-lysine-coated electron microscopy grids. Derived from the orientation of the base vectors of the oblique S-layer lattice, the subunits had bound with their charge-neutral outer face, leaving the N-terminal region with the polymer binding domain exposed to the ambient environment. From cell wall fragments about half of the S-layer protein could be extracted with 1 M GlcNAc, indicating that the linkage type between the S-layer protein and the SCWP could be related to that of the lectin-polysaccharide type. Interestingly, GlcNAc had an effect on the in vitro self-assembly and recrystallization properties of the S-layer protein that was similar to that of the isolated SCWP. The SCWP generally enhanced the stability of the S-layer protein against endoproteinase Glu-C attack and specifically protected a potential cleavage site in position 138 of the mature S-layer protein. PMID:9696762

  3. Solubilization of lipids and membrane proteins into nanodiscs : Mode of action and applications of SMA copolymers

    NARCIS (Netherlands)

    Scheidelaar, S.

    2016-01-01

    Cell membranes separate the inside and outside of cells. Membrane proteins in the cell membrane control the traffic of molecules across the membrane and are therefore targets for a lot of drugs: about 50 % of all approved drugs target a membrane protein! Unfortunately, scientists only know little

  4. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms.

    Science.gov (United States)

    Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji

    2016-07-01

    This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  5. Proteomic analysis of GPI-anchored membrane proteins

    DEFF Research Database (Denmark)

    Jung, Hye Ryung; Jensen, Ole Nørregaard

    2006-01-01

    Glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs) represent a subset of post-translationally modified proteins that are tethered to the outer leaflet of the plasma membrane via a C-terminal GPI anchor. GPI-APs are found in a variety of eukaryote species, from pathogenic microorganisms...... to humans. GPI-APs confer important cellular functions as receptors, enzymes and scaffolding molecules. Specific enzymes and detergent extraction methods combined with separation technologies and mass spectrometry permit proteomic analysis of GPI-APs from plasma membrane preparations to reveal cell...

  6. Prokaryotic and eukaryotic integral membrane proteins have similar architecture.

    Science.gov (United States)

    Gaur, Rajneesh Kumar; Natekar, Girija Arun

    2010-03-01

    Integral membrane proteins constitute a major constituent of lipid bilayer both in prokaryotes and eukaryotes. The statistical analysis was carried out to determine the bias in amino acid distribution between prokaryotic and eukaryotic integral membrane proteins (pIntMPs and eIntMPs). Our results indicate that both pIntMPs and eIntMPs demonstrate the striking similarity in amino acid distribution in their transmembrane and extramembranous region. pIntMPs have relatively greater functional importance for Gly and Asn in comparison to eIntMPs.

  7. Proteomic analysis of GPI-anchored membrane proteins

    DEFF Research Database (Denmark)

    Jung, Hye Ryung; Jensen, Ole Nørregaard

    2006-01-01

    to humans. GPI-APs confer important cellular functions as receptors, enzymes and scaffolding molecules. Specific enzymes and detergent extraction methods combined with separation technologies and mass spectrometry permit proteomic analysis of GPI-APs from plasma membrane preparations to reveal cell......Glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs) represent a subset of post-translationally modified proteins that are tethered to the outer leaflet of the plasma membrane via a C-terminal GPI anchor. GPI-APs are found in a variety of eukaryote species, from pathogenic microorganisms...

  8. Distribution of Flagella Secreted Protein and Integral Membrane Protein Among Campylobacter jejuni Isolated from Thailand

    Science.gov (United States)

    2011-01-01

    secreted protein and integral membrane protein among Campylobacter jejuni isolated from Thailand Piyarat Pootong 1·, Oralak Serichantalergs...Ladaporn Bodhidatta \\ Frederic Poly2, Patricia Guerry2 and Carl J Mason 1 Abstract Background: Campylobacter jejuni, a gram-negative bacterium, is a...groups of integral membrane protein. The significance of these different FspA variants to virulence requires further study. Background Campylobacter

  9. Transmembrane protein sorting driven by membrane curvature

    NARCIS (Netherlands)

    Strahl, H.; Ronneau, S.; Solana González, B.; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L.W.

    2015-01-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show

  10. Transmembrane protein sorting driven by membrane curvature

    NARCIS (Netherlands)

    Strahl, H.; Ronneau, S.; Solana González, B.; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L.W.

    2015-01-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show th

  11. Pb2+ as modulator of protein-membrane interactions.

    Science.gov (United States)

    Morales, Krystal A; Lasagna, Mauricio; Gribenko, Alexey V; Yoon, Youngdae; Reinhart, Gregory D; Lee, James C; Cho, Wonhwa; Li, Pingwei; Igumenova, Tatyana I

    2011-07-13

    Lead is a potent environmental toxin that mimics the effects of divalent metal ions, such as zinc and calcium, in the context of specific molecular targets and signaling processes. The molecular mechanism of lead toxicity remains poorly understood. The objective of this work was to characterize the effect of Pb(2+) on the structure and membrane-binding properties of C2α. C2α is a peripheral membrane-binding domain of Protein Kinase Cα (PKCα), which is a well-documented molecular target of lead. Using NMR and isothermal titration calorimetry (ITC) techniques, we established that C2α binds Pb(2+) with higher affinity than its natural cofactor, Ca(2+). To gain insight into the coordination geometry of protein-bound Pb(2+), we determined the crystal structures of apo and Pb(2+)-bound C2α at 1.9 and 1.5 Å resolution, respectively. A comparison of these structures revealed that the metal-binding site is not preorganized and that rotation of the oxygen-donating side chains is required for the metal coordination to occur. Remarkably, we found that holodirected and hemidirected coordination geometries for the two Pb(2+) ions coexist within a single protein molecule. Using protein-to-membrane Förster resonance energy transfer (FRET) spectroscopy, we demonstrated that Pb(2+) displaces Ca(2+) from C2α in the presence of lipid membranes through the high-affinity interaction with the membrane-unbound C2α. In addition, Pb(2+) associates with phosphatidylserine-containing membranes and thereby competes with C2α for the membrane-binding sites. This process can contribute to the inhibitory effect of Pb(2+) on the PKCα activity.

  12. A Truncated P2X7 Receptor Variant (P2X7-j) Endogenously Expressed in Cervical Cancer Cells Antagonizes the Full-length P2X7 Receptor through Hetero-oligomerization*

    OpenAIRE

    Feng, Ying-Hong; LI Xin; Wang, Liqin; Zhou, Lingying; Gorodeski, George I.

    2006-01-01

    A truncated naturally occurring variant of the human receptor P2X7 was identified in cancer cervical cells. The novel protein (P2X7-j), a polypeptide of 258 amino acids, lacks the entire intracellular carboxyl terminus, the second transmembrane domain, and the distal third of the extracellular loop of the full-length P2X7 receptor. The P2X7-j was expressed in the plasma membrane; it showed diminished ligand-binding and channel function capacities and failed to form pores and mediate apoptosis...

  13. Effective high-throughput overproduction of membrane proteins in Escherichia coli.

    NARCIS (Netherlands)

    Gordon, E.; Horsefield, R.; Swarts, H.G.P.; Pont, J.J.H.H.M. de; Neutze, R.; Snijder, A.

    2008-01-01

    Structural biology is increasingly reliant on elevated throughput methods for protein production. In particular, development of efficient methods of heterologous production of membrane proteins is essential. Here, we describe the heterologous overproduction of 24 membrane proteins from the human pat

  14. Detergent interaction with tethered bilayer lipid membranes for protein reconstitution

    Science.gov (United States)

    Broccio, Matteo; Zan Goh, Haw; Loesche, Mathias

    2009-03-01

    Tethered bilayer lipid membranes (tBLMs) are self-assembled biomimetic structures in which the membrane is separated from a solid substrate by a nm-thick hydrated submembrane space. These model systems are being used in binding studies of peripheral proteins and exotoxins. Here we aim at their application for the reconstitution of water-insoluble integral membrane proteins. As an alternative to fusion of preformed proteoliposomes we study the direct reconstitution of such proteins for applications in biosensing and pharmaceutical screening. For reconstitution, highly insulating tBLMs (R˜10^5-10^6 φ) were temporarily incubated with a detergent to screen for conditions that keep the detergent-saturated membranestable and ready to incorporate detergent-solubilized proteins. We assess the electrical characteristics, i.e. specific resistance and capacitance, by means of electrochemical impedance spectroscopy (EIS) under timed incubation with decylmaltoside and dodecylmaltoside detergents in a regime around their critical micelle concentration, 1.8 mM and 0.17 mM respectively and demonstrate the restoration of the tBLM upon detergent removal. Thereby a range of concentration and incubation times was identified, that represents optimal conditions for the subsequent membrane protein reconstitution.

  15. Capture-stabilize approach for membrane protein SPR assays.

    Science.gov (United States)

    Chu, Ruiyin; Reczek, David; Brondyk, William

    2014-12-08

    Measuring the binding kinetics of antibodies to intact membrane proteins by surface plasmon resonance has been challenging largely because of the inherent difficulties in capturing membrane proteins on chip surfaces while retaining their native conformation. Here we describe a method in which His-tagged CXCR5, a GPCR, was purified and captured on a Biacore chip surface via the affinity tag. The captured receptor protein was then stabilized on the chip surface by limited cross-linking. The resulting chip surface retained ligand binding activity and was used for monoclonal antibody kinetics assays by a standard Biacore kinetics assay method with a simple low pH regeneration step. We demonstrate the advantages of this whole receptor assay when compared to available peptide-based binding assays. We further extended the application of the capture-stabilize approach to virus-like particles and demonstrated its utility analyzing antibodies against CD52, a GPI-anchored protein, in its native membrane environment. The results are the first demonstration of chemically stabilized chip surfaces for membrane protein SPR assays.

  16. An automated pipeline to screen membrane protein 2D crystallization.

    Science.gov (United States)

    Kim, Changki; Vink, Martin; Hu, Minghui; Love, James; Stokes, David L; Ubarretxena-Belandia, Iban

    2010-06-01

    Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein-lipid-detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility.

  17. Identification of calcium-binding proteins associated with the human sperm plasma membrane

    National Research Council Canada - National Science Library

    Naaby-Hansen, Soren; Diekman, Alan; Shetty, Jagathpala; Flickinger, Charles J; Westbrook, Anne; Herr, John C

    2010-01-01

    The precise composition of the human sperm plasma membrane, the molecular interactions that define domain specific functions, and the regulation of membrane associated proteins during the capacitation...

  18. Secretins: dynamic channels for protein transport across membranes

    Science.gov (United States)

    Korotkov, Konstantin V.; Gonen, Tamir; Hol, Wim G. J.

    2011-01-01

    Secretins form mega-Dalton bacterial membrane channels in at least four sophisticated multi-protein systems that are crucial for translocation of proteins and assembled fibers across the outer membrane of many species of bacteria. Secretin subunits contain multiple domains, which interact with numerous other proteins, including pilotins, secretion system partner proteins and exoproteins. Our understanding of the structure of secretins is rapidly progressing, and we now recognize that features common to all secretins include a cylindrical arrangement of 12–15 subunits, a large periplasmic vestibule with a wide opening on one end and a periplasmic gate at the other end. Secretins might also play a key role in the biogenesis of their cognate secretion systems. PMID:21565514

  19. Protein receptor-independent plasma membrane remodeling by HAMLET

    DEFF Research Database (Denmark)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.;

    2015-01-01

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This "protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains...... in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range...... of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a "receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET...

  20. Heterologous expression of membrane proteins: choosing the appropriate host.

    Directory of Open Access Journals (Sweden)

    Florent Bernaudat

    Full Text Available BACKGROUND: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. METHODOLOGY/PRINCIPAL FINDINGS: The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals, functions (transporters, receptors, enzymes and topologies (between 0 and 13 transmembrane segments. The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. CONCLUSIONS/SIGNIFICANCE: Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.

  1. Heterologous expression of membrane proteins: choosing the appropriate host.

    Science.gov (United States)

    Bernaudat, Florent; Frelet-Barrand, Annie; Pochon, Nathalie; Dementin, Sébastien; Hivin, Patrick; Boutigny, Sylvain; Rioux, Jean-Baptiste; Salvi, Daniel; Seigneurin-Berny, Daphné; Richaud, Pierre; Joyard, Jacques; Pignol, David; Sabaty, Monique; Desnos, Thierry; Pebay-Peyroula, Eva; Darrouzet, Elisabeth; Vernet, Thierry; Rolland, Norbert

    2011-01-01

    Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein. © 2011 Bernaudat et al.

  2. A role for the membrane Golgi protein Ema in autophagy.

    Science.gov (United States)

    Kim, Sungsu; DiAntonio, Aaron

    2012-08-01

    Autophagy is a cellular homeostatic response that involves degradation of self-components by the double-membraned autophagosome. The biogenesis of autophagosomes has been well described, but the ensuing processes after autophagosome formation are not clear. In our recent study, we proposed a model in which the Golgi complex contributes to the growth of autophagic structures, and that the Drosophila melanogaster membrane protein Ema promotes this process. In fat body cells of the D. melanogaster ema mutant, the recruitment of the Golgi complex protein Lava lamp (Lva) to autophagic structures is impaired and autophagic structures are very small. In addition, in the ema mutant autophagic turnover of SQSTM1/p62 and mitophagy are impaired. Our study not only identifies a role for Ema in autophagy, but also supports the hypothesis that the Golgi complex may be a potential membrane source for the biogenesis and development of autophagic structures.

  3. Early targeting events during membrane protein biogenesis in Escherichia coli.

    Science.gov (United States)

    Bibi, Eitan

    2011-03-01

    All living cells have co-translational pathways for targeting membrane proteins. Co-translation pathways for secretory proteins also exist but mostly in eukaryotes. Unlike secretory proteins, the biosynthetic pathway of most membrane proteins is conserved through evolution and these proteins are usually synthesized by membrane-bound ribosomes. Translation on the membrane requires that both the ribosomes and the mRNAs be properly localized. Theoretically, this can be achieved by several means. (i) The current view is that the targeting of cytosolic mRNA-ribosome-nascent chain complexes (RNCs) to the membrane is initiated by information in the emerging hydrophobic nascent polypeptides. (ii) The alternative model suggests that ribosomes may be targeted to the membrane also constitutively, whereas the appropriate mRNAs may be carried on small ribosomal subunits or targeted by other cellular factors to the membrane-bound ribosomes. Importantly, the available experimental data do not rule out the possibility that cells may also utilize both pathways in parallel. In any case, it is well documented that a major player in the targeting pathway is the signal recognition particle (SRP) system composed of the SRP and its receptor (SR). Although the functional core of the SRP system is evolutionarily conserved, its composition and biological practice come with different flavors in various organisms. This review is dedicated mainly to the Escherichia (E.) coli SRP, where the biochemical and structural properties of components of the SRP system have been relatively characterized, yielding essential information about various aspects of the pathway. In addition, several cellular interactions of the SRP and its receptor have been described in E. coli, providing insights into their spatial function. Collectively, these in vitro studies have led to the current view of the targeting pathway [see (i) above]. Interestingly, however, in vivo studies of the role of the SRP and its receptor

  4. Self-assembling peptide and protein nanodiscs for studies of membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi

    of proteins encoded by the human genome. G-protein coupled receptors mediate the majority of hormone and neurotransmitter signals as well as being responsible for perception of light, smell and taste in the human body, and a number of Nobel prizes has been awarded based on their study. Structural...... membrane proteins. A minimalistic approach was tested where the ApoA1 protein was mimicked my small amphipathic helical peptides. The resulting discs were very similar to ApoA1 based discs in size and in their ability to stabilize incorporated membrane proteins. Furthermore, due to their enhanced dynamical...

  5. Decrease in membrane phospholipid unsaturation induces unfolded protein response.

    Science.gov (United States)

    Ariyama, Hiroyuki; Kono, Nozomu; Matsuda, Shinji; Inoue, Takao; Arai, Hiroyuki

    2010-07-16

    Various kinds of fatty acids are distributed in membrane phospholipids in mammalian cells and tissues. The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by diet and by altered activities of lipid-metabolizing enzymes such as fatty acid desaturases. However, little is known about how mammalian cells respond to changes in phospholipid fatty acid composition. In this study we showed that stearoyl-CoA desaturase 1 (SCD1) knockdown increased the amount of saturated fatty acids and decreased that of monounsaturated fatty acids in phospholipids without affecting the amount or the composition of free fatty acid and induced unfolded protein response (UPR), evidenced by increased expression of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) mRNAs and splicing of Xbox-binding protein 1 (XBP1) mRNA. SCD1 knockdown-induced UPR was rescued by various unsaturated fatty acids and was enhanced by saturated fatty acid. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), which incorporates preferentially polyunsaturated fatty acids into phosphatidylcholine, was up-regulated in SCD1 knockdown cells. Knockdown of LPCAT3 synergistically enhanced UPR with SCD1 knockdown. Finally we showed that palmitic acid-induced UPR was significantly enhanced by LPCAT3 knockdown as well as SCD1 knockdown. These results suggest that a decrease in membrane phospholipid unsaturation induces UPR.

  6. How curved membranes recruit amphipathic helices and protein anchoring motifs

    DEFF Research Database (Denmark)

    Hatzakis, Nikos; Bhatia, Vikram Kjøller; Larsen, Jannik;

    2009-01-01

    Lipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50-700 nm in diameter. Our results revealed that sensing...

  7. Structure and Dynamic Properties of Membrane Proteins using NMR

    DEFF Research Database (Denmark)

    Rösner, Heike; Kragelund, Birthe

    2012-01-01

    , a large variety of developments of well-established techniques are available providing insight into membrane protein flexibility, dynamics, and interactions. Inspired by the speed of development in the application of new strategies, by invention of methods to measure solvent accessibility and describe low...

  8. Expression of Prokaryotic Integral Membrane Proteins in E. coli.

    Science.gov (United States)

    Love, James D

    2017-01-01

    Production of prokaryotic membrane proteins for structural and functional studies in E. coli can be parallelized and miniaturized. All stages from cloning, expression, purification to detergent selection can be investigated using high-throughput techniques to rapidly and economically find tractable targets.

  9. Structural investigation of membrane proteins by electron microscopy

    NARCIS (Netherlands)

    Moscicka, Katarzyna Beata

    2009-01-01

    Biological membranes are vital components of all living systems, forming the boundaries of cells and their organelles. They consist of a lipid bilayer and embedded proteins, which are nanomachines that fulfill key functions such as energy conversion, solute transport, secretion, and signal transduct

  10. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  11. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM.

  12. Repair of Nerve Cell Membrane Damage by Calcium-Dependent, Membrane-Binding Proteins (Revised)

    Science.gov (United States)

    2012-09-01

    Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum , Proc Natl Acad Sci U S A...Calcium signaling and amyloid toxicity in Alzheimer disease, J Biol Chem 285 (2010) 12463-12468. [14] H.A. Lashuel, P.T. Lansbury, Are amyloid

  13. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy

    NARCIS (Netherlands)

    Rood, I.M.; Merchant, M.L.; Wilkey, D.W.; Zhang, T.; Zabrouskov, V.; Vlag, J. van der; Dijkman, H.B.P.M.; Willemsen, B.K.; Wetzels, J.F.M.; Klein, J.B.; Deegens, J.K.J.

    2015-01-01

    Urinary microvesicles constitute a rich source of membrane-bound and intracellular proteins that may provide important clues of pathophysiological mechanisms in renal disease. In the current study, we analyzed and compared the proteome of urinary microvesicles from patients with idiopathic

  14. Membrane composition influences the topology bias of bacterial integral membrane proteins.

    Science.gov (United States)

    Bay, Denice C; Turner, Raymond J

    2013-02-01

    Small multidrug resistance (SMR) protein family members confer bacterial resistance to toxic antiseptics and are believed to function as dual topology oligomers. If dual topology is essential for SMR activity, then the topology bias should change as bacterial membrane lipid compositions alter to maintain a "neutral" topology bias. To test this hypothesis, a bioinformatic analysis of bacterial SMR protein sequences was performed to determine a membrane protein topology based on charged amino acid residues within loops, and termini regions according to the positive inside rule. Three bacterial lipid membrane parameters were examined, providing the proportion of polar lipid head group charges at the membrane surface (PLH), the relative hydrophobic fatty acid length (FAL), and the proportion of fatty acid unsaturation (FAU). Our analysis indicates that individual SMR pairs, and to a lesser extent SMR singleton topology biases, are significantly correlated to increasing PLH, FAL and FAU differences validating the hypothesis. Correlations between the topology biases of SMR proteins identified in Gram+ compared to Gram- species and each lipid parameter demonstrated a linear inverse relationship.

  15. Application of split-green fluorescent protein for topology mapping membrane proteins in Escherichia coli

    DEFF Research Database (Denmark)

    Toddo, Stephen; Soderstrom, Bill; Palombo, Isolde;

    2012-01-01

    A topology map of a membrane protein defines the location of transmembrane helices and the orientation of soluble domains relative to the membrane. In the absence of a high-resolution structure, a topology map is an essential guide for studying structurefunction relationships. Although these maps...

  16. Comparative proteomic analysis of the Haemophilus ducreyi porin-deficient mutant 35000HP::P2AB.

    Science.gov (United States)

    Davie, Jeremiah J; Campagnari, Anthony A

    2009-04-01

    Haemophilus ducreyi is an obligate human pathogen and the causative agent of the sexually transmitted, genital ulcerative disease chancroid. The genome of strain 35000HP contains two known porin proteins, OmpP2A and OmpP2B. Loss of OmpP2A and OmpP2B expression in the mutant 35000HP::P2AB resulted in no obvious growth defect or phenotype. Comparison of outer membrane profiles indicated increased expression of the 58.5-kDa chaperone, GroEL, in the porin-deficient mutant. A proteomics-based comparison resulted in the identification of 231 proteins present in membrane-associated protein samples, of which a subset of 56 proteins was differentially expressed at a level of 1.5-fold or greater in the porin-deficient strain 35000HP::P2AB relative to that in 35000HP. Twenty of the differentially expressed proteins were selected for real-time PCR, resulting in the validation of 90% of the selected subgroup. Proteins identified in these studies suggested a decreased membrane stability phenotype, which was verified by disk diffusion assay. Loss of OmpP2A and OmpP2B resulted in global protein expression changes which appear to compensate for the absence of porin expression in 35000HP::P2AB.

  17. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Robert A.; Datta, Siddhartha A.K.; Nanda, Hirsh; Fang, Xianyang; Wen, Yi; Barros, Marilia; Wang, Yun-Xing; Rein, Alan; Vogt, Volker M. (NCI); (Cornell); (CM); (NIST)

    2016-05-06

    Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactionsin vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particlesin vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interactionin vitro, either by directly contacting acidic lipids or by promoting Gag multimerization.

    Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our

  18. Chicken Egg Shell Membrane Associated Proteins and Peptides.

    Science.gov (United States)

    Makkar, Sarbjeet; Liyanage, Rohana; Kannan, Lakshmi; Packialakshmi, Balamurugan; Lay, Jack O; Rath, Narayan C

    2015-11-11

    Egg shells are poultry industry byproducts with potential for use in various biological and agricultural applications. We have been interested in the membranes underlying the calcareous shell as a feed supplement, which showed potential to improve immunity and performance of post hatch poultry. Therefore, to determine their protein and peptide profiles, we extracted the egg shell membranes (ESM) from fresh unfertilized eggs with methanol and guanidine hydrochloride (GdHCl) to obtain soluble proteins for analysis by mass spectrometry. The methanol extract was subjected to matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), high-performance reverse phase liquid chromatographic separation (HPLC), and tandem mass spectrometry (MS/MS) to determine its peptide and protein profiles. The GdHCl extract was subjected to ESI-HPLC-MS/MS following trypsin digestion of reduced/alkylated proteins. Nine proteins from the methanol extract and >275 proteins from the GdHCl extract were tentatively identified. The results suggested the presence of several abundant proteins from egg whites, such as ovoalbumin, ovotransferrin, and lysozyme as well as many others associated with antimicrobial, biomechanical, cytoskeletal organizational, cell signaling, and enzyme activities. Collagens, keratin, agrin, and laminin were some of the structural proteins present in the ESM. The methanol-soluble fraction contained several clusterin peptides and defensins, particularly, two isoforms of gallin. The ratios of the two isoforms of gallin differed between the membranes obtained from brown and white eggs. The high abundance of several antimicrobial, immunomodulatory, and other bioactive proteins in the ESM along with its potential to entrap various microbes and antigens may make it a suitable vehicle for oral immunization of post hatch poultry and improve their disease resistance.

  19. The membrane-water interface region of membrane proteins: structural bias and the anti-snorkeling effect.

    Science.gov (United States)

    Liang, Jie; Adamian, Larisa; Jackups, Ronald

    2005-07-01

    Membrane proteins have important roles in many cellular processes. Computational analysis of their sequences and structures has provided much insight into the organizing principles of transmembrane helices. In a recent study, the membrane-water interface region was examined in detail for the first time. The results have revealed that this interface region has an important role in constraining protein secondary structure. This study raises new questions and opens up new directions for studying membrane proteins.

  20. Highly Branched Pentasaccharide-Bearing Amphiphiles for Membrane Protein Studies

    DEFF Research Database (Denmark)

    Ehsan, Muhammad; Du, Yang; Scull, Nicola J

    2016-01-01

    structural and functional analysis feasible. Although a number of novel agents have been developed to overcome the limitations of conventional detergents, most have traditional head groups such as glucoside or maltoside. In this study, we introduce a class of amphiphiles, the PSA/Es with a novel highly...... branched pentasaccharide hydrophilic group. The PSA/Es conferred markedly increased stability to a diverse range of membrane proteins compared to conventional detergents, indicating a positive role for the new hydrophilic group in maintaining the native protein integrity. In addition, PDCs formed by PSA....../Es were smaller and more suitable for electron microscopic analysis than those formed by DDM, indicating that the new agents have significant potential for the structure-function studies of membrane proteins....

  1. Interaction of Serum Proteins with Surface of Hemodialysis Fiber Membranes

    Science.gov (United States)

    Afrin, Rehana; Shirako, Yuji; Kishimoto, Kikuo; Ikai, Atsushi

    2012-08-01

    The poly(vinyl pyrrolidone)-covered hydrophilic surface of hollow-fiber membranes (fiber membrane, hereafter) for hemodialysis was mechanically probed using modified tips on an atomic force microscope (AFM) with covalent crosslinkers and several types of serum protein. The retraction part of many of the force extension (F-E) curves obtained with AFM tips coated with serum albumin had a long and smooth extension up to 200-300 nm indicating forced elongation of poly(vinyl pyrrolidone) chains. When fibrinogen-coated tips were used, long extension F-E curves up to 500 nm with multiple peaks were obtained in addition to smooth curves most likely reflecting the unfolding of fibrinogen molecules. The results indicated that individual polymer chains had a significant affinity toward serum proteins. The adhesion frequency of tips coated with serum proteins was lower on the poly(vinyl pyrrolidone) surface than on the uncoated hydrophobic polysulfone surface.

  2. Bcl-2 apoptosis proteins, mitochondrial membrane curvature, and cancer

    Science.gov (United States)

    Hwee Lai, Ghee; Schmidt, Nathan; Sanders, Lori; Mishra, Abhijit; Wong, Gerard; Ivashyna, Olena; Christenson, Eric; Schlesinger, Paul; Akabori, Kiyotaka; Santangelo, Christian

    2012-02-01

    Critical interactions between Bcl-2 family proteins permeabilize the outer mitochondrial membrane, a common decision point early in the intrinsic apoptotic pathway that irreversibly commits the cell to death. However, a unified picture integrating the essential non-passive role of lipid membranes with the contested dynamics of Bcl-2 regulation remains unresolved. Correlating results between synchrotron x-ray diffraction and microscopy in cell-free assays, we report activation of pro-apoptotic Bax induces strong pure negative Gaussian membrane curvature topologically necessary for pore formation and membrane remodeling events. Strikingly, Bcl-xL suppresses not only Bax-induced pore formation, but also membrane remodeling by disparate systems including cell penetrating, antimicrobial or viral fusion peptides, and bacterial toxin, none of which have BH3 allosteric domains to mediate direct binding. We propose a parallel mode of Bcl-2 pore regulation in which Bax and Bcl-xL induce antagonistic and mutually interacting Gaussian membrane curvatures. The universal nature of curvature-mediated interactions allows synergy with direct binding mechanisms, and potentially accounts for the Bcl-2 family modulation of mitochondrial fission/fusion dynamics.

  3. Hydrodynamic collective effects of active proteins in biological membranes

    CERN Document Server

    Koyano, Yuki; Mikhailov, Alexander S

    2016-01-01

    Lipid bilayers forming biological membranes are known to behave as viscous 2D fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it has been shown [Proc. Nat. Acad. Sci. USA 112, E3639 (2015)] that such active proteins should in- duce non-thermal fluctuating lipid flows leading to diffusion enhancement and chemotaxis-like drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  4. Identification of membrane proteins by tandem mass spectrometry of protein ions.

    Science.gov (United States)

    Carroll, Joe; Altman, Matthew C; Fearnley, Ian M; Walker, John E

    2007-09-04

    The most common way of identifying proteins in proteomic analyses is to use short segments of sequence ("tags") determined by mass spectrometric analysis of proteolytic fragments. The approach is effective with globular proteins and with membrane proteins with significant polar segments between membrane-spanning alpha-helices, but it is ineffective with other hydrophobic proteins where protease cleavage sites are either infrequent or absent. By developing methods to purify hydrophobic proteins in organic solvents and by fragmenting ions of these proteins by collision induced dissociation with argon, we have shown that partial sequences of many membrane proteins can be deduced easily by manual inspection. The spectra from small proteolipids (1-4 transmembrane alpha-helices) are dominated usually by fragment ions arising from internal amide cleavages, from which internal sequences can be obtained, whereas the spectra from larger membrane proteins (5-18 transmembrane alpha-helices) often contain fragment ions from N- and/or C-terminal parts yielding sequences in those regions. With these techniques, we have, for example, identified an abundant protein of unknown function from inner membranes of mitochondria that to our knowledge has escaped detection in proteomic studies, and we have produced sequences from 10 of 13 proteins encoded in mitochondrial DNA. They include the ND6 subunit of complex I, the last of its 45 subunits to be analyzed. The procedures have the potential to be developed further, for example by using newly introduced methods for protein ion dissociation to induce fragmentation of internal regions of large membrane proteins, which may remain partially folded in the gas phase.

  5. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling.

    Science.gov (United States)

    Zhang, Haizhen; Brown, Roslyn N; Qian, Wei-Jun; Monroe, Matthew E; Purvine, Samuel O; Moore, Ronald J; Gritsenko, Marina A; Shi, Liang; Romine, Margaret F; Fredrickson, James K; Pasa-Tolić, Ljiljana; Smith, Richard D; Lipton, Mary S

    2010-05-07

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope (18)O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a Gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level (16)O and (18)O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in Delta gspD mutant cells of many outer membrane proteins including the outer membrane c-type cytochromes OmcA and MtrC, in agreement with a previous report that these proteins are substrates of the type II secretion system.

  6. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Weijun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F.; Fredrickson, Jim K.; Pasa-Tolic, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-05-03

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and environmental electron receptors. LC/MS/MS analysis resulted in the identification of about 79% membrane proteins among all proteins identified from the enriched sample. To illustrate the quantification of membrane proteome changes, enriched membrane protein samples from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) were further labeled with 16O and 18O at the peptide level prior to LC-MS analysis. A chemical-probe-labeled pure protein has also been used as an internal standard for normalization purpose. The quantitative data revealed reduced abundances of many outer membrane proteins such as OmcA and MtrC in ΔgspD mutant cells, which agreed well with previously published studies.

  7. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    Science.gov (United States)

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Wei-Jun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F; Fredrickson, James K.; Paša-Tolić, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-01-01

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system. PMID:20380418

  8. Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex

    DEFF Research Database (Denmark)

    Mygind, Per H; Christiansen, Gunna; Roepstorff, P;

    2000-01-01

    The outer membrane complex of Chlamydia is involved in the initial adherence and ingestion of Chlamydia by the host cell. In order to identify novel proteins in the outer membrane of Chlamydia trachomatis L2, proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis....... By silver staining of the protein profile, a major protein doublet of 100-110 kDa was detected. In-gel tryptic digestion and matrix-assisted laser desorption/ionization mass spectrometry identified these proteins as the putative outer membrane proteins PmpG and PmpH....

  9. Adaptation of the Bradford protein assay to membrane-bound proteins by solubilizing in glucopyranoside detergents.

    Science.gov (United States)

    Fanger, B O

    1987-04-01

    A procedure was developed for the quantitation of solubilized proteins using the Bradford assay in the presence of glucopyranoside detergents. These detergents solubilized membrane-bound proteins with minimal background absorbance at 595 nm. Absorbance at 650 nm was also low, indicating that these detergents do not significantly stabilize the neutral species of Coomassie brilliant blue G-250 that produces interference in the presence of other detergents. Hexyl-beta-D-glucopyranoside produced less absorbance than did larger glucopyranosides, and the increase in its absorbance at 595 nm in the presence of dye reagent was related linearly to its concentration from 0 to 2%. Absorbance produced by membrane-bound protein was increased by the presence of up to 0.2% hexyl-beta-D-glucopyranoside (final concentration in dye reagent) and then remained stable up to 1%, indicating that these concentrations of this detergent allowed membrane-bound proteins to react completely with the dye reagent. Standard curves of several proteins were similar in the absence or presence of 0.1-0.5% hexyl-beta-D-glucopyranoside. The quantitation of both soluble and membrane-bound proteins by the Bradford assay was similar in the presence of 0.2% hexyl-, heptyl-, and octyl-beta-D-glucopyranoside. Estimates of membrane-bound protein by this assay agreed with estimates obtained with the Lowry assay and with quantitative amino acid analysis. This procedure requires no extra steps; thus, it is as rapid and convenient as the original Bradford protein assay.

  10. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, P.A. [ILL, Grenoble (France); Pebay-Peyroula, E. [IBS-UJF Grenoble (France)

    1994-12-31

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H{sub 2}O/D{sub 2}O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished.

  11. Purification and characterization of Band 3, the major intrinsic membrane protein of the bovine erythrocyte membrane.

    Science.gov (United States)

    Nakashima, H; Makino, S

    1980-03-01

    Band 3 from bovine erythrocyte membranes was isolated in a state of high purity by the following steps in the presence of a nonionic detergent, nonaethyleneglycol n-dodecyl ether (C12E9): (1) selective removal of Band 2.6 from ghosts by solubilization with 2% C12E9 (2) extraction of Band 3-rich fraction with 4% C12E9 from 2% C12E9-treated membrane residues, and (3) purification of Band 3 by aminoethyl-conjugated Sepharose 4B column chromatography. Human Band 3 was also purified in good yield by aminoethyl-conjugated Sepharose 4B column chromatography of erythrocyte membrane proteins solubilized with 1% C12E9 and treated with 2,3-dimethymaleic anhydride. There were no significant differences in CD spectra in C12E9, amino acid compositions, and migration mobilities in sodium dodecyl sulfate-gel electrophoresis between bovine and human Band 3. Calculations of average hydrophobicity and discriminant function demonstrated that bovine Band 3 could be categorized as a typical integral membrane protein. Bovine Band 3 showed a tendency to form a dimer and higher aggregates in 0.1% C12E9; these were resistant to dissociation into monomers in sodium dodecyl sulfate solution and, further, the protein retained residual secondary structure in highly concentrated guanidine hydrochloride solution, indicating the possible presence of an extended sequence of hydrophobic amino acid residues.

  12. Heat Shock Protein 90 Positively Regulates Chikungunya Virus Replication by Stabilizing Viral Non-Structural Protein nsP2 during Infection

    OpenAIRE

    Indrani Das; Itishree Basantray; Prabhudutta Mamidi; Tapas K. Nayak; Pratheek B M; Subhasis Chattopadhyay; Soma Chattopadhyay

    2014-01-01

    BACKGROUND: The high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV) emphasize the need to understand the biology of the virus for developing effective antiviral therapies. METHODS AND FINDINGS: In this study, an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90) mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27) and Indian outbreak strain ...

  13. Self-assembling peptide and protein nanodiscs for studies of membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi

    Particles containing both lipids and proteins (so-called lipoproteins) are vital to study. They are selfassembling particles that, in the human body, are responsible for the transport of lipids and cholesterol. Due to the increasing problems of obesity and related illnesses in the world, obtaining...... more knowledge about the cholesterol and lipid metabolism is paramount. As an example, in 2012, cardiovascular disease was still the main cause of death in the U.S. This means that the study of lipoproteins is not only of pure academic interest but vital to current world problems. Another reason...... for working with lipoprotein particles are their potential in the study membrane proteins. Membrane proteins are responsible for most of the transport in and out of cells and signaling between cells. As an example G-protein coupled receptors, a class of membrane proteins, are the third largest class...

  14. Pattern Formation by Electrostatic Self-Organization of Membrane Proteins

    Science.gov (United States)

    Boedec, G.; Jaeger, M.; Homble, F.; Leonetti, M.

    2012-07-01

    The electric activity of biological cells and organs such as heart for example is at the origin of various phenomena of pattern formation. The electric membrane potential appears as the order parameter to characterize these spatiotemporal dynamics. A kind of patterns is characterized by a stationary spatial modulation of membrane potential along the cell, breaking a symmetry of the system. They are associated to transcellular currents. A mechanism proposed in literature is based on the coupling of the electric current produced by membrane proteins and their electrophoretic mobilities. Beyond its classical linear stability analysis, the numerical and theoretical analysis of this model offers a variety of spatiotemporal dynamics. Firstly, the background in the modelization of electric phenomena is recalled. Secondly, the analysis is focused on two nonlinear dynamics.

  15. Super-resolution microscopy reveals compartmentalization of peroxisomal membrane proteins

    DEFF Research Database (Denmark)

    Galiani, Silvia; Waithe, Dominic; Reglinski, Katharina

    2016-01-01

    Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present...... the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins....... Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5...

  16. Analysis of membrane proteins in metagenomics: networks of correlated environmental features and protein families.

    Science.gov (United States)

    Patel, Prianka V; Gianoulis, Tara A; Bjornson, Robert D; Yip, Kevin Y; Engelman, Donald M; Gerstein, Mark B

    2010-07-01

    Recent metagenomics studies have begun to sample the genomic diversity among disparate habitats and relate this variation to features of the environment. Membrane proteins are an intuitive, but thus far overlooked, choice in this type of analysis as they directly interact with the environment, receiving signals from the outside and transporting nutrients. Using global ocean sampling (GOS) data, we found nearly approximately 900,000 membrane proteins in large-scale metagenomic sequence, approximately a fifth of which are completely novel, suggesting a large space of hitherto unexplored protein diversity. Using GPS coordinates for the GOS sites, we extracted additional environmental features via interpolation from the World Ocean Database, the National Center for Ecological Analysis and Synthesis, and empirical models of dust occurrence. This allowed us to study membrane protein variation in terms of natural features, such as phosphate and nitrate concentrations, and also in terms of human impacts, such as pollution and climate change. We show that there is widespread variation in membrane protein content across marine sites, which is correlated with changes in both oceanographic variables and human factors. Furthermore, using these data, we developed an approach, protein families and environment features network (PEN), to quantify and visualize the correlations. PEN identifies small groups of covarying environmental features and membrane protein families, which we call "bimodules." Using this approach, we find that the affinity of phosphate transporters is related to the concentration of phosphate and that the occurrence of iron transporters is connected to the amount of shipping, pollution, and iron-containing dust.

  17. Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane

    Science.gov (United States)

    Fan, Jun; Sammalkorpi, Maria; Haataja, Mikko

    2010-01-01

    Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization of these domains are rather poorly understood at the moment. We propose a robust mechanism for the formation of finite-sized lipid raft domains in plasma membranes, the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Simulations of a continuum model reveal that the raft size distribution is broad and the average raft size is strongly dependent on the rates of cellular and interlayer lipid transport processes. We demonstrate that spatiotemporal variations in the recycling may enable the cell to localize larger raft aggregates at specific parts along the membrane. Moreover, we show that membrane compartmentalization may further facilitate spatial localization of the raft domains. Finally, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.

  18. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms.

  19. Immunohistochemical study of the membrane skeletal protein, membrane protein palmitoylated 6 (MPP6), in the mouse small intestine.

    Science.gov (United States)

    Kamijo, Akio; Saitoh, Yurika; Ohno, Nobuhiko; Ohno, Shinichi; Terada, Nobuo

    2016-01-01

    The membrane protein palmitoylated (MPP) family belongs to the membrane-associated guanylate kinase (MAGUK) family. MPP1 interacts with the protein 4.1 family member, 4.1R, as a membrane skeletal protein complex in erythrocytes. We previously described the interaction of another MPP family, MPP6, with 4.1G in the mouse peripheral nervous system. In the present study, the immunolocalization of MPP6 in the mouse small intestine was examined and compared with that of E-cadherin, zonula occludens (ZO)-1, and 4.1B, which we previously investigated in intestinal epithelial cells. The immunolocalization of MPP6 was also assessed in the small intestines of 4.1B-deficient (-/-) mice. In the small intestine, Western blotting revealed that the molecular weight of MPP6 was approximately 55-kDa, and MPP6 was immunostained under the cell membranes in the basolateral portions of almost all epithelial cells from the crypts to the villi. The immunostaining pattern of MPP6 in epithelial cells was similar to that of E-cadherin, but differed from that of ZO-1. In intestinal epithelial cells, the immunostained area of MPP6 was slightly different from that of 4.1B, which was restricted to the intestinal villi. The immunolocalization of MPP6 in small intestinal epithelial cells was similar between 4.1B(-/-) mice and 4.1B(+/+) mice. In the immunoprecipitation study, another MAGUK family protein, calcium/calmodulin-dependent serine protein kinase (CASK), was shown to molecularly interact with MPP6. Thus, we herein showed the immunolocalization and interaction proteins of MPP6 in the mouse small intestine, and also that 4.1B in epithelial cells was not essential for the sorting of MPP6.

  20. Accessible Mannitol-Based Amphiphiles (MNAs) for Membrane Protein Solubilisation and Stabilisation

    DEFF Research Database (Denmark)

    Hussain, Hazrat; Du, Yang; Scull, Nicola J.;

    2016-01-01

    Integral membrane proteins are amphipathic molecules crucial for all cellular life. The structural study of these macromolecules starts with protein extraction from the native membranes, followed by purification and crystallisation. Detergents are essential tools for these processes, but detergent...

  1. Artificial membranes with selective nanochannels for protein transport

    KAUST Repository

    Sutisna, B.

    2016-09-05

    A poly(styrene-b-tert-butoxystyrene-b-styrene) copolymer was synthesized by anionic polymerization and hydrolyzed to poly(styrene-b-4-hydroxystyrene-b-styrene). Lamellar morphology was confirmed in the bulk after annealing. Membranes were fabricated by self-assembly of the hydrolyzed copolymer in solution, followed by water induced phase separation. A high density of pores of 4 to 5 nm diameter led to a water permeance of 40 L m−2 h−1 bar−1 and molecular weight cut-off around 8 kg mol−1. The morphology was controlled by tuning the polymer concentration, evaporation time, and the addition of imidazole and pyridine to stabilize the terpolymer micelles in the casting solution via hydrogen bond complexes. Transmission electron microscopy of the membrane cross-sections confirmed the formation of channels with hydroxyl groups beneficial for hydrogen-bond forming sites. The morphology evolution was investigated by time-resolved grazing incidence small angle X-ray scattering experiments. The membrane channels reject polyethylene glycol with a molecular size of 10 kg mol−1, but are permeable to proteins, such as lysozyme (14.3 kg mol−1) and cytochrome c (12.4 kg mol−1), due to the right balance of hydrogen bond interactions along the channels, electrostatic attraction, as well as the right pore sizes. Our results demonstrate that artificial channels can be designed for protein transport via block copolymer self-assembly using classical methods of membrane preparation.

  2. Small cationic antimicrobial peptides delocalize peripheral membrane proteins.

    Science.gov (United States)

    Wenzel, Michaela; Chiriac, Alina Iulia; Otto, Andreas; Zweytick, Dagmar; May, Caroline; Schumacher, Catherine; Gust, Ronald; Albada, H Bauke; Penkova, Maya; Krämer, Ute; Erdmann, Ralf; Metzler-Nolte, Nils; Straus, Suzana K; Bremer, Erhard; Becher, Dörte; Brötz-Oesterhelt, Heike; Sahl, Hans-Georg; Bandow, Julia Elisabeth

    2014-04-08

    Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions.

  3. Role of cardiolipin in stability of integral membrane proteins.

    Science.gov (United States)

    Musatov, Andrej; Sedlák, Erik

    2017-08-23

    Cardiolipin (CL) is a unique phospholipid with a dimeric structure having four acyl chains and two phosphate groups found almost exclusively in certain membranes of bacteria and of mitochondria of eukaryotes. CL interacts with numerous proteins and has been implicated in function and stabilization of several integral membrane proteins (IMPs). While both functional and stabilization roles of CL in IMPs has been generally acknowledged, there are, in fact, only limited number of quantitative analysis that support this function of CL. This is likely caused by relatively complex determination of parameters characterizing stability of IMPs and particularly intricate assessment of role of specific PLs such as CL in IMPs stability. This review aims to summarize quantitative findings regarding stabilization role of CL in IMPs reported up to now. Copyright © 2017 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.

  4. High-efficiency screening of monoclonal antibodies for membrane protein crystallography.

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Lim

    Full Text Available Determination of crystal structures of membrane proteins is often limited by difficulties obtaining crystals diffracting to high resolution. Co-crystallization with Fab fragments of monoclonal antibodies has been reported to improve diffraction of membrane proteins crystals. However, it is not simple to generate useful monoclonal antibodies for membrane protein crystallography. In this report, we present an optimized process for efficient screening from immunization to final validation of monoclonal antibody for membrane protein crystallography.

  5. Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex.

    Science.gov (United States)

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L; James, Ho C S; Rydström, Anna; Ngassam, Viviane N; Klausen, Thomas Kjær; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N; Svanborg, Catharina

    2015-11-12

    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ''protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ''receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.

  6. Similar Energetic Contributions of Packing in the Core of Membrane and Water-Soluble Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Nathan H.; Oberai, Amit; Yang, Duan; Whitelegge, Julian P.; Bowie, James U.; (UCLA)

    2009-09-15

    A major driving force for water-soluble protein folding is the hydrophobic effect, but membrane proteins cannot make use of this stabilizing contribution in the apolar core of the bilayer. It has been proposed that membrane proteins compensate by packing more efficiently. We therefore investigated packing contributions experimentally by observing the energetic and structural consequences of cavity creating mutations in the core of a membrane protein. We observed little difference in the packing energetics of water and membrane soluble proteins. Our results imply that other mechanisms are employed to stabilize the structure of membrane proteins.

  7. Nanodisc-Tm: Rapid functional assessment of nanodisc reconstituted membrane proteins by CPM assay.

    Science.gov (United States)

    Ashok, Yashwanth; Jaakola, Veli-Pekka

    2016-01-01

    Membrane proteins are generally unstable in detergents. Therefore, biochemical and biophysical studies of membrane proteins in lipidic environments provides a near native-like environment suitable for membrane proteins. However, manipulation of proteins embedded in lipid bilayer has remained difficult. Methods such as nanodiscs and lipid cubic phase have been developed for easy manipulation of membrane proteins and have yielded significant insights into membrane proteins. Traditionally functional reconstitution of receptors in nanodiscs has been studied with radioligands. We present a simple and faster method for studying the functionality of reconstituted membrane proteins for routine characterization of protein batches after initial optimization of suitable conditions using radioligands. The benefits of the method are •Faster and generic method to assess functional reconstitution of membrane proteins.•Adaptable in high throughput format (≥96 well format).•Stability measurement in near-native lipid environment and lipid dependent melting temperatures.

  8. Characterization of membrane protein interactions by isothermal titration calorimetry.

    Science.gov (United States)

    Situ, Alan J; Schmidt, Thomas; Mazumder, Parichita; Ulmer, Tobias S

    2014-10-23

    Understanding the structure, folding, and interaction of membrane proteins requires experimental tools to quantify the association of transmembrane (TM) helices. Here, we introduce isothermal titration calorimetry (ITC) to measure integrin αIIbβ3 TM complex affinity, to study the consequences of helix-helix preorientation in lipid bilayers, and to examine protein-induced lipid reorganization. Phospholipid bicelles served as membrane mimics. The association of αIIbβ3 proceeded with a free energy change of -4.61±0.04kcal/mol at bicelle conditions where the sampling of random helix-helix orientations leads to complex formation. At bicelle conditions that approach a true bilayer structure in effect, an entropy saving of >1kcal/mol was obtained from helix-helix preorientation. The magnitudes of enthalpy and entropy changes increased distinctly with bicelle dimensions, indicating long-range changes in bicelle lipid properties upon αIIbβ3 TM association. NMR spectroscopy confirmed ITC affinity measurements and revealed αIIbβ3 association and dissociation rates of 4500±100s(-1) and 2.1±0.1s(-1), respectively. Thus, ITC is able to provide comprehensive insight into the interaction of membrane proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins.

    Science.gov (United States)

    Elortza, Felix; Nühse, Thomas S; Foster, Leonard J; Stensballe, Allan; Peck, Scott C; Jensen, Ole N

    2003-12-01

    Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a functionally and structurally diverse family of post-translationally modified membrane proteins found mostly in the outer leaflet of the plasma membrane in a variety of eukaryotic cells. Although the general role of GPI-APs remains unclear, they have attracted attention because they act as enzymes and receptors in cell adhesion, differentiation, and host-pathogen interactions. GPI-APs may represent potential diagnostic and therapeutic targets in humans and are interesting in plant biotechnology because of their key role in root development. We here present a general mass spectrometry-based proteomic "shave-and-conquer" strategy that specifically targets GPI-APs. Using a combination of biochemical methods, mass spectrometry, and computational sequence analysis we identified six GPI-APs in a Homo sapiens lipid raft-enriched fraction and 44 GPI-APs in an Arabidopsis thaliana membrane preparation, representing the largest experimental dataset of GPI-anchored proteins to date.

  10. Simulation and analysis of FRET in the study of membrane proteins

    NARCIS (Netherlands)

    Nazarov, P.V.

    2006-01-01

    Membrane proteins play an important role in almost all cell activities. However, the characterization of the structure of membrane proteins in lipid bilayers is still at the frontier of structural biology. While 30-40% of all proteins are situated at or in membranes, yet less than 1% of the known

  11. Simulation and analysis of FRET in the study of membrane proteins

    NARCIS (Netherlands)

    Nazarov, P.V.

    2006-01-01

    Membrane proteins play an important role in almost all cell activities. However, the characterization of the structure of membrane proteins in lipid bilayers is still at the frontier of structural biology. While 30-40% of all proteins are situated at or in membranes, yet less than 1% of the known pr

  12. Biomimetic Membranes for Multi-Redox Center Proteins

    Directory of Open Access Journals (Sweden)

    Renate L. C. Naumann

    2016-03-01

    Full Text Available His-tag technology was applied for biosensing purposes involving multi-redox center proteins (MRPs. An overview is presented on various surfaces ranging from flat to spherical and modified with linker molecules with nitrile-tri-acetic acid (NTA terminal groups to bind his-tagged proteins in a strict orientation. The bound proteins are submitted to in situ dialysis in the presence of lipid micelles to form a so-called protein-tethered bilayer lipid membrane (ptBLM. MRPs, such as the cytochrome c oxidase (CcO from R. sphaeroides and P. denitrificans, as well as photosynthetic reactions centers (RCs from R. sphaeroides, were thus investigated. Electrochemical and surface-sensitive optical techniques, such as surface plasmon resonance, surface plasmon-enhanced fluorescence, surface-enhanced infrared absorption spectroscopy (SEIRAS and surface-enhanced resonance Raman spectroscopy (SERRS, were employed in the case of the ptBLM structure on flat surfaces. Spherical particles ranging from µm size agarose gel beads to nm size nanoparticles modified in a similar fashion were called proteo-lipobeads (PLBs. The particles were investigated by laser-scanning confocal fluorescence microscopy (LSM and UV/Vis spectroscopy. Electron and proton transfer through the proteins were demonstrated to take place, which was strongly affected by the membrane potential. MRPs can thus be used for biosensing purposes under quasi-physiological conditions.

  13. Targeting proteins to liquid-ordered domains in lipid membranes.

    Science.gov (United States)

    Stachowiak, Jeanne C; Hayden, Carl C; Sanchez, Mari Angelica A; Wang, Julia; Bunker, Bruce C; Voigt, James A; Sasaki, Darryl Y

    2011-02-15

    We demonstrate the construction of novel protein-lipid assemblies through the design of a lipid-like molecule, DPIDA, endowed with tail-driven affinity for specific lipid membrane phases and head-driven affinity for specific proteins. In studies performed on giant unilamellar vesicles (GUVs) with varying mole fractions of dipalymitoylphosphatidylcholine (DPPC), cholesterol, and diphytanoylphosphatidyl choline (DPhPC), DPIDA selectively partitioned into the more ordered phases, either solid or liquid-ordered (L(o)) depending on membrane composition. Fluorescence imaging established the phase behavior of the resulting quaternary lipid system. Fluorescence correlation spectroscopy confirmed the fluidity of the L(o) phase containing DPIDA. In the presence of CuCl(2), the iminodiacetic acid (IDA) headgroup of DPIDA forms the Cu(II)-IDA complex that exhibits a high affinity for histidine residues. His-tagged proteins were bound specifically to domains enriched in DPIDA, demonstrating the capacity to target protein binding selectively to both solid and L(o) phases. Steric pressure from the crowding of surface-bound proteins transformed the domains into tubules with persistence lengths that depended on the phase state of the lipid domains.

  14. Rigid proteins and softening of biological membranes-with application to HIV-induced cell membrane softening.

    Science.gov (United States)

    Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep

    2016-05-06

    A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.

  15. Therapeutic design of peptide modulators of protein-protein interactions in membranes.

    Science.gov (United States)

    Stone, Tracy A; Deber, Charles M

    2017-04-01

    Membrane proteins play the central roles in a variety of cellular processes, ranging from nutrient uptake and signalling, to cell-cell communication. Their biological functions are directly related to how they fold and assemble; defects often lead to disease. Protein-protein interactions (PPIs) within the membrane are therefore of great interest as therapeutic targets. Here we review the progress in the application of membrane-insertable peptides for the disruption or stabilization of membrane-based PPIs. We describe the design and preparation of transmembrane peptide mimics; and of several categories of peptidomimetics used for study, including d-enantiomers, non-natural amino acids, peptoids, and β-peptides. Further aspects of the review describe modifications to membrane-insertable peptides, including lipidation and cyclization via hydrocarbon stapling. These approaches provide a pathway toward the development of metabolically stable, non-toxic, and efficacious peptide modulators of membrane-based PPIs. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.

  16. Acinetobacter baumannii outer membrane vesicles elicit a potent innate immune response via membrane proteins.

    Directory of Open Access Journals (Sweden)

    So Hyun Jun

    Full Text Available Acinetobacter baumannii is increasingly becoming a major nosocomial pathogen. This opportunistic pathogen secretes outer membrane vesicles (OMVs that interact with host cells. The aim of this study was to investigate the ability of A. baumannii OMVs to elicit a pro-inflammatory response in vitro and the immunopathology in response to A. baumannii OMVs in vivo. OMVs derived from A. baumannii ATCC 19606(T induced expression of pro-inflammatory cytokine genes, interleukin (IL-1β and IL-6, and chemokine genes, IL-8, macrophage inflammatory protein-1α, and monocyte chemoattractant protein-1, in epithelial cells in a dose-dependent manner. Disintegration of OMV membrane with ethylenediaminetetraacetic acid resulted in low expression of pro-inflammatory cytokine genes, as compared with the response to intact OMVs. In addition, proteinase K-treated A. baumannii OMVs did not induce significant increase in expression of pro-inflammatory cytokine genes above the basal level, suggesting that the surface-exposed membrane proteins in intact OMVs are responsible for pro-inflammatory response. Early inflammatory processes, such as vacuolization and detachment of epithelial cells and neutrophilic infiltration, were clearly observed in lungs of mice injected with A. baumannii OMVs. Our data demonstrate that OMVs produced by A. baumannii elicit a potent innate immune response, which may contribute to immunopathology of the infected host.

  17. Saperi P2P

    Directory of Open Access Journals (Sweden)

    Salvatore Iaconesi

    2009-10-01

    Full Text Available Il paper presenta l'architettura filosofica e logica di un progetto ongoing per la creazione di un'infrastruttura peer to peer per la diffusione dei saperi. Tale infrastruttura p2p vuole essere la base per costruire un framework aperto e orizzontale, che ospiti pratiche innovative di creazione, condivisione e disseminazione di informazioni e conoscenza.

  18. GRIFFIN: A versatile methodology for optimization of protein-lipid interfaces for membrane protein simulations.

    Science.gov (United States)

    Staritzbichler, René; Anselmi, Claudio; Forrest, Lucy R; Faraldo-Gómez, José D

    2011-04-12

    As new atomic structures of membrane proteins are resolved, they reveal increasingly complex transmembrane topologies, and highly irregular surfaces with crevices and pores. In many cases, specific interactions formed with the lipid membrane are functionally crucial, as is the overall lipid composition. Compounded with increasing protein size, these characteristics pose a challenge for the construction of simulation models of membrane proteins in lipid environments; clearly, that these models are sufficiently realistic bears upon the reliability of simulation-based studies of these systems. Here, we introduce GRIFFIN, which uses a versatile framework to automate and improve a widely-used membrane-embedding protocol. Initially, GRIFFIN carves out lipid and water molecules from a volume equivalent to that of the protein, so as to conserve the system density. In the subsequent optimization phase GRIFFIN adds an implicit grid-based protein force-field to a molecular dynamics simulation of the pre-carved membrane. In this force-field, atoms inside the implicit protein volume experience an outward force that will expel them from that volume, whereas those outside are subject to electrostatic and van-der-Waals interactions with the implicit protein. At each step of the simulation, these forces are updated by GRIFFIN and combined with the intermolecular forces of the explicit lipid-water system. This procedure enables the construction of realistic and reproducible starting configurations of the protein-membrane interface within a reasonable timeframe and with minimal intervention. GRIFFIN is a standalone tool designed to work alongside any existing molecular dynamics package, such as NAMD or GROMACS.

  19. Protein-lipid interactions in bilayer membranes: a lattice model.

    Science.gov (United States)

    Pink, D A; Chapman, D

    1979-04-01

    A lattice model has been developed to study the effects of intrinsic membrane proteins upon the thermodynamic properties of a lipid bilayer membrane. We assume that only nearest-neighbor van der Waals and steric interactions are important and that the polar group interactions can be represented by effective pressure-area terms. Phase diagrams, the temperature T(0), which locates the gel-fluid melting, the transition enthalpy, and correlations were calculated by mean field and cluster approximations. Average lipid chain areas and chain areas when the lipid is in a given protein environment were obtained. Proteins that have a "smooth" homogeneous surface ("cholesterol-like") and those that have inhomogeneous surfaces or that bind lipids specifically were considered. We find that T(0) can vary depending upon the interactions and that another peak can appear upon the shoulder of the main peak which reflects the melting of a eutectic mixture. The transition enthalpy decreases generally, as was found before, but when a second peak appears departures from this behavior reflect aspects of the eutectic mixture. We find that proteins have significant nonzero probabilities for being adjacent to one another so that no unbroken "annulus" of lipid necessarily exists around a protein. If T(0) does not increase much, or decreases, with increasing c, then lipids adjacent to a protein cannot all be all-trans on the time scale (10(-7) sec) of our system. Around a protein the lipid correlation depth is about one lipid layer, and this increases with c. Possible consequences of ignoring changes in polar group interactions due to clustering of proteins are discussed.

  20. Membrane recruitment of scaffold proteins drives specific signaling.

    Directory of Open Access Journals (Sweden)

    Frédéric Pincet

    Full Text Available Cells must give the right response to each stimulus they receive. Scaffolding, a signaling process mediated by scaffold proteins, participates in the decoding of the cues by specifically directing signal transduction. The aim of this paper is to describe the molecular mechanisms of scaffolding, i.e. the principles by which scaffold proteins drive a specific response of the cell. Since similar scaffold proteins are found in many species, they evolved according to the purpose of each organism. This means they require adaptability. In the usual description of the mechanisms of scaffolding, scaffold proteins are considered as reactors where molecules involved in a cascade of reactions are simultaneously bound with the right orientation to meet and interact. This description is not realistic: (i it is not verified by experiments and (ii timing and orientation constraints make it complex which seems to contradict the required adaptability. A scaffold protein, Ste5, is used in the MAPK pathway of Saccharomyces cerevisiae for the cell to provide a specific response to stimuli. The massive amount of data available for this pathway makes it ideal to investigate the actual mechanisms of scaffolding. Here, a complete treatment of the chemical reactions allows the computation of the distributions of all the proteins involved in the MAPK pathway when the cell receives various cues. These distributions are compared to several experimental results. It turns out that the molecular mechanisms of scaffolding are much simpler and more adaptable than previously thought in the reactor model. Scaffold proteins bind only one molecule at a time. Then, their membrane recruitment automatically drives specific, amplified and localized signal transductions. The mechanisms presented here, which explain how the membrane recruitment of a protein can produce a drastic change in the activity of cells, are generic and may be commonly used in many biological processes.

  1. Improved Recovery and Identification of Membrane Proteins from Rat Hepatic Cells using a Centrifugal Proteomic Reactor*

    Science.gov (United States)

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G.; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-01-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism. PMID:21749988

  2. Improved recovery and identification of membrane proteins from rat hepatic cells using a centrifugal proteomic reactor.

    Science.gov (United States)

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-10-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥ 2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism.

  3. Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3

    Directory of Open Access Journals (Sweden)

    Hu Yong

    2009-08-01

    Full Text Available Abstract Background Actinobacillus pleuropneumoniae is the causative agent of porcine contagious pleuropneumonia, a highly contagious respiratory infection in pigs, and all the 15 serotypes are able to cause disease. Current vaccines including subunit vaccines could not provide satisfactory protection against A. pleuropneumoniae. In this study, the immunoproteomic approach was applied to the analysis of extracellular and outer membrane proteins of A. pleuropneumoniae JL03 serotype 3 for the identification of novel immunogenic proteins for A. pleuropneumoniae. Results A total of 30 immunogenic proteins were identified from outer membrane and extracellular proteins of JL03 serotype 3, of which 6 were known antigens and 24 were novel immunogenic proteins for A. pleuropneumoniae. Conclusion These data provide information about novel immunogenic proteins for A. pleuropneumoniae serotype 3, and are expected to aid in development of novel vaccines against A. pleuropneumoniae.

  4. Isolation of a unique membrane protein from Naegleria fowleri.

    Science.gov (United States)

    Réveiller, F L; Suh, S J; Sullivan, K; Cabanes, P A; Marciano-Cabral, F

    2001-01-01

    Naegleria fowleri, an amoeboflagellate, is the causative agent of Primary Amoebic Meningoencephalitis, a fulminating disease of the central nervous system. In order to elucidate the mechanisms of pathogenicity of this amoeba, a cDNA expression library was prepared from N. fowleri RNA. A specific protein was found to be expressed from a cDNA clone designated Mp2CL5. Northern blot analysis showed that the Mp2CL5 mRNA was expressed in pathogenic N. fowleri but was not expressed in non-pathogenic Naegleria species nor in Acanthamoeba. Western blot analysis using anti-N. fowleri antiserum demonstrated that IPTG-induced Escherichia coli Mp2CL5 expressed a 23-kDa recombinant protein. The Mp2CL5 recombinant protein was histidine-tagged and purified to homogeneity from E. coli. A polyclonal rabbit antiserum was prepared against the purified Mp2CL5 recombinant protein. This antibody was used to further characterize the Mp2CL5 native protein expressed by N. fowleri. Western blot analysis in conjunction with immunofluorescence microscopy demonstrated the presence of a native protein of 17 kDa on the plasma membrane of N. fowleri trophozoites. The native N. fowleri protein was expressed in the logarithmic phase of trophozoite growth and the production of this protein increased through the stationary phase of growth. Studies are in progress to examine further its role as a virulence factor.

  5. 靶向P2X7受体的RNA干扰对小胶质细胞吞噬β淀粉样蛋白的影响%Effects of RNA interference targeting P2X7 receptor on microglial phagocytosis of amyloid-β protein

    Institute of Scientific and Technical Information of China (English)

    倪炯; 王培军

    2012-01-01

    Objective To investigate the effect of silencing P2X7 receptor (P2X7R) by RNA interference on microglial phagocytosis of amyloid-β (Aβ) protein and to explore its possible mechanism.Methods The small interfering RNA (siRNA) targeting the P2X7R gene was identified.The microglial cells activated by Aβ1-42 were infected with the Lipofectamine-siP2X7R and it was designated as siP2X7R group.Microglia infected with Lipofectamine-siNC was designated as siNC group and non-infected cells as con group.The levels of P2X7R mRNA were detected by real-time PCR and the P2X7R protein was determined by Western blotting.The levels of IL-1β and TNF-α were measured by ELISA.The microglial phagocytosis of Aβ1-42 was observed by ELISA and immunocytochemistry staining.Results Detected by the Real-time PCR,the expression level of P2X7R mRNA of siP2X7R group decreased significantly versus siNC and con groups ( P < 0.05 ).The lowered expression of P2X7R protein detected by Western blotting was consistent with Real-time PCR.After RNA interference silencing P2X7R,the levels of IL-1β and TNF-α detected by ELISA in siP2X7R group less than those in con,siNC groups,significantly (P < 0.05 ).In con,siNC and siP2X7R groups respectively,the levels of Aβ1-42 in supernatant were (423 ±20) pg/ml,(417 ±16) pg/ml,(296±30) pg/ml and the levels of Aβ1-42 in the microgtia were (190 ± 37) pg/ml,(187 ±39) pg/ml,(322±26) pg/ml.Compared to siNC and con groups,in siP2X7R group the levels of Aβ1-42 in supernatant decreased (P < 0.05 ) and the levels of Aβ1-42 in the microglia increased (P < 0.05).Aβ1-42 immunofluorescence staining showed that the red fluorescent products were seen in the cytoplasm of most microglias in siP2X7R group,but in con or siNC groups in only few microglias these products were depicted.Conclusions The silence expression of P2X7R by RNA interference effectively decreases the levels of IL-1β and TNF-α released by microglia and promotes microglia to phagocytose Aβ.P

  6. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations.

    Science.gov (United States)

    Grouleff, Julie; Irudayam, Sheeba Jem; Skeby, Katrine K; Schiøtt, Birgit

    2015-09-01

    The plasma membrane, which encapsulates human cells, is composed of a complex mixture of lipids and embedded proteins. Emerging knowledge points towards the lipids as having a regulating role in protein function. Furthermore, insight from protein crystallography has revealed several different types of lipids intimately bound to membrane proteins and peptides, hereby possibly pointing to a site of action for the observed regulation. Cholesterol is among the lipid membrane constituents most often observed to be co-crystallized with membrane proteins, and the cholesterol levels in cell membranes have been found to play an essential role in health and disease. Remarkably little is known about the mechanism of lipid regulation of membrane protein function in health as well as in disease. Herein, we review molecular dynamics simulation studies aimed at investigating the effect of cholesterol on membrane protein and peptide properties. This article is part of a Special Issue entitled: Lipid-protein interactions. Copyright © 2015. Published by Elsevier B.V.

  7. Intramembrane particles and the organization of lymphocyte membrane proteins.

    Science.gov (United States)

    Kuby, J M; Wofsy, L

    1981-03-01

    An experimental system was developed in which the majority of all lymphocyte cell-surface proteins, regardless of antigenic specificity, could be cross-linked and redistributed in the membrane to determine whether this would induce a corresponding redistribution of intramembrane particles (IMP). Mouse spleen cells were treated with P-diazoniumphenyl- beta-D-lactoside (lac) to modify all exposed cell-surface proteins. Extensive azo- coupling was achieved without significantly reducing cell viability or compromising cellular function in mitogen- or antigen-stimulated cultures. When the lac-modified cell- surface proteins were capped with a sandwich of rabbit antilactoside antibody and fluorescein-goat anti-rabbit Ig, freeze-fracture preparations obtained from these cells revealed no obvious redistribution of IMP on the majority of fracture faces. However, detailed analysis showed a statistically significant 35 percent decrease (P less than 0.01) in average IMP density in the E face of the lac-capped spleen cells compared with control cells, whereas a few E-face micrographs showed intense IMP aggregation. In contrast, there was no significant alteration of P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP do not present accessible antigenic sites on the lymphocyte surface and do not associate in a stable manner with surface protein antigens. This finding suggests that IMP, as observed in freeze-fracture analysis, may not comprise a representative reflection of lymphocyte transmembrane protein molecules and complexes because other evidence establishes: (a) that at least some common lymphocyte surface antigens are indeed exposed portions of transmembrane proteins and (b) that the aggregation of molecules of any surface antigen results in altered organization of contractile proteins at the cytoplasmic face of the membrane.

  8. Identification of frog photoreceptor plasma and disk membrane proteins by radioiodination

    Energy Technology Data Exchange (ETDEWEB)

    Witt, P.L.; Bownds, M.D.

    1987-03-24

    Several functions have been identified for the plasma membrane of the rod outer segment, including control of light-dependent changes in sodium conductance and a sodium-calcium exchange mechanism. However, little is known about its constituent proteins. Intact rod outer segments substantially free of contaminants were prepared in the dark and purified on a density gradient of Percoll. Surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination, and intact rod outer segments were reisolated. Membrane proteins were identified by polyacrylamide gel electrophoresis and autoradiography. The surface proteins labeled included rhodopsin, the major membrane protein, and 12 other proteins. To compare the protein composition of plasma membrane with that of the internal disk membrane, purified rod outer segments were lysed by hypotonic disruption or freeze-thawing, and plasma plus disk membranes were radioiodinated. In these membrane preparations, rhodopsin was the major iodinated constituent, with 12 other proteins also labeled. Autoradiographic evidence indicated some differences in protein composition between disk and plasma membranes. A quantitative comparison of the two samples showed that labeling of two proteins, 24 kilodaltons (kDa) and 13 kDa, was enriched in the plasma membrane, while labeling of a 220-kDa protein was enriched in the disk membrane. These plasma membrane proteins may be associated with important functions such as the light-sensitive conductance and the sodium-calcium exchanger.

  9. Mapping membrane protein interactions in cell signaling systems.

    Energy Technology Data Exchange (ETDEWEB)

    Light, Yooli Kim; Hadi, Masood Z.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Young, Malin M.

    2003-12-01

    We proposed to apply a chemical cross-linking, mass spectrometry and modeling method called MS3D to the structure determination of the rhodopsin-transducin membrane protein complex (RTC). Herein we describe experimental progress made to adapt the MS3D approach for characterizing membrane protein systems, and computational progress in experimental design, data analysis and protein structure modeling. Over the past three years, we have developed tailored experimental methods for all steps in the MS3D method for rhodopsin, including protein purification, a functional assay, cross-linking, proteolysis and mass spectrometry. In support of the experimental effort. we have out a data analysis pipeline in place that automatically selects the monoisotopic peaks in a mass spectrometric spectrum, assigns them and stores the results in a database. Theoretical calculations using 24 experimentally-derived distance constraints have resulted in a backbone-level model of the activated form of rhodopsin, which is a critical first step towards building a model of the RTC. Cross-linked rhodopsin-transducin complexes have been isolated via gel electrophoresis and further mass spectrometric characterization of the cross-links is underway.

  10. Characterization of auxin-binding proteins from zucchini plasma membrane

    Science.gov (United States)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  11. Preparation of 2D crystals of membrane proteins for high-resolution electron crystallography data collection.

    Science.gov (United States)

    Abeyrathne, Priyanka D; Chami, Mohamed; Pantelic, Radosav S; Goldie, Kenneth N; Stahlberg, Henning

    2010-01-01

    Electron crystallography is a powerful technique for the structure determination of membrane proteins as well as soluble proteins. Sample preparation for 2D membrane protein crystals is a crucial step, as proteins have to be prepared for electron microscopy at close to native conditions. In this review, we discuss the factors of sample preparation that are key to elucidating the atomic structure of membrane proteins using electron crystallography.

  12. Drosophila Golgi membrane protein Ema promotes autophagosomal growth and function.

    Science.gov (United States)

    Kim, Sungsu; Naylor, Sarah A; DiAntonio, Aaron

    2012-05-01

    Autophagy is a self-degradative process in which cellular material is enclosed within autophagosomes and trafficked to lysosomes for degradation. Autophagosomal biogenesis is well described; however mechanisms controlling the growth and ultimate size of autophagosomes are unclear. Here we demonstrate that the Drosophila membrane protein Ema is required for the growth of autophagosomes. In an ema mutant, autophagosomes form in response to starvation and developmental cues, and these autophagosomes can mature into autolysosomes; however the autophagosomes are very small, and autophagy is impaired. In fat body cells, Ema localizes to the Golgi complex and is recruited to the membrane of autophagosomes in response to starvation. The Drosophila Golgi protein Lva also is recruited to the periphery of autophagosomes in response to starvation, and this recruitment requires ema. Therefore, we propose that Golgi is a membrane source for autophagosomal growth and that Ema facilitates this process. Clec16A, the human ortholog of Ema, is a candidate autoimmune susceptibility locus. Expression of Clec16A can rescue the autophagosome size defect in the ema mutant, suggesting that regulation of autophagosome morphogenesis may be a fundamental function of this gene family.

  13. A membrane protein/signaling protein interaction network for Arabidopsis version AMPv2.

    Science.gov (United States)

    Lalonde, Sylvie; Sero, Antoinette; Pratelli, Réjane; Pilot, Guillaume; Chen, Jin; Sardi, Maria I; Parsa, Saman A; Kim, Do-Young; Acharya, Biswa R; Stein, Erica V; Hu, Heng-Chen; Villiers, Florent; Takeda, Kouji; Yang, Yingzhen; Han, Yong S; Schwacke, Rainer; Chiang, William; Kato, Naohiro; Loqué, Dominique; Assmann, Sarah M; Kwak, June M; Schroeder, Julian I; Rhee, Seung Y; Frommer, Wolf B

    2010-01-01

    Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs) out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway-compatible vector. The mating-based split ubiquitin system was used to screen for potential protein-protein interactions (pPPIs) among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases (RLKs), 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions, and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 386) pPPIs between 179 proteins, yielding a scale-free network (r(2) = 0.863). Eighty of 142 transmembrane RLKs tested positive, identifying 3 homomers, 63 heteromers, and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs) had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G-protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  14. A membrane protein / signaling protein interaction network for Arabidopsis version AMPv2

    Directory of Open Access Journals (Sweden)

    Sylvie Lalonde

    2010-09-01

    Full Text Available Interactions between membrane proteins and the soluble fraction are essential for signal transduction and for regulating nutrient transport. To gain insights into the membrane-based interactome, 3,852 open reading frames (ORFs out of a target list of 8,383 representing membrane and signaling proteins from Arabidopsis thaliana were cloned into a Gateway compatible vector. The mating-based split-ubiquitin system was used to screen for potential protein-protein interactions (pPPIs among 490 Arabidopsis ORFs. A binary robotic screen between 142 receptor-like kinases, 72 transporters, 57 soluble protein kinases and phosphatases, 40 glycosyltransferases, 95 proteins of various functions and 89 proteins with unknown function detected 387 out of 90,370 possible PPIs. A secondary screen confirmed 343 (of 387 pPPIs between 179 proteins, yielding a scale-free network (r2=0.863. Eighty of 142 transmembrane receptor-like kinases (RLK tested positive, identifying three homomers, 63 heteromers and 80 pPPIs with other proteins. Thirty-one out of 142 RLK interactors (including RLKs had previously been found to be phosphorylated; thus interactors may be substrates for respective RLKs. None of the pPPIs described here had been reported in the major interactome databases, including potential interactors of G protein-coupled receptors, phospholipase C, and AMT ammonium transporters. Two RLKs found as putative interactors of AMT1;1 were independently confirmed using a split luciferase assay in Arabidopsis protoplasts. These RLKs may be involved in ammonium-dependent phosphorylation of the C-terminus and regulation of ammonium uptake activity. The robotic screening method established here will enable a systematic analysis of membrane protein interactions in fungi, plants and metazoa.

  15. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Directory of Open Access Journals (Sweden)

    Marciniak Bogumiła C

    2012-05-01

    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  16. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.

    Science.gov (United States)

    Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J

    2017-07-20

    Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Hydrodynamic collective effects of active proteins in biological membranes

    Science.gov (United States)

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S.

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015), 10.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  18. Expression and Purification of SARS Coronavirus Membrane Protein

    Institute of Scientific and Technical Information of China (English)

    戴五星; 雷明军; 吴少庭; 陈智浩; 梁靓; 潘晖榕; 秦莉; 高士同; 袁仕善; 张仁利

    2004-01-01

    To construct a recombinant plasmid Pet23a-M, the gene encoding severe acute respiratory syndrome (SARS) coronavirus membrane protein was amplified by RT-PCR and cloned into the expression plasmid Pet23a. Results of restriction endonuclease analysis, PCR detection and DNA sequencing analysis revealed that the cloned DNA sequence was the same as that reported. The re combinants were transformed into Escherichia coli (E. Coli) BL21 (DE3) and induced by Isopropylβ-D-thiogalactopyranoside (IPTG). The expression of 27 kD (1 kD=0. 992 1 ku) protein was detected by SDS-PAGE and pured by metal chelated chromatography. Results of Western-blot showed that this expressed protein could react with antibodies in sera of SARS patients during convalescence. This provided the basis for the further study on SARS virus vaccine and diagnostic agents.

  19. Atomic-level description of protein-lipid interactions using an accelerated membrane model.

    Science.gov (United States)

    Baylon, Javier L; Vermaas, Josh V; Muller, Melanie P; Arcario, Mark J; Pogorelov, Taras V; Tajkhorshid, Emad

    2016-07-01

    Peripheral membrane proteins are structurally diverse proteins that are involved in fundamental cellular processes. Their activity of these proteins is frequently modulated through their interaction with cellular membranes, and as a result techniques to study the interfacial interaction between peripheral proteins and the membrane are in high demand. Due to the fluid nature of the membrane and the reversibility of protein-membrane interactions, the experimental study of these systems remains a challenging task. Molecular dynamics simulations offer a suitable approach to study protein-lipid interactions; however, the slow dynamics of the lipids often prevents sufficient sampling of specific membrane-protein interactions in atomistic simulations. To increase lipid dynamics while preserving the atomistic detail of protein-lipid interactions, in the highly mobile membrane-mimetic (HMMM) model the membrane core is replaced by an organic solvent, while short-tailed lipids provide a nearly complete representation of natural lipids at the organic solvent/water interface. Here, we present a brief introduction and a summary of recent applications of the HMMM to study different membrane proteins, complementing the experimental characterization of the presented systems, and we offer a perspective of future applications of the HMMM to study other classes of membrane proteins. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.

  20. Membrane cholesterol access into a G-protein-coupled receptor

    Science.gov (United States)

    Guixà-González, Ramon; Albasanz, José L.; Rodriguez-Espigares, Ismael; Pastor, Manuel; Sanz, Ferran; Martí-Solano, Maria; Manna, Moutusi; Martinez-Seara, Hector; Hildebrand, Peter W.; Martín, Mairena; Selent, Jana

    2017-02-01

    Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs.

  1. Membrane cholesterol access into a G-protein-coupled receptor

    Science.gov (United States)

    Guixà-González, Ramon; Albasanz, José L.; Rodriguez-Espigares, Ismael; Pastor, Manuel; Sanz, Ferran; Martí-Solano, Maria; Manna, Moutusi; Martinez-Seara, Hector; Hildebrand, Peter W.; Martín, Mairena; Selent, Jana

    2017-01-01

    Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs. PMID:28220900

  2. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins.

    Science.gov (United States)

    Galiani, Silvia; Waithe, Dominic; Reglinski, Katharina; Cruz-Zaragoza, Luis Daniel; Garcia, Esther; Clausen, Mathias P; Schliebs, Wolfgang; Erdmann, Ralf; Eggeling, Christian

    2016-08-12

    Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.

  3. HHomp—prediction and classification of outer membrane proteins

    Science.gov (United States)

    Remmert, Michael; Linke, Dirk; Lupas, Andrei N.; Söding, Johannes

    2009-01-01

    Outer membrane proteins (OMPs) are the transmembrane proteins found in the outer membranes of Gram-negative bacteria, mitochondria and plastids. Most prediction methods have focused on analogous features, such as alternating hydrophobicity patterns. Here, we start from the observation that almost all β-barrel OMPs are related by common ancestry. We identify proteins as OMPs by detecting their homologous relationships to known OMPs using sequence similarity. Given an input sequence, HHomp builds a profile hidden Markov model (HMM) and compares it with an OMP database by pairwise HMM comparison, integrating OMP predictions by PROFtmb. A crucial ingredient is the OMP database, which contains profile HMMs for over 20 000 putative OMP sequences. These were collected with the exhaustive, transitive homology detection method HHsenser, starting from 23 representative OMPs in the PDB database. In a benchmark on TransportDB, HHomp detects 63.5% of the true positives before including the first false positive. This is 70% more than PROFtmb, four times more than BOMP and 10 times more than TMB-Hunt. In Escherichia coli, HHomp identifies 57 out of 59 known OMPs and correctly assigns them to their functional subgroups. HHomp can be accessed at http://toolkit.tuebingen.mpg.de/hhomp. PMID:19429691

  4. HHomp--prediction and classification of outer membrane proteins.

    Science.gov (United States)

    Remmert, Michael; Linke, Dirk; Lupas, Andrei N; Söding, Johannes

    2009-07-01

    Outer membrane proteins (OMPs) are the transmembrane proteins found in the outer membranes of Gram-negative bacteria, mitochondria and plastids. Most prediction methods have focused on analogous features, such as alternating hydrophobicity patterns. Here, we start from the observation that almost all beta-barrel OMPs are related by common ancestry. We identify proteins as OMPs by detecting their homologous relationships to known OMPs using sequence similarity. Given an input sequence, HHomp builds a profile hidden Markov model (HMM) and compares it with an OMP database by pairwise HMM comparison, integrating OMP predictions by PROFtmb. A crucial ingredient is the OMP database, which contains profile HMMs for over 20,000 putative OMP sequences. These were collected with the exhaustive, transitive homology detection method HHsenser, starting from 23 representative OMPs in the PDB database. In a benchmark on TransportDB, HHomp detects 63.5% of the true positives before including the first false positive. This is 70% more than PROFtmb, four times more than BOMP and 10 times more than TMB-Hunt. In Escherichia coli, HHomp identifies 57 out of 59 known OMPs and correctly assigns them to their functional subgroups. HHomp can be accessed at http://toolkit.tuebingen.mpg.de/hhomp.

  5. Protein selection and export via outer membrane vesicles.

    Science.gov (United States)

    Bonnington, K E; Kuehn, M J

    2014-08-01

    Outer membrane vesicles (OMVs) are constitutively produced by all Gram-negative bacteria. OMVs form when buds from the outer membrane (OM) of cells encapsulate periplasmic material and pinch off from the OM to form spheroid particles approximately 10 to 300nm in diameter. OMVs accomplish a diversity of functional roles yet the OMV's utility is ultimately determined by its unique composition. Inclusion into OMVs may impart a variety of benefits to the protein cargo, including: protection from proteolytic degradation, enhancement of long-distance delivery, specificity in host-cell targeting, modulation of the immune response, coordinated secretion with other bacterial effectors, and/or exposure to a unique function-promoting environment. Many enriched OMV-associated components are virulence factors, aiding in host cell destruction, immune system evasion, host cell invasion, or antibiotic resistance. Although the mechanistic details of how proteins become enriched as OMV cargo remain elusive, recent data on OM biogenesis and relationships between LPS structure and OMV-cargo inclusion rates shed light on potential models for OM organization and consequent OMV budding. In this review, mechanisms based on pre-existing OM microdomains are proposed to explain how cargo may experience differing levels of enrichment in OMVs and degrees of association with OMVs during extracellular export. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The development of solid-state NMR of membrane proteins.

    Science.gov (United States)

    Opella, Stanley J

    Most biological functions are carried out in supramolecular assemblies. As a result of their slow reorientation in solution, these assemblies have been resistant to the widely employed solution NMR approaches. The development of solid-state NMR to first of all overcome the correlation time problem and then obtain informative high-resolution spectra of proteins in supramolecular assemblies, such as virus particles and membranes, is described here. High resolution solid-state NMR is deeply intertwined with the history of NMR, and the seminal paper was published in 1948. Although the general principles were understood by the end of the 1950s, it has taken more than fifty years for instrumentation and experimental methods to become equal to the technical problems presented by the biological assemblies of greatest interest. It is now possible to obtain atomic resolution structures of viral coat proteins in virus particles and membrane proteins in phospholipid bilayers by oriented sample solid-state NMR methods. The development of this aspect of the field of solid-state NMR is summarized in this review article.

  7. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.

    Science.gov (United States)

    Huang, Feiran; Fang, Zhihui; Mast, Jason; Chen, Wei

    2013-05-01

    In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity.

  8. Characterization of the Outer Membrane Protein OprF of Pseudomonas aeruginosa in a Lipopolysaccharide Membrane by Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP; Soares, Thereza A.

    2009-02-01

    The N-terminal domain of outer membrane protein OprF of Pseudomonas aeruginosa forms a membrane spanning eight-stranded anti-parallel β-barrel domain that folds into a membrane channel with low conductance. The structure of this protein has been modeled after the crystal structure of the homologous protein OmpA of Escherichia coli. A number of molecular dynamics simulations have been carried out for the homology modeled structure of OprF in an explicit molecular model for the rough lipopolysaccharide (LPS) outer membrane of P. aeruginosa. The structural stability of the outer membrane model as a result of the strong electrostatic interactions compared to simple lipid bilayers is restricting both the conformational flexibility and the lateral diffusion of the porin in the membrane. Constricting side-chain interactions within the pore are similar to those found in reported simulations of the protein in a solvated lipid bilayer membrane. Because of the strong interactions between the loop regions of OprF and functional groups in the saccharide core of the LPS, the entrance to the channel from the extracellular space is widened compared to the lipid bilayer simulations in which the loops are extruding in the solvent. The specific electrostatic signature of the LPS membrane, which results in a net intrinsic dipole across the membrane, is found to be altered by the presence of OprF, resulting in a small electrically positive patch at the position of the channel.

  9. P2Y2 nucleotide receptor-mediated extracellular signal-regulated kinases and protein kinase C activation induces the invasion of highly metastatic breast cancer cells.

    Science.gov (United States)

    Eun, So Young; Ko, Young Shin; Park, Sang Won; Chang, Ki Churl; Kim, Hye Jung

    2015-07-01

    Tumor metastasis is considered the main cause of mortality in cancer patients, thus it is important to investigate the differences between high- and low-metastatic cancer cells. Our previous study showed that the highly metastatic breast cancer cell line MDA-MB-231 released higher levels of ATP and exhibited higher P2Y2R activity compared with the low-metastatic breast cancer cell line MCF-7. In addition, P2Y2R activation by ATP released from MDA-MB-231 cells induced hypoxia-inducible factor-1α expression, lysyl oxidase secretion and collagen crosslinking, generating a receptive microenvironment for pre-metastatic niche formation. Thus, in the present study, we investigated which P2Y2R-related signaling pathways are involved in the invasion of breast cancer cells. The highly metastatic breast cancer cells MDA-MB-231 and SK-BR-3 showed higher invasion than MCF-7 and T47D cells at a basal level, which was abolished through P2Y2R knockdown or in the presence of apyrase, an enzyme that hydrolyzes extracellular nucleotides. MDA-MB-231 cells also showed high levels of mesenchymal markers, such as Snail, Vimentin and N-cadherin, but not the epithelial marker E-cadherin and this expression was inhibited through ATP degradation or P2Y2R knockdown. Moreover, SK-BR-3 and MDA-MB231 cells exhibited higher ERK and PKC phosphorylation levels than T47D and MCF-7 cells and upregulated phospho-ERK and -PKC levels in MDA-MB-231 cells were significantly downregulated by apyrase or P2Y2R knockdown. Specific inhibitors of ERK, PKC and PLC markedly reduced the invasion and levels of mesenchymal marker expression in MDA-MB-231 cells. These results suggest that over-activated ERK and PKC pathways are involved in the P2Y2R-mediated invasion of breast cancer cells.

  10. Punching Holes in Membranes: How Oligomeric Pore-Forming Proteins and Lipids Cooperate to Form Aqueous Channels in Membranes

    Science.gov (United States)

    Fradin, Cécile; Satsoura, Dmitri; Andrews, David W.

    Many important biological processes are carried out by a small number of proteins working together as a team to accomplish a specific task. Cooperation between the different proteins is often accomplished through the formation of a supramolecular complex, comprised of either identical or different subunits. Although the formation of protein assemblies is a favored mechanism throughout the cell, it becomes especially important in lipid membranes, as evidenced by the numerous cellular events that are either triggered by or result in the formation of protein complexes in membranes. However, due to the difficulties associated with the study of membrane proteins, the formation of oligomers in lipid membranes is perhaps one of the least understood cellular processes. In this chapter we focus our attention on a subset of membrane complexes — namely, those formed by proteins that are able to pass from a water-soluble to a transmembrane form in order to create a water-filled channel through the lipid membrane. These pore-forming proteins (PFPs) are found in many organisms throughout different kingdoms of life, from bacteria to human. They are often involved in cell death mechanisms through their capacity to break membrane permeability barriers, which can lead to dissipation of the membrane potential as well as introduction or leakage of enzymatic proteins. In fact, a large subset of the PFPs are toxins, and referred to in the literature as pore-forming toxins (PFTs). The association of several monomers into an oligomer is almost always an important aspect of the modus operandi of these proteins. Oligomerization can be useful in several ways: it results in structures large enough to delineate nanometer-size water-filled channels in lipid bilayers, it ensures the presence of large hydrophobic surfaces that can support insertion in the membrane, and it permits cooperative formation and insertion mechanisms.

  11. Characterization of lysosomal membrane proteins of Dictyostelium discoideum. A complex population of acidic integral membrane glycoproteins, Rab GTP-binding proteins and vacuolar ATPase subunits.

    Science.gov (United States)

    Temesvari, L; Rodriguez-Paris, J; Bush, J; Steck, T L; Cardelli, J

    1994-10-14

    Highly purified lysosomes, prepared by magnetic fractionation of homogenates from Dictyostelium discoideum cells fed colloidal iron, were lysed under hypoosmotic conditions, and the membrane-associated proteins were subjected to gel electrophoresis. Thirteen major membrane polypeptides, ranging in molecular weight from 25,000 to 100,000 were identified. The isoelectric points of these proteins ranged from below 3.8 to greater than 7.0. Most of these proteins were stripped from membranes exposed to a chaotropic agent, 3,5-diodo-2-hydroxybenzoic acid lithium salt, and were therefore classified as peripheral membrane proteins. Twenty five glycoprotein species were detected by lectin blot analysis; 19 were classified as integral membrane proteins, and were, in general, larger than 45 kDa and negatively charged due in part to the presence of mannose 6-sulfate. Western blot analysis also demonstrated that a Rab 4-like GTPase, a Rab 7-like GTPase, and at least three subunits of the vacuolar ATPase were associated with the lysosomal membrane; the ATPase subunits appeared to be major proteins in lysosomal membranes. Finally, based on N-terminal sequence analysis of a major 41-kDa lysosome-associated membrane protein, we cloned a cDNA that encodes a protein (DVA41) highly homologous to a yeast and a bovine vacuolar ATPase subunit of approximately 41 kDa. The D. discoideum DVA41 gene was apparently a single copy gene, expressed at constant levels during growth and development.

  12. Effect of membrane length, membrane resistance, and filtration conditions on the fractionation of milk proteins by microfiltration.

    Science.gov (United States)

    Piry, A; Heino, A; Kühnl, W; Grein, T; Ripperger, S; Kulozik, U

    2012-04-01

    We investigated the fractionation of casein micelles and the whey protein β-lactoglobulin (β-LG) of skim milk by crossflow microfiltration (0.1 μm) for the first time by a novel approach as a function of membrane length and membrane resistance. A special module was constructed with 4 sections and used to assess the effects of membrane length by measuring flux and β-LG permeation (or transmission) as a function of transmembrane pressure and membrane length. Depending on the position, the membranes were partly controlled by a deposit layer. A maximum for β-LG mass flow through the various membrane sections was found, depending on the position along the membrane. To study the effect of convective flow toward the membrane, membranes with 4 different intrinsic permeation resistances were assessed in terms of the permeation and fouling effects along the flow channel. From these findings, we derived a ratio between transmembrane pressure and membrane resistance, which was useful in reducing the effect of deposit formation and, thus, to optimize the protein permeation. In addition, the fouling effect was investigated in terms of reversible and irreversible fouling and, in addition, by differentiation between pressure-induced fouling and adsorption-induced (pressure-independent) fouling, again as a function of membrane length.

  13. Heat Denaturation of Protein Structures and Chlorophyll States in PSII Membranes

    Institute of Scientific and Technical Information of China (English)

    李冬海; 阮翔; 许强; 王可玢; 公衍道; 匡廷云; 赵南明

    2002-01-01

    Heat denaturation is an important technique in the study of the structure and function of photosynthetic proteins. Heat denaturation of photosystem II (PSII) membrane was studied using circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC) and oxygen electrode. Complete loss of oxygen-evolving activity of the PSII membrane was observed at temperatures below 45℃. The decrease of excitonic interaction between chlorophyll molecules occurred more rapidly than the change of the protein secondary structure of the PSII membrane at temperatures above 45℃. The results indicate that the protein secondary structure of the membrane proteins in PSII membranes is more stable than the excitonic interaction between chlorophyll molecules during heat denaturation.

  14. Continuous monitoring of membrane protein micro-domain association during cell signaling

    CERN Document Server

    Huang, Heng

    2011-01-01

    Central to understanding membrane bound cell signaling is to quantify how the membrane ultra-structure consisting of transient spatial domains modulates signaling and how the signaling influences this ultra-structure. Yet, measuring the association of membrane proteins with domains in living, intact cells poses considerable challenges. Here, we describe a non-destructive method to quantify protein-lipid domain and protein cytoskeleton interactions in single, intact cells enabling continuous monitoring of the protein domains interaction over time during signaling.

  15. Protein-induced surface structuring in myelin membrane monolayers.

    Science.gov (United States)

    Rosetti, Carla M; Maggio, Bruno

    2007-12-15

    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.

  16. Beyond Membrane Protein Structure: Drug Discovery, Dynamics and Difficulties.

    Science.gov (United States)

    Biggin, Philip C; Aldeghi, Matteo; Bodkin, Michael J; Heifetz, Alexander

    2016-01-01

    Most of the previous content of this book has focused on obtaining the structures of membrane proteins. In this chapter we explore how those structures can be further used in two key ways. The first is their use in structure based drug design (SBDD) and the second is how they can be used to extend our understanding of their functional activity via the use of molecular dynamics. Both aspects now heavily rely on computations. This area is vast, and alas, too large to consider in depth in a single book chapter. Thus where appropriate we have referred the reader to recent reviews for deeper assessment of the field. We discuss progress via the use of examples from two main drug target areas; G-protein coupled receptors (GPCRs) and ion channels. We end with a discussion of some of the main challenges in the area.

  17. Deployment of membrane fusion protein domains during fusion.

    Science.gov (United States)

    Bentz, J; Mittal, A

    2000-01-01

    It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best-described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N- and C-termini of SNAP25 (sn25), together with the Ca(2+)binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA- mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N-termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the 'transition state' of the committed step of fusion. It is stabilized by a 'dam' of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion

  18. Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy

    Science.gov (United States)

    Brown, Leonid S; Ladizhansky, Vladimir

    2015-01-01

    Membrane proteins play many critical roles in cells, mediating flow of material and information across cell membranes. They have evolved to perform these functions in the environment of a cell membrane, whose physicochemical properties are often different from those of common cell membrane mimetics used for structure determination. As a result, membrane proteins are difficult to study by traditional methods of structural biology, and they are significantly underrepresented in the protein structure databank. Solid-state Nuclear Magnetic Resonance (SSNMR) has long been considered as an attractive alternative because it allows for studies of membrane proteins in both native-like membranes composed of synthetic lipids and in cell membranes. Over the past decade, SSNMR has been rapidly developing into a major structural method, and a growing number of membrane protein structures obtained by this technique highlights its potential. Here we discuss membrane protein sample requirements, review recent progress in SSNMR methodologies, and describe recent advances in characterizing membrane proteins in the environment of a cellular membrane. PMID:25973959

  19. Presynaptic P2 receptors?

    Science.gov (United States)

    Stone, T W; O'Kane, E M; Nikbakht, M R; Ross, F M

    2000-07-01

    Although the emphasis in ATP research has been on postjunctional receptors, there is also evidence for presynaptic receptors regulating transmitter release in the autonomic nervous system. Recent work has attempted to identify similar mechanisms in the central nervous system. Some of the existing results can be explained by the metabolism of nucleotides to adenosine or adenosine 5'-monophosphate (AMP). However, studies of presynaptic effects using sensitive electrophysiological tests such as paired-pulse interactions indicate that nucleotides can act at presynaptic sites, but that their effects may be mediated by a release of adenosine. Results are also described which indicate that, under some conditions, nucleotides can mediate phenomena such as long-term potentiation, which probably involves a significant presynaptic element. In part these effects may involve a nucleotide-induced release of adenosine and the simultaneous activation of P1 and P2 receptors.

  20. Evidence for functional P2X4/P2X7 heteromeric receptors.

    Science.gov (United States)

    Guo, Chang; Masin, Marianela; Qureshi, Omar S; Murrell-Lagnado, Ruth D

    2007-12-01

    The cytolytic ionotropic ATP receptor P2X7 has several important roles in immune cell regulation, such as cytokine release, apoptosis, and microbial killing. Although P2X7 receptors are frequently coexpressed with another subtype of P2X receptor, P2X4, they are believed not to form heteromeric assemblies but to function only as homomers. Both receptors play a role in neuropathic pain; therefore, understanding how they coordinate the cellular response to ATP is important for the development of effective pain therapies. Here, we provide biochemical and electrophysiological evidence for an association between P2X4 and P2X7 that increases the diversity of receptor currents mediated via these two subtypes. The heterologously expressed receptors were coimmunoprecipitated from human embryonic kidney (HEK) 293 cells, and the endogenous P2X4 and P2X7 receptors were similarly coimmunoprecipitated from bone marrow-derived macrophages. In HEK293 cells, the fraction of P2X4 receptors biotinylated at the plasma membrane increased 2-fold in the presence of P2X7 although there was no change in overall expression. Coexpression of a dominant-negative P2X4 mutant (C353W) with P2X7, inhibited P2X7 receptor mediated currents by greater than 2-fold, whereas a nonfunctional but non-dominant-negative mutant (S341W) did not. Coexpression of P2X4S341W with P2X7 produced a current that was potentiated by ivermectin and inhibited by 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5-triphosphate (TNP-ATP), whereas expression of P2X7 alone produced a current that was insensitive to both of these compounds at the concentrations used. These results demonstrate a structural and functional interaction between P2X4 and P2X7, which suggests that they associate to form heteromeric receptors.

  1. NMR structure of the integral membrane protein OmpX.

    Science.gov (United States)

    Fernández, César; Hilty, Christian; Wider, Gerhard; Güntert, Peter; Wüthrich, Kurt

    2004-03-05

    The structure of the integral membrane protein OmpX from Escherichia coli reconstituted in 60 kDa DHPC micelles (OmpX/DHPC) was calculated from 526 NOE upper limit distance constraints. The structure determination was based on complete sequence-specific assignments for the amide protons and the Val, Leu, and Ile(delta1) methyl groups in OmpX, which were selectively protonated on a perdeuterated background. The solution structure of OmpX in the DHPC micelles consists of a well-defined, eight-stranded antiparallel beta-barrel, with successive pairs of beta-strands connected by mobile loops. Several long-range NOEs observed outside of the transmembrane barrel characterize an extension of a four-stranded beta-sheet beyond the height of the barrel. This protruding beta-sheet is believed to be involved in intermolecular interactions responsible for the biological functions of OmpX. The present approach for de novo structure determination should be quite widely applicable to membrane proteins reconstituted in mixed micelles with overall molecular masses up to about 100 kDa, and may also provide a platform for additional functional studies.

  2. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  3. Ultrananocrystalline Diamond Membranes for Detection of High-Mass Proteins

    Science.gov (United States)

    Kim, H.; Park, J.; Aksamija, Z.; Arbulu, M.; Blick, R. H.

    2016-12-01

    Mechanical resonators realized on the nanoscale by now offer applications in mass sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical mass sensors should be of extremely small size to achieve zepto- or yoctogram sensitivity in weighing single molecules similar to a classical scale. However, the small effective size and long response time for weighing biomolecules with a cantilever restricts their usefulness as a high-throughput method. Commercial mass spectrometry (MS), on the other hand, such as electrospray ionization and matrix-assisted laser desorption and ionization (MALDI) time of flight (TOF) and their charge-amplifying detectors are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as TOF. The principle we describe here for ion detection is based on the conversion of kinetic energy of the biomolecules into thermal excitation of chemical vapor deposition diamond nanomembranes via phonons followed by phonon-mediated detection via field emission of thermally emitted electrons. We fabricate ultrathin diamond membranes with large lateral dimensions for MALDI TOF MS of high-mass proteins. These diamond membranes are realized by straightforward etching methods based on semiconductor processing. With a minimal thickness of 100 nm and cross sections of up to 400 ×400 μ m2 , the membranes offer extreme aspect ratios. Ion detection is demonstrated in MALDI TOF analysis over a broad range from insulin to albumin. The resulting data in detection show much enhanced resolution as compared to existing detectors, which can offer better sensitivity and overall performance in resolving protein masses.

  4. New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts.

    Science.gov (United States)

    Caroni, P

    2001-08-15

    The phosphoinositide lipid PI(4,5)P(2) is now established as a key cofactor in signaling to the actin cytoskeleton and in vesicle trafficking. PI(4,5)P(2) accumulates at membrane rafts and promotes local co-recruitment and activation of specific signaling components at the cell membrane. PI(4,5)P(2) rafts may thus be platforms for local regulation of morphogenetic activity at the cell membrane. Raft PI(4,5)P(2) is regulated by lipid kinases (PI5-kinases) and lipid phosphatases (e.g. synaptojanin). In addition, GAP43-like proteins have recently emerged as a group of PI(4,5)P(2) raft-modulating proteins. These locally abundant proteins accumulate at inner leaflet plasmalemmal rafts where they bind to and co-distribute with PI(4,5)P(2), and promote actin cytoskeleton accumulation and dynamics. In keeping with their proposed role as positive modulators of PI(4,5)P(2) raft function, GAP43-like proteins confer competence for regulated morphogenetic activity on cells that express them. Their function has been investigated extensively in the nervous system, where their expression promotes neurite outgrowth, anatomical plasticity and nerve regeneration. Extrinsic signals and intrinsic factors may thus converge to modulate PI(4,5)P(2) rafts, upstream of regulated activity at the cell surface.

  5. The increase of fatty acid-binding protein aP2 in overweight and obese children: interactions with dietary fat and impact on measures of subclinical inflammation

    NARCIS (Netherlands)

    Aeberli, I.; Beljean, N.; Lehmann, R.; I'Allemand, D.; Spinas, G.A.; Zimmermann, M.B.

    2008-01-01

    In adults, circulating aP2 may link obesity, inflammation and the metabolic syndrome, but there are few data in children. Experimental models support that dietary factors, particularly dietary fat, may be major determinants of phenotype. OBJECTIVE: The aim of this study was to investigate, in normal

  6. Use of Escherichia coli for the production and purification of membrane proteins.

    Science.gov (United States)

    Postis, Vincent G L; Rawlings, Andrea E; Lesiuk, Amelia; Baldwin, Stephen A

    2013-01-01

    Individual types of ion channels and other membrane proteins are typically expressed only at low levels in their native membranes, rendering their isolation by conventional purification techniques difficult. The heterologous over-expression of such proteins is therefore usually a prerequisite for their purification in amounts suitable for structural and for many functional investigations. The most straightforward expression host, suitable for prokaryote membrane proteins and some proteins from eukaryotes, is the bacterium Escherichia coli. Here we describe the use of this expression system for production of functionally active polytopic membrane proteins and methods for their purification by affinity chromatography in amounts up to tens of milligrams.

  7. Characterization of Cytokinetic F-BARs and Other Membrane-Binding Proteins.

    Science.gov (United States)

    McDonald, Nathan A; Gould, Kathleen L

    2016-01-01

    Multiple membrane-binding proteins are key players in cytokinesis in yeast and other organisms. In vivo techniques for analyzing protein-membrane interactions are currently limited. In vitro assays allow characterization of the biochemical properties of these proteins to build a mechanistic understanding of protein-membrane interactions during cytokinesis. Here, we describe two in vitro assays to characterize FCH-Bin/Amphyphysin/RVS (F-BAR) domains and other protein's interactions with membranes: liposome co-pelleting and giant unilamellar vesicle fluorescent binding.

  8. Deposition of Bacteriorhodopsin Protein in a Purple Membrane Form on Nitrocellulose Membranes for Enhanced Photoelectric Response

    Directory of Open Access Journals (Sweden)

    Chang-Hoon Nam

    2012-12-01

    Full Text Available Bacteriorhodopsin protein (bR-based systems are one of the simplest known biological energy converters. The robust chemical, thermal and electrochemical properties of bR have made it an attractive material for photoelectric devices. This study demonstrates the photoelectric response of a dry bR layer deposited on a nitrocellulose membrane with indium tin oxide (ITO electrodes. Light-induced electrical current as well as potential and impedance changes of dried bR film were recorded as the function of illumination. We have also tested bR in solution and found that the electrical properties are strongly dependent on light intensity changing locally proton concentration and thus pH of the solution. Experimental data support the assumption that bR protein on a positively charged nitrocellulose membrane (PNM can be used as highly sensitive photo- and pH detector. Here the bR layer facilitates proton translocation and acts as an ultrafast optoelectric signal transducer. It is therefore useful in applications related to bioelectronics, biosensors, bio-optics devices and current carrying junction devices.

  9. Deposition of bacteriorhodopsin protein in a purple membrane form on nitrocellulose membranes for enhanced photoelectric response.

    Science.gov (United States)

    Kim, Young Jun; Neuzil, Pavel; Nam, Chang-Hoon; Engelhard, Martin

    2012-12-27

    Bacteriorhodopsin protein (bR)-based systems are one of the simplest known biological energy converters. The robust chemical, thermal and electrochemical properties of bR have made it an attractive material for photoelectric devices. This study demonstrates the photoelectric response of a dry bR layer deposited on a nitrocellulose membrane with indium tin oxide (ITO) electrodes. Light-induced electrical current as well as potential and impedance changes of dried bR film were recorded as the function of illumination. We have also tested bR in solution and found that the electrical properties are strongly dependent on light intensity changing locally proton concentration and thus pH of the solution. Experimental data support the assumption that bR protein on a positively charged nitrocellulose membrane (PNM) can be used as highly sensitive photo- and pH detector. Here the bR layer facilitates proton translocation and acts as an ultrafast optoelectric signal transducer. It is therefore useful in applications related to bioelectronics, biosensors, bio-optics devices and current carrying junction devices.

  10. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.

  11. Changes in exposed membrane proteins during in vitro capacitation of boar sperm

    Energy Technology Data Exchange (ETDEWEB)

    Berger, T. (Univ. of California, Davis (USA))

    1990-11-01

    Exposed plasma membrane proteins were labeled with {sup 125}I before and after incubation of boar sperm under capacitating conditions. Labeled protein profiles were compared to the ability of the sperm to penetrate zona-free hamster ova. Quantitatively, the labeled sperm membrane proteins were primarily low Mr prior to capacitation. The majority of the labeled seminal plasma protein was also low Mr. After capacitation, two new proteins (64,000 Mr and 78,000 Mr) were labeled. Sperm did not exhibit these exposed membrane proteins when incubated under noncapacitating conditions. Appearance of these proteins was not correlated to the percentage of acrosome-reacted sperm. Although the 64,000 Mr protein was not consistently observed, the relative labeling of the 78,000 Mr protein was highly correlated with the ability of sperm to fuse with zona-free hamster ova. The 78,000 Mr protein may be a sperm protein involved in fusion with the egg plasma membrane.

  12. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    Science.gov (United States)

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  13. P2Y1 purinoceptor inhibition reduces extracellular signal-regulated protein kinase 1/2 phosphorylation in spinal cord and dorsal root ganglia: implications for cancer-induced bone pain

    Institute of Scientific and Technical Information of China (English)

    Jun Chen; Lina Wang; Yanbing Zhang; Jianping Yang

    2012-01-01

    It remains unclear as to whether P2Y1 purinergic receptor (P2Y1R) and the molecules that act downstream,such as extracellular signal-regulated protein kinase 1/2 (ERK1/2),are involved in the development of cancer-induced bone pain (CIBP) in vivo.Here,we investigated the role of the P2Y1R in the modulation of CIBP-associated nociception in spinal cord and dorsal root ganglia (DRG).A CIBP model was established by inoculating Walker 256 gland carcinoma cells into the tibia of female rats.Tactile ailodynia and spontaneous pain were assessed using von Frey filaments and ambulatory scores.The results showed that both the paw withdrawal latency to tactile allodynia and the ambulatory score to spontaneous pain were significantly different between the CIBP group and the sham group on days 7-9 post-inoculation (P < 0.01).Furthermore,rats in the CIBP group also showed a progressive increase in ambulatory score,which is different from the sham group (P<0.01).Furthermore,P2Y1R mRNA and phosphory lated ERK1/2 (p-ERK1/2) protein expression levels were increased in the spinal dorsal horn and DRG of the CIBP group relative to the sham group.However,intrathecal injection of the P2Y1R antagonist MRS2179 decreased P2Y1R mRNA and p-ERK1/2 protein expression in the spinal dorsal horn and DRG (P<0.01).These results provide evidence that the inhibition of P2Y1R-mediated ERK1/2 phosphorylation in the spinal dorsal horn and DRG can attenuate nociception transmission.

  14. Immunoproteomic Analysis ofBordetella bronchisepticaOuter Membrane Proteins and Identiifcation of New Immunogenic Proteins

    Institute of Scientific and Technical Information of China (English)

    JI Quan-an

    2014-01-01

    Bordetella bronchiseptica is a Gram-negative pathogen that causes acute and chronic respiratory infection in a variety of animals. To identify useful antigen candidates for diagnosis and subunit vaccine ofB. bronchiseptica, immunoproteomic analysis was adopted to analyse outer membrane proteins of it. The outer membrane proteins extracted fromB. bronchiseptica were separated by two-dimensional gel electrophoresis and analyzed by Western blotting for their reactivity with the convalescent serum against two strains. Immunogenic proteins were identiifed by matrix-assisted laser desorption/ionization time of lfight-mass spectrometry (MALDI-TOF-MS), a total of 14 proteins are common immunoreactive proteins, of which 1 was known antigen and 13 were novel immunogenic proteins forB. bronchiseptica. Putative lipoprotein gene was cloned and recombinantly expressed. The recombinant protein induced high titer antibody, but showed low protective indices against challenges with HB (B. bronchiseptica strain isolated from a infected rabbit). The mortality of mice was 80% compared to 100% of positive controls. The identiifcation of these novel antigenic proteins is an important resource for further development of a new diagnostic test and vaccine for B. bronchiseptica.

  15. Heteromeric assembly of P2X subunits

    Directory of Open Access Journals (Sweden)

    Anika eSaul

    2013-12-01

    Full Text Available Transcripts and/or proteins of P2X receptor (P2XR subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs

  16. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles.

    Science.gov (United States)

    Cahill, Bethaney K; Seeley, Kent W; Gutel, Dedra; Ellis, Terri N

    2015-11-01

    Klebsiella pneumoniae is a nosocomial pathogen which naturally secretes lipopolysaccharide (LPS) and cell envelope associated proteins into the environment through the production of outer membrane vesicles (OMVs). The loss of the LPS O antigen has been demonstrated in other bacterial species to significantly alter the composition of OMVs. Therefore, this study aimed to comprehensively analyze the impact of O antigen loss on the sub-proteomes of both the outer membrane and secreted OMVs from K. pneumoniae. As determined by LC-MS/MS, OMVs were highly enriched with outer membrane proteins involved in cell wall, membrane, and envelope biogenesis as compared to the source cellular outer membrane. Deletion of wbbO, the enzyme responsible for O antigen attachment to LPS, decreased but did not eliminate this enrichment effect. Additionally, loss of O antigen resulted in OMVs with increased numbers of proteins involved in post-translational modification, protein turnover, and chaperones as compared to secreted vesicles from the wild type. This alteration of OMV composition may be a compensatory mechanism to deal with envelope stress. This comprehensive analysis confirms the highly distinct protein composition of OMVs as compared to their source membrane, and provides evidence for a selective sorting mechanism that involves LPS polysaccharides. These data support the hypothesis that modifications to LPS alters both the mechanics of protein sorting and the contents of secreted OMVs and significantly impacts the protein composition of the outer membrane.

  17. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Directory of Open Access Journals (Sweden)

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany

    2006-01-01

    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  18. Synthetic Biology Tools for the Membrane – Targeted Localisation and Elucidation of Protein Interactions

    DEFF Research Database (Denmark)

    Wendel, Sofie; Seppala, Susanna; Nørholm, Morten

    2014-01-01

    (SMA) for isolation of membrane proteins. SMA is a polymer which spontaneously digs into a lipid membrane and carves out a disc containing protein and native lipids (2). By elucidating protein interactions we will be able to tune and optimise heterologous pathway expression in our E. coli cell...

  19. Heterogeneous interactome between Litopenaeus vannamei plasma proteins and Vibrio parahaemolyticus outer membrane proteins.

    Science.gov (United States)

    Liu, Xiang; She, Xin-Tao; Zhu, Qing-Feng; Li, Hui; Peng, Xuan-Xian

    2013-01-01

    A great loss has been suffered by microbial infectious diseases under intensive shrimp farming in recent years. In this background, the understanding of shrimp innate immunity becomes an importantly scientific issue, but little is known about the heterogeneous protein-protein interaction between pathogenic cells and hosts, which is a key step for the invading microbes to infect internet organs through bloodstream. In the present study, bacterial outer membrane (OM) protein array and pull-down approaches are used to isolate both Vibrio parahaemolyticus OM proteins that bind to shrimp serum proteins and the shrimp serum proteins that interact with bacterial cells, respectively. Three interacting shrimp serum proteins, hemocyanin, β-1,3-glucan binding protein and LV_HP_RA36F08r and thirty interacting OM proteins were determined. They form 63 heterogeneous protein-protein interactions. Nine out of the 30 OM proteins were randomly demonstrated to be up-regulated or down-regulated when bacterial cells were cultured with shrimp sera, indicating the biological significance of the network. The interesting findings uncover the complexity of struggle between host immunity and bacterial infection. Compared with our previous report on heterogeneous interactome between fish grill and bacterial OM proteins, the present study further extends the investigation from lower vertebrates to invertebrates and develops a bacterial OM protein array to identify the OM proteins bound with shrimp serum proteins, which elevates the frequencies of the bound OM proteins. Our results highlight the way to determine and understand the heterogeneous interaction between hosts and microbes.

  20. Mouse Leydig cells express multiple P2X receptor subunits

    OpenAIRE

    2008-01-01

    ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X1–P2X7) and seven heteromeric receptors (P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/6, P2X4/6, P2X4/7) have been described. ATP treatment of Leydig cells leads to an increase in [Ca2+]i and testosterone secretion, supporting the hypothesis that Ca2+ signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Ley...

  1. Proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), a host membrane-deforming protein, is critical for membranous web formation in hepatitis C virus replication.

    Science.gov (United States)

    Chao, Ti-Chun; Su, Wen-Chi; Huang, Jing-Ying; Chen, Yung-Chia; Jeng, King-Song; Wang, Horng-Dar; Lai, Michael M C

    2012-02-01

    Hepatitis C virus (HCV) reorganizes intracellular membranes to establish sites of replication. How viral and cellular proteins target, bind, and rearrange specific membranes into the replication factory remains a mystery. We used a lentivirus-based RNA interference (RNAi) screening approach to identify the potential cellular factors that are involved in HCV replication. A protein with membrane-deforming activity, proline-serine-threonine phosphatase-interacting protein 2 (PSTPIP2), was identified as a potential factor. Knockdown of PSTPIP2 in HCV subgenomic replicon-harboring and HCV-infected cells was associated with the reduction of HCV protein and RNA expression. PSTPIP2 was localized predominantly in detergent-resistant membranes (DRMs), which contain the RNA replication complex. PSTPIP2 knockdown caused a significant reduction of the formation of HCV- and NS4B-induced membranous webs. A PSTPIP2 mutant defective in inducing membrane curvature failed to support HCV replication, confirming that the membrane-deforming ability of PSTPIP2 is essential for HCV replication. Taking these results together, we suggest that PSTPIP2 facilitates membrane alterations and is a key player in the formation of the membranous web, which is the site of the HCV replication complex.

  2. BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature

    DEFF Research Database (Denmark)

    Madsen, Kenneth Lindegaard; Bhatia, V K; Gether, U;

    2010-01-01

    The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as "molecular information" to organize cellular...... processes in space and time. Here we discuss this new important recognition process termed membrane curvature sensing (MCS). First, we review a new fluorescence-based experimental method that allows characterization of MCS using measurements on single vesicles and compare it to sensing assays that use bulk...... on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology....

  3. Role of outer-membrane proteins and lipopolysaccharide in conjugation between Neisseria gonorrhoeae and Neisseria cinerea.

    Science.gov (United States)

    Genco, C A; Clark, V L

    1988-12-01

    Little is known concerning the mechanism involved in cell contact between the donor and recipient during conjugation in Neisseria gonorrhoeae. The formation of stable mating pairs during conjugation in Escherichia coli appears to require a specific protein as well as LPS in the outer membrane of the recipient cell. To attempt to identify the cell surface components necessary for conjugation in the neisseriae, we began a comparison of the outer membrane of Neisseria cinerea strains that can (Con+) and cannot (Con-) serve as recipients in conjugation with N. gonorrhoeae. There were no differences in outer-membrane protein profiles on SDS-polyacrylamide gel electrophoresis between Con+ and Con- strains that could be correlated with the ability to conjugate. However, whole outer membrane isolated from Con+ strains specifically inhibited conjugation while those from Con- strains did not. Proteolytic cleavage of outer-membrane proteins by trypsin, pronase or alpha-chymotrypsin abolished the inhibitory effect of Con+ outer membranes, suggesting that these outer membranes contained a protease-sensitive protein(s) involved in conjugation. Although periodate oxidation of Con+ outer-membrane carbohydrates did not abolish the inhibitory action of these membranes, purified LPS from both Con+ and Con- strains inhibited conjugation when added at low concentrations. These results suggest that conjugation requires the presence of a specific conjugal receptor that consists of both LPS and one or more outer-membrane proteins. Both Con+ and Con- strains contain the necessary LPS, but only Con+ strains contain the required protein(s).

  4. Understanding leaf membrane protein extraction to develop a food-grade process.

    Science.gov (United States)

    Tamayo Tenorio, Angelica; Boom, Remko M; van der Goot, Atze Jan

    2017-02-15

    Leaf membrane proteins are an underutilised protein fraction for food applications. Proteins from leaves can contribute to a more complete use of resources and help to meet the increasing protein demand. Leaf protein extraction and purification is applied by other disciplines, such as proteomics. Therefore, this study analysed proteomic extraction methods for membrane proteins as an inspiration for a food-grade alternative process. Sugar beet leaves were extracted with two proteomic protocols: solvent extraction and Triton X-114 phase partitioning method. Extraction steps contributed to protein purity and/or to selective fractionation, enabling the purification of specific proteins. It was observed that membrane proteins distributed among different solvents, buffers and solutions used due to their physicochemical heterogeneity. This heterogeneity does not allow a total membrane protein extraction by a unique method or even combinations of processing steps, but it enables the creation of different fractions with different physicochemical properties useful for food applications.

  5. A comparative study of Pt/C cathodes in Sn 0.9In 0.1P 2O 7 and H 3PO 4 ionomers for high-temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Jin, Y. C.; Okada, M.; Hibino, T.

    New Pt/C cathodes with many reaction sites for the oxygen reduction reaction as well as high tolerance to Pt corrosion have been designed for high-temperature proton exchange membrane fuel cells (PEMFCs), wherein a composite mixture of Sn 0.9In 0.1P 2O 7 (SIPO) and sulfonated polystyrene-b-poly(ethylene/butylene)-b-polystyrene (sSEBS) functioned as an ionomer. The microstructure of the Pt-SIPO-sSEBS/C cathode was characterized by homogeneous distribution of the ionomer over the catalyst layer and close contact between the ionomer and the Pt/C powder. As a result, the activation and concentration overpotentials of the Pt-SIPO-sSEBS/C cathode between 100 and 200 °C were lower than those of an H 3PO 4-impregnated Pt/C cathode, which suggests that the present ionomer can avoid poisoning of Pt by phosphate anions and the limitation of gas diffusion through the catalyst layer. Moreover, agglomeration of Pt in the Pt-SIPO-sSEBS/C cathode was not observed during a durability test at 150 °C for 6 days, although it was significant in the Pt-H 3PO 4/C cathode. Therefore, it is concluded that the Pt-SIPO-sSEBS/C electrode is a very promising cathode candidate for high-temperature PEMFCs.

  6. The HOPS/Class C Vps Complex Tethers High-Curvature Membranes via a Direct Protein-Membrane Interaction.

    Science.gov (United States)

    Ho, Ruoya; Stroupe, Christopher

    2016-10-01

    Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane.

  7. Two Rab proteins, vesicle-associated membrane protein 2 (VAMP-2) and secretory carrier membrane proteins (SCAMPs), are present on immunoisolated parietal cell tubulovesicles.

    Science.gov (United States)

    Calhoun, B C; Goldenring, J R

    1997-01-01

    The tubulovesicles of gastric parietal cells sequester H+/K+-ATPase molecules within resting parietal cells. Stimulation of parietal cell secretion elicits delivery of intracellular H+/K+-ATPase to the apically oriented secretory canaliculus. Previous investigations have suggested that this process requires the regulated fusion of intracellular tubulovesicles with the canalicular target membrane. We have sought to investigate the presence of critical putative regulators of vesicle fusion on immunoisolated gastric parietal cell tubulovesicles. Highly purified tubulovesicles were prepared by gradient fractionation and immunoisolation on magnetic beads coated with monoclonal antibodies against the alpha subunit of H+/K+-ATPase. Western blot analysis revealed the presence of Rab11, Rab25, vesicle-associated membrane protein 2 (VAMP-2) and secretory carrier membrane proteins (SCAMPs) on immunoisolated vesicles. The same cohort of proteins was recovered on vesicles immunoisolated with monoclonal antibodies against SCAMPs and VAMP-2. In contrast, whereas immunoreactivities for syntaxin 1A/1B and synaptosome-associated protein (SNAP-25) were present in gradient-isolated vesicles, none of the immunoreactivity was associated with immunoisolated vesicles. The observation of VAMP-2 and two Rab proteins on immunoisolated H+/K+-ATPase-containing tubulovesicles supports the role for tubulovesicles in a regulated vesicle fusion process. In addition, the presence of SCAMPs along with Rab11 and Rab25 implicates the tubulovesicles as a critical apical recycling vesicle population. PMID:9230141

  8. Higher-order assemblies of BAR domain proteins for shaping membranes.

    Science.gov (United States)

    Suetsugu, Shiro

    2016-06-01

    Most cellular organelles contain lipid bilayer membranes. The earliest characterization of cellular organelles was performed by electron microscopy observation of such membranes. However, the precise mechanisms for shaping the membrane in particular subcellular organelles is poorly understood. Classically, the overall cellular shape, i.e. the shape of the plasma membrane, was thought to be governed by the reorganization of cytoskeletal components such as actin and microtubules. The plasma membrane contains various submicron structures such as clathrin-coated pits, caveolae, filopodia and lamellipodia. These subcellular structures are either invaginations or protrusions and are associated with the cytoskeleton. Therefore, it could be hypothesized that there are membrane-binding proteins that cooperates with cytoskeleton in shaping of plasma membrane organelles. Proteins with the Bin-Amphiphysin-Rvs (BAR) domain connect a variety of membrane shapes to actin filaments. The BAR domains themselves bend the membranes by their rigidity and then mold the membranes into tubules through their assembly as spiral polymers, which are thought to be involved in the various submicron structures. Membrane tubulation by polymeric assembly of the BAR domains is supposed to be regulated by binding proteins, binding lipids and the mechanical properties of the membrane. This review gives an overview of BAR protein assembly, describes the significance of the assembly and discusses how to study the assembly in the context of membrane and cellular morphology. The technical problems encountered in microscopic observation of BAR domain assembly are also discussed.

  9. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  10. Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques

    DEFF Research Database (Denmark)

    Calcutta, Antonello; Jessen, Christian Moestrup; Behrens, Manja Annette;

    2012-01-01

    Membrane proteins are vital for biological function, and their action is governed by structural properties critically depending on their interactions with the membranes. This has motivated considerable interest in studies of membrane protein folding and unfolding. Here the structural changes...... induced by unfolding of an integral membrane protein, namely TFE-induced unfolding of KcsA solubilized by the n-dodecyl ß-d-maltoside (DDM) surfactant is investigated by the recently introduced GPS-NMR (Global Protein folding State mapping by multivariate NMR) (Malmendal et al., PlosONE 5, e10262 (2010...

  11. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles.

    Directory of Open Access Journals (Sweden)

    Jong Sook Jin

    Full Text Available Acinetobacter baumannii is an important nosocomial pathogen that causes a high morbidity and mortality rate in infected patients, but pathogenic mechanisms of this microorganism regarding the secretion and delivery of virulence factors to host cells have not been characterized. Gram-negative bacteria naturally secrete outer membrane vesicles (OMVs that play a role in the delivery of virulence factors to host cells. A. baumannii has been shown to secrete OMVs when cultured in vitro, but the role of OMVs in A. baumannii pathogenesis is not well elucidated. In the present study, we evaluated the secretion and delivery of virulence factors of A. baumannii to host cells via the OMVs and assessed the cytotoxic activity of outer membrane protein A (AbOmpA packaged in the OMVs. A. baumannii ATCC 19606(T secreted OMVs during in vivo infection as well as in vitro cultures. Potential virulence factors, including AbOmpA and tissue-degrading enzymes, were associated with A. baumannii OMVs. A. baumannii OMVs interacted with lipid rafts in the plasma membranes and then delivered virulence factors to host cells. The OMVs from A. baumannii ATCC 19606(T induced apoptosis of host cells, whereas this effect was not detected in the OMVs from the ΔompA mutant, thereby reflecting AbOmpA-dependent host cell death. The N-terminal region of AbOmpA(22-170 was responsible for host cell death. In conclusion, the OMV-mediated delivery of virulence factors to host cells may well contribute to pathogenesis during A. baumannii infection.

  12. Characterization and immunogenicity of Kingella kingae outer-membrane proteins.

    Science.gov (United States)

    Yagupsky, Pablo; Slonim, Ariela

    2005-01-01

    In recent years, Kingella kingae has emerged as an important pediatric pathogen but the antigenicity of the organism and the host immune response have not been studied. Outer membrane proteins (OMPs) of 57 K. kingae isolates were characterized and the immune response of 19 children with invasive infections was studied by immunoblotting. Kingella kingae OMPs were remarkably similar disregarding place and time of isolation and associated clinical condition (asymptomatic carriage, bacteremia, endocarditis, septic arthritis or osteomyelitis). Most OMPs were immunogenic but the specific bands that reacted in each strain and the intensity of the reactions varied substantially. When convalescent sera were reacted with heterologous strains, bands that either were not recognized by the homologous serum or were not present in the homologous strain were visualized. These results demonstrate that OMPs of K. kingae are highly conserved but suggest that some epitopes are polymorphic, resulting in a variable pattern of immune response.

  13. Purinergic (P2) receptor control of lower genitourinary tract function and new avenues for drug action: an overview.

    Science.gov (United States)

    Gur, Serap; Kadowitz, Philip J; Hellstrom, Wayne J G

    2007-01-01

    Micturition, penile erection, contraction of prostatic smooth muscle, peristalsis of the male excurrent duct system and lumbosacral spinal cord neurotransmission all require adenosine 5'-triphosphate (ATP) activity and this likely involves purinergic (P2) receptors. P2 receptors are categorized as either ligand-gated ionotropic P2X or metabotropic G-protein-coupled P2Y subtypes. In the urinary bladder, purinergic receptor mechanisms are involved in both motor and sensory function. In the prostate, P2X1-receptors, which mediate contraction, are present in the fibromuscular stroma while G protein-coupled P2Y purinoceptors have a wide range of actions in prostate cancer. In the excretory ducts of the testis (ductus epididymidis, vas deferens and its associated seminal vesicles), heavy immunostaining for P2X1 and P2X2 subtypes is detected in the membranes of smooth muscle, suggesting their role in sperm transport and ejaculation. In the penis, intense P2X1 and weak P2X2 immunoreactivity are observed in smooth muscle of blood vessels and the corpus cavernosum, implying their participation in detumescence. Human corporal cavernosum stimulation induces relaxation of P2Y purinoceptors. Targeting of extracellular or intracellular P2X and/or P2Y receptor signaling pathways holds promise in affecting the lower genitourinary tract system. Our advancing knowledge about purine agonists and their pharmacologic benefits in erectile, ejaculatory, urinary bladder and prostatic hyperplasia may service clinical problems in the near future.

  14. Assembling a Correctly Folded and Functional Heptahelical Membrane Protein by Protein Trans-splicing.

    Science.gov (United States)

    Mehler, Michaela; Eckert, Carl Elias; Busche, Alena; Kulhei, Jennifer; Michaelis, Jonas; Becker-Baldus, Johanna; Wachtveitl, Josef; Dötsch, Volker; Glaubitz, Clemens

    2015-11-13

    Protein trans-splicing using split inteins is well established as a useful tool for protein engineering. Here we show, for the first time, that this method can be applied to a membrane protein under native conditions. We provide compelling evidence that the heptahelical proteorhodopsin can be assembled from two separate fragments consisting of helical bundles A and B and C, D, E, F, and G via a splicing site located in the BC loop. The procedure presented here is on the basis of dual expression and ligation in vivo. Global fold, stability, and photodynamics were analyzed in detergent by CD, stationary, as well as time-resolved optical spectroscopy. The fold within lipid bilayers has been probed by high field and dynamic nuclear polarization-enhanced solid-state NMR utilizing a (13)C-labeled retinal cofactor and extensively (13)C-(15)N-labeled protein. Our data show unambiguously that the ligation product is identical to its non-ligated counterpart. Furthermore, our data highlight the effects of BC loop modifications onto the photocycle kinetics of proteorhodopsin. Our data demonstrate that a correctly folded and functionally intact protein can be produced in this artificial way. Our findings are of high relevance for a general understanding of the assembly of membrane proteins for elucidating intramolecular interactions, and they offer the possibility of developing novel labeling schemes for spectroscopic applications.

  15. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    Science.gov (United States)

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  16. BCL::MP-Fold: membrane protein structure prediction guided by EPR restraints

    CERN Document Server

    Fischer, Axel Walter; Woetzel, Nils; Karakas, Mert; Weiner, Brian; Meiler, Jens

    2015-01-01

    For many membrane proteins the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold (BioChemical Library membrane protein fold) algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The RMSD100 value of the most accurate model is better than 8{\\AA} for twenty-seven, better than 6{\\AA} for twenty-two and better than 4{\\AA} for fifte...

  17. Shock waves co-stimulate T-cell proliferation and interleukin-2 expression through ATP release, P2 receptor and p38 mitogen activated protein kinase activation%冲击波通过ATP释放、P2受体及激活p38MAPK激酶促进T细胞增殖和分泌白细胞介素2

    Institute of Scientific and Technical Information of China (English)

    于铁成; 赵毅; 陈玮伦; 金安; 刘建国

    2007-01-01

    的ATP的含量明显增加(P<0.01),并且ATP的增加含量和冲击波的作用次数有依从关系.②加入apyrase,KN-62,suramin的植物血凝素激活的外周血单个核细胞细胞或CD3和CD28激活的Jurkat T细胞,在能量密度为0.18 mJ/mm2的冲击波作用100,150,200,250,300,330次时,细胞对3H-TdR掺入量比没有加入apyrase、KN-62或suramin的阴性对照组低(P<0.01),细胞上清液中的的细胞介素-2的活性含量表现为明显增高(P<0.01).加入ATP、KN-62或suramin后,冲击波激活Jurkat T细胞的p38 MAPK的程度明显降低.结论:①低能冲击波能损伤细胞膜而不损伤其他细胞器,引起T淋巴细胞内的ATP过多向细胞外分泌,细胞外过量的ATP过多地激活了P2X7受体,激活细胞内的大量的p38 MAPK,最后磷酸化的p38MAPK作为协同刺激因子增强激活的T淋巴细胞增殖及分泌白细胞介素2.②在低能冲击波对T淋巴细胞的功能调节上,T细胞分泌的ATP起到非常重要的作用.%BACKGROUND:The previous researches indicate that, shock waves can enhance the proliferation of T-cells and the expression of interleukin (IL)-2 through a mechanism that involves p38 mitogen activated protein kinase (MAPK)activation.OBJECTIVE: To investigate if adenosine triphosphate (ATP) release is an underlying mechanism through which low-density shock waves (LDSWs) augment T-cell function.DESIGN: Controlled repetitive measurement by groups, taking cells as subject.SETTING: Department of Orthopedics, the First Hospital of Jilin University.MATERIALS: KDE-2001 Extracorporeal Shockwave Lithotripter (Beijing Zhongke Jian An Meditechs Co., Beijing, China).p38 MAPK inhibitor SB203580 1 mg (BioSource Inc., Camarillo, CA); p38 MAPK kit for detecting phosphorylation (Cell Signaling Technology, Inc. U.S.A.); P2 receptor inhibitor suramin 50 mg (BIOMOL Research Laboratories Inc., PA) was prepared into 0.02 mol/L solution by 1.749 2 mL IMDM. ATP enzyme: apyrase 200 U (Sigma, U.S.A.); P2X7 receptor antagonist KN-62 (Bio

  18. NMR structural studies of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes.

    Science.gov (United States)

    Mahalakshmi, Radhakrishnan; Franzin, Carla M; Choi, Jungyuen; Marassi, Francesca M

    2007-12-01

    The beta-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane beta-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5 degrees tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to alpha-helical membrane proteins.

  19. Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation.

    Science.gov (United States)

    Rundén-Pran, E; Tansø, R; Haug, F M; Ottersen, O P; Ring, A

    2005-01-01

    Cell death was assessed by quantitative analysis of propidium iodide uptake in rat hippocampal slice cultures transiently exposed to oxygen and glucose deprivation, an in vitro model of brain ischemia. The hippocampal subfields CA1 and CA3, and fascia dentata were analyzed at different stages from 0 to 48 h after the insult. Cell death appeared at 3 h and increased steeply toward 12 h. Only a slight additional increase in propidium iodide uptake was seen at later intervals. The mitogen-activated protein kinases extracellular signal-regulated kinase 1 and extracellular signal-regulated kinase 2 were activated immediately after oxygen and glucose deprivation both in CA1 and in CA3/fascia dentata. Inhibition of the specific mitogen-activated protein kinase activator mitogen-activated protein kinase kinase by PD98059 or U0126 offered partial protection against oxygen and glucose deprivation-induced cell damage. The non-selective P2X receptor antagonist suramin gave neuroprotection of the same magnitude as the N-methyl-D-aspartate channel blocker MK-801 (approximately 70%). Neuroprotection was also observed with the P2 receptor blocker PPADS. Immunogold data indicated that hippocampal slice cultures (like intact hippocampi) express several isoforms of P2X receptors at the synaptic level, consistent with the idea that the effects of suramin and PPADS are mediated by P2X receptors. Virtually complete neuroprotection was obtained by combined blockade of N-methyl-D-aspartate receptors, P2X receptors, and mitogen-activated protein kinase kinase. Both P2X receptors and N-methyl-D-aspartate receptors mediate influx of calcium. Our results suggest that inhibition of P2X receptors has a neuroprotective potential similar to that of inhibition of N-methyl-D-aspartate receptors. In contrast, our comparative analysis shows that only partial protection can be achieved by inhibiting the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase cascade, one of the

  20. Dual Role of Mitofilin in Mitochondrial Membrane Organization and Protein Biogenesis

    NARCIS (Netherlands)

    von der Malsburg, Karina; Mueller, Judith M.; Bohnert, Maria; Oeljeklaus, Silke; Kwiatkowska, Paulina; Becker, Thomas; Loniewska-Lwowska, Adrianna; Wiese, Sebastian; Rao, Sanjana; Milenkovic, Dusanka; Hutu, Dana P.; Zerbes, Ralf M.; Schulze-Specking, Agnes; Meyer, Helmut E.; Martinou, Jean-Claude; Rospert, Sabine; Rehling, Peter; Meisinger, Chris; Veenhuis, Marten; Warscheid, Bettina; van der Klei, Ida J.; Pfanner, Nikolaus; Chacinska, Agnieszka; van der Laan, Martin; Müller, Judith M.

    2011-01-01

    The mitochondrial inner membrane consists of two domains, inner boundary membrane and cristae membrane that are connected by crista junctions. Mitofilin/Fcj1 was reported to be involved in formation of crista junctions, however, different views exist on its function and possible partner proteins. We

  1. Understanding leaf membrane protein extraction to develop a food-grade process

    NARCIS (Netherlands)

    Tamayo Tenorio, Angelica; Boom, Remko M.; Goot, van der Atze Jan

    2017-01-01

    Leaf membrane proteins are an underutilised protein fraction for food applications. Proteins from leaves can contribute to a more complete use of resources and help to meet the increasing protein demand. Leaf protein extraction and purification is applied by other disciplines, such as proteomics.

  2. The role of hydrophobic interactions in positioning of peripheral proteins in membranes

    Directory of Open Access Journals (Sweden)

    Lomize Mikhail A

    2007-06-01

    Full Text Available Abstract Background Three-dimensional (3D structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined. Results We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM database. Conclusion Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our

  3. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity.

    Science.gov (United States)

    Watson, Eleanor; Sherry, Aileen; Inglis, Neil F; Lainson, Alex; Jyothi, Dushyanth; Yaga, Raja; Manson, Erin; Imrie, Lisa; Everest, Paul; Smith, David G E

    2014-09-01

    Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC-ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith-Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.

  4. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.

  5. A positive feedback-based gene circuit to increase the production of a membrane protein

    Directory of Open Access Journals (Sweden)

    Gennis Robert B

    2010-05-01

    Full Text Available Abstract Background Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses. Results In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration. Conclusions Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.

  6. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    Science.gov (United States)

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  7. Life at the border: Adaptation of proteins to anisotropic membrane environment

    Science.gov (United States)

    Pogozheva, Irina D; Mosberg, Henry I; Lomize, Andrei L

    2014-01-01

    This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region—between double bonds and carbonyl groups of lipids. These “midpolar” regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein–lipid binding. PMID:24947665

  8. Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes

    Science.gov (United States)

    Schrul, Bianca; Kapp, Katja; Sinning, Irmgard; Dobberstein, Bernhard

    2010-01-01

    SPP (signal peptide peptidase) is an aspartyl intramembrane cleaving protease, which processes a subset of signal peptides, and is linked to the quality control of ER (endoplasmic reticulum) membrane proteins. We analysed SPP interactions with signal peptides and other membrane proteins by co-immunoprecipitation assays. We found that SPP interacts specifically and tightly with a large range of newly synthesized membrane proteins, including signal peptides, preproteins and misfolded membrane proteins, but not with all co-expressed type II membrane proteins. Signal peptides are trapped by the catalytically inactive SPP mutant SPPD/A. Preproteins and misfolded membrane proteins interact with both SPP and the SPPD/A mutant, and are not substrates for SPP-mediated intramembrane proteolysis. Proteins interacting with SPP are found in distinct complexes of different sizes. A signal peptide is mainly trapped in a 200 kDa SPP complex, whereas a preprotein is predominantly found in a 600 kDa SPP complex. A misfolded membrane protein is detected in 200, 400 and 600 kDa SPP complexes. We conclude that SPP not only processes signal peptides, but also collects preproteins and misfolded membrane proteins that are destined for disposal. PMID:20196774

  9. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids.

    Science.gov (United States)

    Baumgart, Tobias; Capraro, Benjamin R; Zhu, Chen; Das, Sovan L

    2011-01-01

    Research investigating lipid membrane curvature generation and sensing is a rapidly developing frontier in membrane physical chemistry and biophysics. The fast recent progress is based on the discovery of a plethora of proteins involved in coupling membrane shape to cellular membrane function, the design of new quantitative experimental techniques to study aspects of membrane curvature, and the development of analytical theories and simulation techniques that allow a mechanistic interpretation of quantitative measurements. The present review first provides an overview of important classes of membrane proteins for which function is coupled to membrane curvature. We then survey several mechanisms that are assumed to underlie membrane curvature sensing and generation. Finally, we discuss relatively simple thermodynamic/mechanical models that allow quantitative interpretation of experimental observations.

  10. Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection.

    Science.gov (United States)

    Séror, Claire; Melki, Marie-Thérèse; Subra, Frédéric; Raza, Syed Qasim; Bras, Marlène; Saïdi, Héla; Nardacci, Roberta; Voisin, Laurent; Paoletti, Audrey; Law, Frédéric; Martins, Isabelle; Amendola, Alessandra; Abdul-Sater, Ali A; Ciccosanti, Fabiola; Delelis, Olivier; Niedergang, Florence; Thierry, Sylvain; Said-Sadier, Najwane; Lamaze, Christophe; Métivier, Didier; Estaquier, Jérome; Fimia, Gian Maria; Falasca, Laura; Casetti, Rita; Modjtahedi, Nazanine; Kanellopoulos, Jean; Mouscadet, Jean-François; Ojcius, David M; Piacentini, Mauro; Gougeon, Marie-Lise; Kroemer, Guido; Perfettini, Jean-Luc

    2011-08-29

    Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors. Inhibition of any of the constituents of this cascade (pannexin-1, ATP, P2Y2, and Pyk2) impairs the replication of HIV-1 mutant viruses that are resistant to conventional antiretroviral agents. Altogether, our results reveal a novel signaling pathway involved in the early steps of HIV-1 infection that may be targeted with new therapeutic approaches. © 2011 Séror et al.

  11. Solution structure of human P1•P2 heterodimer provides insights into the role of eukaryotic stalk in recruiting the ribosome-inactivating protein trichosanthin to the ribosome.

    Science.gov (United States)

    Lee, Ka-Ming; Yusa, Kazuyuki; Chu, Lai-On; Yu, Conny Wing-Heng; Oono, Moe; Miyoshi, Tomohiro; Ito, Kosuke; Shaw, Pang-Chui; Wong, Kam-Bo; Uchiumi, Toshio

    2013-10-01

    Lateral ribosomal stalk is responsible for binding and recruiting translation factors during protein synthesis. The eukaryotic stalk consists of one P0 protein with two copies of P1•P2 heterodimers to form a P0(P1•P2)₂ pentameric P-complex. Here, we have solved the structure of full-length P1•P2 by nuclear magnetic resonance spectroscopy. P1 and P2 dimerize via their helical N-terminal domains, whereas the C-terminal tails of P1•P2 are unstructured and can extend up to ∼125 Å away from the dimerization domains. (15)N relaxation study reveals that the C-terminal tails are flexible, having a much faster internal mobility than the N-terminal domains. Replacement of prokaryotic L10(L7/L12)₄/L11 by eukaryotic P0(P1•P2)₂/eL12 rendered Escherichia coli ribosome, which is insensitive to trichosanthin (TCS), susceptible to depurination by TCS and the C-terminal tail was found to be responsible for this depurination. Truncation and insertion studies showed that depurination of hybrid ribosome is dependent on the length of the proline-alanine rich hinge region within the C-terminal tail. All together, we propose a model that recruitment of TCS to the sarcin-ricin loop required the flexible C-terminal tail, and the proline-alanine rich hinge region lengthens this C-terminal tail, allowing the tail to sweep around the ribosome to recruit TCS.

  12. Documentation of an Imperative To Improve Methods for Predicting Membrane Protein Stability.

    Science.gov (United States)

    Kroncke, Brett M; Duran, Amanda M; Mendenhall, Jeffrey L; Meiler, Jens; Blume, Jeffrey D; Sanders, Charles R

    2016-09-13

    There is a compelling and growing need to accurately predict the impact of amino acid mutations on protein stability for problems in personalized medicine and other applications. Here the ability of 10 computational tools to accurately predict mutation-induced perturbation of folding stability (ΔΔG) for membrane proteins of known structure was assessed. All methods for predicting ΔΔG values performed significantly worse when applied to membrane proteins than when applied to soluble proteins, yielding estimated concordance, Pearson, and Spearman correlation coefficients of thermodynamic folding stability in membrane proteins.

  13. A method for detergent-free isolation of membrane proteins in their local lipid environment.

    Science.gov (United States)

    Lee, Sarah C; Knowles, Tim J; Postis, Vincent L G; Jamshad, Mohammed; Parslow, Rosemary A; Lin, Yu-Pin; Goldman, Adrian; Sridhar, Pooja; Overduin, Michael; Muench, Stephen P; Dafforn, Timothy R

    2016-07-01

    Despite the great importance of membrane proteins, structural and functional studies of these proteins present major challenges. A significant hurdle is the extraction of the functional protein from its natural lipid membrane. Traditionally achieved with detergents, purification procedures can be costly and time consuming. A critical flaw with detergent approaches is the removal of the protein from the native lipid environment required to maintain functionally stable protein. This protocol describes the preparation of styrene maleic acid (SMA) co-polymer to extract membrane proteins from prokaryotic and eukaryotic expression systems. Successful isolation of membrane proteins into SMA lipid particles (SMALPs) allows the proteins to remain with native lipid, surrounded by SMA. We detail procedures for obtaining 25 g of SMA (4 d); explain the preparation of protein-containing SMALPs using membranes isolated from Escherichia coli (2 d) and control protein-free SMALPS using E. coli polar lipid extract (1-2 h); investigate SMALP protein purity by SDS-PAGE analysis and estimate protein concentration (4 h); and detail biophysical methods such as circular dichroism (CD) spectroscopy and sedimentation velocity analytical ultracentrifugation (svAUC) to undertake initial structural studies to characterize SMALPs (∼2 d). Together, these methods provide a practical tool kit for those wanting to use SMALPs to study membrane proteins.

  14. Controlling the rejection of protein during membrane filtration by adding selected polyelectrolytes

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Ferrer Roca, Carme; Meyer, Anne S.

    2012-01-01

    Electrostatic interactions among the charged groups on proteins and/or between proteins and other solutes significantly affect the aggregation/deposition phenomena that induce fouling and decrease permeate flux during membrane purification of proteins. Such interactions can be turned into an adva...... help enhance the performance of membrane filtration for fractionation/purification of a target protein by significantly reducing fouling and modifying rejection/selectivity....

  15. Pearling instability of membrane tubes driven by curved proteins and actin polymerization

    CERN Document Server

    Jelerčič, Urška

    2014-01-01

    Membrane deformation inside living cells is crucial for the proper shaping of various intracellular organelles and is necessary during the fission/fusion processes that allow membrane recycling and transport (e.g. endocytosis). Proteins that induce membrane curvature play a key role in such processes, mostly by adsorbing to the membrane and forming a scaffold that deforms the membrane according to the curvature of the proteins. In this paper we explore the possibility of membrane tube destabilisation through a pearling mechanism enabled by the combined effects of the adsorbed curved proteins and the actin polymerization they may recruit. The pearling instability can furthermore serve as the initiation for fission of the tube into vesicles. We find that adsorbed proteins are more likely to stabilise the tubes, while the actin polymerization can provide the additional constrictive force needed for the robust instability. We discuss the relevance of the theoretical results to in-vivo and in-vitro experiments.

  16. Effect of membrane protein concentration on binding of /sup 3/H-imipramine in human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Barkai, A.I.; Kowalik, S.; Baron, M.

    1985-02-01

    Binding of /sup 3/H-imipramine to platelet membranes has been implicated as a marker for depression. Comparing /sup 3/H-IMI binding between depressed patients and normal subjects we observed an increase in the dissociation constant Kd with increasing membrane protein. This phenomenon was studied more rigorously in five normal subjects. Platelet membranes were prepared and adjusted to four concentrations of protein ranging from 100 to 800 micrograms/ml. The /sup 3/H-IMI binding parameters of maximum binding sites number (Bmax) and Kd were obtained by Scatchard analysis at each membrane concentration. A positive linear relationship was found between K/sub d/ values and the concentration of membrane protein in the assay, but no change was observed in Bmax. The variability in Kd values reported in the literature may be accounted for in part by the different concentrations of membrane protein used in various studies.

  17. One-step isolation of plasma membrane proteins using magnetic beads with immobilized concanavalin A1

    Science.gov (United States)

    Lee, Yu-Chen; Block, Gregory; Chen, Huiwen; Folch-Puy, Emma; Foronjy, Robert; Jalili, Roxana; Jendresen, Christian Bille; Kimura, Masashi; Kraft, Edward; Lindemose, Søren; Lu, Jin; McLain, Teri; Nutt, Leta; Ramon-Garcia, Santiago; Smith, Joseph; Spivak, Aaron; Wang, Michael L.; Zanic, Marija; Lin, Sue-Hwa

    2008-01-01

    We have developed a simple method for isolating and purifying plasma membrane proteins from various cell types. This one-step affinity-chromatography method uses the property of the lectin concanavalin A (ConA) and the technique of magnetic-bead separation to obtain highly purified plasma membrane proteins from crude membrane preparations or cell lines. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. When these ConA magnetic beads were used to enrich plasma membranes from a crude membrane preparation, this procedure resulted in 3.7-fold enrichment of plasma membrane marker 5′-nucleotidase activity with 70% recovery of the activity in the crude membrane fraction of rat liver. In agreement with the results of 5′-nucleotidase activity, immunoblotting with antibodies specific for a rat liver plasma membrane protein, CEACAM1, indicated that CEACAM1 was enriched about threefold relative to that of the original membranes. In similar experiments, this method produced 13-fold enrichment of 5′-nucleotidase activity with 45% recovery of the activity from a total cell lysate of PC-3 cells and 7.1-fold enrichment of 5′-nucleotidase activity with 33% recovery of the activity from a total cell lysate of HeLa cells. These results suggest that this one-step purification method can be used to isolate total plasma membrane proteins from tissue or cells for the identification of membrane biomarkers. PMID:18765283

  18. Evolved Lactococcus lactis Strains for Enhanced Expression of Recombinant Membrane Proteins

    NARCIS (Netherlands)

    Martinez Linares, Daniel; Geertsma, Eric R.; Poolman, Bert

    2010-01-01

    The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant membr

  19. Magic-Angle-Spinning Solid-State NMR of Membrane Proteins

    NARCIS (Netherlands)

    Baker, Lindsay A.; Folkers, Gert E.; Sinnige, Tessa; Houben, Klaartje; Kaplan, M.; van der Cruijsen, Elwin A W; Baldus, Marc

    2015-01-01

    Solid-state NMR spectroscopy (ssNMR) provides increasing possibilities to examine membrane proteins in different molecular settings, ranging from synthetic bilayers to whole cells. This flexibility often enables ssNMR experiments to be directly correlated with membrane protein function. In this

  20. Interaction between La(III) and proteins on the plasma membrane of horseradish

    Science.gov (United States)

    Yang, Guang-Mei; Chu, Yun-Xia; Lv, Xiao-Fen; Zhou, Qing; Huang, Xiao-Hua

    2012-06-01

    Lanthanum (La) is an important rare earth element in the ecological environment of plant. The proteins on the plasma membrane control the transport of molecules into and out of cell. It is very important to investigate the effect of La(III) on the proteins on the plasma membrane in the plant cell. In the present work, the interaction between La(III) and proteins on the plasma membrane of horseradish was investigated using optimization of the fluorescence microscopy and fluorescence spectroscopy. It is found that the fluorescence of the complex system of protoplasts and 1-aniline Kenai-8-sulfonic acid in horseradish treated with the low concentration of La(III) is increased compared with that of the control horseradish. The opposite effect is observed in horseradish treated with the high concentration of La(III). These results indicated that the low concentration of La(III) can interact with the proteins on the plasma membrane of horseradish, causing the improvement in the structure of proteins on the plasma membrane. The high concentration of La(III) can also interact with the proteins on the plasma membrane of horseradish, leading to the destruction of the structure of proteins on the plasma membrane. We demonstrate that the proteins on the plasma membrane are the targets of La(III) action on plant cell.

  1. Isolation of monodisperse nanodisc-reconstituted membrane proteins using free flow electrophoresis

    DEFF Research Database (Denmark)

    Justesen, Bo Højen; Laursen, Tomas; Weber, Gerhard;

    2013-01-01

    Free flow electrophoresis is used for rapid and high-recovery isolation of homogeneous preparations of functionally active membrane proteins inserted into nanodiscs. The approach enables isolation of integral and membrane anchored proteins and is also applicable following introduction of, e...

  2. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2

    DEFF Research Database (Denmark)

    Mygind, P; Christiansen, Gunna; Birkelund, Svend

    1998-01-01

    Using monospecific polyclonal antisera to different parts of Chlamydia trachomatis L2 outer membrane protein 2 (Omp2), we show that the protein is localized at the inner surface of the outer membrane. Omp2 becomes immunoaccessible when Chlamydia elementary bodies are treated with dithiothreitol...

  3. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3)

    NARCIS (Netherlands)

    Baumgarten, Thomas; Schlegel, Susan; Wagner, Samuel; Löw, Mirjam; Eriksson, Jonas; Bonde, Ida; Herrgård, Markus J; Heipieper, Hermann J; Nørholm, Morten H H; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-01-01

    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived from

  4. A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R;

    2012-01-01

    Non-traditional amphiphiles: Conferring aqueous solubility on membrane proteins generally requires the use of a detergent or other amphiphilic agent. A new class of amphiphiles was synthesized, based on steroidal lipophilic groups, and evaluated with several membrane proteins. The results show th...

  5. Enrichment of membrane proteins by partitioning in detergent/polymer aqueous two-phase systems.

    Science.gov (United States)

    Everberg, Henrik; Gustavasson, Niklas; Tjerned, Folke

    2008-01-01

    Methods that combine efficient solubilization with enrichment of proteins and intact protein complexes are of central interest in current membrane proteomics. We have developed methods based on nondenaturing detergent extraction of yeast mitochondrial membrane proteins followed by enrichment of hydrophobic proteins in aqueous two-phase system. Combining the zwitterionic detergent Zwittergent 3-10 and the nonionic detergent Triton X-114 results in a complementary solubilization of proteins, which is similar to that of the anionic detergent sodium dodecyl sulfate (SDS) but with the important advantage of being nondenaturing. Detergent/polymer two-phase system partitioning offers removal of soluble proteins that can be further improved by manipulation of the driving forces governing protein distribution between the phases. Integral and peripheral membrane protein subunits from intact membrane protein complexes partition to the detergent phase while soluble proteins are found in the polymer phase. An optimized solubilization protocol is presented in combination with detergent/polymer two-phase partitioning as a mild and efficient method for initial enrichment of membrane proteins and membrane protein complexes in proteomic studies.

  6. Characterization of the ectodomain of the envelope protein of dengue virus type 4: expression, membrane association, secretion and particle formation in the absence of precursor membrane protein.

    Directory of Open Access Journals (Sweden)

    Szu-Chia Hsieh

    Full Text Available The envelope (E of dengue virus (DENV is the major target of neutralizing antibodies and vaccine development. After biosynthesis E protein forms a heterodimer with precursor membrane (prM protein. Recent reports of infection enhancement by anti-prM monoclonal antibodies (mAbs suggest anti-prM responses could be potentially harmful. Previously, we studied a series of C-terminal truncation constructs expressing DENV type 4 prM/E or E proteins and found the ectodomain of E protein alone could be recognized by all 12 mAbs tested, suggesting E protein ectodomain as a potential subunit immunogen without inducing anti-prM response. The characteristics of DENV E protein ectodomain in the absence of prM protein remains largely unknown.In this study, we investigated the expression, membrane association, glycosylation pattern, secretion and particle formation of E protein ectodomain of DENV4 in the presence or absence of prM protein. E protein ectodomain associated with membrane in or beyond trans-Golgi and contained primarily complex glycans, whereas full-length E protein associated with ER membrane and contained high mannose glycans. In the absence of prM protein, E protein ectodomain can secrete as well as form particles of approximately 49 nm in diameter, as revealed by sucrose gradient ultracentrifugation with or without detergent and electron microscopy. Mutational analysis revealed that the secretion of E protein ectodomain was affected by N-linked glycosylation and could be restored by treatment with ammonia chloride.Considering the enhancement of DENV infectivity by anti-prM antibodies, our findings provide new insights into the expression and secretion of E protein ectodomain in the absence of prM protein and contribute to future subunit vaccine design.

  7. Post-translational regulation of P2X receptor channels: modulation by phospholipids

    Directory of Open Access Journals (Sweden)

    Louis-Philippe eBernier

    2013-11-01

    Full Text Available P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane.All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e. homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C-linked metabotropic receptors and P2X receptor channels in DRG sensory neurons and microglia.

  8. Training-induced changes in membrane transport proteins of human skeletal muscle

    DEFF Research Database (Denmark)

    Juel, C.

    2006-01-01

    for 6-8 weeks substantially increases the density of membrane proteins, whereas years of training (as performed by athletes) have no further effect. Studies suggest that training-induced changes at the protein level are important functionally. The underlying factors responsible for these changes......Training improves human physical performance by inducing structural and cardiovascular changes, metabolic changes, and changes in the density of membrane transport proteins. This review focuses on the training-induced changes in proteins involved in sarcolemmal membrane transport. It is concluded...... that the same type of training affects many transport proteins, suggesting that all transport proteins increase with training, and that both sprint and endurance training in humans increase the density of most membrane transport proteins. There seems to be an upper limit for these changes: intense training...

  9. Large-scale identification of membrane proteins with properties favorable for crystallization.

    Science.gov (United States)

    Kim, Jared; Kagawa, Allison; Kurasaki, Kellie; Ataie, Niloufar; Cho, Il Kyu; Li, Qing X; Ng, Ho Leung

    2015-11-01

    Membrane protein crystallography is notoriously difficult due to challenges in protein expression and issues of degradation and structural stability. We have developed a novel method for large-scale screening of native sources for integral membrane proteins that have intrinsic biochemical properties favorable for crystallization. Highly expressed membrane proteins that are thermally stable and nonaggregating in detergent solutions were identified by mass spectrometry from Escherichia coli, Saccharomyces cerevisiae, and Sus scrofa cerebrum. Many of the membrane proteins identified had been crystallized previously, supporting the promise of the approach. Most identified proteins have known functions and include high-value targets such as transporters and ATPases. To validate the method, we recombinantly expressed and purified the yeast protein, Yop1, which is responsible for endoplasmic reticulum curvature. We demonstrate that Yop1 can be purified with the detergent dodecylmaltoside without aggregating.

  10. Defining the Free-Energy Landscape of Curvature-Inducing Proteins on Membrane Bilayers

    CERN Document Server

    Tourdot, Richard W; Radhakrishnan, Ravi

    2015-01-01

    Curvature-sensing and curvature-remodeling proteins are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors as well as induce curvature in cell membranes to stabilize emergent high curvature, non-spherical, structures such as tubules, discs, and caveolae. A definitive understanding of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility of the Widom test-particle/field insertion methodology in computing the excess chemical potentials associated with curvature-inducing proteins on the membra...

  11. Practical aspects in expression and purification of membrane proteins for structural analysis.

    Science.gov (United States)

    Vinothkumar, Kutti R; Edwards, Patricia C; Standfuss, Joerg

    2013-01-01

    A surge of membrane protein structures in the last few years can be attributed to advances in technologies starting at the level of genomes, to highly efficient expression systems, stabilizing conformational flexibility, automation of crystallization and data collection for screening large numbers of crystals and the microfocus beam lines at synchrotrons. The substantial medical importance of many membrane proteins provides a strong incentive to understand them at the molecular level. It is becoming obvious that the major bottleneck in many of the membrane projects is obtaining sufficient amount of stable functional proteins in a detergent micelle for structural studies. Naturally, large effort has been spent on optimizing and advancing multiple expression systems and purification strategies that have started to yield sufficient protein and structures. We describe in this chapter protocols to refold membrane proteins from inclusion bodies, purification from inner membranes of Escherichia coli and from mammalian cell lines.

  12. Identification of salt-tolerant Sinorhizobium sp. strain BL3 membrane proteins based on proteomics

    DEFF Research Database (Denmark)

    Tanthanuch, Waraporn; Tittabutr, Panlada; Mohammed, Shabaz;

    2010-01-01

    Sinorhizobium sp. BL3 is a salt-tolerant strain that can fix atmospheric nitrogen in symbiosis with leguminous host plants under salt-stress conditions. Since cell membranes are the first barrier to environmental change, it is interesting to explore the membrane proteins within this protective......-line SCX fractionation coupled to nanoLC-MS/MS. These techniques would be useful for further comparative analysis of membrane proteins that function in the response to environmental stress....... barrier under salt stress. The protein contents of membrane-enriched fractions obtained from BL3 were analyzed by nanoflow liquid chromatography interfaced with electrospray ionization tandem mass spectrometry. A total of 105 membrane proteins were identified. These proteins could be classified into 17...

  13. Ion channel regulation by phosphoinositides analyzed with VSPs-PI(4,5)P2 affinity, phosphoinositide selectivity, and PI(4,5)P2 pool accessibility.

    Science.gov (United States)

    Rjasanow, Alexandra; Leitner, Michael G; Thallmair, Veronika; Halaszovich, Christian R; Oliver, Dominik

    2015-01-01

    The activity of many proteins depends on the phosphoinositide (PI) content of the membrane. E.g., dynamic changes of the concentration of PI(4,5)P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5)P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids. Voltage-sensitive phosphatases (VSPs) turn over PI(4,5)P2 to PI(4)P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5)P2. Because cellular PI(4,5)P2 is resynthesized rapidly, steady state PI(4,5)P2 changes with the degree of VSP activation and thus depends on membrane potential. Here we show that titration of endogenous PI(4,5)P2 with Ci-VSP allows for the quantification of relative PI(4,5)P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K(+) channels to Ci-VSP allowed for comparison of PI(4,5)P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5)P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5)P2 and PI(4)P was insensitive to VSP. Surprisingly, despite comparable PI(4,5)P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5)P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5)P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5)P2 that differ in their accessibility to PLC and VSPs.

  14. Ion channel regulation by phosphoinositides analyzed with VSPs – PI(4,5P2 affinity, phosphoinositide selectivity, and PI(4,5P2 pool accessibility

    Directory of Open Access Journals (Sweden)

    Alexandra eRjasanow

    2015-06-01

    Full Text Available The activity of many proteins depends on the phosphoinositide (PI content of the membrane. E.g., dynamic changes of the concentration of PI(4,5P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids.Voltage-sensitive phosphatases (VSPs turn over PI(4,5P2 to PI(4P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5P2. Because cellular PI(4,5P2 is resynthesized rapidly, steady state PI(4,5P2 changes with the degree of VSP activation and thus depends on membrane potential.Here we show that titration of endogenous PI(4,5P2 with Ci-VSP allows for the quantification of relative PI(4,5P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5P2 and PI(4P was insensitive to VSP.Surprisingly, despite comparable PI(4,5P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5P2 that differ in their accessibility to PLC and VSPs.

  15. Temperature-Induced Protein Conformational Changes in Barley Root Plasma Membrane-Enriched Microsomes: II. Intrinsic Protein Fluorescence.

    Science.gov (United States)

    Caldwell, C R

    1987-07-01

    The membrane-bound proteins of barley (Hordeum vulgare L. cv Conquest) root plasma membrane-enriched microsomes displayed fluorescence typical of protein-associated trytophan residues. The protein fluorescence intensity was sensitive to variations in sample temperature. The temperature-induced decline in protein fluorescence intensity was nonlinear with slope discontinuities at about 12 and 32 degrees C. Detergents at levels above their critical micelle concentration enhanced protein fluorescence. Glutaraldehyde reduced protein fluorescence. Protein fluorescence polarization increased at temperatures above 30 degrees C. Both the rate of tryptophan photoionization and the fluorescence intensity of the photoionization products suggested alterations in membrane protein conformation between 12 and 32 degrees C. The quenching of the intrinsic protein fluorescence by acrylamide and potassium iodide indicated changes in accessibility of the extrinsic agents to the protein tryptophan residues beginning at about 14 degrees C. The results indicate thermally induced changes in the dynamics of the membrane proteins over the temperature range of 12 to 32 degrees C which could account for the complex temperature dependence of the barley root plasma membrane ATPase.