WorldWideScience

Sample records for membrane polypeptides twenty-two

  1. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    International Nuclear Information System (INIS)

    Hicks, G.R.; Rayle, D.L.; Jones, A.M.; Lomax, T.L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7- 3 H]IAA([ 3 H]N 3 IAA), in a manner similar to the accumulation of [ 3 H]IAA. The association of the [ 3 H]N 3 IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [ 3 H]N 3 IAA to plasma membrane vesicles prior to exposure to UV light and detected by subsequent NaDodSO 4 /PAGE and fluorography. When the reaction temperature was lowered to -196 degree C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors

  2. Common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands

    International Nuclear Information System (INIS)

    Cameron, R.S.; Cameron, P.L.; Castle, J.D.

    1986-01-01

    A highly purified membrane preparation from rat parotid secretion granules has been used as a comparative probe to examine the extent of compositional overlap in granule membranes of three other exocrine secretory tissues - pancreatic, lacrimal, and submandibular - from several standpoints. First, indirect immunofluorescent studies using a polyclonal polyspecific anti-parotid granule membrane antiserum has indicated a selective staining of granule membrane profiles in all acinar cells of all tissues. Second, highly purified granule membrane subfractions have been isolated from each exocrine tissue; comparative two-dimensional (isoelectric focusing; SDS) PAGE of radioiodinated granule membranes has identified 10-15 polypeptides of identical pI and apparent molecular mass. These species are likely to be integral membrane components since they are not extracted by either saponin-sodium sulfate or sodium carbonate (pH 11.5) treatments, and they do not have counterparts in the granule content. Finally, the identity among selected parotid and pancreatic radioiodinated granule membrane polypeptides has been documented using two-dimensional peptide mapping of chymotryptic and tryptic digests. These findings clearly indicate that exocrine secretory granules, irrespective of the nature of stored secretion, comprise a type of vesicular carrier with a common (and probably refined) membrane composition. Conceivably, the polypeptides identified carry out general functions related to exocrine secretion

  3. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides

    International Nuclear Information System (INIS)

    Takegami, T.; Semler, B.L.; Anderson, C.W.; Wimmer, E.

    1983-01-01

    The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have also revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes by its affinity to the N-terminus of P3-9

  4. In vitro and in vivo phosphorylation of polypeptides in plasma membrane and tonoplast-enriched fractions from barley roots

    International Nuclear Information System (INIS)

    Garbarino, J.E.; Hurkman, W.J.; Tanaka, C.K.; DuPont, F.M.

    1991-01-01

    Phosphorylation of polypeptides in membrane fractions from barley (Hordeum vulgare L. cv CM 72) roots was compared in in vitro and in vivo assays to assess the potential role of protein kinases in modification of membrane transport. Membrane fractions enriched in endoplasmic reticulum, tonoplast, and plasma membrane were isolated using sucrose gradients and the membrane polypeptides separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis. When the membrane fractions were incubated with γ[p 32 P]ATP, phosphorylation occurred almost exclusively in the plasma membrane fraction. Phosphorylation of a band at 38 kilodaltons increased as the concentration of Mg 2+ was decreased from millimolar to micromolar levels. Phosphorylation of bands at 125, 86, 58, 46 and 28 kilodaltons required millimolar Mg 2+ concentrations and was greatly enhanced by Ca 2+ . When roots of intact plants were labeled with [ 32 P]orthophosphate, polypeptides at approximately 135, 166, 90, 46 to 53, 32, 28, and 19 kilodaltons were labeled in the plasma membrane fraction and polypeptides at approximately 73, 66, and 48 kilodaltons were labeled in the tonoplast fraction. Treatment of the roots of intact plants with 150 millimolar NaCl resulted in increased phosphorylation of some polypeptides while treatment with 100 mM NaCl had no effect

  5. Membrane Disordering is not Sufficient for Membrane Permeabilization by Islet Amyloidogenic Polypeptide: Studies of IAPP(20-29) Fragments

    Science.gov (United States)

    Brender, Jeffrey R.; Heyl, Deborah L.; Samisetti, Shyamprasad; Kotler, Samuel A.; Osborne, Joshua M.; Pesaru, Ranadheer R.; Ramamoorthy, Ayyalusamy

    2013-01-01

    A key factor in the development of type II diabetes is the loss of insulin-producing beta-cells. Human islet amyloid polypeptide protein (human-IAPP) is believed to play a crucial role in this process by forming small aggregates that exhibit toxicity by disrupting the cell membrane. The actual mechanism of membrane disruption is complex and appears to involve an early component before fiber formation and later component associated with fiber formation on the membrane. By comparing the peptide-lipid interactions derived from solid-state NMR experiments of two IAPP fragments that bind the membrane and cause membrane disordering to IAPP derived peptides known to cause significant early membrane permeabilization, we show here that membrane disordering is not likely to be sufficient by itself to cause the early membrane permeabilization observed by IAPP, and may play a lesser role in IAPP membrane disruption than expected. PMID:23493863

  6. Degradation of surface-labeled hepatoma membrane polypeptides: effect of inhibitors

    International Nuclear Information System (INIS)

    Hare, J.F.; Huston, M.

    1984-01-01

    When their membrane proteins were labeled with 125I by lactoperoxidase, dividing hepatoma cells lost radioactivity to the medium in a biphasic manner (T1/2 . 16-26 h, greater than 40 h). Lysosomotropic weak bases, chloroquine, and NH4Cl inhibited the rapid phase by 59%. More than 50% of the radioactivity which accumulates in the media from dividing cells during the first 4 h after labeling was trichloroacetic acid-soluble, and was identified as iodotyrosine. Iodotyrosine release from labeled membrane proteins was 60-71% inhibited by lysosomotropic agents chloroquine and NH4Cl as well as the sodium-proton ionophore, monensin. The inhibitory effect of NH4Cl and monensin was reversible. Inhibitors of microtubule and microfilament function and transglutamination had no effect on release of iodotyrosine to the medium, but trypsin-like protease inhibitors, p-aminobenzamidine, tosyl-L-lysine/chloromethylketone, and phenylmethylsulfonyl fluoride, as well as the cathepsin B inhibitor, leupeptin, inhibited by 21-24%. Iodotyrosine release showed a biphasic Arrhenius plot with an activation energy of 17 kcal/mol above but 27 kcal/mol below 20 degrees C. These results indicate that cell membrane polypeptides require a temperature-limiting event as well as passage through an ion-sensitive compartment prior to their complete degradation to constituent amino acids. In contrast to other lysosomal-mediated events, however, iodinated membrane proteins of dividing cells are degraded in a manner insensitive to agents which disrupt the cytoskeleton

  7. Membrane polypeptide in rabbit erythrocytes associated with the inhibition of L-lactate transport by a synthetic anhydride of lactic acid

    International Nuclear Information System (INIS)

    Donovan, J.A.; Jennings, M.L.

    1985-01-01

    The synthetic lactyl anhydride isobutylcarbonyl lactyl anhydride (iBCLA), a selective and potent inhibitor of L-(+)-lactate transport in rabbit erythrocytes, reduces the chemical labeling of a 40-50-kdalton polypeptide by tritiated 4,4'-diisothiocyanato-2,2'-dihydrostilbenedisulfonate ([ 3 H]H 2 DIDS). iBCLA does so in a dose-dependent manner at concentrations that strongly inhibit lactate-lactate exchange but not chloride-phosphate exchange. These labeling experiments and inhibition reversal studies using iBCLA, p-(chloro-mercuri)benzenesulfonic acid (pCMBS), and dithiothreitol (DDT) suggest that iBCLA does not act at sulfhydryl groups but at or near an amino group that is near a disulfide linkage in the polypeptide which catalyzes lactate transport. These experiments support the association between specific monocarboxylate transport and a 40-50-kdalton membrane-bound polypeptide of the rabbit erythrocyte

  8. Characterization of auxin-binding proteins from zucchini plasma membrane

    Science.gov (United States)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  9. Mosaic HIV envelope immunogenic polypeptides

    Science.gov (United States)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon; Sodroski, Joseph; Haynes, Barton

    2018-01-02

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in a subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.

  10. Identification of UDPG-binding polypeptides and purified (1,3)-β-glucan synthase by photoaffinity labelling with 5-azido-UDPG

    International Nuclear Information System (INIS)

    Frost, D.J.; Wu, A.; Read, S.M.; Wasserman, B.P.; Drake, R.R.; Haley, B.E.

    1989-01-01

    The photoaffinity probe 5-azido-uridine 5'-β-[ 32 P]-diphosphate glucose was used to identify the major UDPG-binding polypeptide of red beet (1,3)-β-glucan synthase. Glucan synthase was purified from plasma membranes by sequential solubilization with CHAPS followed by product entrapment. Two major polypeptides at 72 and 54 kD were labelled by probe. Labelling of both was abolished with increasing levels of cold UDPG. However, labelling of the 54 kD polypeptide was dependent upon the presence of divalent cations. These data suggest that the 54 kD polypeptide is a substrate-binding and cation-regulated component of the glucan synthase complex

  11. Radioiodination of an outer membrane protein in intact Rickettsia prowazekii

    International Nuclear Information System (INIS)

    Smith, D.K.; Winkler, H.H.

    1980-01-01

    Intact Rickettsia prowazekii was radiolabeled with the glucose oxidase-lactoperoxidase method of iodination. Separation of the rickettsial extract into cytoplasmic, outer and inner membrane fractions demonstrated that the outer membrane was preferentially labeled. Analysis of the polypeptides of these fractions on high-resolution slab polyacrylamide gels showed that most of the 125 I was in polypeptide T49, an outer membrane constituent. Additional outer membrane polypeptides were iodinated in broken envelope preparations, demonstrating that T49 is uniquely accessible to the external environment and the asymmetric polypeptide organization of the outer membrane

  12. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    Science.gov (United States)

    Moreadith, R W; Cleeter, M W; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-02-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the patient's mitochondria. However, immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of complex I polypeptides demonstrated that the majority of the 25 polypeptides comprising complex I were present in the affected mitochondria. A more detailed analysis using subunit selective antisera against the main polypeptides of the iron-protein fragments of complex I revealed a selective absence of the 75- and 13-kD polypeptides. These findings suggest that the underlying basis for this patient's disease was a congenital deficiency of at least two polypeptides comprising the iron-protein fragment of complex I, which resulted in the inability to correctly assemble a functional enzyme complex.

  13. Conformations of islet amyloid polypeptide monomers in a membrane environment: implications for fibril formation.

    Directory of Open Access Journals (Sweden)

    Mojie Duan

    Full Text Available The amyloid fibrils formed by islet amyloid polypeptide (IAPP are associated with type II diabetes. One of the proposed mechanisms of the toxicity of IAPP is that it causes membrane damage. The fatal mutation of S20G human IAPP was reported to lead to early onset of type II diabetes and high tendency of amyloid formation in vitro. Characterizing the structural features of the S20G mutant in its monomeric state is experimentally difficult because of its unusually fast aggregation rate. Computational work complements experimental studies. We performed a series of molecular dynamics simulations of the monomeric state of human variants in the membrane. Our simulations are validated by extensive comparisons with experimental data. We find that a helical disruption at His18 is common to both human variants. An L-shaped motif of S20G mutant is observed in one of the conformational families. This motif that bends at His18 resembles the overall topology of IAPP fibrils. The conformational preorganization into the fibril-like topology provides a possible explanation for the fast aggregation rate of S20G IAPP.

  14. Association of Sendai virion envelope and a mouse surface membrane polypeptide on newly infected cells: lack of association with H-2K/D or alteration of viral immunogenicity

    International Nuclear Information System (INIS)

    Zarling, D.A.; Miskimen, J.A.; Fan, D.P; Fujimoto, E.K.; Smith, P.K.

    1982-01-01

    The reagent N-succinimidyl 4-azidophenyl-1,3'-dithiopropionate (SADP) was synthesized and then coupled to purified Sendai virions by the amino-reactive end of the SADP molecule. This SADP-coupled virus was fused into the membranes of surface radioiodinated P815 cells, and target structures were allowed to form. Next, the photosensitive group on SADP was activated with ultraviolet light to covalently couple the viral proteins to any neighboring cell surface proteins. The cellular neighbors were isolated from detergent extracts of membrane proteins after immunoprecipitation with antibody specific for Sendai virion proteins. The covalent cross-links between the nonradioactive Sendai proteins and the radioiodinated cellular polypeptide neighbors were broken, and the host cell polypeptides were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and detected by autoradiography. One of these neighboring cellular proteins had an apparent m.w. of 17,000, and none was found with the characteristic size and tryptic map of either the H-2K or D gene products. Thus, the H-2K or D proteins are unlikely to be SADP- detectable neighbors of Sendai viral antigens recognized by CTL. In further experiments, the complexes of Sendai virion proteins crosslinked to cellular polypeptide neighbors were isolated from the membrane of newly infected cells and were shown to be able to stimulate CTL in vitro with approximately the same efficiency as uncross-linked Sendai virion proteins. Thus, Sendai viral proteins in the membrane of newly infected cells do not appear to be in highly immunogenic complexes with either H-2K/D or any other cellular proteins

  15. Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase and Zea mays

    International Nuclear Information System (INIS)

    Bowman, E.J.; Mandala, S.; Taiz, L.; Bowman, B.J.

    1986-01-01

    The H + translocating ATPase located on vacuolar membranes of Neurospora crassa was partially purified by solubilization in two detergents, Triton X-100 and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, followed by centrifugation on sucrose density gradients. Two polypeptides of M/sub r/ ≅ 70,000 and ≅ 62,000 consistently migrated with activity, along with several minor bands of lower molecular weight. Radioactively labeled inhibitors of ATPase activity, N-[ 14 C]ethylmaleimide and 7-chloro-4-nitro[ 14 C]benzo-2-oxa-1,3-diazole, labeled the M/sub r/ ≅ 70,000 polypeptide; this labeling was reduced in the presence of ATP. N,N'-[ 14 C]dicyclohexylcarbodiimide labeled a polypeptide of M/sub r/ ≅ 15,000. Estimation of the functional size of the vacuolar membrane ATPase by radiation inactivation gave a value of M/sub r/ 5.2 x 10 5 , 10-15% larger than the mitochondrial ATPase. The Neurospora vacuolar ATPase showed no crossreactivity with antiserum to plasma membrane or mitochrondrial ATPase but stongly crossreacted with antiserum against a polypeptide of M/sub r/ ≅ 70,000 associated with the tonoplast ATPase of corn coleoptiles. These results suggest that fungal and plant vacuolar ATPases may be large multisubunit complexes, somewhat similar to, but immunologically distinct from, known F 0 F 1 ATPases

  16. Recent Insights in Islet Amyloid Polypeptide-Induced Membrane Disruption and Its Role in β-Cell Death in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Lucie Khemtémourian

    2008-01-01

    Full Text Available The presence of fibrillar protein deposits (amyloid of human islet amyloid polypeptide (hIAPP in the pancreatic islets of Langerhans is thought to be related to death of the insulin-producing islet β-cells in type 2 diabetes mellitus (DM2. The mechanism of hIAPP-induced β-cell death is not understood. However, there is growing evidence that hIAPP-induced disruption of β-cell membranes is the cause of hIAPP cytotoxicity. Amyloid cytotoxicity by membrane damage has not only been suggested for hIAPP, but also for peptides and proteins related to other misfolding diseases, like Alzheimer’s disease, Parkinson’s disease, and prion diseases. Here we review the interaction of hIAPP with membranes, and discuss recent progress in the field, with a focus on hIAPP structure and on the proposed mechanisms of hIAPP-induced membrane damage in relation to β-cell death in DM2.

  17. Measles virus polypeptides in purified virions and in infected cells

    International Nuclear Information System (INIS)

    Vainionpaeae, R.; Ziola, B.; Salmi, A.

    1978-01-01

    A wild-type measles virus was radiolabeled during growth in VERO cells and purified by two successive potassium tartrate gradient centrifugations. The virion polypeptide composition was determined by SDS-polyacrylamide gel electrophoresis employing two different buffer systems. Six virus-specific polypeptides were consistently detected. The largest (L) had a molecular weight (MW) of greater than 150,000. The second largest polypeptide, G (MW 79,000), was the only glycoprotein found. The proteins designated polypeptide 2 (MW 66 to 70,000) and nucleocapsid protein or NP (MW 61,000) were phosphorylated. The remaining virus-coded proteins were polypeptide 5 (MW 40,000) and the matrix or M protein (MW 37,000). Measles virions also contained a polypeptide (MW 42,000) thought to be actin due to co-migration with this component of uninfected cells. Analysis of in vitro 3 H-acetic anhydride radiolabeled virions confirmed the presence of these seven polypeptides. Acetic anhydride also labeled a protein designated polypeptide 4 (MW 53,000) which was not consistently radiolabeled in vivo, as well as several other minor proteins believed to be cellular in origin. Synthesis of the six virus-specific structural polypeptides was detected in lysates of infected cells by SDS-polyacrylamide slab gel electrophoresis. Virus specificity of polypeptide 4 could not be confirmed due to the similar MW of several cellular polypeptides. Two non-virion, but virus-specified polypeptides, of MW 38,000 and 18,000 were also detected. Synthesis of the virus structural proteins was in the same proportions as the polypeptides found in virions except for under production of polypeptide G and over production of polypeptide 2. (author)

  18. Adsorption and Orientation of Human Islet Amyloid Polypeptide (hIAPP Monomer at Anionic Lipid Bilayers: Implications for Membrane-Mediated Aggregation

    Directory of Open Access Journals (Sweden)

    Guanghong Wei

    2013-03-01

    Full Text Available Protein misfolding and aggregation cause serious degenerative diseases, such as Alzheimer’s and type II diabetes. Human islet amyloid polypeptide (hIAPP is the major component of amyloid deposits found in the pancreas of type II diabetic patients. Increasing evidence suggests that β-cell death is related to the interaction of hIAPP with the cellular membrane, which accelerates peptide aggregation. In this study, as a first step towards understanding the membrane-mediated hIAPP aggregation, we investigate the atomic details of the initial step of hIAPP-membrane interaction, including the adsorption orientation and conformation of hIAPP monomer at an anionic POPG lipid bilayer by performing all-atom molecular dynamics simulations. We found that hIAPP monomer is quickly adsorbed to bilayer surface, and the adsorption is initiated from the N-terminal residues driven by strong electrostatic interactions of the positively-charged residues K1 and R11 with negatively-charged lipid headgroups. hIAPP binds parallel to the lipid bilayer surface as a stable helix through residues 7–22, consistent with previous experimental study. Remarkably, different simulations lead to the same binding orientation stabilized by electrostatic and H-bonding interactions, with residues R11, F15 and S19 oriented towards membrane and hydrophobic residues L12, A13, L16 and V17 exposed to solvent. Implications for membrane-mediated hIAPP aggregation are discussed.

  19. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  20. Methods for engineering polypeptide variants via somatic hypermutation and polypeptide made thereby

    Science.gov (United States)

    Tsien, Roger Y; Wang, Lei

    2015-01-13

    Methods using somatic hypermutation (SHM) for producing polypeptide and nucleic acid variants, and nucleic acids encoding such polypeptide variants are disclosed. Such variants may have desired properties. Also disclosed are novel polypeptides, such as improved fluorescent proteins, produced by the novel methods, and nucleic acids, vectors, and host cells comprising such vectors.

  1. Some Gram-negative Lipoproteins Keep Their Surface Topology When Transplanted from One Species to Another and Deliver Foreign Polypeptides to the Bacterial Surface*

    Science.gov (United States)

    Fantappiè, Laura; Irene, Carmela; De Santis, Micaela; Armini, Alessandro; Gagliardi, Assunta; Tomasi, Michele; Parri, Matteo; Cafardi, Valeria; Bonomi, Serena; Ganfini, Luisa; Zerbini, Francesca; Zanella, Ilaria; Carnemolla, Chiara; Bini, Luca; Grandi, Alberto; Grandi, Guido

    2017-01-01

    In Gram-negative bacteria, outer membrane-associated lipoproteins can either face the periplasm or protrude out of the bacterial surface. The mechanisms involved in lipoprotein transport through the outer membrane are not fully elucidated. Some lipoproteins reach the surface by using species-specific transport machinery. By contrast, a still poorly characterized group of lipoproteins appears to always cross the outer membrane, even when transplanted from one organism to another. To investigate such lipoproteins, we tested the expression and compartmentalization in E. coli of three surface-exposed lipoproteins, two from Neisseria meningitidis (Nm-fHbp and NHBA) and one from Aggregatibacter actinomycetemcomitans (Aa-fHbp). We found that all three lipoproteins were lipidated and compartmentalized in the E. coli outer membrane and in outer membrane vesicles. Furthermore, fluorescent antibody cell sorting analysis, proteolytic surface shaving, and confocal microscopy revealed that all three proteins were also exposed on the surface of the outer membrane. Removal or substitution of the first four amino acids following the lipidated cysteine residue and extensive deletions of the C-terminal regions in Nm-fHbp did not prevent the protein from reaching the surface of the outer membrane. Heterologous polypeptides, fused to the C termini of Nm-fHbp and NHBA, were efficiently transported to the E. coli cell surface and compartmentalized in outer membrane vesicles, demonstrating that these lipoproteins can be exploited in biotechnological applications requiring Gram-negative bacterial surface display of foreign polypeptides. PMID:28483926

  2. Characterization of mutants expressing thermostable D1 and D2 polypeptides of photosystem II in the cyanobacterium Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Haraguchi, Norihisa; Kaseda, Jun; Nakayama, Yasumune; Nagahama, Kazuhiro; Ogawa, Takahira; Matsuoka, Masayoshi

    2018-06-08

    Photosystem II complex embedded in thylakoid membrane performs oxygenic photosynthesis where the reaction center D1/D2 heterodimer accommodates all components of the electron transport chain. To express thermostable D1/D2 heterodimer in a cyanobacterium Synechococcus elongatus PCC 7942, we constructed a series of mutant strains whose psbA1 and psbD1 genes encoding, respectively, the most highly expressed D1 and D2 polypeptides were replaced with those of a thermophilic strain, Thermosynechococcus vulcanus. Because the C-terminal 16 amino acid sequences of D1 polypeptides should be processed prior to maturation but diverge from each other, we also constructed the psbA1ΔC-replaced strain expressing a thermostable D1 polypeptide devoid of the C-terminal extension. The psbA1/psbD1-replaced strain showed decreased growth rate and oxygen evolution rate, suggesting inefficient photosystem II. Immunoblot analyses for thermostable D1, D2 polypeptides revealed that the heterologous D1 protein was absent in thylakoid membrane from any mutant strains with psbA1, psbA1ΔC, and psbA1/psbD1-replacements, whereas the heterologous D2 protein was present in thylakoid membrane as well as purified photosystem II complex from the psbA1/psbD1-replaced strain. In the latter strain, the compensatory expression of psbA3 and psbD2 genes was elevated. These data suggest that heterologous D2 polypeptide could be combined with the host D1 polypeptide to form chimeric D1/D2 heterodimer, whereas heterologous D1 polypeptide even without the C-terminal extension was unable to make complex with the host D2 polypeptide. Since the heterologous D1 could not be detected even in the whole cells of psbA1/psbD1-replaced strain, the rapid degradation of unprocessed or unassembled heterologous D1 was implicated. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Bovine pancreatic polypeptide (bPP) undergoes significant changes in conformation and dynamics upon binding to DPC micelles.

    Science.gov (United States)

    Lerch, Mirjam; Gafner, Verena; Bader, Reto; Christen, Barbara; Folkers, Gerd; Zerbe, Oliver

    2002-10-04

    The pancreatic polypeptide (PP), a 36-residue, C-terminally amidated polypeptide hormone is a member of the neuropeptide Y (NPY) family. Here, we have studied the structure and dynamics of bovine pancreatic polypeptide (bPP) when bound to DPC-micelles as a membrane-mimicking model as well as the dynamics of bPP in solution. The comparison of structure and dynamics of bPP in both states reveals remarkable differences. The overall correlation time of 5.08ns derived from the 15N relaxation data proves unambiguously that bPP in solution exists as a dimer. Therein, intermolecular as well as intramolecular hydrophobic interactions from residues of both the amphiphilic helix and of the back-folded N terminus contribute to the stability of the PP fold. The overall rigidity is well-reflected in positive values for the heteronuclear NOE for residues 4-34. The membrane-bound species displays a partitioning into a more flexible N-terminal region and a well-defined alpha-helical region comprising residues 17-31. The average RMSD value for residues 17-31 is 0.22(+/-0.09)A. The flexibility of the N terminus is compatible with negative values of the heteronuclear NOE observed for the N-terminal residues 4-12 and low values of the generalized order parameter S(2). The membrane-peptide interface was investigated by micelle-integrating spin-labels and H,2H exchange measurements. It is formed by those residues which make contacts between the C-terminal alpha-helix and the polyproline helix. In contrast to pNPY, also residues from the N terminus display spatial proximity to the membrane interface. Furthermore, the orientation of the C terminus, that presumably contains residues involved in receptor binding, is different in the two environments. We speculate that this pre-positioning of residues could be an important requirement for receptor activation. Moreover, we doubt that the PP fold is of functional relevance for binding at the Y(4) receptor.

  4. Two-dimensional electrophoretic analysis of transformation-sensitive polypeptides during chemically, spontaneously, and oncogene-induced transformation of rat liver epithelial cells

    DEFF Research Database (Denmark)

    Wirth, P J; Luo, L D; Fujimoto, Y

    1992-01-01

    ; AFB), spontaneously, and oncogene (v-Ha-ras, v-raf, and v-myc/v-raf)-induced transformation of RLE cells. Two-dimensional mapping of [35S]methionine-labeled whole cell lysate, cell-free in vitro translation products and [32P]orthophosphate-labeled polypeptides revealed subsets of polypeptides specific...... for each transformation modality. A search of the RLE protein database indicated the specific subcellular location for the majority of these transformation-sensitive proteins. Significant alterations in the expression of the extracellular matrix protein, fibronectin, as well as tropomyosin......- and intermediate filament-related polypeptides (vimentin, beta-tubulin, the cytokeratins, and actin) were observed among the various transformant cell lines. Immunoprecipitation and Western immunoblot analysis of tropomyosin expression in four individual AFB-, as well as four spontaneously induced, and each...

  5. Some Gram-negative Lipoproteins Keep Their Surface Topology When Transplanted from One Species to Another and Deliver Foreign Polypeptides to the Bacterial Surface.

    Science.gov (United States)

    Fantappiè, Laura; Irene, Carmela; De Santis, Micaela; Armini, Alessandro; Gagliardi, Assunta; Tomasi, Michele; Parri, Matteo; Cafardi, Valeria; Bonomi, Serena; Ganfini, Luisa; Zerbini, Francesca; Zanella, Ilaria; Carnemolla, Chiara; Bini, Luca; Grandi, Alberto; Grandi, Guido

    2017-07-01

    In Gram-negative bacteria, outer membrane-associated lipoproteins can either face the periplasm or protrude out of the bacterial surface. The mechanisms involved in lipoprotein transport through the outer membrane are not fully elucidated. Some lipoproteins reach the surface by using species-specific transport machinery. By contrast, a still poorly characterized group of lipoproteins appears to always cross the outer membrane, even when transplanted from one organism to another. To investigate such lipoproteins, we tested the expression and compartmentalization in E. coli of three surface-exposed lipoproteins, two from Neisseria meningitidis (Nm-fHbp and NHBA) and one from Aggregatibacter actinomycetemcomitans (Aa-fHbp). We found that all three lipoproteins were lipidated and compartmentalized in the E. coli outer membrane and in outer membrane vesicles. Furthermore, fluorescent antibody cell sorting analysis, proteolytic surface shaving, and confocal microscopy revealed that all three proteins were also exposed on the surface of the outer membrane. Removal or substitution of the first four amino acids following the lipidated cysteine residue and extensive deletions of the C-terminal regions in Nm-fHbp did not prevent the protein from reaching the surface of the outer membrane. Heterologous polypeptides, fused to the C termini of Nm-fHbp and NHBA, were efficiently transported to the E. coli cell surface and compartmentalized in outer membrane vesicles, demonstrating that these lipoproteins can be exploited in biotechnological applications requiring Gram-negative bacterial surface display of foreign polypeptides. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Preparation of rat gastric heavy and light microsomal membranes enriched in (H+-K+)-ATPase using 2H2O and Percoll gradients

    International Nuclear Information System (INIS)

    Im, W.B.; Davis, J.P.; Blakeman, D.P.

    1985-01-01

    Gastric heavy microsomal membranes highly enriched in (H + -K + )-ATPase were obtained from cimetidine- or carbachol-treated rats through 2 H 2 O and Percoll gradient centrifugations. Both the resting (cimetidine-treated) and the stimulated (carbachol-treated) heavy membranes which presumably represent the apical membrane of gastric parietal cells were enriched with the polypeptides of 81,000 and 45,000 besides that of 93,000 representing (H + -K + )-ATPase. No apparent differences could be detected between the resting and the stimulated heavy membranes in their polypeptide profiles or their specific activity of (H + -K + )-ATPase. Nevertheless, the level of 86 RbCl uptake was greater in the stimulated than the resting heavy microsomal membrane vesicles. The light gastric microsomes which abound in intracellular tubulovesicles containing reserve (H + -K + )-ATPase as isolated from cimetidine-treated rats were similarly purified with respect to (H + -K + )-ATPase. The purified light gastric membranes were largely devoid of the polypeptides of 81,000 and 45,000 found in the heavy gastric membranes. These observations further support the current hypothesis that secretagogues bring about changes in the environment of (H + -K + )-ATPase and induce KCl permeability in the apical membrane of the parietal cells, although at present the authors have been unable to identify the polypeptide(s) responsible for the KCl pathway

  7. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides. Polypeptide vesicles by conformation-specific assembly. Ordered chiral macroporous hybrid silica-polypeptide composites

    Science.gov (United States)

    Bellomo, Enrico Giuseppe

    2005-07-01

    Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides . The aqueous, lyotropic liquid-crystalline phase behavior of an alpha helical polypeptide, has been studied using optical microscopy and X-ray scattering. Solutions of optically pure polypeptide were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of this polypeptide in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. Polypeptide vesicles by conformation-specific assembly. We have found that block copolymers composed of polypeptide segments provide significant advantages in controlling both the function and supramolecular structure of bioinspired self-assemblies. Incorporation of the stable chain conformations found in proteins into block copolymers was found to provide an additional element of control, beyond amphiphilicity and composition that defines self-assembled architecture. The abundance of functionality present in amino acids, and the ease by which they can be incorporated into these materials, also provides a powerful mechanism to impart block copolypeptides with function. This combination of structure and function work synergistically to enable significant advantages in the preparation of therapeutic agents as well as provide insight into design of self-assemblies beginning to approach the complexity of natural structures such as virus capsids. Ordered

  8. The generalized model of polypeptide chain describing the helix-coil transition in biopolymers

    International Nuclear Information System (INIS)

    Mamasakhlisov, E.S.; Badasyan, A.V.; Tsarukyan, A.V.; Grigoryan, A.V.; Morozov, V.F.

    2005-07-01

    In this paper we summarize some results of our theoretical investigations of helix-coil transition both in single-strand (polypeptides) and two-strand (polynucleotides) macromolecules. The Hamiltonian of the Generalized Model of Polypeptide Chain (GMPC) is introduced to describe the system in which the conformations are correlated over some dimensional range Δ (it equals 3 for polypeptide, because one H-bond fixes three pairs of rotation, for double strand DNA it equals to one chain rigidity because of impossibility of loop formation on the scale less than Δ). The Hamiltonian does not contain any parameter designed especially for helix-coil transition and uses pure molecular microscopic parameters (the energy of hydrogen bond formation, reduced partition function of repeated unit, the number of repeated units fixed by one hydrogen bond, the energies of interaction between the repeated units and the solvent molecules). To calculate averages we evaluate the partition function using the transfer-matrix approach. The GMPC allowed to describe the influence of a number of factors, affecting the transition, basing on a unified microscopic approach. Thus we obtained, that solvents change transition temperature and interval in different ways, depending on type of solvent and on energy of solvent- macromolecule interaction; stacking on the background of H-bonding increases stability and decreases cooperativity of melting. For heterogeneous DNA we could analytically derive well known formulae for transition temperature and interval. In the framework of GMPC we calculate and show the difference of two order parameters of helix-coil transition - the helicity degree, and the average fraction of repeated units in helical conformation. Given article has the aim to review the results obtained during twenty years in the context of GMPC. (author)

  9. Investigation of Gelatin Polypeptides of Jellyfish (Rhopilema esculentum for Their Antioxidant Activity in vitro

    Directory of Open Access Journals (Sweden)

    Yong-Liang Zhuang

    2010-01-01

    Full Text Available Jellyfish gelatin was hydrolyzed by different proteases to obtain antioxidative polypeptides. The gelatin hydrolysate obtained by progressive hydrolysis using trypsin and Properase E exhibited the highest hydrolysis degree and antioxidant activity. Three series of gelatin polypeptides (SCP1, SCP2 and SCP3 were obtained by ultrafiltrating the gelatin hydrolysate through molecular mass cut-off membranes of 10, 6 and 2 kDa, respectively. Amino acid composition analysis showed that SCP3 had the highest total hydrophobic amino acid content. The in vitro antioxidant tests demonstrated that SCP2 had the strongest hydroxyl radical and hydrogen peroxide scavenging activities and metal chelating ability, while SCP3 showed the highest reducing power, antioxidant activity in linoleic acid emulsion system and superoxide anion radical scavenging activity. The results support the feasibility of jellyfish gelatin as a natural antioxidant polypeptide provider, and enzymatic hydrolysis and ultrafiltration could be potent future processing technologies to utilize the abundant jellyfish resource.

  10. Polypeptide profiles of human oocytes and preimplantation embryos.

    Science.gov (United States)

    Capmany, G; Bolton, V N

    1993-11-01

    The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.

  11. Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: evidence for a conserved site-specificity in intermediate filament-membrane interactions

    International Nuclear Information System (INIS)

    Georgatos, S.D.; Weber, K.; Geisler, N.; Blobel, G.

    1987-01-01

    Using solution binding assays, the authors found that a 45-kDa fragment of 125 I-labelled desmin, lacking 67 residues from the N terminus, could specifically associate with avian erythrocyte nuclear envelopes but not with plasma membranes from the same cells. It was also observed that a 50-kDa desmin peptide, missing 27 C-terminal residues, retained the ability to bind to both membrane preparations. Displacement experiments with an excess of purified vimentin suggested that the two desmin derivatives were interacting with a previously identified vimentin receptor at the nuclear envelope, the protein lamin B. Additional analysis by affinity chromatography confirmed this conclusion. Employing an overlay assay, they demonstrated that the 50-kDa fragment, but not the 45-kDa desmin peptide, was capable of interacting with the plasma membrane polypeptide ankyrin (a known vimentin attachment site), as was intact vimentin. Conversely, the nuclear envelope protein lamin B was recognized by both fragments but not by a chymotryptic peptide composed solely of the helical rod domain of desmin. These data imply that the lamin B-binding site on desmin resides within the 21 residues following its helical rod domain, whereas the ankyrin-associating region is localized within its N-terminal head domain, exactly as in the case of vimentin

  12. Measles virus-specified polypeptides in infected cells

    International Nuclear Information System (INIS)

    Vainionpaepae, R.

    1979-01-01

    The synthesis of wild-type measles virus-specified polypeptides in Vero cells in pulse-chase experiments, in cells with synchronized protein synthesis by high salt concentration, and in the presence of proteolytic enzyme inhibitors was analyzed by polyacrylamide slab-gel electrophoresis. Six major (L, G, 2, NP, 5 and M) structural polypeptides were identified in infected cells. The results of pulse-chase experiments suggested that most of the structural polypeptides were synthesized at their final length. Polypeptide M was found to be sensitive to trypsin. In TLCK-treated cells its molecular weight was about 1000-2000 daltons higher than in untreated cells. A minor virus-specific polypeptide with a molecular weight of about 23,000 was found as a very faint and diffuse band. In addition, three nonstructural polypeptides with molecular weights of 65,000, 38,000 and 18,000 were also detected. The experiments with proteolytic enzyme inhibitors and with synchronized protein synthesis suggested that the polypeptide with a molecular weight of 65,000 might be a precursor of the structural polypeptide 5. (author)

  13. Identification and characterization of human polyserase-3, a novel protein with tandem serine-protease domains in the same polypeptide chain

    Directory of Open Access Journals (Sweden)

    Garabaya Cecilia

    2006-03-01

    Full Text Available Abstract Background We have previously described the identification and characterization of polyserase-1 and polyserase-2, two human serine proteases containing three different catalytic domains within the same polypeptide chain. Polyserase-1 shows a complex organization and it is synthesized as a membrane-bound protein which can generate three independent serine protease domains as a consequence of post-translational processing events. The two first domains are enzymatically active. By contrast, polyserase-2 is an extracellular glycosylated protein whose three protease domains remain embedded in the same chain, and only the first domain possesses catalytic activity. Results Following our interest in the study of the human degradome, we have cloned a human liver cDNA encoding polyserase-3, a new protease with tandem serine protease domains in the same polypeptide chain. Comparative analysis of polyserase-3 with the two human polyserases described to date, revealed that this novel polyprotein is more closely related to polyserase-2 than to polyserase-1. Thus, polyserase-3 is a secreted protein such as polyserase-2, but lacks additional domains like the type II transmembrane motif and the low-density lipoprotein receptor module present in the membrane-anchored polyserase-1. Moreover, analysis of post-translational mechanisms operating in polyserase-3 maturation showed that its two protease domains remain as integral parts of the same polypeptide chain. This situation is similar to that observed in polyserase-2, but distinct from polyserase-1 whose protease domains are proteolytically released from the original chain to generate independent units. Immunolocalization studies indicated that polyserase-3 is secreted as a non-glycosylated protein, thus being also distinct from polyserase-2, which is a heavily glycosylated protein. Enzymatic assays indicated that recombinant polyserase-3 degrades the α-chain of fibrinogen as well as pro

  14. Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs

    International Nuclear Information System (INIS)

    Hanecak, R.; Semler, B.L.; Anderson, C.W.; Wimmer, E.

    1982-01-01

    Proteolytic processing of poliovirus polypeptides was examined by the addition of antibodies directed against the viral proteins P3-7c and P2-X to a cell-free translation extract prepared from infected HeLa cells. Antisera to P3-7c specifically inhibited in vitro processing at Gln-Gly pairs. Partial amino acid sequence analysis revealed a second Tyr-Gly pair that is utilized in protein processing. Neither Tyr-Gly cleavage is affected by antibody to P3-7C. Anti-P3-7c antibodies react not only with P3-7c but also with P3-6a and P3-2, two viral polypeptides NH 2 -coterminal with P3-7c. Preimmune and anti-P2-X antibodies had no effect on the processing of poliovirus proteins in vitro. The authors conclude that the activity responsible for processing poliovirus polypeptides at Gln-Gly pairs resides in the primary structure of P3-7c and not in P2-X

  15. Molecular cloning and protein structure of a human blood group Rh polypeptide

    International Nuclear Information System (INIS)

    Cherif-Zahar, B.; Bloy, C.; Le Van Kim, C.; Blanchard, D.; Bailly, P.; Hermand, P.; Salmon, C.; Cartron, J.P.; Colin, Y.

    1990-01-01

    cDNA clones encoding a human blood group Rh polypeptide were isolated from a human bone marrow cDNA library by using a polymerase chain reaction-amplified DNA fragment encoding the known common N-terminal region of the Rh proteins. The entire primary structure of the Rh polypeptide has been deduced from the nucleotide sequence of a 1384-base-pair-long cDNA clone. Translation of the open reading frame indicates that the Rh protein is composed of 417 amino acids, including the initiator methionine, which is removed in the mature protein, lacks a cleavable N-terminal sequence, and has no consensus site for potential N-glycosylation. The predicted molecular mass of the protein is 45,500, while that estimated for the Rh protein analyzed in NaDodSO 4 /polyacrylamide gels is in the range of 30,000-32,000. These findings suggest either that the hydrophobic Rh protein behaves abnormally on NaDodSO 4 gels or that the Rh mRNA may encode a precursor protein, which is further matured by a proteolytic cleavage of the C-terminal region of the polypeptide. Hydropathy analysis and secondary structure predictions suggest the presence of 13 membrane-spanning domains, indicating that the Rh polypeptide is highly hydrophobic and deeply buried within the phospholipid bilayer. These results suggest that the expression of the Rh gene(s) might be restricted to tissues or cell lines expressing erythroid characters

  16. Recombinant DNA specifying the human amyloid. beta. precursor protein (ABPP) encodes a 95-kDa polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Mita, S; Sadlock, J; Herbert, J; Schon, E A

    1988-10-11

    Although the ABPP gene give rise to multiple mRNAs, the primary translation product of this gene is unknown. The longest published cDNA sequences predict a 770-aa polypeptide of 87 kDa. However, in immunoblots, ABPP migrated as a single species of >92 kDa in rat brain, and in human, as a species of 95-100 kDa in non-membrane bound form, as multiple species of 110-135 kDa in membrane-associated form and as a 130-kDa species in fibroblasts. The sizes of these larger species relative to the MW of ABPP predicted from the cDNA sequences have been attributed to postranslational modification. However, the authors have isolated a cDNA (lambdaHAP2) from a human fetal muscle lambdagt11 cDNA library encoding an 843-aa polypeptide with a deduced MW of 94,642. This cDNA contains both exons encoding an 843-aa polypeptide with a deduced MW of 94.642. This cDNA contains both exons encoding the protease inhibitor domains. Primer extension analysis indicates that the 5' terminus of this cDNA is 14 nt from a transcriptional start site. This cDNA, encoding the longest ABPP described to date, may explain some of the observations on the sizes of tissue-derived ABPP.

  17. Membrane-associated precursor to poliovirus VPg identified by immunoprecipitation with antibodies directed against a synthetic heptapeptide

    International Nuclear Information System (INIS)

    Semelr, B.L.; Anderson, C.W.; Hanecak, R.; Dorner, L.F.; Wimmer, E.

    1982-01-01

    A synthetic heptapeptide corresponding to the C-terminal sequence of the poliovirus genome protein (VPg) has been linked to bovine serum albumin and used to raise antibodies in rabbits. These antibodies precipitate not only VPg but also at least two more virus-specific polypeptides. The smaller polypeptide, denoted P3-9 (12,000 daltons), has been mapped by Edman degradation and by fragmentation with cyanogen bromide and determined to be the N-terminal cleavage product of polypeptide P3-1b, a precursor to the RNA polymerase. P3-9 contains the sequence of the basic protein VPg (22 amino acids) at its C terminus. As predicted by the known RNA sequence of poliovirus, P3-9 also contains a hydrophobic region of 22 amino acids preceding VPg, an observation suggesting that P3-9 may be membrane-associated. This was confirmed by fractionation of infected cells in the presence or absence of detergent. We speculate that P3-9 may be the donor of VPg to RNA chains in the membrane-bound RNA replication complex

  18. UDP-[14C]glucose-labelable polypeptides from pea: Possible components of glucan synthase I activity

    International Nuclear Information System (INIS)

    Ray, P.M.; Dhugga, K.S.; Gallaghar, S.R.

    1989-01-01

    A membrane-bound polypeptide doublet of about 40 kD can be rapidly labeled with UDP-[ 14 C]glucose under the assay conditions for glucan synthase I (GS-I). Label seems covalently bound, and chases when unlabeled UDPG is added; it might represent a covalent intermediate in polysaccharide synthesis. Labeling and GS-I activity show several common features: they co-sediment with Golgi membranes in sucrose gradients; they depend similarly on Mg 2+ or Mn 2+ (not Ca 2+ ); they decrease dramatically from stem apex to base, and are higher in epidermis than internal tissue; they show similar sensitivities to several inhibitors. But the doublet still labels after polysaccharide-synthesizing activity has been destroyed by Triton X-100. The doublet polypeptides might be glucosyl tranferases whose ability to transfer glucose units to a glucan chain is detergent-sensitive, but to accept glucose from UDPG is not; or they might be detergent-insensitive primary glucose acceptors, from which a distinct, detergent-sensitive transferase(s) move(s) these units to glucan chains

  19. Red cell autoantibodies characterized by competitive inhibition of iodine 125 Rh alloantibody binding and by immunoprecipitation of membrane proteins

    International Nuclear Information System (INIS)

    Pierce, S.W.; Victoria, E.J.; Masouredis, S.P.

    1990-01-01

    The relationship between determinants recognized by warm-type immunoglobulin G red cell autoantibodies and the Rh antigens was characterized by autoantibody competitive inhibition of iodine 125 Rh alloantibody binding and autoantibody immunoprecipitation of iodine 125 red blood cell membrane proteins. The majority of blood donor autoantibody recognized epitopes that are closely related to Rh antigens as determined by competitive inhibition studies. Eighteen of 20 (90%) autoantibodies inhibited anti-Rh(c) binding, 15 inhibited anti-Rh(E), 5 inhibited anti-Rh(D), and only 2 failed to inhibit any of the three Rh alloantibodies tested. Autoantibodies that inhibited anti-Rh(D) also inhibited anti-Rh(c) and anti-Rh(E) and all those that inhibited anti-Rh(E) also inhibited anti-Rh(c). Autoantibodies that inhibited all three Rh alloantibodies immunoprecipitated 30 kd membrane polypeptides, as did two of the three autoantibodies that inhibited only anti-Rh(c) and anti-Rh(E). One autoantibody in this group and two autoantibodies that inhibited only anti-Rh(c), as well as an autoantibody that did not inhibit any of the Rh alloantibodies, immunoprecipitated only a single membrane polypeptide identified as band 3. The majority of normal donor red blood cell autoantibodies inhibited the binding of Rh alloantibodies, which indicates that they either bound to the Rh polypeptides or to epitopes on band 3 that were closely associated with the Rh complex

  20. Methods for using polypeptides having cellobiohydrolase activity

    Science.gov (United States)

    Morant, Marc D; Harris, Paul

    2016-08-23

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polynucleotides encoding polypeptides having beta-glucosidase activity

    Science.gov (United States)

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  2. The Transcriptome of the Zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) Predicts a Basal Repertoire of Toxin-like and Venom-Auxiliary Polypeptides.

    Science.gov (United States)

    Huang, Chen; Morlighem, Jean-Étienne Rl; Zhou, Hefeng; Lima, Érica P; Gomes, Paula B; Cai, Jing; Lou, Inchio; Pérez, Carlos D; Lee, Simon Ming; Rádis-Baptista, Gandhi

    2016-10-05

    Protopalythoa is a zoanthid that, together with thousands of predominantly marine species, such as hydra, jellyfish, and sea anemones, composes the oldest eumetazoan phylum, i.e., the Cnidaria. Some of these species, such as sea wasps and sea anemones, are highly venomous organisms that can produce deadly toxins for preying, for defense or for territorial disputes. Despite the fact that hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, practically nothing is known about the toxin repertoire in zoanthids. Here, based on a transcriptome analysis of the zoanthid Protopalythoa variabilis, numerous predicted polypeptides with canonical venom protein features are identified. These polypeptides comprise putative proteins from different toxin families: neurotoxic peptides, hemostatic and hemorrhagic toxins, membrane-active (pore-forming) proteins, protease inhibitors, mixed-function venom enzymes, and venom auxiliary proteins. The synthesis and functional analysis of two of these predicted toxin products, one related to the ShK/Aurelin family and the other to a recently discovered anthozoan toxin, displayed potent in vivo neurotoxicity that impaired swimming in larval zebrafish. Altogether, the complex array of venom-related transcripts that are identified in P. variabilis, some of which are first reported in Cnidaria, provides novel insight into the toxin distribution among species and might contribute to the understanding of composition and evolution of venom polypeptides in toxiferous animals. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    Science.gov (United States)

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  4. Dissection of membrane protein degradation mechanisms by reversible inhibitors

    International Nuclear Information System (INIS)

    Hare, J.F.

    1988-01-01

    The degradation of slowly turning over 125I-lactoperoxidase-labeled plasma membrane polypeptides in response to reversible temperature and lysosomotropic inhibitors was studied in rat hepatoma cultures. Cells were radiolabeled and left for 24 h to allow the removal of rapidly degraded proteins. Remaining trichloroacetic acid-precipitable protein was degraded (t 1/2 = 40-68 h) by an apparent first order process 60-86% sensitive to 10 mM NH4Cl or 5 mM methylamine and greater than 95% inhibited by temperature reduction to 18 degrees C. Thus, membrane proteins are selected for degradation in a time-dependent manner by a system which is sensitive to both 18 degrees C and to lysosomotropic amines. When inhibitory conditions were removed after 40-48 h, degradation of 125I-labeled protein resumed at the same rate as that seen in their absence. Since membrane proteins do not exhibit accelerated degradation after removal of inhibitory conditions, there can be no marking or sorting of those proteins destined for degradation during the 40-h exposure to inhibitory conditions. Exposure to amines or 18 degrees C did not affect the position of two-dimensionally resolved labeled polypeptides. Fractionation of labeled cells on Percoll gradients after 40 h of exposure to low temperature or amines showed that labeled protein remained in the plasma membrane fractions of the gradient although shifted to a slightly lower buoyant density in the presence of amines. These results support the notion that selection of plasma membrane proteins for degradation requires their internalization into acidic vesicles. Lysosomotropic amines and reduced temperature interfere with the selection process by preventing membrane fusion events

  5. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1971-01-01

    Progress in Surface and Membrane Science, Volume 4 covers the developments in the study of surface and membrane science. The book discusses waves at interfaces; recent investigations on the thickness of surface layers; and surface analysis by low-energy electron diffraction and Auger electron spectroscopy. The text also describes the anode electrolyte interface; the interactions of adsorbed proteins and polypeptides at interfaces; and peptide-induced ion transport in synthetic and biological membranes. The monolayer adsorption on crystalline surfaces is also considered. Chemists and metallurgi

  6. Photoaffinity Labeling of Developing Jojoba Seed Microsomal Membranes with a Photoreactive Analog of Acyl-Coenzyme A (Acyl-CoA) (Identification of a Putative Acyl-CoA:Fatty Alcohol Acyltransferase.

    Science.gov (United States)

    Shockey, J. M.; Rajasekharan, R.; Kemp, J. D.

    1995-01-01

    Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.

  7. Alterations in membrane protein-profile during cold treatment of alfalfa

    International Nuclear Information System (INIS)

    Mohapatra, S.S.; Poole, R.J.; Dhindsa, R.S.

    1988-01-01

    Changes in pattern of membrane proteins during cold acclimation of alfalfa have been examined. Cold acclimation for 2 to 3 days increases membrane protein content. Labeling of membrane proteins in vivo with [ 35 S]methionine indicates increases in the rate of incorporation as acclimation progresses. Cold acclimation induces the synthesis of about 10 new polypeptides as shown by SDS-PAGE and fluorography of membrane proteins labeled in vivo

  8. Polypeptides having catalase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ye; Duan, Junxin; Zhang, Yu; Tang, Lan

    2017-05-02

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Chemical modification as an approach for the identification of UDPG-binding polypeptides of UDPG-glucose: (1,3)-Beta-glucan synthase

    International Nuclear Information System (INIS)

    Mason, T.L.

    1989-01-01

    The lysine-reactive chemical modification reagents uridine diphosphate pyridoxal (UDP-pyridoxal) and formaldehyde (HCHO) were used to identify UDPG-binding polypeptides of UDP-glucose: (1,3)-β-D-glucan synthase (GS) from red beet storage tissue. Complete enzyme inactivation occurred after exposure to micromolar levels of UDP-pyridoxal and millimolar levels of HCHO. Divalent cations (Mg 2+ and Ca 2+ , particularly Ca 2+ ) were required by both for inactivation. Substrate (UDPG) and chelators (EDTA and EGTA) protected plasma membrane GS (PMGS) against UDP-pyridoxal and HCHO inhibition. UDPG protected CHAPS solubilized GS (CSGS) against UDP-pyridoxal inactivation, but not against HCHO. It was concluded that beet GS contains a lysine residue at the UDPG-binding site. When PMGS was directly labeled with UDP[ 3 H]-pyridoxal or [ 14 C]HCHO, random labeling occurred. Therefore, a multi-step labeling procedure was developed. Nonessential lysine residues were first blocked with HCHO while 5 mM UDPG protected the active site lysine. Background labeling was reduced 4-fold. Membranes were recovered by centrifugation and the active site lysine exposed to [ 14 C] HCHO. Major labeled polypeptides were at 200, 76, and 54 kD. Minor polypeptides were seen at 94, 82, 68, 60, and 20-25 kD. CSGS was labeled by a modified multi-step procedure. CSGS was blocked by reaction with UDP-pyridoxal in the presence of UDPG. CSGS was then recovered by product entrapment and labeled with [ 14 C]HCHO. Background labeling was reduced by 8-fold and potential UDPG-binding polypeptides narrowed to 68, 54, 25 and 22 kD

  10. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding.

    Science.gov (United States)

    Sandikci, Arzu; Gloge, Felix; Martinez, Michael; Mayer, Matthias P; Wade, Rebecca; Bukau, Bernd; Kramer, Günter

    2013-07-01

    Newly synthesized polypeptides undergo various cotranslational maturation steps, including N-terminal enzymatic processing, chaperone-assisted folding and membrane targeting, but the spatial and temporal coordination of these steps is unclear. We show that Escherichia coli methionine aminopeptidase (MAP) associates with ribosomes through a charged loop that is crucial for nascent-chain processing and cell viability. MAP competes with peptide deformylase (PDF), the first enzyme to act on nascent chains, for binding sites at the ribosomal tunnel exit. PDF has extremely fast association and dissociation kinetics, which allows it to frequently sample ribosomes and ensure the processing of nascent chains after their emergence. Premature recruitment of the chaperone trigger factor, or polypeptide folding, negatively affect processing efficiency. Thus, the fast ribosome association kinetics of PDF and MAP are crucial for the temporal separation of nascent-chain processing from later maturation events, including chaperone recruitment and folding.

  11. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David

    2015-09-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization mechanisms using conventional (various amines) as well as some recently developed initiators (hexamethyldisilazane, N-heterocyclic persistent carbenes, etc.) is presented, and their benefits and drawbacks for preparation of polypeptides with well-defined chain lengths and chain-end functionality are discussed. Recent examples from literature are used to illustrate different possibilities for synthesis of pure polypeptide materials with different molecular architectures bearing various functional groups, which are introduced either by modification of amino acids, before they are transformed into corresponding Ncarboxyanhydrides, or by post-polymerization modifications using protective groups and/or orthogonal functional groups. Different approaches for preparation of polypeptide-based hybrid materials are discussed as well using examples from recent literature. Syntheses of simple block copolymers or copolymers with more complex molecular architectures (graft and star copolymers) as well as modifications of nanoparticles and other surfaces with polypeptides are described.

  12. The Research on the Impact of Maca Polypeptide on Sport Fatigue.

    Science.gov (United States)

    Miao, Hua

    2015-01-01

    In order to study the effect of maca polypeptide on sport fatigue, this paper selected 40 male mice, and they were randomly divided into group A, B, C and D. group A, B and C were fed food with different concentrations of maca polypeptide, and group D was control group. After two weeks of feeding, measured physiological indexes of mice, including blood glucose, urea nitrogen and creatinine. At last gived the experimental results, as well as the analysis. Experimental results show that maca polypeptide can improve the ability of anti-fatigue mice, and in a certain concentration range, the higher the concentration, the better the resistance to fatigue.

  13. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    Science.gov (United States)

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj

    2018-02-06

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species.

    Science.gov (United States)

    Smith, Kathrine J; Petit, Chantal M; Aubart, Kelly; Smyth, Martin; McManus, Edward; Jones, Jo; Fosberry, Andrew; Lewis, Ceri; Lonetto, Michael; Christensen, Siegfried B

    2003-02-01

    Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules.

  16. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David; Hadjichristidis, Nikolaos

    2015-01-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization

  17. Inhibition of the coated vesicle proton pump and labeling of a 17,000-dalton polypeptide by N,N'-dicyclohexylcarbodiimide

    International Nuclear Information System (INIS)

    Arai, H.; Berne, M.; Forgac, M.

    1987-01-01

    N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits 100% of proton transport and 80-85% of (Mg2+)-ATPase activity in clathrin-coated vesicles. Half-maximum inhibition of proton transport is observed at 10 microM DCCD after 30 min. Although treatment of the coated vesicle (H+)-ATPase with DCCD has no effect on ATP hydrolysis in the detergent-solubilized state, sensitivity of proton transport and ATPase activity to DCCD is restored following reconstitution into phospholipid vesicles. In addition, treatment of the detergent-solubilized enzyme with DCCD followed by reconstitution gives a preparation that is blocked in both proton transport and ATP hydrolysis. These results suggest that although the coated vesicle (H+)-ATPase can react with DCCD in either a membrane-bound or detergent-solubilized state, inhibition of ATPase activity is only manifested when the pump is present in sealed membrane vesicles. To identify the subunit responsible for inhibition of the coated vesicle (H+)-ATPase by DCCD, we have labeled the partially purified enzyme with [ 14 C]DCCD. A single polypeptide of molecular weight 17,000 is labeled. The extremely hydrophobic nature of this polypeptide is indicated by its extraction with chloroform:methanol. The 17,000-dalton protein can be labeled to a maximum stoichiometry of 0.99 mol of DCCD/mol of protein with 100% inhibition of proton transport occurring at a stoichiometry of 0.15-0.20 mol of DCCD/mol of protein. Amino acid analysis of the chloroform:methanol extracted 17,000-dalton polypeptide reveals a high percentage of nonpolar amino acids. The similarity in properties of this protein and the DCCD-binding subunit of the coupling factor (H+)-ATPases suggests that the 17,000-dalton polypeptide may function as part of a proton channel in the coated vesicle proton pump

  18. Polypeptide synthesis in alphavirus-infected aedes albopictus cells during the establishment of persistent infection

    International Nuclear Information System (INIS)

    Richardson, M.A.; Boulton, R.W.; Raghow, R.S.; Dalgarno, L.

    1980-01-01

    Polypeptide synthesis was examined in mosquito cells during the establishment of a persistent infection with two alphaviruses, Ross River virus (RRV) and Semliki Forest virus (SFV), and in vertebrate cells cytopathically-infected with the same viruses. In Aedes albopictus cells, RRV reached peak titres at 34-48 hours p.i. At 12 hours 85 per cent of cells assayed as infected by infective centre assay; by 48 hours when persistence was established, virus production was reduced and <5 per cent of cells assayed as infected. There was not shutdown of host polypeptide synthesis during infection. Viral polypeptide synthesis was maximal between 10 and 24 hours p.i. The major viral polypeptides labelled were nucleocapsid protein and envelope protein(s).The precursor polypeptide p95 which was prominent in infected BHK cells was not detected in mosquito cells. Similar results were obtained on SFV infection. During the establishment of persistence there was a coordinate decline in the synthesis of RRV polypeptides, reaching undetectable levels by 72 hours p.i. Subculturing persistently-infected cells led to a small increase in viral polypeptide synthesis and virus titre. In contrast, during RRV growth in BHK cells host protein synthesis was severely inhibited and by 9-11 hours p.i. virus-specific polypeptide synthesis represented more than 90 per cent of total protein synthetic activity. (author)

  19. Polypeptides having xylanase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Spodsberg, Nikolaj; Shaghasi, Tarana

    2017-06-20

    The present invention relates to polypeptides having xylanase activity, catalytic domains, and carbohydrate binding domains, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding domains. The present invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding domains.

  20. BCL::MP-Fold: membrane protein structure prediction guided by EPR restraints

    Science.gov (United States)

    Fischer, Axel W.; Alexander, Nathan S.; Woetzel, Nils; Karakaş, Mert; Weiner, Brian E.; Meiler, Jens

    2016-01-01

    For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The protein-size-normalized root-mean-square-deviation (RMSD100) value of the most accurate model is better than 8 Å for twenty-seven, better than 6 Å for twenty-two, and better than 4 Å for fifteen out of twenty-nine proteins, demonstrating the algorithm’s ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data. PMID:25820805

  1. Phase transitions in polypeptides: analysis of energy fluctuations

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    The helix random coil transition in alanine, valine, and leucine polypeptides consisting of 30 amino acids is studied in vacuo using the Langevin molecular dynamics approach. The influence of side chain radicals on internal energy and heat capacity of the polypeptides is discussed. The heat...... of simulation time. This study provides a comparison of methods for the description of structural transitions in polypeptides....

  2. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    Science.gov (United States)

    Harris, Paul; Golightly, Elizabeth

    2012-11-27

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  3. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Chirality-selected phase behaviour in ionic polypeptide complexes

    Science.gov (United States)

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew

    2015-01-01

    Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation. PMID:25586861

  5. Size of the plasma membrane H+-ATPase from Neurospora crassa determined by radiation inactivation and comparison with the sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle

    International Nuclear Information System (INIS)

    Bowman, B.J.; Berenski, C.J.; Jung, C.Y.

    1985-01-01

    Using radiation inactivation, the authors have measured the size of the H + -ATPase in Neurospora crassa plasma membranes. Membranes were exposed to either high energy electrons from a Van de Graaff generator or to gamma irradiation from 60 Co. Both forms of radiation caused an exponential loss of ATPase activity in parallel with the physical destruction of the Mr = 104,000 polypeptide of which this enzyme is composed. By applying target theory, the size of the H + -ATPase in situ was found to be approximately 2.3 X 10(5) daltons. They also used radiation inactivation to measure the size of the Ca 2+ -ATPase of sarcoplasmic reticulum and got a value of approximately 2.4 X 10(5) daltons, in agreement with previous reports. By irradiating a mixture of Neurospora plasma membranes and rabbit sarcoplasmic reticulum, they directly compared the sizes of these two ATPases and found them to be essentially the same. The authors conclude that both H + -ATPase and Ca 2+ -ATPase are oligomeric enzymes, most likely composed of two approximately 100,000-dalton polypeptides

  6. Vasoactive intestinal polypeptide and other preprovasoactive intestinal polypeptide-derived peptides in the female and male genital tract: localization, biosynthesis, and functional and clinical significance

    DEFF Research Database (Denmark)

    Ottesen, B; Fahrenkrug, J

    1995-01-01

    Vasoactive intestinal polypeptide, a neuropeptide with wide distribution in the central and peripheral nervous system, has a broad spectrum of biologic actions. The demonstration of vasoactive intestinal polypeptide containing nerve fibers within the female and male genital tract 17 years ago...... indicated a putative role for this peptide in the local nervous control of reproductive functions. The genes encoding the preprovasoactive intestinal polypeptide precursor molecule and the vasoactive intestinal polypeptide receptor have been identified. The gene expression has been studied by the use...... in the genital tracts (i.e., blood flow and nonvascular smooth muscle relaxation). In the ovary vasoactive intestinal polypeptide seems to play an important role as regulator and/or modulator of folliculogenesis and steroidogenesis. In the male genital tract vasoactive intestinal polypeptide seems to participate...

  7. A 39-kD plasma membrane protein (IP39) is an anchor for the unusual membrane skeleton of Euglena gracilis

    International Nuclear Information System (INIS)

    Rosiere, T.K.; Marrs, J.A.; Bouck, G.B.

    1990-01-01

    The major integral plasma membrane protein (IP39) of Euglena gracilis was radiolabeled, peptide mapped, and dissected with proteases to identify cytoplasmic domains that bind and anchor proteins of the cell surface. When plasma membranes were radioiodinated and extracted with octyl glucoside, 98% of the extracted label was found in IP39 or the 68- and 110-kD oligomers of IP39. The octyl glucoside extracts were incubated with unlabeled cell surface proteins immobilized on nitrocellulose (overlays). Radiolabel from the membrane extract bound one (80 kD) of the two (80 and 86 kD) major membrane skeletal protein bands. Resolubilization of the bound label yielded a radiolabeled polypeptide identical in Mr to IP39. Intact plasma membranes were also digested with papain before or after radioiodination, thereby producing a cytoplasmically truncated IP39. The octyl glucoside extract of truncated IP39 no longer bound to the 80-kD membrane skeletal protein in the nitrocellulose overlays. EM of intact or trypsin digested plasma membranes incubated with membrane skeletal proteins under stringent conditions similar to those used in the nitrocellulose overlays revealed a partially reformed membrane skeletal layer. Little evidence of a membrane skeletal layer was found, however, when plasma membranes were predigested with papain before reassociation. A candidate 80-kD binding domain of IP39 has been tentatively identified as a peptide fragment that was present after trypsin digestion of plasma membranes, but was absent after papain digestion in two-dimensional peptide maps of IP39. Together, these data suggest that the unique peripheral membrane skeleton of Euglena binds to the plasma membrane through noncovalent interactions between the major 80-kD membrane skeletal protein and a small, papain sensitive cytoplasmic domain of IP39

  8. Exon organization of the mouse entactin gene corresponds to the structural domains of the polypeptide and has regional homology to the low-density lipoprotein receptor gene

    DEFF Research Database (Denmark)

    Durkin, M E; Wewer, U M; Chung, A E

    1995-01-01

    of the mouse entactin gene closely corresponds to the organization of the polypeptide into distinct structural and functional domains. The two amino-terminal globular domains are encoded by three exons each. Single exons encode the two protease-sensitive, O-glycosylated linking regions. The six EGF......Entactin is a widespread basement membrane protein of 150 kDa that binds to type IV collagen and laminin. The complete exon-intron structure of the mouse entactin gene has been determined from lambda genomic DNA clones. The gene spans at least 65 kb and contains 20 exons. The exon organization...

  9. Vasoactive intestinal polypeptide (VIP) tissue distribution in the rat as measured by radioimmunoassay and by radioreceptorassay

    International Nuclear Information System (INIS)

    Besson, J.; Dupont, C.; Laburthe, M.; Bataille, D.; Rosselin, G.

    1977-01-01

    A new radioimmunoassay which allows the measurement of the rat vasoactive intestinal polypeptide, was performed. VIP is present in the whole digestive tract of rat, mainly between the duodenum and the colon. 1.5% of the total VIP is present in brain. The VIP-like immunoreactivity appears to correspond to biologically active molecule since a radioreceptorassay using liver plasma membranes as the target tissue, gives the same results as the radioimmunoassay [fr

  10. [New drug developments of snake venom polypeptides and progress].

    Science.gov (United States)

    Fu, Sihai; Feng, Mei; Xiong, Yan

    2017-11-28

    The value of snake venom polypeptides in clinical application has drawn extensive attention, and the development of snake polypeptides into new drugs with anti-tumor, anti-inflammatory, antithrombotic, analgesic or antihypertensive properties has become the recent research hotspot. With the rapid development of molecular biology and biotechnology, the mechanisms of snake venom polypeptides are also gradually clarified. Numerous studies have demonstrated that snake venom polypeptides exert their pharmacological effects by regulating ion channels, cell proliferation, apoptosis, intracellular signaling pathway, and expression of cytokine as well as binding to relevant active sites or receptors.

  11. Caffeine-water-polypeptide interaction in aqueous solution

    Science.gov (United States)

    Ghabi, Habib; Dhahbi, Mahmoud

    1999-04-01

    The interaction of caffeine monomer with the synthetic polypeptides polyasparagine (pAg) and polyaspartic acid (pAsp) was studied by UV spectrophotometry. The results show that different types of interactions are possible depending on the nature of polypeptide. The form of the complex was discussed.

  12. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import

    Science.gov (United States)

    Paila, Yamuna D; Richardson, Lynn GL; Inoue, Hitoshi; Parks, Elizabeth S; McMahon, James; Inoue, Kentaro; Schnell, Danny J

    2016-01-01

    Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. DOI: http://dx.doi.org/10.7554/eLife.12631.001 PMID:26999824

  13. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1973-01-01

    Progress in Surface and Membrane Science, Volume 7 covers the developments in the study of surface and membrane science. The book discusses the theoretical and experimental aspects of the van der Waals forces; the electric double layer on the semiconductor-electrolyte interface; and the long-range and short-range order in adsorbed films. The text also describes the hydrodynamical theory of surface shear viscosity; the structure and properties of monolayers of synthetic polypeptides at the air-water interface; and the structure and molecular dynamics of water. The role of glycoproteins in cell

  14. Effect of oxygen on morphogenesis and polypeptide expression by Mucor racemosus

    International Nuclear Information System (INIS)

    Phillips, G.J.; Borgia, P.T.

    1985-01-01

    The morphology of Mucor racemosus in cultures continuously sparged with nitrogen gas was investigated. When appropriate precautions were taken to prevent oxygen from entering the cultures, the morphology of the cells was uniformly yeastlike irrespective of the N 2 flow rate. When small amounts of oxygen entered the cultures the resulting microaerobic conditions evoked mycelial development. Polypeptides synthesized by aerobic mycelia, microaerobic mycelia, anaerobic yeasts, and yeasts grown in a CO 2 atmosphere were compared by two-dimensional gel electrophoresis. The results indicated that a large number of differences in polypeptide expression exist when microaerobic mycelia or anaerobic yeasts are compared with aerobic mycelia and that these alterations correlate with a change from an oxidative to a fermentative metabolic mode. The authors hypothesize that oxygen regulates the expression of polypeptides involved in both the metabolic mode and in morphogenesis

  15. Synthetic profiles of polypeptides of human oocytes and normal and abnormal preimplantation embryos.

    Science.gov (United States)

    Capmany, G; Bolton, V N

    1999-09-01

    There is considerable variation in the rate of development in vitro of individual preimplantation human embryos. The relationship between the rate of development and patterns of polypeptide synthesis in individual embryos was examined using SDS-PAGE and autoradiography. After incubation in [35S]methionine, 19 polypeptide bands were identified that change between fertilization and the morula stage. Although changes in two of the bands occurred in embryos that were developing normally and in ageing oocytes, and are thus independent of fertilization, the changes identified in the remaining 17 bands occurred only after fertilization. In embryos that were developing abnormally, as assessed by delayed cleavage, cleavage arrest or extensive fragmentation, the alteration in polypeptide synthetic profiles increased with increasing abnormality.

  16. Polypeptides having beta-glucosidase activity and polynucleotides encoding the same

    Science.gov (United States)

    Brown, Kimberly; Harris, Paul

    2013-12-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    2017-06-14

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  18. GLYCOSYLATED YGHJ POLYPEPTIDES FROM ENTEROTOXIGENIC ESCHERICHIA COLI (ETEC)

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to glycosylated YghJ polypeptides from or derived from enterotoxigenic Escherichia coli (ETEC) that are immunogenic. In particular, the present invention relates to compositions or vaccines comprising the polypeptides and their application in immunization, vaccination...

  19. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  20. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  1. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  2. Tunable drug loading and release from polypeptide multilayer nanofilms

    Science.gov (United States)

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  3. Fabrication of genetically engineered polypeptide@quantum dots hybrid nanogels for targeted imaging

    Science.gov (United States)

    Yang, Jie; Yao, Ming-Hao; Zhao, Dong-Hui; Zhang, Xiao-Shuai; Jin, Rui-Mei; Zhao, Yuan-Di; Liu, Bo

    2017-08-01

    Nanogels have been widely used as multifunctional drug delivery carriers because of high water content, biocompatibility, and high loading capability. We designed and biosynthesized two triblock artificial polypeptides PC10A and PC10ARGD as vehicles for encapsulating hydrophobic materials. These polypeptides can form nanogels by self-assembly when the concentration is below 2% ( w/ v). The physical properties of nanogels, including size, surface potential, and targeting domain, are able to be tuned. Hydrophobic materials from molecular size to nano-size can be loaded into the polypeptide nanogels to form hybrid nanogels. Hydrophobic quantum dots CdSe@ZnS below 10 nM were loaded into the polypeptide nanogels by ultrasonic treatment. Encapsulation endows hydrophobic QDs with good tunability of size, water solubility, stability, targeting, and biocompatibility. PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels showed excellent biocompatibility, which the cellular viabilities of HeLa and MCF-7 cells treated with 1% PC10ARGD nanogels and PC10ARGD@QDs hybrid nanogels contained 20 nM QDs were above 90 and 80%, respectively. PC10ARGD@QDs hybrid nanogels with an arginine-glycine-aspartic acid motif present efficient receptor-mediated endocytosis in α v β 3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy. These results demonstrate that such polypeptide nanogels as nanocarriers are expected to have great potential applications in biomedicine.

  4. Phase transition in polypeptides: a step towards the understanding of protein folding

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2006-01-01

    We present a formalism which turns out to be very successful in the description of the polypeptide folding. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely on fundamental physical principles. It describes...... essential thermodynamical properties of the system such as heat capacity, the phase transition temperature and others from the analysis of the polypeptide potential energy surface calculated within ab initio density functional theory and parameterized by two dihedral angles. This problem is viewed...

  5. The mining of toxin-like polypeptides from EST database by single residue distribution analysis.

    Science.gov (United States)

    Kozlov, Sergey; Grishin, Eugene

    2011-01-31

    Novel high throughput sequencing technologies require permanent development of bioinformatics data processing methods. Among them, rapid and reliable identification of encoded proteins plays a pivotal role. To search for particular protein families, the amino acid sequence motifs suitable for selective screening of nucleotide sequence databases may be used. In this work, we suggest a novel method for simplified representation of protein amino acid sequences named Single Residue Distribution Analysis, which is applicable both for homology search and database screening. Using the procedure developed, a search for amino acid sequence motifs in sea anemone polypeptides was performed, and 14 different motifs with broad and low specificity were discriminated. The adequacy of motifs for mining toxin-like sequences was confirmed by their ability to identify 100% toxin-like anemone polypeptides in the reference polypeptide database. The employment of novel motifs for the search of polypeptide toxins in Anemonia viridis EST dataset allowed us to identify 89 putative toxin precursors. The translated and modified ESTs were scanned using a special algorithm. In addition to direct comparison with the motifs developed, the putative signal peptides were predicted and homology with known structures was examined. The suggested method may be used to retrieve structures of interest from the EST databases using simple amino acid sequence motifs as templates. The efficiency of the procedure for directed search of polypeptides is higher than that of most currently used methods. Analysis of 39939 ESTs of sea anemone Anemonia viridis resulted in identification of five protein precursors of earlier described toxins, discovery of 43 novel polypeptide toxins, and prediction of 39 putative polypeptide toxin sequences. In addition, two precursors of novel peptides presumably displaying neuronal function were disclosed.

  6. Potassium-dependent changes in the expression of membrane-associated proteins in barley roots

    International Nuclear Information System (INIS)

    Fernando, M.; Kulpa, J.; Siddiqi, M.Y.; Glass, A.D.M.

    1990-01-01

    Barley (Hordeum vulgare L. cv Halcyon) seedlings which has been grown in full strength complete inorganic nutrient media (containing 6 millimolar K + ) had high internal K + concentrations and low values of K + ( 86 Rb + ) influx when influx was measured from solutions containing 100 micromolar K + . Transfer of these plants to solutions lacking K + resulted in significant reductions of root and shoot K + concentrations and values of K + ( 86 Rb + ) influx increased by greater than 10-fold within 3 days. When plants treated in this way were returned to complete solutions, containing K + , the changes induced by K + deprivation were reversed. Parallel studies of microsomal membranes by means of SDS-PAGE demonstrated that the expression of a group of polypeptides increased or decreased in parallel with changes of K + ( 86 Rb + ) influx. Most prominent of these were 45 and 34 kilodalton polypeptides which specifically responded to K + status of the barley plants; their expression was not enhanced by N or P deprivation. The 45 kilodalton polypeptide was susceptible to degradation by a membrane associated protease when microsomes were washing in buffer containing 0.2 millimolar PMSF. This loss was prevented by increasing PMSF concentration to 2 millimolar

  7. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  8. Star-Shaped Polypeptides: Synthesis and Opportunities for Delivery of Therapeutics.

    Science.gov (United States)

    Byrne, Mark; Murphy, Robert; Kapetanakis, Antonios; Ramsey, Joanne; Cryan, Sally-Ann; Heise, Andreas

    2015-09-17

    Significant advances in the synthesis of polypeptides by N-carboxyanhydride (NCA) polymerisation over the last decade have enabled the design of advanced polypeptide architectures such as star-shaped polypeptides. These materials combine the functionality offered by amino acids with the flexibility of creating stable nanoparticles with adjustable cargo space for therapeutic delivery. This review highlights recent advances in the synthesis of star polypeptides by NCA polymerisation followed by a critical review of the applications of this class of polymer in the delivery of therapeutic agents. This includes examples of traditional small-molecule drugs as well as the emerging class of biologics such as genetic therapeutics (gene delivery). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The mining of toxin-like polypeptides from EST database by single residue distribution analysis

    Directory of Open Access Journals (Sweden)

    Grishin Eugene

    2011-01-01

    Full Text Available Abstract Background Novel high throughput sequencing technologies require permanent development of bioinformatics data processing methods. Among them, rapid and reliable identification of encoded proteins plays a pivotal role. To search for particular protein families, the amino acid sequence motifs suitable for selective screening of nucleotide sequence databases may be used. In this work, we suggest a novel method for simplified representation of protein amino acid sequences named Single Residue Distribution Analysis, which is applicable both for homology search and database screening. Results Using the procedure developed, a search for amino acid sequence motifs in sea anemone polypeptides was performed, and 14 different motifs with broad and low specificity were discriminated. The adequacy of motifs for mining toxin-like sequences was confirmed by their ability to identify 100% toxin-like anemone polypeptides in the reference polypeptide database. The employment of novel motifs for the search of polypeptide toxins in Anemonia viridis EST dataset allowed us to identify 89 putative toxin precursors. The translated and modified ESTs were scanned using a special algorithm. In addition to direct comparison with the motifs developed, the putative signal peptides were predicted and homology with known structures was examined. Conclusions The suggested method may be used to retrieve structures of interest from the EST databases using simple amino acid sequence motifs as templates. The efficiency of the procedure for directed search of polypeptides is higher than that of most currently used methods. Analysis of 39939 ESTs of sea anemone Anemonia viridis resulted in identification of five protein precursors of earlier described toxins, discovery of 43 novel polypeptide toxins, and prediction of 39 putative polypeptide toxin sequences. In addition, two precursors of novel peptides presumably displaying neuronal function were disclosed.

  10. Characterization of beta-adrenergic receptors in synaptic membranes from rat cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Lautens, L.

    1986-01-01

    Beta-adrenergic receptor ligand binding sites have been characterized in synaptic membranes from rat cerebral cortex and cerebellum using radioligand binding techniques. The equilibrium and kinetic properties of binding were assessed. The binding sites were non-interacting and exhibited two states of agonist binding which were sensitive to guanyl nucleotide. Synaptic membranes from cerebral cortex contained an equal number of beta 1 - and beta 2 -receptors; membranes from cerebellum possessed more beta 2 -than beta 1 -receptors. Photoaffinity labeling experiments revealed two different beta-adrenergic receptor polypeptides, R 1 and R 2 (and possibly a third, R 3 ) in synaptic membranes. The ratios of incorporation of photoaffinity label into R 1 : 2 were approximately 1:1 (cerebral cortex) and 5:1 (cerebellum). Photoaffinity labeling of R 1 and R 2 was inhibited equally well by both agonist and antagonist in synaptic membranes from cerebellum; whereas agonist was a less potent inhibitor in membranes from cerebral cortex. Both subtypes of beta-adrenergic receptors exhibited the same apparent molecular weight in synaptic membranes from cerebral cortex. The beta-adrenergic receptors in synaptic membranes from cerebral cortex and cerebellum were glycoproteins which exhibited the same apparent molecular weight after exposure to endoglycosidase F. The partial proteolytic digest maps of photoaffinity labeled beta-adrenergic receptors from rat cerebral cortex, cerebellum, lung and heart were compared

  11. Differential expression of isoproterenol-induced salivary polypeptides in two mouse strains that are congenic for the H-2 histocompatibility gene complex.

    Science.gov (United States)

    López Solís, Remigio O; Weis, Ulrike Kemmerling; Ceballos, Alicia Ramos; Salas, Gustavo Hoecker

    2003-12-01

    Two inbred mouse strains, A/Snell and A.Swiss, which were produced as congenic with regard to the H-2 histocompatibility gene complex, are homozygous for two different groups of isoproterenol-induced salivary polypeptides (IISP). These polypeptides, which have been considered as markers of the hypertrophic growth of the parotid acinar cells, are members of the complex family of salivary proline-rich proteins (PRP) on the basis of both their massive accumulation in the parotid acinar cells in response to chronic isoproterenol, secretory character, high solubility in trichloroacetic acid and metachromatic staining by Coomassie blue. IISP expressed in both mouse strains were identified by unidimensional SDS-polyacrylamide electrophoresis and Coomassie blue staining both in parotid gland homogenates and in whole salivas obtained from mice repeatedly stimulated at 24-h intervals with isoproterenol. Parotid glands from 40 mice (20 A/Snell and 20 A.Swiss) and salivas from 270 mice (200 A/Snell and 70 A.Swiss) were analyzed. One of the congenic strains (A/Snell) expressed five IISP (Mr 65, 61, 51.5, 38, and 37 kDa) and the other strain (A.Swiss) expressed six IISP (Mr 59, 57, 54.5, 46, 36, and 34 kDa). No inter-individual intra-strain variations were observed, thus defining strain-associated patterns of IISP (PRP). Copyright 2003 Wiley-Liss, Inc.

  12. A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Wang, Yanjie; Chen, Hongbin; Caro, Jürgen; Wang, Haihui

    2017-02-06

    Two-dimensional (2D) materials are promising candidates for advanced water purification membranes. A new kind of lamellar membrane is based on a stack of 2D MXene nanosheets. Starting from compact Ti 3 AlC 2 , delaminated nanosheets of the composition Ti 3 C 2 T x with the functional groups T (O, OH, and/or F) can be produced by etching and ultrasonication and stapled on a porous support by vacuum filtration. The MXene membrane supported on anodic aluminum oxide (AAO) substrate shows excellent water permeance (more than 1000 L m -2  h -1  bar -1 ) and favorable rejection rate (over 90 %) for molecules with sizes larger than 2.5 nm. The water permeance through the MXene membrane is much higher than that of the most membranes with similar rejections. Long-time operation also reveals the outstanding stability of the MXene membrane for water purification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pancreatic polypeptide: Identification of target tissues and investigation of possible physiologic significance

    International Nuclear Information System (INIS)

    Shetzline, M.A.

    1988-01-01

    Pancreatic Polypeptide (PP) is a 36 amino acid peptide with hormonal properties but whose physiologic function remains unknown. In order to determine the function of this peptide we investigated potential target tissues using an in vivo radioreceptor assay. In vitro high concentrations of unlabeled hormone competitively inhibit low concentrations of labeled hormone from binding to receptors. Our in vivo studies indicate that, in the presence of concentrated unlabeled peptide, labeled PP distributes between the plasma and interstitial fluid. When saline rather than excess unlabeled PP is injected, the labeled peptide appears to distribute in a volume exceeding the combined plasma and interstitial fluid volume of tissue. The distribution volume which exceeds the anatomic extracellular volume and which is not present with excess unlabeled peptide, is the receptor compartment. With this assay we demonstrated in the rat specific and displaceable PP binding to the ductus choledochus, duodenum, ileum, and adrenal gland. In vitro rat adrenal cell membranes showed specific I-125 labeled PP binding. Specific binding also occurred in bovine cortical and medullary membranes

  14. Immunoassay of serum polypeptide hormones by using 125I-labelled anti(-immunoglobulin G) antibodies.

    Science.gov (United States)

    Beck, P; Nicholas, H

    1975-03-01

    1. A technique for indirectly labelling antibodies to polypeptide hormones, by combining them with radioactively labelled anti-(immunoglobulin G) is described. (a) 125I-labelled anti-(rabbit immunoglobulin G) and anti-(guinea-pig immunoglobulin G) antibodies with high specific radioactivity were prepared after purification of the antibodies on immunoadsorbents containing the respective antigens. (b) Rabbit immunoglobulin G antibodies to human growth hormone, porcine glucagon and guinea-pig immunoglobulin G antibodies to bovine insulin and bovine parathyroid hormone were combined with immunoadsorbents containing the respective polypeptide hormone antigen. (c) The immunoglobulin G antibodies to the polypeptide hormones were reacted with 125-I-labelled anti-(immunoglobulin G) antibodies directed against the appropriate species of immunoglobulin G,and the anti-hormone antibodies were combined with the hormone-containing immunoadsorbent. (d) 125I-labelled anti-(immunoglobulin G) antibodies and anti-hormone antibodies were simultaneously eluted from the hormone-containing immunoadsorbent by dilute HCl, pH 2.0. After elution the anti-(immunoglobulin G) antibodies and antihormone antibodies were allowed to recombine at pH 8.0 and 4 degrees C. 2. The resultant immunoglobulin G-anti-immunoglobulin G complex was used in immunoradiometric (labelled antibody) and two-site assays of the respective polypeptide hormone. 3. By using these immunoassays, concentrations down to 90pg of human growth hormone/ml, 100 pg of bovine insulin/ml, 80 pg of bovine parathyroid hormone/ml and 150 pg of glucagon/ml were readily detected. Assays of human plasma for growth hormone and insulin by these methods showed good agreement with results obtained by using a directly 125I-labelled anti-hormone antibody in an immunoradiometric assay of human growth hormone or by radioimmunoassay of human insulin. 4. The method described allows immunoradiometric or two-site assays to be performed starting with as

  15. Heme-binding plasma membrane proteins of K562 erythroleukemia cells: Adsorption to heme-microbeads, isolation with affinity chromatography

    International Nuclear Information System (INIS)

    Majuri, R.

    1989-01-01

    Heme-microbeads attached themselves to the surface of viable K562 cells in a manner inhibitable by free hemin, indicating heme-recptor interaction. The microbeads were at first evenly distributed, but after prolonged incubation at 37 deg. C they formed a cap on one pole of the cells indicating clustering of the membrane heme receptors. Membrane proteins were labeled by culturing the cells in the presence of 35 S-methionine and were then solubilized with Triton X-114. The hydrophobic proteins contained about 20% of the total bound label. The solubilized membrane proteins were subsequently adsorbed to a heme-Sepharose affinity gel. According to SDS-electrophorsis and subsequent autoradiography, the immobilized heme captures two proteins or a protein with two polypeptides of 20 000 and 32 000 daltons. The larger of these was only wekly labeled with 35 S. The same two bands were observed if the cell surface proteins were labeled with 125 I by the lactoperoxidase method and the subsequently solubilized membrane proteins were isolated with heme-Sepharose. (author)

  16. Descriptions of membrane mechanics from microscopic and effective two-dimensional perspectives

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen; Miao, L.

    2006-01-01

    Mechanics of fluid membranes may be described in terms of the concepts of mechanical deformations and stresses or in terms of mechanical free-energy functions. In this paper, each of the two descriptions is developed by viewing a membrane from two perspectives: a microscopic perspective, in which...... the membrane appears as a thin layer of finite thickness and with highly inhomogeneous material and force distributions in its transverse direction, and an effective, two-dimensional perspective, in which the membrane is treated as an infinitely thin surface, with effective material and mechanical properties....... A connection between these two perspectives is then established. Moreover, the functional dependence of the variation in the mechanical free energy of the membrane on its mechanical deformations is first studied in the microscopic perspective. The result is then used to examine to what extent different...

  17. Analysis of urine composition in type Ⅱ diabetic mice after intervention therapy using holothurian polypeptides

    Science.gov (United States)

    Li, Yanyan; Xu, Jiajie; Su, Xiurong

    2017-07-01

    Hydrolysates and peptide fractions (PF) obtained from sea cucumber with commercial enzyme were studied on the hpyerglycemic and renal protective effects on db/db rats using urine metabolomics. Compared with the control group the polypeptides from the two species could significantly reduce the urine glucose and urea. We also tried to address the compositions of highly expressed urinary proteins using a proteomics approach. They were serum albumins, AMBP proteins, negative trypsin, elastase and urinary protein, GAPDH, a receptor of urokinase-type plasminogen activator (uPAR), and Ig kappa chain C region. We used the electronic nose to quickly detect changes in the volatile substances in mice urine after holothurian polypeptides fed, and the results show it can identify the difference between treatment groups with the control group without overlapping. The protein express mechanism of holothurian polypeptides treating diabetes was discussed, and we suggested these two peptides with the hypoglycemic and renal protective activity might be utilized as nutraceuticals.

  18. Airfuge centrifugation procedure for the measurement of ligand binding to membrane-associated and detergent-solubilized plasma membrane receptors

    Energy Technology Data Exchange (ETDEWEB)

    Li, E L.F.; Perdue, J F [Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada

    1980-10-01

    A method is described in which high-speed centrifugation of membranes through an oil phase is used to separate membrane-bound and detergent-solubilized polypeptide receptor-iodinated ligand complexes from unbound ligands. Three centrifuges, the Brinkmann Eppendorf (5412), the Beckman Microfuge B and the Beckman Airfuge were evaluated for this capability. Under the conditions described, the Beckman Airfuge surpassed the others in recovering previously /sup 125/I- and /sup 32/P-labelled cell membranes. The Airfuge method was compared with the more classically employed membrane filtration method to measure specific (/sup 125/I)insulin and (/sup 125/I)thrombin binding to human placental membranes and an enriched plasma membrane fraction from mouse embryo fibroblasts, respectively, and found to be 4 to 5 times more sensitive. For example, specific binding of ligand to its receptor was demonstrated with 5 ..mu..g of protein. With slight modifications, the polyethyleneglycol 6000 method of precipitating /sup 125/I-labelled ligand-soluble receptor complexes can be adapted to the Airfuge sedimentation through oil procedure.

  19. UV cross-linking of polypeptides associated with 3'-terminal exons

    International Nuclear Information System (INIS)

    Stolow, D.T.; Berget, S.M.

    1990-01-01

    Association of nuclear proteins with chimeric vertebrate precursor RNAs containing both polyadenylation signals and an intron was examined by UV cross-linking. One major difference in cross-linking pattern was observed between this chimeric precursor RNA and precursors containing only polyadenylation or splicing signals. The heterogeneous nuclear ribonucleoprotein (hnRNP) polypeptide C cross-linked strongly to sequences downstream of the A addition site in polyadenylation precursor RNA containing only the polyadenylation signal from the simian virus 40 (SV40) late transcription unit. In contrast, the hnRNP C polypeptide cross-linked to chimeric RNA containing the same SV40 late poly(A) cassette very poorly, at a level less than 5% of that observed with the precursor RNA containing just the poly(A) site. Observation that cross-linking of the hnRNP C polypeptide to elements within the SV40 late poly(A) site was altered by the presence of an upstream intron suggests differences in the way nuclear factors associate with poly(A) sites in the presence and absence of an upstream intron. Cross-linking of C polypeptide to chimeric RNA increased with RNAs mutated for splicing or polyadenylation consensus sequences and under reaction conditions (high magnesium) that inhibited polyadenylation. Furthermore, cross-linking of hnRNP C polypeptide to precursors containing just the SV40 late poly(A) site was eliminated in the presence of competing poly(U); polyadenylation, however, was unaffected. Correlation of loss of activity with high levels of hnRNP C polypeptide cross-linking raises questions about the specificity of the interaction between the hnRNP C polypeptide and polyadenylation precursor RNAs in vitro

  20. Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation

    Science.gov (United States)

    Sciacca, Michele F.M.; Kotler, Samuel A.; Brender, Jeffrey R.; Chen, Jennifer; Lee, Dong-kuk; Ramamoorthy, Ayyalusamy

    2012-01-01

    Disruption of cell membranes by Aβ is believed to be one of the key components of Aβ toxicity. However, the mechanism by which this occurs is not fully understood. Here, we demonstrate that membrane disruption by Aβ occurs by a two-step process, with the initial formation of ion-selective pores followed by nonspecific fragmentation of the lipid membrane during amyloid fiber formation. Immediately after the addition of freshly dissolved Aβ1–40, defects form on the membrane that share many of the properties of Aβ channels originally reported from single-channel electrical recording, such as cation selectivity and the ability to be blockaded by zinc. By contrast, subsequent amyloid fiber formation on the surface of the membrane fragments the membrane in a way that is not cation selective and cannot be stopped by zinc ions. Moreover, we observed that the presence of ganglioside enhances both the initial pore formation and the fiber-dependent membrane fragmentation process. Whereas pore formation by freshly dissolved Aβ1–40 is weakly observed in the absence of gangliosides, fiber-dependent membrane fragmentation can only be observed in their presence. These results provide insights into the toxicity of Aβ and may aid in the design of specific compounds to alleviate the neurodegeneration of Alzheimer’s disease. PMID:22947931

  1. Descriptions of membrane mechanics from microscopic and effective two-dimensional perspectives

    International Nuclear Information System (INIS)

    Lomholt, Michael A; Miao Ling

    2006-01-01

    Mechanics of fluid membranes may be described in terms of the concepts of mechanical deformations and stresses or in terms of mechanical free-energy functions. In this paper, each of the two descriptions is developed by viewing a membrane from two perspectives: a microscopic perspective, in which the membrane appears as a thin layer of finite thickness and with highly inhomogeneous material and force distributions in its transverse direction, and an effective, two-dimensional perspective, in which the membrane is treated as an infinitely thin surface, with effective material and mechanical properties. A connection between these two perspectives is then established. Moreover, the functional dependence of the variation in the mechanical free energy of the membrane on its mechanical deformations is first studied in the microscopic perspective. The result is then used to examine to what extent different, effective mechanical stresses and forces can be derived from a given, effective functional of the mechanical free energy

  2. Two-dimensional materials for novel liquid separation membranes

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-01

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  3. Two-dimensional materials for novel liquid separation membranes.

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-19

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  4. Biochemical map of polypeptides specified by foot-and-mouth disease virus.

    OpenAIRE

    Grubman, M J; Robertson, B H; Morgan, D O; Moore, D M; Dowbenko, D

    1984-01-01

    Pulse-chase labeling of foot-and-mouth disease virus-infected bovine kidney cells revealed stable and unstable viral-specific polypeptides. To identify precursor-product relationships among these polypeptides, antisera against a number of structural and nonstructural viral-specific polypeptides were used. Cell-free translations programmed with foot-and-mouth disease virion RNA or foot-and-mouth disease virus-infected bovine kidney cell lysates, which were shown to contain almost identical pol...

  5. Polypeptide based hydrogels

    OpenAIRE

    Hanay, Saltuk

    2018-01-01

    There is a need for biocompatible, biodegradable, 3-D printable and stable hydrogels especially in the areas of tissue engineering, drug delivery, bio-sensing technologies and antimicrobial coatings. The main aim of this Ph.D. work was to fabricate polypeptide based hydrogel which may find a potential application in those fields. Focusing on tyrosine or tryptophan-containing copolypeptides prepared by NCarboxyanhydride (NCA) polymerizations, three different crosslinking strategies have been t...

  6. Functional conservation of the hydrophobic domain of polypeptide 3AB between human rhinovirus and poliovirus

    International Nuclear Information System (INIS)

    Towner, Jonathan S.; Brown, David M.; Nguyen, Joseph H.C.; Semler, Bert L.

    2003-01-01

    In this study we exchanged portions of the poliovirus type 1 (PV1) hydrophobic domain within the membrane-associated polypeptide 3AB for the analogous sequences from human rhinovirus 14 (HRV14). The sequence exchanges were based upon a previous report in which the 22 amino acid hydrophobic region was subdivided into two domains, I and II, the latter of which was shown to be required for membrane association (J. Biol. Chem. 271 (1996), 26810). Using these divisions, the HRV14 sequences were cloned into the complete poliovirus type 1 cDNA sequence. RNAs transcribed from these cDNAs were transfected into HeLa cell monolayers and used in HeLa cell-free translation/replication assays. The data indicated that 3AB sequences from PV1 and HRV14 are interchangeable; however, the substitutions cause a range of significant RNA replication defects, and in some cases, protein processing defects. Following transfection of RNAs encoding the domain substitutions into HeLa cell monolayers, virus isolates were harvested, and the corresponding viral RNAs were sequenced. The sequence data revealed that for the carboxy-terminal domain substitutions (domain II), multiple nucleotide changes were identified in the first, second, and third positions of different codons. In addition, the data indicated that for one of the PV1/HRV14 chimeras to replicate, compensatory mutations within poliovirus protein 2B may be required

  7. Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor

    DEFF Research Database (Denmark)

    Wewer, U; Albrechtsen, R; Ruoslahti, E

    1981-01-01

    Laminin, a glycoprotein antigenically similar or identical to a component of epithelial basement membranes, was identified as a major component of the abundant extracellular matrix synthesized by an experimentally induced rat yolk sac tumor. Immunocytochemical staining revealed laminin in cultured...... polypeptides with molecular weights of approximately 200,000 and 400,000. These comigrated with the polypeptides of mouse laminin isolated previously. The yolk sac tumor tissue grown in vivo contained laminin in the tumor cells and in the extracellular material as evidenced by immunofluorescence...... membranes in rat tissues in a manner indistinguishable from antilaminin. The presence of laminin in rat yolk sac cells, the presumed origin of our yolk sac tumor, was studied in some detail. Laminin was found to be present in normal cells of the visceral as well as the parietal yolk sac layer...

  8. Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin.

    Science.gov (United States)

    Keeley, Fred W; Bellingham, Catherine M; Woodhouse, Kimberley A

    2002-02-28

    Elastin is the major extracellular matrix protein of large arteries such as the aorta, imparting characteristics of extensibility and elastic recoil. Once laid down in tissues, polymeric elastin is not subject to turnover, but is able to sustain its mechanical resilience through thousands of millions of cycles of extension and recoil. Elastin consists of ca. 36 domains with alternating hydrophobic and cross-linking characteristics. It has been suggested that these hydrophobic domains, predominantly containing glycine, proline, leucine and valine, often occurring in tandemly repeated sequences, are responsible for the ability of elastin to align monomeric chains for covalent cross-linking. We have shown that small, recombinantly expressed polypeptides based on sequences of human elastin contain sufficient information to self-organize into fibrillar structures and promote the formation of lysine-derived cross-links. These cross-linked polypeptides can also be fabricated into membrane structures that have solubility and mechanical properties reminiscent of native insoluble elastin. Understanding the basis of the self-organizational ability of elastin-based polypeptides may provide important clues for the general design of self-assembling biomaterials.

  9. Dewetting transition assisted clearance of (NFGAILS) amyloid fibrils from cell membranes by graphene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiajia; Yang, Zaixing; Gu, Zonglin [Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 (China); Li, Haotian [Bio-X Lab, Department of Physics, Zhejiang University, Hangzhou 310027 (China); Garate, Jose Antonio [IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Zhou, Ruhong, E-mail: ruhongz@us.ibm.com [Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 (China); IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Department of Chemistry, Columbia University, New York, New York 10027 (United States)

    2014-12-14

    Clearance of partially ordered oligomers and monomers deposited on cell membrane surfaces is believed to be an effective route to alleviate many potential protein conformational diseases (PCDs). With large-scale all-atom molecular dynamics simulations, here we show that graphene nanosheets can easily and quickly win a competitive adsorption of human islet amyloid polypeptides (hIAPP{sub 22-28}) NFGAILS and associated fibrils against cell membrane, due to graphene's unique two-dimensional, highly hydrophobic surface with its all-sp{sup 2} hybrid structure. A nanoscale dewetting transition was observed at the interfacial region between the fibril (originally deposited on the membrane) and the graphene nanosheet, which significantly assisted the adsorption of fibrils onto graphene from the membrane. The π–π stacking interaction between Phe23 and graphene played a crucial role, providing the driving force for the adsorption at the graphene surface. This study renders new insight towards the importance of water during the interactions between amyloid peptides, the phospholipidic membrane, and graphene, which might shed some light on future developments of graphene-based nanomedicine for preventing/curing PCDs like type II diabetes mellitus.

  10. Dewetting transition assisted clearance of (NFGAILS) amyloid fibrils from cell membranes by graphene

    International Nuclear Information System (INIS)

    Liu, Jiajia; Yang, Zaixing; Gu, Zonglin; Li, Haotian; Garate, Jose Antonio; Zhou, Ruhong

    2014-01-01

    Clearance of partially ordered oligomers and monomers deposited on cell membrane surfaces is believed to be an effective route to alleviate many potential protein conformational diseases (PCDs). With large-scale all-atom molecular dynamics simulations, here we show that graphene nanosheets can easily and quickly win a competitive adsorption of human islet amyloid polypeptides (hIAPP 22-28 ) NFGAILS and associated fibrils against cell membrane, due to graphene's unique two-dimensional, highly hydrophobic surface with its all-sp 2 hybrid structure. A nanoscale dewetting transition was observed at the interfacial region between the fibril (originally deposited on the membrane) and the graphene nanosheet, which significantly assisted the adsorption of fibrils onto graphene from the membrane. The π–π stacking interaction between Phe23 and graphene played a crucial role, providing the driving force for the adsorption at the graphene surface. This study renders new insight towards the importance of water during the interactions between amyloid peptides, the phospholipidic membrane, and graphene, which might shed some light on future developments of graphene-based nanomedicine for preventing/curing PCDs like type II diabetes mellitus

  11. Permanent Electric Dipole-Dipole Interactions in Lyotropic Polypeptide Liquid Crystals

    OpenAIRE

    MORI, Norio; Norio, MORI; Research Associate, Department of Industrial Chemistry

    1981-01-01

    The interaction energy between two adjacent α-helical molecules was calculated taking into account for permanent electric dipoles locating orl the helical core of a polymer mainchain in order to explain the cholesteric structure of lyotropic polypeptide liquid crystals. It was concluded that the dipole-dipole interactions were responsible for the formation of the cholesteric structure.

  12. The influence of the side-chain sequence on the structure-activity correlations of immunomodulatory branched polypeptides. Synthesis and conformational analysis of new model polypeptides.

    Science.gov (United States)

    Mezö, G; Hudecz, F; Kajtár, J; Szókán, G; Szekerke, M

    1989-10-01

    New branched polypeptides were synthesized for a detailed study of the influence of the side-chain structure on the conformation and biological properties. The first subset of polypeptides were prepared by coupling of tetrapeptides to poly[L-Lys]. These polymers contain either DL-Ala3-X [poly[Lys-(X-DL-Ala3)n

  13. Podocyte expression of membrane transporters involved in puromycin aminonucleoside-mediated injury.

    Directory of Open Access Journals (Sweden)

    Cristina Zennaro

    Full Text Available Several complex mechanisms contribute to the maintenance of the intricate ramified morphology of glomerular podocytes and to interactions with neighboring cells and the underlying basement membrane. Recently, components of small molecule transporter families have been found in the podocyte membrane, but expression and function of membrane transporters in podocytes is largely unexplored. To investigate this complex field of investigation, we used two molecules which are known substrates of membrane transporters, namely Penicillin G and Puromycin Aminonucleoside (PA. We observed that Penicillin G pre-administration prevented both in vitro and in vivo podocyte damage caused by PA, suggesting the engagement of the same membrane transporters by the two molecules. Indeed, we found that podocytes express a series of transporters which are known to be used by Penicillin G, such as members of the Organic Anion Transporter Polypeptides (OATP/Oatp family of influx transporters, and P-glycoprotein, a member of the MultiDrug Resistance (MDR efflux transporter family. Expression of OATP/Oatp transporters was modified by PA treatment. Similarly, in vitro PA treatment increased mRNA and protein expression of P-glycoprotein, as well as its activity, confirming the engagement of the molecule upon PA administration. In summary, we have characterized some of the small molecule transporters present at the podocyte membrane, focusing on those used by PA to enter and exit the cell. Further investigation will be needed to understand precisely the role of these transporter families in maintaining podocyte homeostasis and in the pathogenesis of podocyte injury.

  14. Induction of protein body formation in plant leaves by elastin-like polypeptide fusions

    Directory of Open Access Journals (Sweden)

    Joensuu Jussi J

    2009-08-01

    Full Text Available Abstract Background Elastin-like polypeptides are synthetic biopolymers composed of a repeating pentapeptide 'VPGXG' sequence that are valuable for the simple non-chromatographic purification of recombinant proteins. In addition, elastin-like polypeptide fusions have been shown to enhance the accumulation of a range of different recombinant proteins in plants, thus addressing the major limitation of plant-based expression systems, which is a low production yield. This study's main objectives were to determine the general utility of elastin-like polypeptide protein fusions in various intracellular compartments and to elucidate elastin-like polypeptide's mechanism of action for increasing recombinant protein accumulation in the endoplasmic reticulum of plants. Results The effect of elastin-like polypeptide fusions on the accumulation of green fluorescent protein targeted to the cytoplasm, chloroplasts, apoplast, and endoplasmic reticulum was evaluated. The endoplasmic reticulum was the only intracellular compartment in which an elastin-like polypeptide tag was shown to significantly enhance recombinant protein accumulation. Interestingly, endoplasmic reticulum-targeted elastin-like polypeptide fusions induced the formation of a novel type of protein body, which may be responsible for elastin-like polypeptide's positive effect on recombinant protein accumulation by excluding the heterologous protein from normal physiological turnover. Although expressed in the leaves of plants, these novel protein bodies appeared similar in size and morphology to the prolamin-based protein bodies naturally found in plant seeds. The elastin-like polypeptide-induced protein bodies were highly mobile organelles, exhibiting various dynamic patterns of movement throughout the cells, which were dependent on intact actin microfilaments and a functional actomyosin motility system. Conclusion An endoplasmic reticulum-targeted elastin-like polypeptide fusion approach

  15. Binding of Signal Recognition Particle Gives Ribosome/Nascent Chain Complexes a Competitive Advantage in Endoplasmic Reticulum Membrane Interaction

    Science.gov (United States)

    Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.

    1998-01-01

    Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994

  16. Radioreceptor assays: plasma membrane receptors and assays for polypeptide and glycoprotein hormones

    International Nuclear Information System (INIS)

    Schulster, D.

    1977-01-01

    Receptors for peptide, protein and glycoprotein hormones, and the catecholamines are located on the plasma membranes of their target cells. Preparations of the receptors may be used as specific, high-affinity binding agents for these hormones in assay methodology akin to that for radioimmunoassay. A particular advantage of the radioreceptor assay is that it has a specificity directed towards the biologically active region of the hormone, rather than to some immunologically active region that may have little (or no) involvement in the expression of hormonal activity. Methods for hormone receptor preparation vary greatly, and range from the use of intact cells (as the source of hormone receptor) to the use of purified or solubilized membrane receptors. Receptors isolated from plasma membranes have proved to be of variable stability, and may be damaged during preparation and/or storage. Moreover, since they are present in relatively low concentration in the cell, their preparation in sufficient quantity for use in a radioreceptor assay may present technical problems. In general, there is good correlation between radioreceptor assays and in-vitro bioassays; differences between results from radioreceptor assays and radioimmunoassays are similar to those noted between in-vitro bioassays and radioimmunoassays. The sensitivity of the method is such that normal plasma concentrations of various hormones have been assayed by this technique. (author)

  17. Basal serum pancreatic polypeptide is dependent on age and gender in an adult population

    DEFF Research Database (Denmark)

    Brimnes Damholt, M; Rasmussen, B K; Hilsted, L

    1997-01-01

    This study is the first epidemiologically based study of basal levels of serum pancreatic polypeptide (s-PP). The basal level of serum PP has become a field of interest mainly due to the role of PP as an endocrine tumour marker, and as a marker of pancreatic neuroendocrine function after pancreas...... a monospecific radioimmunoassay. Fasting serum pancreatic polypeptide depended on age and gender. The results demonstrated that fasting pancreatic polypeptide levels increase exponentially with age. Fitted separately for each sex, basal serum pancreatic polypeptide was found to increase by approximately 3% per...... reports on the fasting levels of serum pancreatic polypeptide are most likely due to lack of adjustment for age and gender. Thus, variation due to age and gender should be considered in evaluating fasting levels of serum pancreatic polypeptide. Whether similar considerations are important when evaluating...

  18. Side-chain-controlled self-assembly of polystyrene-polypeptide miktoarm star copolymers

    KAUST Repository

    Junnila, Susanna

    2012-03-27

    We show how the self-assembly of miktoarm star copolymers can be controlled by modifying the side chains of their polypeptide arms, using A 2B and A 2B 2 type polymer/polypeptide hybrids (macromolecular chimeras). Initially synthesized PS 2PBLL and PS 2PBLL 2 (PS, polystyrene; PBLL, poly(ε-tert-butyloxycarbonyl-l-lysine) ) miktoarms were first deprotected to PS 2PLLHCl and PS 2PLLHCl 2 miktoarms (PLLHCl, poly(l-lysine hydrochloride)) and then complexed ionically with sodium dodecyl sulfonate (DS) to give the supramolecular complexes PS 2PLL(DS) and PS 2(PLL(DS)) 2. The solid-state self-assemblies of these six miktoarm systems were studied by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and small- and wide-angle X-ray scattering (SAXS, WAXS). The side chains of the polypeptide arms were observed to have a large effect on the solubility, polypeptide conformation, and self-assembly of the miktoarms. Three main categories were observed: (i) lamellar self-assemblies at the block copolymer length scale with packed layers of α-helices in PS 2PBLL and PS 2PBLL 2; (ii) charge-clustered polypeptide micelles with less-defined conformations in a nonordered lattice within a PS matrix in PS 2PLLHCl and PS 2PLLHCl 2; (iii) lamellar polypeptide-surfactant self-assemblies with β-sheet conformation in PS 2PLL(DS) and PS 2(PLL(DS)) 2 which dominate over the formation of block copolymer scale structures. Differences between the 3- and 4-arm systems illustrate how packing frustration between the coil-like PS arms and rigid polypeptide conformations can be relieved by the right number of arms, leading to differences in the extent of order. © 2012 American Chemical Society.

  19. Avian leukosis virus is a versatile eukaryotic platform for polypeptide display

    International Nuclear Information System (INIS)

    Khare, Pranay D.; Russell, Stephen J.; Federspiel, Mark J.

    2003-01-01

    Display technology refers to methods of generating libraries of modularly coded biomolecules and screening them for particular properties. Retroviruses are good candidates to be a eukaryotic viral platform for the display of polypeptides synthesized in eukaryotic cells. Here we demonstrate that avian leukosis virus (ALV) provides an ideal platform for display of nonviral polyaeptides expressed in a eukaryotic cell substrate. Different sizes of polypeptides were genetically fused to the extreme N-terminus of the ALV envelope glycoprotein in an ALV infectious clone containing an alkaline phosphatase reporter gene. The chimeric envelope glycoproteins were efficiently incorporated into virions and were stably displayed on the surface of the virions through multiple virus replication cycles. The foreign polypeptides did not interfere with the attachment and entry functions of the underlying ALV envelope glycoproteins. The displayed polypeptides were fully functional and could efficiently mediate attachment of the recombinant viruses to their respective cognate receptors. This study demonstrates that ALV is an ideal display platform for the generation and selection of libraries of polypeptides where there is a need for expression, folding, and posttranslational modification in the endoplasmic reticulum of eukaryotic cells

  20. The Membrane Topology of ALMT1, an Aluminum-Activated Malate Transport Protein in Wheat (Triticum aestivum)

    OpenAIRE

    Motoda, Hirotoshi; Sasaki, Takayuki; Kano, Yoshio; Ryan, Peter R; Delhaize, Emmanuel; Matsumoto, Hideaki; Yamamoto, Yoko

    2007-01-01

    The wheat ALMT1 gene encodes an aluminum (Al)-activated malate transport protein which confers Al-resistance. We investigated the membrane topology of this plasma-membrane localized protein with immunocytochemical techniques. Several green fluorescent protein (GFP)-fused and histidine (His)-tagged chimeras of ALMT1 were prepared based on a computer-predicted secondary structure and transiently expressed in cultured mammalian cells. Antibodies raised to polypeptide epitopes of ALMT1 were used ...

  1. CDNA encoding a polypeptide including a hevein sequence

    Science.gov (United States)

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  2. CLC-Nt1, a putative chloride channel protein of tobacco, co-localizes with mitochondrial membrane markers.

    Science.gov (United States)

    Lurin, C; Güclü, J; Cheniclet, C; Carde, J P; Barbier-Brygoo, H; Maurel, C

    2000-06-01

    The voltage-dependent chloride channel (CLC) family of membrane proteins has cognates in animals, yeast, bacteria and plants, and chloride-channel activity has been assigned to most of the animal homologues. Lack of evidence of CLC functions in plants prompted us to characterize the cellular localization of the tobacco CLC-Nt1 protein. Specific polyclonal antibodies were raised against an N-terminal polypeptide of CLC-Nt1. These antibodies were used to probe membrane proteins prepared by various cell-fractionation methods. These included aqueous two-phase partitioning (for plasma membranes), free-flow electrophoresis (for vacuolar and plasma membranes), intact vacuole isolation, Percoll-gradient centrifugation (for plastids and mitochondria) and stepped, linear, sucrose-density-gradient centrifugation (for mitochondria). Each purified membrane fraction was characterized with specific marker enzyme activities or antibodies. Our studies ruled out the possibility that the major cell localization of CLC-Nt1 was the vacuolar or plasma membranes, the endoplasmic reticulum, the Golgi apparatus or the plastids. In contrast, we showed that the tobacco CLC-Nt1 specifically co-localized with the markers of the mitochondrial inner membrane, cytochrome c oxidase and NAD9 protein. CLC-Nt1 may correspond to the inner membrane anion channel ('IMAC') described previously in animal and plant mitochondria.

  3. Synthesis and Characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes

    Directory of Open Access Journals (Sweden)

    Bernd M. Liebeck

    2017-03-01

    Full Text Available It is known that aqueous keratin hydrolysate solutions can be produced from feathers using superheated water as solvent. This method is optimized in this study by varying the time and temperature of the heat treatment in order to obtain a high solute content in the solution. With the dissolved polypeptides, films are produced using methyl cellulose as supporting material. Thereby, novel composite membranes are produced from bio-waste. It is expected that these materials exhibit both protein and polysaccharide properties. The influence of the embedded keratin hydrolysates on the methyl cellulose structure is investigated using Fourier transform infrared spectroscopy (FTIR and wide angle X-ray diffraction (WAXD. Adsorption peaks of both components are present in the spectra of the membranes, while the X-ray analysis shows that the polypeptides are incorporated into the semi-crystalline methyl cellulose structure. This behavior significantly influences the mechanical properties of the composite films as is shown by tensile tests. Since further processing steps, e.g., crosslinking, may involve a heat treatment, thermogravimetric analysis (TGA is applied to obtain information on the thermal stability of the composite materials.

  4. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Hsueh, Yu-Sheng; Savitha, S.; Sadhasivam, S.; Lin, Feng-Huei; Shieh, Ming-Jium

    2014-01-01

    The study involves design and synthesis of three different elastin like polypeptide (ELP) gene monomers namely ELP1, ELP2 and ELP3 that encode for ELP proteins. The formed ELPs were assessed as an ideal nerve conduit for peripheral nerve regeneration. ELP1 was constructed with a small elongated pentapeptide carrying VPGVG sequence to mimic the natural polypeptide ELP. The ELP2 was designed by the incorporation of 4-penta peptide chains to improve the biocompatibility and mechanical strength. Thus, the third position in unique VPGVG was replaced with alanine to VPAVG and in a similar way modified to VPGKG, VPGEG and VPGIG with the substitution of lysine, glutamic acid and isoleucine. In ELP3, fibronectin C5 domain endowed with REDV sequence was introduced to improve the cell attachment. The ELP1, ELP2 and ELP3 proteins expressed by Escherichia coli were purified by inverse transition cycling (ITC). The purified ELPs were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The Schwann cell (SC) morphology and cell adhesion were assessed by fabrication of ELP membrane cross-linked with glutaraledhyde. The Schwann cell proliferation was measured by WST-1 assay. Immunofluorostaining of Schwann cells was accomplished with SC specific phenotypic marker, S100. - Highlights: • Design and synthesis of three gene monomers of elastin like polypeptides (ELP1, 2 and 3) were reported. • Molecular weight of ITC purified ELP1, ELP2 and ELP3 was in the range of 37–38 kDa. • Schwann cell adhesion was found to be prominent in ELP3 and could be used as nerve conduit for peripheral nerve regeneration

  5. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Yu-Sheng [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Savitha, S. [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai (India); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Sadhasivam, S. [Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan (China); Lin, Feng-Huei, E-mail: double@ntu.edu.tw [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Shieh, Ming-Jium [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); College of Medicine, National Taiwan University Hospital, Taipei 100, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China)

    2014-05-01

    The study involves design and synthesis of three different elastin like polypeptide (ELP) gene monomers namely ELP1, ELP2 and ELP3 that encode for ELP proteins. The formed ELPs were assessed as an ideal nerve conduit for peripheral nerve regeneration. ELP1 was constructed with a small elongated pentapeptide carrying VPGVG sequence to mimic the natural polypeptide ELP. The ELP2 was designed by the incorporation of 4-penta peptide chains to improve the biocompatibility and mechanical strength. Thus, the third position in unique VPGVG was replaced with alanine to VPAVG and in a similar way modified to VPGKG, VPGEG and VPGIG with the substitution of lysine, glutamic acid and isoleucine. In ELP3, fibronectin C5 domain endowed with REDV sequence was introduced to improve the cell attachment. The ELP1, ELP2 and ELP3 proteins expressed by Escherichia coli were purified by inverse transition cycling (ITC). The purified ELPs were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The Schwann cell (SC) morphology and cell adhesion were assessed by fabrication of ELP membrane cross-linked with glutaraledhyde. The Schwann cell proliferation was measured by WST-1 assay. Immunofluorostaining of Schwann cells was accomplished with SC specific phenotypic marker, S100. - Highlights: • Design and synthesis of three gene monomers of elastin like polypeptides (ELP1, 2 and 3) were reported. • Molecular weight of ITC purified ELP1, ELP2 and ELP3 was in the range of 37–38 kDa. • Schwann cell adhesion was found to be prominent in ELP3 and could be used as nerve conduit for peripheral nerve regeneration.

  6. A de novo designed 11 kDa polypeptide: model for amyloidogenic intrinsically disordered proteins.

    Science.gov (United States)

    Topilina, Natalya I; Ermolenkov, Vladimir V; Sikirzhytski, Vitali; Higashiya, Seiichiro; Lednev, Igor K; Welch, John T

    2010-07-01

    A de novo polypeptide GH(6)[(GA)(3)GY(GA)(3)GE](8)GAH(6) (YE8) has a significant number of identical weakly interacting beta-strands with the turns and termini functionalized by charged amino acids to control polypeptide folding and aggregation. YE8 exists in a soluble, disordered form at neutral pH but is responsive to changes in pH and ionic strength. The evolution of YE8 secondary structure has been successfully quantified during all stages of polypeptide fibrillation by deep UV resonance Raman (DUVRR) spectroscopy combined with other morphological, structural, spectral, and tinctorial characterization. The YE8 folding kinetics at pH 3.5 are strongly dependent on polypeptide concentration with a lag phase that can be eliminated by seeding with a solution of folded fibrillar YE8. The lag phase of polypeptide folding is concentration dependent leading to the conclusion that beta-sheet folding of the 11-kDa amyloidogenic polypeptide is completely aggregation driven.

  7. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  8. Radiolysis of polypeptide

    International Nuclear Information System (INIS)

    Ogura, Isao; Nakamura, Katsuichi; Tanaka, Hiroshi; Takahashi, Katsuhiro; Ozaki, Makoto

    1981-01-01

    Almost the same results were obtained from the additional dipeptide, Gly-DL-Ala and DL-Ala-DL-Phe, by the γ-irradiation as previous report. Tri and tetrapeptide consisted of the same amino acid signified good stability than the others. Every polypeptide composed from sulfur contained amino acid exhaled the smell of hydrogen sulfide by the irradiation. It seemed that the stability by the difference of position of amino group in amino acid increased in order α, β, γ ... amino acid and that by the existence of hydroxyl group became smaller. (author)

  9. Evidence that the synthesis of glucosylphosphodolichol in yeast involves a 35-kDa membrane protein

    International Nuclear Information System (INIS)

    Palamarczyk, G.; Drake, R.; Haley, B.; Lennarz, W.J.

    1990-01-01

    In an effort to identify the polypeptide chain of glucosylphosphodolichol synthase, yeast microsomal membranes were allowed to react with 5-azido[β- 32 P]UDPGlc, a photoactive analogue of UDPGlc, which is a substrate for this enzyme. Upon photolysis the 32 P-labeled probe was shown to link covalently to a 35-kDa protein present in microsomal membranes prepared from several wild-type yeast strains. Binding was either reduced or absent in the microsomal membranes from two yeast mutants (alg5 and dpg1) that are known to be defective in the synthesis of glucosylphosphodolichol. The microsomes isolated from a heterozygous diploid strain alg5::dpg1 generated from these two mutants exhibited partial restoration of both the ability to photolabel the 35-kDa protein and the ability to catalyze the synthesis of glucosylphosphodolichol. Microsomal membranes from a mutant strain that synthesized glucosylphosphodolichol but lacked the ability to transfer the glucosyl residue to the growing lipid-linked oligosaccharide (alg6) exhibited labeling with 5-azido[β- 32 P]UDPGlc comparable to that found in microsomes from the wild-type strain. In all cases photoinsertion of the probe into the 35-kDa protein correlated with the level of synthase assayed in the microsomal membranes. These results strongly support the conclusion that the 35-kDa protein labeled in these experiments is a component of glucosylphosphodolichol synthase

  10. Tuning Ice Nucleation with Supercharged Polypeptides

    NARCIS (Netherlands)

    Yang, Huige; Ma, Chao; Li, Kaiyong; Liu, Kai; Loznik, Mark; Teeuwen, Rosalie; van Hest, Jan C. M.; Zhou, Xin; Herrmann, Andreas; Wang, Jianjun

    2016-01-01

    Supercharged unfolded polypeptides (SUPs) are exploited for controlling ice nucleation via tuning the nature of charge and charge density of SUPs. The results show that positively charged SUPs facilitate ice nucleation, while negatively charged ones suppress it. Moreover, the charge density of the

  11. High-resolution two-dimensional gel analysis of proteins in wing imaginal discs: A data base of Drosophila

    International Nuclear Information System (INIS)

    Santaren, J.F.; Garcia-Bellido, A.

    1990-01-01

    An improved method of high-resolution two-dimensional gel electrophoresis has been used to study the patterns of protein synthesis in wing imaginal discs of late instar larvae of Drosophila melanogaster. A small number of discs were radiolabeled with a mixture of 14 C-labeled amino acids or with [ 35 S]methionine and the pattern of labeled proteins was analyzed. One thousand and twenty-five polypeptides (787 acidic (IEF) and 238 basic (NEPHGE)) from wing discs of several wild-type strains have so far been separated and cataloged. All these polypeptides have been numbered and presented in a reference map for further studies. When comparing patterns of label we have found small quantitative differences in rate of synthesis between individuals of the same strain, not due to sexual differences, and very few quantitative and qualitative differences between groups of individuals of different strains

  12. Nano-swimmers in biological membranes and propulsion hydrodynamics in two dimensions.

    Science.gov (United States)

    Huang, Mu-Jie; Chen, Hsuan-Yi; Mikhailov, Alexander S

    2012-11-01

    Active protein inclusions in biological membranes can represent nano-swimmers and propel themselves in lipid bilayers. A simple model of an active inclusion with three particles (domains) connected by variable elastic links is considered. First, the membrane is modeled as a two-dimensional viscous fluid and propulsion behavior in two dimensions is examined. After that, an example of a microscopic dynamical simulation is presented, where the lipid bilayer structure of the membrane is resolved and the solvent effects are included by multiparticle collision dynamics. Statistical analysis of data reveals ballistic motion of the swimmer, in contrast to the classical diffusion behavior found in the absence of active transitions between the states.

  13. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    2000-07-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  14. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.

  15. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  16. cDNA encoding a polypeptide including a hevein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.

  17. Folding and self-assembly of polypeptides: Dynamics and thermodynamics from molecular simulation

    Science.gov (United States)

    Fluitt, Aaron Michael

    Empowered by their exquisite three-dimensional structures, or "folds," proteins carry out biological tasks with high specificity, efficiency, and fidelity. The fold that optimizes biological function represents a stable configuration of the constituent polypeptide molecule(s) under physiological conditions. Proteins and polypeptides are not static, however: battered by thermal motion, they explore a distribution of folds that is determined by the sequence of amino acids, the presence and identity of other molecules, and the thermodynamic conditions. In this dissertation, we apply molecular simulation techniques to the study of two polypeptides that have unusually diffuse distributions of folds under physiological conditions: polyglutamine (polyQ) and islet amyloid polypeptide (IAPP). Neither polyQ nor IAPP adopts a predominant fold in dilute aqueous solution, but at sufficient concentrations, both are prone to self-assemble into stable, periodic, and highly regular aggregate structures known as amyloid. The appearance of amyloid deposits of polyQ in the brain, and of IAPP in the pancreas, are associated with Huntington's disease and type 2 diabetes, respectively. A molecular view of the mechanism(s) by which polyQ and IAPP fold and self-assemble will enhance our understanding of disease pathogenesis, and it has the potential to accelerate the development of therapeutics that target early-stage aggregates. Using molecular simulations with spatial and temporal resolution on the atomic scale, we present analyses of the structural distributions of polyQ and IAPP under various conditions, both in and out of equilibrium. In particular, we examine amyloid fibers of polyQ, the IAPP dimer in solution, and single IAPP fragments at a lipid bilayer. We also benchmark the molecular models, or "force fields," available for such studies, and we introduce a novel simulation algorithm.

  18. Use of proton-enhanced, natural abundance /sup 13/C NMR to study the molecular dynamics of model and biological membranes

    Energy Technology Data Exchange (ETDEWEB)

    Cornell, B A [Commonwealth Scientific and Industrial Research Organization, North Ryde (Australia). Div. of Food Research; Keniry, M [Sydney Univ. (Australia). Dept. of Physical Chemistry; Hiller, R G [Macquarie Univ., North Ryde (Australia). School of Biological Sciences; Smith, R [La Trobe Univ., Bundoora (Australia). Dept. of Biochemistry

    1980-06-16

    Proton-enhanced NMR of the natural abundance /sup 13/C nuclei is used to study the lipid mobility in dispersions containing cholesterol, the polypeptide gramicidin A, and in membrane proparations derived from spinach chloroplasts and bovine brain myelin.

  19. Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Hsu Kimberly K

    2005-06-01

    Full Text Available Abstract Background The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids. Results After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensional analyses of human erythrocyte membranes, mouse liver membranes, and mouse brain membranes, extracted with buffers that included the zwitterionic detergent MEGA 10 (decanoyl-N-methylglucamide and the zwitterionic lipid LPC (1-lauroyl lysophosphatidylcholine, showed selective improvement over extraction with the common 2-DE detergent CHAPS (3 [(3-cholamidopropyldimethylammonio]-1-propanesulfonate. Mixtures of the three detergents showed additive improvements in spot number, density, and resolution. Substantial improvements in the analysis of a brain membrane proteome were observed. Conclusion This study demonstrates that an optimized detergent mix, coupled with rigorous sample handling and electrophoretic protocols, enables simple and effective analysis of membrane proteomes using two-dimensional electrophoresis.

  20. Phase separation and shape deformation of two-phase membranes

    International Nuclear Information System (INIS)

    Jiang, Y.; Lookman, T.; Saxena, A.

    2000-01-01

    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres, and tori. Using an exact periodic domain wall solution we solve for the shape and phase separating field, and estimate the degree of deformation of the membrane. The results are pertinent to preferential phase separation in regions of differing curvature on a variety of vesicles. (c) 2000 The American Physical Society

  1. Biochemical characterization of domain-specific glycoproteins of the rat hepatocyte plasma membrane

    International Nuclear Information System (INIS)

    Bartles, J.R.; Braiterman, L.T.; Hubbard, A.L.

    1985-01-01

    Seven integral proteins (CE 9, HA 21, HA 116, HA 16, HA 4, HA 201, and HA 301) were isolated from rat hepatocyte plasma membranes by immunoaffinity chromatography on monoclonal antibody-Sepharose. Six of the proteins (all but HA 16) exhibit domain-specific localizations (either bile canalicular or sinusoidal/lateral) about the hepatocyte surface. The authors identified three of these protein antigens as leucine aminopeptidase (HA 201), dipeptidyl peptidase IV (HA 301), and the asialoglycoprotein receptor (HA 116). They also developed 125 I-lectin blotting procedures that, when used in conjunction with chemical and glycosidase treatments, permitted a comparison of the types of oligosaccharides present on the seven proteins. All seven are sialoglycoproteins, based upon the effects of prior neuraminidase and periodate-aniline-cyanoborohydride treatments of blots on labeling by 125 I-wheat germ agglutinin. Depending upon the protein, they estimated the presence of 2-26 N-linked oligosaccharides/polypeptide chain from the Mr reductions accompanying chemical or enzymatic deglycosylation. Three of these mature plasma membrane proteins (HA 21, HA 116, and HA 4) have both high mannose-type and complex-type oligosaccharides on every copy of their polypeptide chains

  2. Solid-phase assay for the phosphorylation of proteins blotted on nitrocellulose membrane filters

    International Nuclear Information System (INIS)

    Valtorta, F.; Schiebler, W.; Jahn, R.; Ceccarelli, B.; Greengard, P.

    1986-01-01

    A new procedure for the phosphorylation and assay of phosphoproteins is described. Proteins are solubilized from tissue samples, separated by polyacrylamide gel electrophoresis, transferred onto nitrocellulose membrane filters, and the blotted polypeptides are phyosphorylated with the catalytic subunit of cyclic AMP (adenosine 3':5'-monophosphate)-dependent protein kinase. The method was developed for the assay of dephosphosynapsin I, but it has also proven suitable for the phosphorylation of other proteins. The patterns of phosphorylation of tissue samples phosphorylated using the new method are similar to those obtained using the conventional test tube assay. Once phosphorylated, the adsorbed proteins can be digested with proteases and subjected to phosphopeptide mapping. The phosphorylated blotted proteins can also be analyzed by overlay techniques for the immunological detection of polypeptides

  3. Purification of plant plasma membranes by two-phase partitioning and measurement of H+ pumping.

    Science.gov (United States)

    Lund, Anette; Fuglsang, Anja Thoe

    2012-01-01

    Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.Purification of plasma membranes by two-phase partitioning is based on the separation of microsomal membranes, dependent on their surface hydrophobicity. Here we explain the purification of plasma membranes from a relatively small amount of material (7-30 g). The fluorescent probe ACMA (9-amino-6-chloro-2-metoxyacridine) accumulates inside the vesicles upon protonation. Quenching of ACMA in the solution corresponds to the H(+) transport across the plasma membrane. Before running the assay, the plasma membranes are incubated with the detergent Brij-58 in order to create inside-out vesicles.

  4. Ultrastructural and biochemical detection of biotin and biotinylated polypeptides in Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Santos P.R.P.

    1997-01-01

    Full Text Available Biotinylation is proposed for the identification of surface proteins in Schistosoma mansoni using the streptavidin-HRP conjugate for the detection of labeled polypeptides. However, control samples also showed several endogenous biotinylated polypeptides. In an attempt to determine the possibility of nonspecific binding between the streptavidin-HRP conjugate and polypeptides from S. mansoni, the conjugate was blocked with biotinamidecaproate-N-hydroxysuccinimide ester (BcapNHS before biotin-streptavidin blotting. No bands were detected on the nitrocellulose sheet, demonstrating the specific recognition of biotin by the streptavidin present in the conjugate. Whole cercariae and cercarial bodies and tails showed several endogenous biotinylated polypeptides. The biotin concentration was 13 µg/190,000 cercariae. Adult worms presented less endogenous biotinylated polypeptides than cercariae. These results may be due to changes in the environment from aerobic to anaerobic conditions when cercarial bodies (schistosomula are transformed into adult worms and a decrease in CO2 production may occur. Cercariae, cercarial bodies and adult male worms were examined by transmission electron microscopy employing an avidin-colloidal gold conjugate for the detection of endogenous biotin. Gold particles were distributed mainly on the muscle fibers, but dispersed granules were observed in the tegument, mitochondria and cytosol. The discovery of endogenous biotin in S. mansoni should be investigated in order to clarify the function of this vitamin in the parasite

  5. DETRIMENTAL EFFECTS OF ACTIVE INTERNAL LIMITING MEMBRANE PEELING DURING EPIRETINAL MEMBRANE SURGERY: Microperimetric Analysis.

    Science.gov (United States)

    Deltour, Jean-Baptiste; Grimbert, Pierre; Masse, Helene; Lebreton, Olivier; Weber, Michel

    2017-03-01

    The aim of the study was to assess the microperimetric consequences of active internal limiting membrane (ILM) peeling during idiopathic epimacular membrane (IEMM) surgery. This retrospective monocentric study included 32 eyes of 31 consecutive patients who underwent IEMM surgery. Internal limiting membrane integrity was assessed by ILM Blue staining after IEMM removal: peeling was spontaneous (Group S) or active (Group A). Preprocedure and postprocedure (1 and 6 months) examinations were performed using visual acuity determination, spectral domain optical coherence tomography and microperimetry. Twenty-two eyes had an "active ILM peeling" and 10 a "spontaneous ILM peeling." Both groups had comparable and significant improvements in visual acuity 6 months after surgery (+1.82 lines [+9 letters] [Group A] and +1.51 lines [+8 letters] [Group S], P peeling has progressively become generalized in IEMM surgery to reduce recurrences. This additional procedure does not change the postoperative visual acuity but increases the development of deeper microscotomas. The real impact on the quality of vision remains unclear. Active ILM peeling in IEMM surgery may be responsible for visual impairment related to its microtraumatic effects.

  6. Identification of a lysosome membrane protein which could mediate ATP-dependent stable association of lysosomes to microtubules

    International Nuclear Information System (INIS)

    Mithieux, G.; Rousset, B.

    1989-01-01

    We have previously reported that purified thyroid lysosomes bind to reconstituted microtubules to form stable complexes, a process which is inhibited by ATP. Among detergent-solubilized lysosomal membrane protein, we identified a 50-kDa molecular component which binds to preassembled microtubules. The binding of this polypeptide to microtubules was decreased in the presence of ATP. We purified this 50-kDa protein by affinity chromatography on immobilized ATP. The 50-kDa protein bound to the ATP column was eluted by 1 mM ATP. The purified protein, labeled with 125I, exhibited the ability of interacting with microtubules. The binding process was inhibited by increasing concentrations of ATP, the half-maximal inhibitory effect being obtained at an ATP concentration of 0.35 mM. The interaction of the 50-kDa protein with microtubules is a saturable phenomenon since the binding of the 125I-labeled 50-kDa protein was inhibited by unlabeled solubilized lysosomal membrane protein containing the 50-kDa polypeptide but not by the same protein fraction from which the 50-kDa polypeptide had been removed by the ATP affinity chromatography procedure. The 50-kDa protein has the property to bind to pure tubulin coupled to an insoluble matrix. The 50-kDa protein was eluted from the tubulin affinity column by ATP. These findings support the conclusion that a protein inserted into the lysosomal membrane is able to bind directly to microtubules in a process which can be regulated by ATP. We propose that this protein could account for the association of lysosomes to microtubules demonstrated both in vitro and in intact cells

  7. Accumulation of New Polypeptides in Ri T-DNA-Transformed Roots of Tomato (Lycopersicon esculentum) during the Development of Vesicular-Arbuscular Mycorrhizae.

    Science.gov (United States)

    Simoneau, P; Louisy-Louis, N; Plenchette, C; Strullu, D G

    1994-06-01

    Root-inducing transferred-DNA (Ri T-DNA)-transformed roots of tomato (Lycopersicon esculentum) were in vitro inoculated with surface-sterilized vesicular-arbuscular mycorrhizal leek root pieces. About 1 week after inoculation, the infection of the transformed root culture by the fungal endophyte was confirmed by photonic microscopy. Total proteins were extracted from the mycorrhizal roots and analyzed by two-dimensional polyacrylamide gel electrophoresis. Control gels were run with proteins extracted from noninoculated roots mixed with purified intraradical vesicles and extraradical hyphae. Comparison of the resulting patterns revealed the presence of two polypeptides with estimated apparent masses of 24 and 39 kDa that were detected only in infected roots. Polypeptides with similar migration parameters were not detected in roots challenged with spore extracts, suggesting that the accumulation of the polypeptides was directly linked to root colonization by the fungus rather than to induction by fungus-derived elicitors.

  8. Preparation of Two-Layer Anion-Exchange Poly(ethersulfone Based Membrane: Effect of Surface Modification

    Directory of Open Access Journals (Sweden)

    Lucie Zarybnicka

    2016-01-01

    Full Text Available The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride surface layer was covalently attached onto the poly(ethersulfone support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.

  9. Quasi-three dimensional dynamic modeling of a proton exchange membrane fuel cell with consideration of two-phase water transport through a gas diffusion layer

    International Nuclear Information System (INIS)

    Kang, Sanggyu

    2015-01-01

    Water management is one of the challenging issues for low-temperature PEMFCs (proton exchange membrane fuel cells). When liquid water is formed at the GDL (gas diffusion layer), the pathway of reactant gas can be blocked, which inhibits the electrochemical reaction of PEMFC. Thus, liquid water transport through GDL is a critical factor determining the performance of a PEMFC. In present study, quasi-three dimensional dynamic modeling of PEMFC with consideration of two-phase water transport through GDL is developed. To investigate the distributions of PEMFC characteristics, including current density, species mole fraction, and membrane hydration, the PEMFC was discretized into twenty control volumes along the anode channel. To resolve the mass and energy conservation, the PEMFC is discretized into eleven and fifteen control volumes in the perpendicular direction, respectively. The dynamic variation of PEMFC characteristics of cell voltage, overvoltage of activation and ohmic, liquid water saturation through a GDL, and oxygen concentration were captured during transient behavior. - Highlights: • A quasi-three dimensional two-phase dynamic model of PEMFC is developed. • Presented model is validated by comparison with experimental data. • Two-phase model is compared with one-phase model at steady-states and transients.

  10. Comparison between the polypeptide profile of halophilic bacteria and salt tolerant plants.

    Science.gov (United States)

    Muñoz, G; González, C; Flores, P; Prado, B; Campos, V

    1997-12-01

    Changes in the polypeptide profile induced by salt stress in halotolerant and halophilic bacteria, isolated from the Atacama desert (northern Chile), were compared with those in the cotyledons of Prosopis chilensis (Leguminoseae) seedlings, a salt tolerant plant. SDS-PAGE analyses show the presence of four predominant polypeptides, with molecular weights around 78, 70, 60 and 44 kDa respectively, both in bacteria and in cotyledons from P. chilensis seedlings raised under salt stress conditions. Moreover, the 60 and 44 kDa polypeptides seem to be salt responsive, since their concentration increases with increasing NaCl in the growth medium. Our results suggest a common mechanism for salt tolerance in prokaryotes and in eukaryotes.

  11. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  12. cDNA encoding a polypeptide including a hev ein sequence

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel, Natasha V. (Okemos, MI); Broekaert, Willem F. (Dilbeek, BE); Chua, Nam-Hai (Scarsdale, NY); Kush, Anil (New York, NY)

    2000-07-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  13. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum.

    Science.gov (United States)

    Berginc, Katja; Zakelj, Simon; Levstik, Lea; Ursic, Darko; Kristl, Albin

    2007-05-01

    Membrane transport characteristics of a paracellular permeability marker fluorescein were evaluated using artificial membrane, Caco-2 cell monolayers and rat jejunum, all mounted in side-by-side diffusion cells. Modified Ringer buffers with varied pH values were applied as incubation salines on both sides of artificial membrane, cell culture monolayers or rat jejunum. Passive transport according to pH partition theory was determined using all three permeability models. In addition to that, active transport of fluorescein in the M-S (mucosal-to-serosal) direction through rat jejunum was observed. The highest M-S P(app) values regarding the active transport through the rat jejunum were observed in incubation saline with pH 6.5. Fluorescein transport through the rat jejunum was inhibited by DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and alpha-CHC (alpha-cyano-4-hydroxycinnamic acid). Thus, we assume that two pH-dependent influx transporters could be involved in the fluorescein membrane transport through the intestinal (jejunal) epithelium. One is very likely an MCT (monocarboxylic acid cotransporter) isoform, inhibited by specific MCT inhibitor alpha-CHC, while the involvement of the second one with overlapping substrate/inhibitor specificities (most probably a member of the organic anion-transporting polypeptide family, inhibited at least partially by DIDS) could not be excluded.

  14. [3H]PN200-110 and [3H]ryanodine binding and reconstitution of ion channel activity with skeletal muscle membranes

    International Nuclear Information System (INIS)

    Hamilton, S.L.; Alvarez, R.M.; Fill, M.; Hawkes, M.J.; Brush, K.L.; Schilling, W.P.; Stefani, E.

    1989-01-01

    Skeletal muscle membranes derived either from the tubular (T) network or from the sarcoplasmic reticulum (SR) were characterized with respect to the binding of the dihydropyridine, [ 3 H]PN200-110, and the alkaloid, [ 3 H]ryanodine; polypeptide composition; and ion channel activity. Conditions for optimizing the binding of these radioligands are discussed. A bilayer pulsing technique is described and is used to examine the channels present in these membranes. Fusion of T-tubule membranes into bilayers revealed the presence of chloride channels and dihydropyridine-sensitive calcium channels with three distinct conductances. The dihydropyridine-sensitive channels were further characterized with respect to their voltage dependence. Pulsing experiments indicated that two different populations of dihydropyridine-sensitive channels existed. Fusion of heavy SR vesicles revealed three different ion channels; the putative calcium release channel, a potassium channel, and a chloride channel. Thus, this fractionation procedure provides T-tubules and SR membranes which, with radioligand binding and single channel recording techniques, provide a useful tool to study the characteristics of skeletal muscle ion channels and their possible role in excitation-contraction coupling

  15. Two-component fluid membranes near repulsive walls: Linearized hydrodynamics of equilibrium and nonequilibrium states.

    Science.gov (United States)

    Sankararaman, Sumithra; Menon, Gautam I; Sunil Kumar, P B

    2002-09-01

    We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al., Phys. Rev. E 64, 021908 (2001)] for nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid egg phosphatidyl choline (EPC) bilayers. The pump-membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two components, in which the effects of curvature-concentration coupling are significant, above the threshold for phase separation. We then discuss the fluctuations and mode structure in the steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played by such couplings may need to be reevaluated.

  16. Biosynthesis of human sialophorins and analysis of the polypeptide core

    International Nuclear Information System (INIS)

    Remold-O'Donnell, E.; Kenney, D.; Rosen, F.S.

    1987-01-01

    Biosynthesis was examined of sialophorin (formerly called gpL115) which is altered in the inherited immunodeficiency Wiskott-Aldrich syndrome. Sialophorin is greater than 50% carbohydrate, primarily O-linked units of sialic acid, galactose, and galactosamine. Pulse-labeling with [ 35 S]methionine and chase incubation established that sialophorin is synthesized in CEM lymphoblastoid cells as an Mr 62,000 precursor which is converted within 45 min to mature glycosylated sialophorin, a long-lived molecule. Experiments with tunicamycin and endoglycosidase H demonstrated that sialophorin contains N-linked carbohydrate (approximately two units per molecule) and is therefore an N,O-glycoprotein. Pulse-labeling of tunicamycin-treated CEM cells together with immunoprecipitation provided the means to isolate the [ 35 S]-methionine-labeled polypeptide core of sialophorin and determine its molecular weight (58,000). This datum allowed us to express the previously established composition on a per molecule basis and determine that sialophorin molecules contain approximately 520 amino acid residues and greater than or equal to 100 O-linked carbohydrate units. A recent study showed that various blood cells express sialophorin and that there are two molecular forms: lymphocyte/monocyte sialophorin and platelet/neutrophil sialophorin. Biosynthesis of the two forms was compared by using sialophorin of CEM cells and sialophorin of MOLT-4 cells (another lymphoblastoid line) as models for lymphocyte/monocyte sialophorin and platelet/neutrophil sialophorin, respectively. The time course of biosynthesis and the content of N units were found to be identical for the two sialophorin species. [ 35 S]Methionine-labeled polypeptide cores of CEM sialophorin and MOLT sialophorin were isolated and compared by electrophoresis, isoelectrofocusing, and a newly developed peptide mapping technique

  17. Double-hydrophobic elastin-like polypeptides with added functional motifs: Self-assembly and cytocompatibility.

    Science.gov (United States)

    Le, Duc H T; Tsutsui, Yoko; Sugawara-Narutaki, Ayae; Yukawa, Hiroshi; Baba, Yoshinobu; Ohtsuki, Chikara

    2017-09-01

    We have recently developed a novel double-hydrophobic elastin-like triblock polypeptide called GPG, designed after the uneven distribution of two different hydrophobic domains found in elastin, an extracellular matrix protein providing elasticity and resilience to tissues. Upon temperature trigger, GPG undergoes a sequential self-assembling process to form flexible beaded nanofibers with high homogeneity and excellent dispersibility in water. Given that GPG might be a potential elastin-mimetic material, we sought to explore the biological activities of this block polypeptide. Besides GPG, several functionalized derivatives were also constructed by fusing functional motifs such as KAAK or KAAKGRGDS at the C-terminal of GPG. Although the added motifs affected the kinetics of fiber formation and β-sheet contents, all three GPGs assembled into beaded nanofibers at the physiological temperature. The resulting GPG nanofibers preserved their beaded structures in cell culture medium; therefore, they were coated on polystyrene substrates to study their cytocompatibility toward mouse embryonic fibroblasts, NIH-3T3. Among the three polypeptides, GPG having the cell-binding motif GRGDS derived from fibronectin showed excellent cell adhesion and cell proliferation properties compared to other conventional materials, suggesting its promising applications as extracellular matrices for mammalian cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2475-2484, 2017. © 2017 Wiley Periodicals, Inc.

  18. Examining hemodialyzer membrane performance using proteomic technologies.

    Science.gov (United States)

    Bonomini, Mario; Pieroni, Luisa; Di Liberato, Lorenzo; Sirolli, Vittorio; Urbani, Andrea

    2018-01-01

    The success and the quality of hemodialysis therapy are mainly related to both clearance and biocompatibility properties of the artificial membrane packed in the hemodialyzer. Performance of a membrane is strongly influenced by its interaction with the plasma protein repertoire during the extracorporeal procedure. Recognition that a number of medium-high molecular weight solutes, including proteins and protein-bound molecules, are potentially toxic has prompted the development of more permeable membranes. Such membrane engineering, however, may cause loss of vital proteins, with membrane removal being nonspecific. In addition, plasma proteins can be adsorbed onto the membrane surface upon blood contact during dialysis. Adsorption can contribute to the removal of toxic compounds and governs the biocompatibility of a membrane, since surface-adsorbed proteins may trigger a variety of biologic blood pathways with pathophysiologic consequences. Over the last years, use of proteomic approaches has allowed polypeptide spectrum involved in the process of hemodialysis, a key issue previously hampered by lack of suitable technology, to be assessed in an unbiased manner and in its full complexity. Proteomics has been successfully applied to identify and quantify proteins in complex mixtures such as dialysis outflow fluid and fluid desorbed from dialysis membrane containing adsorbed proteins. The identified proteins can also be characterized by their involvement in metabolic and signaling pathways, molecular networks, and biologic processes through application of bioinformatics tools. Proteomics may thus provide an actual functional definition as to the effect of a membrane material on plasma proteins during hemodialysis. Here, we review the results of proteomic studies on the performance of hemodialysis membranes, as evaluated in terms of solute removal efficiency and blood-membrane interactions. The evidence collected indicates that the information provided by proteomic

  19. Membrane-Based Inverse Transition Cycling: An Improved Means for Purifying Plant-Derived Recombinant Protein-Elastin-Like Polypeptide Fusions

    Directory of Open Access Journals (Sweden)

    Udo Conrad

    2011-04-01

    Full Text Available Elastin-like peptide (ELP was fused to two different avian flu H5N1 antigens and expressed in transgenic tobacco plants. The presence of the ELP tag enhanced the accumulation of the heterologous proteins in the tobacco leaves. An effective membrane-based Inverse Transition Cycling was developed to recover the ELPylated antigens and antibodies from plant material. The functionality of both the ELPylated neuraminidase and an ELPylated nanobody was demonstrated.

  20. The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes

    Science.gov (United States)

    Peiró, Ana; Martínez-Gil, Luis; Tamborero, Silvia; Pallás, Vicente

    2014-01-01

    ABSTRACT Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta. Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport

  1. Analysis of Urine Composition in Type II Diabetic Mice after Intervention Therapy Using Holothurian Polypeptides

    Directory of Open Access Journals (Sweden)

    Yanyan Li

    2017-07-01

    Full Text Available Hydrolysates and peptide fractions (PF obtained from sea cucumber with commercial enzyme were studied on the hyperglycemic and renal protective effects on db/db rats using urine metabolomics. Compared with the control group the polypeptides from the two species could significantly reduce the urine glucose and urea. We also tried to address the compositions of highly expressed urinary proteins using a proteomics approach. They were serum albumins, AMBP proteins, negative trypsin, elastase, and urinary protein, GAPDH, a receptor of urokinase-type plasminogen activator (uPAR, and Ig kappa chain C region. We used the electronic nose to quickly detect changes in the volatile substances in mice urine after holothurian polypeptides (HPP fed, and the results show it can identify the difference between treatment groups with the control group without overlapping. The protein express mechanism of HPP treating diabetes was discussed, and we suggested these two peptides with the hypoglycemic and renal protective activity might be utilized as nutraceuticals.

  2. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands

  3. Biosynthesis and characterization of typical fibroin crystalline polypeptides of silkworm Bombyx mori

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiannan, E-mail: wangjn@suda.edu.cn [College of Material Engineering, Soochow University, Suzhou 215021 (China); Yan Shuqin [College of Material Engineering, Soochow University, Suzhou 215021 (China); Lu Changde [Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Bai Lun [College of Material Engineering, Soochow University, Suzhou 215021 (China)

    2009-05-05

    We aimed to investigate the self-organization/self-assembly mechanisms of silkworm fibroin-based material. In the present study, for the first time, we designed and multimerized four DNA 'monomer' sequences from structurally simple fibroin crystalline peptides or analog, [GAGAGX] (X = A, S, Y and V) to encode polypeptides [GAGAGX]{sub 16} (eGA, eGS, eGY and eGV) using a 'head-to-tail' construction strategy. Multimers were cloned into pGEX-KG and fusion proteins GST-[GAGAGX]{sub 16} (KGA, KGS, KGY and KGV) were efficiently expressed in Escherichia coli. These fusion proteins were isolated and purified by GST affinity chromatography and confirmed by SDS-PAGE and Western blot analysis using antibody reactive to GST. The polypeptides were cleavaged from GST fusion proteins by digesting with thrombin enzyme. The composition of the four polypeptides was confirmed by composition analysis of amino acids, and their abilities to form {beta}-sheet structure were determined by ThT fluorescence spectral analysis. The content of {beta}-sheet among the four polypeptides followed the order: eGS > eGV > eGY > eGA.

  4. Brachytherapy Using Elastin-Like Polypeptides with (131)I Inhibit Tumor Growth in Rabbits with VX2 Liver Tumor.

    Science.gov (United States)

    Liu, Xinpei; Shen, Yiming; Zhang, Xuqian; Lin, Rui; Jia, Qiang; Chang, Yixiang; Liu, Wenge; Liu, Wentian

    2016-10-01

    Brachytherapy is a targeted type of radiotherapy utilized in the treatment of cancers. Elastin-like polypeptides are a unique class of genetically engineered peptide polymers that have several attractive properties for brachytherapy. To explore the feasibility and application of brachytherapy for VX2 liver tumor using elastin-like polypeptides with (131)I so as to provide reliable experimental evidence for a new promising treatment of liver cancer. Elastin-like polypeptide as carrier was labeled with (131)I using the iodogen method. Ten eligible rabbits with VX2 liver tumor were randomly divided into the treatment group (n = 5) and control group (n = 5). The treatment group received brachytherapy using elastin-like polypeptide with (131)I, and in the control group, elastin-like polypeptide was injected into the VX2 liver tumor as a control. Periodic biochemical and imaging surveillances were required to assess treatment efficacy. The stability of elastin-like polypeptide with (131)I in vitro was maintained at over 96.8 % for 96 h. Biochemistry and imaging indicated brachytherapy using elastin-like polypeptide with (131)I for liver tumor can improve liver function and inhibit tumor growth (P Elastin-like polypeptide can be an ideal carrier of (131)I and have high labeling efficiency, radiochemical purity and stability. Brachytherapy using elastin-like polypeptide with (131)I for liver tumor is a useful therapy that possesses high antitumor efficacy advantages.

  5. Kir2.1 channels set two levels of resting membrane potential with inward rectification.

    Science.gov (United States)

    Chen, Kuihao; Zuo, Dongchuan; Liu, Zheng; Chen, Haijun

    2018-04-01

    Strong inward rectifier K + channels (Kir2.1) mediate background K + currents primarily responsible for maintenance of resting membrane potential. Multiple types of cells exhibit two levels of resting membrane potential. Kir2.1 and K2P1 currents counterbalance, partially accounting for the phenomenon of human cardiomyocytes in subphysiological extracellular K + concentrations or pathological hypokalemic conditions. The mechanism of how Kir2.1 channels contribute to the two levels of resting membrane potential in different types of cells is not well understood. Here we test the hypothesis that Kir2.1 channels set two levels of resting membrane potential with inward rectification. Under hypokalemic conditions, Kir2.1 currents counterbalance HCN2 or HCN4 cation currents in CHO cells that heterologously express both channels, generating N-shaped current-voltage relationships that cross the voltage axis three times and reconstituting two levels of resting membrane potential. Blockade of HCN channels eliminated the phenomenon in K2P1-deficient Kir2.1-expressing human cardiomyocytes derived from induced pluripotent stem cells or CHO cells expressing both Kir2.1 and HCN2 channels. Weakly inward rectifier Kir4.1 or inward rectification-deficient Kir2.1•E224G mutant channels do not set such two levels of resting membrane potential when co-expressed with HCN2 channels in CHO cells or when overexpressed in human cardiomyocytes derived from induced pluripotent stem cells. These findings demonstrate a common mechanism that Kir2.1 channels set two levels of resting membrane potential with inward rectification by balancing inward currents through different cation channels such as hyperpolarization-activated HCN channels or hypokalemia-induced K2P1 leak channels.

  6. Pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor is expressed during embryonic development of the earthworm.

    Science.gov (United States)

    Boros, Akos; Somogyi, Ildikó; Engelmann, Péter; Lubics, Andrea; Reglodi, Dóra; Pollák, Edit; Molnár, László

    2010-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP)-like molecules have been shown to be present in cocoon albumin and in Eisenia fetida embryos at an early developmental stage (E1) by immunocytochemistry and radioimmunoassay. Here, we focus on detecting the stage at which PAC1 receptor (PAC1R)-like immunoreactivity first appears in germinal layers and structures, e.g., various parts of the central nervous system (CNS), in developing earthworm embryos. PAC1R-like immunoreactivity was revealed by Western blot and Far Western blot as early as the E2 developmental stage, occurring in the ectoderm and later in specific neurons of the developing CNS. Labeled CNS neurons were first seen in the supraesophageal ganglion (brain) and subsequently in the subesophageal and ventral nerve cord ganglia. Ultrastructurally, PAC1Rs were located mainly on plasma membranes and intracellular membranes, especially on cisternae of the endoplasmic reticulum. Therefore, PACAP-like compounds probably influence the differentiation of germinal layers (at least the ectoderm) and of some neurons and might act as signaling molecules during earthworm embryonic development.

  7. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin.

    Science.gov (United States)

    Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei

    2012-12-01

    Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins

    International Nuclear Information System (INIS)

    Kucharska, Iga; Edrington, Thomas C.; Liang, Binyong; Tamm, Lukas K.

    2015-01-01

    Solution NMR spectroscopy has become a robust method to determine structures and explore the dynamics of integral membrane proteins. The vast majority of previous studies on membrane proteins by solution NMR have been conducted in lipid micelles. Contrary to the lipids that form a lipid bilayer in biological membranes, micellar lipids typically contain only a single hydrocarbon chain or two chains that are too short to form a bilayer. Therefore, there is a need to explore alternative more bilayer-like media to mimic the natural environment of membrane proteins. Lipid bicelles and lipid nanodiscs have emerged as two alternative membrane mimetics that are compatible with solution NMR spectroscopy. Here, we have conducted a comprehensive comparison of the physical and spectroscopic behavior of two outer membrane proteins from Pseudomonas aeruginosa, OprG and OprH, in lipid micelles, bicelles, and nanodiscs of five different sizes. Bicelles stabilized with a fraction of negatively charged lipids yielded spectra of almost comparable quality as in the best micellar solutions and the secondary structures were found to be almost indistinguishable in the two environments. Of the five nanodiscs tested, nanodiscs assembled from MSP1D1ΔH5 performed the best with both proteins in terms of sample stability and spectral resolution. Even in these optimal nanodiscs some broad signals from the membrane embedded barrel were severely overlapped with sharp signals from the flexible loops making their assignments difficult. A mutant OprH that had two of the flexible loops truncated yielded very promising spectra for further structural and dynamical analysis in MSP1D1ΔH5 nanodiscs

  9. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere

    Science.gov (United States)

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  10. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere.

    Science.gov (United States)

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  11. Application of Statistical Thermodynamics To Predict the Adsorption Properties of Polypeptides in Reversed-Phase HPLC.

    Science.gov (United States)

    Tarasova, Irina A; Goloborodko, Anton A; Perlova, Tatyana Y; Pridatchenko, Marina L; Gorshkov, Alexander V; Evreinov, Victor V; Ivanov, Alexander R; Gorshkov, Mikhail V

    2015-07-07

    The theory of critical chromatography for biomacromolecules (BioLCCC) describes polypeptide retention in reversed-phase HPLC using the basic principles of statistical thermodynamics. However, whether this theory correctly depicts a variety of empirical observations and laws introduced for peptide chromatography over the last decades remains to be determined. In this study, by comparing theoretical results with experimental data, we demonstrate that the BioLCCC: (1) fits the empirical dependence of the polypeptide retention on the amino acid sequence length with R(2) > 0.99 and allows in silico determination of the linear regression coefficients of the log-length correction in the additive model for arbitrary sequences and lengths and (2) predicts the distribution coefficients of polypeptides with an accuracy from 0.98 to 0.99 R(2). The latter enables direct calculation of the retention factors for given solvent compositions and modeling of the migration dynamics of polypeptides separated under isocratic or gradient conditions. The obtained results demonstrate that the suggested theory correctly relates the main aspects of polypeptide separation in reversed-phase HPLC.

  12. Generation of polypeptide-templated gold nanoparticles using ionizing radiation.

    Science.gov (United States)

    Walker, Candace Rae; Pushpavanam, Karthik; Nair, Divya Geetha; Potta, Thrimoorthy; Sutiyoso, Caesario; Kodibagkar, Vikram D; Sapareto, Stephen; Chang, John; Rege, Kaushal

    2013-08-13

    Ionizing radiation, including γ rays and X-rays, are high-energy electromagnetic radiation with diverse applications in nuclear energy, astrophysics, and medicine. In this work, we describe the use of ionizing radiation and cysteine-containing elastin-like polypeptides (C(n)ELPs, where n = 2 or 12 cysteines in the polypeptide sequence) for the generation of gold nanoparticles. In the presence of C(n)ELPs, ionizing radiation doses higher than 175 Gy resulted in the formation of maroon-colored gold nanoparticle dispersions, with maximal absorbance at 520 nm, from colorless metal salts. Visible color changes were not observed in any of the control systems, indicating that ionizing radiation, gold salt solution, and C(n)ELPs were all required for nanoparticle formation. The hydrodynamic diameters of nanoparticles, determined using dynamic light scattering, were in the range of 80-150 nm, while TEM imaging indicated the formation of gold cores 10-20 nm in diameter. Interestingly, C2ELPs formed 1-2 nm diameter gold nanoparticles in the absence of radiation. Our results describe a facile method of nanoparticle formation in which nanoparticle size can be tailored based on radiation dose and C(n)ELP type. Further improvements in these polypeptide-based systems can lead to colorimetric detection of ionizing radiation in a variety of applications.

  13. Characterization of an amidated form of pancreatic polypeptide from the daddy sculpin (Cottus scorpius).

    Science.gov (United States)

    Conlon, J M; Schmidt, W E; Gallwitz, B; Falkmer, S; Thim, L

    1986-12-30

    The primary structure of pancreatic polypeptide from the teleostean fish, Cottus scorpius (daddy sculpin) was established as: YPPQPESPGGNASPEDWAKYHAAVRHYVNLITRQRYNH2 The presence of a COOH-terminally alpha-amidated amino acid was established using an HPLC method of general applicability. Although the peptide shows strong homology towards anglerfish pancreatic polypeptide (86%), homology towards porcine peptide YY (PYY) (61%) and porcine neuropeptide Y (NPY) (61%) was greater than towards porcine pancreatic polypeptide (PP) (47%). This result supports suggestions that the gene duplication events which led to PP, NPY and PYY formation took place after the time of divergence of fish and mammals.

  14. Molecular diversity and hypoglycemic polypeptide-P content of Momordica charantia in different accessions and different seasons.

    Science.gov (United States)

    Tian, Miao; Zeng, Xiang-Qing; Song, Huan-Lei; Hu, Shan-Xin; Wang, Fu-Jun; Zhao, Jian; Hu, Zhi-Bi

    2015-04-01

    Momordica charantia (MC) has been used for treating diabetes mellitus from ancient times in Asia, Africa and South America. There are many MC accessions in local markets. Polypeptide-P as a main hypoglycemic component in MC was first studied in this experiment to illustrate the different contents in MC of different accessions and different harvesting times. Nineteen MC accessions collected from different regions were clustered into three groups using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) molecular markers. Content of polypeptide-P in the tested MC accessions was detected by western blot (WB) method. The WB results revealed that polypeptide-P was detected in MC accessions harvested in June and July but not in September and October. Furthermore, Polypeptide-P content corresponded well with the MC accessions. Our results suggest that the MC accessions and the harvesting times or the weather during harvest play significant roles in high content of polypeptide-P. © 2014 Society of Chemical Industry.

  15. Reactive membrane technology: Two case studies

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Luo, Jianquan; Pinelo, Manuel

    2014-01-01

    investigated the effect of applied pressure, enzyme concentration, pH, and membrane properties on fouling-induced enzyme immobilization. In another study, the production of the human milk oligosaccharide 3’-sialyllactose by an engineered sialidase from Trypanosoma rangeli (Tr6) was significantly improved......Enzymatic processes are generally sustainable processes that use mild conditions and natural substrates. Membrane technology can be employed for enzyme immobilization as well as for recycling free enzymes. Using alcohol dehydrogenase (ADH) as part of a process to recycle CO2 to methanol, we...... in an enzymatic membrane reactor. The entire process can be improved by employing a series of ultra- and nanofiltrations....

  16. Recent developments on ion-exchange membranes and electro-membrane processes.

    Science.gov (United States)

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  17. Inhibition and labeling of the plant plasma membrane H+-ATPase with N-ethylmaleimide

    International Nuclear Information System (INIS)

    Katz, D.B.; Sussman, M.R.

    1987-01-01

    H + -ATPase activity in plasma membranes isolated from Avena sativa root cells is inhibited by N-ethylmaleimide, a covalent modifier of protein sulfhydryl groups. The rate of inhibition is reduced by ADP, MgADP, and MgATP, but even at 40 millimolar ADP the enzyme is only partially protected against inactivation. When plasma membranes are treated with N-[2- 3 H]ethylmaleimide and analyzed by sodium dodecyl sulfate polyaerylamide gel electrophoresis, prominent radioactive bands appear at M/sub r/ = 100,000 and several other positions. However, only radioactivity in the M/sub r/ = 100,000 protein is reduced by the presence of MgADP. These results provide independent evidence that the M/sub r/ = 100,000 polypeptide which is observed in purified preparations of the enzyme is the catalytic subunit of the H + -ATPase. When tryptic peptides are produced from N-[2- 3 H]ethylmaleimide labeled M/sub r/ = 100,000 protein and separated by reverse phase high performance liquid chromatography, two radioactive peaks are observed for which N-[2- 3 H]ethylmaleimide incorporation is reduced in the presence of MgADP

  18. In vivo expression of the lacY gene in two segments leads to functional lac permease

    International Nuclear Information System (INIS)

    Bibi, E.; Kaback, H.R.

    1990-01-01

    The lacY gene of Escherichia coli was cut into two approximately equal-size fragments with Afl II and subcloned individually or together under separate lac operator/promoters in plasmid pT7-5. Under these conditions, lac permease is expressed in two portions: (i) the N-terminal portion (the N terminus, the first six putative transmembrane helices, and most of putative loop 7) and (ii) the C-terminal portion (the last six putative transmembrane helices and the C terminus). Cells harboring pT7-5 encoding both fragments transport lactose at about 30% the rate of cells expressing intact permease to a comparable steady-state level of accumulation. In contrast, cells expressing either half of the permease independently do not transport lactose. As judged by [ 35 S]methionine labeling and immunoblotting, intact permease in completely absent from the membrane of cells expressing lacY fragments either individually or together. Thus, transport activity must result from an association between independently synthesized pieces of lac permease. When the gene fragments are expressed individually, the N-terminal portion of the permease is observed inconsistently, and the C-terminal portion is not observed. When the gene fragments are expressed together, polypeptides identified as the N- and C-terminal moieties of the permease are found in the membrane. It is concluded that the N- or C-terminal halves of lac permease are proteolyzed when synthesized independently and that association between the two complementing polypeptides leads to a more stable, catalytically active complex

  19. Numerical calculation on a two-step subdiffusion behavior of lateral protein movement in plasma membranes

    Science.gov (United States)

    Sumi, Tomonari; Okumoto, Atsushi; Goto, Hitoshi; Sekino, Hideo

    2017-10-01

    A two-step subdiffusion behavior of lateral movement of transmembrane proteins in plasma membranes has been observed by using single-molecule experiments. A nested double-compartment model where large compartments are divided into several smaller ones has been proposed in order to explain this observation. These compartments are considered to be delimited by membrane-skeleton "fences" and membrane-protein "pickets" bound to the fences. We perform numerical simulations of a master equation using a simple two-dimensional lattice model to investigate the heterogeneous diffusion dynamics behavior of transmembrane proteins within plasma membranes. We show that the experimentally observed two-step subdiffusion process can be described using fence and picket models combined with decreased local diffusivity of transmembrane proteins in the vicinity of the pickets. This allows us to explain the two-step subdiffusion behavior without explicitly introducing nested double compartments.

  20. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes.

    Science.gov (United States)

    Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing

    2014-01-01

    The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy.

    Science.gov (United States)

    Eichmann, Cédric; Preissler, Steffen; Riek, Roland; Deuerling, Elke

    2010-05-18

    The folding of proteins in living cells may start during their synthesis when the polypeptides emerge gradually at the ribosomal exit tunnel. However, our current understanding of cotranslational folding processes at the atomic level is limited. We employed NMR spectroscopy to monitor the conformation of the SH3 domain from alpha-spectrin at sequential stages of elongation via in vivo ribosome-arrested (15)N,(13)C-labeled nascent polypeptides. These nascent chains exposed either the entire SH3 domain or C-terminally truncated segments thereof, thus providing snapshots of the translation process. We show that nascent SH3 polypeptides remain unstructured during elongation but fold into a compact, native-like beta-sheet assembly when the entire sequence information is available. Moreover, the ribosome neither imposes major conformational constraints nor significantly interacts with exposed unfolded nascent SH3 domain moieties. Our data provide evidence for a domainwise folding of the SH3 domain on ribosomes without significant population of folding intermediates. The domain follows a thermodynamically favorable pathway in which sequential folding units are stabilized, thus avoiding kinetic traps during the process of cotranslational folding.

  2. The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2016-08-01

    Full Text Available Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied extensively over the last twenty years. The pathway starts in the cytoplasm, continues in the cytoplasmic membrane and finishes in the periplasmic space, where the precursor is polymerized into the peptidoglycan layer. A number of proteins involved in this pathway, such as the Mur enzymes and the penicillin binding proteins (PBPs, have been studied and regarded as good targets for antibiotics. The present review focuses on the membrane steps of peptidoglycan synthesis that involve two enzymes, MraY and MurG, the inhibitors of these enzymes and the inhibition mechanisms. We also discuss the challenges of targeting these two cytoplasmic membrane (associated proteins in bacterial cells and the perspectives on how to overcome the issues.

  3. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    Science.gov (United States)

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from α-Amino Acid N-Carboxyanhydride (NCA) Polymerizations.

    Science.gov (United States)

    He, Xun; Fan, Jingwei; Wooley, Karen L

    2016-02-18

    The past decade has witnessed significantly increased interest in the development of smart polypeptide-based organo- and hydrogel systems with stimuli responsiveness, especially those that exhibit sol-gel phase-transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α-amino acid N-carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well-defined polypeptides and peptide hybrid polymeric materials. One-dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross-linking, result in the construction of three-dimensional matrices of polypeptide gel systems. The macroscopic sol-gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli-triggered sol-gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide-based organo- and hydrogels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    Science.gov (United States)

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-02-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.

  6. Nanostructured complexes of polyelectrolytes and charged polypeptides

    Czech Academy of Sciences Publication Activity Database

    Müller, M.; Ouyang, W.; Bohatá, Karolína; Kessler, B.

    2010-01-01

    Roč. 12, Sp. Iss. 9 (2010), B519-B528 ISSN 1438-1656. [Sino-German Symposium on Advanced Biomedical Nanostructures /1./. Jena, 26.10.2009-30.10.2009] Institutional research plan: CEZ:AV0Z40500505 Keywords : situ ATR-FTIR * alpha-helical polypeptides * multilayer films Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.746, year: 2010

  7. Quantitative transporter proteomics by liquid chromatography with tandem mass spectrometry: addressing methodologic issues of plasma membrane isolation and expression-activity relationship.

    Science.gov (United States)

    Kumar, Vineet; Prasad, Bhagwat; Patilea, Gabriela; Gupta, Anshul; Salphati, Laurent; Evers, Raymond; Hop, Cornelis E C A; Unadkat, Jashvant D

    2015-02-01

    To predict transporter-mediated drug disposition using physiologically based pharmacokinetic models, one approach is to measure transport activity and relate it to protein expression levels in cell lines (overexpressing the transporter) and then scale these to via in vitro to in vivo extrapolation (IVIVE). This approach makes two major assumptions. First, that the expression of the transporter is predominantly in the plasma membrane. Second, that there is a linear correlation between expression level and activity of the transporter protein. The present study was conducted to test these two assumptions. We evaluated two commercially available kits that claimed to separate plasma membrane from other cell membranes. The Qiagen Qproteome kit yielded very little protein in the fraction purported to be the plasma membrane. The Abcam Phase Separation kit enriched the plasma membrane but did not separate it from other intracellular membranes. For the Abcam method, the expression level of organic anion-transporting polypeptides (OATP) 1B1/2B1 and breast cancer resistance protein (BCRP) proteins in all subcellular fractions isolated from cells or human liver tissue tracked that of Na⁺-K⁺ ATPase. Assuming that Na⁺-K⁺ ATPase is predominantly located in the plasma membrane, these data suggest that the transporters measured are also primarily located in the plasma membrane. Using short hairpin RNA, we created clones of cell lines with varying degrees of OATP1B1 or BCRP expression level. In these clones, transport activity of OATP1B1 or BCRP was highly correlated with protein expression level (r² > 0.9). These data support the use of transporter expression level data and activity data from transporter overexpressing cell lines for IVIVE of transporter-mediated disposition of drugs. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice Boltzmann Model

    International Nuclear Information System (INIS)

    Hua-Bing, Li; Li, Jin; Bing, Qiu

    2008-01-01

    To study two-dimensional red blood cells deforming in a shear Bow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow. (fundamental areas of phenomenology(including applications))

  9. GAWK, a novel human pituitary polypeptide: isolation, immunocytochemical localization and complete amino acid sequence.

    Science.gov (United States)

    Benjannet, S; Leduc, R; Lazure, C; Seidah, N G; Marcinkiewicz, M; Chrétien, M

    1985-01-16

    During the course of reverse-phase high pressure liquid chromatography (RP-HPLC) purification of a postulated big ACTH (1) from human pituitary gland extracts, a highly purified peptide bearing no resemblance to any known polypeptide was isolated. The complete sequence of this 74 amino acid polypeptide, called GAWK, has been determined. Search on a computer data bank on the possible homology to any known protein or fragment, using a mutation data matrix, failed to reveal any homology greater than 30%. An antibody produced against a synthetic fragment allowed us to detect several immunoreactive forms. The antisera also enabled us to localize the polypeptide, by immunocytochemistry, in the anterior lobe of the pituitary gland.

  10. Heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylated variants of a single polypeptide chain.

    Science.gov (United States)

    Murphy, P A; Cebula, T A; Windle, B E

    1981-10-01

    Rabbit endogenous pyrogens were of about the same molecular size, but showed considerable heterogeneity of their isoelectric points. We attempted to show that this heterogeneity was attributable to variable glycosylation of a single polypeptide chain. When peritoneal exudate cells were stimulated to make pyrogens in the presence of 2-deoxy-D-glucose, there was a relatively trivial suppression of pyrogen release, and analysis by isoelectric focusing showed parallel inhibition of secretion of all the forms of endogenous pyrogen. When cells were stimulated in the presence of 3H-labeled amino acids and 14C-labeled glucosamine or glucose, the purified pyrogens were labeled with 3H but not with 14C. Macrophage membrane preparations were made which contained glycosyl transferases and could transfer sugar residues from sugar nucleotides to deglycosylated fetuin. These macrophage membrane preparations did not transfer sugars to the pI 7.3 endogenous pyrogen. Treatment of endogenous pyrogens with neuraminidase or with periodate produced no evidence suggesting that the pyrogens were glycosylated. Last, endogenous pyrogens did not bind to any of four lectins with different carbohydrate specificities. This evidence suggests that the heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylation and must have some other cause.

  11. A comparison of two procedures for labelling the surface of the hydatid disease organism, Echinococcus granulosus, with 125I

    International Nuclear Information System (INIS)

    McManus, D.P.; McLaren, D.J.; Clark, N.W.T.; Parkhouse, R.M.E.

    1987-01-01

    Living, intact protoscoleces of the British horse and sheep strains of Echinococcus granulosus were subjected to surface radioiodination procedures using 125 I and Iodogen and 125 I-Bolton Hunter reagent. Subsequent combined electron microscopy and autoradiography revealed specific surface membrane labelling with the Iodogen procedure, but significant tegumental labelling with the Bolton-Hunter reagent. The two parasite strains yielded different profiles of electrophoretically separated labelled proteins; the Iodogen method, not surprisingly, resulted in a less complex pattern of labelled polypeptides than the Bolton and Hunter reagent. (author)

  12. Biosynthesis and characterization of a non-repetitive polypeptide derived from silk fibroin heavy chain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gaoqiang; Wu, Mingyang; Yi, Honggen; Wang, Jiannan, E-mail: wangjn@suda.edu.cn

    2016-02-01

    Silk fibroin heavy chain is the major protein component of Bombyx mori silk fibroin and is composed of 12 repetitive and 11 non-repetitive regions, with the non-repetitive domain consisting of a hydrophilic polypeptide chain. In order to determine the biomedical function of the non-repetitive domain or potentially use it to modify hydrophobic biomaterials, high-purity isolation is necessary. Previously, we cloned and extended a gene motif (f(1)) encoding the non-repetitive domain. Here, this motif and its multimers are inserted into a glutathione S-transferase (GST)-tagged fusion-protein expression vector. Motif f(1) and multimers f(4) and f(8) were expressed in Escherichia coli BL21 cells following isopropyl β-D-1-thiogalactopyranoside induction, purified by GST-affinity chromatography, and single bands of purified fusion proteins GST-F(1), GST-F(4), and GST-F(8), were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Target polypeptides F(1), F(4), and F(8), were cleaved clearly from the GST-fusion tag following thrombin digestion. Mass spectrometry results indicate that the molecular weights associated with fusion proteins GST-F(1), GST-F(4), and GST-F(8) are 31.5, 43.8, and 59.0 kDa, respectively, and with the cleaved polypeptides F(1), F(4), and F(8) are 4.8, 16.8, and 32.8 kDa, respectively. The F(1), F(4), and F(8) polypeptide chains are negatively charged with isoelectric points (pI) of 3.3, 3.2, and 3.0, respectively. The molecular weight and pI values of the polypeptide chains are consistent with the predicted values and the amino acid compositions similar to predicted sequences. FTIR and CD results show the molecular conformation of F(1) was mainly random coil, and more stable α-helix structure formed in longer molecular chain. - Highlights: • A non-repetitive domain and its multimers of silk fibroin were expressed by E. coli. • The corresponding target polypeptides F(1), F(4) and F(8) were cleaved clearly. • Their

  13. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    International Nuclear Information System (INIS)

    Walker, G.; Bourguignon, L.Y.

    1990-01-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation

  14. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G.; Bourguignon, L.Y. (Univ. of Miami Medical School, FL (USA))

    1990-08-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.

  15. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Schytz, Henrik W

    2014-01-01

    Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) and vasoactive intestinal polypeptide are structurally and functionally closely related but show differences in migraine-inducing properties. Mechanisms responsible for the difference in migraine induction are unknown. Here, for the ...

  16. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    Science.gov (United States)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  17. Two-dimensional stochastic modeling of membrane fouling

    NARCIS (Netherlands)

    Wessling, Matthias

    2001-01-01

    The phenomenon of fouling of microfiltration membranes by much smaller particles such as proteins is described by a new developed simulation algorithm based on diffusion limited aggregation simulation techniques. The model specifies the membrane morphology explicitly and allows to (a) characterize

  18. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    Science.gov (United States)

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  19. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus sidechain groups to chain expansion via chemical denaturation

    Science.gov (United States)

    Holehouse, Alex S.; Garai, Kanchan; Lyle, Nicholas; Vitalis, Andreas; Pappu, Rohit V.

    2015-01-01

    In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones and therefore backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of sidechains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that sidechains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of sidechain-mediated interactions as determinants of the

  20. Carbonic anhydrase activity of integral-functional complexes of thylakoid membranes of spinach chloroplasts

    Directory of Open Access Journals (Sweden)

    A. V. Semenihin

    2015-06-01

    Full Text Available Isolated thylakoid membranes were disrupted by treatment with nonionic detergents digitonin or dodecyl maltoside. Solubilized polypeptide complexes were separated by native gel charge shift electrophoresis. The position of ATP-synthase complex and its isolated catalytic part (CF1 within gel was determined using the color reaction for ATPase activity. Due to the presence of cytochromes, the red band in unstained gels corresponded to the cytochrome b6f complex. Localization of the cytochrome b6f complex, ATP synthase and coupling CF1 in the native gel was confirmed by their subunit composition determined after SDS-electrophoretic analysis. Carbonic anhydrase (CA activity in polypeptide zones of PS II, cytochrome b6f complex, and ATP-synthase CF1 was identified in native gels using indicator bromothymol blue. CA activity of isolated CF1 in solution was determined by infrared gas analysis as the rate of bicarbonate dehydration. The water-soluble acetazolamide, an inhibitor of CA, unlike lipophilic ethoxyzolamide inhibited CA activity of CF1. Thus, it was shown for the first time that ATP-synthase has a component which is capable of catalyzing the interconversion of forms of carbonic acid associated with proton exchange. The data obtained suggest the presence of multiple forms of carbonic anhydrase in the thylakoid membranes of spinach chloroplasts and confirm their involvement in the proton transfer to the ATP synthase.

  1. Diffusion in membranes: Toward a two-dimensional diffusion map

    Directory of Open Access Journals (Sweden)

    Toppozini Laura

    2015-01-01

    Full Text Available For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.

  2. Similarities in the induction of synthesis of a cell-surface polypeptide in Arthrobacter sp. by near-UV irradiation and photodynamic conditions

    International Nuclear Information System (INIS)

    Hoober, J.K.; Franzi, J.

    1983-01-01

    Irradiation of aerobic suspensions of Arthrobacter sp. with near-UV light (310-400 nm) induced synthesis of a 21 000 dalton, cell-surface polypeptide. Synthesis of this polypeptide also was induced by visible light in the presence of photodynamic dyes. Induction of the polypeptide in ear-UV light and with visible light plus dyes was inhibited by histidine. Hemin inhibited induction in near-UV light and in visible light with methylene blue, neutral red and acriflavin, which are cationic dyes, but failed to inhibit induction in visible light with rose bengal, an anionic dye. These results suggested that inhibition by hemin required electrostatically favored interaction between the anionic porphyrin and the sensitizer, and that the near-UV light effect was mediated by a cationic or neutral endogenous sensitizer. The similarities in the responses of the cells to near-UV irradiation and visible light plus dyes suggested that the mechanism of induction under the two conditions was the same. (author)

  3. Perlecan and basement membrane-chondroitin sulfate proteoglycan (bamacan) are two basement membrane chondroitin/dermatan sulfate proteoglycans in the Engelbreth-Holm-Swarm tumor matrix

    DEFF Research Database (Denmark)

    Couchman, J R; Kapoor, R; Sthanam, M

    1996-01-01

    heparan sulfate proteoglycan, widespread in many basement membranes and connective tissues. We now identify two distinct proteoglycan species from this tumor source, which are substituted with galactosaminoglycans and which show basement membrane localization by immunohistochemistry. One species......The presence of proteoglycans bearing galactosaminoglycan chains has been reported, but none has been identified previously in the matrix of the Engelbreth-Holm-Swarm tumor, which is a source of several basement membrane components. This tumor matrix contains perlecan, a large, low buoyant density......-CSPG are distinct in core protein structure. Both are, however, basement membrane components, although there are tissue-specific differences in their distribution....

  4. Impact of two different saponins on the organization of model lipid membranes.

    Science.gov (United States)

    Korchowiec, Beata; Gorczyca, Marcelina; Wojszko, Kamila; Janikowska, Maria; Henry, Max; Rogalska, Ewa

    2015-10-01

    Saponins, naturally occurring plant compounds are known for their biological and pharmacological activity. This activity is strongly related to the amphiphilic character of saponins that allows them to aggregate in aqueous solution and interact with membrane components. In this work, Langmuir monolayer techniques combined with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and Brewster angle microscopy were used to study the interaction of selected saponins with lipid model membranes. Two structurally different saponins were used: digitonin and a commercial Merck Saponin. Membranes of different composition, namely, cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) were formed at the air/water and air/saponin solution interfaces. The saponin-lipid interaction was characterized by changes in surface pressure, surface potential, surface morphology and PM-IRRAS signal. Both saponins interact with model membranes and change the physical state of membranes by perturbing the lipid acyl chain orientation. The changes in membrane fluidity were more significant upon the interaction with Merck Saponin. A higher affinity of saponins for cholesterol than phosphatidylglycerols was observed. Moreover, our results indicate that digitonin interacts strongly with cholesterol and solubilize the cholesterol monolayer at higher surface pressures. It was shown, that digitonin easily penetrate to the cholesterol monolayer and forms a hydrogen bond with the hydroxyl groups. These findings might be useful in further understanding of the saponin action at the membrane interface and of the mechanism of membrane lysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Comparison of two procedures for labelling the surface of the hydatid disease organism, Echinococcus granulosus, with /sup 125/I

    Energy Technology Data Exchange (ETDEWEB)

    McManus, D.P.; McLaren, D.J.; Clark, N.W.T.; Parkhouse, R.M.E.

    1987-03-01

    Living, intact protoscoleces of the British horse and sheep strains of Echinococcus granulosus were subjected to surface radioiodination procedures using /sup 125/I and Iodogen and /sup 125/I-Bolton Hunter reagent. Subsequent combined electron microscopy and autoradiography revealed specific surface membrane labelling with the Iodogen procedure, but significant tegumental labelling with the Bolton-Hunter reagent. The two parasite strains yielded different profiles of electrophoretically separated labelled proteins; the Iodogen method, not surprisingly, resulted in a less complex pattern of labelled polypeptides than the Bolton and Hunter reagent.

  6. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

    Science.gov (United States)

    Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi

    2016-08-16

    Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.

  7. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection.

    Science.gov (United States)

    Ronzone, Erik; Paumet, Fabienne

    2013-01-01

    Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A) appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA's fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection.

  8. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection.

    Directory of Open Access Journals (Sweden)

    Erik Ronzone

    Full Text Available Chlamydia trachomatis replicates in a parasitophorous membrane-bound compartment called an inclusion. The inclusions corrupt host vesicle trafficking networks to avoid the degradative endolysosomal pathway but promote fusion with each other in order to sustain higher bacterial loads in a process known as homotypic fusion. The Chlamydia protein IncA (Inclusion protein A appears to play central roles in both these processes as it participates to homotypic fusion and inhibits endocytic SNARE-mediated membrane fusion. How IncA selectively inhibits or activates membrane fusion remains poorly understood. In this study, we analyzed the spatial and molecular determinants of IncA's fusogenic and inhibitory functions. Using a cell-free membrane fusion assay, we found that inhibition of SNARE-mediated fusion requires IncA to be on the same membrane as the endocytic SNARE proteins. IncA displays two coiled-coil domains showing high homology with SNARE proteins. Domain swap and deletion experiments revealed that although both these domains are capable of independently inhibiting SNARE-mediated fusion, these two coiled-coil domains cooperate in mediating IncA multimerization and homotypic membrane interaction. Our results support the hypothesis that Chlamydia employs SNARE-like virulence factors that positively and negatively affect membrane fusion and promote infection.

  9. Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides.

    Science.gov (United States)

    Li, Nan K; Roberts, Stefan; Quiroz, Felipe Garcia; Chilkoti, Ashutosh; Yingling, Yaroslava G

    2018-04-30

    Elastin-like polypeptides (ELP) exhibit an inverse temperature transition or lower critical solution temperature (LCST) transition phase behavior in aqueous solutions. In this paper, the thermal responsive properties of the canonical ELP, poly(VPGVG), and its reverse sequence poly(VGPVG) were investigated by turbidity measurements of the cloud point behavior, circular dichroism (CD) measurements, and all-atom molecular dynamics (MD) simulations to gain a molecular understanding of mechanism that controls hysteretic phase behavior. It was shown experimentally that both poly(VPGVG) and poly(VGPVG) undergo a transition from soluble to insoluble in aqueous solution upon heating above the transition temperature ( T t ). However, poly(VPGVG) resolubilizes upon cooling below its T t , whereas the reverse sequence, poly(VGPVG), remains aggregated despite significant undercooling below the T t . The results from MD simulations indicated that a change in sequence order results in significant differences in the dynamics of the specific residues, especially valines, which lead to extensive changes in the conformations of VPGVG and VGPVG pentamers and, consequently, dissimilar propensities for secondary structure formation and overall structure of polypeptides. These changes affected the relative hydrophilicities of polypeptides above T t , where poly(VGPVG) is more hydrophilic than poly(VPGVG) with more extended conformation and larger surface area, which led to formation of strong interchain hydrogen bonds responsible for stabilization of the aggregated phase and the observed thermal hysteresis for poly(VGPVG).

  10. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    Science.gov (United States)

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not

  11. Binding Properties of Streptococcus gordonii SspA and SspB (Antigen I/II Family) Polypeptides Expressed on the Cell Surface of Lactococcus lactis MG1363

    OpenAIRE

    Holmes, Ann R.; Gilbert, Christophe; Wells, Jeremy M.; Jenkinson, Howard F.

    1998-01-01

    The oral bacterium Streptococcus gordonii expresses two cell wall-associated polypeptides, designated SspA (1,542 amino acid residues) and SspB (1,462 amino acid residues), that have 70% sequence identity. These polypeptides are members of the antigen I/II family of oral streptococcal adhesins and mediate the binding of streptococci to salivary glycoproteins, collagen, and other oral microorganisms such as Actinomyces naeslundii. To determine if SspA and SspB have differential binding propert...

  12. Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Ottesen, B; Jørgensen, M

    1994-01-01

    In vitro effects of two bioactive forms of pituitary adenylate cyclase activating polypeptide (PACAP): PACAP-38 and PACAP-27 were studied on rabbit vascular and non-vascular smooth muscle. Segments of the ovarian artery and muscle strips from the fallopian tube were used. Two series of experiment...

  13. Adhesive polypeptides of Staphylococcus aureus identified using a novel secretion library technique in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Holm Liisa

    2011-05-01

    Full Text Available Abstract Background Bacterial adhesive proteins, called adhesins, are frequently the decisive factor in initiation of a bacterial infection. Characterization of such molecules is crucial for the understanding of bacterial pathogenesis, design of vaccines and development of antibacterial drugs. Because adhesins are frequently difficult to express, their characterization has often been hampered. Alternative expression methods developed for the analysis of adhesins, e.g. surface display techniques, suffer from various drawbacks and reports on high-level extracellular secretion of heterologous proteins in Gram-negative bacteria are scarce. These expression techniques are currently a field of active research. The purpose of the current study was to construct a convenient, new technique for identification of unknown bacterial adhesive polypeptides directly from the growth medium of the Escherichia coli host and to identify novel proteinaceous adhesins of the model organism Staphylococcus aureus. Results Randomly fragmented chromosomal DNA of S. aureus was cloned into a unique restriction site of our expression vector, which facilitates secretion of foreign FLAG-tagged polypeptides into the growth medium of E. coli ΔfliCΔfliD, to generate a library of 1663 clones expressing FLAG-tagged polypeptides. Sequence and bioinformatics analyses showed that in our example, the library covered approximately 32% of the S. aureus proteome. Polypeptides from the growth medium of the library clones were screened for binding to a selection of S. aureus target molecules and adhesive fragments of known staphylococcal adhesins (e.g coagulase and fibronectin-binding protein A as well as polypeptides of novel function (e.g. a universal stress protein and phosphoribosylamino-imidazole carboxylase ATPase subunit were detected. The results were further validated using purified His-tagged recombinant proteins of the corresponding fragments in enzyme-linked immunoassay and

  14. Identification of the sodium-calcium exchanger as the major ricin-binding glycoprotein of bovine rod outer segments and its localization to the plasma membrane

    International Nuclear Information System (INIS)

    Reid, D.M.; Molday, R.S.; Friedel, U.; Cook, N.J.

    1990-01-01

    After neuraminidase treatment the Na + /Ca 2+ exchanger of bovine rod outer segments was found to specifically bind Ricinus communis agglutinin. SDS gel electrophoresis and Western blotting of ricin-binding proteins purified from rod outer segment membranes by lectin affinity chromatography revealed the existence of two major polypeptides of M r 215K and 103K, the former of which was found to specifically react with PMe 1B3, a monoclonal antibody specific for the 230-kDa non-neuraminidase-treated Na + /Ca 2+ exchanger. Reconstitution of the ricin affinity-purified exchanger into calcium-containing liposomes revealed that neuraminidase treatment had no significant effect on the kinetics of Na + /Ca 2+ exchange activation by sodium. The authors further investigated the density of the Na + /Ca 2+ exchanger in disk and plasma membrane preparations using Western blotting, radioimmunoassays, immunoelectron microscopy, and reconstitution procedures. The results indicate that the Na + /Ca 2+ exchanger is localized in the rod photoreceptor plasma membrane and is absent or present in extremely low concentrations in disk membranes, as they have previously shown to be the case for the cGMP-gated cation channel. Previous reports describing the existence of Na + /Ca 2+ exchange activity in rod outer segment disk membrane preparations may be due to the fusion of plasma membrane components and/or the presence of contaminating plasma membrane vesicles

  15. A Trade Study of Two Membrane-Aerated Biological Water Processors

    Science.gov (United States)

    Allada, Ram; Lange, Kevin; Vega. Leticia; Roberts, Michael S.; Jackson, Andrew; Anderson, Molly; Pickering, Karen

    2011-01-01

    Biologically based systems are under evaluation as primary water processors for next generation life support systems due to their low power requirements and their inherent regenerative nature. This paper will summarize the results of two recent studies involving membrane aerated biological water processors and present results of a trade study comparing the two systems with regards to waste stream composition, nutrient loading and system design. Results of optimal configurations will be presented.

  16. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences

    DEFF Research Database (Denmark)

    Rivas, Matilde De Las; Lira-Navarrete, Erandi; Daniel, Earnest James Paul

    2017-01-01

    The polypeptide GalNAc-transferases (GalNAc-Ts), that initiate mucin-type O-glycosylation, consist of a catalytic and a lectin domain connected by a flexible linker. In addition to recognizing polypeptide sequence, the GalNAc-Ts exhibit unique long-range N- A nd/or C-terminal prior glycosylation ...

  17. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    OpenAIRE

    Ranieri, G; Mazzei, R; Wu, Z; Li, K; Giorno, L

    2016-01-01

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic ho...

  18. High-yield recombinant expression and purification of marginally soluble, short elastin-like polypeptides.

    Science.gov (United States)

    Bahniuk, Markian S; Alshememry, Abdullah K; Unsworth, Larry D

    2016-12-01

    The protocol described here is designed as an extension of existing techniques for creating elastin-like polypeptides. It allows for the expression and purification of elastin-like polypeptide (ELP) constructs that are poorly expressed or have very low transition temperatures. DNA concatemerization has been modified to reduce issues caused by methylation sensitivity and inefficient cloning. Linearization of the modified expression vector has been altered to greatly increase cleavage efficiency. The purification regimen is based upon using denaturing metal affinity chromatography to fully solubilize and, if necessary, pre-concentrate the target peptide before purification by inverse temperature cycling (ITC). This protocol has been used to express multiple leucine-containing elastin-like polypeptides, with final yields of 250-660 mg per liter of cells, depending on the specific construct. This was considerably greater than previously reported yields for similar ELPs. Due to the relative hydrophobicity of the tested constructs, even compared with commonly employed ELPs, conventional methods would not have been able to be purify these peptides.

  19. Induction of salivary polypeptides associated with parotid hypertrophy by gallotannins administered topically into the mouse mouth.

    Science.gov (United States)

    Gho, Francesca; Peña-Neira, Alvaro; López-Solís, Remigio O

    2007-02-01

    Isoproterenol-induced salivary polypeptides (IISP), a group of proline-rich proteins synthesized by mouse parotids, have been considered as markers for isoproterenol-induced parotid hypertrophy. Rodents fed diets containing high-tannin cereals (sorghum), also develop parotid hypertrophy. To test whether tannins are directly involved in provoking sialotrophic growth, we studied the effect of intraperitoneal and topical oral administrations of tannic acid (TA) on the induction of IISP polypeptides in endogamic mice (A/Snell). TA was characterized by HPLC chromatography and spectral analysis and shown to be composed solely of gallotannins, a complex family of glucose and gallic acid esters. IISP polypeptides were monitored in saliva by SDS-polyacrylamide gel electrophoresis during 36 h after ending TA stimulation. Single daily intraperitoneal administrations of TA for 3 consecutive days (0.033 mg/g bw/day), at variance of parallel administrations of isoproterenol (0.042 mg/g bw/day) failed to induce IISP polypeptides. However, repeated topical applications of TA into the mouse mouths (1.21 mg/g bw divided into three equal doses given at 4-h intervals within a single day) resulted in unequivocal induction of IISP polypeptides. That response was clearly intensified by increasing the stimulation frequency to eight equivalent doses given at 1.5-h intervals within a single day (corresponding to 3.23 mg/g bw) and even further by repeating this protocol for 3 days. Under these productive schemes of stimulations by TA, electrophoretic fractionation of parotid homogenates showed new polypeptide bands migrating in parallel to salivary IISP. These results suggest that topically administered gallotannins are effective inducers of trophic growth in mouse parotids.

  20. N-terminal and C-terminal heparin-binding domain polypeptides derived from fibronectin reduce adhesion and invasion of liver cancer cells

    International Nuclear Information System (INIS)

    Tang, Nan-Hong; Chen, Yan-Lin; Wang, Xiao-Qian; Li, Xiu-Jin; Wu, Yong; Zou, Qi-Lian; Chen, Yuan-Zhong

    2010-01-01

    Fibronectin (FN) is known to be a large multifunction glycoprotein with binding sites for many substances, including N-terminal and C-terminal heparin-binding domains. We investigated the effects of highly purified rhFNHN29 and rhFNHC36 polypeptides originally cloned from the two heparin-binding domains on the adhesion and invasion of highly metastatic human hepatocellular carcinoma cells (MHCC97H) and analyzed the underlying mechanism involved. The MHCC97H cells that adhered to FN in the presence of various concentrations of rhFNHN29 and rhFNHC36 polypeptides were stained with crystal violet and measured, and the effects of rhFNHN29 and rhFNHC36 on the invasion of the MHCC97H cells were then detected using the Matrigel invasion assay as well as a lung-metastasis mouse model. The expression level of integrins and focal adhesion kinase (FAK) phosphotyrosyl protein was examined by Western blot, and the activity of matrix metalloproteinases (MMPs) and activator protein 1 (AP-1) was analyzed by gelatin zymography and the electrophoretic mobility band-shift assay (EMSA), respectively. Both of the polypeptides rhFNHN29 and rhFNHC36 inhibited adhesion and invasion of MHCC97H cells; however, rhFNHC36 exhibited inhibition at a lower dose than rhFNHN29. These inhibitory effects were mediated by integrin αvβ3 and reversed by a protein tyrosine phosphatase inhibitor. Polypeptides rhFNHN29 and rhFNHC36 abrogated the tyrosine phosphorylation of focal adhesion kinase (p-FAK) and activation of activator protein 1 (AP-1), resulting in the decrease of integrin αv, β3 and β1 expression as well as the reduction of MMP-9 activity. Polypeptides rhFNHN29 and rhFNHC36 could potentially be applicable to human liver cancer as anti-adhesive and anti-invasive agents

  1. Tuning the conformation of synthetic co-polypeptides of serine and glutamic acid through control over polymer composition

    NARCIS (Netherlands)

    Canning, A.; Pasquazi, A.; Fijten, M.; Rajput, S.; Buttery, L.; Aylott, J.W.; Zelzer, M.

    2016-01-01

    Ring opening polymerization (ROP) of N-carboxy anhydride (NCA) amino acids presents a rapid way to synthesize high molecular weight polypeptides with different amino acid compositions. The compositional and functional versatility of polypeptides make these materials an attractive choice for

  2. Improvement of Learning and Memory Induced by Cordyceps Polypeptide Treatment and the Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Guangxin Yuan

    2018-01-01

    Full Text Available Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system.

  3. Immune-tolerant elastin-like polypeptides (iTEPs) and their application as CTL vaccine carriers.

    Science.gov (United States)

    Cho, S; Dong, S; Parent, K N; Chen, M

    2016-01-01

    Cytotoxic T lymphocyte (CTL) vaccine carriers are known to enhance the efficacy of vaccines, but a search for more effective carriers is warranted. Elastin-like polypeptides (ELPs) have been examined for many medical applications but not as CTL vaccine carriers. We aimed to create immune tolerant ELPs using a new polypeptide engineering practice and create CTL vaccine carriers using the ELPs. Four sets of novel ELPs, termed immune-tolerant elastin-like polypeptide (iTEP) were generated according to the principles dictating humoral immunogenicity of polypeptides and phase transition property of ELPs. The iTEPs were non-immunogenic in mice. Their phase transition feature was confirmed through a turbidity assay. An iTEP nanoparticle (NP) was assembled from an amphiphilic iTEP copolymer plus a CTL peptide vaccine, SIINFEKL. The NP facilitated the presentation of the vaccine by dendritic cells (DCs) and enhanced vaccine-induced CTL responses. A new ELP design and development practice was established. The non-canonical motif and the immune tolerant nature of the iTEPs broaden our insights about ELPs. ELPs, for the first time, were successfully used as carriers for CTL vaccines. It is feasible to concurrently engineer both immune-tolerant and functional peptide materials. ELPs are a promising type of CTL vaccine carriers.

  4. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy.

    Science.gov (United States)

    Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen

    2016-03-16

    Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.

  5. Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study

    Science.gov (United States)

    Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.

    2007-01-01

    The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979

  6. Comparison of gas membrane separation cascades using conventional separation cell and two-unit separation cells

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.

    1978-01-01

    The adoption of two-unit separation cells in radioactive rare gas membrane separation equipment enhances the separation factor, but increases the required membrane area and compressive power. An analytical economic evaluation was undertaken to compare the conventional separation cell with the two-unit separation cells, adopting as parameters the number of cascade stages, the membrane area and the operating power requirements. This paper describes the models used for evaluating the separation performance and the economics of cascade embodying these different concepts of separation cell taken up for study, and the results obtained for the individual concepts are mutually compared. It proved that, in respect of the number required of cascade stages, of operating power requirements and of the annual expenditure, better performance could always be expected of the two-unit separation cells as compared with the conventional separation cell, at least in the range of parameters adopted in this study. As regards the minimum membrane area, the conventional separation cell and the series-type separation cell yielded almost the same values, with the parallel-type separation cell falling somewhat behind. (auth.)

  7. Role of Side-Chain Molecular Features in Tuning Lower Critical Solution Temperatures (LCSTs) of Oligoethylene Glycol Modified Polypeptides.

    Science.gov (United States)

    Gharakhanian, Eric G; Deming, Timothy J

    2016-07-07

    A series of thermoresponsive polypeptides has been synthesized using a methodology that allowed facile adjustment of side-chain functional groups. The lower critical solution temperature (LCST) properties of these polymers in water were then evaluated relative to systematic molecular modifications in their side-chains. It was found that in addition to the number of ethylene glycol repeats in the side-chains, terminal and linker groups also have substantial and predictable effects on cloud point temperatures (Tcp). In particular, we found that the structure of these polypeptides allowed for inclusion of polar hydroxyl groups, which significantly increased their hydrophilicity and decreased the need to use long oligoethylene glycol repeats to obtain LCSTs. The thioether linkages in these polypeptides were found to provide an additional structural feature for reversible switching of both polypeptide conformation and thermoresponsive properties.

  8. Channel crossing: how are proteins shipped across the bacterial plasma membrane?

    Science.gov (United States)

    Collinson, Ian; Corey, Robin A; Allen, William J

    2015-10-05

    The structure of the first protein-conducting channel was determined more than a decade ago. Today, we are still puzzled by the outstanding problem of protein translocation--the dynamic mechanism underlying the consignment of proteins across and into membranes. This review is an attempt to summarize and understand the energy transducing capabilities of protein-translocating machines, with emphasis on bacterial systems: how polypeptides make headway against the lipid bilayer and how the process is coupled to the free energy associated with ATP hydrolysis and the transmembrane protein motive force. In order to explore how cargo is driven across the membrane, the known structures of the protein-translocation machines are set out against the background of the historic literature, and in the light of experiments conducted in their wake. The paper will focus on the bacterial general secretory (Sec) pathway (SecY-complex), and its eukaryotic counterpart (Sec61-complex), which ferry proteins across the membrane in an unfolded state, as well as the unrelated Tat system that assembles bespoke channels for the export of folded proteins. © 2015 The Authors.

  9. T-Stimulator effect on cotton protein composition and synthesis in salinization stress

    International Nuclear Information System (INIS)

    Ibragimova, E.A.; Nazirova, E.R.; Samarkhodjaeva, N.R.; Nalbandyan, A.A.; Babaev, T.A.

    2004-01-01

    Full text: T-stimulator was established to possess a wide spectrum of physiological effects, to enhance plant adaptation to thermal stress and to increase plant resistance to pathogens. Plant adaptation to unfavorable conditions manifests in changes in many links of metabolism, that of proteins included. We studied effect of cottonseed treatment with T-stimulator on composition and synthesis of plasma membrane proteins upon chloride salinization by means of the radioisotope method. Electrophoretic fractionation of cottonseed plasma membrane proteins showed absence of more than 40 polypeptides with molecular mass from 10 to more than 100 kDa in the cotton root membranes. Major fractions-polypeptides with molecular mass of 61, 53, 46, 25, 21, 20 and 18 kDa constitute about 50% of the total polypeptide composition. The salinization significantly affects the total membrane protein output, proportion of some polypeptides and their synthesis rate. Analysis of phoreogram radioautographs showed that 2-hour exposition of cotton roots to 35 S methionine suppresses synthesis of major polypeptides with molecular mass of 63, 61 and 53 kDa, that of low molecular polypeptides (46, 20, 18 kDa) increasing. Changes in the proportion of major polypeptides in cotton plasma membranes, reduction in rate of biosynthesis of high molecular fractions with the general suppression of label inclusion in the membrane fraction are the evidence for a disturbance in biosynthesis of some membrane proteins in cotton tissue cells upon salinization. The inhibiting effect of salinization on the protein-synthesizing system was observed in plants treated with T-stimulator, but the rate of synthesis in plasma membranes of the treated plants was found significantly higher. The activation of some plasma membrane proteins under T-stimulator effect suggests an association with the increase in adaptation of the treated plants to the disturbing effect of salinization

  10. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  11. A tale of two charges: zwitterionic polyelectrolyte multilayer membranes

    NARCIS (Netherlands)

    de Grooth, Joris

    2015-01-01

    In this thesis, the development of selective membranes for water treatment facilities to cope with the aforementioned issues is covered. By using hollow fiber membranes, the water purification process can be simplified compared to using spiral wound membranes, a significant advantage for

  12. Electrokinetic migration across artificial liquid membranes Tuning the membrane chemistry to different types of drug substances.

    Science.gov (United States)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Pedersen-Bjergaard, Stig

    2006-08-18

    Twenty different basic drugs were electrokinetically extracted across a thin artificial organic liquid membrane with a 300 V d.c. electrical potential difference as the driving force. From a 300 microl aqueous sample (acidified corresponding to 10mM HCl), the drugs were extracted for 5 min through a 200 microm artificial liquid membrane of a water immiscible organic solvent immobilized in the pores of a polypropylene hollow fiber, and into a 30 microl aqueous acceptor solution of 10mM HCl inside the lumen of the hollow fiber. Hydrophobic basic drugs (logP>1.7) were effectively isolated utilizing 2-nitrophenyl octyl ether (NPOE) as the artificial liquid membrane, with recoveries up to 83%. For more hydrophilic basic drugs (logPpermeation of the interface.

  13. Peptides and polypeptides as scaffolds for optoelectronics and biomaterials applications

    Science.gov (United States)

    Charati, Manoj B.

    Peptides and polypeptides are emerging as a new class of biomaterials due to their unique structural, physiochemical, mechanical, and biological properties. The development of peptide and protein-based biomaterials is driven by the convergence of convenient techniques for peptide/protein engineering and its importance in applications as smart biomaterials. The thesis is divided in two parts; the first part highlights the importance of incorporation of non-natural amino acids into peptides and proteins. In particular, incorporation on p-bromophenylalanine in short alpha-helical peptide templates to control the association of chromophores is discussed. In the second part, design of a multi-component, biocompatible polypeptide with superior elasticity is discussed. Part 1. Novel peptide templates to control association of chromophores. Tailor made peptide and protein materials have many versatile applications, as both conformation and functional group position can be controlled. Such control may have intriguing applications in the development of hybrid materials for electroactive applications. A critical need in fabricating devices from organic semiconducting materials is to achieve control over the conformation and distance between two conjugated chains. Controlling chromophore spacing and orientation with required precision over nanometer length scale poses a greater challenge. Here we propose a peptide based template to control the alignment of the methylstilbene and Oxa-PPV chromophores with desired orientations and spacing. The hybrid peptides were characterized via CD, exciton coupled CD, 1H NMR and photoluminescence experiments. It is observed that slight change in the orientation of molecules has pronounced effect on the photo-physical behavior of the molecules. Characterization of the hybrid peptides via circular dichroism (CD) confirmed the helical character of the designed peptides and indicated that inclusion of non-natural amino acids has significant

  14. Exercise increases the plasma membrane content of the Na+ -K+ pump and its mRNA in rat skeletal muscles.

    Science.gov (United States)

    Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A

    1996-02-01

    Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2

  15. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides

    Directory of Open Access Journals (Sweden)

    Carmen M. González-Henríquez

    2017-10-01

    Full Text Available In this review, we provide a general and clear overview about the different alternatives reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization of N-carbonyanhydrides (ROP NCAs. First of all, the strategies for the preparation of NCA monomers directly from natural occurring or from modified amino acids are analyzed. The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented. Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies developed to reduce the eventually occurring side reactions are presented. Finally, a general overview of the synthetic strategies described in the literature to fabricate different polypeptide architectures is provided. This part of the review is organized depending on the complexity of the macromolecular topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are described first. The next sections include cyclic and branched polymers such as star polypeptides, polymer brushes and highly branched structures including arborescent or dendrigraft structures.

  16. Glucose-dependent Insulinotropic Polypeptide

    DEFF Research Database (Denmark)

    Christensen, Mikkel B; Calanna, Salvatore; Holst, Jens Juul

    2014-01-01

    CONTEXT: Patients with type 2 diabetes mellitus (T2DM) have clinically relevant disturbances in the effects of the hormone glucose-dependent insulinotropic polypeptide (GIP). OBJECTIVE: We aimed to evaluate the importance of the prevailing plasma glucose levels for the effect of GIP on responses......: During fasting glycemia (plasma glucose ∼8 mmol/L), GIP elicited significant increments in both insulin and glucagon levels, resulting in neutral effects on plasma glucose. During insulin-induced hypoglycemia (plasma glucose ∼3 mmol/L), GIP elicited a minor early-phase insulin response and increased...... glucagon levels during the initial 30 minutes, resulting in less glucose needed to be infused to maintain the clamp (29 ± 8 vs 49 ± 12 mg × kg(-1), P glucose ∼12 mmol/L), GIP augmented insulin secretion throughout the clamp, with slightly less glucagon...

  17. Rapid measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides.

    Science.gov (United States)

    Barnwal, Ravi Pratap; Rout, Ashok K; Chary, Kandala V R; Atreya, Hanudatta S

    2007-12-01

    We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.

  18. Effects on DPPH inhibition of egg-white protein polypeptides treated by pulsed electric field technology.

    Science.gov (United States)

    Wang, Ke; Wang, Jia; Liu, Bolong; Lin, Songyi; Zhao, Ping; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi

    2013-05-01

    Egg-white protein polypeptides are potentially used as a functional ingredient in food products. In this study, the effects on DPPH inhibition of egg-white protein polypeptides ranging from 10 to 30 kDa treated by pulsed electric field (PEF) technology were investigated. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) inhibition (%) was used to evaluate the antioxidant activity of polypeptides. In order to develop and optimize a pulsed electric field (PEF) mathematical model for improving the antioxidant activity, we have investigated three variables, including concentration (6, 8 and 10 mg mL(-1)), electric field intensity (10, 20 and 30 kV cm(-1)) and pulse frequency (2000, 2350 and 2700 Hz) and subsequently optimized them by response surface methodology (RSM). The concentration (8 mg mL(-1)), electric field intensity (10 kV cm(-1)) and pulse frequency (2000 Hz) were found to be the optimal conditions under which the DPPH inhibition increased 28.44%, compared to the sample without PEF treatment. Both near-infrared spectroscopy (NIR) and mid-infrared spectroscopy (MIR) were used to analyze the change of functional groups. The results showed that PEF technology could improve the antioxidant activity of antioxidant polypeptides from egg-white protein under the optimized conditions. © 2012 Society of Chemical Industry.

  19. Polymer-Block-Polypeptides and Polymer-Conjugated Hybrid Materials as Stimuli-Responsive Nanocarriers for Biomedical Applications.

    Science.gov (United States)

    John, Johnson V; Johnson, Renjith P; Heo, Min Seon; Moon, Byeong Kyu; Byeon, Seong Jin; Kim, Il

    2015-01-01

    Stimuli-responsive nanocarriers are a class of soft materials that includes natural polymers, synthetic polymers, and polypeptides. Recently, modern synthesis tools such as atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, nitroxide-mediated radical polymerization, ring-opening polymerization of α-amino acid N-carboxyanhydrides, and various "click" chemistry strategies were simultaneously employed for the design and synthesis of nanosized drug delivery vehicles. Importantly, the research focused on the improvement of the nanocarrier targetability and the site-specific, triggered release of therapeutics with high drug loading efficiency and minimal drug leakage during the delivery to specific targets. In this context, nanocarriers responsive to common stimuli such as pH, temperature, redox potential, light, etc. have been widely used for the controlled delivery of therapeutics to pathological sites. Currently, different synthesis and self-assembly strategies improved the drug loading efficacy and targeted delivery of therapeutic agents to the desired site. In particular, polypeptide-containing hybrid materials have been developed for the controlled delivery of therapeutic agents. Therefore, stimuli-sensitive synthetic polypeptide-based materials have been extensively investigated in recent years. This review focuses on recent advances in the development of polymer-block-polypeptides and polymer-conjugated hybrid materials that have been designed and evaluated for various stimuli-responsive drug and gene delivery applications.

  20. Smart systems related to polypeptide sequences

    Directory of Open Access Journals (Sweden)

    Lourdes Franco

    2016-03-01

    Full Text Available Increasing interest for the application of polypeptide-based smart systems in the biomedical field has developed due to the advantages given by the peptidic sequence. This is due to characteristics of these systems, which include: biocompatibility, potential control of degradation, capability to provide a rich repertoire of biologically specific interactions, feasibility to self-assemble, possibility to combine different functionalities, and capability to give an environmentally responsive behavior. Recently, applications concerning the development of these systems are receiving greater attention since a targeted and programmable release of drugs (e.g. anti-cancer agents can be achieved. Block copolymers are discussed due to their capability to render differently assembled architectures. Hybrid systems based on silica nanoparticles are also discussed. In both cases, the selected systems must be able to undergo fast changes in properties like solubility, shape, and dissociation or swelling capabilities. This review is structured in different chapters which explain the most recent advances on smart systems depending on the stimuli to which they are sensitive. Amphiphilic block copolymers based on polyanionic or polycationic peptides are, for example, typically employed for obtaining pH-responsive systems. Elastin-like polypeptides are usually used as thermoresponsive polymers, but performance can be increased by using techniques which utilize layer-by-layer electrostatic self-assembly. This approach offers a great potential to create multilayered systems, including nanocapsules, with different functionality. Recent strategies developed to get redox-, magnetic-, ultrasound-, enzyme-, light- and electric-responsive systems are extensively discussed. Finally, some indications concerning the possibilities of multi-responsive systems are discussed.

  1. The singular behavior of a β-type semi-synthetic two branched polypeptide: three-dimensional structure and mode of action.

    Science.gov (United States)

    Manzo, Giorgia; Serra, Ilaria; Pira, Alessandro; Pintus, Manuela; Ceccarelli, Matteo; Casu, Mariano; Rinaldi, Andrea C; Scorciapino, Mariano Andrea

    2016-11-16

    Dendrimeric peptides make a versatile group of bioactive peptidomimetics and a potential new class of antimicrobial agents to tackle the pressing threat of multi-drug resistant pathogens. These are branched supramolecular assemblies where multiple copies of the bioactive unit are linked to a central core. Beyond their antimicrobial activity, dendrimeric peptides could also be designed to functionalize the surface of nanoparticles or materials for other medical uses. Despite these properties, however, little is known about the structure-function relationship of such compounds, which is key to unveil the fundamental physico-chemical parameters and design analogues with desired attributes. To close this gap, we focused on a semi-synthetic, two-branched peptide, SB056, endowed with remarkable activity against both Gram-positive and Gram-negative bacteria and limited cytotoxicity. SB056 can be considered the smallest prototypical dendrimeric peptide, with the core restricted to a single lysine residue and only two copies of the same highly cationic 10-mer polypeptide; an octanamide tail is present at the C-terminus. Combining NMR and Molecular Dynamics simulations, we have determined the 3D structure of two analogues. Fluorescence spectroscopy was applied to investigate the water-bilayer partition in the presence of vesicles of variable charge. Vesicle leakage assays were also performed and the experimental data were analyzed by applying an iterative Monte Carlo scheme to estimate the minimum number of bound peptides needed to achieve the release. We unveiled a singular beta hairpin-type structure determined by the peptide chains only, with the octanamide tail available for further functionalization to add new potential properties without affecting the structure.

  2. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    Science.gov (United States)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  3. Tritium labelling of a cholesterol amphiphile designed for cell membrane anchoring of proteins.

    Science.gov (United States)

    Schäfer, Balázs; Orbán, Erika; Kele, Zoltán; Tömböly, Csaba

    2015-01-01

    Cell membrane association of proteins can be achieved by the addition of lipid moieties to the polypeptide chain, and such lipid-modified proteins have important biological functions. A class of cell surface proteins contains a complex glycosylphosphatidylinositol (GPI) glycolipid at the C-terminus, and they are accumulated in cholesterol-rich membrane microdomains, that is, lipid rafts. Semisynthetic lipoproteins prepared from recombinant proteins and designed lipids are valuable probes and model systems of the membrane-associated proteins. Because GPI-anchored proteins can be reinserted into the cell membrane with the retention of the biological function, they are appropriate candidates for preparing models via reduction of the structural complexity. A synthetic headgroup was added to the 3β-hydroxyl group of cholesterol, an essential lipid component of rafts, and the resulting cholesterol derivative was used as a simplified GPI mimetic. In order to quantitate the membrane integrated GPI mimetic after the exogenous addition to live cells, a tritium labelled cholesterol anchor was prepared. The radioactive label was introduced into the headgroup, and the radiolabelled GPI mimetic anchor was obtained with a specific activity of 1.37 TBq/mmol. The headgroup labelled cholesterol derivative was applied to demonstrate the sensitive detection of the cell membrane association of the anchor under in vivo conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Examining hemodialyzer membrane performance using proteomic technologies

    Directory of Open Access Journals (Sweden)

    Bonomini M

    2017-12-01

    Full Text Available Mario Bonomini,1 Luisa Pieroni,2 Lorenzo Di Liberato,1 Vittorio Sirolli,1 Andrea Urbani2,3 1Department of Medicine, G. d’Annunzio University, Chieti, 2Proteomic and Metabonomic Units, IRCCS S. Lucia Foundation, Rome, 3Faculty of Medicine, Biochemistry and Clinical Biochemistry Institute, Catholic University of the “Sacred Heart”, Rome, Italy Abstract: The success and the quality of hemodialysis therapy are mainly related to both clearance and biocompatibility properties of the artificial membrane packed in the hemodialyzer. Performance of a membrane is strongly influenced by its interaction with the plasma protein repertoire during the extracorporeal procedure. Recognition that a number of medium–high molecular weight solutes, including proteins and protein-bound molecules, are potentially toxic has prompted the development of more permeable membranes. Such membrane engineering, however, may cause loss of vital proteins, with membrane removal being nonspecific. In addition, plasma proteins can be adsorbed onto the membrane surface upon blood contact during dialysis. Adsorption can contribute to the removal of toxic compounds and governs the biocompatibility of a membrane, since surface-adsorbed proteins may trigger a variety of biologic blood pathways with pathophysiologic consequences. Over the last years, use of proteomic approaches has allowed polypeptide spectrum involved in the process of hemodialysis, a key issue previously hampered by lack of suitable technology, to be assessed in an unbiased manner and in its full complexity. Proteomics has been successfully applied to identify and quantify proteins in complex mixtures such as dialysis outflow fluid and fluid desorbed from dialysis membrane containing adsorbed proteins. The identified proteins can also be characterized by their involvement in metabolic and signaling pathways, molecular networks, and biologic processes through application of bioinformatics tools. Proteomics may

  5. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  6. A radioimmunoassay of gastric inhibitory polypeptide in human plasma

    International Nuclear Information System (INIS)

    Sarson, D.L.; Bryant, M.G.; Bloom, S.R.

    1980-01-01

    A sensitive radioimmunoassay for the measurement of human gastric inhibitory polypeptide (GIP), using pure porcine GIP, has been developed. Cross-reactivity of the antiserum with all available mammalian gut peptide preparations was negligible with the exception of glucagon when it was approximately 1%. Two major molecular forms of GIP were detectable in plasma and tissue extracts, one of large molecular size and the other corresponding to the elution coefficient of pure porcine standard. Concentrations of GIP in plasma from 50 normal subjects after overnight fasting were 9+-1.0(S.E.M.) pmol/1 rising to a peak of 34+-2.8 pmol/1 following the ingestion of a small mixed test meal. Ingestion of glucose or fat resulted in a similar rise of plasma GIP, whereas no change was observed after the ingestion of protein. (author)

  7. Crossover of two power laws in the anomalous diffusion of a two lipid membrane.

    Science.gov (United States)

    Bakalis, Evangelos; Höfinger, Siegfried; Venturini, Alessandro; Zerbetto, Francesco

    2015-06-07

    Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.

  8. Crossover of two power laws in the anomalous diffusion of a two lipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bakalis, Evangelos, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it; Höfinger, Siegfried; Zerbetto, Francesco, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it [Dipartimento di Chimica “G. Ciamician”, Universita’ di Bologna, Via F. Selmi 2, 40126 Bologna (Italy); Venturini, Alessandro [Institute for the Organic Synthesis and Photoreactivity, National Research Council of Italy, Via Gobetti 101, 40129 Bologna (Italy)

    2015-06-07

    Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.

  9. Preparation and evaluation of tamsulosin hydrochloride sustained-release pellets modified by two-layered membrane techniques

    Directory of Open Access Journals (Sweden)

    Jingmin Wang

    2015-02-01

    Full Text Available The aim of the present study was to develop tamsulosin hydrochloride sustained-release pellets using two-layered membrane techniques. Centrifugal granulator and fluidized-bed coater were employed to prepare drug-loaded pellets and to employ two-layered membrane coating respectively. The prepared pellets were evaluated for physicochemical characterization, subjected to differential scanning calorimetry (DSC and in vitro release of different pH. Different release models and scanning electron microscopy (SEM were utilized to analyze the release mechanism of Harnual® and home-made pellets. By comparing the dissolution profiles, the ratio and coating weight gain of Eudragit® NE30D and Eudragit® L30D55 which constitute the inside membrane were identified as 18:1 and 10%–11%. The coating amount of outside membrane containing Eudragit® L30D55 was determined to be 0.8%. The similarity factors (f2 of home-made capsule and commercially available product (Harnual® were above 50 in different dissolution media. DSC studies confirmed that drug and excipients had good compatibility and SEM photographs showed the similarities and differences of coating surface between Harnual® and self-made pellets before and after dissolution. According to Ritger-Peppas model, the two dosage form had different release mechanism.

  10. Gas separation using porous cement membrane.

    Science.gov (United States)

    Zhang, Weiqi; Gaggl, Maria; Gluth, Gregor J G; Behrendt, Frank

    2014-01-01

    Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied.

  11. In vivo guided vascular regeneration with a non-porous elastin-like polypeptide hydrogel tubular scaffold.

    Science.gov (United States)

    Mahara, Atsushi; Kiick, Kristi L; Yamaoka, Tetsuji

    2017-06-01

    Herein, we demonstrate a new approach for small-caliber vascular reconstruction using a non-porous elastin-like polypeptide hydrogel tubular scaffold, based on the concept of guided vascular regeneration (GVR). The scaffolds are composed of elastin-like polypeptide, (Val-Pro-Gly-Ile-Gly) n , for compliance matching and antithrombogenicity and an Arg-Gly-Asp (RGD) motif for connective tissue regeneration. When the polypeptide was mixed with an aqueous solution of β-[Tris(hydroxymethyl)phosphino]propionic acid at 37°C, the polypeptide hydrogel was rapidly formed. The elastic modulus of the hydrogel was 4.4 kPa. The hydrogel tubular scaffold was formed in a mold and reinforced with poly(lactic acid) nanofibers. When tubular scaffolds with an inner diameter of 1 mm and length of 5 mm were implanted into rat abdominal aortae, connective tissue grew along the scaffold luminal surface from the flanking native tissues, resulting in new blood vessel tissue with a thickness of 200 μm in 1 month. In contrast, rats implanted with control scaffolds without the RGD motif died. These results indicate that the non-porous hydrogel tubular scaffold containing the RGD motif effectively induced rapid tissue regeneration and that GVR is a promising strategy for the regeneration of small-diameter blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1746-1755, 2017. © 2017 Wiley Periodicals, Inc.

  12. Two-step membrane binding by the bacterial SRP receptor enable efficient and accurate Co-translational protein targeting.

    Science.gov (United States)

    Hwang Fu, Yu-Hsien; Huang, William Y C; Shen, Kuang; Groves, Jay T; Miller, Thomas; Shan, Shu-Ou

    2017-07-28

    The signal recognition particle (SRP) delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum, or the bacterial plasma membrane. The precise mechanism by which the bacterial SRP receptor, FtsY, interacts with and is regulated at the target membrane remain unclear. Here, quantitative analysis of FtsY-lipid interactions at single-molecule resolution revealed a two-step mechanism in which FtsY initially contacts membrane via a Dynamic mode, followed by an SRP-induced conformational transition to a Stable mode that activates FtsY for downstream steps. Importantly, mutational analyses revealed extensive auto-inhibitory mechanisms that prevent free FtsY from engaging membrane in the Stable mode; an engineered FtsY pre-organized into the Stable mode led to indiscriminate targeting in vitro and disrupted FtsY function in vivo. Our results show that the two-step lipid-binding mechanism uncouples the membrane association of FtsY from its conformational activation, thus optimizing the balance between the efficiency and fidelity of co-translational protein targeting.

  13. Nephrotic syndrome induced by dibasic sodium phosphate injections for twenty-eight days in rats.

    Science.gov (United States)

    Tsuchiya, Noriko; Torii, Mikinori; Narama, Isao; Matsui, Takane

    2009-04-01

    Sprague-Dawley rats received once daily tail-vein injections of 360 mM dibasic sodium phosphate solution at 8 mL/kg for fourteen or twenty-eight days. Clinical examination revealed persistent proteinuria from three days after the first dosing and thereafter severe proteinuria from eight days or later in the phosphate-treated groups. Proteinuria developed without remission even after fourteen-day withdrawal in the fourteen-day dosed group. Phosphate-treated animals developed lipemia, hypercholesterolemia, anemia, higher serum fibrinogen levels, and lower serum albumin/globulin ratios on day 29. Renal weight increased significantly compared with control animals, and the kidneys appeared pale and enlarged with a rough surface. Histopathologically, glomerular changes consisted of mineralization in whole glomeruli, glomerular capillary dilatation, partial adhesion of glomerular tufts to Bowman's capsule, and mesangiolysis. Ultrastructural lesions such as an increased number of microvilli, effacement of foot processes, and thickening of the glomerular basement membrane, and immunocytochemical changes in podocytes, mainly decreased podoplanin-positive cells and increased desmin expression, were also conspicuous in the phosphate-treated rats for twenty-eight days. Marked tubulointerstitial lesions were tubular regeneration and dilatation, protein casts, mineralization in the basement membrane, focal interstitial inflammation, and fibrosis in the cortex. These clinical and morphological changes were similar to features of human nephrotic syndrome.

  14. Homoallylglycine residues are superior precursors to orthogonally modified thioether containing polypeptides.

    Science.gov (United States)

    Perlin, Pesach; Gharakhanian, Eric G; Deming, Timothy J

    2018-06-12

    Homoallylglycine N-carboxyanhydride, Hag NCA, monomers were synthesized and used to prepare polypeptides containing Hag segments with controllable lengths of up to 245 repeats. Poly(l-homoallylglycine), GHA, was found to adopt an α-helical conformation, which provided good solubility in organic solvents and allowed high yield functionalization of its alkene side-chains via radical promoted addition of thiols. The conformations of these derivatives were shown to be switchable between α-helical and disordered states in aqueous media using thioether alkylation or oxidation reactions. Incorporation of GHA segments into block copolymers with poly(l-methionine), M, segments provided a means to orthogonally modify thioether side-chains different ways in separate copolypeptide domains. This approach allows preparation of functional polypeptides containing discrete domains of oxidized and alkylated thioether containing residues, where chain conformation and functionality of each domain can be independently modified.

  15. Salt- and pH-Triggered Helix-Coil Transition of Ionic Polypeptides under Physiology Conditions.

    Science.gov (United States)

    Yuan, Jingsong; Zhang, Yi; Sun, Yue; Cai, Zhicheng; Yang, Lijiang; Lu, Hua

    2018-06-11

    Controlling the helix-coil transition of polypeptides under physiological conditions is an attractive way toward smart functional materials. Here, we report the synthesis of a series of tertiary amine-functionalized ethylene glycol (EG x )-linked polypeptide electrolytes with their secondary structures tunable under physiological conditions. The resultant polymers, denoted as P(EG x DMA-Glu) ( x = 1, 2, and 3), show excellent aqueous solubility (>20 mg/mL) regardless of their charge states. Unlike poly-l-lysine that can form a helix only at pH above 10, P(EG x DMA-Glu) undergo a pH-dependent helix-coil switch with their transition points within the physiological range (pH ∼5.3-6.5). Meanwhile, P(EG x DMA-Glu) exhibit an unusual salt-induced helical conformation presumably owing to the unique properties of EG x linkers. Together, the current work highlights the importance of fine-tuning the linker chemistry in achieving conformation-switchable polypeptides and represents a facile approach toward stimuli-responsive biopolymers for advanced biological applications.

  16. Zonadhesin D3-polypeptides vary among species but are similar in Equus species capable of interbreeding.

    Science.gov (United States)

    Tardif, Steve; Brady, Heidi A; Breazeale, Kelly R; Bi, Ming; Thompson, Leslie D; Bruemmer, Jason E; Bailey, Laura B; Hardy, Daniel M

    2010-02-01

    Zonadhesin is a rapidly evolving protein in the sperm acrosome that confers species specificity to sperm-zona pellucida adhesion. Though structural variation in zonadhesin likely contributes to its species-specific function, the protein has not previously been characterized in organisms capable of interbreeding. Here we compared properties of zonadhesin in several animals, including the horse (Equus caballus), donkey (E. asinus), and Grevy's zebra (E. grevyi) to determine if variation in zonadhesin correlates with ability of gametes to cross-fertilize. Zonadhesin localized to the apical acrosomes of spermatozoa from all three Equus species, similar to its localization in other animals. Likewise, in horse and donkey testis, zonadhesin was detected only in germ cells, first in the acrosomal granule of round spermatids and then in the developing acrosomes of elongating spermatids. Among non-Equus species, D3-domain polypeptides of mature, processed zonadhesin varied markedly in size and detergent solubility. However, zonadhesin D3-domain polypeptides in horse, donkey, and zebra spermatozoa exhibited identical electrophoretic mobility and detergent solubility. Equus zonadhesin D3-polypeptides (p110/p80 doublet) were most similar in size to porcine and bovine zonadhesin D3-polypeptides (p105). Sequence comparisons revealed that the horse zonadhesin precursor's domain content and arrangement are similar to those of zonadhesin from other large animals. Partial sequences of horse and donkey zonadhesin were much more similar to each other (>99% identity) than they were to orthologous sequences of human, pig, rabbit, and mouse zonadhesin (52%-72% identity). We conclude that conservation of zonadhesin D3-polypeptide properties correlates with ability of Equus species to interbreed.

  17. An anti-cancer WxxxE-containing azurin polypeptide inhibits Rac1-dependent STAT3 and ERK/GSK-3β signaling in breast cancer cells.

    Science.gov (United States)

    Zhang, Zhe; Luo, Zhiyong; Min, Wenpu; Zhang, Lin; Wu, Yaqun; Hu, Xiaopeng

    2017-06-27

    In our previous study, we characterized a mycoplasmal small GTPase-like polypeptide of 240 amino acids that possesses an N-terminal WVLGE sequence. The N-terminal WVLGE sequence promotes activation of Rac1 and subsequent host cancer cell proliferation. To investigate the function of the WxxxE motif in the interaction with Rac1 and host tumor progression, we synthesized a 35-amino acid WVLGE-containing polypeptide derived from a cell-penetrating peptide derived from the azurin protein. We verified that the WVLGE-containing polypeptide targeted MCF-7 cells rather than MCF-10A cells. However, the WVLGE-containing polypeptide inhibited activation of Rac1 and induced cellular phenotypes that resulted from inhibition of Rac1. In addition, the WVLGE-containing polypeptide down-regulated phosphorylation of the STAT3 and ERK/GSK-3β signaling pathways, and this effect was abolished by either stimulation or inhibition of Rac1 activity. We also found that the WVLGE-containing polypeptide has a Rac1-dependent potential to suppress breast cancer growth in vitro and in vivo. We suggest that by acting as a Rac1 inhibitor, this novel polypeptide may be useful for the treatment of breast cancer.

  18. Two-dimensional analytical model of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Liu, Jia Xing; Guo, Hang; Ye, Fang; Ma, Chong Fang

    2017-01-01

    In this study, a two-dimensional full cell analytical model of a proton exchange membrane fuel cell is developed. The analytical model describes electrochemical reactions on the anode and cathode catalyst layer, reactants diffusion in the gas diffusion layer, and gases flow in the gas channel, etc. The analytical solution is derived according to the basic physical equations. The performance predicted by the model is in good agreement with the experimental data. The results show that the polarization mainly occurs in the cathode side of the proton exchange membrane fuel cell. The anodic overpotential cannot be neglected. The hydrogen and oxygen concentrations decrease along the channel flow direction. The hydrogen and oxygen concentrations in the catalyst layer decrease with the current density. As predicted by the model, concentration polarization mainly occurs in the cathode side. - Highlights: • A 2D full cell analytical model of a proton exchange membrane fuel cell is developed. • The analytical solution is deduced according to the basic equations. • The anode overpotential is not so small that it cannot be neglected. • Species concentration distributions in the fuel cell is obtained and analyzed.

  19. Comparison of Hexane Vapour Permeation in Two Different Polymeric Membranes via an Innovative In-line FID Detection Method

    Directory of Open Access Journals (Sweden)

    Z. Petrusová

    2017-07-01

    Full Text Available This manuscript presents a novel method for the analysis of vapour permeation through polymeric membranes based on in-line analysis of the permeate with an FID detector. The hexane vapour permeation was studied for two commercially available membranes, namely low-density polyethylene (LDPE and thin-film-composite polyamide (PA membrane. The hexane permeation was studied at temperatures of 25–45 °C, hexane vapour activity in the range of 0.2–0.8 and trans-membrane pressures of 5–50 kPa. Two fundamentally different membranes were chosen to demonstrate the potential and sensitivity of the permeation apparatus. Upon increasing the temperature from 25 to 45 °C, the flux in LDPE was found to increase almost fourfold over the whole activity range. The nonlinear increase of the flux with activity indicates plasticization of the polymer by hexane. Contrarily, the flux in the PA membrane increases almost linearly with activity, with only a minor upward curvature. Since the PA is far away from any phase transition, it is less temperature-dependent than LDPE. The activation energy for permeation demonstrates that the temperature dependence in the LDPE membrane is dominated by changes in diffusion, whereas it is dominated by changes in solubility in the PA membrane.

  20. Anaerobic digestion of citrus waste using two-stage membrane bioreactor

    Science.gov (United States)

    Millati, Ria; Lukitawesa; Dwi Permanasari, Ervina; Wulan Sari, Kartika; Nur Cahyanto, Muhammad; Niklasson, Claes; Taherzadeh, Mohammad J.

    2018-03-01

    Anaerobic digestion is a promising method to treat citrus waste. However, the presence of limonene in citrus waste inhibits anaerobic digestion process. Limonene is an antimicrobial compound and could inhibit methane forming bacteria that takes a longer time to recover than the injured acid forming bacteria. Hence, volatile fatty acids will be accumulated and methane production will be decreased. One way to solve this problem is by conducting anaerobic digestion process into two stages. The first step is aimed for hydrolysis, acidogenesis, and acetogenesis reactions and the second stage is aimed for methanogenesis reaction. The separation of the system would further allow each stage in their optimum conditions making the process more stable. In this research, anaerobic digestion was carried out in batch operations using 120 ml-glass bottle bioreactors in 2 stages. The first stage was performed in free-cells bioreactor, whereas the second stage was performed in both bioreactor of free cells and membrane bioreactor. In the first stage, the reactor was set into ‘anaerobic’ and ‘semi-aerobic’ conditions to examine the effect of oxygen on facultative anaerobic bacteria in acid production. In the second stage, the protection of membrane towards the cells against limonene was tested. For the first stage, the basal medium was prepared with 1.5 g VS of inoculum and 4.5 g VS of citrus waste. The digestion process was carried out at 55°C for four days. For the second stage, the membrane bioreactor was prepared with 3 g of cells that were encased and sealed in a 3×6 cm2 polyvinylidene fluoride membrane. The medium contained 40 ml basal medium and 10 ml liquid from the first stage. The bioreactors were incubated at 55°C for 2 days under anaerobic condition. The results from the first stage showed that the maximum total sugar under ‘anaerobic’ and ‘semi-aerobic’ conditions was 294.3 g/l and 244.7 g/l, respectively. The corresponding values for total volatile

  1. Functional polypeptides obtained by living ring opening polymerizations of N-carboxyanhydrides

    NARCIS (Netherlands)

    Habraken, G.J.M.

    2011-01-01

    N-Carboxyanhydride ring opening polymerization (NCA ROP) is a method to prepare polypeptides with a high degree of polymerization in large quantities. The living polymerization technique of NCA ROP gave the opportunity to synthesize many polymer architectures with well-defined blocks and copolymers

  2. Side-chain-controlled self-assembly of polystyrene-polypeptide miktoarm star copolymers

    KAUST Repository

    Junnila, Susanna; Houbenov, Nikolay; Karatzas, A.; Hadjichristidis, Nikolaos; Hirao, Akira; Iatrou, Hermis; Ikkala, Olli T.

    2012-01-01

    polypeptide-surfactant self-assemblies with β-sheet conformation in PS 2PLL(DS) and PS 2(PLL(DS)) 2 which dominate over the formation of block copolymer scale structures. Differences between the 3- and 4-arm systems illustrate how packing frustration between

  3. Study of local conformation and molecular movements of homo-polypeptides in aqueous solutions by using magnetic resonance and relaxation

    International Nuclear Information System (INIS)

    Perly, Bruno

    1980-01-01

    The objective of this research thesis is to study local conformations and mobilities of some typical homo-polypeptides by using techniques of magnetic resonance. By using these techniques, it is possible to make highly local observations of molecular elements which allows very efficient analysis of structural and dynamic properties of several biologically important compounds to be performed, and the study of their interactions. After a presentation of the general properties of the studied polypeptides, of magnetic resonance and of magnetic relaxation, the author presents some elements of macromolecular dynamics and movement models. Then, he reports the study of local conformations and structural transitions, applications of spin marking to the dynamic study of polypeptides, a dynamic study of the polypeptide skeleton under the form of statistic balls, the study of local movements of side chains by using nuclear relaxation, the study of the coupling of movements of main and side chains, and of the nuclear relaxation induced by a radical spin marker

  4. Surface modification of poly(vinylidene fluoride) membrane with hydrophilic and anti-fouling performance via a two-step polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gui-E; Sun, Li; Huang, Hui-Hong; Liu, Yan-Jun [Shanghai Institute of Technology, Shanghai (China); Xu, Zhen-Liang; Yang, Hu [East China University of Science and Technology, Shanghai (China)

    2015-12-15

    The surface modification of poly (vinylidene fluoride) (PVDF) membrane was performed via a two-step polymerization reactions. Poly (acrylic acid) (PAAc) was first grafted onto the membrane surface for the preparation of PVDF-g-PAAc membrane, and then poly (ethylene glycol) 200 (PEG 200) was immobilized on the membrane surface by the esterification reaction for the fabrication of PVDF-g-PEGA membrane. Attenuated total reflectance (ATR) FTIR, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and protein adsorption, water flux, water content and dynamic contact angle were conducted to characterize the structures and performance of the resultant PVDF membranes. The experimental results showed that the adsorption of bovine serum albumin (BSA) on the PVDF-g-PEGA membrane decreased about 80% when the grafting ratio reached to 15 wt%, compared with the pristine PVDF membrane. Moreover, the water contact angle of the membrane dropped to 60.5o, while the membrane pore sizes remained little changed.

  5. Electrical spectroscopy studies of two new siloxanic proton conducting membranes

    International Nuclear Information System (INIS)

    Di Noto, Vito; Vittadello, Michele; Zago, Vanni; Pace, Giuseppe; Vidali, Maurizio

    2006-01-01

    This contribution is focused on the conductivity study and the protonic transfer investigation of two new siloxanic membranes. The conductivity of the systems has been studied within the temperature range 5 deg. C ≤ T ≤ 145 deg. C, both for pristine and hydrated membranes. Membrane A has been hydrated up to 33.12% in weight, while in B up to 27.76%. The conductivity of these membranes has shown a temperature dependence of the Arrhenius type variable in the interval 1.6 x 10 -4 ≤ σ A ≤ 2.3 x 10 -3 S cm -1 and 1.3 x 10 -5 ≤ σ B ≤ 2.9 x 10 -4 S cm -1 , respectively, for A and B. In particular, conductivities of 2 x 10 -3 S cm -1 (A) and of 2 x 10 -4 S cm -1 (B) at 125 deg. C were observed. The conductivity mechanism was investigated by using broad band electrical spectroscopy in the region between 40 Hz and 10 MHz. This study, for both the materials has shown the presence at low frequencies (10 2 ≤ f β ≤ 10 4 Hz) of β relaxations related to the sulphonic side chain dynamics. The activation energy measured for this molecular dynamics is about ≅30 kJ mol -1 and corresponds to the typical interaction energy associated with hydrogen bonding. Furthermore, it was observed that the activation energies determined from the conductivity measurements are 12 and 14 kJ mol -1 , respectively, for A and B. This shows that the protonic conductivity is strongly influenced by the side chain dynamics and that the charge migration occurs through an ion hopping mechanism between different regions, consisting of micro-clusters of hydration water coordinated with the polar sulphonic groups of the side chains. The comparable activation energies and the values of the conductivity demonstrate that in these systems the conductivity is proportional to the concentration of the sulphonic groups. This shows also that these kinds of membranes, with a high concentration of SO 3 H are necessary in order to obtain materials with a high protonic conductivity with the capacity to

  6. Two orders of magnitude reduction in silicon membrane thermal conductivity by resonance hybridizations

    Science.gov (United States)

    Honarvar, Hossein; Hussein, Mahmoud I.

    2018-05-01

    The thermal conductivity of a freestanding single-crystal silicon membrane may be reduced significantly by attaching nanoscale pillars on one or both surfaces. Atomic resonances of the nanopillars form vibrons that intrinsically couple with the base membrane phonons causing mode hybridization and flattening at each coupling location in the phonon band structure. This in turn causes group velocity reductions of existing phonons, in addition to introducing new modes that get excited but are localized and do not transport energy. The nanopillars also reduce the phonon lifetimes at and around the hybridization zones. These three effects, which in principle may be tuned to take place across silicon's full spectrum, lead to a lowering of the in-plane thermal conductivity in the base membrane. Using equilibrium molecular dynamics simulations, and utilizing the concept of vibrons compensation, we report a staggering two orders of magnitude reduction in the thermal conductivity at room temperature by this mechanism. Specifically, a reduction of a factor of 130 is demonstrated for a roughly 10-nm-thick pillared membrane compared to a corresponding unpillared membrane. This amounts to a record reduction of a factor of 481 compared to bulk crystalline silicon and nearly a factor of 2 compared to bulk amorphous silicon. These results are obtained while providing a path for preserving performance with upscaling.

  7. Application of evolutionary algorithm methods to polypeptide folding: comparison with experimental results for unsolvated Ac-(Ala-Gly-Gly)5-LysH+

    DEFF Research Database (Denmark)

    Damsbo, Martin; Kinnear, Brian S; Hartings, Matthew R

    2004-01-01

    We present an evolutionary method for finding the low-energy conformations of polypeptides. The application, called FOLDAWAY,is based on a generic framework and uses several evolutionary operators as well as local optimization to navigate the complex energy landscape of polypeptides. It maintains...... mobility measurements. It has a flat energy landscape where helical and globular conformations have similar energies. FOLDAWAY locates several large groups of structures not found in previous molecular dynamics simulations for this peptide, including compact globular conformations, which are probably...... two complementary representations of the structures and uses the CHARMM force field for evaluating the energies. The method is applied to unsolvated Met-enkephalin and Ac-(Ala-Gly-Gly)(5)-Lys(+)H(+). Unsolvated Ac-(Ala-Gly-Gly)(5)-Lys(+)H(+) has been the object of recent experimental studies using ion...

  8. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  9. Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Koushik; Balog, Eva Rose M.; Sista, Prakash; Williams, Darrick J.; Martinez, Jennifer S., E-mail: jenm@lanl.gov, E-mail: rcrocha@lanl.gov; Rocha, Reginaldo C., E-mail: jenm@lanl.gov, E-mail: rcrocha@lanl.gov [Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kelly, Daniel [Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-01

    We report a method for creating hybrid organic-inorganic “nanoflowers” using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP) as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca{sup 2+} or Cu{sup 2+}, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon the temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis.

  10. Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides

    Directory of Open Access Journals (Sweden)

    Koushik Ghosh

    2014-02-01

    Full Text Available We report a method for creating hybrid organic-inorganic “nanoflowers” using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca2+ or Cu2+, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon the temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis.

  11. Plant glycosylphosphatidylinositol (GPI) anchored proteins at the plasma membrane-cell wall nexus.

    Science.gov (United States)

    Yeats, Trevor H; Bacic, Antony; Johnson, Kim L

    2018-04-18

    Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. While the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall and their potential to transduce the signal into the protoplast and thereby activate signal transduction pathways. This article is protected by copyright. All rights reserved.

  12. Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors

    Science.gov (United States)

    Moradi, Golshan; Zinadini, Sirus; Rajabi, Laleh; Dadari, Soheil

    2018-01-01

    The nanofibrous Polyacrylonitrile (PAN) membranes embedded with fumarate-alumoxane (Fum-A) nanoparticles were prepared via electrospinning technique as high flux and antifouling membranes for membrane bioreactor (MBR) applications. The effect of Fum-A nanoparticles on membrane morphology, surface hydrophilicity, pure water flux, effluent turbidity and the antifouling property was investigated. Fum-A is a carboxylate-alumoxane nanoparticle covered by extra hydroxyl and carboxylate groups on its surface. By embedding Fum-A nanoparticles into the spinning solution, the surface hydrophilicity and pure water flux of the resulted membranes were improved. The smooth surface of fibers at the low amount of nanoparticles and the agglomeration of nanoparticles at their high concentration were shown in SEM images of the membranes surface. The energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analysis of the prepared Fum-A/PAN membrane confirmed the presence of carboxylate and hydroxyl functional groups of Fum-A nanoparticles on the surface of the Fum-A nanoparticles containing membrane. The results obtained from the filtration of activated sludge suspension revealed that by addition of a low amount of Fum-A nanoparticles, the irreversible fouling was significantly decreased due to the higher hydrophilicity. The Fum-A/PAN membranes showed superior permeate flux and antifouling properties compared to bare electrospun PAN membrane. Finally, 2 wt.% Fum-A/PAN membrane exhibited the highest FRR of 96% and the lowest irreversible fouling of 4% with excellent durability of antifouling property during twenty repeated activated sludge filtrations.

  13. Extraction or adsorption? Voltammetric assessment of protamine transfer at ionophore-based polymeric membranes.

    Science.gov (United States)

    Garada, Mohammed B; Kabagambe, Benjamin; Amemiya, Shigeru

    2015-01-01

    Cation-exchange extraction of polypeptide protamine from water into an ionophore-based polymeric membrane has been hypothesized as the origin of a potentiometric sensor response to this important heparin antidote. Here, we apply ion-transfer voltammetry not only to confirm protamine extraction into ionophore-doped polymeric membranes but also to reveal protamine adsorption at the membrane/water interface. Protamine adsorption is thermodynamically more favorable than protamine extraction as shown by cyclic voltammetry at plasticized poly(vinyl chloride) membranes containing dinonylnaphthalenesulfonate as a protamine-selective ionophore. Reversible adsorption of protamine at low concentrations down to 0.038 μg/mL is demonstrated by stripping voltammetry. Adsorptive preconcentration of protamine at the membrane/water interface is quantitatively modeled by using the Frumkin adsorption isotherm. We apply this model to ensure that stripping voltammograms are based on desorption of all protamine molecules that are transferred across the interface during a preconcentration step. In comparison to adsorption, voltammetric extraction of protamine requires ∼0.2 V more negative potentials, where a potentiometric super-Nernstian response to protamine is also observed. This agreement confirms that the potentiometric protamine response is based on protamine extraction. The voltammetrically reversible protamine extraction results in an apparently irreversible potentiometric response to protamine because back-extraction of protamine from the membrane extremely slows down at the mixed potential based on cation-exchange extraction of protamine. Significantly, this study demonstrates the advantages of ion-transfer voltammetry over potentiometry to quantitatively and mechanistically assess protamine transfer at ionophore-based polymeric membranes as foundation for reversible, selective, and sensitive detection of protamine.

  14. Well-defined (co)polypeptides bearing pendant alkyne groups

    KAUST Repository

    Zhao, Wei

    2016-03-18

    A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of acetylene-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups. This method provides an efficient way to synthesize novel alkyne-functionalized homopolypeptides (A) and copolypeptides, such as AB diblock (B: non-functionalized), ABA triblock and star-AB diblock, as well as linear and star random copolypeptides, precursors of a plethora complex macromolecular architectures by click chemistry.

  15. Well-defined (co)polypeptides bearing pendant alkyne groups

    KAUST Repository

    Zhao, Wei; Gnanou, Yves; Hadjichristidis, Nikolaos

    2016-01-01

    A novel metal-free strategy, using hydrogen-bonding catalytic ring opening polymerization of acetylene-functionalized N-carboxy anhydrites of α-amino acids, was developed for the synthesis of well-defined polypeptides bearing pendant alkyne groups. This method provides an efficient way to synthesize novel alkyne-functionalized homopolypeptides (A) and copolypeptides, such as AB diblock (B: non-functionalized), ABA triblock and star-AB diblock, as well as linear and star random copolypeptides, precursors of a plethora complex macromolecular architectures by click chemistry.

  16. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  17. Zonadhesin D3-Polypeptides Vary among Species but Are Similar in Equus Species Capable of Interbreeding1

    Science.gov (United States)

    Tardif, Steve; Brady, Heidi A.; Breazeale, Kelly R.; Bi, Ming; Thompson, Leslie D.; Bruemmer, Jason E.; Bailey, Laura B.; Hardy, Daniel M.

    2009-01-01

    Zonadhesin is a rapidly evolving protein in the sperm acrosome that confers species specificity to sperm-zona pellucida adhesion. Though structural variation in zonadhesin likely contributes to its species-specific function, the protein has not previously been characterized in organisms capable of interbreeding. Here we compared properties of zonadhesin in several animals, including the horse (Equus caballus), donkey (E. asinus), and Grevy's zebra (E. grevyi) to determine if variation in zonadhesin correlates with ability of gametes to cross-fertilize. Zonadhesin localized to the apical acrosomes of spermatozoa from all three Equus species, similar to its localization in other animals. Likewise, in horse and donkey testis, zonadhesin was detected only in germ cells, first in the acrosomal granule of round spermatids and then in the developing acrosomes of elongating spermatids. Among non-Equus species, D3-domain polypeptides of mature, processed zonadhesin varied markedly in size and detergent solubility. However, zonadhesin D3-domain polypeptides in horse, donkey, and zebra spermatozoa exhibited identical electrophoretic mobility and detergent solubility. Equus zonadhesin D3-polypeptides (p110/p80 doublet) were most similar in size to porcine and bovine zonadhesin D3-polypeptides (p105). Sequence comparisons revealed that the horse zonadhesin precursor's domain content and arrangement are similar to those of zonadhesin from other large animals. Partial sequences of horse and donkey zonadhesin were much more similar to each other (>99% identity) than they were to orthologous sequences of human, pig, rabbit, and mouse zonadhesin (52%–72% identity). We conclude that conservation of zonadhesin D3-polypeptide properties correlates with ability of Equus species to interbreed. PMID:19794156

  18. Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines.

    Science.gov (United States)

    Despanie, Jordan; Dhandhukia, Jugal P; Hamm-Alvarez, Sarah F; MacKay, J Andrew

    2016-10-28

    Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (T t ) but form amorphous coacervates above T t . Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields. Copyright © 2015. Published by Elsevier B.V.

  19. With or without rafts? Alternative views on cell membranes.

    Science.gov (United States)

    Sevcsik, Eva; Schütz, Gerhard J

    2016-02-01

    The fundamental mechanisms of protein and lipid organization at the plasma membrane have continued to engage researchers for decades. Among proposed models, one idea has been particularly successful which assumes that sterol-dependent nanoscopic phases of different lipid chain order compartmentalize proteins, thereby modulating protein functionality. This model of membrane rafts has sustainably sparked the fields of membrane biophysics and biology, and shifted membrane lipids into the spotlight of research; by now, rafts have become an integral part of our terminology to describe a variety of cell biological processes. But is the evidence clear enough to continue supporting a theoretical concept which has resisted direct proof by observation for nearly twenty years? In this essay, we revisit findings that gave rise to and substantiated the raft hypothesis, discuss its impact on recent studies, and present alternative mechanisms to account for plasma membrane heterogeneity. © 2015 WILEY Periodicals, Inc.

  20. [Peroxide modification of membranes and isomorphic composition of cytochrome P-450 of rat liver microsomes during antioxidant deficiency].

    Science.gov (United States)

    Gubskiy, Iu I; Paramonova, G I; Boldeskul, A E; Primak, R G; Bogdanova, L A; Zadorina, O V; Litvinova, N V

    1992-01-01

    Lipid peroxidation (LPO), physico-chemical properties of the membranes and isoformic composition of microsomal cytochrome P-450 from the rat liver were studied under conditions of antioxidant insufficiency (AOI) which was modelled by exclusion of alpha-tocopherol from the animals' ration. An insignificant accumulation of microsomal diene conjugates and schiff bases against a sharp increase of the ability to the prooxidant stimulated LPO in vitro took place. A significant decrease of membrane lipid microviscosity and a change in surface properties of microsomal membranes of rats with AOI was determined. Absence of alpha-tocopherol in the ration was accompanied by a significant change in the content of separate isoforms of cytochrome P-450 exhibited in growth of a polypeptide with m. w. 54 kDa and the lowering of proteins with m. w. 48 and 50 kDa. Less intensive quenching of tryptophan fluorescence by acrylamide was also revealed, which testified to a lower accessibility of the quencher to membrane proteins or their fluorophore sites. Modification of lipid composition and of physicochemical properties of the rat liver membrane microsomes which was observed at AOI was significantly correlated by pretreatment with the antioxidant 4-methyl-2,6-ditretbutylphenol (ionol).

  1. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly

    DEFF Research Database (Denmark)

    Uebe, René; Junge, Katja; Henn, Verena

    2011-01-01

    Magnetotactic bacteria form chains of intracellular membrane‐enclosed, nanometre‐sized magnetite crystals for navigation along the earth's magnetic field. The assembly of these prokaryotic organelles requires several specific polypeptides. Among the most abundant proteins associated with the magn......Magnetotactic bacteria form chains of intracellular membrane‐enclosed, nanometre‐sized magnetite crystals for navigation along the earth's magnetic field. The assembly of these prokaryotic organelles requires several specific polypeptides. Among the most abundant proteins associated...... with the magnetosome membrane of Magnetospirillum gryphiswaldense are MamB and MamM, which were implicated in magnetosomal iron transport because of their similarity to the cation diffusion facilitator family. Here we demonstrate that MamB and MamM are multifunctional proteins involved in several steps of magnetosome...

  2. Fator do plasma seminal associado à integridade de membrana de espermatozóides suínos pós-descongelamento Seminal plasma factor associated to post-thawing swine sperm membrane integrity

    Directory of Open Access Journals (Sweden)

    I. Bianchi

    2008-04-01

    Full Text Available Neste estudo, identificaram-se polipeptídeos associados à integridade da membrana plasmática (IMP de espermatozóides suínos após o processo de congelamento/descongelamento. Por meio do perfil protéico do plasma seminal em SDS-PAGE, observou-se a presença de nove bandas polipeptídicas com pesos moleculares que variaram de 11,97 a 122,52kDa. Detectou-se que uma banda de 26,58kDa esteve associada à baixa IMP (Polypeptides associate to membrane integrity (MI of swine spermatozoa submitted to freezing and thawing were identified. The protein profile of seminal plasma analyzed by SDS-PAGE allowed the identification of nine polypeptide bands with molecular weight ranging from 11.97 to 122.52kDa. One 26.58kDa band was associated with reduced MI (<55%. No associations among other bands and MI were observed. The 26.58kDa factor is associated with reduction of membrane integrity of swine spermatozoa after freezing and thawing.

  3. NanoFIBrication of a two-dimensional phononic crystal in a free standing membrane.

    Energy Technology Data Exchange (ETDEWEB)

    Leseman, Zayd C. (University of New Mexico, Albuquerque, NM); Goettler, Drew F. (University of New Mexico, Albuquerque, NM); Su, Mehmet F. (University of New Mexico, Albuquerque, NM); El-Kady, Ihab Fathy; Olsson, Roy H., III

    2010-06-01

    A two-dimensional phononic crystal (PnC) that can operate in the GHz range is created in a freestanding silicon substrate using NanoFIBrication (using a focused ion beam (FIB) to fabricate nanostructures). First, a simple cubic 6.75 x 6.75 ?m array of vias with 150 nm spacing is generated. After patterning the vias, they are backfilled with void-free tungsten scatterers. Each via has a diameter of 48 nm. Numerical calculations predict this 2D PnC will generate a band gap near 22 GHz. A protective layer of chromium on top of the thin (100 nm) silicon membrane confines the surface damage to the chromium, which can be removed at a later time. Inspection of the underside of the membrane shows the vias flaring out at the exit, which we are dubbing the 'trumpet effect'. The trumpet effect is explained by modeling the lateral damage in a freestanding membrane.

  4. NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypeptides: Application to the human prion protein hPrP(23-230)

    International Nuclear Information System (INIS)

    Liu Aizhuo; Riek, Roland; Wider, Gerhard; Schroetter, Christine von; Zahn, Ralph; Wuethrich, Kurt

    2000-01-01

    A combination of three heteronuclear three-dimensional NMR experiments tailored for sequential resonance assignments in uniformly 15 N, 13 C-labeled flexible polypeptide chains is described. The 3D (H)N(CO-TOCSY)NH, 3D (H)CA(CO-TOCSY)NH and 3D (H)CBCA(CO-TOCSY)NH schemes make use of the favorable 15 N chemical shift dispersion in unfolded polypeptides, exploit the slow transverse 15 N relaxation rates of unfolded polypeptides in high resolution constant-time [ 1 H, 15 N]-correlation experiments, and use carbonyl carbon homonuclear isotropic mixing to transfer magnetization sequentially along the amino acid sequence. Practical applications are demonstrated with the 100-residue flexible tail of the recombinant human prion protein, making use of spectral resolution up to 0.6 Hz in the 15 N dimension, simultaneous correlation with the two adjacent amino acid residues to overcome problems associated with spectral overlap, and the potential of the presently described experiments to establish nearest-neighbor correlations across proline residues in the amino acid sequence

  5. Cancer Nano technology Using Elastin-Like Polypeptides

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib

    2014-01-01

    Despite progress in understanding cancer biology, this knowledge has not translated into comparable advances in the clinic. Two fundamental problems currently stalling the efficient treatment of cancer have been detecting cancer early enough for successful treatment and avoiding excessive toxicity to normal tissues. In view of this, cancer still remains one of the leading causes of mortality worldwide, affecting over 10 million new patients every year. Clearly the development of novel approaches for early detection and treatment of cancer is urgently needed to increase patient survival. Recently, nano technology-based systems have emerged as novel therapeutic modalities for cancer treatment. Tiny man made nanoparticles, much smaller than a virus, are being developed to package, transport, and deliver imaging and therapeutic agents. Co-inclusion of these agents, into nano carriers might be advantageous because they increase solubility of hydrophobic drugs, enhance permeability across physiological barriers, alter drug biodistribution, increase local bioavailability and reduce side effects. Initial findings have been promising and nanoparticles have been shown to deliver therapeutic agents to target cells and effect tumor growth. To this end our lab is investigating a class of biodegradable and biocompatible polymers known as elastin-like polypeptides (ELP). Elastin like polypeptide is a bio polymer derived from the structural motif found in mammalian elastin protein and has a sequence dependent transition temperature that can be used as nano carriers to treat diseases. ELPs are characterized by the pentameric repeat VPGXG, where X can be any amino acid. All functional ELPs undergo inverse phase transition whereby below its transition temperature, they exist in a solubilized form while above its transition temperature they undergo phase separation which leads to their aggregation in solution. This process is reversible. Phase transition can also be triggered by other

  6. Electrical spectroscopy studies of two new siloxanic proton conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Di Noto, Vito [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy)]. E-mail: vito.dinoto@unipd.it; Vittadello, Michele [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Zago, Vanni [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Pace, Giuseppe [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy); Vidali, Maurizio [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, I-35135 Padova (Italy)

    2006-01-20

    This contribution is focused on the conductivity study and the protonic transfer investigation of two new siloxanic membranes. The conductivity of the systems has been studied within the temperature range 5 deg. C {<=} T {<=} 145 deg. C, both for pristine and hydrated membranes. Membrane A has been hydrated up to 33.12% in weight, while in B up to 27.76%. The conductivity of these membranes has shown a temperature dependence of the Arrhenius type variable in the interval 1.6 x 10{sup -4} {<=} {sigma} {sub A} {<=} 2.3 x 10{sup -3} S cm{sup -1} and 1.3 x 10{sup -5} {<=} {sigma} {sub B} {<=} 2.9 x 10{sup -4} S cm{sup -1}, respectively, for A and B. In particular, conductivities of 2 x 10{sup -3} S cm{sup -1} (A) and of 2 x 10{sup -4} S cm{sup -1} (B) at 125 deg. C were observed. The conductivity mechanism was investigated by using broad band electrical spectroscopy in the region between 40 Hz and 10 MHz. This study, for both the materials has shown the presence at low frequencies (10{sup 2} {<=} f {sub {beta}} {<=} 10{sup 4} Hz) of {beta} relaxations related to the sulphonic side chain dynamics. The activation energy measured for this molecular dynamics is about {approx_equal}30 kJ mol{sup -1} and corresponds to the typical interaction energy associated with hydrogen bonding. Furthermore, it was observed that the activation energies determined from the conductivity measurements are 12 and 14 kJ mol{sup -1}, respectively, for A and B. This shows that the protonic conductivity is strongly influenced by the side chain dynamics and that the charge migration occurs through an ion hopping mechanism between different regions, consisting of micro-clusters of hydration water coordinated with the polar sulphonic groups of the side chains. The comparable activation energies and the values of the conductivity demonstrate that in these systems the conductivity is proportional to the concentration of the sulphonic groups. This shows also that these kinds of membranes, with a high

  7. Molecular cloning, expression, functional characterization, chromosomal localization, and gene structure of junctate, a novel integral calcium binding protein of sarco(endo)plasmic reticulum membrane.

    Science.gov (United States)

    Treves, S; Feriotto, G; Moccagatta, L; Gambari, R; Zorzato, F

    2000-12-15

    Screening a cDNA library from human skeletal muscle and cardiac muscle with a cDNA probe derived from junctin led to the isolation of two groups of cDNA clones. The first group displayed a deduced amino acid sequence that is 84% identical to that of dog heart junctin, whereas the second group had a single open reading frame that encoded a polypeptide with a predicted mass of 33 kDa, whose first 78 NH(2)-terminal residues are identical to junctin whereas its COOH terminus domain is identical to aspartyl beta-hydroxylase, a member of the alpha-ketoglutarate-dependent dioxygenase family. We named the latter amino acid sequence junctate. Northern blot analysis indicates that junctate is expressed in a variety of human tissues including heart, pancreas, brain, lung, liver, kidney, and skeletal muscle. Fluorescence in situ hybridization analysis revealed that the genetic loci of junctin and junctate map to the same cytogenetic band on human chromosome 8. Analysis of intron/exon boundaries of the genomic BAC clones demonstrate that junctin, junctate, and aspartyl beta-hydroxylase result from alternative splicing of the same gene. The predicted lumenal portion of junctate is enriched in negatively charged residues and is able to bind calcium. Scatchard analysis of equilibrium (45)Ca(2+) binding in the presence of a physiological concentration of KCl demonstrate that junctate binds 21.0 mol of Ca(2+)/mol protein with a k(D) of 217 +/- 20 microm (n = 5). Tagging recombinant junctate with green fluorescent protein and expressing the chimeric polypeptide in COS-7-transfected cells indicates that junctate is located in endoplasmic reticulum membranes and that its presence increases the peak amplitude and transient calcium released by activation of surface membrane receptors coupled to InsP(3) receptor activation. Our study shows that alternative splicing of the same gene generates the following functionally distinct proteins: an enzyme (aspartyl beta-hydroxylase), a structural

  8. Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Jeong HR

    2015-11-01

    Full Text Available Hye Rin Jeong, Seong Soo A AnDepartment of Bionano Technology, Gachon Medical Research Institute, Gachon University, Gyeonggi-do, Republic of KoreaAbstract: Human islet amyloid polypeptide (h-IAPP is a peptide hormone that is synthesized and cosecreted with insulin from insulin-secreting pancreatic β-cells. Recently, h-IAPP was proposed to be the main component responsible for the cytotoxic pancreatic amyloid deposits in patients with type 2 diabetes mellitus (T2DM. Since the causative factors of IAPP (or amylin oligomer aggregation are not fully understood, this review will discuss the various forms of h-IAPP aggregation. Not all forms of IAPP aggregates trigger the destruction of β-cell function and loss of β-cell mass; however, toxic oligomers do trigger these events. Once these toxic oligomers form under abnormal metabolic conditions in T2DM, they can lead to cell disruption by inducing cell membrane destabilization. In this review, the various factors that have been shown to induce toxic IAPP oligomer formation will be presented, as well as the potential mechanism of oligomer and fibril formation from pro-IAPPs. Initially, pro-IAPPs undergo enzymatic reactions to produce the IAPP monomers, which can then develop into oligomers and fibrils. By this mechanism, toxic oligomers could be generated by diverse pathway components. Thus, the interconnections between factors that influence amyloid aggregation (eg, absence of PC2 enzyme, deamidation, reduction of disulfide bonds, environmental factors in the cell, genetic mutations, copper metal ions, and heparin will be presented. Hence, this review will aid in understanding the fundamental causative factors contributing to IAPP oligomer formation and support studies for investigating novel T2DM therapeutic approaches, such as the development of inhibitory agents for preventing oligomerization at the early stages of diabetic pathology.Keywords: amyloid aggregation, causative factor, IAPP, islet

  9. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Peter G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swingle, Kirstie L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Paxton, Walter F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nogan, John J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stromberg, Loreen R. [Univ. of New Mexico, Albuquerque, NM (United States); Firestone, Millicent A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Harshini [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Consortium, Los Alamos, NM (United States); Montaño, Gabriel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.

  10. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  11. An Umeclidinium membrane sensor; Two-step optimization strategy for improved responses.

    Science.gov (United States)

    Yehia, Ali M; Monir, Hany H

    2017-09-01

    In the scientific context of membrane sensors and improved experimentation, we devised an experimentally designed protocol for sensor optimization. Two-step strategy was implemented for Umeclidinium bromide (UMEC) analysis which is a novel quinuclidine-based muscarinic antagonist used for maintenance treatment of symptoms accompanied with chronic obstructive pulmonary disease. In the first place, membrane components were screened for ideal ion exchanger, ionophore and plasticizer using three categorical factors at three levels in Taguchi design. Secondly, experimentally designed optimization was followed in order to tune the sensor up for finest responses. Twelve experiments were randomly carried out in a continuous factor design. Nernstian response, detection limit and selectivity were assigned as responses in these designs. The optimized membrane sensor contained tetrakis-[3,5-bis(trifluoro- methyl)phenyl] borate (0.44wt%) and calix[6]arene (0.43wt%) in 50.00% PVC plasticized with 49.13wt% 2-ni-tro-phenyl octylether. This sensor, along with an optimum concentration of inner filling solution (2×10 -4 molL -1 UMEC) and 2h of soaking time, attained the design objectives. Nernstian response approached 59.7mV/decade and detection limit decreased by about two order of magnitude (8×10 -8 mol L -1 ) through this optimization protocol. The proposed sensor was validated for UMEC determination in its linear range (3.16×10 -7 -1×10 -3 mol L -1 ) and challenged for selective discrimination of other congeners and inorganic cations. Results of INCRUSE ELLIPTA ® inhalation powder analyses obtained from the proposed sensor and manufacturer's UPLC were statistically compared. Moreover the proposed sensor was successfully used for the determination of UMEC in plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bisphenol A accelerates toxic amyloid formation of human islet amyloid polypeptide: a possible link between bisphenol A exposure and type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Hao Gong

    Full Text Available Bisphenol A (BPA is a chemical compound widely used in manufacturing plastic products. Recent epidemiological studies suggest BPA exposure is positively associated with the incidence of type 2 diabetes mellitus (T2DM, however the mechanisms underlying this link remain unclear. Human islet amyloid polypeptide (hIAPP is a hormone synthesized and secreted by the pancreatic β-cells. Misfolding of hIAPP into toxic oligomers and mature fibrils can disrupt cell membrane and lead to β-cell death, which is regarded as one of the causative factors of T2DM. To test whether there are any connections between BPA exposure and hIAPP misfolding, we investigated the effects of BPA on hIAPP aggregation using thioflavin-T based fluorescence, transmission electronic microscopy, circular dichroism, dynamic light scattering, size-exclusion chromatography, fluorescence-dye leakage assay in an artificial micelle system and the generation of reactive oxygen species in INS-1 cells. We demonstrated that BPA not only dose-dependently promotes the aggregation of hIAPP and enhances the membrane disruption effects of hIAPP, but also promotes the extent of hIAPP aggregation related oxidative stress. Taken together, our results suggest that BPA exposure increased T2DM risk may involve the exacerbated toxic aggregation of hIAPP.

  13. Characterization of HCoV-229E fusion core: Implications for structure basis of coronavirus membrane fusion

    International Nuclear Information System (INIS)

    Liu Cheng; Feng Youjun; Gao Feng; Zhang Qiangmin; Wang Ming

    2006-01-01

    Human coronavirus 229E (HCoV-229E), a member of group I coronaviruses, has been identified as one of the major viral agents causing respiratory tract diseases in humans for nearly 40 years. However, the detailed molecular mechanism of the membrane fusion mediated by the spike (S) protein of HCoV-229E remains elusive. Here, we report, for the first time, a rationally designed fusion core of HCoV-229E (HR1-SGGRGG-HR2), which was in vitro produced in GST prokaryotic expression system. Multiple lines of experimental data including gel-filtration, chemical cross-linking, and circular diagram (CD) demonstrated that the HCoV-229E fusion core possesses the typical properties of the trimer of coiled-coil heterodimer (six α-helix bundle). 3D structure modeling presents its most-likely structure, similar to those of coronaviruses that have been well-documented. Collectively, HCoV-229E S protein belongs to the type I fusion protein, which is characterized by the existence of two heptad-repeat regions (HR1 and HR2), furthermore, the available knowledge concerning HCoV-229E fusion core may make it possible to design small molecule or polypeptide drugs targeting the membrane fusion, a crucial step of HCoV-229E infection

  14. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish.

    Science.gov (United States)

    Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M

    2006-12-01

    A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.

  15. Alteration of gene expression during the induction of freezing tolerance in Brassica napus suspension cultures

    International Nuclear Information System (INIS)

    Johnson-Flanagan, A.M.; Singh, J.

    1987-01-01

    Brassica napus suspension-cultured cells can be hardened to a lethal temperature for 50% of the sample of -20 0 C in eight days at room temperature with abscisic acid. During the induction of freezing tolerance, changes were observed in the electrophoretic pattern of [ 35 S]methionine labeled polypeptides. In hardening cells, a 20 kilodalton polypeptide was induced on day 2 and its level increased during hardening. The induction of freezing tolerance with nonmaximal hardening regimens also resulted in increases in the 20 kilodalton polypeptide. The 20 kilodalton polypeptide was associated with a membrane fraction enriched in endoplasmic reticulum and was resolved as a single spot by two-dimensional electrophoresis. In vitro translation of mRNA indicate alteration of gene expression during abscisic acid induction of freezing tolerance. The new mRNA encodes a 20 kilodalton polypeptide associated with increased freezing tolerance induced by either abscisic acid or high sucrose. A 20 kilodalton polypeptide was also translated by mRNA isolated from cold-hardened B. napus plants

  16. Thermophilic and thermoacidophilic sugar transporter genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods

    Science.gov (United States)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Reed, David W.; Lacey, Jeffrey A.

    2013-01-29

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for transporting sugars across cell membranes using isolated and/or purified polypeptides and nucleic acid sequences from Alicyclobacillus acidocaldarius.

  17. A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo.

    Science.gov (United States)

    Turabee, Md Hasan; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Jeong, Ji Hoon; Lee, Doo Sung

    2018-02-27

    Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL -1 ). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.

  18. Effect of Gating Modifier Toxins on Membrane Thickness: Implications for Toxin Effect on Gramicidin and Mechanosensitive Channels

    Directory of Open Access Journals (Sweden)

    Shin-Ho Chung

    2013-02-01

    Full Text Available Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2 to the right. The detailed process by which the toxin partitions into membranes has been difficult to probe using molecular dynamics due to the limited time scale accessible. Here we develop a protocol that allows the spontaneous assembly of a polypeptide toxin into membranes in atomistic molecular dynamics simulations of tens of nanoseconds. The protocol is applied to GsMTx4 and HpTx2. Both toxins, released in water at the start of the simulation, spontaneously bind into the lipid bilayer within 50 ns, with their hydrophobic patch penetrated into the bilayer beyond the phosphate groups of the lipids. It is found that the bilayer is about 2 Å thinner upon the binding of a GsMTx4 monomer. Such a thinning effect of GsMTx4 on membranes may explain its potentiation effect on gramicidin and mechanosensitive channels.

  19. Results of laser treatment for sub-retinal neovascular membranes ...

    African Journals Online (AJOL)

    A retrospective study was carried out to determine the results of laser treatment for choroidal neovascular membranes in age-related macular degeneration in 92 patients in whom fluorescein angiography was performed for this condition over a 7-year period. Twenty-nine of these patients, treated with the argon laser, were ...

  20. Recurrence rate and need for reoperation after surgery with or without internal limiting membrane removal for the treatment of the epiretinal membrane.

    Science.gov (United States)

    De Novelli, Fernando José; Goldbaum, Mauro; Monteiro, Mario Luiz Ribeiro; Aggio, Fabio Bom; Nóbrega, Mario Junqueira; Takahashi, Walter Yukihiko

    2017-01-01

    To compare the recurrence rate and need for reoperation after epiretinal membrane surgery with and without removal of the internal limiting membrane. In this retrospective study, 125 patients operated for epiretinal membrane removal were evaluated, with a minimum 6-month follow-up. Removal of the epiretinal membrane (ERM) was performed in 78 patients, while 47 had removal of the epiretinal membrane associated with internal limiting membrane peeling (ERM + ILM). The mean age in the ERM group was 65.8 years old, ranging from 41 to 80 years old. In the ERM + ILM group, the mean age was 67.2 years old, ranging from 52 to 82 years old. The mean preoperative visual acuity in the ERM group was 20/80p, and in the ERM + ILM group, it was 20/80. The mean postoperative visual acuity in both groups was 20/30. The mean preoperative macular thickness in the ERM group was 467 µm ranging from 281 to 663 µm; in the ERM + ILM group, the preoperative macular thickness was 497 µm, ranging from 172 to 798 µm. After surgery, a reduction in macular thickness was observed in both groups. In the ERM group, the mean macular thickness reduction was 361 ± 101. µm, whereas in the ERM + ILM group, it was 367 ± 75.2 µm. Twenty-two patients presented with a recurrence of epiretinal membrane, of which 16 (20.5%) were from the ERM group and 6 (12.8%) were from the ERM + ILM group (p = 0.39); one patient (2%) was retreated in the ERM + ILM group, whereas 5 patients (6%) where retreated in the ERM group. We postulate that ILM peeling for the treatment of epiretinal membrane is not a relevant factor either for visual recovery or macular thickness reduction, but it may reduce the recurrence and reoperation rate.

  1. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics

    OpenAIRE

    Walker, Aisha L.; Lancaster, Cynthia S.; Finkelstein, David; Ware, Russell E.; Sparreboom, Alex

    2013-01-01

    Hydroxyurea is currently the only FDA-approved drug that ameliorates the pathophysiology of sickle cell anemia. Unfortunately, substantial interpatient variability in the pharmacokinetics (PK) of hydroxyurea may result in variation of the drug's efficacy. However, little is known about mechanisms that modulate hydroxyurea PK. Recent in vitro studies identifying hydroxyurea as a substrate for organic anion transporting polypeptide (OATP1B) transporters prompted the current investigation assess...

  2. Adaptive silicone-membrane lenses: planar vs. shaped membrane

    CSIR Research Space (South Africa)

    Schneider, F

    2009-08-01

    Full Text Available Engineering, Georges-Koehler-Allee 102, Freiburg 79110, Germany florian.schneider@imtek.uni-freiburg.de ABSTRACT We compare the performance and optical quality of two types of adaptive fluidic silicone-membrane lenses. The membranes feature either a...-membrane lenses: planar vs. shaped membrane Florian Schneider1,2, Philipp Waibel2 and Ulrike Wallrabe2 1 CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001, South Africa 2 University of Freiburg – IMTEK, Department of Microsystems...

  3. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines.

    Science.gov (United States)

    Muhammad, Saqib; Han, Shengli; Xie, Xiaoyu; Wang, Sicen; Aziz, Muhammad Majid

    2017-01-01

    Cell membrane chromatography is a simple, specific, and time-saving technique for studying drug-receptor interactions, screening of active components from complex mixtures, and quality control of traditional Chinese medicines. However, the short column life, low sensitivity, low column efficiency (so cannot resolve satisfactorily mixture of compounds), low peak capacity, and inefficient in structure identification were bottleneck in its application. Combinations of cell membrane chromatography with multidimensional chromatography such as two-dimensional liquid chromatography and high sensitivity detectors like mass have significantly reduced many of the above-mentioned shortcomings. This paper provides an overview of the current advances in online two-dimensional-based cell membrane chromatography for screening target components from traditional Chinese medicines with particular emphasis on the instrumentation, preparation of cell membrane stationary phase, advantages, and disadvantages compared to alternative approaches. The last section of the review summarizes the applications of the online two-dimensional high-performance liquid chromatography based cell membrane chromatography reported since its emergence to date (2010-June 2016). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application.

    Science.gov (United States)

    Masoudi Rad, Maryam; Nouri Khorasani, Saied; Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Foroughi, Mohammad Reza; Kharaziha, Mahshid; Saadatkish, Niloufar; Ramakrishna, Seeram

    2017-11-01

    Membranes used in dentistry act as a barrier to prevent invasion of intruder cells to defected area and obtains spaces that are to be subsequently filled with new bone and provide required bone volume for implant therapy when there is insufficient volume of healthy bone at implant site. In this study a two-layered bioactive membrane were fabricated by electrospinning whereas one layer provides guided bone regeneration (GBR) and fabricated using poly glycerol sebacate (PGS)/polycaprolactone (PCL) and Beta tri-calcium phosphate (β-TCP) (5, 10 and 15%) and another one containing PCL/PGS and chitosan acts as guided tissue regeneration (GTR). The morphology, chemical, physical and mechanical characterizations of the membranes were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tensile testing, then biodegradability and bioactivity properties were evaluated. In vitro cell culture study was also carried out to investigate proliferation and mineralization of cells on different membranes. Transmission electron microscope (TEM) and SEM results indicated agglomeration of β-TCP nanoparticles in the structure of nanofibers containing 15% β-TCP. Moreover by addition of β-TCP from 5% to 15%, contact angle decreased due to hydrophilicity of nanoparticles and bioactivity was found to increase. Mechanical properties of the membrane increased by incorporation of 5% and 10% of β-TCP in the structure of nanofibers, while addition of 15% of β-TCP was found to deteriorate mechanical properties of nanofibers. Although the presence of 5% and 10% of nanoparticles in the nanofibers increased proliferation of cells on GBR layer, cell proliferation was observed to decrease by addition of 15% β-TCP in the structure of nanofibers which is likely due to agglomeration of nanoparticles in the nanofiber structure. Our overall results revealed PCL/PGS containing 10% β-TCP could be selected as the optimum GBR membrane

  5. Studying Mechanosensitivity of Two-Pore Domain K+ Channels in Cellular and Reconstituted Proteoliposome Membranes.

    Science.gov (United States)

    Del Mármol, Josefina; Rietmeijer, Robert A; Brohawn, Stephen G

    2018-01-01

    Mechanical force sensation is fundamental to a wide breadth of biology from the classic senses of touch, pain, hearing, and balance to less conspicuous sensations of proprioception, blood pressure, and osmolarity and basic aspects of cell growth, differentiation, and development. These diverse and essential systems use force-gated (or mechanosensitive) ion channels that convert mechanical stimuli into cellular electrical signals. TRAAK, TREK1, and TREK2 are K + -selective ion channels of the two-pore domain K + (K2P) family that are mechanosensitive: they are gated open by increasing membrane tension. TRAAK and TREK channels are thought to play roles in somatosensory and other mechanosensory processes in neuronal and non-neuronal tissues. Here, we present protocols for three assays to study mechanical activation of these channels in cell membranes: (1) cell swelling, (2) cell poking, and (3) patched membrane stretching. Patched membrane stretching is also applicable to the study of mechanosensitive K2P channel activity in a cell-free system and a procedure for proteoliposome reconstitution and patching is also presented. These approaches are also readily applicable to the study of other mechanosensitive ion channels.

  6. A study for the research trends of membranes for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Sener, T.

    2004-01-01

    'Full text:' A single PEM fuel cell is comprised of a membrane electrode assembly, two bipolar plates and two fields. Membrane electrode assembly is the basic component of PEM fuel cell due to its cost and function, and it consists a membrane sandwiched between two electrocatalyst layers/electrodes and two gas diffusion layers. Increasing the PEM fuel cell operation temperature from 80 o C to 150-200 o C will prevent electrocatalysts CO poisoning and increase the fuel cell performance. Therefore, membranes must have chemical and mechanical resistance and must keep enough water at high temperatures. The aim of membrane studies through fuel cell commercialization is to produce a less expensive thin membrane with high operation temperature, chemical and mechanical resistance and water adsorption capacity. Within this frame, alternative membrane materials, membrane electrode assembly manufacture and evaluation methods are being studied. In this paper, recent studies are reviewed to give a conclusion for research trends. (author)

  7. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, M. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Rahimpour, M.R. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Shiraz University, Gas Center of Excellence, Shiraz (Iran, Islamic Republic of)

    2012-12-15

    In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd-Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR. (orig.)

  8. Investigation and characterization of receptors for pituitary adenylate cyclase-activating polypeptide in human brain by radioligand binding and chemical cross-linking

    International Nuclear Information System (INIS)

    Suda, K.; Smith, D.M.; Ghatei, M.A.; Murphy, J.K.; Bloom, S.R.

    1991-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a novel peptide of hypothalamic origin which increases adenylate cyclase activity in rat anterior pituitary cell cultures. The 38-amino acid peptide shows a close sequence homology to vasoactive intestinal peptide (VIP). Binding sites for PACAP in membranes from postmortem human brain tissue were studied using [ 125 I]PACAP27 as the radioligand. High specific binding sites (amount of specific binding measured at 0.25 nM [ 125 I]PACAP27 in femtomoles per mg protein +/- SEM; n = 4) were present in hypothalamus (344.5 +/- 13.0), brain stem (343.0 +/- 29.3), cerebellum (292.0 +/- 21.1), cortex (259.6 +/- 19.8), and basal ganglia (259.2 +/- 50.3). Specific binding sites in pituitary, although present, were less abundant (35.0 +/- 8.9). Binding of [ 125 I]PACAP27 was reversible and time, pH, and temperature dependent. Despite the homology with VIP, VIP was a poor inhibitor of [ 125 I]PACAP27 binding (IC50, greater than 1 microM) compared with PACAP27 (IC50, 0.5-1.3 nM) and PACAP38 (IC50, 0.2-1.3 nM). Scatchard plots of [ 125 I]PACAP27 binding showed the presence of both high and lower affinity sites. Chemical cross-linking of PACAP-binding sites revealed that [ 125 I]PACAP27 was bound to polypeptide chains of 67,000 and 48,000 mol wt. Thus, we have demonstrated the presence of PACAP-specific receptors in human brain which are not VIP receptors. This opens the possibility of PACAP functioning as a novel neurotransmitter/neuromodulator in human brain

  9. Isolation of plasma membranes from the nervous system by countercurrent distribution in aqueous polymer two-phase systems.

    Science.gov (United States)

    Schindler, Jens; Nothwang, Hans Gerd

    2009-01-01

    The plasma membrane separates the cell-interior from the cell's environment. To maintain homeostatic conditions and to enable transfer of information, the plasma membrane is equipped with a variety of different proteins such as transporters, channels, and receptors. The kind and number of plasma membrane proteins are a characteristic of each cell type. Owing to their location, plasma membrane proteins also represent a plethora of drug targets. Their importance has entailed many studies aiming at their proteomic identification and characterization. Therefore, protocols are required that enable their purification in high purity and quantity. Here, we report a protocol, based on aqueous polymer two-phase systems, which fulfils these demands. Furthermore, the protocol is time-saving and protects protein structure and function.

  10. Comparative study of the energy potential of cyanide waters using two osmotic membrane modules under dead-end flow

    Science.gov (United States)

    García-Díaz, Y.; Quiñones-Bolaños, E.; Bustos-Blanco, C.; Vives-Pérez, L.; Bustillo-Lecompte, C.; Saba, M.

    2017-12-01

    The energy potential of the osmotic pressure gradient of cyanide waters is evaluated using two membrane modules, horizontal and vertical, operated under dead-end flow. The membrane was characterized using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The membrane is mainly composed of carbon, oxygen, and sulphur. The properties of the membrane were unchanged and had no pore clogging after exposure to the cyanide waters. Potentials of 1.78×10-4 and 6.36×10-5Wm-2 were found for the horizontal and vertical modules, respectively, using the Van’t Hoff equation. Likewise, the permeability coefficient of the membrane was higher in the vertical module. Although the energy potential is low under the studied conditions the vertical configuration has a greater potential due to the action of gravity and the homogenous contact of the fluid with the membrane.

  11. Suspension and simple optical characterization of two-dimensional membranes

    Science.gov (United States)

    Northeast, David B.; Knobel, Robert G.

    2018-03-01

    We report on a method for suspending two-dimensional crystal materials in an electronic circuit using an only photoresists and solvents. Graphene and NbSe2 are suspended tens of nanometers above metal electrodes with clamping diameters of several microns. The optical cavity formed from the membrane/air/metal structures enables a quick method to measure the number of layers and the gap separation using comparisons between the expected colour and optical microscope images. This characterization technique can be used with just an illuminated microscope with a digital camera which makes it adaptable to environments where other means of characterization are not possible, such as inside nitrogen glove boxes used in handling oxygen-sensitive materials.

  12. Parameters affecting the inhibition of Candida albicans GDH 2023 and GRI 2773 blastospore viability by purified synthetic salivary histidine-rich polypeptides.

    Science.gov (United States)

    Santarpia, R P; Cho, M I; Pollock, J J

    1990-08-01

    Purified synthetic salivary histidine-rich polypeptides, HRPs 2, 3, 4, 5, and 6, were observed to inhibit Candida albicans blastospore viability at yeast cell concentrations ranging from 10(2) to greater than 10(6) colony forming units per ml. Among the HRPs, HRP-4 was the best inhibitor with significant killing activity noted at a peptide concentration of 0.5 microgram per ml. Antifungal potency under growth conditions was observed to be dependent upon pH. In contrast, killing did not vary throughout the pH range tested under non-growth conditions. Electron microscopy results demonstrated HRP damage at pH 5 which appeared to be initiated at the membrane. At pH 7.4, micrographs revealed clear evidence of intracellular destruction suggesting more extensive damage at neutral as compared to acidic pH. These results suggest that within the changing realm of the oral cavity, the HRPs would be expected to be potent killers of C. albicans.

  13. Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system

    International Nuclear Information System (INIS)

    Zhang, Ning; Yin, Shao-You; Zhang, Li-Zhi

    2016-01-01

    Graphical abstract: A heat pump driven, hollow fiber membrane-based two-stage liquid desiccant air dehumidification system. - Highlights: • A two-stage hollow fiber membrane based air dehumidification is proposed. • It is heat pump driven liquid desiccant system. • Performance is improved 20% upon single stage system. • The optimal first to second stage dehumidification area ratio is 1.4. - Abstract: A novel compression heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system is presented. The liquid desiccant droplets are prevented from crossing over into the process air by the semi-permeable membranes. The isoenthalpic processes are changed to quasi-isothermal processes by the two-stage dehumidification processes. The system is set up and a model is proposed for simulation. Heat and mass capacities in the system, including the membrane modules, the condenser, the evaporator and the heat exchangers are modeled in detail. The model is also validated experimentally. Compared with a single-stage dehumidification system, the two-stage system has a lower solution concentration exiting from the dehumidifier and a lower condensing temperature. Thus, a better thermodynamic system performance is realized and the COP can be increased by about 20% under the typical hot and humid conditions in Southern China. The allocations of heat and mass transfer areas in the system are also investigated. It is found that the optimal regeneration to dehumidification area ratio is 1.33. The optimal first to second stage dehumidification area ratio is 1.4; and the optimal first to second stage regeneration area ratio is 1.286.

  14. Effect of double-tailed surfactant architecture on the conformation, self-assembly, and processing in polypeptide-surfactant complexes.

    Science.gov (United States)

    Junnila, Susanna; Hanski, Sirkku; Oakley, Richard J; Nummelin, Sami; Ruokolainen, Janne; Faul, Charl F J; Ikkala, Olli

    2009-10-12

    This work describes the solid-state conformational and structural properties of self-assembled polypeptide-surfactant complexes with double-tailed surfactants. Poly(L-lysine) was complexed with three dialkyl esters of phosphoric acid (i.e., phosphodiester surfactants), where the surfactant tail branching and length was varied to tune the supramolecular architecture in a facile way. After complexation with the branched surfactant bis(2-ethylhexyl) phosphate in an aqueous solution, the polypeptide chains adopted an alpha-helical conformation. These rod-like helices self-assembled into cylindrical phases with the amorphous alkyl tails pointing outward. In complexes with dioctyl phosphate and didodecyl phosphate, which have two linear n-octyl or n-dodecyl tails, respectively, the polypeptide formed antiparallel beta-sheets separated by alkyl layers, resulting in well-ordered lamellar self-assemblies. By heating, it was possible to trigger a partial opening of the beta-sheets and disruption of the lamellar phase. After repeated heating/cooling, all of these complexes also showed a glass transition between 37 and 50 degrees C. Organic solvent treatment and plasticization by overstoichiometric amount of surfactant led to structure modification in poly(L-lysine)-dioctyl phosphate complexes, PLL(diC8)(x) (x = 1.0-3.0). Here, the alpha-helical PLL is surrounded by the surfactants and these bottle-brush-like chains self-assemble in a hexagonal cylindrical morphology. As x is increased, the materials are clearly plasticized and the degree of ordering is improved: The stiff alpha-helical backbones in a softened surfactant matrix give rise to thermotropic liquid-crystalline phases. The complexes were examined by Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, polarized optical microscopy, and circular dichroism.

  15. Functional Modification of Thioether Groups in Peptides, Polypeptides, and Proteins

    OpenAIRE

    Deming, TJ

    2017-01-01

    Recent developments in the modification of methionine and other thioether-containing residues in peptides, polypeptides, and proteins are reviewed. Properties and potential applications of the resulting functionalized products are also discussed. While much of this work is focused on natural Met residues, modifications at other side-chain residues have also emerged as new thioether-containing amino acids have been incorporated into peptidic materials. Functional modification of thioether-cont...

  16. NMR study of the cooperative behavior of thermotropic model polypeptides

    Czech Academy of Sciences Publication Activity Database

    Kurková, Dana; Kříž, Jaroslav; Rodríguez-Cabello, J. C.; Arias, F. J.

    2007-01-01

    Roč. 56, č. 2 (2007), s. 186-194 ISSN 0959-8103 R&D Projects: GA AV ČR IAA400500604 Grant - others:Spanish Ministry of Science and Culture(ES) A002/02; MAT2000-1764-C02; MAT2001-1853-C02-01; MAT2003- Institutional research plan: CEZ:AV0Z40500505 Keywords : thermotropic polymers * cooperativity * synthetic polypeptides Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.557, year: 2007

  17. Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174.

    Science.gov (United States)

    Arias, C A; Martín-Martinez, M; Blundell, T L; Arthur, M; Courvalin, P; Reynolds, P E

    1999-03-01

    Sequence determination of a region downstream from the vanXYc gene in Enterococcus gallinarum BM4174 revealed an open reading frame, designated vanT, that encodes a 698-amino-acid polypeptide with an amino-terminal domain containing 10 predicted transmembrane segments. The protein contained a highly conserved pyridoxal phosphate attachment site in the C-terminal domain, typical of alanine racemases. The protein was overexpressed in Escherichia coli, and serine racemase activity was detected in the membrane but not in the cytoplasmic fraction after centrifugation of sonicated cells, whereas alanine racemase activity was located almost exclusively in the cytoplasm. When the protein was overexpressed as a polypeptide lacking the predicted transmembrane domain, serine racemase activity was detected in the cytoplasm. The serine racemase activity was partially (64%) inhibited by D-cycloserine, whereas host alanine racemase activity was almost totally inhibited (97%). Serine racemase activity was also detected in membrane preparations of constitutively vancomycin-resistant E. gallinarum BM4174 but not in BM4175, in which insertional inactivation of the vanC-1 D-Ala:D-Ser ligase gene probably had a polar effect on expression of the vanXYc and vanT genes. Comparative modelling of the deduced C-terminal domain was based on the alignment of VanT with the Air alanine racemase from Bacillus stearothermophilus. The model revealed that almost all critical amino acids in the active site of Air were conserved in VanT, indicating that the C-terminal domain of VanT is likely to adopt a three-dimensional structure similar to that of Air and that the protein could exist as a dimer. These results indicate that the source of D-serine for peptidoglycan synthesis in vancomycin-resistant enterococci expressing the VanC phenotype involves racemization of L- to D-serine by a membrane-bound serine racemase.

  18. Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: Use of the INEPT [insensitive nucleus enhancement by polarization transfer] experiment to follow individual amides in detergent-solubilized M13 coat protein

    International Nuclear Information System (INIS)

    Henry, G.D.; Sykes, B.D.

    1990-01-01

    The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous 1 H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at least 10 5 -fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use 15 N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the 15 N nucleus from a coupled proton; when 15 N-labeled protonated protein is dissolved in 2 H 2 O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H + and OH - ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k ex ). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations

  19. Electric field-induced reorganization of two-component supported bilayer membranes.

    Science.gov (United States)

    Groves, J T; Boxer, S G; McConnell, H M

    1997-12-09

    Application of electric fields tangent to the plane of a confined patch of fluid bilayer membrane can create lateral concentration gradients of the lipids. A thermodynamic model of this steady-state behavior is developed for binary systems and tested with experiments in supported lipid bilayers. The model uses Flory's approximation for the entropy of mixing and allows for effects arising when the components have different molecular areas. In the special case of equal area molecules the concentration gradient reduces to a Fermi-Dirac distribution. The theory is extended to include effects from charged molecules in the membrane. Calculations show that surface charge on the supporting substrate substantially screens electrostatic interactions within the membrane. It also is shown that concentration profiles can be affected by other intermolecular interactions such as clustering. Qualitative agreement with this prediction is provided by comparing phosphatidylserine- and cardiolipin-containing membranes.

  20. Self-assembled Block Copolymer Membranes with Bioinspired Artificial Channels

    KAUST Repository

    Sutisna, Burhannudin

    2018-04-01

    nanofiltration applications were obtained from PS-b-PBLG copolymers, which exhibited a hierarchical self-assembled morphology with confined α-helical polypeptide domains. Our results suggest that bioinspired nanochannels can be designed via block copolymer self-assembly using classical methods of membrane preparation. Investigation of the membrane formation mechanism leads us to a better understanding of the design strategies for the development of self-assembled nanochannels from block copolymers. In further outlook, our research could give a contribution to the discovery of future generation materials for water purification and desalination, as well as biological separation.

  1. Biodegradable polymer nanofiber membrane for the repair of cutaneous wounds in dogs - two case reports

    Directory of Open Access Journals (Sweden)

    Lívia Gomes Amaral

    2016-12-01

    Full Text Available The study of wound healing and its treatment is extremely important in veterinary medicine due to the high frequency of wounds and the difficulty in treating wounds by second intention. Thus, the objective of this study was to evaluate the use of a nanofiber membrane made of biodegradable polymers as a method of wound treatment in dogs. This study comprised two dogs with bite wounds. Debridement and cleaning was performed followed by the application of the membrane. In one dog, the wound was in the left proximal calcaneal region with clinical signs of infection, necrotic tissue, and muscle and the gastrocnemius tendon were exposed. The wound displayed rapid formation of granulation tissue which became excessive, so it was necessary to debride several times. However, with the suspension of the use of the membrane, formation of this tissue was not observed, and the wound evolved to epithelialization and fast contraction. In the second dog, there was a deep wound on the medial aspect of the proximal right hind limb, with clinical signs of infection, with muscle exposure. Once the membrane was placed, granulation tissue formed, and the membrane was used until the level of this tissue reached the skin. The wound underwent rapid epithelialization and contraction, without developing exuberant granulation tissue. Efficient wound repair was observed and the dogs exhibited greater comfort during application and use of the membrane. More studies should be conducted in dogs focusing on the application of this membrane until the appearance of healthy granulation tissue, as continued use seems to stimulate the formation of exuberant granulation tissue.

  2. Distinct localization of FMRFamide- and bovine pancreatic polypeptide-like material in the brain, retrocerebral complex and suboesophageal ganglion of the cockroach Periplaneta americana L

    DEFF Research Database (Denmark)

    Verhaert, P; Grimmelikhuijzen, C J; De Loof, A

    1985-01-01

    One bovine pancreatic polypeptide (BPP) antiserum and two FMRFamide antisera were applied in the peroxidase-antiperoxidase (PAP) immunohistochemical technique on a complete series of sections of brains, suboesophageal ganglia (SOG), corpora cardiaca (CC) and corpora allata of Periplaneta americana...... L. Double immunohistochemical staining demonstrated that the same perikarya and processes were stained by both the BPP and FMRFamide antisera. This was caused by cross-reaction of the BPP and FMRFamide antisera with common antigenic determinants as was shown by a number of solid-phase absorptions....... Application of a third FMRFamide antiserum, which was especially selected for its inability to react with bovine and avian pancreatic polypeptide, showed that more than half of the structures that were stained with the 'unspecific' BPP and FMRFamide antisera, contained material which was genuinely FMRFamide...

  3. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mushrooms.

    Science.gov (United States)

    Todorović, Biljana; Potočnik, Ivana; Rekanović, Emil; Stepanović, Miloš; Kostić, Miroslav; Ristić, Mihajlo; Milijašević-Marčić, Svetlana

    2016-12-01

    ASBTRACT Toxicity of twenty-two essential oils to three bacterial pathogens in different horticultural systems: Xanthomonas campestris pv. phaseoli (causing blight of bean), Clavibacter michiganensis subsp. michiganensis (bacterial wilt and canker of tomato), and Pseudomonas tolaasii (causal agent of bacterial brown blotch on cultivated mushrooms) was tested. Control of bacterial diseases is very difficult due to antibiotic resistance and ineffectiveness of chemical products, to that essential oils offer a promising alternative. Minimal inhibitory and bactericidal concentrations are determined by applying a single drop of oil onto the inner side of each plate cover in macrodilution assays. Among all tested substances, the strongest and broadest activity was shown by the oils of wintergreen (Gaultheria procumbens), oregano (Origanum vulgare), and lemongrass (Cymbopogon flexuosus. Carvacrol (64.0-75.8%) was the dominant component of oregano oils, while geranial (40.7%) and neral (26.7%) were the major constituents of lemongrass oil. Xanthomonas campestris pv. phaseoli was the most sensitive to plant essential oils, being susceptible to 19 oils, while 11 oils were bactericidal to the pathogen. Sixteen oils inhibited the growth of Clavibacter michiganensis subsp. michiganensis and seven oils showed bactericidal effects to the pathogen. The least sensitive species was Pseudomonas tolaasii as five oils inhibited bacterial growth and two oils were bactericidal. Wintergreen, oregano, and lemongrass oils should be formulated as potential biochemical bactericides against different horticultural pathogens.

  4. Formation of a [sup(99m)Tc]polypeptide hormone: characterization and chemical quality control by ampholyte displacement radiochromatography

    International Nuclear Information System (INIS)

    Sundrehagen, E.

    1983-01-01

    Sup(99m)Tc-complexes with the polypeptide hormone secretin in very low concentration were formed by the concentrated hydrochloric acid/vacuum evaporation/gentisic acid method. The sup(99m)Tc-secretin was characterized by a modified ampholyte radiochromatographic procedure, in addition to thin layer chromatography, gel chromatography and paper electrophoresis. High radiochemical purity and specific radioactivity were obtained. In vivo distribution studies were performed, and the conditions necessary for application of [sup(99m)Tc]polypeptides as scintigraphic agents are discussed. (author)

  5. Proteomics of plasma membranes from poplar trees reveals tissue distribution of transporters, receptors, and proteins in cell wall formation.

    Science.gov (United States)

    Nilsson, Robert; Bernfur, Katja; Gustavsson, Niklas; Bygdell, Joakim; Wingsle, Gunnar; Larsson, Christer

    2010-02-01

    By exploiting the abundant tissues available from Populus trees, 3-4 m high, we have been able to isolate plasma membranes of high purity from leaves, xylem, and cambium/phloem at a time (4 weeks after bud break) when photosynthesis in the leaves and wood formation in the xylem should have reached a steady state. More than 40% of the 956 proteins identified were found in the plasma membranes of all three tissues and may be classified as "housekeeping" proteins, a typical example being P-type H(+)-ATPases. Among the 213 proteins predicted to be integral membrane proteins, transporters constitute the largest class (41%) followed by receptors (14%) and proteins involved in cell wall and carbohydrate metabolism (8%) and membrane trafficking (8%). ATP-binding cassette transporters (all members of subfamilies B, C, and G) and receptor-like kinases (four subfamilies) were two of the largest protein families found, and the members of these two families showed pronounced tissue distribution. Leaf plasma membranes were characterized by a very high proportion of transporters, constituting almost half of the integral proteins. Proteins involved in cell wall synthesis (such as cellulose and sucrose synthases) and membrane trafficking were most abundant in xylem plasma membranes in agreement with the role of the xylem in wood formation. Twenty-five integral proteins and 83 soluble proteins were exclusively found in xylem plasma membranes, which identifies new candidates associated with cell wall synthesis and wood formation. Among the proteins uniquely found in xylem plasma membranes were most of the enzymes involved in lignin biosynthesis, which suggests that they may exist as a complex linked to the plasma membrane.

  6. Liver fatty acid binding protein is the mitosis-associated polypeptide target of a carcinogen in rat hepatocytes

    International Nuclear Information System (INIS)

    Bassuk, J.A.; Tsichlis, P.N.; Sorof, S.

    1987-01-01

    Hepatocytes in normal rat liver were found previously to contain a cytoplasmic 14,000-dalton polypeptide (p14) that is associated with mitosis and is the principal early covalent target of activated metabolites of the carcinogen N-2-fluorenylacetamide (2-acetylaminofluorene). The level of immunohistochemically detected p14 was low when growth activity of hepatocytes was low, was markedly elevated during mitosis in normal and regenerating livers, but was very high throughout interphase during proliferation of hyperplastic and malignant hepatocytes induced in rat liver by a carcinogen (N-2-fluorenylacetamide or 3'-methyl-4-dimethylaminoazobenzene). The authors report here that p14 is the liver fatty acid binding protein. The nucleotide sequence of p14 cDNA clones, isolated by screening a rat liver cDNA library in bacteriophage λgt11 using p14 antiserum, was completely identical to part of the sequence reported for liver fatty acid binding protein. Furthermore, the two proteins shared the following properties: size of mRNA, amino acid composition, molecular size according to NaDodSO 4 gel electrophoresis, and electrophoretic mobilities in a Triton X-100/acetic acid/urea gel. The two polypeptides bound oleic acid similarly. Finally, identical elevations of cytoplasmic immunostain were detected specifically in mitotic hepatocytes with either antiserum. The collected findings are suggestive that liver fatty acid binding protein may carry ligands that promote hepatocyte division and may transport certain activated chemical carcinogens

  7. Two-Dimensional Metal-Organic Framework Nanosheets for Membrane-Based Gas Separation.

    Science.gov (United States)

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Yang, Weishen

    2017-08-07

    Metal-organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass-transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet-based membranes remain as great challenges. A modified soft-physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub-10 nm-thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H 2 /CO 2 separation performance, with a separation factor of up to 166 and H 2 permeance of up to 8×10 -7  mol m -2  s -1  Pa -1 at elevated testing temperatures owing to a well-defined size-exclusion effect. This nanosheet-based membrane holds great promise as the next generation of ultrapermeable gas separation membrane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lectin Domains of Polypeptide GalNAc Transferases Exhibit Glycopeptide Binding Specificity

    DEFF Research Database (Denmark)

    Pedersen, Johannes W; Bennett, Eric P; Schjoldager, Katrine T-B G

    2011-01-01

    UDP-GalNAc:polypeptide a-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection...... of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively. Thus far, only the catalytic domain has been shown to have peptide sequence...... on sequences of mucins MUC1, MUC2, MUC4, MUC5AC, MUC6, and MUC7 as well as a random glycopeptide bead library, we examined the binding properties of four different lectin domains. The lectin domains of GalNAc-T1, -T2, -T3, and -T4 bound different subsets of small glycopeptides. These results indicate...

  9. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus

    DEFF Research Database (Denmark)

    Röttger, S; White, J; Wandall, H H

    1998-01-01

    O-glycosylation of proteins is initiated by a family of UDP-N-acetylgalactosamine:polypeptide N-acetylgalactos-aminyltransferases (GalNAc-T). In this study, we have localized endogenous and epitope-tagged human GalNAc-T1, -T2 and -T3 to the Golgi apparatus in HeLa cells by subcellular fractionation......, immunofluorescence and immunoelectron microscopy. We show that all three GalNAc-transferases are concentrated about tenfold in Golgi stacks over Golgi associated tubular-vesicular membrane structures. Surprisingly, we find that GalNAc-T1, -T2 and -T3 are present throughout the Golgi stack suggesting that initiation...... of O-glycosylation may not be restricted to the cis Golgi, but occur at multiple sites within the Golgi apparatus. GalNAc-T1 distributes evenly across the Golgi stack whereas GalNAc-T2 and -T3 reside preferentially on the trans side and in the medial part of the Golgi stack, respectively. Moreover, we...

  10. Induction of a M/sub r/ 21,000 polypeptide in an Arthrobacter Sp. by dye-sensitized photooxidation

    International Nuclear Information System (INIS)

    Franzi, J.J.

    1985-01-01

    Irradiation of aerobic cultures of an Arthrobacter species with near-UV light and oxygen induced synthesis of a cell surface protein, M/sub r/ 21,000 polypeptide. Visible light, oxygen and a sensitizing dye were also effective in induction. Far-UV light, bleomycin and nalidixic acid, all inducers of the recA protein in Escherichia coli, were ineffective inducers of this protein. Furthermore, X-irradiation and radical-generating oxidants failed to induce synthesis of the M/sub r/ 21,000 polypeptide. DNA binding dyes proved to be capable of inducing synthesis of this protein or inhibiting dye-mediated stimulation of synthesis of this protein. For example, dGdC-specific dyes (e.g. methylene blue, neutral red, acridine orange or ethidium bromide) were efficient inducers of the M/sub r/ 21,000 polypeptide. Also methylene blue and neutral red were more efficient inducers than were acridine orange or ethidium bromide, which could be explained by the greater dGdC specificity and, possibly by the greater photoreactivity of methylene blue and neutral red. dAdT-specific dyes such as methyl green or daunomycin effectively inhibited dye-mediated induction. Rose bengal is an anionic dye which does not bind to DNA but does mediate the photooxidation of deoxyguanosine residues in DNA. It is an efficient inducer of the M/sub r/ 21,000 polypeptide. Induction with this dye is nearly eliminated when novobiocin, an inhibitor of DNA gyrase (topoisomerase II) which mediates relaxation, is added in conjunction with rose bengal

  11. Induction of a M/sub r/ 21,000 polypeptide in an Arthrobacter Sp. by dye-sensitized photooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Franzi, J.J.

    1985-01-01

    Irradiation of aerobic cultures of an Arthrobacter species with near-UV light and oxygen induced synthesis of a cell surface protein, M/sub r/ 21,000 polypeptide. Visible light, oxygen and a sensitizing dye were also effective in induction. Far-UV light, bleomycin and nalidixic acid, all inducers of the recA protein in Escherichia coli, were ineffective inducers of this protein. Furthermore, X-irradiation and radical-generating oxidants failed to induce synthesis of the M/sub r/ 21,000 polypeptide. DNA binding dyes proved to be capable of inducing synthesis of this protein or inhibiting dye-mediated stimulation of synthesis of this protein. For example, dGdC-specific dyes (e.g. methylene blue, neutral red, acridine orange or ethidium bromide) were efficient inducers of the M/sub r/ 21,000 polypeptide. Also methylene blue and neutral red were more efficient inducers than were acridine orange or ethidium bromide, which could be explained by the greater dGdC specificity and, possibly by the greater photoreactivity of methylene blue and neutral red. dAdT-specific dyes such as methyl green or daunomycin effectively inhibited dye-mediated induction. Rose bengal is an anionic dye which does not bind to DNA but does mediate the photooxidation of deoxyguanosine residues in DNA. It is an efficient inducer of the M/sub r/ 21,000 polypeptide. Induction with this dye is nearly eliminated when novobiocin, an inhibitor of DNA gyrase (topoisomerase II) which mediates relaxation, is added in conjunction with rose bengal.

  12. Nitrate-induced changes in protein synthesis and translation of RNA in maize roots

    International Nuclear Information System (INIS)

    McClure, P.R.; Omholt, T.E.; Pace, G.M.; Bouthyette, P.Y.

    1987-01-01

    Nitrate regulation of protein synthesis and RNA translation in maize (Zea mays L. var B73) roots was examined, using in vivo labeling with [ 35 S]methionine and in vitro translation. Nitrate enhanced the synthesis of a 31 kilodalton membrane polypeptide which was localized in a fraction enriched in tonoplast and/or endoplasmic reticulum membrane vesicles. The nitrate-enhanced synthesis was correlated with an acceleration of net nitrate uptake by seedlings during initial exposure to nitrate. Nitrate did not consistently enhance protein synthesis in other membrane fractions. Synthesis of up to four soluble polypeptides (21, 40, 90, and 168 kilodaltons) was also enhanced by nitrate. The most consistent enhancement was that of the 40 kilodalton polypeptide. No consistent nitrate-induced changes were noted in the organellar fraction (14,000g pellet of root homogenates). When roots were treated with nitrate, the amount of [ 35 S]methionine increased in six in vitro translation products (21, 24, 41, 56, 66, and 90 kilodaltons). Nitrate treatment did not enhance accumulation of label in translation products with a molecular weight of 31,000 (corresponding to the identified nitrate-inducible membrane polypeptide). Incubation of in vitro translation products with root membranes caused changes in the SDS-PAGE profiles in the vecinity of 31 kilodaltons. The results suggest that the nitrate-inducible, 31 kilodalton polypeptide from a fraction enriched in tonoplast and/or endoplasmic reticulum may be involved in regulating nitrate accumulation by maize roots

  13. Iodine and tritium labelling of curarizing and cardiotoxic agents. Study of the conformation of toxic polypeptides extracted from snake venom

    International Nuclear Information System (INIS)

    Menez, Andre.

    1977-01-01

    A short review of present-day knowledge on the action mechanism of toxic snake venom polypeptides is followed by a study of the radioactive labelling of some toxic compounds. Those dealt with more especially are Naja nigricollis α toxin and Laticauda semifasciata b erabutoxin, then (+) tubocurarin, a non-peptidic curarizing alkaloid, and two cardiotoxic polypeptides: cytotoxin II and cardiotoxin γ extracted from the venom of Naja naja and Naja nigricollis respectively. The labelling principle is based on the specific fixation of one or more iodine atoms then tritium substitution of the halogen by catalytic hydrogenolysis. As predicted from titration of the aromatic groups the halogenation process, obtained by addition of iodine monochloride, takes place sometimes on the phenolic nuclei and sometimes on the imidazole nuclei, the position of which targets within each sequence has been identified. From results of the study of reactivity towards iodine combined with those of basic titration, the accessibility of several aromatic nuclei has also been defined. Each iodinated polypeptide is then hydrogenolysed in the presence of tritium gas giving a specific activity between 4 and 27 Ci/mmole according to the compound treated. In all cases the biological potential and physical properties of the radioactive material obtained by the above titration process remained intact. An example of the bonding kinetics of short toxins with the partially purified choligenic receptor is given in the special case of tritiated b erabutoxin. The affinity of this toxin for its receptor target is strong, though slightly less so than that of tritiated Naja nigricollis α toxin [fr

  14. Energy Consumption in Terms of Shear Stress for Two Types of Membrane Bioreactors Used for Municipal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Bérube, P.R.

    2011-01-01

    Two types of submerged membrane bioreactors (MBR): Hollow Fiber (HF) and Hollow Sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power...

  15. From the Macro to the Micro: Gel Mapping to Differentiate between Sporozoites of Two Immunologically Distinct Strains of Eimeria maxima (Strains M6 and Guelph).

    Science.gov (United States)

    El-Ashram, Saeed; Yin, Qing; Liu, Hongbin; Al Nasr, Ibrahim; Liu, Xianyong; Suo, Xun; Barta, John

    2015-01-01

    Two immunologically distinct strains of E. maxima were examined in this study: the M6 strain and the Guelph strain. The differential expression between the sporozoites of the two strains of E. maxima was determined by image analysis of 100 μg of protein from each strain separated by standard one- and conventional two-dimensional polyacrylamide gel electrophoresis. In addition to differences in both molecular weight and the electrophoretic mobility, differences in the intensity of polypeptide bands for example, GS 136.4 and M6 169 were explored. Pooled gels were prepared from each strain. A representative 2D-PAGE gel spanning a non-linear pH range of 3-10 of E. maxima strain M6 consisted of approximately 694 polypeptide spots with about 67 (9.6%) of the polypeptide spots being unique relative to the other strain. E. maxima strain GS had about 696 discernable polypeptide spots with 69 spots (9.9%) that differed from those of the M6 strain. In-depth characterization of the variable polypeptide spots; unique polypeptide spots (absence or presence) and shared polypeptide spots with modifications may lead to novel vaccine target in the form of multi-component, multi-stage, multi-immunovariant strains, multi-species subunit vaccine, and diagnostic probe for E. maxima.

  16. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics.

    Science.gov (United States)

    Walker, Aisha L; Lancaster, Cynthia S; Finkelstein, David; Ware, Russell E; Sparreboom, Alex

    2013-12-15

    Hydroxyurea is currently the only FDA-approved drug that ameliorates the pathophysiology of sickle cell anemia. Unfortunately, substantial interpatient variability in the pharmacokinetics (PK) of hydroxyurea may result in variation of the drug's efficacy. However, little is known about mechanisms that modulate hydroxyurea PK. Recent in vitro studies identifying hydroxyurea as a substrate for organic anion transporting polypeptide (OATP1B) transporters prompted the current investigation assessing the role of OATP1B transporters in modulating hydroxyurea PK. Using wild-type and Oatp1b knockout (Oatp1b(-/-)) mice, hydroxyurea PK was analyzed in vivo by measuring [(14)C]hydroxyurea distribution in plasma, kidney, liver, urine, or the exhaled (14)CO2 metabolite. Plasma levels were significantly reduced by 20% in Oatp1b(-/-) mice compared with wild-type (area under the curve of 38.64 or 48.45 μg·h(-1)·ml(-1), respectively) after oral administration, whereas no difference was observed between groups following intravenous administration. Accumulation in the kidney was significantly decreased by twofold in Oatp1b(-/-) mice (356.9 vs. 748.1 pmol/g), which correlated with a significant decrease in urinary excretion. Hydroxyurea accumulation in the liver was also decreased (136.6 vs. 107.3 pmol/g in wild-type or Oatp1b(-/-) mice, respectively) correlating with a decrease in exhaled (14)CO2. These findings illustrate that deficiency of Oatp1b transporters alters the absorption, distribution, and elimination of hydroxyurea thus providing the first in vivo evidence that cell membrane transporters may play a significant role in modulating hydroxyurea PK. Future studies to investigate other transporters and their role in hydroxyurea disposition are warranted for understanding the sources of variation in hydroxyurea's PK.

  17. Three nuclear and two membrane estrogen receptors in basal teleosts, Anguilla sp.: Identification, evolutionary history and differential expression regulation

    DEFF Research Database (Denmark)

    Lafont, Anne Gaëlle; Rousseau, Karine; Tomkiewicz, Jonna

    2016-01-01

    Estrogens interact with classical intracellular nuclear receptors (ESR), and with G-coupled membrane receptors (GPER). In the eel, we identified three nuclear (ESR1, ESR2a, ESR2b) and two membrane (GPERa, GPERb) estrogen receptors. Duplicated ESR2 and GPER were also retrieved in most extant teleo...

  18. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Huaqiang Chu

    2013-09-01

    Full Text Available The application of low pressure membranes (microfiltration/ultrafiltration has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM. This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.. Perspectives of further research are also discussed.

  19. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    Science.gov (United States)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  20. Effect of Sequence Blockiness on the Morphologies of Surface-grafted Elastin-like Polypeptides

    Science.gov (United States)

    Albert, Julie; Sintavanon, Kornkanok; Mays, Robin; MacEwan, Sarah; Chilkoti, Ashutosh; Genzer, Jan

    2014-03-01

    The inter- and intra- molecular interactions among monomeric units of copolymers and polypeptides depend strongly on monomer sequence distribution and dictate the phase behavior of these species both in solution and on surfaces. To study the relationship between sequence and phase behavior, we have designed a series of elastin-like polypeptides (ELPs) with controlled monomer sequences that mimic copolymers with various co-monomer sequence distributions and attached them covalently to silicon substrates from buffer solutions at temperatures below and above the bulk ELPs' lower critical solution temperatures (LCSTs). The dependence of ELP grafting density on solution temperature was examined by ellipsometry and the resultant surface morphologies were examined in air and under water with atomic force microscopy. Depositions performed above the LCST resulted in higher grafting densities and greater surface roughness of ELPs relative to depositions carried out below the LCST. In addition, we are using gradient substrates to examine the effect of ELP grafting density on temperature responsiveness.

  1. Serological Reactivity and Identification of Immunoglobulin E-Binding Polypeptides of Ganoderma applanatum Crude Spore Cytoplasmic Extract in Puerto Rican Subjects.

    Science.gov (United States)

    Vilá-Héreter, Frances; Rivera-Mariani, Félix E; Bolaños-Rosero, Benjamín

    2017-01-01

    The allergenic potential of Ganoderma applanatum basidiospores has been demonstrated previously in Puerto Rico. However, basidiomycete allergens are not available for inclusion in allergy diagnostic panels. Therefore, we sought to confirm allergic sensitization to G. applanatum crude spore cytoplasmic extract through reactivity in serological assays and detection of immunoglobulin E (IgE)-binding polypeptides. Via an indirect ELISA, serological reactivity was compared between groups of individuals with different allergic profiles. Group 1 (n = 51) consisted of individuals with sIgE to the allergens included in the diagnostic panels; group 2 (n = 14) comprised individuals with no sIgE to the allergens tested; and group 3 (n = 22) included individuals with no allergic history. To visualize IgE-binding polypeptides, group 1 sera were examined via Western blotting (WB). Polypeptide bands with the highest reactivity were analyzed by mass spectrometry (MS) for putative identification. The serological reactivity of group 1 was significantly higher than that of group 3 in an indirect ELISA (p = 0.03). Sixty-five percent of group 1 individuals showed reactivity to polypeptide bands in WB. Bands of 81 and 56 kDa had the highest reactivity proportions among the reactive sera, followed by a 45-kDa band. MS analysis of these 3 polypeptides suggests that they are basidiomycete-derived enzymes with aconitate hydratase, catalase, and enolase functions. G. applanatum spores have allergenic components recognized by Puerto Rican individuals, which could eventually be considered as markers in cases of fungal allergy and be included in diagnostic allergen panels in Puerto Rico and tropical regions. © 2017 S. Karger AG, Basel.

  2. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    DEFF Research Database (Denmark)

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su

    2005-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide abundantly expressed in the central nervous system and involved in regulating neurogenesis and neuronal signal transduction. The amino acid sequence of PACAP is extremely conserved across vertebrate species, indicating a...

  3. Induction of the lac carrier and an associated membrane protein in Escherichia coli

    International Nuclear Information System (INIS)

    Lagarias, D.M.

    1985-01-01

    Induction of the lac operon in wild type Escherichia coli strains results in synthesis of a 16 kilodalton inner membrane protein in addition to the known products of the lacZ, lacY and lacA genes. Cells carrying the lacY gene on a plasmid over produce this 16 kilodalton polypeptide as well as the Lac carrier, the membrane protein product of the lacY gene. However, [ 35 S]methionine labeling of minicells carrying the lacY plasmid shows that the 16 kDa protein is not synthesized from the plasmid DNA. The 16 kDa protein was purified and partially characterized. It is an acidic membrane protein of apparent molecular weight 15,800 whose amino terminal sequence (NH 2 -Met-Arg-Asn-Phe-Asp-Leu-) does not correspond to any nucleotide sequence known in lac operon DNA. Using antibody prepared to the purified 16 kDa protein, a quantitative analysis of conditions under which this protein is made was accomplished, and reveals that the amount of 16 kDa protein which appears in the membrane is proportional to lac operon expression. Hybridization of a synthetic oligonucleotide probe complementary to the 5' end of 16 kDa protein mRNA shows that its synthesis is regulated at the level of transcription. A description of attempts to clone this gene is given. Possible functional roles for the 16 kDa protein are discussed

  4. Binding of the GTPase Sar1 to a Lipid Membrane Monolayer: Insertion and Orientation Studied by Infrared Reflection–Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Christian Schwieger

    2017-11-01

    Full Text Available Membrane-interacting proteins are polyphilic polymers that engage in dynamic protein–protein and protein–lipid interactions while undergoing changes in conformation, orientation and binding interfaces. Predicting the sites of interactions between such polypeptides and phospholipid membranes is still a challenge. One example is the small eukaryotic GTPase Sar1, which functions in phospholipid bilayer remodeling and vesicle formation as part of the multimeric coat protein complex (COPII. The membrane interaction of Sar1 is strongly dependent on its N-terminal 23 amino acids. By monolayer adsorption experiments and infrared reflection-absorption spectroscopy (IRRAS, we elucidate the role of lipids in inducing the amphipathicity of this N-terminal stretch, which inserts into the monolayer as an amphipathic helix (AH. The AH inserting angle is determined and is consistent with the philicities and spatial distribution of the amino acid monomers. Using an advanced method of IRRAS data evaluation, the orientation of Sar1 with respect to the lipid layer prior to the recruitment of further COPII proteins is determined. The result indicates that only a slight reorientation of the membrane-bound Sar1 is needed to allow coat assembly. The time-course of the IRRAS analysis corroborates a role of slow GTP hydrolysis in Sar1 desorption from the membrane.

  5. Two-Phase Contiguous Supported Lipid Bilayer Model for Membrane Rafts via Polymer Blotting and Stenciling.

    Science.gov (United States)

    Richards, Mark J; Daniel, Susan

    2017-02-07

    The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts. Micropatterned polymer templates of two types are investigated for generating patterned bilayer formation: polymer blotting and polymer lift-off stenciling. While these approaches have been used previously to create bilayer arrays by corralling bilayers patches with various types of boundaries impenetrable to bilayer diffusion, unique to the methods presented here, there are no physical barriers to diffusion. In this work, interfaces between contiguous lipid phases define the pattern shapes, with continuity between them allowing transfer of membrane-bound biomolecules between the phases. We examine effectors of membrane domain stability including temperature and cholesterol content to investigate domain dynamics. Contiguous patterning of supported bilayers as a model of lipid rafts expands the application of the SLB to an area with current appeal and brings with it a useful toolset for characterization and analysis. These combined tools should be helpful to researchers investigating lipid raft dynamics and function and biomolecule partitioning studies. Additionally, this patterning technique may be useful for applications such as bioseparations that exploit differences in lipid phase partitioning or creation of membranes that bind species like viruses preferentially at lipid phase boundaries, to name a few.

  6. Characterization of cell surface polypeptides of unfertilized, fertilized, and protease-treated zona-free mouse eggs

    International Nuclear Information System (INIS)

    Boldt, J.; Gunter, L.E.; Howe, A.M.

    1989-01-01

    The polypeptide composition of unfertilized, fertilized, and protease-treated zona-free mouse eggs was evaluated in this study. Zona-free eggs were radioiodinated by an Iodogen-catalyzed reaction. Light microscopic autoradiography of egg sections revealed that labeling was restricted to the cell surface. Labeled eggs were solubilized, and cell surface polypeptides were identified by one-dimensional SDS polyacrylamide gel electrophoresis and autoradiography. The unfertilized egg demonstrated 8-10 peptides that incorporated 125 I, with major bands observed at approximately 145-150, 94, and 23 kilodaltons (kD). Zona-free eggs fertilized in vitro and then radiolabeled demonstrated several new bands in comparison to unfertilized eggs, with a major band appearing at approximately 36 kD. Treatment of radiolabeled unfertilized eggs with either trypsin or chymotrypsin (1 mg/ml for 5-20 min) caused enzyme-specific modifications in labeled polypeptides. Trypsin (T) treatment resulted in time-dependant modification of the three major peptides at 145-150, 94, and 23 kD. Chymotrypsin (CT) treatment, in contrast, was associated with loss or modification of the 94 kD band, with no apparent effect on either the 145-150 or 23 kD band. Taken together with previous data indicating that T or CT egg treatment interferes with sperm-egg attachment and fusion, these results suggest a possible role for the 94 kD protein in sperm-egg interaction

  7. Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.

    Science.gov (United States)

    Lee, Sukyeong; Augustin, Steffen; Tatsuta, Takashi; Gerdes, Florian; Langer, Thomas; Tsai, Francis T F

    2011-02-11

    FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.

  8. Pituitary adenylate cyclase-activating polypeptide stimulates renin secretion via activation of PAC1 receptors

    DEFF Research Database (Denmark)

    Hautmann, Matthias; Friis, Ulla G; Desch, Michael

    2007-01-01

    Besides of its functional role in the nervous system, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in the regulation of cardiovascular function. Therefore, PACAP is a potent vasodilator in several vascular beds, including the renal vasculature. Because...

  9. Preparation of Photocrosslinked Fish Elastin Polypeptide/Microfibrillated Cellulose Composite Gels with Elastic Properties for Biomaterial Applications

    Directory of Open Access Journals (Sweden)

    Shinya Yano

    2015-01-01

    Full Text Available Photocrosslinked hydrogels reinforced by microfibrillated cellulose (MFC were prepared from a methacrylate-functionalized fish elastin polypeptide and MFC dispersed in dimethylsulfoxide (DMSO. First, a water-soluble elastin peptide with a molecular weight of ca. 500 g/mol from the fish bulbus arteriosus was polymerized by N,N′-dicyclohexylcarbodiimide (DCC, a condensation reagent, and then modified with 2-isocyanatoethyl methacrylate (MOI to yield a photocrosslinkable fish elastin polypeptide. The product was dissolved in DMSO and irradiated with UV light in the presence of a radical photoinitiator. We obtained hydrogels successfully by substitution of DMSO with water. The composite gel with MFC was prepared by UV irradiation of the photocrosslinkable elastin polypeptide mixed with dispersed MFC in DMSO, followed by substitution of DMSO with water. The tensile test of the composite gels revealed that the addition of MFC improved the tensile properties, and the shape of the stress–strain curve of the composite gel became more similar to the typical shape of an elastic material with an increase of MFC content. The rheology measurement showed that the elastic modulus of the composite gel increased with an increase of MFC content. The cell proliferation test on the composite gel showed no toxicity.

  10. Comparative study between yeasts immobilized on alumina beads and on membranes prepared by two routes

    Directory of Open Access Journals (Sweden)

    Kiyohara Pedro K.

    2003-01-01

    Full Text Available Alumina channeled beads and rough surface membranes prepared from aqueous sols of fibrillar pseudoboehmite are able to immobilize yeasts for ethanol fermentation of sugar solutions. This paper describes comparative results of assays carried out with yeasts immobilized onto alpha-alumina beads and membranes prepared under two different conditions of processing and firing. The fermentation tests evaluated by the decrease of fermentable sugars, referred as Brix degrees per hour, indicated that the yeasts immobilized on beads had similar performance, probably because their surfaces, even being morphologically different, presented the same value of open porosity. One type of membrane (asymmetrical; precursor: pseudoboehmite; firing temperature 1,150ºC; crystal structure; alpha-alumina had better performance than the other type (asymmetrical; precursor: fibrillar pseudoboehmite plus aluminum hydroxiacetate mixture; 1,150ºC; alpha-alumina because the yeast cells entered into their porous interior through the surface slits, were immobilized and their growth was easier than on the external surface.

  11. Wall-associated kinase-like polypeptide mediates nutritional status perception and response

    Science.gov (United States)

    Yang, Zhenbiao; Karr, Stephen

    2014-02-11

    The disclosure relates to methods for modulating plant growth and organogenesis using dominant-negative receptor-like kinases. The disclosure further provides a method for increasing plant yield relative to corresponding wild type plants comprising modulating the expression in a plant of a nucleic acid encoding a Wall-Associated Kinase-like 14 polypeptide or a homolog thereof, and selecting for plants having increased yield or growth on a nutrient deficient substrate.

  12. Sustained Release of Antibiotics from Injectable and Thermally Responsive Polypeptide Depots

    OpenAIRE

    Adams, Samuel B.; Shamji, Mohammed F.; Nettles, Dana L.; Hwang, Priscilla; Setton, Lori A.

    2009-01-01

    Biodegradable polymeric scaffolds are of interest for delivering antibiotics to local sites of infection in orthopaedic applications, such as bone and diarthrodial joints. The objective of this study was to develop a biodegradable scaffold with ease of drug loading in aqueous solution, while providing for drug depot delivery via syringe injection. Elastin-like polypeptides (ELPs) were used for this application, biopolymers of repeating pentapeptide sequences that were thermally triggered to u...

  13. Introducing Membrane Charge and Membrane Potential to T Cell Signaling

    Directory of Open Access Journals (Sweden)

    Yuanqing Ma

    2017-11-01

    Full Text Available While membrane models now include the heterogeneous distribution of lipids, the impact of membrane charges on regulating the association of proteins with the plasma membrane is often overlooked. Charged lipids are asymmetrically distributed between the two leaflets of the plasma membrane, resulting in the inner leaflet being negatively charged and a surface potential that attracts and binds positively charged ions, proteins, and peptide motifs. These interactions not only create a transmembrane potential but they can also facilitate the formation of charged membrane domains. Here, we reference fields outside of immunology in which consequences of membrane charge are better characterized to highlight important mechanisms. We then focus on T cell receptor (TCR signaling, reviewing the evidence that membrane charges and membrane-associated calcium regulate phosphorylation of the TCR–CD3 complex and discuss how the immunological synapse exhibits distinct patterns of membrane charge distribution. We propose that charged lipids, ions in solution, and transient protein interactions form a dynamic equilibrium during T cell activation.

  14. Prohormone convertase 1/3 is essential for processing of the glucose-dependent insulinotropic polypeptide precursor

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Poulsen, Marie-Louise H; Holst, Peter J

    2006-01-01

    The physiology of the incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and their role in type 2 diabetes currently attract great interest. Recently we reported an essential role for prohormone convertase (PC) 1/3 in the cleavage of intesti......The physiology of the incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and their role in type 2 diabetes currently attract great interest. Recently we reported an essential role for prohormone convertase (PC) 1/3 in the cleavage....../3 is essential and sufficient for the production of the intestinal incretin hormone GIP, whereas PC2, although capable of cleaving proGIP, does not participate in intestinal proGIP processing and is not found in intestinal GIP-expressing cells....

  15. Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type I virus.

    Directory of Open Access Journals (Sweden)

    Annarita Falanga

    Full Text Available The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes.

  16. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.

    Science.gov (United States)

    Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H

    2016-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species

  17. (125I)Iodoazidococaine, a photoaffinity label for the haloperidol-sensitive sigma receptor

    International Nuclear Information System (INIS)

    Kahoun, J.R.; Ruoho, A.E.

    1992-01-01

    A carrier-free radioiodinated cocaine photoaffinity label, (-)-3-( 125 I)iodo-4-azidococaine [( 125 I)IACoc], has been synthesized and used as a probe for cocaine-binding proteins. Photoaffinity labeling with 0.5 nM ( 125 I)IACoc resulted in selective derivatization of a 26-kDa polypeptide with the pharmacology of a sigma receptor in membranes derived from whole rat brain, rat liver, and human placenta. ( 125 I)IACoc labeling of the 26-kDa polypeptide was also inhibited by 10 μM imipramine, amitriptyline, fluoxetine, benztropine, and tetrabenazine. The size of the ( 125 I)I-ACoc-labeled proteins is consistent with the size of proteins photolabeled in guinea pig brain and liver membranes by using the sigma photolabel azido-[ 3 H]DTG. Kinetic analysis of ( 125 I)IACoc binding to rat liver microsomes revealed two sites with K d values of 19 and 126 pM, respectively. The presence or absence of proteolytic inhibitors during membrane preparation did not alter the size of the photolabeled sigma receptor, indicating that the 26-kDa polypeptide was not derived from a larger protein. In summary, ( 125 I)IACoc is a potent and highly specific photoaffinity label for the haloperidol-sensitive sigma receptor and will be useful for its biochemical and molecular characterization

  18. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection

    Science.gov (United States)

    Andrew Mackay, J.; Chen, Mingnan; McDaniel, Jonathan R.; Liu, Wenge; Simnick, Andrew J.; Chilkoti, Ashutosh

    2009-12-01

    New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

  19. Free-flow electrophoresis of plasma membrane vesicles enriched by two-phase partitioning enhances the quality of the proteome from Arabidopsis seedlings

    DEFF Research Database (Denmark)

    de Michele, Roberto; McFarlane, Heather E; Parsons, Harriet Tempé

    2016-01-01

    The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane...... using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane...... isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including...

  20. Elastin-like Polypeptide Linkers for Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Ott, Wolfgang; Jobst, Markus A; Bauer, Magnus S; Durner, Ellis; Milles, Lukas F; Nash, Michael A; Gaub, Hermann E

    2017-06-27

    Single-molecule force spectroscopy (SMFS) is by now well established as a standard technique in biophysics and mechanobiology. In recent years, the technique has benefitted greatly from new approaches to bioconjugation of proteins to surfaces. Indeed, optimized immobilization strategies for biomolecules and refined purification schemes are being steadily adapted and improved, which in turn has enhanced data quality. In many previously reported SMFS studies, poly(ethylene glycol) (PEG) was used to anchor molecules of interest to surfaces and/or cantilever tips. The limitation, however, is that PEG exhibits a well-known trans-trans-gauche to all-trans transition, which results in marked deviation from standard polymer elasticity models such as the worm-like chain, particularly at elevated forces. As a result, the assignment of unfolding events to protein domains based on their corresponding amino acid chain lengths is significantly obscured. Here, we provide a solution to this problem by implementing unstructured elastin-like polypeptides as linkers to replace PEG. We investigate the suitability of tailored elastin-like polypeptides linkers and perform direct comparisons to PEG, focusing on attributes that are critical for single-molecule force experiments such as linker length, monodispersity, and bioorthogonal conjugation tags. Our results demonstrate that by avoiding the ambiguous elastic response of mixed PEG/peptide systems and instead building the molecular mechanical systems with only a single bond type with uniform elastic properties, we improve data quality and facilitate data analysis and interpretation in force spectroscopy experiments. The use of all-peptide linkers allows alternative approaches for precisely defining elastic properties of proteins linked to surfaces.

  1. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Li Qian; Bi Qiuyan; Zhou Bo [Membrane Technology and Engineering Research Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Wang Xiaolin, E-mail: xl-wang@tsinghua.edu.cn [Membrane Technology and Engineering Research Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2012-03-01

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N Prime -ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 {mu}g/cm{sup 2} for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 {mu}g cm{sup -2}, the value of contact angle dropped to 22.1 Degree-Sign and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  2. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    International Nuclear Information System (INIS)

    Li Qian; Bi Qiuyan; Zhou Bo; Wang Xiaolin

    2012-01-01

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N′-ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 μg/cm 2 for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 μg cm -2 , the value of contact angle dropped to 22.1° and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  3. Identification and expression analysis of zebrafish polypeptide α-N-acetylgalactosaminyltransferase Y-subfamily genes during embryonic development.

    Science.gov (United States)

    Nakayama, Yoshiaki; Nakamura, Naosuke; Kawai, Tamiko; Kaneda, Eiichi; Takahashi, Yui; Miyake, Ayumi; Itoh, Nobuyuki; Kurosaka, Akira

    2014-09-01

    Mucin-type glycosylation is one of the most common posttranslational modifications of secretory and membrane proteins and has diverse physiological functions. The initial biosynthesis of mucin-type carbohydrates is catalyzed by UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) encoded by GALNT genes. Among these, GalNAc-T8, -T9, -T17, and -T18 form a characteristic subfamily called "Y-subfamily" and have no or very low in vitro transferase activities when assayed with typical mucin peptides as acceptor substrates. Although the Y-subfamily isozymes have been reported to be possibly involved in various diseases, their in vivo functions have not been reported. Here, we isolated zebrafish Y-subfamily galnt genes, and determined their spatial and temporal expressions during the early development of zebrafish. Our study demonstrated that all the Y-subfamily isozymes were well conserved in zebrafish with GalNAc-T18 having two orthologs, galnt18a and galnt18b, and with the other three isozymes each having a corresponding ortholog, galnt8, galnt9, and galnt17. The galnt8 was expressed in the cephalic mesoderm and hatching gland during early developmental stages, and differently expressed in the head, somatic muscles, and liver in the later stages. The other three orthologs also exhibited the characteristic expression patterns, although their expressions were generally strong in the nervous systems. In addition to the expression in the brain, galnt17 and galnt18a were expressed in the somitic muscles, and galnt18a and galnt18b in the notochord. These expression patterns may contribute to the functional analysis of the Y-subfamily, whose physiological roles still remain to be elucidated. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Dock 'n roll: folding of a silk-inspired polypeptide into an amyloid-like beta solenoid.

    Science.gov (United States)

    Zhao, Binwu; Cohen Stuart, Martien A; Hall, Carol K

    2016-04-20

    Polypeptides containing the motif ((GA)mGX)n occur in silk and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two hydrophobic shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II' β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for molecules to reach the folded

  5. TISSUE POLYPEPTIDE-SPECIFIC ANTIGEN - A DISCRIMINATIVE PARAMETER BETWEEN PROSTATE-CANCER AND BENIGN PROSTATIC HYPERTROPHY

    NARCIS (Netherlands)

    MARRINK, J; OOSTEROM, R; BONFRER, HMG; SCHRODER, FH; MENSINK, HJA

    1993-01-01

    The serum concentration of the cell proliferation marker TPS (tissue polypeptide-specific antigen) was compared with the tumour marker PSA (prostate specific antigen). PSA was found elevated in 50% of the benign prostatic hypertrophy (BPH) patients, in 88% of the patients with active prostate cancer

  6. Dynamics of a bilayer membrane coupled to a two-dimensional cytoskeleton: Scale transfers of membrane deformations

    Science.gov (United States)

    Okamoto, Ryuichi; Komura, Shigeyuki; Fournier, Jean-Baptiste

    2017-07-01

    We theoretically investigate the dynamics of a floating lipid bilayer membrane coupled with a two-dimensional cytoskeleton network, taking into account explicitly the intermonolayer friction, the discrete lattice structure of the cytoskeleton, and its prestress. The lattice structure breaks lateral continuous translational symmetry and couples Fourier modes with different wave vectors. It is shown that within a short time interval a long-wavelength deformation excites a collection of modes with wavelengths shorter than the lattice spacing. These modes relax slowly with a common renormalized rate originating from the long-wavelength mode. As a result, and because of the prestress, the slowest relaxation is governed by the intermonolayer friction. Conversely, and most interestingly, forces applied at the scale of the cytoskeleton for a sufficiently long time can cooperatively excite large-scale modes.

  7. Primary structure, gene organization and polypeptide expression of poliovirus RNA

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, N. (State Univ. of New York, Stony Brook); Semler, B.L.; Rothberg, P.G.

    1981-06-18

    The primary structure of the poliovirus genome has been determined. The RNA molecule is 7433 nucleotides long, polyadenylated at the 3' terminus, and covalently linked to a small protein (VPg) at the 5' terminus. An open reading frame of 2207 consecutive triplets spans over 89% of the nucleotide sequence and codes for the viral polyprotein NCVPOO. Twelve viral polypeptides have been mapped by amino acid sequence analysis and were found to be proteolytic cleavage products of the polyprotein, cleavages occurring predominantly at Gln-Gly pairs.

  8. Purification and characterization of lutropin receptor from membranes of pig follicular fluid

    Energy Technology Data Exchange (ETDEWEB)

    Yarney, T.A.; Sairam, M.R.; Bhargavi, G.N.; Mohapatra, S.K. (Clinical Research Institute of Montreal, Quebec (Canada))

    1990-04-10

    Membranes derived from free floating granulosa cells in porcine ovarian follicular fluid were used as a starting material for structural characterization of both LH/hCG and FSH receptors. The receptors were highly hormone-specific and showed single classes of high-affinity binding sites. Their molecular weights as determined by affinity cross-linking with their respective {sup 125}I-ligands were similarly 70,000. The membrane-localized receptors could be solubilized with reduced Triton X-100 in the presence of 20% glycerol with good retention of hormone binding activity. The purified receptor exhibited a high specificity for hCG and hLH but not for hFSH bTSH. The purified receptor was iodinated and visualized to be composed of a major protein of M{sub r} 70,000 and other minor proteins of molecular weights ranging from 14,000 to 40,000. Except for the M{sub r} 14,000 protein, all other protein species bound to the concanavalin A-Sepharose column. The data suggest that the ovarian LH/hCG and FSH receptors are structurally similar and consist of a single polypeptide chain, as recently documented for the LH/hCG receptor.

  9. Risk factors for prelacteal feeding in sub-Saharan Africa: a multilevel analysis of population data from twenty-two countries.

    Science.gov (United States)

    Berde, Anselm S; Ozcebe, Hilal

    2017-08-01

    To examine the risk factors of prelacteal feeding (PLF) among mothers in sub-Saharan Africa (SSA). We pooled data from Demographic and Health Surveys in twenty-two SSA countries. The key outcome variable was PLF. A multilevel logistic regression model was used to explore factors associated with PLF. Demographic and Health Surveys in twenty-two SSA countries. Mother-baby pairs (n 95348). Prevalence of PLF in SSA was 32·2 %. Plain water (22·1 %), milk other than breast milk (5·0 %) and sugar or glucose water (4·1 %) were the predominant prelacteal feeds. In the multivariable analysis, mothers who had caesarean section delivery had 2·25 times the odds of giving prelacteal feeds compared with mothers who had spontaneous vaginal delivery (adjusted OR=2·25; 95 % CI 2·06, 2·46). Other factors that were significantly associated with increased likelihood of PLF were mother's lower educational status, first birth rank, fourth or above birth rank with preceding birth interval less than or equal to 24 months, lower number of antenatal care visits, home delivery, multiple birth, male infant, as well as having an average or small sized baby at birth. Mothers aged 20-34 years were less likely to give prelacteal feeds compared with mothers aged ≤19 years. Belonging to the second, middle or fourth wealth quintile was associated with lower likelihood of PLF compared with the highest quintile. To achieve optimal breast-feeding, there is a need to discourage breast-feeding practices such as PLF. Breast-feeding promotion programmes should target the at-risk sub-population groups discovered in our study.

  10. Actin filaments growing against an elastic membrane: Effect of membrane tension

    Science.gov (United States)

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2018-03-01

    We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polymerization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a nonmonotonic function of the elastic constant μ and reaches a peak at μ =μ* . For μ membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant ν for all nonzero values of ν . Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.

  11. Preparation of thermo-responsive membranes. II.

    Science.gov (United States)

    Nozawa, I; Suzuki, Y; Sato, S; Sugibayashi, K; Morimoto, Y

    1991-05-01

    Two types of liquid crystal (LC)-immobilized membranes were prepared by a soaking method and sandwich method to control the permeation of indomethacin, as a model drug, in response to local and systemic fever. Monooxyethylene trimethylolpropane tristearate (MTTS) was used as a model LC because it has a gel-liquid crystal phase transition temperature near the body temperature, 39-40 degrees C in phosphate buffered saline (pH 7.4). Two porous polypropylene (PP) membranes were soaked into 20% MTTS chloroform solution in the soaking method, and two PP membranes were poured with the melted MTTS and pressed in the sandwich method. Thermo-response efficacy of the soaked membrane was dependent upon the content of MTTS in MTTS membrane, and the MTTS content above the void volume of PP membrane (38%) was needed for high efficacy. On the other hand, the sandwich membrane exhibited higher thermo-response efficacy than the soaked membrane, because more LC was embedded in the pores of sandwich membrane than that of the soaked membrane. The sandwich membrane permeation of indomethacin was sharply controlled by temperature changes between 32 and 38 degrees C.

  12. A prospective randomized controlled trial of the two-window technique without membrane versus the solo-window technique with membrane over the osteotomy window for maxillary sinus augmentation.

    Science.gov (United States)

    Yu, Huajie; He, Danqing; Qiu, Lixin

    2017-12-01

    Maturation of the grafted volume after lateral sinus elevation is crucial for the long-term survival of dental implants. To compare endo-sinus histomorphometric bone formation between the solo- and two-window maxillary sinus augmentation techniques with or without membrane coverage for the rehabilitation of multiple missing posterior teeth. Patients with severely atrophic posterior maxillae were randomized to receive lateral sinus floor elevation via the solo-window technique with membrane coverage (Control Group) or the two-window technique without coverage (Test Group). Six months after surgery, bone core specimens harvested from the lateral aspect were histomorphometrically analyzed. Ten patients in each group underwent 21 maxillary sinus augmentations. Histomorphometric analysis revealed mean newly formed bone values of 26.08 ± 16.23% and 27.14 ± 18.11%, mean connective tissue values of 59.34 ± 12.42% and 50.03 ± 17.13%, and mean residual graft material values of 14.6 ± 14.56% and 22.78 ± 10.83% in the Test and Control Groups, respectively, with no significant differences. The two-window technique obtained comparative maturation of the grafted volume even without membrane coverage, and is a viable alternative for the rehabilitation of severely atrophic posterior maxillae with multiple missing posterior teeth. © 2017 Wiley Periodicals, Inc.

  13. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    International Nuclear Information System (INIS)

    Hu Chuan; Hardee, Deborah; Minnear, Fred

    2007-01-01

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of α-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins

  14. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy.

    Science.gov (United States)

    Naito, Akira; Matsumori, Nobuaki; Ramamoorthy, Ayyalusamy

    2018-02-01

    A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 3 10 -helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Tissue polypeptide antigen activity in cerebrospinal fluid

    DEFF Research Database (Denmark)

    Bach, F; Söletormos, Georg; Dombernowsky, P

    1991-01-01

    Tissue polypeptide antigen (TPpA) in the cerebrospinal fluid (CSF) was measured in 59 consecutive breast cancer patients with suspected central nervous system (CNS) metastases. Subsequently, we determined that 13 patients had parenchymal brain metastases, 10 had leptomeningeal carcinomatosis......, and 36 had no CNS involvement. The concentration of TPpA, which is a nonspecific marker for cell proliferation, was significantly higher in patients with CNS metastases than in those without it (P less than .0001; Mann-Whitney test). A tentative cutoff value for CNS metastases was set at 95 U/L TPp...... metastases, no correlation was found between TPpA activity in corresponding CSF and blood samples (correlation coefficient, Spearman's rho = .4; P greater than .1). In three patients treated for leptomeningeal carcinomatosis, the measurements of CSF TPpA showed correlation between the presence of tumor cells...

  16. Natural polypeptide scaffolds: beta-sheets, beta-turns, and beta-hairpins.

    Science.gov (United States)

    Rotondi, Kenneth S; Gierasch, Lila M

    2006-01-01

    This paper provides an introduction to fundamental conformational states of polypeptides in the beta-region of phi,psi space, in which the backbone is extended near to its maximal length, and to more complex architectures in which extended segments are linked by turns and loops. There are several variants on these conformations, and they comprise versatile scaffolds for presentation of side chains and backbone amides for molecular recognition and designed catalysts. In addition, the geometry of these fundamental folds can be readily mimicked in peptidomimetics. Copyright 2005 Wiley Periodicals, Inc.

  17. Functional Modification of Thioether Groups in Peptides, Polypeptides, and Proteins.

    Science.gov (United States)

    Deming, Timothy J

    2017-03-15

    Recent developments in the modification of methionine and other thioether-containing residues in peptides, polypeptides, and proteins are reviewed. Properties and potential applications of the resulting functionalized products are also discussed. While much of this work is focused on natural Met residues, modifications at other side-chain residues have also emerged as new thioether-containing amino acids have been incorporated into peptidic materials. Functional modification of thioether-containing amino acids has many advantages and is a complementary methodology to the widely utilized methods for modification at cysteine residues.

  18. A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes.

    Science.gov (United States)

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2017-10-02

    Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short-lifetimes, and expensive ion-selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane-free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof-of-concept of a membrane-free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L -1 , and is able to deliver 90 % of its theoretical capacity while showing excellent long-term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Polypeptide composition of fraction 1 protein of the somatic hybrid between Petunia parodii and Petunia parviflora.

    Science.gov (United States)

    Kumar, A; Wilson, D; Cocking, E C

    1981-04-01

    The analysis of the subunit polypeptide composition of Fraction 1 protein provides information on the expression of both chloroplast and nuclear genomes. Fraction 1 protein, isolated from leaves of the somatic hybrid plants derived form the fusion of protoplasts of Petunia parodii and P. parviflora, was analyzed for its subunit polypeptide composition by isoelectric focusing in 8 M urea. The fraction 1 protein enzyme oligomer in the somatic hybrid plants contained small subunits resulting from the expression of both parental nuclear genomes, but probably only one of the parental large subunits, namely that of P. parodii. The relevance of such somatic hybrid material for the study of nucleocytoplasmic interrelationship is discussed, as well as the use of these fraction 1 protein isoelectric focusing patterns for the analysis of taxonomic relationships in Petunia.

  20. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  1. Why the American public supports twenty-first century learning.

    Science.gov (United States)

    Sacconaghi, Michele

    2006-01-01

    Aware that constituent support is essential to any educational endeavor, the AOL Time Warner Foundation (now the Time Warner Foundation), in conjunction with two respected national research firms, measured Americans' attitudes toward the implementation of twenty-first century skills. The foundation's national research survey was intended to explore public perceptions of the need for changes in the educational system, in school and after school, with respect to the teaching of twenty-first century skills. The author summarizes the findings of the survey, which were released by the foundation in June 2003. One thousand adults were surveyed by telephone, including African Americans, Latinos, teachers, and business executives. In general, the survey found that Americans believe today's students need a "basics-plus" education, meaning communication, technology, and critical thinking skills in addition to the traditional basics of reading, writing, and math. In fact, 92 percent of respondents stated that students today need different skills from those of ten to twenty years ago. Also, after-school programs were found to be an appropriate vehicle to teach these skills. Furthermore, the survey explored how well the public perceives schools to be preparing youth for the workforce and postsecondary education, which twenty-first century skills are seen as being taught effectively, and the level of need for after-school and summer programs. The survey results provide conclusive evidence of national support for basics-plus education. Thus, a clear opportunity exists to build momentum for a new model of education for the twenty-first century.

  2. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  3. Vasoactive intestinal polypeptide (VIP) in the pig pancreas

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1984-01-01

    Vasoactive intestinal polypeptide (VIP) in the pig pancreas is localized to nerves, many of which travel along the pancreatic ducts. VIP stimulates pancreatic fluid and bicarbonate secretion like secretin. Electrical vagal stimulation in the pig causes an atropine-resistant profuse secretion...... of bicarbonate-rich pancreatic juice. In an isolated perfused preparation of the pig pancreas with intact vagal nerve supply, electrical vagal stimulation caused an atropine-resistant release of VIP, which accurately parallelled the exocrine secretion of juice and bicarbonate. Perfusion of the pancreas...... with a potent VIP-antiserum inhibited the effect of vagal stimulation on the exocrine secretion. It is concluded, that VIP is responsible for (at least part of) the neurally controlled fluid and bicarbonate secretion from the pig pancreas....

  4. Compositions and Methods for the Treatment of Pierce's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Goutam (Santa Fe, NM)

    2008-10-07

    Chimeric anti-microbial proteins, compositions, and methods for the therapeutic and prophylactic treatment of plant diseases caused by the bacterial pathogen Xylella fastidiosa are provided. The anti-microbial proteins of the invention generally comprise a surface recognition domain polypeptide, capable of binding to a bacterial membrane component, fused to a bacterial lysis domain polypeptide, capable of affecting lysis or rupture of the bacterial membrane, typically via a fused polypeptide linker. In particular, methods and compositions for the treatment or prevention of Pierce's disease of grapevines are provided. Methods for the generation of transgenic Vitus vinefera plants expressing xylem-secreted anti-microbial chimeras are also provided.

  5. Outlook: The Next Twenty Years

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Hitoshi

    2003-12-07

    I present an outlook for the next twenty years in particle physics. I start with the big questions in our field, broken down into four categories: horizontal, vertical, heaven, and hell. Then I discuss how we attack the bigquestions in each category during the next twenty years. I argue for a synergy between many different approaches taken in our field.

  6. Free-Flow Electrophoresis of Plasma Membrane Vesicles Enriched by Two-Phase Partitioning Enhances the Quality of the Proteome from Arabidopsis Seedlings.

    Science.gov (United States)

    de Michele, Roberto; McFarlane, Heather E; Parsons, Harriet T; Meents, Miranda J; Lao, Jeemeng; González Fernández-Niño, Susana M; Petzold, Christopher J; Frommer, Wolf B; Samuels, A Lacey; Heazlewood, Joshua L

    2016-03-04

    The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including peripheral membrane proteins. Utilizing multiple data sources, we developed a PM-confidence score to provide a value indicating association to the plasma membrane. This study highlights over 700 proteins that, while seemingly abundant at the plasma membrane, are mostly unstudied. To validate this data set, we selected 14 candidates and transiently localized 13 to the plasma membrane using a fluorescent tag. Given the importance of the plasma membrane, this data set provides a valuable tool to further investigate important proteins. The mass spectrometry data are available via ProteomeXchange, identifier PXD001795.

  7. Elastin-like polypeptides: the power of design for smart cell encapsulation.

    Science.gov (United States)

    Bandiera, Antonella

    2017-01-01

    Cell encapsulation technology is still a challenging issue. Innovative methodologies such as additive manufacturing, and alternative bioprocesses, such as cell therapeutic delivery, where cell encapsulation is a key tool are rapidly gaining importance for their potential in regenerative medicine. Responsive materials such as elastin-based recombinant expression products have features that are particularly attractive for cell encapsulation. They can be designed and tailored to meet desired requirements. Thus, they represent promising candidates for the development of new concept-based materials that can be employed in this field. Areas covered: An overview of the design and employment of elastin-like polypeptides for cell encapsulation is given to outline the state of the art. Special attention is paid to the design of the macromolecule employed as well as to the method of matrix formation and the biological system involved. Expert opinion: As a result of recent progress in regenerative medicine there is a compelling need for materials that provide specific properties and demonstrate defined functional features. Rationally designed materials that may adapt according to applied external stimuli and that are responsive to biological systems, such as elastin-like polypeptides, belong to this class of smart material. A run through the components described to date represents a good starting point for further advancement in this area. Employment of these components in cell encapsulation application will promote its advance toward 'smart cell encapsulation technology'.

  8. Prolonged Extracorporeal Membrane Oxygenation Support for Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    Wen-Je Ko

    2006-01-01

    Full Text Available When all conventional treatments for respiratory failure in patients with acute respiratory distress syndrome (ARDS have failed, extracorporeal membrane oxygenation (ECMO can provide a chance of survival in these desperately ill patients. A 49-year-old male patient developed septic shock and progressive ARDS after liver abscess drainage. Venovenous ECMO was given due to refractory respiratory failure on postoperative day 6. Initially, two heparin-binding hollow-fiber microporous membrane oxygenators in parallel were used in the ECMO circuit. Twenty-two oxygenators were changed in the first 22 days of ECMO support because of plasma leak in the oxygenators. Each oxygenator had an average life of 48 hours. Thereafter, a single silicone membrane oxygenator was used in the ECMO circuit, which did not require change during the remaining 596 hours of ECMO. The patient's tidal volume was only 90 mL in the nadir and less than 300 mL for 26 days during the ECMO course. The patient required ECMO support for 48 days and survived despite complications, including septic shock, ARDS, acute renal failure, drug-induced leukopenia, and multiple internal bleeding. This patient received an unusually long duration of ECMO support. However, he survived, recovered well, and was in New York Heart Association functional class I-II, with a forced expiratory volume in 1 second of 81% of the predicted level 18 months later. In conclusion, ECMO can provide a chance of survival for patients with refractory ARDS. The reversibility of lung function is possible in ARDS patients regardless of the severity of lung dysfunction at the time of treatment.

  9. Binary polypeptide system for permanent and oriented protein immobilization

    Directory of Open Access Journals (Sweden)

    Bailes Julian

    2010-05-01

    Full Text Available Abstract Background Many techniques in molecular biology, clinical diagnostics and biotechnology rely on binary affinity tags. The existing tags are based on either small molecules (e.g., biotin/streptavidin or glutathione/GST or peptide tags (FLAG, Myc, HA, Strep-tag and His-tag. Among these, the biotin-streptavidin system is most popular due to the nearly irreversible interaction of biotin with the tetrameric protein, streptavidin. The major drawback of the stable biotin-streptavidin system, however, is that neither of the two tags can be added to a protein of interest via recombinant means (except for the Strep-tag case leading to the requirement for chemical coupling. Results Here we report a new immobilization system which utilizes two monomeric polypeptides which self-assemble to produce non-covalent yet nearly irreversible complex which is stable in strong detergents, chaotropic agents, as well as in acids and alkali. Our system is based on the core region of the tetra-helical bundle known as the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex. This irreversible protein attachment system (IPAS uses either a shortened syntaxin helix and fused SNAP25-synaptobrevin or a fused syntaxin-synaptobrevin and SNAP25 allowing a two-component system suitable for recombinant protein tagging, capture and immobilization. We also show that IPAS is suitable for use with traditional beads and chromatography, planar surfaces and Biacore, gold nanoparticles and for protein-protein interaction in solution. Conclusions IPAS offers an alternative to chemical cross-linking, streptavidin-biotin system and to traditional peptide affinity tags and can be used for a wide range of applications in nanotechnology and molecular sciences.

  10. Characterization of the vacuolar H sup + -ATPase of higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Manolson, M F

    1988-01-01

    The tonoplast H{sup +}-ATPase of Beta vulgaris L. was partially purified by Triton X-100 solubilization and Sepharose 4B chromatography resulting in the enrichment of two polypeptides. Kinetic analysis of ({alpha}-{sup 32}P) BzATP labeling identified the 57 kDa polypeptide as a nucleotide-binding subunit with a possible regulatory function. In addition, ({sup 14}C) DCCD-labeling identified a 16 kDa polypeptide as a putative transmembrane proton channel. It is concluded that the tonoplast H{sup +}-ATPase is a multimer composed of at least three polypeptides. Anti-57 and anti-67 kDa sera reacted with polypeptides of the corresponding size in bovine chromaffin granules, bovine clathrin-coated vesicles, and yeast vacuolar membranes, suggesting common structural features and common ancestry for endomembrane H{sup +}-ATPase of different organelles and different phyla. Anti-57 serum was used to isolate a cDNA encoding the corresponding subunit from Arabidopsis. Protein sequence analysis revealed homologies between endomembrane, F{sub 0}F{sub 1} and archaebacterial ATPases, suggesting that these different classes of ATPases have evolved from a common ancestor.

  11. Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation.

    Science.gov (United States)

    Xu, Qinghua; He, Chaoliang; Zhang, Zhen; Ren, Kaixuan; Chen, Xuesi

    2016-11-16

    Injectable hydrogels have been widely investigated in biomedical applications, and increasing demand has been proposed to achieve dynamic regulation of physiological properties of hydrogels. Herein, a new type of injectable and biomolecule-responsive hydrogel based on poly(l-glutamic acid) (PLG) grafted with disulfide bond-modified phloretic acid (denoted as PLG-g-CPA) was developed. The hydrogels formed in situ via enzymatic cross-linking under physiological conditions in the presence of horseradish peroxidase and hydrogen peroxide. The physiochemical properties of the hydrogels, including gelation time and the rheological property, were measured. Particularly, the triggered degradation of the hydrogel in response to a reductive biomolecule, glutathione (GSH), was investigated in detail. The mechanical strength and inner porous structure of the hydrogel were influenced by the addition of GSH. The polypeptide hydrogel was used as a three-dimensional (3D) platform for cell encapsulation, which could release the cells through triggered disruption of the hydrogel in response to the addition of GSH. The cells released from the hydrogel were found to maintain high viability. Moreover, after subcutaneous injection into rats, the PLG-g-CPA hydrogels with disulfide-containing cross-links exhibited a markedly faster degradation behavior in vivo compared to that of the PLG hydrogels without disulfide cross-links, implying an interesting accelerated degradation process of the disulfide-containing polypeptide hydrogels in the physiological environment in vivo. Overall, the injectable and biomolecule-responsive polypeptide hydrogels may serve as a potential platform for 3D cell culture and easy cell collection.

  12. Dock ’n Roll: Folding of a Silk-Inspired Polypeptide into an Amyloid-like Beta Solenoid

    Science.gov (United States)

    Zhao, Binwu; Cohen Stuart, Martien A.; Hall, Carol K.

    2016-01-01

    Polypeptides containing the motif ((GA)mGX)n occur in silk (we refer to them as ‘silk-like’) and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II’ β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for

  13. 99mTc-HYNIC-derivatized ternary ligand complexes for 99mTc-labeled polypeptides with low in vivo protein binding

    International Nuclear Information System (INIS)

    Ono, Masahiro; Arano, Yasushi; Mukai, Takahiro; Fujioka, Yasushi; Ogawa, Kazuma; Uehara, Tomoya; Saga, Tsuneo; Konishi, Junji; Saji, Hideo

    2001-01-01

    6-Hydrazinopyridine-3-carboxylic acid (HYNIC) is a representative agent used to prepare technetium-99m ( 99m Tc)-labeled polypeptides with tricine as a coligand. However, 99m Tc-HYNIC-labeled polypeptides show delayed elimination rates of the radioactivity not only from the blood but also from nontarget tissues such as the liver and kidney. In this study, a preformed chelate of tetrafluorophenol (TFP) active ester of [ 99m Tc](HYNIC)(tricine)(benzoylpyridine: BP) ternary complex was synthesized to prepare 99m Tc-labeled polypeptides with higher stability against exchange reactions with proteins in plasma and lysosomes using the Fab fragment of a monoclonal antibody and galactosyl-neoglycoalbumin (NGA) as model polypeptides. When incubated in plasma, [ 99m Tc](HYNIC-Fab)(tricine)(BP) showed significant reduction of the radioactivity in high molecular weight fractions compared with [ 99m Tc](HYNIC-Fab)(tricine) 2. When injected into mice, [ 99m Tc](HYNIC-NGA)(tricine)(BP) was metabolized to [ 99m Tc](HYNIC-lysine)(tricine)(BP) in the liver with no radioactivity detected in protein-bound fractions in contrast to the observations with [ 99m Tc](HYNIC-NGA)(tricine) 2. In addition, [ 99m Tc](HYNIC-NGA)(tricine)(BP) showed significantly faster elimination rates of the radioactivity from the liver as compared with [ 99m Tc](HYNIC-NGA)(tricine) 2. Similar results were observed with 99m Tc-labeled Fab fragments where [ 99m Tc](HYNIC-Fab)(tricine)(BP) exhibited significantly faster elimination rates of the radioactivity not only from the blood but also from the kidney. These findings indicated that conjugation of [ 99m Tc](HYNIC)(tricine)(BP) ternary ligand complex to polypeptides accelerated elimination rates of the radioactivity from the blood and nontarget tissues due to low binding of the [ 99m Tc](HYNIC)(tricine)(BP) complex with proteins in the blood and in the lysosomes. Such characteristics would render the TFP active ester of [ 99m Tc](HYNIC)(tricine)(BP) complex

  14. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia

    DEFF Research Database (Denmark)

    Meier, J J; Gallwitz, B; Siepmann, N

    2003-01-01

    AIMS/HYPOTHESIS: In the isolated perfused pancreas, gastric inhibitory polypeptide (GIP) has been shown to enhance glucagon secretion at basal glucose concentrations, but in healthy humans no glucagonotropic effect of GIP has yet been reported. Therefore, we studied the effect of GIP on glucagon ...

  15. Twenty Years of French "Didactique" Viewed from the United States

    Science.gov (United States)

    Kilpatrick, Jeremy

    2003-01-01

    One cannot begin considering the topic of this colloquium without asking, why twenty years? Why not two hundred? Two hundred years ago, Silvestre Franois Lacroix was about to be named chief officer of the Commission Executive de L'Instruction Publique. Out of that experience, together with his long career in instruction, especially as professor of…

  16. N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride: An immune-enhancing adjuvant for hepatitis E virus recombinant polypeptide vaccine in mice.

    Science.gov (United States)

    Tao, Wei; Zheng, Hai-Qun; Fu, Ting; He, Zhuo-Jing; Hong, Yan

    2017-08-03

    Adjuvants are essential for enhancing vaccine potency by improving the humoral and/or cell-mediated immune response to vaccine antigens. This study was performed to evaluate the immuno-enhancing characteristic of N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC), the cationically modified chitosan, as an adjuvant for hepatitis E virus (HEV) recombinant polypeptide vaccine. Animal experiments showed that HTCC provides adjuvant activity when co-administered with HEV recombinant polypeptide vaccine by intramuscularly route. Vaccination using HTCC as an adjuvant was associated with increases of the serum HEV-specific IgG antibodies, splenocytes proliferation and the growths of CD4 + CD8 - T lymphocytes and IFN-γ-secreting T lymphocytes in peripheral blood. These findings suggested that HTCC had strong immuno-enhancing effect. Our findings are the first to demonstrate that HTCC is safe and effective in inducing a good antibody response and stimulating Th1-biased immune responses for HEV recombinant polypeptide vaccine.

  17. Coulomb repulsion in short polypeptides.

    Science.gov (United States)

    Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M

    2015-01-08

    Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each

  18. β-Hairpin of Islet Amyloid Polypeptide Bound to an Aggregation Inhibitor

    Science.gov (United States)

    Mirecka, Ewa A.; Feuerstein, Sophie; Gremer, Lothar; Schröder, Gunnar F.; Stoldt, Matthias; Willbold, Dieter; Hoyer, Wolfgang

    2016-01-01

    In type 2 diabetes, the formation of islet amyloid consisting of islet amyloid polypeptide (IAPP) is associated with reduction in β-cell mass and contributes to the failure of islet cell transplantation. Rational design of inhibitors of IAPP amyloid formation has therapeutic potential, but is hampered by the lack of structural information on inhibitor complexes of the conformationally flexible, aggregation-prone IAPP. Here we characterize a β-hairpin conformation of IAPP in complex with the engineered binding protein β-wrapin HI18. The β-strands correspond to two amyloidogenic motifs, 12-LANFLVH-18 and 22-NFGAILS-28, which are connected by a turn established around Ser-20. Besides backbone hydrogen bonding, the IAPP:HI18 interaction surface is dominated by non-polar contacts involving hydrophobic side chains of the IAPP β-strands. Apart from monomers, HI18 binds oligomers and fibrils and inhibits IAPP aggregation and toxicity at low substoichiometric concentrations. The IAPP β-hairpin can serve as a molecular recognition motif enabling control of IAPP aggregation. PMID:27641459

  19. Offering induction of labor for 22-week premature rupture of membranes: a survey of obstetricians.

    Science.gov (United States)

    McKenzie, F; Tucker Edmonds, B

    2015-08-01

    To describe obstetricians' induction counseling practices for 22-week preterm premature rupture of membranes (PPROM) and identify provider characteristics associated with offering induction. Surveyed 295 obstetricians on their likelihood (0-10) of offering induction for periviable PPROM across 10 vignettes. Twenty-two-week vignettes were analyzed, stratified by parental resuscitation preference. Bivariate analyses identified physician characteristics associated with reported likelihood ratings. Obstetricians (N=205) were not likely to offer induction. Median ratings by preference were as follows: resuscitation 1.0, uncertain 1.0 and comfort care 3.0. Only 41% of obstetricians were likely to offer induction to patients desiring comfort care. In addition, several provider-level factors, including practice region, parenting status and years in practice, were significantly associated with offering induction. Obstetricians do not readily offer induction when counseling patients with 22-week ruptured membranes, even when patients prefer palliation. This may place women at risk for infectious complications without accruing a neonatal benefit from prolonged latency.

  20. Twenty Practices of an Entrepreneurial University

    DEFF Research Database (Denmark)

    Gjerding, Allan Næs; Wilderom, Celeste P.M.; Cameron, Shona P.B.

    2006-01-01

    studies twenty organisational practices against which a University's entrepreneurship can be measured. These twenty practices or factors in effect formed the basis for an entrepreneurship audit. During a series of interviews, the extent to which the universities are seen as entrepreneurial...

  1. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  2. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  3. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain.

    Science.gov (United States)

    Wu, R; Wilton, R; Cuff, M E; Endres, M; Babnigg, G; Edirisinghe, J N; Henry, C S; Joachimiak, A; Schiffer, M; Pokkuluri, P R

    2017-04-01

    We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from Lake Retba, in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously, and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport. © 2017 The Protein Society.

  4. Magnetic resonance imaging-determined synovial membrane volume as a marker of disease activity and a predictor of progressive joint destruction in the wrists of patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Hansen, M; Stoltenberg, M

    1999-01-01

    OBJECTIVE: To evaluate the synovial membrane volume, determined by magnetic resonance imaging (MRI), as a marker of joint disease activity and a predictor of progressive joint destruction in rheumatoid arthritis (RA). METHODS: Twenty-six patients with RA, randomized to receive disease-modifying a......OBJECTIVE: To evaluate the synovial membrane volume, determined by magnetic resonance imaging (MRI), as a marker of joint disease activity and a predictor of progressive joint destruction in rheumatoid arthritis (RA). METHODS: Twenty-six patients with RA, randomized to receive disease......-Pratt analysis). The rate of erosive progression on MRI was highly correlated with baseline scores and, particularly, with area under the curve (AUC) values of synovial membrane volume (Spearman's sigma = 0.69, P

  5. Amniotic membrane for burn trauma

    International Nuclear Information System (INIS)

    Jamaluddin Zainol; Hasim Mohammad

    1999-01-01

    Amniotic membranes are derived from human placentae at birth. They have two layers mainly the amniotic and the chorionic surfaces which are separated by a thin layer of connective tissues. The two layers are separated during procurement, the placenta and the chorionic side are discarded and the amnion membranes are then further processed. Amnion membranes are normally procured from placentae which are normally free of infections, i.e; the mothers are antenatally screened for sexually transmitted diseases or AlDs related diseases. Intrapartum the mother should not be having chorioamnionitis or jaundice. Sometimes the amniotic membranes are acquired from fresh elective caeserian sections. After processing, the amniotic membranes are packed in two layers of polypropylene and radiated with cobalt 60 at a dose of about 25 kGy. The amniotic membranes are clinically used to cover burn surfaces especially effective for superficial or partial thickness burns. The thin membranes adhered well to the trauma areas and peeled off automatically by the second week. No change of dressing were necessary during these times because of the close adherence, there were less chance of external contamination or infections of these wounds. Due to their flexibility they are very useful to cover difference contours of the human body for example the face, body, elbows or knees. However our experience revealed that amniotic membranes are not useful for third degree bums because the membranes dissolves by the enzymes present in the wounds

  6. Paramyxovirus F1 protein has two fusion peptides: implications for the mechanism of membrane fusion.

    Science.gov (United States)

    Peisajovich, S G; Samuel, O; Shai, Y

    2000-03-10

    Viral fusion proteins contain a highly hydrophobic segment, named the fusion peptide, which is thought to be responsible for the merging of the cellular and viral membranes. Paramyxoviruses are believed to contain a single fusion peptide at the N terminus of the F1 protein. However, here we identified an additional internal segment in the Sendai virus F1 protein (amino acids 214-226) highly homologous to the fusion peptides of HIV-1 and RSV. A synthetic peptide, which includes this region, was found to induce membrane fusion of large unilamellar vesicles, at concentrations where the known N-terminal fusion peptide is not effective. A scrambled peptide as well as several peptides from other regions of the F1 protein, which strongly bind to membranes, are not fusogenic. The functional and structural characterization of this active segment suggest that the F1 protein has an additional internal fusion peptide that could participate in the actual fusion event. The presence of homologous regions in other members of the same family suggests that the concerted action of two fusion peptides, one N-terminal and the other internal, is a general feature of paramyxoviruses. Copyright 2000 Academic Press.

  7. Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Jian Zuo

    2016-12-01

    Full Text Available Nature-mimetic hydrophobic membranes with high wetting resistance have been designed for seawater desalination via vacuum membrane distillation (VMD in this study. This is achieved through molecular engineering of metal–organic framework (MOF-functionalized alumina surfaces. A two-step synthetic strategy was invented to design the hydrophobic membranes: (1 to intergrow MOF crystals on the alumina tube substrate and (2 to introduce perfluoro molecules onto the MOF functionalized membrane surface. With the first step, the surface morphology, especially the hierarchical roughness, can be controlled by tuning the MOF crystal structure. After the second step, the perfluoro molecules function as an ultrathin layer of hydrophobic floss, which lowers the surface energy. Therefore, the resultant membranes do not only possess the intrinsic advantages of alumina supports such as high stability and high water permeability, but also have a hydrophobic surface formed by MOF functionalization. The membrane prepared under an optimum condition achieved a good VMD flux of 32.3 L/m2-h at 60 °C. This study may open up a totally new approach for design of next-generation high performance membrane distillation membranes for seawater desalination.

  8. Chapter Twenty Two

    African Journals Online (AJOL)

    User

    …novel writing in English in Africa began as a reaction and protest again ... organized vibrant and collective society that the white man met, the period .... Ezeulu is not moved by this passionate appeal but instead prefers to indulge ..... that we may accept limitation our actions but never under no circumstance, must accept a.

  9. A Tale of Ambivalence: Salman Rushdie's "Two Years, Eight Months and Twenty-Eight Nights"

    Directory of Open Access Journals (Sweden)

    Tarik Ziyad Gulcu

    2017-09-01

    Full Text Available Salman Rushdie’s memoirs, essays and novels contribute to the appreciation of the contradictions in his outlook on life. His experiences in his family enable Rushdie to make efforts for objective and tolerant judgement of British lifestyle and culture. However, his isolation from the society in Britain despite his struggle for adaptation to British cultural values cause contradictions in his cultural identity. While Rushdie expresses his allegiance to India and its culture in The Ground Beneath Her Feet (1999, he reflects his alienation from his homeland in this novel as well. Similarly, in his Imaginary Homelands (1981-1991 whereas Rushdie questions the injustice and inequality caused by imperialism in The New Empire within Britain (1982, he justifies the colonialist discourse in Kipling (1990. He elaborates on the contradictions in his outlook on life in terms of his cultural ambivalence in his fictions such as Midnight’s Children (1981 and Shame (1983. However, in his latest novel, Two Years, Eight Months and Twenty-Eight Nights (2015, Rushdie reflects his cultural identity conflict in terms of rationalism-mysticism dichotomy. With the use of allegory as well as the lack of linearity in time and space, Rushdie justifies his cultural ambivalence in relation to the dynamism of contemporary world. Thus, Rushdie’s latest novel invites reading for its representation of the oppositions in his approach to life.

  10. The Beads of Translation: Using Beads to Translate mRNA into a Polypeptide Bracelet

    Science.gov (United States)

    Dunlap, Dacey; Patrick, Patricia

    2012-01-01

    During this activity, by making beaded bracelets that represent the steps of translation, students simulate the creation of an amino acid chain. They are given an mRNA sequence that they translate into a corresponding polypeptide chain (beads). This activity focuses on the events and sites of translation. The activity provides students with a…

  11. Evaluation of two pilot scale membrane bioreactors for the elimination of selected surfactants from municipal wastewaters

    Science.gov (United States)

    González, Susana; Petrovic, Mira; Barceló, Damiá

    2008-07-01

    SummaryThe removal of selected surfactants, linear alkylbenzene sulfonates (LAS), coconut diethanol amides (CDEA) and alkylphenol ethoxylates and their degradation products were investigated using a two membrane bioreactor (MBR) with hollow fiber and plate and frame membranes. The two pilot plants MBR run in parallel to a full-scale conventional activated sludge (CAS) treatment. A total of eight influent samples with the corresponding effluent samples were analysed by solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS-MS). The results indicate that both MBR have a better effluent quality in terms of chemical and biological oxygen demand (COD and BOD), NH4+ , concentration and total suspended solids (TSS). MBR showed a better similar performance in the overall elimination of the total nonylphenolic compounds, achieving a 75% of elimination or a 65% (the same elimination reached by CAS). LAS and CDEA showed similar elimination in the three systems investigated and no significant differences were observed.

  12. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1985-01-01

    The purpose of this review is to bring together and to correlate the wide variety of experimental studies that provide information on the reaction products and reaction mechanisms involved in the radiolysis of peptides, polypeptides and proteins (including chromosomal proteins) in both aqueous and solid-state systems. The comparative radiation chemistry of these systems is developed in terms of specific reactions of the peptide main-chain and the aliphatic, aromatic-unsaturated and sulfur-containing side-chains. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis and ESR spectroscopy is included. 147 refs

  13. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, W.M.

    1985-01-01

    The purpose of this review is to bring together and to correlate the wide variety of experimental studies that provide information on the reaction products and reaction mechanisms involved in the radiolysis of peptides, polypeptides and proteins (including chromosomal proteins) in both aqueous and solid-state systems. The comparative radiation chemistry of these systems is developed in terms of specific reactions of the peptide main-chain and the aliphatic, aromatic-unsaturated and sulfur-containing side-chains. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis and ESR spectroscopy is included. 147 refs.

  14. Comparison of NF membrane fouling and cleaning by two pretreatment strategies for the advanced treatment of antibiotic production wastewater.

    Science.gov (United States)

    Wang, Jianxing; Li, Kun; Yu, Dawei; Zhang, Junya; Wei, Yuansong; Chen, Meixue; Shan, Baoqing

    2016-01-01

    The nanofiltration (NF) membrane fouling characteristics and cleaning strategies were investigated and compared for treating membrane bioreactor (MBR) effluent and MBR-granular activated carbon (GAC) effluent of an antibiotic production wastewater by DK membrane. Results showed that the fouling of treating MBR effluent was more severe than that of treating MBR-GAC effluent. After filtering for 216 h, the difference of membrane flux decline was obvious between MBR effluent and MBR-GAC effluent, with 14.9% and 10.3% flux decline, respectively. Further study showed that organic fouling is the main NF membrane fouling in the advanced treatment of antibiotic production wastewater for both of the two different effluents. Soluble microbial by-product like and tyrosine-like substances were the dominant components in the foulants, whereas humic-like substances existing in the effluents had little contribution to the NF membrane fouling. A satisfactory efficiency of NF chemical cleaning could be obtained using combination of acid (HCl, pH 2.0-2.5) and alkali (NaOH + 0.3 wt% NaDS, pH 10.0-10.5). The favorable cleaning strategy is acid-alkali for treating the MBR-GAC effluent, while it is alkali-acid for treating the MBR effluent.

  15. Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation.

    Science.gov (United States)

    Wang, Zhangxin; Hou, Deyin; Lin, Shihong

    2016-04-05

    In this study, we fabricated a composite membrane for membrane distillation (MD) by modifying a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane with a nanocomposite coating comprising silica nanoparticles, chitosan hydrogel and fluoro-polymer. The composite membrane exhibits asymmetric wettability, with the modified surface being in-air hydrophilic and underwater oleophobic, and the unmodified surface remaining hydrophobic. By comparing the performance of the composite membrane and the pristine PVDF membrane in direct contact MD experiments using a saline emulsion with 1000 ppm crude oil (in water), we showed that the fabricated composite membrane was significantly more resistant to oil fouling compared to the pristine hydrophobic PVDF membrane. Force spectroscopy was conducted for the interaction between an oil droplet and the membrane surface using a force tensiometer. The difference between the composite membrane and the pristine PVDF membrane in their interaction with an oil droplet served to explain the difference in the fouling propensities between these two membranes observed in MD experiments. The results from this study suggest that underwater oleophobic coating can effectively mitigate oil fouling in MD operations, and that the fabricated composite membrane with asymmetric wettability can enable MD to desalinate hypersaline wastewater with high concentrations of hydrophobic contaminants.

  16. Different approaches to synovial membrane volume determination by magnetic resonance imaging: manual versus automated segmentation

    DEFF Research Database (Denmark)

    Østergaard, Mikkel

    1997-01-01

    Automated fast (5-20 min) synovial membrane volume determination by MRI, based on pre-set post-gadolinium-DTPA enhancement thresholds, was evaluated as a substitute for a time-consuming (45-120 min), previously validated, manual segmentation method. Twenty-nine knees [rheumatoid arthritis (RA) 13...

  17. [Optical coherence tomography and microperimetry after internal limiting membrane peeling for epiretinal membrane].

    Science.gov (United States)

    Grimbert, P; Lebreton, O; Weber, M

    2014-06-01

    To evaluate the anatomical and functional consequences of internal limiting membrane (ILM) peeling in epiretinal membrane (ERM) surgery. Retrospective single-center study including consecutive patients operated on for idiopathic ERM. The integrity of the ILM was assessed by ILM Blue® staining after removal of the ERM: either the peeling was spontaneous (group 1) or a complementary peeling was required (group 2). Pre- and post-operatively (1 and 6 months), all patients were analyzed using visual acuity, SD-OCT (Spectralis HRA OCT, Heidelberg, Germany) and microperimetry (OPKO/OTI, Miami, USA). Twenty-one eyes of 21 patients were included: 12 "active ILM peelings" and 9 "spontaneous peelings". In both groups, visual acuity increased significantly after surgery. Microperimetry revealed more microscotomata at 1 and 6 months for active peeling (Ppeeling is frequently performed to reduce ERM recurrence. Despite lack of effect on visual acuity, active ILM peeling increases the incidence of microscotomas related to the site where the ERM or ILM is grasped. Active ILM peeling may be responsible for postoperative visual discomfort related to microscopic trauma during peeling. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein partially purified from rat liver and rat brain membranes: an opioid/sigma receptor?

    Science.gov (United States)

    Tsao, L I; Su, T P

    1997-02-01

    A naloxone-sensitive, haloperidol-sensitive, [3H](+)SKF-10047-binding protein was partially purified from rat liver and rat brain membranes in an affinity chromatography originally designed to purify sigma receptors. Detergent-solubilized extracts from membranes were adsorbed to Sephadex G-25 resin containing an affinity ligand for sigma receptors: N-(2- 3,4-dichlorophenyl]ethyl)-N-(6-aminohexyl)-(2-[1-pyrrolidinyl]) ethylamine (DAPE). After eluting the resin with haloperidol, a protein that bound [3H](+)SKF-10047 was detected in the eluates. However, the protein was not the sigma receptor. [3H](+)SKF-10047 binding to the protein was inhibited by the following compounds in the order of decreasing potency: (+)pentazocine > (-) pentazocine > (+/-)cyclazocine > (-)morphine > (-)naloxone > haloperidol > (+)SKF-10047 > DADLE > (-)SKF-10047. Further, the prototypic sigma receptor ligands, such as 1,3-di-o-tolylguanidine (DTG), (+)3-PPP, and progesterone, bound poorly to the protein. Tryptic digestion and heat treatment of the affinity-purified protein abolished radioligand binding. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of the partially-purified protein from the liver revealed a major diffuse band with a molecular mass of 31 kDa, a polypeptide of 65 kDa, and another polypeptide of > 97 kDa. This study demonstrates the existence of a novel protein in the rat liver and rat brain which binds opioids, benzomorphans, and haloperidol with namomolar affinity. The protein resembles the opioid/sigma receptor originally proposed by Martin et al. [(1976): J. Pharmacol. Exp. Ther., 197:517-532.]. A high degree of purification of this protein has been achieved in the present study.

  19. Plasma membrane associated, virus-specific polypeptides required for the formation of target antigen complexes recognized by virus-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Domber, E.A.

    1986-01-01

    These studies were undertaken to define some of the poxvirus-specific target antigens which are synthesized in infected cells and recognized by vaccinia virus-specific CTLs (VV-CTLs). Since vaccinia virus infected, unmanipulated target cells express numerous virus-specific antigens on the plasma membrane, attempts were made to manipulate expression of the poxvirus genome after infection so that one or a few defined virus-specified antigens were expressed on the surface of infected cells. In vitro [ 51 Cr]-release assays determined that viral DNA synthesis and expression of late viral proteins were not necessary to form a target cell which was fully competent for lysis by VV-CTLs. Under the conditions employed in these experiments, 90-120 minutes of viral protein synthesis were necessary to produce a competent cell for lysis by VV-CTLs. In order to further inhibit the expression of early viral proteins in infected cells, partially UV-inactivated vaccinia virus was employed to infect target cells. It was determined that L-cells infected with virus preparations which had been UV-irradiated for 90 seconds were fully competent for lysis by VV-CTLs. Cells infected with 90 second UV-irr virus expressed 3 predominant, plasma membrane associated antigens of 36-37K, 27-28K, and 19-17K. These 3 viral antigens represent the predominant membrane-associated viral antigens available for interaction with class I, major histocompatibility antigens and hence are potential target antigens for VV-CTLs

  20. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    Science.gov (United States)

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  1. Glucagon-like peptide-2, but not glucose-dependent insulinotropic polypeptide, stimulates glucagon release in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Knop, Filip K; Vilsbøll, Tina

    2010-01-01

    This study investigated the glucagon-releasing properties of the hormones glucagon-like peptide-2 (GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) in 8 patients with type 1 diabetes mellitus (T1DM) without paracrine intraislet influence of insulin (C-peptide negative following a 5 g...... intravenous arginine stimulation; on study days only treated with basal insulin substitution). On 3 study days, 180-minute two-step glucose clamps were performed. Plasma glucose (PG) was clamped at fasting values, with a mean of 7.4+/-0.5 mM in the first 90 min (period 1) and raised 1.5 times the fasting...

  2. Codominant expression of genes coding for different sets of inducible salivary polypeptides associated with parotid hypertrophy in two inbred mouse strains.

    Science.gov (United States)

    López-Solís, Remigio O; Kemmerling, Ulrike

    2005-05-01

    Experimental mouse parotid hypertrophy has been associated with the expression of a number of isoproterenol-induced salivary proline-rich polypeptides (IISPs). Mouse salivary proline-rich proteins (PRPs) have been mapped both to chromosomes 6 and 8. Recently, mice of two inbred strains (A/Snell and A. Swiss) have been found to differ drastically in the IISPs. In this study, mice of both strains were used for cross-breeding experiments addressed to define the pattern of inheritance of the IISP phenotype and to establish whether the IISPs are coded on a single or on several chromosomes. The IISP phenotype of individual mice was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of whole saliva collected after three daily stimulations by isoproterenol. Parental A/Snell and A. Swiss mice were homogeneous for distinctive strain-associated IISP-patterns. First filial generation (F1) mice obtained from the cross of A/Snell with A. Swiss mice expressed with no exception both the A/Snell and A. Swiss IISPs (coexpression). In the second filial generation (F2) both parental IISP phenotypes reappeared together with a majority of mice expressing the F1-hybrid phenotype (1:2:1 ratio). Backcrosses of F1 x A/Snell and F1 x A. Swiss produced offsprings displaying the F1 and the corresponding parental phenotypes with a 1:1 ratio. No recombinants were observed among F2 mice or among mice resulting from backcrosses. Thus, genes coding for the IISPs that are expressed differentially in both mouse strains are located on the same chromosome, probably at the same locus (alleles) or at quite closely linked loci (nonalleles). 2005 Wiley-Liss, Inc

  3. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  4. Fibrillar dimer formation of islet amyloid polypeptides

    Directory of Open Access Journals (Sweden)

    Chi-cheng Chiu

    2015-09-01

    Full Text Available Amyloid deposits of human islet amyloid polypeptide (hIAPP, a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  5. Metal ion separations using reactive membranes

    International Nuclear Information System (INIS)

    Way, J.D.

    1993-01-01

    A membrane is a barrier between two phases. If one component of a mixture moves through the membrane faster than another mixture component, a separation can be accomplished. Membranes are used commercially for many applications including gas separations, water purification, particle filtration, and macromolecule separations (Abelson). There are two points to note concerning this definition. First, a membrane is defined based on its function, not the material used to make the membrane. Secondly, a membrane separation is a rate process. The separation is accomplished by a driving force, not by equilibrium between phases. Liquids that are immiscible with the feed and product streams can also be used as membrane materials. Different solutes will have different solubilities and diffusion coefficients in a liquid. The product of the diffusivity and the solubility is known as the permeability coefficient, which is proportional to the solute flux. Differences in permeability coefficient will produce a separation between solutes at constant driving force. Because the diffusion coefficients in liquids are typically orders of magnitude higher than in polymers, a larger flux can be obtained. Further enhancements can be accomplished by adding a nonvolatile complexation agent to the liquid membrane. One can then have either coupled or facilitated transport of metal ions through a liquid membrane. The author describes two implementations of this concept, one involving a liquid membrane supported on a microporous membrane, and the other an emulsion liquid membrane, where separation occurs to internal receiving phases. Applications and costing studies for this technology are reviewed, and a brief summary of some of the problems with liquid membranes is presented

  6. Mathematical Modelling of Glucose-Dependent Insulinotropic Polypeptide and Glucagon-like Peptide-1 following Ingestion of Glucose

    DEFF Research Database (Denmark)

    Røge, Rikke M; Bagger, Jonatan I; Alskär, Oskar

    2017-01-01

    The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), play an important role in glucose homeostasis by potentiating glucose-induced insulin secretion. Furthermore, GLP-1 has been reported to play a role in glucose homeostasis by inhibiting ...

  7. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  8. Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Lies Eykens

    2017-06-01

    Full Text Available Membrane distillation is a thermal separation technique using a microporous hydrophobic membrane. One of the concerns with respect to the industrialization of the technique is the development of novel membranes. In this paper, a commercially available hydrophilic polyethersulfone membrane with a suitable structure for membrane distillation was modified using available hydrophobic coatings using ORMOCER® technology to obtain a hydrophobic membrane that can be applied in membrane distillation. The surface modification was performed using a selection of different components, concentrations, and application methods. The resulting membranes can have two hydrophobic surfaces or a hydrophobic and hydrophilic surface depending on the application method. An extensive characterization procedure confirmed the suitability of the coating technique and the obtained membranes for membrane distillation. The surface contact angle of water could be increased from 27° up to 110°, and fluxes comparable to membranes commonly used for membrane distillation were achieved under similar process conditions. A 100 h test demonstrated the stability of the coating and the importance of using sufficiently stable base membranes.

  9. Molecular characterization of Marek's disease herpesvirus B antigen

    International Nuclear Information System (INIS)

    Isfort, R.J.; Sithole, I.; Kung, H.J.; Velicer, L.F.

    1986-01-01

    The Marek's disease herpesvirus (MDHV) B antigen (MDHV-B) was identified and molecularly characterized as a set of three glycoproteins of 100,000, 60,000, and 49,000 apparent molecular weight (gp100, gp60, and gp49, respectively) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation from [ 35 S]methionine-labeled infected cells by specific rabbit antiserum directed against MDHV-B (RαB), as previously determined by immunodiffusion. Further identification was accomplished by blocking this immunoprecipitation with highly purified MDHV-B. The same set of three polypeptides was also immunoprecipitated from [ 35 S] methionine- and 14 C-labeled infected cells into two other sera shown to have anti-B activity. These data serve to clarify the molecular identification of the polypeptides found in common between MDHV and HVT by linking them to MDHV-B. Collectively, the data presented here and by others support the conclusion that all three glycoproteins now identified as gp100, gp60, and gp49 have MDHV-B determinants. Finally, detection of the same three polypeptides with well-absorbed RαPM, which was directed against purified infected-cell plasma membranes, suggests that at least one component of the B-antigen complex has a plasma membrane location in the infected cell. These preliminary data point to the future membrane biochemistry and membrane immunology experiments needed to understand the MDHV system, and they may explain the high level of immunogenicity of MDHV-B in the infected chicken, as shown by its immunoprecipitation with immune chicken serum

  10. The synthesis and characterization of polypeptide-adriamycin conjugates and its complexes with adriamycin. Part I

    NARCIS (Netherlands)

    Heeswijk, W.A.R.; Hoes, C.J.T.; Stoffer, T.; Eenink, M.J.D.; Potman, W.; Feijen, Jan

    1985-01-01

    Poly(α-l-glutamic acid) (PGA) was grafted with amino acid and oligopeptide spacers up to 5 amino acids with the use of N,N'-carbonyldiimidazole and 2,3-dihydro-1,2-benz-isothiazole-3-on-1, 1-dioxide (saccharin) as an additive, and these polypeptides were characterized. The antitumor antibiotic

  11. The Effects of Lipid Membranes, Crowding and Osmolytes on the Aggregation, and Fibrillation Propensity of Human IAPP

    Directory of Open Access Journals (Sweden)

    Mimi Gao

    2015-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM is an age-related and metabolic disease. Its development is hallmarked, among others, by the dysfunction and degeneration of β-cells of the pancreatic islets of Langerhans. The major pathological characteristic thereby is the formation of extracellular amyloid deposits consisting of the islet amyloid polypeptide (IAPP. The process of human IAPP (hIAPP self-association, and the intermediate structures formed as well as the interaction of hIAPP with membrane systems seem to be, at least to a major extent, responsible for the cytotoxicity. Here we present a summary and comparison of the amyloidogenic propensities of hIAPP in bulk solution and in the presence of various neutral and charged lipid bilayer systems as well as biological membranes. We also discuss the cellular effects of macromolecular crowding and osmolytes on the aggregation pathway of hIAPP. Understanding the influence of different cellular factors on hIAPP aggregation will provide more insight into the onset of T2DM and help to develop novel therapeutic strategies.

  12. The cell-free integration of a polytopic mitochondrial membrane protein into liposomes occurs cotranslationally and in a lipid-dependent manner.

    Directory of Open Access Journals (Sweden)

    Ashley R Long

    Full Text Available The ADP/ATP Carrier (AAC is the most abundant transporter of the mitochondrial inner membrane. The central role that this transporter plays in cellular energy production highlights the importance of understanding its structure, function, and the basis of its pathologies. As a means of preparing proteoliposomes for the study of membrane proteins, several groups have explored the use of cell-free translation systems to facilitate membrane protein integration directly into preformed unilamellar vesicles without the use of surfactants. Using AAC as a model, we report for the first time the detergent-free reconstitution of a mitochondrial inner membrane protein into liposomes using a wheat germ-based in vitro translation system. Using a host of independent approaches, we demonstrate the efficient integration of AAC into vesicles with an inner membrane-mimetic lipid composition and, more importantly, that the integrated AAC is functionally active in transport. By adding liposomes at different stages of the translation reaction, we show that this direct integration is obligatorily cotranslational, and by synthesizing stable ribosome-bound nascent chain intermediates, we show that the nascent AAC polypeptide interacts with lipid vesicles while ribosome-bound. Finally, we show that the presence of the phospholipid cardiolipin in the liposomes specifically enhances AAC translation rate as well as the efficiency of vesicle association and integration. In light of these results, the possible mechanisms of liposome-assisted membrane protein integration during cell-free translation are discussed with respect to the mode of integration and the role of specific lipids.

  13. The distal short consensus repeats 1 and 2 of the membrane cofactor protein CD46 and their distance from the cell membrane determine productive entry of species B adenovirus serotype 35.

    Science.gov (United States)

    Fleischli, Christoph; Verhaagh, Sandra; Havenga, Menzo; Sirena, Dominique; Schaffner, Walter; Cattaneo, Roberto; Greber, Urs F; Hemmi, Silvio

    2005-08-01

    The human regulator of complement activation membrane cofactor protein (CD46) has recently been identified as an attachment receptor for most species B adenoviruses (Ads), including Ad type 3 (Ad3), Ad11, and Ad35, as well as species D Ad37. To characterize the interaction between Ad35 and CD46, hybrid receptors composed of different CD46 short consensus repeat (SCR) domains fused to immunoglobulin-like domains of CD4 and a set of 36 CD46 mutants containing semiconservative changes of single amino acids within SCR domains I and II were tested in binding and in Ad35-mediated luciferase transduction assays. In addition, anti-CD46 antibodies and soluble polypeptides constituting various CD46 domains were used in binding inhibition studies. Our data indicate that (i) CD46 SCR I or SCR II alone confers low but significant Ad35 binding; (ii) the presence of SCR I and II is required for optimal binding and transgene expression; (iii) transduction efficiencies equivalent to that of full-length CD46 are obtained if SCR I and II are at an appropriate distance from the cell membrane; (iv) ablation of the N-glycan attached to SCR I has no influence on receptor function, whereas ablation of the SCR II N-glycan results in about a two- to threefold reduction of binding and transgene expression; (v) most putative Ad35 binding residues are located on the same solvent-exposed face of the SCR I or SCR II domain, which are twisted by about 90 degrees ; and (vi) the putative Ad35 binding sites partly overlap with the measles virus binding surface.

  14. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  15. Morphological variation of stimuli-responsive polypeptide at air–water interface

    International Nuclear Information System (INIS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-01-01

    Graphical abstract: - Highlights: • It is the first report on the interfacial properties of ELP monolayers formed at the air–water interface. • ELP monolayers could be prepared with high stability at the air–water interface. • The compressive behavior of thermo-sensitive ELP monolayers was imaged. • The SERS spectra showed a change in the ELP secondary structure at different preparation conditions. - Abstract: The morphological variation of stimuli-responsive polypeptide molecules at the air–water interface as a function of temperature and compression was described. The surface pressure–area (π–A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir–Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air–water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π–A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air–water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  16. Morphological variation of stimuli-responsive polypeptide at air–water interface

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie [Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921 (Korea, Republic of); Chang, Hyejin; Jung, Dae-Hong [Department of Chemical Education, Seoul National University, Seoul 151-741 (Korea, Republic of); Hyun, Jinho, E-mail: jhyun@snu.ac.kr [Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921 (Korea, Republic of); Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea. (Korea, Republic of)

    2016-12-01

    Graphical abstract: - Highlights: • It is the first report on the interfacial properties of ELP monolayers formed at the air–water interface. • ELP monolayers could be prepared with high stability at the air–water interface. • The compressive behavior of thermo-sensitive ELP monolayers was imaged. • The SERS spectra showed a change in the ELP secondary structure at different preparation conditions. - Abstract: The morphological variation of stimuli-responsive polypeptide molecules at the air–water interface as a function of temperature and compression was described. The surface pressure–area (π–A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir–Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air–water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π–A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air–water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  17. Comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatography for screening anti-tumor components from Radix Sophorae flavescentis.

    Science.gov (United States)

    Wang, Qiang; Xu, Junnan; Li, Xiang; Zhang, Dawei; Han, Yong; Zhang, Xu

    2017-07-01

    Radix Sophorae flavescentis is generally used for the treatment of different stages of prostate cancer in China. It has ideal effects when combined with surgical treatment and chemotherapy. However, its active components are still ambiguous. We devised a comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatography system for screening anti-prostate cancer components in Radix Sophorae flavescentis. Gefitinib and dexamethasone were chosen as positive and negative drugs respectively for validation and optimization the selectivity and suitability of the comprehensive two-dimensional chromatographic system. Five compounds, sophocarpine, matrine, oxymatrine, oxysophocarpine, and xanthohumol were found to have significant retention behaviors on the PC-3 cell membrane chromatography and were unambiguously identified by time-of-flight mass spectrometry. Cell proliferation and apoptosis assays confirmed that all five compounds had anti-prostate cancer effects. Matrine and xanthohumol had good inhibitory effects, with half maximal inhibitory concentration values of 0.893 and 0.137 mg/mL, respectively. Our comprehensive two-dimensional PC-3 prostate cancer cell membrane chromatographic system promotes the efficient recognition and rapid analysis of drug candidates, and it will be practical for the discovery of prostate cancer drugs from complex traditional Chinese medicines. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of vasoactive intestinal polypeptide on heart rate in relation to vagal cardioacceleration in conscious dogs

    NARCIS (Netherlands)

    Roossien, A; Brunstig, J.R; Nijmeijer, A; Zaagsma, Hans; Zijlstra, W.G

    Objective: The vagal cardiac accelerator (VCA) system takes part in the nervous control of the heart rate. In the present study we tried to adduce evidence that vasoactive intestinal polypeptide (VLP) contributes to vagally induced cardioacceleration. Methods: The effect of VIP on heart rate and

  19. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali; Lai, Zhiping

    2014-01-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions

  20. Oxygen permeation flux through 10Sc1YSZ-MnCo2O4 asymmetric membranes prepared by two-step sintering

    DEFF Research Database (Denmark)

    Pirou, Stéven; Gurauskis, Jonas; Gil, Vanesa

    2016-01-01

    Asymmetric membranes based on a dual phase composite consisting of (Y2O3)0.01(Sc2O3)0.10(ZrO2)0.89 (10Sc1YSZ) as ionic conductor and MnCo2O4 as electronic conductor were prepared and characterized with respect to sinterability, microstructure and oxygen transport properties. The composite membranes...... were prepared by tape casting, lamination and fired in a two-step sintering process. Microstructural analysis showed that a gastight thin membrane layer with the desired ratio of ionic/electronic conducting phases could be fabricated. Oxygen permeation fluxes across the 10SclYSZ/MnCo2O4 (70/30 vol......%) composite membrane were measured from 750 to 940 degrees C using air or pure oxygen as feed gases and N2 or CO2 as sweep gases. Fluxes up to 2.3 mlN min-1 cm-2 were obtained for the 7 μm thick membrane. A degradation test over 1730 h showed an initial degradation of 21% during the first 1100 h after which...

  1. Membrane resistance : The effect of salinity gradients over a cation exchange membrane

    NARCIS (Netherlands)

    Galama, A. H.; Vermaas, D. A.; Veerman, J.; Saakes, M.; Rijnaarts, H. H. M.; Post, J. W.; Nijmeijer, K.

    2014-01-01

    Ion exchange membranes (IEMs) are used for selective transport of ions between two solutions. These solutions are often different in concentration or composition. The membrane resistance (R-M) is an important parameter affecting power consumption or power production in electrodialytic processes. In

  2. Membrane resistance: The effect of salinity gradients over a cation exchange membrane

    NARCIS (Netherlands)

    Galama, A.H.; Vermaas, D.A.; Veerman, J.; Saakes, M.; Rijnaarts, H.; Post, J.W.; Nijmeijer, K.

    2014-01-01

    Ion exchange membranes (IEMs) are used for selective transport of ions between two solutions. These solutions are often different in concentration or composition. The membrane resistance (R-M) is an important parameter affecting power consumption or power production in electrodialytic processes. In

  3. Evidence for the involvement of a 66 kDa membrane protein in the synthesis of sterolglucoside in ''Saccharomyces cerevisiae''

    International Nuclear Information System (INIS)

    Lenart, U.; Palamarczyk, G.

    1995-01-01

    The membrane-bound sterolglucoside synthase from the yeast ''Saccharomyces cerevisiae'' has been solubilized by nonionic detergent, Nonidet P-40, Triton X-100, and partially purified by DEAE-cellulose column chromatography and ammonium sulfate fractionation. SDS/PAGE of the purified fraction revealed the presence of two protein bands of molecular mass 66 kDa and 54 kDa. In an attempt to identify further the polypeptide chain of sterolglucoside synthase, the partially purified enzyme was treated with [di- 125 I]-5-[3-(p-azidosalicylamide)]allyl-UDPglucose, a photoactive analogue of UDPglucose, which is a substrate for this enzyme. Upon photolysis the 125 I-labelled probe was shown to link covalently to the 66 kDa protein. The photoinsertion was competed out by the presence of unlabeled UDPglucose thus suggesting that this protein contains substrate binding site for UDPglucose. Since photoinsertion of the probe to protein of 66 kDa correlated with the molecular mass of the protein visualized upon enzyme purification we postulate that the 66 kDa protein is involved in sterolglucoside synthesis in yeast. (author). 10 refs, 5 figs, 1 tab

  4. Elastin-like polypeptide switches: A design strategy to detect multimeric proteins.

    Science.gov (United States)

    Dhandhukia, Jugal P; Brill, Dab A; Kouhi, Aida; Pastuszka, Martha K; MacKay, J Andrew

    2017-09-01

    Elastin-Like Polypeptides (ELPs) reversibly phase separate in response to changes in temperature, pressure, concentration, pH, and ionic species. While powerful triggers, biological microenvironments present a multitude of more specific biological cues, such as antibodies, cytokines, and cell-surface receptors. To develop better biosensors and bioresponsive drug carriers, rational strategies are required to sense and respond to these target proteins. We recently reported that noncovalent association of two ELP fusion proteins to a "chemical inducer of dimerization" small molecule (1.5 kDa) induces phase separation at physiological temperatures. Having detected a small molecule, here we present the first evidence that ELP multimerization can also detect a much larger (60 kDa) protein target. To demonstrate this strategy, ELPs were biotinylated at their amino terminus and mixed with tetrameric streptavidin. At a stoichiometric ratio of [4:1], two to three biotin-ELPs associate with streptavidin into multimeric complexes with an apparent K d of 5 nM. The increased ELP density around a streptavidin core strongly promotes isothermal phase separation, which was tuned to occur at physiological temperature. This phase separation reverses upon saturation with excess streptavidin, which only favors [1:1] complexes. Together, these findings suggest that ELP association with multimeric biomolecules is a viable strategy to deliberately engineer ELPs that respond to multimeric protein substrates. © 2017 The Protein Society.

  5. Thermally Targeted Delivery of a c-Myc Inhibitory Peptide In Vivo Using Elastin-like Polypeptide

    Science.gov (United States)

    2009-10-01

    cytoplasm. Also, in a subset of cells, Bac-ELP1⁎-H1 showed very bright nuclear staining exclusive of nucleoli (Fig. 5, lower right, arrows). 3.6. Time...localization was very bright relative to the amount of polypeptide in the cytoplasm, and it appeared to be nucleoplasmic and excluded from nucleoli . The

  6. Radioactive rare gas separation using a separation cell with two kinds of membrane differing in gas permeability tendency

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Ozaki, Osamu; Sato, Hajime; Kimura, Shoji; Miyauchi, Terukatsu.

    1977-01-01

    A separation cell embodying two kinds of membrane-porous and nonporous, i.e. differing in gas permeability - has a separation factor higher than possible with a conventional separation cell with a single kind of membrane. The performance of such separation cells and of cascades constituted thereof are analyzed theoretically and measured experimentally for different conditions of operation, to determine the applicability of the concept to the separation of rare gases from gaseous waste out of nuclear plants. Theoretical considerations indicate that, in a cascade composed of symmetric separation cells, the separation performance can be improved by recycling part of the effluent from a cell back through the same cell (recycling cascade). It is shown that its performance is better than with the arrangement of diverting another effluent several stages upstream. With the recycling cascade, the symmetric separation recycling rate is determined by the depletion separation and enrichment separation factors relevant to the respective membranes. The separation performance of a 9-stage recycling cascade composed of separation cells with silicone rubber tubular membranes and cellulose acetate tubular membranes is derived for a case of Kr separation from N 2 -Kr mixture. The experimental data coincide well with the analytical results. From both the experimental and the analytical results, it is found that the attainable separation coefficient per stage of the cascade comes to average approximately 0.97. (auth.)

  7. Hemoglobin variants as models for investigation of dissociation of intact polypeptide chains by ESI tandem mass spectrometry

    International Nuclear Information System (INIS)

    Light, K.J.; Loo, J.A.; Edmonds, C.G.; Smith, R.D.

    1991-06-01

    Electrospray ionization mass spectroscopy (ESI-MS) is rapidly becoming a practical biochemical tool for peptide and protein sequence analysis. The utility of ESI-MS is through use of Collisionally Activated Dissociation (ESI-CAD-MS). Human hemoglobin (Hb, ∼62 kDa) consists of four polypeptide chains and a prosthetic heme group. There are over 400 Hb variants, characterized by amino acid substitutions in either the alpha or beta polypeptide chains. We investigated ESI-CAD-MS as a tool for rapidly analyzing amino acid substitutions, using eight Hb beta chain variants. The approximate location of the modification can be deduced from comparison of the CAD mass spectra and observance of the mass shifts of the fragment ion containing the substitution. Fragmentation occurs preferentially at the amino terminus of proline residues. For most substitutions, differences in CAD mass spectra were not seen. 2 figs

  8. Capital in the Twenty-First Century

    DEFF Research Database (Denmark)

    Hansen, Per H.

    2014-01-01

    Review essay on: Capital in the Twenty-First Century. By Thomas Piketty . Translated by Arthur Goldhammer . Cambridge, Mass.: The Belknap Press of Harvard University Press, 2014. viii + 685 pp......Review essay on: Capital in the Twenty-First Century. By Thomas Piketty . Translated by Arthur Goldhammer . Cambridge, Mass.: The Belknap Press of Harvard University Press, 2014. viii + 685 pp...

  9. Two-dimensional polyacrylamide gel analysis of Plodia interpunctella granulosis virus

    International Nuclear Information System (INIS)

    Russell, D.L.; Consigli, R.A.

    1986-01-01

    The structural polypeptides of purified Plodia interpunctella granulosis virus were analyzed by three different two-dimensional gel systems. Isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of 53 acidic polypeptides in the enveloped nucleocapsid of the virus ranging in molecular weight from 97,300 to 8000. Nine of these polypeptides were shown to be glycoproteins by the technique of radiolabeled lectin blotting. Separation of the granulin in this system allowed resolution of five species, all of which have identical tryptic peptide maps. This matrix protein was demonstrated to be a phosphoglycoprotein by radiolabeled lectin blotting and acid phosphatase dephosphorylation. Nonequilibrium pH gel electrophoresis followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of the major basic protein of the virus, VP12, from a more acidic protein of the same molecular weight. Tryptic peptide analysis demonstrated that these two proteins were indeed different and acid urea gels followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed localization of the acidic protein to the envelope and the basic protein to the nucleocapsid of the virus. Finally, probing of the separated envelope nucleocapsid proteins in both the isoelectric focusing and nonequilibrium pH gel electrophoresis two-dimensional systems after transfer to nitrocellulose with iodinated, purified viral proteins allowed further insight into reactions which may be important in the maintenance of the virion structure

  10. NMR and rotational angles in solution conformation of polypeptides

    Science.gov (United States)

    Bystrov, V. F.

    1985-01-01

    Professor San-Ichiro Mizushima and Professor Yonezo Morino's classical contributions provided unique means and firm basis for understanding of conformational states and internal rotation in polypeptide molecules. Now the NMR spectroscopy is the best choice to study molecular conformation, mechanism of action and structure-functional relationships of peptide and proteins in solution under conditions approaching those of their physiological environments. Crucial details of spatial structure and interactions of these molecules in solution are revealed by using proton-proton and carbon-proton vicinal coupling constants, proton nuclear Overhauser effect and spectral perturbation techniques. The results of NMR conformational analysis are presented for valinomycin "bracelet", gramicidin A double helices, honey-bee neurotoxin apamin, scorpion insectotoxins and snake neurotoxins of long and short types.

  11. Two-Ply Composite Membranes with Separation Layers from Chitosan and Sulfoethylcellulose on a Microporous Support Based on Poly(diphenylsulfone-N-phenylphthalimide

    Directory of Open Access Journals (Sweden)

    Svetlana V. Kononova

    2017-12-01

    Full Text Available Two-ply composite membranes with separation layers from chitosan and sulfoethylcellulose were developed on a microporous support based on poly(diphenylsulfone-N-phenylphthalimide and investigated by use of X-ray diffraction and scanning electron microscopy methods. The pervaporation properties of the membranes were studied for the separation of aqueous alcohol (ethanol, propan-2-ol mixtures of different compositions. When the mixtures to be separated consist of less than 15 wt % water in propan-2-ol, the membranes composed of polyelectrolytes with the same molar fraction of ionogenic groups (-NH3+ for chitosan and -SO3− for sulfoethylcellulose show high permselectivity (the water content in the permeate was 100%. Factors affecting the structure of a non-porous layer of the polyelectrolyte complex formed on the substrate surface and the contribution of that complex to changes in the transport properties of membranes are discussed. The results indicate significant prospects for the use of chitosan and sulfoethylcellulose for the formation of highly selective pervaporation membranes.

  12. Ca2+ pump and Ca2+/H+ antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from corn leaves

    International Nuclear Information System (INIS)

    Kasai, M.; Muto, S.

    1990-01-01

    Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment. 45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(Km(Ca2+) = 0.4 microM) and ATP(Km(ATP) = 3.9 microM), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl- or NO3-. Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl- was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanide m-chlorophenylhydrazone (CCCP) and VO4(3-) which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl(-)-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl(-)-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl(-)-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves

  13. Identification of two products of mitochondrial protein synthesis associated with mitochondrial adenosine triphosphatase from Neurospora crassa

    International Nuclear Information System (INIS)

    Jackl, G.; Sebald, W.

    1975-01-01

    Soluble mitochondrial ATPase (F 1 ) isolated from Neurospora crassa is resolved by dodecyl-sulfate-gel electrophoresis into five polypeptide bands with apparent molecular weights of 59,000, 55,000, 36,000, 15,000 and 12,000. At least nine further polypeptides remain associated with ATPase after disintegration of mitochondria with Triton X-100 as shown by the analysis of an immunoprecipitate obtained with antiserum to F 1 ATPase. Two of the associated polypeptides with apparent molecular weights of 19,000 and 11,000 are translated on mitochondrial ribosomes, as demonstrated by incorporation in vivo of radioactive leucine in the presence of specific inhibitors of mitochondrial (chloramphenicol) and extramitochondrial (cycloheximide) protein synthesis. The appearance of mitochondrial translation products in the immunoprecipitated ATPase complex is inhibited by cycloheximide. The same applies for some of the extramitochondrial translation products in the presence of chloramphenicol. This suggests that both types of polypeptides are necessary for the assembly of the ATPase complex. (orig.) [de

  14. Membrane processes in biotechnology: an overview.

    Science.gov (United States)

    Charcosset, Catherine

    2006-01-01

    Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems exploit the inherent properties of high selectivity, high surface-area-per-unit-volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications.

  15. Membrane properties for permeability testing: Skin versus synthetic membranes.

    Science.gov (United States)

    Haq, Anika; Dorrani, Mania; Goodyear, Benjamin; Joshi, Vivek; Michniak-Kohn, Bozena

    2018-03-25

    Synthetic membranes that are utilized in diffusion studies for topical and transdermal formulations are usually porous thin polymeric sheets for example cellulose acetate (CA) and polysulfones. In this study, the permeability of human skin was compared using two synthetic membranes: cellulose acetate and Strat-M® membrane and lipophilic and hydrophilic compounds either as saturated or formulated solutions as well as marketed dosage forms. Our data suggests that hydrophilic compounds have higher permeation in Strat-M membranes compared with lipophilic ones. High variation in permeability values, a typical property of biological membranes, was not observed with Strat-M. In addition, the permeability of Strat-M was closer to that of human skin than that of cellulose acetate (CA > Strat-M > Human skin). Our results suggest that Strat-M with little or no lot to lot variability can be applied in pilot studies of diffusion tests instead of human skin and is a better substitute than a cellulose acetate. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Innovative hybrid biological reactors using membranes

    International Nuclear Information System (INIS)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-01-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  17. Role of gemfibrozil as an inhibitor of CYP2C8 and membrane transporters.

    Science.gov (United States)

    Tornio, Aleksi; Neuvonen, Pertti J; Niemi, Mikko; Backman, Janne T

    2017-01-01

    Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-β-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3. Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail. Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-β-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.

  18. Kinetic and spectroscopic studies of cytochrome b-563 in isolated cytochrome b/f complex and in thylakoid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hind, G.; Clark, R.D.; Houchins, J.P.

    1983-01-01

    Extensive studies, performed principally by Hauska, Hurt and collaborators, have shown that a cytochrome (cyt) b/f complex isolated from photosynthetic membranes of spinach or Anabaena catalyzes electron transport from plastoquinol (PQH/sub 2/) to plastocyanin or algal cyt c-552. The complex from spinach thylakoids generated a membrane potential when reconstituted into liposomes, and although the electrogenic mechanism remains unknown, a key role for cyt b-563 is widely accepted. Electrogenesis by a Q-cycle mechanism requires a plastoquinone (PQ) reductase to be associated with the stromal side of the thylakoid b/f complex though this activity has yet to be demonstrated. It seemed possible that more gentle isolation of the complex might yield a form containing additional polypeptides, perhaps including a PQ reductase or a component involved in returning electrons from reduced ferredoxin to the complex in cyclic electron flow. Optimization of the isolation of cyt b/f complex for Hybrid 424 spinach from a growth room was also required. The procedure we devised is compared to the protocol of Hurt and Hauska (1982). 13 references.

  19. Membrane prteins of herpes simplex infected cells. Immunological and biochemical studies

    NARCIS (Netherlands)

    Welling-Wester, Sijtske

    1981-01-01

    As a consequence of infection with herpes simplex virus (HSV), cells exhibit a number of alterations. One of these is expressed as a change in the polypeptide composition of the surface of the infected cells. In this study several methods used for the isolation of these polypeptides expressed on the

  20. Sedimentation equilibrium of a small oligomer-forming membrane protein: effect of histidine protonation on pentameric stability.

    Science.gov (United States)

    Surya, Wahyu; Torres, Jaume

    2015-04-02

    Analytical ultracentrifugation (AUC) can be used to study reversible interactions between macromolecules over a wide range of interaction strengths and under physiological conditions. This makes AUC a method of choice to quantitatively assess stoichiometry and thermodynamics of homo- and hetero-association that are transient and reversible in biochemical processes. In the modality of sedimentation equilibrium (SE), a balance between diffusion and sedimentation provides a profile as a function of radial distance that depends on a specific association model. Herein, a detailed SE protocol is described to determine the size and monomer-monomer association energy of a small membrane protein oligomer using an analytical ultracentrifuge. AUC-ES is label-free, only based on physical principles, and can be used on both water soluble and membrane proteins. An example is shown of the latter, the small hydrophobic (SH) protein in the human respiratory syncytial virus (hRSV), a 65-amino acid polypeptide with a single α-helical transmembrane (TM) domain that forms pentameric ion channels. NMR-based structural data shows that SH protein has two protonatable His residues in its transmembrane domain that are oriented facing the lumen of the channel. SE experiments have been designed to determine how pH affects association constant and the oligomeric size of SH protein. While the pentameric form was preserved in all cases, its association constant was reduced at low pH. These data are in agreement with a similar pH dependency observed for SH channel activity, consistent with a lumenal orientation of the two His residues in SH protein. The latter may experience electrostatic repulsion and reduced oligomer stability at low pH. In summary, this method is applicable whenever quantitative information on subtle protein-protein association changes in physiological conditions have to be measured.

  1. Two ways of legumin-precursor processing in conifers. Characterization and evolutionary relationships of Metasequoia cDNAs representing two divergent legumin gene subfamilies.

    Science.gov (United States)

    Häger, K P; Wind, C

    1997-06-15

    Subunit monomers and oligomers of crystalloid-type legumins are major components of SDS-soluble fractions from Metasequoia glyptostroboides (Dawn redwood, Taxodiaceae) seed proteins. The subunits are made up of disulfide linked alpha-polypeptides and beta-polypeptides with molecular masses of 33 kDa and 23-25 kDa, respectively. Unusually for legumins, those from Metasequoia are glycosylated and the carbohydrate moieties are residing in the C-terminal region of the respective beta-polypeptides. A Metasequoia endosperm cDNA library has been constructed and legumin-encoding transcripts representing two divergent gene subfamilies have been characterized. Intersubfamily comparisons reveal 75% identity at the amino acid level and the values range from 53-35% when the legumin precursors deduced were compared with those from angiosperms. The predicted sequences together with data from amino acid sequencing prove that post-translational processing of Metasequoia prolegumins is directed to two different processing sites, each of them specific for one of the legumin subfamilies. The sites involved differ in their relative position and in the junction to be cleaved: Metasequoia legumin precursors MgLeg18 and MgLeg26 contain the conventional post-translational Asn-Gly processing site, which is generally regarded as highly conserved. In contrast, the MgLeg4 precursor is lacking this site and post-translational cleavage is directed to an unusual Asn-Thr processing site located in its hypervariable region, causing N-terminal extension of the beta-polypeptide relative to those hitherto known. Evidence is given that the unusual variant of processing also occurs in other conifers. Phylogenetic analysis reveals the precursors concerned as representatives of a distinct legumin subfamily, originating from duplication of an ancestral gene prior to or at the beginning of Taxodiaceae diversification.

  2. Realization of asymmetrical microporous membranes by double irradiation and membranes obtained

    International Nuclear Information System (INIS)

    Balanzat, E.; Bieth, C.

    1988-01-01

    The membrane is irradiated twice, especially with heavy ions, once with an energy to low to pass through, then with enough energy. Molecular defects created by irradiation are preferentially attached by chemicals. Two pore networks are obtained: blind large diameter pores and fine pores through the membrane which can be used in filtration [fr

  3. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...

  4. Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition

    International Nuclear Information System (INIS)

    Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang

    2014-01-01

    Highlights: • Two-phase flow in PEMFC cathode channels is observed in different gravity environments. • The PEMFC shows different operating behavior in normal and microgravity conditions. • Water tends can be removed in microgravity conditions at high water production regime. • Liquid aggregation occurs in microgravity conditions at low water production regime. • Effect of gravity on performance and two-phase flow at two operating regimes is studied. - Abstract: Water management is important for improving the performance and stability of proton exchange membrane fuel cells (PEMFCs) for space applications. An in situ visual observation was conducted on the gas–liquid two-phase flow in the cathode channels of a PEMFC in short-term microgravity condition. The microgravity environment was supplied by a drop tower. A single serpentine flow channel with a depth of 2 mm and a width of 2 mm was applied as the cathode flow field. A membrane electrode assembly comprising of a Nafion 112 membrane sandwiched between gas diffusion layers was used. The anode and cathode were loaded with 1 mg cm −2 platinum. The PEMFC shows a distinct operating behavior in microgravity because of the effect of gravity on the two-phase flow. At a high water production regime, cell performance is enhanced by 4.6% and the accumulated liquid water in the flow channel tends can be removed in microgravity conditions to alleviate flooding. At a low water production regime, cell performance deteriorates by 6.6% and liquid aggregation occurs in the flow channel because of the coalescence of dispersed water droplets in microgravity conditions, thus squeezing the flow channel. The operating behavior of PEMFC in microgravity conditions is different from that in normal gravity conditions. Further studies are needed on PEMFC operating characteristics and liquid management for space applications

  5. Isolation of lymphocyte membrane complement receptor type two (the C3d receptor) and preparation of receptor-specific antibody.

    OpenAIRE

    Lambris, J D; Dobson, N J; Ross, G D

    1981-01-01

    A glycoprotein binding complement component C3d was isolated from media used for culture of Raji human lymphoblastoid cells. Analysis by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and gas/liquid chromatography indicated that the C3d-binding glycoprotein consisted of a single polypeptide chain with extensive intrachain disulfide bonds, a molecular weight of 72,000, and several different bound carbohydrates. Several lines of evidence indicated that this medium-derived C3d-binding...

  6. Effects of velvet antler polypeptide on sexual behavior and testosterone synthesis in aging male mice.

    Science.gov (United States)

    Zang, Zhi-Jun; Tang, Hong-Feng; Tuo, Ying; Xing, Wei-Jie; Ji, Su-Yun; Gao, Yong; Deng, Chun-Hua

    2016-01-01

    Twenty-four-month-old male C57BL/6 mice with low serum testosterone levels were used as a late-onset hypogonadism (LOH) animal model for examining the effects of velvet antler polypeptide (VAP) on sexual function and testosterone synthesis. These mice received VAP for 5 consecutive weeks by daily gavage at doses of 100, 200, or 300 mg kg-1 body weight per day (n = 10 mice per dose). Control animals (n = 10) received the same weight-based volume of vehicle. Sexual behavior and testosterone levels in serum and interstitial tissue of testis were measured after the last administration of VAP. Furthermore, to investigate the mechanisms of how VAP affects sexual behavior and testosterone synthesis in vivo, the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) in Leydig cells was also measured by immunofluorescence staining and quantitative real-time PCR. As a result, VAP produced a significant improvement in the sexual function of these aging male mice. Serum testosterone level and intratesticular testosterone (ITT) concentration also increased in the VAP-treated groups. The expression of StAR, P450scc, and 3β-HSD was also found to be enhanced in the VAP-treated groups compared with the control group. Our results suggested that VAP was effective in improving sexual function in aging male mice. The effect of velvet antler on sexual function was due to the increased expression of several rate-limiting enzymes of testosterone synthesis (StAR, P450scc, and 3β-HSD) and the following promotion of testosterone synthesis in vivo.

  7. Biosynthesis of the D2 cell adhesion molecule: pulse-chase studies in cultured fetal rat neuronal cells

    DEFF Research Database (Denmark)

    Lyles, J M; Norrild, B; Bock, E

    1984-01-01

    D2 is a membrane glycoprotein that is believed to function as a cell adhesion molecule (CAM) in neural cells. We have examined its biosynthesis in cultured fetal rat brain neurones. We found D2-CAM to be synthesized initially as two polypeptides: Mr 186,000 (A) and Mr 136,000 (B). With increasing...

  8. Functional and structural analysis of photosystem II core complexes from spinach with high oxygen evolution capacity

    NARCIS (Netherlands)

    Haag, Elisabeth; Irrgang, Klaus-D.; Boekema, Egbert J.; Renger, Gernot

    1990-01-01

    Oxygen-evolving photo system II core complexes were prepared from spinach by solubilizing photosystem II membrane fragments with dodecyl-β-D-maltoside. The core complexes consist of the intrinsic 47-kDa, 43-kDa, D1 and D2 polypeptides, the two subunits of cytochrome b559 and the extrinsic 33-kDa

  9. Vasoactive intestinal polypeptide (VIP) in cirrhosis: arteriovenous extraction in different vascular beds

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Staun-Olsen, P; Fahrenkrug, J

    1980-01-01

    The concentration of vasoactive intestinal polypeptide (VIP) was determined in peripheral venous plasma from 136 patients with liver cirrhosis without gastrointestinal bleeding or coma and from 112 controls. In eight patients (cirrhosis, six; fibrosis, one; steatosis, one) arteriovenous extraction...... is significantly elevated in peripheral plasma from patients with cirrhosis, probably due to porto-systemic shunting and/or compromised hepatic elimination. Hepatic elimination is still likely to account for the inactivation of most of the VIP escaping from the neurosynapses throughout the body in patients...

  10. Improving Nanofiber Membrane Characteristics and Membrane Distillation Performance of Heat-Pressed Membranes via Annealing Post-Treatment

    Directory of Open Access Journals (Sweden)

    Minwei Yao

    2017-01-01

    Full Text Available Electrospun membranes are gaining interest for use in membrane distillation (MD due to their high porosity and interconnected pore structure; however, they are still susceptible to wetting during MD operation because of their relatively low liquid entry pressure (LEP. In this study, post-treatment had been applied to improve the LEP, as well as its permeation and salt rejection efficiency. The post-treatment included two continuous procedures: heat-pressing and annealing. In this study, annealing was applied on the membranes that had been heat-pressed. It was found that annealing improved the MD performance as the average flux reached 35 L/m2·h or LMH (>10% improvement of the ones without annealing while still maintaining 99.99% salt rejection. Further tests on LEP, contact angle, and pore size distribution explain the improvement due to annealing well. Fourier transform infrared spectroscopy and X-ray diffraction analyses of the membranes showed that there was an increase in the crystallinity of the polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP membrane; also, peaks indicating the α phase of polyvinylidene fluoride (PVDF became noticeable after annealing, indicating some β and amorphous states of polymer were converted into the α phase. The changes were favorable for membrane distillation as the non-polar α phase of PVDF reduces the dipolar attraction force between the membrane and water molecules, and the increase in crystallinity would result in higher thermal stability. The present results indicate the positive effect of the heat-press followed by an annealing post-treatment on the membrane characteristics and MD performance.

  11. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  12. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan; Srivatsa Bettahalli, N.M.; Fedoroff, Nina V.; Nunes, Suzana Pereira; Leiknes, TorOve

    2018-01-01

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  13. Biosynthesis of intestinal microvillar proteins. Processing of aminopeptidase N by microsomal membranes

    DEFF Research Database (Denmark)

    Danielsen, E M; Norén, Ove; Sjöström, H

    1983-01-01

    -bound rather than a soluble form, indicating that synthesis of the enzyme takes place on ribosomes attached to the rough endoplasmic reticulum. The microsomal fractions process the Mr-115 000 polypeptide, which is the primary translation product of aminopeptidase N, to a polypeptide of Mr 140 000...

  14. A Laboratory Exercise Illustrating the Sensitivity and Specificity of Western Blot Analysis

    Science.gov (United States)

    Chang, Ming-Mei; Lovett, Janice

    2011-01-01

    Western blot analysis, commonly known as "Western blotting," is a standard tool in every laboratory where proteins are analyzed. It involves the separation of polypeptides in polyacrylamide gels followed by the electrophoretic transfer of the separated polypeptides onto a nitrocellulose or polyvinylidene fluoride membrane. A replica of the…

  15. Dynamic Response Analysis of Microflow Electrochemical Sensors with Two Types of Elastic Membrane

    Directory of Open Access Journals (Sweden)

    Qiuzhan Zhou

    2016-05-01

    Full Text Available The Molecular Electric Transducer (MET, widely applied for vibration measurement, has excellent sensitivity and dynamic response at low frequencies. The elastic membrane in the MET is a significant factor with an obvious effect on the performance of the MET in the low frequency domain and is the focus of this paper. In simulation experiments, the elastic membrane and the reaction cavity of the MET were analysed in a model based on the multiphysics finite element method. Meanwhile, the effects caused by the elastic membrane elements are verified in this paper. With the numerical simulation and practical experiments, a suitable elastic membrane can be designed for different cavity structures. Thus, the MET can exhibit the best dynamic response characteristics to measure the vibration signals. With the new method presented in this paper, it is possible to develop and optimize the characteristics of the MET effectively, and the dynamic characteristics of the MET can be improved in a thorough and systematic manner.

  16. Discovery of dual-action membrane-anchored modulators of incretin receptors.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Fortin

    Full Text Available The glucose-dependent insulinotropic polypeptide (GIP and the glucagon-like peptide-1 (GLP-1 receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function.Serial substitution of residue 7 in membrane-tethered GIP (tGIP led to a wide range of activities at the GIP receptor, with [G(7]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G(7 into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4, did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G(7]tGIP and tEXE4 failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes.These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target.

  17. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes.

    Science.gov (United States)

    Douiri, Salma; Bahdoudi, Seyma; Hamdi, Yosra; Cubì, Roger; Basille, Magali; Fournier, Alain; Vaudry, Hubert; Tonon, Marie-Christine; Amri, Mohamed; Vaudry, David; Masmoudi-Kouki, Olfa

    2016-06-01

    Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the

  18. Effects of alterations of the E. coli lipopolysaccharide layer on membrane permeabilization events induced by Cecropin A.

    Science.gov (United States)

    Agrawal, Anurag; Weisshaar, James C

    2018-04-22

    The outermost layer of Gram negative bacteria is composed of a lipopolysaccharide (LPS) network that forms a dense protective hydrophilic barrier against entry of hydrophobic drugs. At low μM concentrations, a large family of cationic polypeptides known as antimicrobial peptides (AMPs) are able to penetrate the LPS layer and permeabilize the outer membrane (OM) and the cytoplasmic membrane (CM), causing cell death. Cecropin A is a well-studied cationic AMP from moth. Here a battery of time-resolved, single-cell microscopy experiments explores how deletion of sugar layers and/or phosphoryl negative charges from the core oligosaccharide layer (core OS) of K12 E. coli alters the timing of OM and CM permeabilization induced by Cecropin A. Deletion of sugar layers, or phosphoryl charges, or both from the core OS shortens the time to the onset of OM permeabilization to periplasmic GFP and also the lag time between OM permeabilization and CM permeabilization. Meanwhile, the 12-h minimum inhibitory concentration (MIC) changes only twofold with core OS alterations. The results suggest a two-step model in which the core oligosaccharide layers act as a kinetic barrier to penetration of Cecropin A to the lipid A outer leaflet of the OM. Once a threshold concentration has built up at the lipid A leaflet, nucleation occurs and the OM is locally permeabilized to GFP and, by inference, to Cecropin A. Whenever Cecropin A permeabilizes the OM, CM permeabilization always follows, and cell growth subsequently halts and never recovers on the 45 min observation timescale. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Conformational energy calculations on polypeptides and proteins: use of a statistical mechanical procedure for evaluating structure and properties.

    Science.gov (United States)

    Scheraga, H A; Paine, G H

    1986-01-01

    We are using a variety of theoretical and computational techniques to study protein structure, protein folding, and higher-order structures. Our earlier work involved treatments of liquid water and aqueous solutions of nonpolar and polar solutes, computations of the stabilities of the fundamental structures of proteins and their packing arrangements, conformations of small cyclic and open-chain peptides, structures of fibrous proteins (collagen), structures of homologous globular proteins, introduction of special procedures as constraints during energy minimization of globular proteins, and structures of enzyme-substrate complexes. Recently, we presented a new methodology for predicting polypeptide structure (described here); the method is based on the calculation of the probable and average conformation of a polypeptide chain by the application of equilibrium statistical mechanics in conjunction with an adaptive, importance sampling Monte Carlo algorithm. As a test, it was applied to Met-enkephalin.

  20. Bone Morphometric Evaluation around Immediately Placed Implants Covered with Porcine-Derived Pericardium Membrane: An Experimental Study in Dogs

    Directory of Open Access Journals (Sweden)

    Ryo Jimbo

    2012-01-01

    Full Text Available Objective. To investigate whether porcine-derived bioresorbable pericardium membrane coverage enhances the osseointegration around implants placed in fresh extraction sockets. Study Design. Twenty-four commercially available endosseous implants were placed in the fresh extraction sockets of the mandibular first molar of mature beagles (. On one side, implants and osteotomy sites were covered with porcine-derived bioresorbable pericardium membranes, whereas on the other side, no membranes were used. After 6 weeks, samples were retrieved and were histologically processed for histomorphometric analysis. Results. The histological observation showed that bone loss and soft tissue migration in the coronal region of the implant were evident for the control group, whereas bone fill was evident up to the neck of the implant for the membrane-covered group. Bone-to-implant contact was significantly higher for the membrane-covered group compared to the control group, 75% and 45% (, respectively. Conclusion. The experimental membranes proved to regenerate bone around implants placed in fresh extraction sockets without soft tissue intrusion.

  1. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes.

    Science.gov (United States)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B

    2017-06-07

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  2. Impaired pancreatic polypeptide response to a meal in type 1 diabetic patients

    DEFF Research Database (Denmark)

    Rasmussen, M H; Carstensen, H; List, S

    1993-01-01

    The pancreatic polypeptide (PP) response to a mixed meal was investigated in seven insulin-dependent diabetics without measurable signs of diabetic autonomic neuropathy, and in seven healthy subjects. Since acute changes in metabolic regulation might influence the meal-induced PP response...... is independent of short-term changes in metabolic control. Since the response was attenuated in the insulin-dependent diabetic patients, who had no otherwise measurable signs of neuropathy, the PP response to a meal could be a sensitive indicator of dysfunction of the reflex arc controlling PP secretion...

  3. Infrared emission of a freestanding plasmonic membrane

    Science.gov (United States)

    Monshat, Hosein; Liu, Longju; McClelland, John; Biswas, Rana; Lu, Meng

    2018-01-01

    This paper reports a free-standing plasmonic membrane as a thermal emitter in the near- and mid-infrared regions. The plasmonic membrane consists of an ultrathin gold film perforated with a two-dimensional array of holes. The device was fabricated using an imprint and transfer process and fixed on a low-emissivity metal grid. The thermal radiation characteristics of the plasmonic membrane can be engineered by controlling the array period and the thickness of the gold membrane. Plasmonic membranes with two different periods were designed using electromagnetic simulation and then characterized for their transmission and infrared radiation properties. The free-standing membranes exhibit extraordinary optical transmissions with the resonant transmission coefficient as high as 76.8%. After integration with a customized heater, the membranes demonstrate narrowband thermal emission in the wavelength range of 2.5 μm to 5.5 μm. The emission signatures, including peak emission wavelength and bandwidth, are associated with the membrane geometry. The ultrathin membrane infrared emitter can be adopted in applications, such as chemical analysis and thermal imaging.

  4. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers

    Science.gov (United States)

    Oliver, A. E.; Deamer, D. W.

    1994-01-01

    Proton translocation is important in membrane-mediated processes such as ATP-dependent proton pumps, ATP synthesis, bacteriorhodopsin, and cytochrome oxidase function. The fundamental mechanism, however, is poorly understood. To test the theoretical possibility that bundles of hydrophobic alpha-helices could provide a low energy pathway for ion translocation through the lipid bilayer, polyamino acids were incorporated into extruded liposomes and planar lipid membranes, and proton translocation was measured. Liposomes with incorporated long-chain poly-L-alanine or poly-L-leucine were found to have proton permeability coefficients 5 to 7 times greater than control liposomes, whereas short-chain polyamino acids had relatively little effect. Potassium permeability was not increased markedly by any of the polyamino acids tested. Analytical thin layer chromatography measurements of lipid content and a fluorescamine assay for amino acids showed that there were approximately 135 polyleucine or 65 polyalanine molecules associated with each liposome. Fourier transform infrared spectroscopy indicated that a major fraction of the long-chain hydrophobic peptides existed in an alpha-helical conformation. Single-channel recording in both 0.1 N HCl and 0.1 M KCl was also used to determine whether proton-conducting channels formed in planar lipid membranes (phosphatidylcholine/phosphatidylethanolamine, 1:1). Poly-L-leucine and poly-L-alanine in HCl caused a 10- to 30-fold increase in frequency of conductive events compared to that seen in KCl or by the other polyamino acids in either solution. This finding correlates well with the liposome observations in which these two polyamino acids caused the largest increase in membrane proton permeability but had little effect on potassium permeability. Poly-L-leucine was considerably more conductive than poly-L-alanine due primarily to larger event amplitudes and, to a lesser extent, a higher event frequency. Poly-L-leucine caused two

  5. A fluorescence-based method for direct measurement of submicrosecond intramolecular contact formation in biopolymers: an exploratory study with polypeptides.

    Science.gov (United States)

    Hudgins, Robert R; Huang, Fang; Gramlich, Gabriela; Nau, Werner M

    2002-01-30

    A fluorescent amino acid derivative (Fmoc-DBO) has been synthesized, which contains 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a small, hydrophilic fluorophore with an extremely long fluorescence lifetime (325 ns in H2O and 505 ns in D2O under air). Polypeptides containing both the DBO residue and an efficient fluorescence quencher allow the measurement of rate constants for intramolecular end-to-end contact formation. Bimolecular quenching experiments indicated that Trp, Cys, Met, and Tyr are efficient quenchers of DBO (k(q) = 20, 5.1, 4.5, and 3.6 x 10(8) M(-1) x s(-1) in D2O), while the other amino acids are inefficient. The quenching by Trp, which was selected as an intrinsic quencher, is presumed to involve exciplex-induced deactivation. Flexible, structureless polypeptides, Trp-(Gly-Ser)n-DBO-NH2, were prepared by standard solid-phase synthesis, and the rates of contact formation were measured through the intramolecular fluorescence quenching of DBO by Trp with time-correlated single-photon counting, laser flash photolysis, and steady-state fluorometry. Rate constants of 4.1, 6.8, 4.9, 3.1, 2.0, and 1.1 x 10(7) s(-1) for n = 0, 1, 2, 4, 6, and 10 were obtained. Noteworthy was the relatively slow quenching for the shortest peptide (n = 0). The kinetic data are in agreement with recent transient absorption studies of triplet probes for related peptides, but the rate constants are significantly larger. In contrast to the flexible structureless Gly-Ser polypeptides, the polyproline Trp-Pro4-DBO-NH2 showed insignificant fluorescence quenching, suggesting that a high polypeptide flexibility and the possibility of probe-quencher contact is essential to induce quenching. Advantages of the new fluorescence-based method for measuring contact formation rates in biopolymers include high accuracy, fast time range (100 ps-1 micros), and the possibility to perform measurements in water under air.

  6. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  7. Intersegment interactions and helix-coil transition within the generalized model of polypeptide chains approach

    Science.gov (United States)

    Badasyan, A. V.; Hayrapetyan, G. N.; Tonoyan, Sh. A.; Mamasakhlisov, Y. Sh.; Benight, A. S.; Morozov, V. F.

    2009-09-01

    The generalized model of polypeptide chains is extended to describe the helix-coil transition in a system comprised of two chains interacting side-by-side. The Hamiltonian of the model takes into account four possible types of interactions between repeated units of the two chains, i.e., helix-helix, helix-coil, coil-helix, and coil-coil. Analysis reveals when the energy Ihh+Icc of (h-h, c-c) interactions overwhelms the energy Ihc+Ich of mixed (h-c, c-h) interactions, the correlation length rises substantially, resulting in narrowing of the transition interval. In the opposite case, when Ihh+Icc

  8. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    Science.gov (United States)

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  9. The lectin domain of UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-T4 directs its glycopeptide specificities

    DEFF Research Database (Denmark)

    Hassan, H; Reis, C A; Bennett, E P

    2000-01-01

    The initiation step of mucin-type O-glycosylation is controlled by a large family of homologous UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-transferases). Differences in kinetic properties, substrate specificities, and expression patterns of these isoenzymes provide for diff...

  10. Energy Consumption in Terms of Shear Stress for Two Types of Membrane Bioreactors used for Municipal Wastewater Treatment Processes

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Rasmussen, Michael R.

    2012-01-01

    Two types of submerged membrane bioreactors (MBR): hollow fiber (HF) and hollow sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power...... of shear stress over the membrane surface was made using computational fluid dynamics (CFD) modelling. Experimental measurements for the HF MBR were compared with the CFD model and an error less that 8% was obtained. For the HS MBR, experimental measurements of velocity profiles were made and an error...... of 11% was found. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors and it is extrapolate to determine shear stress on MBR systems. This relationship proved...

  11. Effects of High-Flux versus Low-Flux Membranes on Pulmonary Function Tests in Hemodialysis Patients.

    Science.gov (United States)

    Momeni, Ali; Rouhi, Hamid; Kiani, Glareh; Amiri, Masoud

    2013-01-01

    Several studies have been carried out to evaluate the effects of dialysis on pulmonary function tests (PFT). Dialysis procedure may reduce lung volumes and capacities or cause hypoxia; however, to the best of our knowledge, there is no previous study evaluating the effects of membrane type (high flux vs. low flux) on PFT in these patients. The aim of this study was the evaluation of this relationship. In this cross-sectional study, 43 hemodialysis patients without pulmonary disease were enrolled. In these patients dialysis was conducted by low-and high-flux membranes and before and after the procedure, spirometry was done and the results were evaluated by t-test and chi square test. The mean age of patients was 56.34 years. Twenty-three of them were female (53.5%). Type of membrane (high flux vs. low flux) had no effect on spirometry results of patients despite the significant decrease in the body weight during the dialysis session. High flux membrane had no advantage over low flux membrane in terms of improvement in spirometry findings; thus, we could not offer these expensive membranes for this purpose.

  12. Further characterization of intestinal lactase/phlorizin hydrolase

    DEFF Research Database (Denmark)

    Skovbjerg, H; Norén, O; Sjöström, H

    1982-01-01

    Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis in the pres......Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis...... in the presence of SDS. Pig lactase/phlorizin hydrolase was shown to have the same quaternary structure as the human enzyme, i.e., built up of two polypeptides of the same molecular weight (160000). In addition to hydrolyzing lactose, phlorizin and a number of synthetic substrates, both the human and the pig...... membranes (basolateral and intracellular membranes) exhibited in SDS-polyacrylamide gel electrophoresis the same size of constituent polypeptides and the same catalytic and immunological properties as a normal brush border lactase/phlorizin hydrolase....

  13. Two-Sided Surface Oxidized Cellulose Membranes Modified with PEI: Preparation, Characterization and Application for Dyes Removal

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-09-01

    Full Text Available Porous regenerated cellulose (RC membranes were prepared with cotton linter pulp as a raw material. These membranes were first oxidized on both sides by a modified (2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO oxidation system using a controlled oxidation reaction technique. Then, the oxidized RC membranes were functionalized with polyethylenimine (PEI via the glutaraldehyde crosslinking method to obtain bifunctional (carboxyl and amino porous RC membranes, as revealed by Fourier transform infrared spectroscopy (FT-IR, elemental analysis and zeta potential measurement. The scanning electron microscopy (SEM and the tests of the mechanical properties and permeability characteristics of modified RC membranes demonstrated that the porous structure and certain mechanical properties could be retained. The adsorption performance of the modified membranes towards dyes was subsequently investigated. The modified membranes displayed good adsorption capacities, rapid adsorption equilibrium and removal efficiencies towards both anionic (xylenol orange (XO and cationic (methylene blue (MB dyes, making them suitable bioadsorbents for wastewater treatment.

  14. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Science.gov (United States)

    Yu, Yu-Wen; Hsueh, Shih-Chang; Lai, Jing-Huei; Chen, Yen-Hua; Kang, Shuo-Jhen; Hsieh, Tsung-Hsun; Hoffer, Barry J.; Li, Yazhou; Greig, Nigel H.; Chiang, Yung-Hsiao

    2018-01-01

    In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP) was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA) hemi-parkinsonian (PD) rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c.) using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB). The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA) lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development. PMID:29641447

  15. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    Directory of Open Access Journals (Sweden)

    Yu-Wen Yu

    2018-04-01

    Full Text Available In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA hemi-parkinsonian (PD rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c. using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB. The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development.

  16. Chapter 6: cubic membranes the missing dimension of cell membrane organization.

    Science.gov (United States)

    Almsherqi, Zakaria A; Landh, Tomas; Kohlwein, Sepp D; Deng, Yuru

    2009-01-01

    Biological membranes are among the most fascinating assemblies of biomolecules: a bilayer less than 10 nm thick, composed of rather small lipid molecules that are held together simply by noncovalent forces, defines the cell and discriminates between "inside" and "outside", survival, and death. Intracellular compartmentalization-governed by biomembranes as well-is a characteristic feature of eukaryotic cells, which allows them to fulfill multiple and highly specialized anabolic and catabolic functions in strictly controlled environments. Although cellular membranes are generally visualized as flat sheets or closely folded isolated objects, multiple observations also demonstrate that membranes may fold into "unusual", highly organized structures with 2D or 3D periodicity. The obvious correlation of highly convoluted membrane organizations with pathological cellular states, for example, as a consequence of viral infection, deserves close consideration. However, knowledge about formation and function of these highly organized 3D periodic membrane structures is scarce, primarily due to the lack of appropriate techniques for their analysis in vivo. Currently, the only direct way to characterize cellular membrane architecture is by transmission electron microscopy (TEM). However, deciphering the spatial architecture solely based on two-dimensionally projected TEM images is a challenging task and prone to artifacts. In this review, we will provide an update on the current progress in identifying and analyzing 3D membrane architectures in biological systems, with a special focus on membranes with cubic symmetry, and their potential role in physiological and pathophysiological conditions. Proteomics and lipidomics approaches in defined experimental cell systems may prove instrumental to understand formation and function of 3D membrane morphologies.

  17. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    Science.gov (United States)

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  18. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    Science.gov (United States)

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  19. Proghrelin-derived peptides influence the secretion of insulin, glucagon, pancreatic polypeptide and somatostatin: a study on isolated islets from mouse and rat pancreas

    DEFF Research Database (Denmark)

    Qader, S.S.; Hakanson, R.; Lundquist, I.

    2008-01-01

    ghrelin, and to the 23-amino acid peptide obestatin, claimed to be a physiological opponent of acyl ghrelin. This study examines the effects of the proghrelin products, alone and in combinations, on the secretion of insulin, glucagon, pancreatic polypeptide (PP) and somatostatin from isolated islets...... times higher concentration than acyl ghrelin (corresponding to the ratio of the two peptides in circulation), desacyl ghrelin abolished the effects of acyl ghrelin but not those of obestatin. Acyl ghrelin and obestatin affected the secretion of glucagon, PP and somatostatin at physiologically relevant...

  20. Inner Synovial Membrane Footprint of the Anterior Elbow Capsule: An Arthroscopic Boundary

    Directory of Open Access Journals (Sweden)

    Srinath Kamineni

    2015-01-01

    Full Text Available Introduction. The purpose of this study is to describe the inner synovial membrane (SM of the anterior elbow capsule, both qualitatively and quantitatively. Materials and Methods. Twenty-two cadaveric human elbows were dissected and the distal humerus and SM attachments were digitized using a digitizer. The transepicondylar line (TEL was used as the primary descriptor of various landmarks. The distance between the medial epicondyle and medial SM edge, SM apex overlying the coronoid fossa, the central SM nadir, and the apex of the SM insertion overlying the radial fossa and distance from the lateral epicondyle to lateral SM edge along the TEL were measured and further analyzed. Gender and side-to-side statistical comparisons were calculated. Results. The mean age of the subjects was 80.4 years, with six male and five female cadavers. The SM had a distinctive double arched attachment overlying the radial and coronoid fossae. No gender-based or side-to-side quantitative differences were noted. In 18 out of 22 specimens (81.8%, an infolding extension of the SM was observed overlying the medial aspect of the trochlea. The SM did not coincide with the outer fibrous attachment in any specimen. Conclusion. The humeral footprint of the synovial membrane of the anterior elbow capsule is more complex and not as capacious as commonly understood from the current literature. The synovial membrane nadir between the two anterior fossae may help to explain and hence preempt technical difficulties, a reduction in working arthroscopic volume in inflammatory and posttraumatic pathologies. This knowledge should allow the surgeon to approach this aspect of the anterior elbow compartment space with the confidence that detachment of this synovial attachment, to create working space, does not equate to breaching the capsule. Alternatively, stripping the synovial attachment from the anterior humerus does not constitute an anterior capsular release.