WorldWideScience

Sample records for membrane lipid peroxidation

  1. Radiation-induced lipid peroxidation: influence of oxygen concentration and membrane lipid composition

    International Nuclear Information System (INIS)

    Wolters, H.; Tilburg, C.A.M. van; Konings, A.W.T.

    1987-01-01

    Radiation -induced lipid peroxidation phospholipid liposomes was investigated in terms of its dependence on lipid composition and oxygen concentration. Non-peroxidizable lipid incorporated in the liposomes reduced the rate of peroxidation of the peroxidizable phospholipid acyl chains, possibly by restricting the length of chain reactions. The latter effect is believed to be caused by interference of the non-peroxidizable lipids in the bilayer. At low oxygen concentration lipid peroxidation was reduced. The cause of this limited peroxidation may be a reduced number of radical initiation reactions possibly involving oxygen-derived superoxide radicals. Killing of proliferating mammalian cells, irradiated at oxygen concentrations ranging from 0 to 100%, appeared to be independent of the concentration of peroxidizable phospholipids in the cell membranes. This indicates that lipid peroxidation is not the determining process in radiation-induced reproductive cell death. (author)

  2. Ultraviolet radiation-induced lipid peroxidation in liposomal membrane: modification by capsaicin

    International Nuclear Information System (INIS)

    De, A.K.; Ghosh, J.J.; Mandal, T.K.

    1993-01-01

    Ultraviolet-radiation has been reported to cause lipid peroxidation in the liposomal membrane. In the present study, treatment with capsaicin, (8-methyl-n-vanillyl-6-nonenamide), the pungent principle of red hot pepper, was shown to modify UV-induced lipid peroxidation in the liposomal membrane. Treatment with low doses of capsaicin (less than 0.1 μg/mL of phosphatidyl choline liposome) produced a significant increase in UV-induced lipid peroxidation, while high doses (0.1-0.5 μg/mL of PC liposome) caused a significant decrease of UV-induced peroxidation

  3. Ultraviolet radiation-induced lipid peroxidation in liposomal membrane: modification by capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    De, A. K.; Ghosh, J. J.; Mandal, T. K. [University College of Science, Department of Biochemistry, 35 Ballygunge Circular Road, Calcutta 700-019 (India)

    1993-07-01

    Ultraviolet-radiation has been reported to cause lipid peroxidation in the liposomal membrane. In the present study, treatment with capsaicin, (8-methyl-n-vanillyl-6-nonenamide), the pungent principle of red hot pepper, was shown to modify UV-induced lipid peroxidation in the liposomal membrane. Treatment with low doses of capsaicin (less than 0.1 μg/mL of phosphatidyl choline liposome) produced a significant increase in UV-induced lipid peroxidation, while high doses (0.1-0.5 μg/mL of PC liposome) caused a significant decrease of UV-induced peroxidation.

  4. Radiation effects on membranes. I. Vitamin E deficiency and lipid peroxidation

    International Nuclear Information System (INIS)

    Konings, A.W.T.; Drijver, E.B.

    1979-01-01

    Mice which had received a vitamin E-deficient diet from weaning on, were more sensitive to x irradiation than were normal mice, LD/sub 50/30/ being decreased by 0.25 Gy. The vitamin E-deficient mice also showed an increased spleen shrinkage. The cellular membranes of the vitamin E-deficient mice were more vulnerable to lipid peroxidation. X irradiation in vivo shortened the lag period prior to rapid lipid peroxidation as measured in vitro. Injection of the mice with glutathione prior to x irradiation protected the membranes in the in vitro test of peroxidation capacity as was demonstrated by an extended lag period. The possible meaning of these results with respect to the concept that membranes may be important sites for radiation damage is discussed

  5. Membrane lipid peroxidation by UV-A: Mechanism and implications

    International Nuclear Information System (INIS)

    Bose, B.; Agarwal, S.; Chatterjee, S.N.

    1990-01-01

    UV-A produced a dose-dependent linear increase of lipid peroxidation in liposomal membrane, as detected by the assay of (i) conjugated dienes, (ii) lipid hydroperoxides, (iii) malondialdehydes (MDA), and (iv) the fluorescent adducts formed by the reaction of MDA with glycine and also a linear dose-dependent increase of [ 14 C]glucose efflux from the liposomes. UV-A-induced MDA production could not be inhibited by any significant degree by sodium formate, dimethyl sulfoxide, EDTA, or superoxide dismutase but was very significantly inhibited by butylated hydroxytoluene, alpha-tocopherol, sodium azide, L-histidine, dimethylfuran, and beta-carotene. MDA formation increased with an increase in the D 2 O content in water, leading to a maximal amount of nearly 50% enhancement of lipid peroxidation in 100% D 2 O vis-a-vis water used as dispersion medium. The experimental findings indicate the involvement of singlet oxygen as the initiator of the UV-A-induced lipid peroxidation

  6. Lipid peroxidation in liver homogenates. Effects of membrane lipid composition and irradiation

    International Nuclear Information System (INIS)

    Vaca, C.; Ringdahl, M.H.

    1984-01-01

    The rate of lipid peroxidation has been followed in whole liver homogenates from mice using the TBA-method. Liver homogenates with different membrane fatty acid composition were obtained from mice fed diets containing different sources of fat i.e. sunflower seed oil (S), coconut oil (C) and hydrogenated lard (L). The yields of the TBA-chromophore (TBA-c) were 4 times higher in the liver homogenates S compared to C and L after 4 hour incubation at 37 0 C. Irradiation of the liver homogenates before incubation inhibited the formation of lipid peroxidation products in a dose dependent way. The catalytic capacity of the homogenates was investigated, followed as the autooxidation of cysteamine or modified by addition of the metal chelator EDTA. The rate of autooxidation of cysteamine, which is dependent on the presence of metal ions (Fe/sup 2+/ or Cu/sup 2+/), was decreased with increasing dose, thus indicating an alteration in the availability of metal catalysts in the system. The addition of Fe/sup 2+/ to the system restored the lipid peroxidation yields in the irradiated systems and the presence of EDTA inhibited the formation of lipid peroxidation products in all three dietary groups. It is suggested that irradiation alters the catalytic activity needed in the autooxidation processes of polyunsaturated fatty acids

  7. Ultraviolet- and sunlight-induced lipid peroxidation in liposomal membrane

    International Nuclear Information System (INIS)

    Mandal, T.K.; Chatterjee, S.N.

    1980-01-01

    Ultraviolet radiation and sunlight caused lipid peroxidation in the liposomal membrane (as detected by measurement of the oxidation index, A 233 /A 215 , and the amount of malondialdehyde formed) and made the membrane leaky (as revealed by the release of the trapped chromate anions). The oxidation index and the formation of malondialdehyde increased linearly with increasing dose of radiation and depended significantly on the dose rate. The effects were smaller in liposomes derived from Vibrio cholerae phospholipid than in those derived from egg lecithin. The effects of the radiation dose and dose rate on hemolysis and peroxidation (MDA formation) of the erythrocyte membrane followed a similar pattern. A direct correlation between the percentage leakage of chromate (Y) and the oxidation index (X) of the liposomal system was obtained as Y = 236.5 x X

  8. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla.

    Science.gov (United States)

    Chen, Jiana; Huang, Min; Cao, Fangbo; Pardha-Saradhi, P; Zou, Yingbin

    2017-01-01

    A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata.

  9. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla.

    Directory of Open Access Journals (Sweden)

    Jiana Chen

    Full Text Available A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata.

  10. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendanha, S.A.; Anjos, J.L.V.; Silva, A.H.M.; Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2012-04-05

    Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H{sub 2}O{sub 2}). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H{sub 2}O{sub 2} (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H{sub 2}O{sub 2} (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.

  11. Effect of tea catechins on the structure of lipid membrane and beta-ray induced lipid peroxidation

    International Nuclear Information System (INIS)

    Kubota, M.; Haga, H.; Takeuchi, Y.; Okuno, K.; Yoshioka, H.; Yoshioka, H.

    2007-01-01

    Inhibiting effect of four tea catechins, (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), on the lipid peroxidation induced by β-ray in tritiated water was examined using a spin probe method. 16-Doxylstearic acid (16NS) was incorporated into the liposome prepared from egg yolk phosphatidylcholine and the rate of the decrease of ESR intensity of 16NS was used as a measure of the inhibiting effect. In the low concentration region below 10 -5 M, catechins showed their inhibitions on the lipid peroxidation according to the order of ECG>EGCG>EC>EGC. This result was explained by a model that the initiator of the peroxidation is the hydroxyl radical (·OH) and the catechins adsorbed on the lipid membrane surface acting as scavengers of ·OH. In the high concentration range, however, the effect was diverse and it decreased with the increase of it in the case of EGCG. EGCG in this range was considered to enter into the interior of the membrane and break the structure, which causes the decrease of 16NS. Observation with transmission electron microscope (TEM) revealed that the size of the liposome became larger with the increasing concentration of EGCG and finally it was broken into fragments, showing that EGCG broadened the area of the liposome as expected from the result of ESR. (author)

  12. [The effects of electromagnetic pulse on fluidity and lipid peroxidation of mitochondrial membrane].

    Science.gov (United States)

    Wang, Changzhen; Cong, Jianbo; Xian, Hong; Cao, Xiaozhe; Sun, Cunpu; Wu, Ke

    2002-08-01

    To study the effects of intense electromagnetic pulse(EMP) on the biological effects of mitochondrial membrane. Rat liver mitochondrial suspension was exposed to EMP at 60 kV/m level. The changes of membrane lipid fluidity and membrane protein mobility were detected by ESR and spin label technique. Malondialdehyde(MDA) was detected by spectrophotometer. The mobility of membrane protein decreased significantly(P < 0.05). Correlation time (tau c) of control group was (0.501 +/- 0.077) x 10(-9)s, and tau c of EMP group was (0.594 +/- 0.049) x 10(-9)s, indicating that the mobility of protein was restricted. The fluidity of mitochondrial membrane increased significantly(P < 0.05) at the same time. Order parameter(S) of mitochondrial membrane lipid in control group was 0.63 +/- 0.01, while S of EMP group was 0.61 +/- 0.01(P < 0.05). MDA decreased significantly. The mobility and lipid peroxidation of mitochondrial membrane may be disturbed after EMP exposure.

  13. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  14. Soluble products of Escherichia coli induce mitochondrial dysfunction-related sperm membrane lipid peroxidation which is prevented by lactobacilli.

    Directory of Open Access Journals (Sweden)

    Arcangelo Barbonetti

    Full Text Available Unidentified soluble factors secreted by E. coli, a frequently isolated microorganism in genitourinary infections, have been reported to inhibit mitochondrial membrane potential (ΔΨm, motility and vitality of human spermatozoa. Here we explore the mechanisms involved in the adverse impact of E. coli on sperm motility, focusing mainly on sperm mitochondrial function and possible membrane damage induced by mitochondrial-generated reactive oxygen species (ROS. Furthermore, as lactobacilli, which dominate the vaginal ecosystem of healthy women, have been shown to exert anti-oxidant protective effects on spermatozoa, we also evaluated whether soluble products from these microorganisms could protect spermatozoa against the effects of E. coli. We assessed motility (by computer-aided semen analysis, ΔΨm (with JC-1 dye by flow cytometry, mitochondrial ROS generation (with MitoSOX red dye by flow cytometry and membrane lipid-peroxidation (with the fluorophore BODIPY C11 by flow cytometry of sperm suspensions exposed to E. coli in the presence and in the absence of a combination of 3 selected strains of lactobacilli (L. brevis, L. salivarius, L. plantarum. A Transwell system was used to avoid direct contact between spermatozoa and microorganisms. Soluble products of E. coli induced ΔΨm loss, mitochondrial generation of ROS and membrane lipid-peroxidation, resulting in motility loss. Soluble factors of lactobacilli prevented membrane lipid-peroxidation of E. coli-exposed spermatozoa, thus preserving their motility. In conclusion, sperm motility loss by soluble products of E. coli reflects a mitochondrial dysfunction-related membrane lipid-peroxidation. Lactobacilli could protect spermatozoa in the presence of vaginal disorders, by preventing ROS-induced membrane damage.

  15. Near-ultraviolet radiation-induced lipid peroxidation and membrane effects in Escherichia coli and human skin fibroblasts

    International Nuclear Information System (INIS)

    Chamberlain, J.

    1987-01-01

    The first part of this thesis examines the response of an unsaturated fatty acid auxotroph, Escherichia coli K1060 to broad-band near-UV radiation. Sensitivity, lipid peroxidation and leakage of rubidium from irradiated cells were found to increase with increasing unsaturation of membrane fatty acids. The involvement of singlet oxygen was implicated by an increase in sensitivity, lipid peroxidation and leakage of rubidium following irradiation in deuterium oxide. Some factors influencing survival following irradiation were investigated, where lower growth rates were shown to enhance survival. In the second part, the study was extended to human fibroblasts where a normal human skin fibroblast strain, GM730 and a strain derived from an actinic reticuloid patient, AR6LO, are compared. Lipid peroxidation was measured in both cell lines following broad-band near-UV irradiation. Membrane activity, as assessed by the pinocytic uptake of 14 C-sucrose and its subsequent release from the cell, was measured. Near-UV irradiation was found to increase such activity in both strains. Vitamin E and Trolox-C were found to decrease this response in AR6LO but not GM730 cells. The final part consists of preliminary investigations into the near-UV induced peroxidation of fatty acids and liposomes, and the subsequent increase in the level of hydroperoxides in the hours following irradiation. (author)

  16. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  17. Microsomal lipid peroxidation as a mechanism of cellular damage. [Dissertation

    Energy Technology Data Exchange (ETDEWEB)

    Kornbrust, D.J.

    1979-01-01

    The NADPH/iron-dependent peroxidation of lipids in rat liver microsomes was found to be dependent on the presence of free ferrous ion and maintains iron in the reduced Fe/sup 2 +/ state. Chelation of iron by EDTA inhibited peroxidation. Addition of iron, after preincubation of microsomes in the absence of iron, did not enhance the rate of peroxidation suggesting that iron acts by initiating peroxidative decomposition of membrane lipids rather than by catalyzing the breakdown of pre-formed hydroperoxides. Liposomes also underwent peroxidation in the presence of ferrous iron at a rate comparable to intact microsomes and was stimulated by ascorbate. Carbon tetrachloride initiated lipid peroxidation in the absence of free metal ions. Rates of in vitro lipid peroxidation of microsomes and homogenates were found to vary widely between different tissues and species. The effects of paraquat on lipid peroxidation was also studied. (DC)

  18. Linoleic Acid-Induced Ultra-Weak Photon Emission from Chlamydomonas reinhardtii as a Tool for Monitoring of Lipid Peroxidation in the Cell Membranes

    Science.gov (United States)

    Prasad, Ankush; Pospíšil, Pavel

    2011-01-01

    Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the

  19. Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphide

    International Nuclear Information System (INIS)

    Losev, Yu.P.; Amadyan, M.G.; Oganesyan, N.M.; Fedulov, A.S.; Abramyan, A.K.; Shagoyan, A.G.; Khachkavanktsyan, A.S.

    1999-01-01

    Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphade has been studied. Rats were exposed to X-rays in doses 4,8 and 5,25 Gy. Lipid peroxidation was analysed in blood plasma, membranes of erythrocytes and homogenates of liver and spleen tissues of rats. Polydisulphide of gallic acid was used as inhibitor of lipid peroxidation because of its effective antioxidant properties as have been reported previously. It has been demonstrated that gallic disulphide exhibited high inhibition efficiency in conditions of radiation-induced lipid peroxidation due to the effect of intra-molecular synergism

  20. Linoleic acid-induced ultra-weak photon emission from Chlamydomonas reinhardtii as a tool for monitoring of lipid peroxidation in the cell membranes.

    Directory of Open Access Journals (Sweden)

    Ankush Prasad

    Full Text Available Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non

  1. Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth

    International Nuclear Information System (INIS)

    Yan Shengrong; Yang Chunhe; Zhang Yuequn

    2009-01-01

    [Objective] The aim was to provide strategies for development of rare earth and control of environmental pollution. [Method] Responses of membrane lipid peroxidation and endogenous hormones of soybean seedlings to UV-B radiation and rare earth were studied through hydroponics in laboratory. [Result] The results showed that under irradiation of UV-B(T1-0.15 W/m2 and T2-0.45 W/m2), chlorophyll and indole-3-acetic acid(IAA) contents firstly decreased during the stress phase (1-5d) and then increased during the restoration phase (6-9d) while contents of malonadialdehyde(MDA) and abscisic acid(ABA) gradually increased during the imposition of UV-B radiation (1-5d) and subsequently decreased during recovery from UV-B stress (6-9d) . With adding of La (Ⅲ) with the concentration of 20mg•L-1, the decline/rise trend of chlorophyll, IAA, MDA and ABA contents was slowed down during the stress period while the rise/decline speed was accelerated during the recovery period. [Conclusion] It suggests that the regulation of La (Ⅲ) on membrane lipid peroxidation and endogenous hormones could increase chlorophyll and IAA contents, improve the metabolism of reactive oxygen species (ROS), inhibit membrane lipid peroxidation, decrease the accumulation amount of ABA and alleviate injury of UV-B radiation to soybean seedlings. Further, the protective potential of La (Ⅲ) was better under low UV-B radiation than under high one

  2. Radiation induced peroxidation in model lipid systems

    International Nuclear Information System (INIS)

    Dahlan, K.Z.B.H.M.

    1981-08-01

    In the studies of radiation induced lipid peroxidation, lecithin-liposomes and aqueous micellar solutions of sodium linoleate (or linoleic acid) have been used as models of lipid membrane systems. The liposomes and aqueous linoleate micelles were irradiated in the presence of O 2 and N 2 O/O 2 (80/20 v/v). The peroxidation was initiated using gamma radiation from 60 Co radiation source and was monitored by measuring the increase in absorbance of conjugated diene at 232 nm and by the thiobarbituric acid (TBA) test. The oxidation products were also identified by GLC and GLC-MS analysis. (author)

  3. Changes in mitochondrial function by lipid peroxidation and their inhibition by biscoclaurin alkaloid

    International Nuclear Information System (INIS)

    Aono, K.; Shiraishi, N.; Arita, T.; Inouye, B.; Nakazawa, T.; Utsumi, K.

    1981-01-01

    During in vitro investigation of changes in mitochondrial function accompanying lipid peroxidation, it was found that cepharanthine, a biscoclaurin alkaloid, protects against such change. Results obtained were as follows: (1) Fe2+ induces lipid peroxidation of isolated mitochondria, resulting in diminished oxidative phosphorylation. (2) This diminishment largely depends on deterioration of ion compartmentation of the membrane and an increase in latent ATPase activity. (3) The Fe2+-induced deterioration in ion compartmentation is inhibited by cepharanthine. (4) Cepharanthine inhibits the mitochondrial lipid peroxidation induced by Fe2+. (5) Cepharanthine inhibits the lipid peroxidation of soybean lecithin liposomes by 60Co-irradiation

  4. Differential sensitivity of cellular membranes to peroxidative processes

    International Nuclear Information System (INIS)

    Huijbers, W.A.R.

    1976-01-01

    A description is given of a morphological and cytochemical investigation into the effects of both vitamin E deficiency and X-irradiation on the ultrastructure and enzyme activities of several cellular membranes, particularly the plasma membrane and the membranes of lysosomes, mitochondria and endoplasmic reticulum. In the vitamin E deficient situation, the radicals and peroxides only originate near mitochondria and endoplasmic reticulum, so that these membrane systems suffer from changes. After irradiation of the liver of both the control duckling and the deficient duckling, radicals originate in all parts of the cell. Due to their high content of lipids and cholesterols, peroxides will occur mainly in plasma membranes and lysosomal membranes. Moreover, in these membranes there is hardly any protection by vitamin E

  5. Lipid peroxidation and antioxidant enzymes in male infertility.

    Directory of Open Access Journals (Sweden)

    Dandekar S

    2002-07-01

    Full Text Available BACKGROUND AND AIM: Mammalian spermatozoa are rich in polyunsaturated fatty acids and are very susceptible to attack by reactive oxygen species (ROS and membrane lipid peroxide ion. Normally a balance is maintained between the amount of ROS produced and that scavenged. Cellular damage arises when this equilibrium is disturbed. A shift in the levels of ROS towards pro-oxidants in semen and vaginal secretions can induce an oxidative stress on spermatozoa. The aim was to study lipid peroxidation and antioxidant enzymes such as catalase, glutathione peroxidase and superoxide dismutase (SOD and to correlate the same, with the ′water test′, in male infertility. SETTINGS: Experimental study. SUBJECTS AND METHODS: Ejaculates from a total of 83 infertile and fertile healthy individuals were obtained. Lipid peroxidation and antioxidant enzyme levels were studied and correlated with water test. RESULTS: The results indicate that (i the antioxidant enzyme catalase showed no significant changes in the various pathological samples, (ii antioxidant enzymes SOD and glutathione peroxidase correlate positively with asthenozoospermic samples and (iii the degree of lipid peroxidation also correlates positively with the poorly swollen sperm tails. The increase in SOD and glutathione peroxidase values, in the pathological cases represents an attempt made to overcome the reactive oxygen species. CONCLUSION: Water test could be used as a preliminary marker test for sperm tail damage by reactive oxygen species, since it correlates very well with lipid peroxidation and antioxidant enzymes.

  6. Promotion of radiation peroxidation in models of lipid membranes by caesium and rubidium counter-ions: micellar linolenic acids

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, J A; Kremers, W [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1978-11-01

    Caesium and rubidium counter-ions increase peroxidation in irradiated micelles of linoleic (18 : 2) and linolenic (18 :3) acids. The effect was specific to Cs/sup +/ and Rb/sup +/ in the alkali metal series. The effect was independent of the salts used (Cl/sup -/, NO/sub 3//sup -/, Cl0/sub 4//sup -/) and, therefore, independent of the chaotropic nature, and reactivity with hydroxyl radicals of Cl/sup -/, NO/sub 3//sup -/ and ClO/sub 4//sup -/. The promotion of peroxidation by Cs/sup +/ and Rb/sup +/ is interpreted in terms of their effect on fatty acid micelle structure. The dependence of radiation peroxidation on lipid structure in the micelles may be significant for studies of peroxidation in highly structured cell membranes.

  7. The effects of beta-carotene and vitamin E on erythrocytes lipid peroxidation in beta-thalassemia patients

    Directory of Open Access Journals (Sweden)

    Soleiman Mahjoub

    2007-12-01

    Full Text Available BACKGROUND: Thalassemia is the most common hereditary disease in the world. Thalassemic erythrocytes are exposed to higher oxidative stress and lipid peroxidation. The aim of this study was to investigate the effects of beta-carotene and vitamin E on erythrocytes lipid peroxidation in beta-thalassemia patients.
    METHODS: A prospective double-blind, placebo-controlled study of the effect of beta-carotene and vitamin E on lipid peroxidation in erythrocytes membranes was performed on 120 beta-thalassemia major patients in four groups. The patients were supplemented for 4 weeks as follows: group 1 with beta-carotene (13 mg/day, group 2 with vitamin E (550 mg/day, group 3 with beta-carotene plus vitamin E and group 4 with placebo. We prepared all capsules for 4 roups in the same shape and color. Measurements of serum beta-carotene and vitamin E were performed by high performance
    liquid chromatography. After preparation of ghost cells from blood specimens, malondialdehyde (MDA was determined as index of lipid peroxidation in erythrocytes membranes before and after treatment. RESULTS: The levels of serum beta-carotene and vitamin E were significantly lower and MDA concentrations in erythrocytes membranes were significantly higher in beta-thalassemia patients compared to controls (P<0.001. In groups that treated with vitamin supplements for 4-weeks, lipid peroxidation rates were significantly reduced after treatment (P<0.001, but in placebo group there was not significant difference (P>0.05.
    CONCLUSIONS: Our findings provide evidence that an oral treatment with beta-carotene and vitamin E can significantly reduce lipid peroxidation of erythrocytes membranes and could be useful in management of beta-thalassemia major patients. KEYWORDS: Beta-thalassemia major, beta-carotene, vitamin E, malondialdehyde, lipid peroxidation.

  8. Effects of ionizing radiation on the peroxide content of a pure polyunsaturated lipid dispersion and of lipids and membranes derived from Acholeplasma laidlawii

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.C.; Cramp, W.A. (Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit); Chapman, D. (Royal Free Hospital, London (UK))

    1984-01-01

    Dispersions of a pure unsaturated phospholipid, dilinoleoylphosphatidyl choline, formed conjugated diene hydroperoxides when irradiated in air with 7 MeV electrons (150 Gy and 300 Gy). Peroxide formation was optimized when the dispersions were irradiated in air at 37/sup 0/C at a dose rate of 5 Gy/min. No significant loss of linoleic acid from the irradiated phospholipid dispersions was observed after doses of 150 or 300 Gy. Small amounts of thiobarbituric acid-reactive material were formed in irradiated unsaturated phospholipid dispersions. However, lipids or membranes isolated from 48 hour cultures of Acholeplasma laidlawii grown in media supplemented with either linoleic or linolenic acid did not appear to be peroxidized by irradiation under the same conditions.

  9. Oxalomalate, a competitive inhibitor of NADP+ -dependent isocitrate dehydrogenase, regulates lipid peroxidation-mediated apoptosis in U937 cells.

    Science.gov (United States)

    Yang, Eun Sun; Yang, Joon-Hyuck; Park, Ji Eun; Park, Jeen-Woo

    2005-01-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+ -dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.

  10. Potential for free radical-induced lipid peroxidation as a cause of endothelial cell injury in Rocky Mountain spotted fever.

    Science.gov (United States)

    Silverman, D J; Santucci, L A

    1988-01-01

    Cells infected by Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, display unusual intracellular morphological changes characterized by dilatation of the membranes of the endoplasmic reticulum and outer nuclear envelope. These changes are consistent with those that might be expected to occur following peroxidation of membrane lipids initiated by oxygen radical species, such as the hydroxyl radical or a variety of organic radicals. Using a fluorescent probe, we have found significantly increased levels of peroxides in human endothelial cells infected by R. rickettsii. Studies with desferrioxamine, an iron chelator effective in preventing formation of the hydroxyl radical from hydrogen peroxide and the superoxide free radical, reduced peroxide levels in infected cells to those found in uninfected cells. This observation suggests that the increased peroxides in infected cells may be lipid peroxides, degradation products of free radical attack on polyenoic fatty acids. The potential for lipid peroxidation as an important mechanism in endothelial cell injury caused by R. rickettsii is discussed. Images PMID:3141280

  11. Ameliorating effects of genestein: Study on mice liver glutathione and lipid peroxidation after irradiation

    International Nuclear Information System (INIS)

    Gaur, A.

    2010-01-01

    Genistein is a soya isoflavone, which is found naturally in legumes. such as soybeans and chickpeas. Radiation-induced free radicals in turn impair the antioxidative defense mechanism, leading to an increased membrane lipid peroxidation that results in damage of the membrane bound enzyme and may lead to damage or death of cell. Hence, the lipid peroxidation is a good biomarker of damage occurs due to radiation and the inhibition of lipid peroxidation is suggestive of radioprotective action. Glutathione has been shown to protect cells against oxidative stress by reacting with peroxides and hydroperoxides and determines the inherent radiosensitivity of cells. Materials and Methods: For experimentation, healthy Swiss Albino male mice of 6-8 weeks old were selected from inbred colony. Genistein was dissolved in dimethyl sulfoxide and then prepared different concentration solutions so that the volume administered intraperitoneally was 0.5 ml. Lipid peroxidation was estimated by the method of Ohkawa and GSH was estimated by the method of Moron. Results: The intraperitoneal administration of optimum dose (200 mg/kg body weight) of Genistein before 24 hours and 15 minutes of irradiation (8 Gy at a dose rate of 1.02 Gy/min)reverted the increase in lipid peroxidation (by 18.01% ± 3.05) and decrease of Glutathione (by 62.05%±21.58) caused by irradiation in liver of Swiss albino mice. Statistically analyzed survival data produced a dose reduction factor = 1.24. Conclusion: The results indicate that Genistein against radiation effect may pave way to the formulation of medicine in radiotherapy for normal tissue and possible against radiomimetic drug induced toxicity.

  12. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Weerachat Sompong

    Full Text Available Ferulic acid (FA is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM significantly reduced the levels of glycated hemoglobin (HbA1c whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes.

  13. Sperm DNA damage in relation to lipid peroxidation following freezing-thawing of boar semen

    OpenAIRE

    Fraser, L.; Strzeżek, J.; Wasilewska, K.; Pareek, C.S.

    2017-01-01

    This study investigated the relationships between lipid peroxidation (LPO) and sperm DNA damage following freezing-thawing of boar semen in different extenders. The comet assay was used to measure the extent of sperm DNA damage in a cryoprotectant-free extender or in cryoprotectant-based extenders after single and repeated freezing and thawing. As well as an analysis of sperm motion characteristics, mitochondrial function, membrane integrity, and lipid peroxidation (LPO) were assessed simulta...

  14. Ionizing radiation and lipid peroxidation in human body

    International Nuclear Information System (INIS)

    Giubileo, Gianfranco

    1997-07-01

    Lipids are organic compounds constituting the living cells. Lipid molecules can be disassembled through peroxidative pathways and hydrocarbons can be bred as end-product of lipid peroxidation in vivo. Lipid peroxidation can be started by an indirect effect of ionizing radiation. So a radioinduced cellular damage in human body can be detected by monitoring the production of specific hydrocarbons

  15. Glutathione delays varies as-tocopherol oxidation and subsequent lipid peroxidation in rat liver microsomes

    International Nuclear Information System (INIS)

    Robey, S.; Mavis, R.

    1986-01-01

    A method has been developed for in vitro trace radiolabeling of rat liver microsomes with 3 H-α-tocopherol (αT*) which allows virtually complete oxidation of the αT* under oxidizing conditions. The supernatant of a 16,000 xg centrifugation of homogenized rat liver, containing the cytosolic rat liver vitamin E (VE) transfer protein, was incubated with an ethanolic solution of αT* for 10 minutes at 37 0 C. Labeled microsomes were collected in the washed 100,000 xg pellet. Microsomes were then incubated with 30 μM Fe 2+ in an NADPH-generating system, and both production of malondialdehyde (MDA) (a product of lipid peroxidation) and oxidation of αT* were monitored over a time course in the presence and absence of glutathione (GSH). The results indicate virtually complete oxidation of αT* precedes significant membrane lipid peroxidation, and that addition of 5 mM GSH delays both αT* oxidation and subsequent MDA production. This suggests that the previously observed VE-dependent heat labile inhibition of microsomal lipid peroxidation by GSH involves maintaining membrane levels of α-tocopherol

  16. Lipid Peroxidation: Pathophysiology and Pharmacological Implications in the Eye

    Directory of Open Access Journals (Sweden)

    Ya Fatou eNjie-Mbye

    2013-12-01

    Full Text Available Oxygen-derived free radicals such as hydroxyl and hydroperoxyl species have been shown to oxidize phospholipids and other membrane lipid components leading to lipid peroxidation. In the eye, lipid peroxidation has been reported to play an important role in degenerative ocular diseases (age-related macular degeneration, cataract, glaucoma, diabetic retinopathy. Indeed, ocular tissues are prone to damage from reactive oxygen species due to stress from constant exposure of the eye to sunlight, atmospheric oxygen and environmental chemicals. Furthermore, free radical catalyzed peroxidation of long chain polyunsaturated acids (LCPUFAs such as arachidonic acid and docosahexaenoic acid leads to generation of LCPUFA metabolites including isoprostanes and neuroprostanes that may further exert pharmacological/toxicological actions in ocular tissues. Evidence from literature supports the presence of endogenous defense mechanisms against reactive oxygen species in the eye, thereby presenting new avenues for the prevention and treatment of ocular degeneration. Hydrogen peroxide (H2O2 and synthetic peroxides can exert pharmacological and toxicological effects on tissues of the anterior uvea of several mammalian species. There is evidence suggesting that the retina, especially retinal ganglion cells can exhibit unique characteristics of antioxidant defense mechanisms. In the posterior segment of the eye, H2O2 and synthetic peroxides produce an inhibitory action on glutamate release (using [3H]-D-aspartate as a marker, in vitro and on the endogenous glutamate and glycine concentrations in vivo. In addition to peroxides, isoprostanes can elicit both excitatory and inhibitory effects on norepinephrine (NE release from sympathetic nerves in isolated mammalian iris ciliary bodies. Whereas isoprostanes attenuate dopamine release from mammalian neural retina, in vitro, these novel arachidonic acid metabolites exhibit a biphasic regulatory effect on glutamate release

  17. Effect of Terminalia chebula fruit extract on lipid peroxidation and ...

    African Journals Online (AJOL)

    SERVER

    2007-08-20

    Aug 20, 2007 ... products mainly edible vegetables and spices, have a key role in chemopreventers ... protein; dunit/minute/mg protein ; eµg/mg protein; fn moles of H2O2 ... induce peroxidation of cell membrane lipids (Bhattacharya et al., 1999). .... catalase – like activities in seminal plasma and spermatozoa. Int. J. Androl.

  18. Antioxidant effect of bisphosphonates and simvastatin on chondrocyte lipid peroxidation

    International Nuclear Information System (INIS)

    Dombrecht, E.J.; De Tollenaere, C.B.; Aerts, K.; Cos, P.; Schuerwegh, A.J.; Bridts, C.H.; Van Offel, J.F.; Ebo, D.G.; Stevens, W.J.; De Clerck, L.S.

    2006-01-01

    The objective of this study was to evaluate the effect of bisphosphonates (BPs) and simvastatin on chondrocyte lipid peroxidation. For this purpose, a flow cytometrical method using C11-BODIPY 581/591 was developed to detect hydroperoxide-induced lipid peroxidation in chondrocytes. Tertiary butylhydroperoxide (t-BHP) induced a time and concentration dependent increase in chondrocyte lipid peroxidation. Addition of a Fe 2+ /EDTA complex to t-BHP or hydrogen peroxide (H 2 O 2 ) clearly enhanced lipid peroxidation. The lipophilic simvastatin demonstrated a small inhibition in the chondrocyte lipid peroxidation. None of three tested BPs (clodronate, pamidronate, and risedronate) had an effect on chondrocyte lipid peroxidation induced by t-BHP. However, when Fe 2+ /EDTA complex was added to t-BHP or H 2 O 2 , BPs inhibited the lipid peroxidation process varying from 25% to 58%. This study demonstrates that BPs have antioxidant properties as iron chelators, thereby inhibiting the chondrocyte lipid peroxidation. These findings add evidence to the therapeutic potential of bisphosphonates and statins in rheumatoid arthritis

  19. A chemiluminescent method for determination of lipid peroxidation

    International Nuclear Information System (INIS)

    Liang Xiaofeng; Hu Tianxi; Fan Xiaobing

    2003-01-01

    We established a chemiluminescent system for determination of lipid peroxidation and screening anti-oxidants. The lipid containing unsaturated fatly acids was injected into a galls tube. Luminol solution and the deionized water were added into it too. The glass tube was put into a preincubation box to incubate it for 0.5 h at 37 degree C. AAPH solution was injected into the tube for immediate measurement in a biochemiluminometer at 38-39 degree C. The pulses /6s(CP6s) were determined with T-2 program. Chemiluminescent dynamic and lipid peroxidation changes were observed continuously. Once the CL intensity of lipid peroxidation got peak, the antioxidant which has different concentration was added immediately in situ. A certain CL intensity (CP6s) was chosen as evaluation index to compare the activity of antioxidants. A luminol chemiluminescent system for determination of lipid peroxidation has been made. It was found that Vit. C, teapolyphenol, and glutathione have effects on scavenging lipid free radicals. The new method is quick, sensitive, and simple for determination of lipid peroxidation and screening antioxidants

  20. Phototransformation of membrane lipids and its role in biomembrane function change under the effect of UV-radiation

    International Nuclear Information System (INIS)

    Roshchupkin, D.I.; Anosov, A.K.; Murina, M.A.; Lordkipanidze, A.T.

    1988-01-01

    The papers devoted to the investigation of photochemical transformations of lipid under the effect of UV radiation of biological membranes are reviewed. The mechanism of peroxide photooxidation of mebrane lipid is considered. Data on the effect of antioxidants and the structure state of membranes on the process of peroxide photooxidation of lipid are presented. The problem on the role of this process under the effect of UV-radiation on blood and skin of mammals is discussed. 48 refs.; 4 refs

  1. Study on mechanism of decreased lipid peroxide by low dose radiation

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Okazoe, Yoko; Akimaru, Kunihiro; Sato, E.F.; Utsumi, Kozo.

    1991-01-01

    We examined the effect of SOD on lipid peroxidation in biomembrane from V.E-deficient rats, in order to study the mechanism of increased SOD activities and decreased lipid peroxide by low dose irradiation. The following results were obtained. i. Active oxygen (O 2 - ) strongly enhances lipid peroxidations in biomembrane with the Fe 3+ as catalyst. ii. SOD evidently inhibits lipid peroxidations under above conditions. iii. We suggested that the effect of SOD enhanced by low dose irradiation results in inhibition of lipid peroxidation. (author)

  2. Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination.

    Directory of Open Access Journals (Sweden)

    Tiffanie Chan

    Full Text Available Environmental stresses lower the efficiency of photosynthesis and sometimes cause irreversible damage to plant functions. When spinach thylakoids and Photosystem II membranes were illuminated with excessive visible light (100-1,000 µmol photons m(-1 s(-1 for 10 min at either 20°C or 30°C, the optimum quantum yield of Photosystem II decreased as the light intensity and temperature increased. Reactive oxygen species and endogenous cationic radicals produced through a photochemical reaction at and/or near the reaction center have been implicated in the damage to the D1 protein. Here we present evidence that lipid peroxidation induced by the illumination is involved in the damage to the D1 protein and the subunits of the light-harvesting complex of Photosystem II. This is reasoned from the results that considerable lipid peroxidation occurred in the thylakoids in the light, and that lipoxygenase externally added in the dark induced inhibition of Photosystem II activity in the thylakoids, production of singlet oxygen, which was monitored by electron paramagnetic resonance spin trapping, and damage to the D1 protein, in parallel with lipid peroxidation. Modification of the subunits of the light-harvesting complex of Photosystem II by malondialdehyde as well as oxidation of the subunits was also observed. We suggest that mainly singlet oxygen formed through lipid peroxidation under light stress participates in damaging the Photosystem II subunits.

  3. Studies on the lipid peroxidation in mitochondria of x-ray whole-body irradiated rat liver, 2

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroshi

    1976-01-01

    The results of investigation made on the mitochondria of rat liver on the 3rd day after irradiation of 650 R are as follows: After lipid peroxidation, the mitochondria showed a decrease of polyenoic acids (C-20:4, C-22:6) suggesting that polyenoic acids are the substrate of the reaction. Unsaturated fatty acids were decreased due to the decrement of C-18:1 and C-18:2, and polyenoic acid was relatively increased. These changes were transient, reaching a maximum on the 3rd day after irradiation. The rate of peroxidation in total lipids extracted form normal mitochondria was the same as that from whole-body irradiated mitochondria. There was no lag in the induction period in either reaction. Marked peroxidation of the total lipid was seen in the phospholipid fraction and slight peroxidation in the simple lipid fractions. No significant effect of whole-body irradiation on the peroxidation activities of the phospholipid was observed. With thin-layer chromatography, peroxidation of subfractionated phospholipid showed marked activity in the lecithin and aminophosphatide fractions containing large amounts of C-20:4 and C-22.6. Recovery of activity in the subfractions was greater than that in the total phospholipid. The effect of whole-body irradiation appeared to be significant in these subfractions. However no relationships could be seen between the activities peroxidation and the fatty acid composition of the subfractions. The ratio of phospholipid to total lipid increased in whole-body irradiated samples. From these findings there was a discussion of whether or not Fe ++ -induced lipid peroxidation at the mitochondrial level is due to change in the composition of fatty acid and the association of lipid in the membrane. (Evans, J.)

  4. Dose-rate and oxygen effects in models of lipid membranes: linoleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, J A; Kremers, W; Gaboury, B [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1977-03-01

    Cellular membranes have been suggested as possible loci for the development of the oxygen effect in radiobiology. Unsaturated lipids from membranes are subject to very efficient radiation-induced peroxidation, and the deleterious effects generally associated with lipid autoxidation could be initiated by ionizing radiation. Oxidative damage in lipids was characterized not only by high yields but also by a profound dose-rate effect. At dose-rates of x irradiation below 100 rad/min, a very sharp rise occurred in oxidative damage. This damage has been quantified spectrophotometrically in terms of diene conjugation (O.D. 234 mm) and chromatographically in terms of specific 9- and 13-hydroperoxide formation in linoleic acid micelles. Radical scavenging experiments indicated that hydroxyl radical attack initiated the oxidative damage. Dimethyl sulphoxide is exceptional in that it did not protect, but sensitized, linoleic acid to radiation-induced peroxidation. The yields of hydroperoxides were substantial (G = 10 to 40) and could be related to biological changes known to be effected by autoxidizing lipids.

  5. The results of the lipids peroxidation products on the DNA bases as biological markers of the oxidative stress

    International Nuclear Information System (INIS)

    Falletti, O.

    2007-10-01

    Different ways of DNA damages have been studied, among these ones the direct way of DNA damages formation by the reactive oxygen species (R.O.S.). This way leads to the formation of oxidative DNA damages. In 1990, works have suggested an indirect way of DNA damages formation, the lipids peroxidation. Instead of oxidizing directly DNA, the R.O.S. oxide the lipids present in the cells and their membranes; The products coming from this degradation are able to provoke DNA damages. This way has not been studied very much. The work of this thesis is axed on this DNA theme and lipids peroxidation. In the first chapter, we begin by presenting DNA and the direct way of oxidative damages formation by the R.O.S.Then, we speak about the cell lipids suffering oxidation reactions and the different ways of lipids oxidation. Then, we present how the lipid peroxidation is a source of damages for DNA. (N.C.)

  6. Dual role of beta-carotene in combination with cigarette smoke aqueous extract on the formation of mutagenic lipid peroxidation products in lung membranes: dependence on pO2.

    Science.gov (United States)

    Palozza, P; Serini, S; Trombino, S; Lauriola, L; Ranelletti, F O; Calviello, G

    2006-12-01

    Results from some intervention trials indicated that supplemental beta-carotene enhanced lung cancer incidence and mortality in chronic smokers. The aim of this study was to verify the hypothesis that high concentrations of the carotenoid, under the pO2 present in lung (100-150 mmHg), may exert deleterious effects through a prooxidant mechanism. To test this hypothesis, we examined the interactions of beta-carotene and cigarette smoke condensate (tar) on the formation of lipid peroxidation products in rat lung microsomal membranes enriched in vitro with varying beta-carotene concentrations (from 1 to 10 nmol/mg prot) and then incubated with tar (6-25 microg/ml) under different pO2. As markers of lipid peroxidation, we evaluated the levels of conjugated dienes and malondialdehyde, possessing mutagenic and pro-carcinogenic activity. The exposure of microsomal membranes to tar induced a dose-dependent enhancement of lipid peroxidation, which progressively increased as a function of pO2. Under a low pO2 (15 mmHg), beta-carotene acted clearly as an antioxidant, inhibiting tar-induced lipid peroxidation. However, the carotenoid progressively lost its antioxidant efficiency by increasing pO2 (50-100 mmHg) and acted as a prooxidant at pO2 ranging from 100 to 760 mmHg in a dose-dependent manner. Consistent with this finding, the addition of alpha-tocopherol (25 microM) prevented the prooxidant effects of the carotenoid. beta-Carotene auto-oxidation, measured as formation of 5,6-epoxy-beta,beta-carotene, was faster at high than at low pO2 and the carotenoid was more rapidly consumed in the presence of tar. These data point out that the carotenoid may enhance cigarette smoke-induced oxidative stress and exert potential deleterious effects at the pO2 normally present in lung tissue.

  7. A survey of chemicals inducing lipid peroxidation in biological systems.

    Science.gov (United States)

    Kappus, H

    1987-01-01

    A great number of drugs and chemicals are reviewed which have been shown to stimulate lipid peroxidation in any biological system. The underlying mechanisms, as far as known, are also dealt with. Lipid peroxidation induced by iron ions, organic hydroperoxides, halogenated hydrocarbons, redox cycling drugs, glutathione depleting chemicals, ethanol, heavy metals, ozone, nitrogen dioxide and a number of miscellaneous compounds, e.g. hydrazines, pesticides, antibiotics, are mentioned. It is shown that lipid peroxidation is stimulated by many of these compounds. However, quantitative estimates cannot be given yet and it is still impossible to judge the biological relevance of chemical-induced lipid peroxidation.

  8. Detection of lipid peroxidation in frozen-thawed avian spermatozoa using C(11)-BODIPY(581/591).

    Science.gov (United States)

    Partyka, Agnieszka; Lukaszewicz, Ewa; Niżański, Wojciech; Twardoń, Jan

    2011-06-01

    The aim of this study was to perform flow cytometric analysis of C11-BODIPY581/591 oxidation in fowl and geese sperm as a marker for membrane lipid peroxidation (LPO) and to establish if the cryopreservation process would make sperm membranes more susceptible to oxidative stress. The experiment was carried out on 10 meat type line Flex roosters and 10 White Koluda® geese. The semen was collected two times a week, by dorso-abdominal massage method and pooled from 10 individuals of each species. Fowl semen samples were subjected to cryopreservation using the "pellet" method and Dimethylacetamide (DMA) as a cryoprotectant. Geese semen samples were cryopreserved in plastic straws in a programmable freezing unit with Dimethyloformamide (DMF) as the cryoprotectant. A fluorescent lipid probe C11-BODIPY581/591 provided with two double bonds that are oxidized during their contact with ROS, was used for the purpose of the assessment of the LPO in freshly diluted semen samples and frozen-thawed semen samples. This probe changes its color according to its state (non peroxidized: red; peroxidized: green). Flow cytometric analysis was used to monitor these changes. The White Koluda® geese fresh semen had a higher level of LPO than the Flex fresh semen (P > 0.01). The cryopreservation of fowl semen significantly (P > 0.01) increased the percentage of live and dead spermatozoa with lipid peroxidation. In frozen-thawed semen of White Koluda® geese the percentage of live spermatozoa with LPO significantly decreased (P > 0.05) whereas significantly (P > 0.01) higher level of dead cells with LPO was observed. There were significant differences between the two studied species. After thawing, the percentage of live and dead spermatozoa with lipid peroxidation was higher in fowl semen than in geese semen (P > 0.01). In conclusion, our data clearly indicate the existence of species specific differences in susceptibility of spermatozoa to the oxidation of PUFAs in the cell membranes

  9. Iron release from ferritin and lipid peroxidation by radiolytically generated reducing radicals

    International Nuclear Information System (INIS)

    Reif, D.W.; Schubert, J.; Aust, S.D.

    1988-01-01

    Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137 Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes

  10. Effect of cadmium chloride on hepatic lipid peroxidation in mice

    DEFF Research Database (Denmark)

    Andersen, H R; Andersen, O

    1988-01-01

    Intraperitoneal administration of cadmium chloride to 8-12 weeks old CBA-mice enhanced hepatic lipid peroxidation. A positive correlation between cadmium chloride dose and level of peroxidation was observed in both male and female mice. A sex-related difference in mortality was not observed...... but at a dose of 25 mumol CdCl2/kg the level of hepatic lipid peroxidation was higher in male mice than in female mice. The hepatic lipid peroxidation was not increased above the control level in 3 weeks old mice, while 6 weeks old mice responded with increased peroxidation as did 8-12 weeks old mice....... The mortality after an acute toxic dose of cadmium chloride was the same in the three age groups. Pretreatment of mice with several low intraperitoneal doses of cadmium chloride alleviated cadmium induced mortality and lipid peroxidation. The results demonstrate both age dependency and a protective effect...

  11. Sex-related differences in NADPH-dependent lipid peroxidation induced by cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masao; Nagai, Yasushi

    1986-10-01

    Male and female rats were dosed once a day for 2 days with injections of 1.5 mg Cd/kg. Formation of thiobarbituric acid reactive substances (TBA-RS) was significantly increased in male rat liver but not in the females. NADPH-dependent lipid peroxidation in vitro in microsomes derived from untreated rat liver was greater in males than in females. Furthermore, addition of cadmium (Cd) to microsomes isolated from male rat liver produced a dose-dependent potentiation of NADPH-dependent lipid peroxidation from low concentrations of CD. In microsomes derived from females a significant increase in lipid peroxidation was observed only at high Cd concentrations. NADPH-dependent lipid peroxidation enhanced by Cd was greater in the males than in the females. These data suggest that a sex-related difference in the ability of Cd to induce lipid peroxidation in vivo in rat liver appears to be mediated partly through differences in hepatic microsomal NADPH-dependent lipid peroxidation.

  12. Protective effect of morin on lipid peroxidation and lipid profile in ammonium chloride-induced hyperammonemic rats

    Directory of Open Access Journals (Sweden)

    S Subash

    2012-04-01

    Full Text Available Objective: To evaluated the protective effects of morin (3, 5, 7, 2', 4'-pentahydroxyflavone on lipid peroxidation and lipid levels during ammonium chloride (AC induced hyperammonemia in experimental rats. Methods: Thirty two male albino Wistar rats, which are weighing between 180-200 g were used for the study. The hyperammonemia was induced by administration of 100 mg/kg body weight (i.p. thrice in a week of AC for 8 weeks. Rats were treated with morin at dose (30 mg/kg body weight via intragastric intubations together with AC. At the end of experimental duration, blood ammonia, plasma urea, lipid peroxidation indices [thiobarbituric acid reactive substances, hydroperoxides and lipid levels (cholesterol, triglycerides, free fatty acids and phospholipids] in serum and tissues were analysed to evaluate the antiperoxidative and antilipidemic effects of morin. Results: Ammonia, urea, lipid peroxidative indices and lipid levels were significantly increased in AC administered group. Morin treatment resulted in positive modulation of ammonia, urea, lipid peroxidative indices and lipid levels. Morin administration to normal rats did not exhibit any significant changes in any of the parameters studied. Conclusions: It can be concluded that the beneficial effect of morin on ammonia, urea, lipid peroxidative indices and lipid levels could be due to its antioxidant property.

  13. The effects of antioxidant vitamin supplementation on resistance exercise induced lipid peroxidation in trained and untrained participants

    Directory of Open Access Journals (Sweden)

    LaVoie Norm

    2004-06-01

    Full Text Available Abstract Background The theoretical benefits of using antioxidant vitamin supplements to quench oxygen free radicals appear large. High intensity aerobic-type exercise produces oxygen free radicals that can cause damage to lipid membranes (lipid peroxidation that may lead to many problems such as the inactivation of cell membrane enzymes, the progression of degenerative diseases (cardiovascular disease and cancer and lessening of the effectiveness of the immune system. The major function of vitamin E is to work as a chain-breaking antioxidant in a fat soluble environment. Little research has examined lipid peroxidation associated with high intensity resistance exercise or possible protective effects of antioxidant supplementation or the effects of training state. Results There were no significant group (trained vs untrained or treatment (vitamin E vs placebo effects found between the 4 groups assessed. There was only one significant difference found and that was in the main effect for time (F = 22.41, p Conclusions The Resistance Exercise Test caused a significant increase in malondialdehyde in all 4 groups at 6 hours post exercise. There was no evidence that vitamin E supplementation was effective in reducing oxidative damage in comparison to the placebo group. As well, there was no difference between the trained and untrained groups with respect to their impact on lipid peroxidation measures.

  14. Lipid peroxidation, occupational stress and aging in workers of a prehospital emergency service.

    Science.gov (United States)

    Casado, Angela; De Lucas, Nieves; López-Fernández, Encarnación; Sánchez, Alberto; Jimenez, José-Antonio

    2006-06-01

    Stressful conditions lead to formation of excessive free radicals, and lipid peroxidation is one of the major outcomes of free radical-mediated injury that directly damages membranes and generates a number of secondary products. To determine the levels of malondialdehyde, an end product of lipid peroxidation, according to demographic and occupational variables in workers of a prehospital emergency service and to analyse the relationship between malondialdehyde levels and burnout. One hundred and eleven healthy workers of a prehospital emergency service and eighty aged-matched healthy individuals of both sexes as a control group were surveyed. Malondialdehyde levels were measured by the Bull and Marnett method. To measure burnout, the Maslach Burnout Inventory was used. Professional category is associated with lipid peroxidation and burnout levels (Malondialdehyde levels were: physicians 338.10+/-14.47, nurses 329.17+/-12.62 and technicians 296.74+/-14.28; burnout levels were: physicians 41.29+/-3.59, nurses 37.38+/-6.05 and technicians 35.33+/-5.87). Working at night and in the evening increased malondialdehyde and burnout levels. Malondialdehyde levels increase with age. No significant variations with respect to sex were detected. Significant variations in malondialdehyde levels were detected between singles (303.13+/-12.74) and married people (344.43+/-13.43) but not with respect to divorcees (326.44+/-11.74). Significant differences were detected in erythrocyte malondialdehyde levels between smokers (341.37+/-17.09) and nonsmokers (302.21+/-12.38), but not for alcohol consumption. These findings suggest a positive correlation between malondialdehyde, a biomarker of lipid peroxidation and occupational stress, as estimated by elements of the Maslach Burnout Inventory, and oxidative stress.

  15. Plasma lipid peroxidation and progression of disability in multiple sclerosis

    NARCIS (Netherlands)

    Koch, M.; Mostert, J.; Arutjunyan, A. V.; Stepanov, M.; Teelken, A.; Heersema, D.; De Keyser, J.

    Oxidative stress has been implicated in the pathophysiology of multiple sclerosis (MS), but its relation to disease progression is uncertain. To evaluate the relationship of plasma lipid peroxidation with progression of disability in MS, we measured blood plasma fluorescent lipid peroxidation

  16. Effect of cadmium exposure on lipids, lipid peroxidation and metal distribution in rat brain regions

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, T; Ali, M M; Chandra, S V

    1985-01-01

    Effect of cadmium treatment on brain lipids, lipid peroxidation and distribution of Zn, Cu and Fe in rat brain regions was investigated. Adult male rats were exposed to Cd (100 ppm Cd as cadmium acetate) in drinking water for 30 days. The Cd exposure resulted in a significant decrease in the phospholipid content and an increase in the lipid peroxidation in the cerebral cortex and cerebellum. The total lipid content was not affected in any of the regions but a significant decrease in cholesterol and cerebroside contents were observed only in the cerebral cortex. A positive correlation between the increase in lipid peroxidation and decrease in the phospholipid content in the cerebral cortex and cerebellum was observed. A maximum accumulation of Cd occurred in the cerebral cortex. The Cu and Fe contents were significantly increased but the Zn levels decreased in the Cd-treated rats in all but the midbrain region. Results suggest that the increased peroxidation decomposition of structural lipids and the altered distribution of the essential trace metals in brain may play a significant role in Cd-induced neurotoxicity. 27 references, 2 tables.

  17. Effect of irradiation of lipid peroxidation in serum, 2

    International Nuclear Information System (INIS)

    Haisa, Yoshio

    1976-01-01

    With blood obtained from patients irradiated for cervical uterine cancer (consisting of 4 cases of Stage I, 5 cases of Stage II and 4 cases of Stage III), changes of blood picture, serum lipid weight and serum lipid peroxide accompanying irradiation were studied on 3 occasions, before, during and after the irradiation. The following results were obtained. Serum lipid and serum lipid peroxide were found to increase along with the advance of uterine cancer from Stage I to II and III. At the termination of irradiation the serum lipid and serum lipid peroxide in the cases of cervical uterine cancer at Stage III were found to have recovered to close to the levels before irradiation, but in the other cases these values tended to increase with irradiation. Except the termination of irradiation treatment of cervical uterine cancer of Stage III, the decrease of leucocyte count has a mutual relationship with the increase of serum thiobarbituric acid (TBA), so that change in the serum TBA level can be assumed to be a criterion for irradiation injury. (auth.)

  18. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats.

    Science.gov (United States)

    Murugan, Pidaran; Pari, Leelavinothan

    2006-08-01

    Hyperlipidaemia is an associated complication of diabetes mellitus. We recently reported that tetrahydrocurcumin lowered the blood glucose in diabetic rats. In the present study, we have investigated the effect of tetrahydrocurcumin, one of the active metabolites of curcumin on lipid profile and lipid peroxidation in streptozotocin-nicotinamide-induced diabetic rats. Tetrahydrocurcumin 80 mg/kg body weight was administered orally to diabetic rats for 45 days, resulted a significant reduction in blood glucose and significant increase in plasma insulin in diabetic rats, which proved its antidiabetic effect. Tetrahydrocurcumin also caused a significant reduction in lipid peroxidation (thiobarbituric acid reactive substances and hydroperoxides) and lipids (cholesterol, triglycerides, free fatty acids and phospholipids) in serum and tissues, suggesting its role in protection against lipid peroxidation and its antihyperlipidemic effect. Tetrahydrocurcumin showed a better effect when compared with curcumin. Results of the present study indicate that tetrahydrocurcumin showed antihyperlipidaemic effect in addition to its antidiabetic effect in type 2 diabetic rats.

  19. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes

    International Nuclear Information System (INIS)

    Bokoch, Michael P.; Devadoss, Anando; Palencsar, Mariela S.; Burgess, James D.

    2004-01-01

    Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 μM. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 μM for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented

  20. Inhibition of lipid peroxidation induced by γ- radiation and AAPH in rat liver and brain mitochondria by mushrooms

    International Nuclear Information System (INIS)

    Lakshmi, B.; Janardhanan, K.K.; Tilak, J.C.; Devasagayam, T.P.A.; Adhikari, S.

    2005-01-01

    Exposure to radiation or 2.2' Azobis(2-amidopropane) dihydrochloride (AAPH) induces generation of reactive oxygen species (ROS) especially hydroxyl radical ( . OH) and peroxyl radical (ROO . ), which are capable of inducing lipid peroxidation. Our earlier studies have demonstrated that extracts of the medicinal and edible mushrooms Ganoderma lucidum, Pleurotus florida, Pleurotus sajor-caju and Phellinus rimosus possessed significant antioxidant activity, measured as radical scavenging. In the present study, we examined the protective effect of these mushroom extracts against radiation- and AAPH-induced lipid peroxidation using rat liver and brain mitochondria as model systems. The results obtained showed that the investigated mushroom extracts significantly inhibited the formation of lipid hydroperoxide and thiobarbituric acid reactive substances, indicating membrane protective effects. The finding suggests the profound protective effect of the extracts of the fruiting bodies of G. lucidum, P. florida, P. sajor-caju and P. rimosus against lipid peroxidation by two major forms of ROS capable of inducing this type of damage in a major organelle, the mitochondria from both rat liver and brain. This observation can possibly explain the health benefits of these mushrooms. (author)

  1. Aluminum induces lipid peroxidation and aggregation of human blood platelets

    Directory of Open Access Journals (Sweden)

    T.J.C. Neiva

    1997-05-01

    Full Text Available Aluminum (Al3+ intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al3+-induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 µM stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA (100 µM and n-propyl gallate (NPG (100 µM, inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA (100 µM, an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation

  2. Modulatory effect of Scoparia dulcis in oxidative stress-induced lipid peroxidation in streptozotocin diabetic rats.

    Science.gov (United States)

    Latha, M; Pari, L

    2003-01-01

    In light of evidence that diabetes mellitus is associated with oxidative stress and altered antioxidant status, we investigated the effect of Scoparia dulcis plant extracts (SPEt) (aqueous, ethanolic, and chloroform) in streptozotocin diabetic rats. Significant increases in the activities of insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, reduced glutathione, vitamin C, and vitamin E were observed in liver, kidney, and brain on treatment with SPEt. In addition, the treated groups also showed significant decreases in blood glucose, thiobarbituric acid-reactive substances, and hydroperoxide formation in tissues, suggesting its role in protection against lipid peroxidation-induced membrane damage. Thus, the results of the present study indicate that extracts of S. dulcis, especially the aqueous extract, showed a modulatory effect by attenuating the above lipid peroxidation in streptozotocin diabetes.

  3. Radioprotective effect of Panax ginseng on the phosphatases and lipid peroxidation level in testes of Swiss albino mice

    Energy Technology Data Exchange (ETDEWEB)

    Kumar M.; Sharma M.K.; Saxena P.S.; Kumar A. [Rajasthan Univ., Jaipur (India)

    2003-03-01

    The Panax ginseng has been used as traditional medicine for past several years among oriental people. The present investigation has been made to assess the radioprotective efficacy of ginseng root extract in the testicular enzymes of Swiss albino mice. The Swiss albino mice were divided into different groups. Ginseng treated group: The animals were administered 10 mg/kg body weight ginseng root extract intraperitoneal (i.p.). Radiation treated group: The animals were exposed to 8 Gy gamma radiation at the dose rate of 1.69 Gy/min at the distance of 80 cm. Combination group: Animals were administered ginseng extract continuously for 4 d and on 4th day they were irradiated to 8 Gy gamma radiation after 30 min of extract administration. The animals from above groups were autopsied on day 1, 3, 7, 14 and 30. Biochemical estimations of acid and alkaline phosphatases and Lipid peroxidation (LPO) in testes were done. In ginseng treated group acid and alkaline phosphatases activity and LPO level did not show any significant alteration. In irradiated animals there was a significant increase in acid phosphatase activity and LPO level. However, significant decline in alkaline phosphatase activity was observed. The treatment of ginseng before irradiation causes significant decrease in acid phosphatase and LPO level and significant increase in alkaline phosphatase activity. One of the cause of radiation damage is lipid peroxidation. Due to lipid peroxidation, lysosomal membrane permeability alters and thus results in release of hydrolytic enzymes. So, an increase in acid phosphatase was noticed after radiation treatment. The alkaline phosphatase activity is associated with membrane permeability and different stages of spermatogenesis. Due to membrane damage and depletion of germ cells of testes after irradiation the enzyme activity was decreased. Ginseng markedly inhibits lipid peroxidation. It acts in indirect fashion to protect radical processes by inhibition of initiation of

  4. Radioprotective effect of Panax ginseng on the phosphatases and lipid peroxidation level in testes of Swiss albino mice

    International Nuclear Information System (INIS)

    Kumar, M.; Sharma, M.K.; Saxena, P.S.; Kumar, A.

    2003-01-01

    The Panax ginseng has been used as traditional medicine for past several years among oriental people. The present investigation has been made to assess the radioprotective efficacy of ginseng root extract in the testicular enzymes of Swiss albino mice. The Swiss albino mice were divided into different groups. Ginseng treated group: The animals were administered 10 mg/kg body weight ginseng root extract intraperitoneal (i.p.). Radiation treated group: The animals were exposed to 8 Gy gamma radiation at the dose rate of 1.69 Gy/min at the distance of 80 cm. Combination group: Animals were administered ginseng extract continuously for 4 d and on 4th day they were irradiated to 8 Gy gamma radiation after 30 min of extract administration. The animals from above groups were autopsied on day 1, 3, 7, 14 and 30. Biochemical estimations of acid and alkaline phosphatases and Lipid peroxidation (LPO) in testes were done. In ginseng treated group acid and alkaline phosphatases activity and LPO level did not show any significant alteration. In irradiated animals there was a significant increase in acid phosphatase activity and LPO level. However, significant decline in alkaline phosphatase activity was observed. The treatment of ginseng before irradiation causes significant decrease in acid phosphatase and LPO level and significant increase in alkaline phosphatase activity. One of the cause of radiation damage is lipid peroxidation. Due to lipid peroxidation, lysosomal membrane permeability alters and thus results in release of hydrolytic enzymes. So, an increase in acid phosphatase was noticed after radiation treatment. The alkaline phosphatase activity is associated with membrane permeability and different stages of spermatogenesis. Due to membrane damage and depletion of germ cells of testes after irradiation the enzyme activity was decreased. Ginseng markedly inhibits lipid peroxidation. It acts in indirect fashion to protect radical processes by inhibition of initiation of

  5. LIPID PEROXIDATION AND JOB STRESS IN DENTAL HEALTHCARE WORKERS

    Directory of Open Access Journals (Sweden)

    S. V. Melnikova

    2014-04-01

    Full Text Available This study devoted to the lipid peroxidation indices in dentists target group as a marker of psycho-emotional state. We revealed increase in the level of TBA-active products in female and male dentists during job stress. There was strong decrease in level of TBA-active products in control group of dentist that study during the lectures. Activation of lipid peroxidation in dentists during dentist examination can be considered as non-specific component of reactions towards the stressors of professional activities. We also revealed that the initial level of TBA-active products in female and male dentists before the outpatient dental reception was higher than that of dentists that study before lectures. This is indicates the mobilization of sympathetic nervous system before beginning of the working day. The contents of the level of TBA-active products in the oral fluid of female and male dentists after dental examination significantly increased, whereas these indices decreased in the group of dentists that study after the lectures. The increasing of TBA-active products in dentists after outpatient dental reception was by 42.5 % and 77 % higher compared with a group of dentists that study in the lecture classes. The results of correlation analysis suggest the influence of lipid peroxidation processes on the cardiovascular and blood system of dentists during job stress. Activation of lipid peroxidation in dentists during dental examination can be considered as non-specific component of the body's response to stressors influence in professional activities. Key words: dentists, activation of lipid peroxidation, psychoemotional stress, job stress.

  6. Lipid Peroxidation and Antioxidant Status in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Rokeya Begum

    2011-07-01

    Full Text Available Background: Preeclampsia is the most common and major medical complication of pregnancy with a high incidence of maternal and foetal morbidity and mortality. During pregnancy abnormally increased lipid peroxidation and free radical formation as well as significantly decreased antioxidants production in maternal blood may lead to pathogenesis of preeclampsia. So, we designed this study as little information is known about lipid peroxidation and antioxidant level in preeclampsia. Objectives: To assess the serum malondialdehyde (MDA level as a lipid peroxidation product and vitamin E (antioxidant level in women with preeclampsia as well as in normal pregnancy and to compare the values. Materials and Methods: The study was conducted on 60 women aged from 25 to 35 years in the department of Biochemistry, Budi Kemuliaan Maternity Hospital (BKMH in Jakarta during the period April to July 2004. Twenty were normal pregnant women and 20 were preeclamptic patients. For comparison age matched 20 apparently healthy nonpregnant women were included in the study. The study subjects were selected from outpatient department (OPD of Obstetrics and Gynaecology of BKMH in Jakarta. Serum MDA (lipid peroxidation product level was measured by thiobarbituric acid reactive substances assay (TBRAS method and vitamin E was estimated spectroflurometrically. Data were analyzed by unpaired Student’s t test between the groups by using SPSS version 12. Results: The mean serum MDA levels were significantly higher in normal pregnancy and also in preeclampsia than that of nonpregnant control group women (p<0.001. Again the serum MDA levels were significantly higher in preeclampsia than that of normal pregnant women (p<0.001. The serum vitamin E levels were significantly lower in preeclampsia and also in normal pregnancy than that of nonpregnant control women (p<0.001. Moreover, the serum vitamin E levels were significantly lower in preeclampsia compared to that of normal

  7. Lipid peroxidation and ascorbic acid levels in Nigeria children with ...

    African Journals Online (AJOL)

    This study was undertaken to establish data on the roles of lipid peroxidation and ascorbic acid in the pathology of malaria in Nigeria children. We measured the levels of malondialdehyde (MDA), a marker of lipid peroxidation and ascorbic acid in the plasma of 406 parasitaemic and 212 non-parasitaemic Nigerian children.

  8. ROLE OF MEMBRANE LIPID-COMPOSITION IN THE CYTOTOXICITY OF THE SESQUITERPENE LACTONE EUPATORIOPICRIN

    NARCIS (Netherlands)

    VANDERLINDE, JCC; WOERDENBAG, HJ; MALINGRE, TM; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    The aim of the present study was to investigate a possible role of lipid peroxidation in the cytotoxicity of eupatoriopicrin, the principal sesquiterpene lactone from Eupatorum cannabinum L. Incorporation of arachidonic acid acyl chains in the phospholipids of cellular membranes of mouse fibroblast

  9. Effects of Ferulago angulata Extract on Serum Lipids and Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Mahmoud Rafieian-kopaei

    2014-01-01

    Full Text Available Background. Nowadays, herbs they are considered to be the main source of effective drugs for lowering serum lipids and lipid peroxidation. The present experimental animal study aimed to assess the impact of Ferulago angulata on serum lipid profiles, and on levels of lipid peroxidation. Methods. Fifty male Wistar rats, weighing 250–300 g, were randomly divided into five equal groups (ten rats in each. The rat groups received different diets as follows: Group I: fat-rich diet; Group II: fat-rich diet plus hydroalcoholic extracts of Ferulago angulata at a dose of 400 mg/kg; Group III: fat-rich diet plus hydroalcoholic extracts of Ferulago angulata at a dose of 600 mg/kg; Group IV: fat-rich diet plus atorvastatin; Group V: common stock diet. The levels of serum glucose and lipids and the atherogenic index were measured. In addition, malondialdehyde (MDA, thiol oxidation, carbonyl concentrations, C-reactive proteins, and antioxidant capacity were evaluated in each group of rats. Results. Interestingly, by adding a hydroalcoholic extract of Ferulago angulata to the high-fat diet, the levels of total cholesterol and low-density lipoproteins (LDL in the high-fat diet rats were both significantly reduced. This result was considerably greater compared to when atorvastatin was added as an antilipid drug. The beneficial effects of the Ferulago angulata extract on lowering the level of triglycerides was observed only when a high dosage of this plant extraction was added to a high fat diet. Furthermore, the level of malondialdehyde, was significantly affected by the use of the plant extract in a high-fat diet, compared with a normal regimen or high-fat diet alone. Conclusion. Administration of a hydroalcoholic extract of Ferulago angulata can reduce serum levels of total cholesterol, triglycerides, and LDL. It can also inhibit lipid peroxidation.

  10. Blood lipid metabolites and meat lipid peroxidation responses of ...

    African Journals Online (AJOL)

    Esnart Mukumbo

    2017-06-19

    Jun 19, 2017 ... Fat and protein contents of thigh muscle and abdominal fat weight were measured and reported. Chickens fed LPO had greater serum triacylglycerol and very low ... favour lipid peroxidation, inhibit synthesis of higher homologous of ... The ambient temperature was gradually decreased from 33 °C at first.

  11. Blood lipid metabolites and meat lipid peroxidation responses of ...

    African Journals Online (AJOL)

    Blood samples were collected from broilers to evaluate serum biochemical metabolites on day 41. Thigh meat samples were provided and analysed after 1, 5 and 10 days' storage to evaluate lipid peroxidation at the end of the experiment. Fat and protein contents of thigh muscle and abdominal fat weight were measured ...

  12. Effects of Iron Overload on the Activity of Na,K-ATPase and Lipid Profile of the Human Erythrocyte Membrane.

    Directory of Open Access Journals (Sweden)

    Leilismara Sousa

    Full Text Available Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1, iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5% than in women and was associated with an increase (446% in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS and an increase (327% in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132% in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels.

  13. Importance of the lipid peroxidation biomarkers and methodological aspects FOR malondialdehyde quantification

    Directory of Open Access Journals (Sweden)

    Denise Grotto

    2009-01-01

    Full Text Available Free radicals induce lipid peroxidation, playing an important role in pathological processes. The injury mediated by free radicals can be measured by conjugated dienes, malondialdehyde, 4-hydroxynonenal, and others. However, malondialdehyde has been pointed out as the main product to evaluate lipid peroxidation. Most assays determine malondialdehyde by its reaction with thiobarbituric acid, which can be measured by indirect (spectrometry and direct methodologies (chromatography. Though there is some controversy among the methodologies, the selective HPLC-based assays provide a more reliable lipid peroxidation measure. This review describes significant aspects about MDA determination, its importance in pathologies and biological samples treatment.

  14. Study of lipid profile and parieto-temporal lipid peroxidation in AlCl3 mediated neurotoxicity. modulatory effect of fenugreek seeds

    Directory of Open Access Journals (Sweden)

    Belaïd-Nouira Yosra

    2012-01-01

    Full Text Available Abstract Background Peroxidation of lipid (LPO membrane and cholesterol metabolism have been involved in the physiopathology of many diseases of aging brain. Therefore, this prospective animal study was carried firstly to find out the correlation between LPO in posterior brain and plasmatic cholesterol along with lipoprotein levels after chronic intoxication by aluminium chloride (AlCl3. Chronic aluminum-induced neurotoxicity has been in fact related to enhanced brain lipid peroxidation together with hypercholesterolemia and hypertriglyceridemia, despite its controversial etiological role in neurodegenerative diseases. Secondly an evaluation of the effectiveness of fenugreek seeds in alleviating the engendered toxicity through these biochemical parameters was made. Results Oral administration of AlCl3 to rats during 5 months (500 mg/kg bw i.g for one month then 1600 ppm via the drinking water enhanced the levels of LPO in posterior brain, liver and plasma together with lactate dehydrogenase (LDH activities, total cholesterol (TC, triglycerides (TG and LDL-C (Low Density Lipoproteins levels. All these parameters were decreased following fenugreek seeds supplementation either as fenugreek seed powder (FSP or fenugreek seed extract (FSE. A notable significant correlation was observed between LPObrain and LDL-C on one hand and LDHliver on the other hand. This latter was found to correlate positively with TC, TG and LDL-C. Furthermore, high significant correlations were observed between LDHbrain and TC, TG, LDL-C, LPObrain as well as LDHliver. Conclusion Aluminium-induced LPO in brain could arise from alteration of lipid metabolism particularly altered lipoprotein metabolism rather than a direct effect of cholesterol oxidation. Fenugreek seeds could play an anti-peroxidative role in brain which may be attributed in part to its modulatory effect on plasmatic lipid metabolism.

  15. Ionizing radiation and lipid peroxidation in human body; Radiazioni ionizzanti e perossidazione lipidica nell`organismo umano

    Energy Technology Data Exchange (ETDEWEB)

    Giubileo, Gianfranco [ENEA, Centro Ricerche Frascati, Roma (Italy)

    1997-07-01

    Lipids are organic compounds constituting the living cells. Lipid molecules can be disassembled through peroxidative pathways and hydrocarbons can be bred as end-product of lipid peroxidation in vivo. Lipid peroxidation can be started by an indirect effect of ionizing radiation. So a radioinduced cellular damage in human body can be detected by monitoring the production of specific hydrocarbons.

  16. High dietary level of synthetic vitamin E on lipid peroxidation, membrane fatty acid composition and cytotoxicity in breast cancer xenograft and in mouse host tissue

    Directory of Open Access Journals (Sweden)

    Barnes Christopher J

    2003-03-01

    Full Text Available Abstract Background d-α-tocopherol is a naturally occurring form of vitamin E not previously known to have antitumor activity. Synthetic vitamin E (sE is a commonly used dietary supplement consisting of a mixture of d-α-tocopherol and 7 equimolar stereoisomers. To test for antilipid peroxidation and for antitumor activity of sE supplementation, two groups of nude mice bearing a MDA-MB 231 human breast cancer tumor were fed an AIN-76 diet, one with and one without an additional 2000 IU/kg dry food (equivalent to 900 mg of all-rac-α-tocopherol or sE. This provided an intake of about 200 mg/kg body weight per day. The mice were killed at either 2 or 6 weeks after the start of dietary intervention. During necropsy, tumor and host tissues were excised for histology and for biochemical analyses. Results Tumor growth was significantly reduced by 6 weeks of sE supplementation. Thiobarbituric acid reactive substances, an indicator of lipid peroxidation, were suppressed in tumor and in host tissues in sE supplemented mice. In the sE treated mice, the fatty acid composition of microsomal and mitochondrial membranes of tumor and host tissues had proportionately less linoleic acid (n-6 C 18-2, similar levels of arachidonic acid (n-6 C 20-4, but more docosahexanoic acid (n-3 C 22-6. The sE supplementation had no significant effect on blood counts or on intestinal histology but gave some evidence of cardiac toxicity as judged by myocyte vacuoles and by an indicator of oxidative stress (increased ratio of Mn SOD mRNA over GPX1 mRNA. Conclusions At least one of the stereoisomers in sE has antitumor activity. Synthetic vitamin E appears to preferentially stabilize membrane fatty acids with more double bonds in the acyl chain. Although sE suppressed tumor growth and lipid peroxidation, it may have side-effects in the heart.

  17. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  18. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Resveratrol suppresses ethanol stress in winery and bottom brewery yeast by affecting superoxide dismutase, lipid peroxidation and fatty acid profile.

    Science.gov (United States)

    Gharwalova, Lucia; Sigler, Karel; Dolezalova, Jana; Masak, Jan; Rezanka, Tomas; Kolouchova, Irena

    2017-11-03

    Mid-exponential cultures of two traditional biotechnological yeast species, winery Saccharomyces cerevisiae and the less ethanol tolerant bottom-fermenting brewery Saccharomyces pastorianus, were exposed to different concentrations of added ethanol (3, 5 and 8%) The degree of ethanol-induced cell stress was assessed by measuring the cellular activity of superoxide dismutase (SOD), level of lipid peroxidation products, changes in cell lipid content and fatty acid profile. The resveratrol as an antioxidant was found to decrease the ethanol-induced rise of SOD activity and suppress the ethanol-induced decrease in cell lipids. A lower resveratrol concentration (0.5 mg/l) even reduced the extent of lipid peroxidation in cells. Resveratrol also alleviated ethanol-induced changes in cell lipid composition in both species by strongly enhancing the proportion of saturated fatty acids and contributing thereby to membrane stabilization. Lower resveratrol concentrations could thus diminish the negative effects of ethanol stress on yeast cells and improve their physiological state. These effects may be utilized to enhance yeast vitality in high-ethanol-producing fermentations or to increase the number of yeast generations in brewery.

  20. Role of lipid peroxidation in pathogenesis of senile cataract

    Directory of Open Access Journals (Sweden)

    Kisić Bojana

    2009-01-01

    Full Text Available Background /Aim. Cataract is a structural, biochemical and optical change in the eye lens, which changes transmission and refraction of light rays reducing keenness and clarity of a figure on the retina. Its occurrence is highest in older people, over the age of 65 (45.9%, thus a certain degree of opacification exists practically in all people over the 70. Our research was directed to measuring of lipid peroxidation products in cataract lenses involved in early stages of cataractogenesis through oxidative stress and in the development of mature cataract. Methods. Clinical and biochemical research was carried out in 101 patients with cataract, 46 women and 55 men. The average age of the group was 72.47 (ґ = 7.98. According to the cataract maturity degree the patients were classified into two groups as follows: cataracta senilis incipiens (n = 41 and cataracta senilis matura (n = 60. Measuring of diene conjugates was carried out by spectrophotometer. Fluorescent lipid peroxidation products were measured by a spectrofluorophotometer, and malondialdehyde (MDA concentration was measured by colorimeter as a product of a reaction with thiobarbituric acid (TBA. Result. Significantly higher diene conjugated concentration in lenses was measured in the patients with the diagnosis cataracta senilis incipiens (p < 0.001 as well as the intensity of fluorescent iminopropens (p < 0.001. Significantly higher MDA concentration in lens (p < 0.001 was measured in the patients with cataracta senilis matura. Conclusion. The lens structure changes caused by lipid peroxidation can, with other risk factors present, influence the occurrence and development of mature cataract. Some cataract types show different lipid peroxidation intensity with the most distinct changes in cataract which started as corticonuclear.

  1. Protective effects of Opuntia ficus-indica extract on ram sperm quality, lipid peroxidation and DNA fragmentation during liquid storage.

    Science.gov (United States)

    Allai, Larbi; Druart, Xavier; Öztürk, Mehmet; BenMoula, Anass; Nasser, Boubker; El Amiri, Bouchra

    2016-12-01

    The present study aimed to assess the phenolic composition of the acetone extract from Opuntia ficus indica cladodes (ACTEX) and its effects on ram semen variables, lipid peroxidation and DNA fragmentation during liquid storage at 5°C for up to 72h in skim milk and Tris egg yolk extenders. Semen samples from five rams were pooled extended with Tris-egg yolk (TEY) or skim milk (SM) extenders containing ACTEX (0%, 1%, 2%, 4% and 8%) at a final concentration of 0.8×10 9 sperm/ml and stored for up to 72h at 5°C. The sperm variables were evaluated at different time periods (8, 24, 48 and 72h). Sperm total motility and viability were superior in TEY than in SM whereas the progressive motility, membrane integrity, abnormality and spontaneous lipid peroxidation were greater in SM compared to TEY (P<0.05). The results also indicated that the inclusion of 1% ACTEX in the SM or TEY extender increased the sperm motility, viability, membrane integrity, and decreased the abnormality, lipids peroxidation up to 72h in storage compared to control group. Similarly, even at 72h of storage, 1% ACTEX can efficiently decrease the negative effects of liquid storage on sperm DNA fragmentation (P<0.05). In conclusion, SM and TEY supplemented with 1% of ACTEX can improve the quality of ram semen. Further studies are required to identify the active components in ACTEX involved in its effect on ram sperm preservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Glutathione protects liver and kidney tissue from cadmium- and lead-provoked lipid peroxidation

    Directory of Open Access Journals (Sweden)

    Jovanović Jasmina M.

    2013-01-01

    Full Text Available Cd and Pb represent a serious ecological problem due to their soluble nature, their mobility and ability to accumulate in the soil. The exposure to these heavy metals can originate from different sources (drinking water, food, air, and they can make their way into the human body through the respiratory and digestive system. We investigated the effects of glutathione on Cd and Pb accumulation and lipid peroxidation effects in the liver and kidneys of heavy metal intoxicated rats. The content of the marker of lipid peroxidation - malondialdehyde was increased several fold the in tissues of exposed animals, the effects being more pronounced in liver. The treatment of intoxicated animals with glutathione drastically suppressed lipid peroxidation. Our results imply that the application of glutathione may have protective role in heavy metal intoxication by inhibiting lipid peroxidation. However, precaution should be made when it comes to Cd, since it seems that glutathione promoted Cd accumulation in the liver.

  3. Radiation effect on lipid peroxide content of spices

    International Nuclear Information System (INIS)

    Kaneko, Nobutada; Ito, Hitoshi; Ishigaki, Isao

    1990-01-01

    To evaluate the radiation-induced deterioration of lipid in spices, peroxide value, iodine value and acid value were measured after extraction by chloroform. Peroxide values of black pepper and white pepper were not increased by gamma-irradiation with doses below 30 kGy and gradually increased at higher dose up to 80 kGy in this study. On contrary, peroxide values of clove and rosemary increased rather quickly below 20 kGy of gamma-irradiation, and they became stationary at higher dose. Iodine values and acid values had relationship with peroxide values on each kind of spices. On the storage study of irradiated spices, peroxide values decreased quickly during 20 days storage as same as nonirradiated spices, and it became stationary after 20 to 50 days storage at 30degC. Enhancement of oxidized deterioration were not observed even higher irradiation doses up to 80 kGy in this study. (author)

  4. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash

    Energy Technology Data Exchange (ETDEWEB)

    Cervini-Silva, Javiera, E-mail: jcervini@correo.cua.uam.mx [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México City (Mexico); Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Nieto-Camacho, Antonio [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Gomez-Vidales, Virginia [Laboratorio de Resonancia Paramagnética Electrónica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Ramirez-Apan, María Teresa [Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City (Mexico); Palacios, Eduardo; Montoya, Ascención [Dirección de Investigación y Posgrado, Instituto Mexicano del Petróleo (Mexico); Kaufhold, Stephan [BGR Bundesansaltfür Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover (Germany); and others

    2014-06-01

    Highlights: • Respirable volcanic ash induces oxidative degradation of lipids in cell membranes. • Respirable volcanic ash triggers cytotoxicity in murin monocyle/macrophage cells. • Oxidative stress is surface controlled but not restricted by surface- Fe{sup 3+}. • Surface Fe{sup 3+} acts as a stronger inductor in allophanes vs phyllosilicates or oxides. • Registered cell-viability values were as low as 68.5 ± 6.7%. - Abstract: This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe{sup 3+}, and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot{sup −1}. LP was surface controlled but not restricted by structural or surface-bound Fe{sup 3+}, because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe{sup 3+} soluble species stemming from surface-bound Fe{sup 3+} or small-sized Fe{sup 3+} refractory minerals in allophane surpassed that of structural Fe{sup 3+} located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell

  5. [Peroxide modification of membranes and isomorphic composition of cytochrome P-450 of rat liver microsomes during antioxidant deficiency].

    Science.gov (United States)

    Gubskiy, Iu I; Paramonova, G I; Boldeskul, A E; Primak, R G; Bogdanova, L A; Zadorina, O V; Litvinova, N V

    1992-01-01

    Lipid peroxidation (LPO), physico-chemical properties of the membranes and isoformic composition of microsomal cytochrome P-450 from the rat liver were studied under conditions of antioxidant insufficiency (AOI) which was modelled by exclusion of alpha-tocopherol from the animals' ration. An insignificant accumulation of microsomal diene conjugates and schiff bases against a sharp increase of the ability to the prooxidant stimulated LPO in vitro took place. A significant decrease of membrane lipid microviscosity and a change in surface properties of microsomal membranes of rats with AOI was determined. Absence of alpha-tocopherol in the ration was accompanied by a significant change in the content of separate isoforms of cytochrome P-450 exhibited in growth of a polypeptide with m. w. 54 kDa and the lowering of proteins with m. w. 48 and 50 kDa. Less intensive quenching of tryptophan fluorescence by acrylamide was also revealed, which testified to a lower accessibility of the quencher to membrane proteins or their fluorophore sites. Modification of lipid composition and of physicochemical properties of the rat liver membrane microsomes which was observed at AOI was significantly correlated by pretreatment with the antioxidant 4-methyl-2,6-ditretbutylphenol (ionol).

  6. Lipid peroxidation regulates podocyte migration and cytoskeletal structure through redox sensitive RhoA signaling

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    2018-06-01

    Full Text Available Early podocyte loss is characteristic of chronic kidney diseases (CKD in obesity and diabetes. Since treatments for hyperglycemia and hypertension do not prevent podocyte loss, there must be additional factors causing podocyte depletion. The role of oxidative stress has been implicated in CKD but it is not known how exactly free radicals affect podocyte physiology. To assess this relationship, we investigated the effects of lipid radicals on podocytes, as lipid peroxidation is a major form of oxidative stress in diabetes. We found that lipid radicals govern changes in podocyte homeostasis through redox sensitive RhoA signaling: lipid radicals inhibit migration and cause loss of F-actin fibers. These effects were prevented by mutating the redox sensitive cysteines of RhoA. We therefore suggest that in diseases associated with increased lipid peroxidation, lipid radicals can determine podocyte function with potentially pathogenic consequences for kidney physiology. Keywords: Lipid peroxidation, Reactive lipids, Podocyte, RhoA, Cysteine, Chronic kidney disease

  7. Electrodiffusion of lipids on membrane surfaces.

    Science.gov (United States)

    Zhou, Y C

    2012-05-28

    Lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when the random lateral motion is mediated by the electrostatic interactions and membrane curvature. Although the lateral diffusion rates of lipids on membranes of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregation and the evolution to the electrostatically favorable states remain largely undetermined. Here we propose an electrodiffusion model, based on the variational principle of the free energy functional, for the self-consistent lateral drift-diffusion of multiple species of charged lipids on membrane surfaces. Finite sizes of lipids are modeled to enforce the geometrical constraint of the lipid concentration on membrane surfaces. A surface finite element method is developed to appropriate the Laplace-Beltrami operators in the partial differential equations of the model. Our model properly describes the saturation of lipids on membrane surfaces, and correctly predicts that the MARCKS peptide can consistently sequester three multivalent phosphatidylinositol 4,5-bisphosphate lipids through its basic amino acid residues, regardless of a wide range of the percentage of monovalent phosphatidylserine in the membrane.

  8. Novel free-radical mediated lipid peroxidation biomarkers in newborn plasma.

    Science.gov (United States)

    Sánchez-Illana, Ángel; Thayyil, Sudhin; Montaldo, Paolo; Jenkins, Dorothea; Quintás, Guillermo; Oger, Camille; Galano, Jean-Marie; Vigor, Claire; Durand, Thierry; Vento, Máximo; Kuligowski, Julia

    2017-12-15

    Oxidative stress derived from perinatal asphyxia appears to be closely linked to neonatal brain damage and lipid peroxidation biomarkers have shown to provide predictive power of oxidative stress related pathologies in situations of hypoxia and reoxygenation in the newborn. The objective of this work was to develop and validate of a comprehensive liquid chromatography tandem mass spectrometry approach for the quantitative profiling of 28 isoprostanoids in newborn plasma samples covering a broad range of lipid peroxidation product classes. The method was developed taking into account the specific requirements for its use in neonatology (i.e. limited sample volumes, straightforward sample processing and high analytical throughput). The method was validated following stringent FDA guidelines and was then applied to the analysis of 150 plasma samples collected from newborns. Information obtained from the quantitative analysis of isoprostanoids was critically compared to that provided by a previously developed approach aiming at the semi-quantitative detection of total parameters of fatty acid derived lipid peroxidation biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Assay to detect lipid peroxidation upon exposure to nanoparticles.

    Science.gov (United States)

    Potter, Timothy M; Neun, Barry W; Stern, Stephan T

    2011-01-01

    This chapter describes a method for the analysis of human hepatocarcinoma cells (HEP G2) for lipid peroxidation products, such as malondialdehyde (MDA), following treatment with nanoparticle formulations. Oxidative stress has been identified as a likely mechanism of nanoparticle toxicity, and cell-based in vitro systems for evaluation of nanoparticle-induced oxidative stress are widely considered to be an important component of biocompatibility screens. The products of lipid peroxidation, lipid hydroperoxides, and aldehydes, such as MDA, can be measured via a thiobarbituric acid reactive substances (TBARS) assay. In this assay, which can be performed in cell culture or in cell lysate, MDA combines with thiobarbituric acid (TBA) to form a fluorescent adduct that can be detected at an excitation wavelength of 530 nm and an emission wavelength of 550 nm. The results are then expressed as MDA equivalents, normalized to total cellular protein (determined by Bradford assay).

  10. Lysosomal degradation of membrane lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage

    Directory of Open Access Journals (Sweden)

    Medina-Navarro Rafael

    2011-11-01

    Full Text Available Abstract Background One of the well-defined and characterized protein modifications usually produced by oxidation is carbonylation, an irreversible non-enzymatic modification of proteins. However, carbonyl groups can be introduced into proteins by non-oxidative mechanisms. Reactive carbonyl compounds have been observed to have increased in patients with renal failure. In the present work we have described a procedure designed as aldehyde capture to calculate the protein carbonyl stress derived solely from lipid peroxidation. Methods Acrolein-albumin adduct was prepared as standard at alkaline pH. Rat liver microsomal membranes and serum samples from patients with diabetic nephropathy were subjected to the aldehyde capture procedure and aldol-protein formation. Before alkalinization and incubation, samples were precipitated and redisolved in 6M guanidine. The absorbances of the samples were read with a spectrophotometer at 266 nm against a blank of guanidine. Results Evidence showed abundance of unsaturated aldehydes derived from lipid peroxidation in rat liver microsomal membranes and in the serum of diabetic patients with advanced chronic kidney disease. Carbonyl protein and aldol-proteins resulted higher in the diabetic nephropathy patients (p Conclusion The aldehyde-protein adduct represents a non oxidative component of carbonyl stress, independent of the direct amino acid oxidation and could constitute a practical and novelty strategy to measure the carbonyl stress derived solely from lipid peroxidation and particularly in diabetic nephropathy patients. In addition, we are in a position to propose an alternative explanation of why alkalinization of urine attenuates rhabdomyolysis-induced renal dysfunction.

  12. Lipids and membrane lateral organization

    Directory of Open Access Journals (Sweden)

    Sandro eSonnino

    2010-11-01

    Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  13. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C.R.; van Rij, A.M.

    1988-01-01

    The effects of Fe/sup 3 +/, lipid peroxy radicals and the antioxidant butylated hydroxytoluene on the 2-thiobarbituric (TBA) acid quantitation of plasma lipid peroxides were investigated. Whole plasma and plasma fractions prepared by trichloroacetic acid (TCA) protein precipitation and lipid extraction, demonstrated markedly differing TBA reactivities in the presence or absence of added Fe/sup 3 +/. Examination of the spectral profiles of the TBA reacted whole plasma and TCA precipitated fractions demonstrated the presence of interfering compounds which gave rise to an artifactual increase in lipid peroxide concentrations. In contrast the TBA reacted lipid extracts had low levels of interfering compounds that could be removed by our previously described high pressure liquid chromatographic method. Further characterization of the TBA reactivity of the lipid extract showed that Fe/sup 3 +/ at an optimal concentration of 0.5 mM was necessary for the quantitative decomposition of the lipid peroxides to the TBA reactive product malondialdehyde (MDA). However the presence of Fe/sup 3 +/ resulted in further peroxidation of any unsaturated lipids present.

  14. Role of lipid peroxidation and oxidative stress in 3-methylindole pneumotoxicity

    International Nuclear Information System (INIS)

    Cary, M.G.

    1985-01-01

    The cytochrome P-450-catalyzed metabolism of 3-methylindole (3-MI) results in acute lung injury in ruminants and horses. Experiments were conducted to determine the role of lipid peroxidation and oxidative stress in 3-MI pneumotoxicity in goats. Goats were given methylethylketone peroxide (MEKP), a potent peroxidant, 3-MI, indole, or cremophor-EL vehicle. The levels of shortchain hydrocarbons in expired air were measured for 6 hours post-dosing by gas chromatography. Exhaled hydrocarbons increased 20 to 30 fold within 1 hour in goats given MEKP. No significant changes were seen in goats given 3-Mi, indole or cremophor-EL. Levels of thiobarbituric acid-reactive substances, an indicator of lipid peroxidation, were significantly increased in lung tissue from goats given MEKP. In goats given 3-MI, indole or cremophor-EL, the levels were not significantly different from each other. Goats were killed at 6 hours post-dosing and examined post mortem. Bronchiolar epithelial necrosis was seen in goats given 3-MI but there were not lung lesions in other groups. The role of oxygen radicals in 3-MI pneumotoxicity was examined in a goat lung explant system using 51 Cr release as an indicator of cytotoxicity. The results of these studies provide no evidence to support the view that 3-MI pneumotoxicity involves lipid peroxidation or oxidative stress as a result of formation of oxygen or xenobiotic radicals

  15. Electrodiffusion of Lipids on Membrane Surfaces

    OpenAIRE

    Zhou, Y. C.

    2011-01-01

    Random lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when this lateral random diffusion is mediated by the electrostatic interactions and membrane curvature. Though the lateral diffusion rates of lipids on membrane of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregati...

  16. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    Science.gov (United States)

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  17. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    OpenAIRE

    Evan Quon; Christopher T. Beh

    2016-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer...

  18. Inhibition of rat microsomal lipid peroxidation by the oral administration of D002

    Directory of Open Access Journals (Sweden)

    Menéndez R.

    2000-01-01

    Full Text Available The effect of D002, a defined mixture of higher primary alcohols purified from bee wax, on in vivo and in vitro lipid peroxidation was studied. The extent of lipid peroxidation was measured on the basis of the levels of thiobarbituric acid reactive substances (TBARS. When D002 (5-100 mg/kg body weight was administered orally to rats for two weeks, a partial inhibition of the in vitro enzymatic and non-enzymatic lipid peroxidation was observed in liver and brain microsomes. Maximal protection (46% occurred at a dose of 25 mg/kg. D002 behaved differently depending on both the presence of NADPH and the integrity of liver microsomes, which suggests that under conditions where microsomal metabolism was favored the protective effect of D002 was increased. D002 (25 mg/kg also completely inhibited carbon tetrachloride- and toluene-induced in vivo lipid peroxidation in liver and brain. Also, D002 significantly lowered in a dose-dependent manner the basal level of TBARS in liver (19-40% and brain (28-44% microsomes. We conclude that the oral administration of D002 (5, 25 and 100 mg/kg for two weeks protected rat liver and brain microsomes against microsomal lipid peroxidation in vitro and in vivo. Thus, D002 could be useful as a dietary natural antioxidant supplement. More studies are required before these data can be extrapolated to the recommendation for the use of D002 as a dietary antioxidant supplement for humans.

  19. [Germ cell membrane lipids in spermatogenesis].

    Science.gov (United States)

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  20. Application of FTIR-ATR Spectroscopy to Determine the Extent of Lipid Peroxidation in Plasma during Haemodialysis

    Directory of Open Access Journals (Sweden)

    Adam Oleszko

    2015-01-01

    Full Text Available During a haemodialysis (HD, because of the contact of blood with the surface of the dialyser, the immune system becomes activated and reactive oxygen species (ROS are released into plasma. Particularly exposed to the ROS are lipids and proteins contained in plasma, which undergo peroxidation. The main breakdown product of oxidized lipids is the malondialdehyde (MDA. A common method for measuring the concentration of MDA is a thiobarbituric acid reactive substances (TBARS method. Despite the formation of MDA in plasma during HD, its concentration decreases because it is removed from the blood in the dialyser. Therefore, this research proposes the Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR spectroscopy, which enables determination of primary peroxidation products. We examined the influence of the amount of hydrogen peroxide added to lipid suspension that was earlier extracted from plasma specimen on lipid peroxidation with use of TBARS and FTIR-ATR methods. Linear correlation between these methods was shown. The proposed method was effective during the evaluation of changes in the extent of lipid peroxidation in plasma during a haemodialysis in sheep. A measurement using the FTIR-ATR showed an increase in plasma lipid peroxidation after 15 and 240 minutes of treatment, while the TBARS concentration was respectively lower.

  1. Radiation-induced changes in membrane hydrophobicity in liposomes

    International Nuclear Information System (INIS)

    Nakazawa, Tohru; Nagatsuka, Shinichiro; Yukawa, Osami

    1985-01-01

    Effects of γ-radiation on the physical state of membranes were examined with liposomes of lecithin (phosphatidylcholine) from soybean and rat liver microsomes using spin labeling method. There was a slight increase in the membrane fluidity after irradiation. However, a marked decrease in the membrane hydrophobicity by irradiation was observed in the peripheral region in both types of membranes, in parallel with an increase in the lipid peroxidation. These results suggest that irradiation mainly causes a decrease in the membrane hydrophobicity through lipid peroxidation. (author)

  2. Desiccation-induced changes in viability, lipid peroxidation and ...

    African Journals Online (AJOL)

    user

    2012-05-31

    May 31, 2012 ... Key words: Intermediate seeds, desiccation, reactive oxygen species, antioxidant enzymes, lipid peroxidation,. Mimusops ... between ROS production and cell defenses determines ... needed for reduction of dehydroascorbate, which is .... was calculated using the extinction coefficient (6.2 mM-1cm-1) for.

  3. Plasma Lipid Peroxidation and Total Antioxidant Status among ...

    African Journals Online (AJOL)

    BACKGROUND: The oxidative modification hypothesis of atherosclerosis predicts that low density lipoprotein-cholesterol (LDL-C) oxidation is an early event in atherosclerosis and that oxidized LDL-C contributes to atherogenesis. OBJECTIVE: To determine a link, if any, between the plasma lipid peroxidation and total ...

  4. Lipid polymorphism and the functional roles of lipids in biological membranes

    NARCIS (Netherlands)

    Cullis, P.R.; Kruijff, B. de

    1979-01-01

    The reasons for the great variety of lipids found in biological membranes, and the relations between lipid composition and membrane function pose major unsolved problems in membrane biology. Perhaps the only major functional role of lipids which may be regarded as firmly established involves the

  5. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  6. Induction of lipid peroxidation in erythrocytes during cholesterol oxidation catalyzed by cholesterol oxidase

    International Nuclear Information System (INIS)

    Kagan, V.E.; Monovich, O.; Ribarov, S.R.

    1986-01-01

    The authors study the ability of cholesterol oxidase (ChO), which catalyzes oxidation of cholesterol (Ch) to cholest-4-en-3-one and, at the same time, reduction of O 2 to H 2 O 2 , to induce the lipid peroxidation (LPO) in plasma membranes. Erythrocyte ghosts were obtained from guinea pig blood; the reaction of oxidation of Ch in the erythrocyte ghosts or in micelles with Triton X-100 was carried out in the following medium: Tris-HCl 0.2 M, pH 7.0 (at 37 C), Triton X-100 0.25%, and ChO 0.05 U/ml. At the present time ChO is often used to study the asymmetry of distribution of Ch in biomembranes and the velocity of its transbilayer migration. It is suggested that changes in membrane permeability do not take place during the reaction catalyzed by the enzyme, and no products capable of affecting flip-flop in biological are formed. Accumulation of LPO products in erythrocyte membranes discovered in this investigation under the influence of ChO compels critical re-examination of the resutls

  7. Mechanics of Lipid Bilayer Membranes

    Science.gov (United States)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  8. Turmeric and black pepper spices decrease lipid peroxidation in meat patties during cooking

    Science.gov (United States)

    Zhang, Yanjun; Henning, Susanne M.; Lee, Ru-Po; Huang, Jianjun; Zerlin, Alona; Li, Zhaoping; Heber, David

    2015-01-01

    Abstract Spices are rich in natural antioxidants and have been shown to be potent inhibitors of lipid peroxidation during cooking of meat. Turmeric contains unique conjugated curcuminoids with strong antioxidant activity. Piperine, one of the main constituents of black pepper, is known to increase the bioavailability of curcuminoids in mouse and human studies when consumed with turmeric. We investigated whether adding black pepper to turmeric powder may further inhibit lipid peroxidation when added to meat patties prior to cooking. The addition of black pepper to turmeric significantly decreased the lipid peroxidation in hamburger meat. When investigating the antioxidant activity of the main chemical markers, we determined that piperine did not exhibit any antioxidant activity. Therefore, we conclude that other black pepper ingredients are responsible for the increased antioxidant activity of combining black pepper with turmeric powder. PMID:25582173

  9. Lipids as organizers of cell membranes.

    Science.gov (United States)

    Kornmann, Benoît; Roux, Aurélien

    2012-08-01

    The 105th Boehringer Ingelheim Fonds International Titisee Conference 'Lipids as Organizers of Cell Membranes' took place in March 2012, in Germany. Kai Simons and Gisou Van der Goot gathered cell biologists and biophysicists to discuss the interplay between lipids and proteins in biological membranes, with an emphasis on how technological advances could help fill the gap in our understanding of the lipid part of the membrane.

  10. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Science.gov (United States)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  11. Inhibition of rat liver microsomal lipid peroxidation by N-acyldehydroalanines: An in vitro comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Buc-Calderon, P.; Roberfroid, M. (Universite Catholique de Louvain, Brussels (Belgium))

    1989-09-01

    Captodative substituted olefins are radical scavengers which react with free radicals to form stabilized radical adducts. One of those compounds, N-(paramethoxyphenylacetyl)dehydroalanine (AD-5), may react and scavenge both superoxide anion (O-2) and alk-oxyl radicals (RO.), and in this way prevent the appearance of their mediated biological effects. Nitrofurantoin and tert-butyl hydroperoxide were used as model compounds to stimulate free radical production and their mediated lipid peroxidation in rat liver microsomes. In addition, lipid peroxidation was also initiated by exposure of rat liver microsomal suspensions to ionizing radiation (gamma rays). The microsomal lipid peroxidation induced by these chemicals and physical agents was inhibited by the addition of AD-5. These effects were dose-dependent in a millimolar range of concentration. In addition, AD-5 has no effect on microsomal electron transport, showing that NADPH-cytochrome P450 reductase activity was not modified. These data, together with the comparisons of the effects of AD-5 and some antioxidant molecules such as superoxide dismutase, uric acid, and mannitol, support the conclusion that inhibition of lipid peroxidation by AD-5 is the result of its free radical scavenger activity. In addition, the inhibitory effect of AD-5 on microsomal lipid peroxidation was dependent of the nature of the free radical species involved in the initiation of the process, suggesting that O-2 is scavenged more efficiently than RO.

  12. The state of lipid peroxidation and the antioxidant system in victims of the Chernobyl accident that suffer from duodenal ulcer

    International Nuclear Information System (INIS)

    Kucherenko, M.Je.; Drobyins'ka, O.V.; Ostapchenko, L.Yi.

    2002-01-01

    In the bioptates of mucous membranes of stomach in peptic ulcer patients residing in the regions with a high level of contamination by radionuclides, a high level of products of lipid peroxidation is found. It is experimentally proved that the violations are accompanied by a significant fall of the level of antioxidant enzymes and warrant a wide use of direct antioxidant medicine to normalize all the above-mentioned processes

  13. The lipid peroxidation intensity of fungi strains from the orders Agaricales and Polyporales

    Directory of Open Access Journals (Sweden)

    O. V. Fedotov

    2016-07-01

    Full Text Available This article is devoted to investigation of the dynamics of growth and level of spontaneous and induced lipid peroxidation intensity of Basidiomycetes strains grown by surface cultivation on a glucose-peptone medium. The materials of the research are mycelium and culture filtrates (CF of 57 strains (5 belong to 5 species from the order Polyporales s.l., and 52 belong to 7 species of the order Agaricales s.l.. To study the dynamics of growth we used a weighing method for determining the accumulation of absolutely dry biomass. Intensity of lipid peroxidation was determined by a modified spectrophotometric method for content of active to thiobarbituric acid products. It was found that the most productive in absolutely dry biomass accumulation were the strains Flammulina velutipes (Curt.: Fr. Sing. F-610 and Pleurotus eryngii (DC.: Fr. Quél. P-er. The level of spontaneous and induced LPO intensity in mycelia of all strains was higher than this figure in the culture filtrate and increased with the duration of cultivation. Dependencies between the content of lipid peroxidation products in the mycelia and CF were not established. The lowest values were recorded for biomass accumulation by the strains Pleurotus ostreatus (Jacq.: Fr. P. Kumm. P-14, P-192 and P. citrinopileatus Singer. Р-сіtr. Groups of basidiomycete cultures with different levels of TBA-AP were identified. Spontaneous and induced intensivity of lipid peroxidation in all studied strains of mycelia was higher than the figure in the culture filtrate. The intensity of lipid peroxidation in both mycelia and culture filtrate constantly increased, which can be explained by the growing shortage of certain nutrients (primarily carbon and increased concentration of metabolic products in the medium. The ratio of spontaneous and induced lipid peroxidation intensity is specific to each strain and is independent of its systematic position. Shifting of prooxidant-antioxidant balance to a

  14. Peroxides and radiation impairment of oxidative phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Dovgii, I E; Akoev, I G

    1975-09-01

    An increase in the peroxidase activity of the mitochondria and a simultaneous rise in the amount of peroxide compounds, which are half lipid-like substances, are detected within the first 10 minutes after irradiation (1000 r). A mechanism of radiation impairment of oxidative phosphorylation is connected with the penetration of its inhibitors to the mitochondria due to the disturbed permeability of membranes affected by peroxides.

  15. Studies on lipid peroxidation and anti-LPO chemicals

    International Nuclear Information System (INIS)

    Wang Chongdao; Qiang Yizhong; Lao Qinhua

    1995-02-01

    The contents of lipid peroxides (LPO) in sera and tissues were determined by the modified spectrophotometry of TBA, and the effects of three chemicals on lipid peroxidation induced by radiation were observed. The items studied included: (1) the normal values of LPO of sera in rats and adults: (2) the normal values in some tissues of rats; (3) the changes of LPO levels of sera in patients with some mental diseases and patients with malignant tumours before and after local gamma irradiation exposure; (4) the changes of LPO contents of some tissues in rats after whole-body gamma irradiation exposure; (5) the changes of LPO contents of some tissues in mice after internal exposure by Th(NO 3 ) 4 solution; (6) the effects of chinonin, tannic acid and squalene on lipid peroxidation induced by irradiation. The results were as follows: (1) the LPO contents in patients with some mental diseases dramatically increased; (2) there was marked difference between the LPO levels before and after local gamma irradiation exposure in patients with malignant tumours; (3) the LPO contents in some tissues of rats remarkably increased after whole-body gamma irradiation exposure; (4) the LPO contents in some tissues of mice dramatically increased and their protein contents markedly reduced after internal exposure, showing a negative correlation between them; (5) a gradual increase in LPO contents in some tissues of mice appeared with increasing dosage of whole-body gamma irradiation exposure at dose range from 0 to 4 Gy. A linear relationship between the dose and the LPO contents was observed; (6) all three chemicals could reduce the LPO levels in liver, spleen and kidney of the irradiated mice. The efficacy of chinonin was better than that of tannic acid and squalene. (5 tabs., 1 fig.)

  16. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  17. Perioperative intravenous acetaminophen attenuates lipid peroxidation in adults undergoing cardiopulmonary bypass: a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Frederic T Billings

    Full Text Available Cardiopulmonary bypass (CPB lyses erythrocytes and induces lipid peroxidation, indicated by increasing plasma concentrations of free hemoglobin, F2-isoprostanes, and isofurans. Acetaminophen attenuates hemeprotein-mediated lipid peroxidation, reduces plasma and urine concentrations of F2-isoprostanes, and preserves kidney function in an animal model of rhabdomyolysis. Acetaminophen also attenuates plasma concentrations of isofurans in children undergoing CPB. The effect of acetaminophen on lipid peroxidation in adults has not been studied. This was a pilot study designed to test the hypothesis that acetaminophen attenuates lipid peroxidation in adults undergoing CPB and to generate data for a clinical trial aimed to reduce acute kidney injury following cardiac surgery.In a prospective double-blind placebo-controlled clinical trial, sixty adult patients were randomized to receive intravenous acetaminophen or placebo starting prior to initiation of CPB and for every 6 hours for 4 doses. Acetaminophen concentrations measured 30 min into CPB and post-CPB were 11.9 ± 0.6 μg/mL (78.9 ± 3.9 μM and 8.7 ± 0.3 μg/mL (57.6 ± 2.0 μM, respectively. Plasma free hemoglobin increased more than 15-fold during CPB, and haptoglobin decreased 73%, indicating hemolysis. Plasma and urinary markers of lipid peroxidation also increased during CPB but returned to baseline by the first postoperative day. Acetaminophen reduced plasma isofuran concentrations over the duration of the study (P = 0.05, and the intraoperative plasma isofuran concentrations that corresponded to peak hemolysis were attenuated in those subjects randomized to acetaminophen (P = 0.03. Perioperative acetaminophen did not affect plasma concentrations of F2-isoprostanes or urinary markers of lipid peroxidation.Intravenous acetaminophen attenuates the increase in intraoperative plasma isofuran concentrations that occurs during CPB, while urinary markers were unaffected.ClinicalTrials.gov NCT

  18. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  19. Dietary fiber and lipid peroxidation: effect of dietary fiber on levels of lipids and lipid peroxides in high fat diet.

    Science.gov (United States)

    Thampi, B S; Manoj, G; Leelamma, S; Menon, V P

    1991-06-01

    Effect of feeding coconut and blackgram fiber isolated as neutral detergent fiber (NDF) on the levels of lipids and lipid peroxides was studied in rats given a high fat diet. Concentration of cholesterol, free falty acid and phospholipids showed significant decrease in the serum, liver aorta and intestine of coconut and blackgram fiber groups. Concentration of malondialdehyde (MDA) and conjugated dienes was significantly decreased in liver and intestine of both fiber groups, while hydroperoxides showed significant increase in liver and heart of both the fiber groups. SOD and catalase activity was found to be increased in liver, intestine, heart proximal colon and distal colon of both the fiber groups. Serum ceruloplasmin levels showed a slight increase in animals fed coconut and blackgram fiber groups. Glutathione levels in liver, intestine proximal colon, distal colon and heart also showed a significant decrease in the animals of both the fiber groups.

  20. Inhibition of Lipid Peroxidation by Enzymatic Hydrolysates from Wheat Bran

    Directory of Open Access Journals (Sweden)

    Yanping Cao

    2011-01-01

    Full Text Available Wheat bran, an important by-product of the cereal industry, is rich in potentially health-promoting phenolic compounds. The phenolics are mainly esterified to the cell wall polysaccharides. In our previous paper, wheat bran was destarched and deproteinated by α-amylase, protease and amyloglucosidase successively and further hydrolyzed using Bacillus subtilis xylanases, and the enzymatic hydrolysates from wheat bran (EHWB showed good scavenging activity in vitro. The aim of this study is to further characterize the antioxidant potential of EHWB against various systems, both ex vivo and in vivo, namely, rat liver microsomal lipid peroxidation systems induced by Fe2+/H2O2 and Fe3+-adenosine diphosphate (ADP/dihydronicotinamide adenine dinucleotide phosphate (NADPH, copper- and 2,2’-azo-bis(2-amidinopropane dihydrochloride (AAPH-induced human low-density lipoprotein (LDL oxidation systems, and alloxan-induced in vivo lipid peroxidation in mice. EHWB inhibited lipid peroxidation in rat liver microsomes induced by Fe2+/H2O2 and Fe3+-ADP/NADPH in a concentration-dependent manner with 90.3 and 87 % inhibition of lipid peroxidation at 50 mg/L, respectively, which were similar to that of butylated hydroxytoluene (BHT at 20 mg/L. The antioxidant potential of EHWB at a concentration ranging from 10 to 20 mg/L in the nonenzymatic system was more effective than in the enzymatic system. EHWB strongly inhibited in vitro copper- and AAPH-mediated oxidation of LDL in a concentration- and time-dependent manner with 52.41 and 63.03 % inhibition at 20 mg/L, respectively, which were similar to that of ascorbate at 10 mg/L. EHWB significantly decreased the level of thiobarbituric acid reactive substances (TBARS and increased the activities of glutathione peroxidase (GSH-Px, catalase (CAT and superoxide dismutase (SOD in serum and liver of alloxan-treated mice compared with the control. These results demonstrated that EHWB might be efficient in the protection of

  1. Differential sensitivity of cellular membranes to peroxidative processes. An electronmicroscopic, histochemical and cytochemical study of the effects of vitamin E deficiency and X-irradiation on the liver of the Pekin duckling

    Energy Technology Data Exchange (ETDEWEB)

    Huijbers, W A.R.

    1976-01-01

    A description is given of a morphological and cytochemical investigation into the effects of both vitamin E deficiency and x irradiation on the ultrastructure and enzyme activities of several cellular membranes, particularly the plasma membrane and the membranes of lysosomes, mitochondria and endoplasmic reticulum. In the vitamin E deficient situation, the radicals and peroxides only originate near mitochondria and endoplasmic reticulum, so that these membrane systems suffer from changes. After irradiation of the liver of both the control duckling and the deficient duckling, radicals originate in all parts of the cell. Due to their high content of lipids and cholesterols, peroxides will occur mainly in plasma membranes and lysosomal membranes. Moreover, in these membranes there is hardly any protection by vitamin E.

  2. Lycopene control of benzophenone-sensitized lipid peroxidation

    Science.gov (United States)

    Cvetković, Dragan; Marković, Dejan

    2012-05-01

    Lycopene antioxidant activity in the presence of two different mixtures of phospholipids in hexane solution, under continuous regime of UV-irradiation from three different ranges (UV-A, UV-B, and UV-C) has been evaluated in this work. Lycopene expected role was to control lipid peroxidation, by scavenging free radicals generated by UV-irradiation, in the presence and in the absence of selected photosensitizer, benzophenone. This work shows that lycopene undergoes to UV-induced destruction (bleaching), highly dependent on the incident photons energy input, more expressed in the presence than in the absence of benzophenone. The further increase ("excess") of its bleaching is undoubtedly related to the further increase of its antioxidant activity in the presence of benzophenone, having the same cause: increase of (phospholipids peroxidation) chain-breaking activities.

  3. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature

    Directory of Open Access Journals (Sweden)

    Philip P. Cheney

    2017-03-01

    Full Text Available The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE and hexadecanoic acid (HDA, using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

  4. Amelioration of ionizing radiation induced lipid peroxidation in mouse liver by Moringa oleifera Lam. leaf extract

    International Nuclear Information System (INIS)

    Sinha, Mahuya; Das, Dipesh Kr; Dey, Sanjit; Datta, Sanjukta; Ghosh, Santinath

    2012-01-01

    Protective effect of Moringa oleifera leaf extract (MoLE) against radiation-induced lipid peroxidation has been investigated. Swiss albino mice, selected from an inbred colony, were administered with MoLE (300 mg/kg body wt) for 15 days before exposing to a single dose of 5 Gy 60 Co-gamma radiation. After treatments, animals were necropsied at different post irradiation intervals (days 1, 7 and 15) and hepatic lipid peroxidation and reduced glutathione (GSH) contents were estimated to observe the relative changes due to irradiation and its possible amelioration by MoLE. It was observed that, MoLE treatment restored GSH in liver and prevented radiation induced augmentation in hepatic lipid peroxidation. Phytochemical analysis showed that MoLE possess various phytochemicals such as ascorbic acid, phenolics (catechin, epicatechin, ferulic acid, ellagic acid, myricetin) etc., which may play the key role in prevention of hepatic lipid peroxidation by scavenging radiation induced free radicals. (author)

  5. Homeoviscous adaptation and the regulation of membrane lipids

    DEFF Research Database (Denmark)

    Ernst, Robert; Ejsing, Christer S; Antonny, Bruno

    2016-01-01

    Biological membranes are complex and dynamic assemblies of lipids and proteins. Poikilothermic organisms including bacteria, fungi, reptiles, and fish do not control their body temperature and must adapt their membrane lipid composition in order to maintain membrane fluidity in the cold. This ada......Biological membranes are complex and dynamic assemblies of lipids and proteins. Poikilothermic organisms including bacteria, fungi, reptiles, and fish do not control their body temperature and must adapt their membrane lipid composition in order to maintain membrane fluidity in the cold....... This adaptive response was termed homeoviscous adaptation and has been frequently studied with a specific focus on the acyl chain composition of membrane lipids. Massspectrometry-based lipidomics can nowadays provide more comprehensive insights into the complexity of lipid remodeling during adaptive responses...... such as neurons maintain unique lipid compositions with specific physicochemical properties. To date little is known about the sensory mechanisms regulating the acyl chain profile in such specialized cells or during adaptive responses. Here we summarize our current understanding of lipid metabolic networks...

  6. Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.

    Science.gov (United States)

    Nakamura, Yuki

    2018-03-01

    Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.

  7. Ecklonia cava Extract and Dieckol Attenuate Cellular Lipid Peroxidation in Keratinocytes Exposed to PM10.

    Science.gov (United States)

    Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10  μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.

  8. the effects of vitamin e supplementation on serum lipid peroxidation ...

    African Journals Online (AJOL)

    DR. C.O.NWAIGWE

    The effects of dietary supplementation of vitamin E on feed intake and serum lipid peroxidation formation were ... belongs to the family Birnaviridae and of the genus Birnavirus ... diseases, Alzheimer's disease and increased resistance to ...

  9. Protective effect of ascorbic acid on netilmicin-induced lipid profile and peroxidation parameters in rabbit blood plasma.

    Science.gov (United States)

    Devbhuti, Pritesh; Sikdar, Debasis; Saha, Achintya; Sengupta, Chandana

    2011-01-01

    A drug may cause alteration in blood-lipid profile and induce lipid peroxidation phenomena on administration in the body. Antioxidant may play beneficial role to control the negative alteration in lipid profile and lipid peroxidation. In view of this context, the present in vivo study was carried out to evaluate the role of ascorbic acid as antioxidant on netilmicin-induced alteration of blood lipid profile and peroxidation parameters. Rabbits were used as experimental animals and blood was collected to estimate blood-lipid profiles, such as total cholesterol (TCh), high density lipoprotein cholesterol (HDL-Ch), low density lipoprotein cholesterol (LDL-Ch), very low density lipoprotein cholesterol (VLDL-Ch), triglycerides (Tg), phospholipids (PL), and total lipids (TL), as well as peroxidation parameters, such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), reduced glutathione (GSH) and nitric oxide (NO). The results revealed that netilmicin caused significant enhancement of MDA, HNE, TCh, LDL-Ch, VLDL-Ch, Tg levels and reduction in GSH, NO, HDL-Ch, PL, TL levels. On co-administration, ascorbic acid was found to be effective in reducing netilmicin-induced negative alterations of the above parameters.

  10. Tissue Trace Elements and Lipid Peroxidation in Breeding Female Bank Voles Myodes glareolus.

    Science.gov (United States)

    Bonda-Ostaszewska, Elżbieta; Włostowski, Tadeusz; Łaszkiewicz-Tiszczenko, Barbara

    2018-04-27

    Recent studies have demonstrated that reproduction reduces oxidative damage in various tissues of small mammal females. The present work was designed to determine whether the reduction of oxidative stress in reproductive bank vole females was associated with changes in tissue trace elements (iron, copper, zinc) that play an essential role in the production of reactive oxygen species. Lipid peroxidation (a marker of oxidative stress) and iron concentration in liver, kidneys, and skeletal muscles of reproducing bank vole females that weaned one litter were significantly lower than in non-reproducing females; linear regression analysis confirmed a positive relation between the tissue iron and lipid peroxidation. The concentrations of copper were significantly lower only in skeletal muscles of reproductive females and correlated positively with lipid peroxidation. No changes in tissue zinc were found in breeding females when compared with non-breeding animals. These data indicate that decreases in tissue iron and copper concentrations may be responsible for the reduction of oxidative stress in reproductive bank vole females.

  11. Accumulation of lipid peroxidation products in eye structures of mice subjected to whole-body X-irradiation

    International Nuclear Information System (INIS)

    Sakina, N.L.; Dontsov, A.E.; Afanas'ev, G.G.; Ostrovskij, M.A.; Pelevina, I.I.

    1990-01-01

    In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Sciff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation

  12. Peroxidation of the dried thin film of lipid by high-energy alpha particles from a cyclotron

    International Nuclear Information System (INIS)

    Agarwal, S.; Chatterjee, S.N.

    1984-01-01

    High-energy α particles produced a dose-dependent linear increase in different lipid peroxidation products (e.g., malondialdehyde (MDA), conjugated dienes, and hydroperoxides) in the dried thin film state. An inverse dose-rate effect was observed when the dose rate was varied by changing either the α-particle fluence rate or the α-particle energy. The antioxidants α-tocopherol and butylated hydroxytoluene (BHT) suppressed the α-particle-induced lipid peroxidation in the dried thin film state, and in this respect α-tocopherol was found superior to BHT. It was found that α-tocopherol was equally efficient in inhibiting lipid peroxidations by α particles and ultraviolet light

  13. Sperm DNA damage in relation to lipid peroxidation following ...

    African Journals Online (AJOL)

    This study investigated the relationships between lipid peroxidation (LPO) and sperm DNA damage following freezing-thawing of boar semen in different extenders. The comet assay was used to measure the extent of sperm DNA damage in a cryoprotectant-free extender or in cryoprotectant-based extenders after single ...

  14. Total antioxidant status and lipid peroxidation with and without in vitro zinc supplementation in infertile men.

    Science.gov (United States)

    Ajina, T; Sallem, A; Haouas, Z; Mehdi, M

    2017-09-01

    The aim of this study was to assess the total antioxidant capacity (TAC) and malondialdehyde (MDA) level in infertile men with asthenozoospermia and asthenoteratozoospermia compared to fertile donors, and to examine the effect of zinc on sperm lipid peroxidation and antioxidant status in infertile and fertile men. Semen samples provided by infertile men (n = 38) and fertile donors (controls; n = 12) were exposed to 6 mmol/L of zinc for 2 hr at 37°C. After semen analysis, lipid peroxidation was detected by MDA assay and seminal TAC was assessed by colorimetric method using TAS (total antioxidant status) Kit. TAC was significantly lower in infertile group compared to controls (p = .037). However, lipid peroxidation did not alter in infertile patients compared to controls (p > .05). After in vitro incubation of samples with zinc, a significant increase in TAC level was found only in infertile men (p zinc had no effect on sperm lipid peroxidation in both fertile and infertile men (p > .05). Our data indicate that antioxidant treatment based on zinc in vitro supplementation may be helpful to enhance the rate of seminal antioxidant status in infertile men; however, it does not prevent sperm lipid peroxidation. © 2016 Blackwell Verlag GmbH.

  15. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.

    Science.gov (United States)

    Dutta, R K; Nenavathu, Bhavani P; Gangishetty, Mahesh K; Reddy, A V R

    2012-06-01

    Recent studies indicated the role of ROS toward antibacterial activity. In our study we report ROS mediated membrane lipid oxidation of Escherichia coli treated with ZnO nanoparticles (NPs) as supported by detection and spectrophotometric measurement of malondialdehyde (MDA) by TBARS (thiobarbituric acid-reactive species) assay. The antibacterial effects of ZnO NPs were studied by measuring the growth curve of E. coli, which showed concentration dependent bacteriostatic and bacteriocidal effects of ZnO NPs. The antibacterial effects were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further, antibacterial effect of ZnO NPs was found to decrease by introducing histidine to the culture medium treated with ZnO NPs. The ROS scavenging action of histidine was confirmed by treating histidine to the batch of Escherichia coli+ZnO NPs at the end of the lag phase of the growth curve (Set-I) and during inoculation (Set-II). A moderate bacteriostatic effect (lag in the E. coli growth) was observed in Set-II batch while Set-I showed no bacteriostatic effect. From these evidences we confirmed that the antibacterial effect of bare as well as TG capped ZnO NPs were due to membrane lipid peroxidation caused by the ROS generated during ZnO NPs interaction in culture medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Biosynthesis of archaeal membrane ether lipids

    Directory of Open Access Journals (Sweden)

    Samta eJain

    2014-11-01

    Full Text Available A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA. In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol and the tetraether (or caldarchaeol lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the last universal common ancestor LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.

  17. Blood antioxidant profile and lipid peroxides in dairy cows with clinical mastitis

    Directory of Open Access Journals (Sweden)

    Rajesh Rathore

    2013-10-01

    Full Text Available Aim: To evaluate blood antioxidant profile and lipid peroxides in dairy cows with clinical mastitis. Materials and Methods: Twelve cases of clinical mastitis in cross-bred cows were selected based on physical examination of udder and milk, California Mastitis Test (CMT, Somatic Cell Count (SCC and confirmation by bacteriological examination of milk and requisite biochemical tests. Twelve lactating cows showing negative CMT reaction and SCC <2x105 cells/ml were considered as healthy control. Antioxidant parameters measured in blood were superoxide dismutase (SOD, catalase activities and reduced glutathione (GSH concentration. Erythrocytic lipid peroxidation (LPO was measured in terms of malondialdehyde (MDA production. Results: Significant (P<0.05 decrease in blood SOD and catalase activities, GSH concentration and an increase in erythrocytic lipid peroxides was observed in cows with clinical mastitis. Conclusion: It is concluded that there is a compromise in antioxidant defense of the body in dairy cows with clinical mastitis resulting in oxidative damage, therefore, necessitate the use of antioxidants and other protective compounds along with conventional therapy for mastitis control. [Vet World 2013; 6(5.000: 271-273

  18. Age dependent effects of combined irradiation on lipid peroxidation in rat blood

    International Nuclear Information System (INIS)

    Mazhul', L.M.; Volykhina, V.E.; Gatsko, G.G.

    2000-01-01

    It was studied the effects of combined action of external acute gamma-irradiation in dose 1.0 Gy and chronic internal irradiation of cesium 137 (0.8 MBq/kg) on lipid peroxidation system in rat blood. Animals of two aged groups (2 and 6 months old) was investigated. The experiments were conducted on 10, 30, 90 and 180 days after the cessation of cesium 137 injection. Internal irradiation didn't exert influence on lipid peroxidation system in blood. Antioxidant system was activated on 10 days after acute irradiation at 2-months old animals and by 180 days at 6-months ones. In the case of combined irradiation activation of the antioxidant system in blood serum of 2-months old rats in early terms (10 days) possibly supports the invariable level of lipid peroxidation products. At 6-months old rats, on the contrary, the activation of the antioxidant system was not registered, however the content of malonic dialdehyde was increased. Possibly, at 2-months old rats the combined irradiation in early terms stimulates the protective systems of the organism in higher degree than at 6-months old ones

  19. Structural aspects of the antioxidant activity of lutein in a model of photoreceptor membranes

    Science.gov (United States)

    Wisniewska-Becker, Anna; Nawrocki, Grzegorz; Duda, Mariusz; Subczynski, Witold K.

    2014-01-01

    It was shown that in membranes containing raft domains, the macular xanthophylls lutein and zeaxanthin are not distributed uniformly, but are excluded from saturated raft domains and about ten times more concentrated in unsaturated bulk lipids. The selective accumulation of lutein and zeaxanthin in direct proximity to unsaturated lipids, which are especially susceptible to lipid peroxidation, could be very important as far as their antioxidant activity is concerned. Therefore, the protective role of lutein against lipid peroxidation was investigated in membranes made of raft-forming mixtures and in models of photoreceptor outer segment membranes and compared with their antioxidant activity in homogeneous membranes composed of unsaturated lipids. Lipid peroxidation was induced by photosensitized reactions using rose Bengal and monitored by an MDA-TBA test, an iodometric assay, and oxygen consumption (using EPR spectroscopy and the mHCTPO spin label as an oxygen probe). The results show that lutein protects unsaturated lipids more effectively in membranes made of raft-forming mixtures than in homogeneous membranes. This suggests that the selective accumulation of macular xanthophylls in the most vulnerable regions of photoreceptor membranes may play an important role in enhancing their antioxidant properties and ability to prevent age-related macular diseases (such as age-related macular degeneration [AMD]). PMID:22428148

  20. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    Directory of Open Access Journals (Sweden)

    Angel Catalá

    2013-01-01

    Full Text Available I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others.

  1. Lipid peroxidation in workers exposed to hexavalent chromium.

    Science.gov (United States)

    Huang, Y L; Chen, C Y; Sheu, J Y; Chuang, I C; Pan, J H; Lin, T H

    1999-02-26

    The aim of this study was to investigate whether exposure to hexavalent chromium induces lipid peroxidation in human. This study involved 25 chrome-plating factory workers and a reference group of 28 control subjects. The whole-blood and urinary chromium concentrations were determined by graphite furnace atomic absorption spectrophotometry. Malondialdehyde (MDA), the product of lipid peroxidation, was determined by high-performance liquid chromatography, and the activities of protective enzymes were measured by ultraviolet-visible spectrophotometry. In the chrome-plating workers, the mean concentrations of chromium in blood and urine were 5.98 microg/L and 5.25 microg/g creatinine, respectively; the mean concentrations of MDA in blood and urine were 1.7 micromol/L and 2.24 micromol/g creatinine. The concentrations of both chromium and MDA in blood and urine were significantly higher in the chromium-exposed workers. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) were not markedly different between control and exposed workers. Data suggest that MDA may be used as a biomarker for occupational chromium exposure. Antioxidant enzymic activities are not a suitable marker for chromium exposure.

  2. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins

    DEFF Research Database (Denmark)

    Hazell, L J; Davies, Michael Jonathan; Stocker, R

    1999-01-01

    component to be the major site of attack, whereas others describe extensive lipid peroxidation. The present study addresses this controversy. The results obtained are consistent with the hypothesis that radical-induced oxidation of LDL's lipids by HOCl is a secondary reaction, with most HOCl consumed via...... by an extended period of lipid peroxidation during which further protein oxidation does not occur. The secondary lipid peroxidation process involves EPR-detectable radicals, is attenuated by a radical trap or treatment of HOCl-oxidized LDL with methionine, and occurs less rapidly when the lipoprotein...

  3. Lipid corralling and poloxamer squeeze-out in membranes

    DEFF Research Database (Denmark)

    Wu, G.H.; Majewski, J.; Ege, C.

    2004-01-01

    Using x-ray scattering measurements we have quantitatively determined the effect of poloxamer 188 (P188), a polymer known to seal damaged membranes, on the structure of lipid monolayers. P188 selectively inserts into low lipid-density regions of the membrane and "corrals" lipid molecules to pack...... tightly, leading to unexpected Bragg peaks at low nominal lipid density and inducing lipid/poloxamer phase separation. At tighter lipid packing, the once inserted P188 is squeezed out, allowing the poloxamer to gracefully exit when the membrane integrity is restored....

  4. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    Science.gov (United States)

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  5. Paracetamol, 3-monoalkyl- and 3,5-dialkyl-substituted derivatives. Antioxidant activity and relationship between lipid peroxidation and cytotoxicity

    NARCIS (Netherlands)

    Van de Straat, R; Bijloo, G.J.; Vermeulen, N P

    1988-01-01

    The analgesic drug paracetamol is known to cause lipid peroxidation and hepatotoxicity after overdosage. In this paper, the relationship between lipid peroxidation and toxicity in freshly isolated hepatocytes was studied using paracetamol and three 3-monoalkyl-substituted derivatives of paracetamol.

  6. [Correction of lipid peroxidation and antioxidant system disorders by bioflavonoids during modeling of cholesterol atherosclerosis in rabbits].

    Science.gov (United States)

    Shysh, A M; Pashevin, D O; Dosenko, V Ie; Moĭbenko, O O

    2011-01-01

    We have studied the influence of bioflavonoids (quercetin, corvitin) on lipid peroxidation and antioxidant enzymes in the modeling of cholesterol atherosclerosis in rabbits. It has been shown that simultaneous administration of the quercetin derivative corvitin suppressed lipid peroxidation. We showed that under hypercholesterolemia, the concentration of malone dialdehyde in myocardial tissue in rabbits is significantly increased, while administration of bioflavonoids decreased the concentration of malone dialdehyde by 38.3%. Furthermore, corvitin caused activating effects on antioxidant enzymes superoxide dismutase and catalase in cardiac tissue. Our data suggest that bioflavonoids are able to suppress lipid peroxidation and prevent the decrease ofantioxidant enzymes activity in rabbits with cholesterol-rich diet induced atherosclerosis.

  7. The results of the lipids peroxidation products on the DNA bases as biological markers of the oxidative stress; Les adduits des produits de la peroxydation lipidique sur les bases de l'ADN comme biomarqueurs du stress oxydant

    Energy Technology Data Exchange (ETDEWEB)

    Falletti, O

    2007-10-15

    Different ways of DNA damages have been studied, among these ones the direct way of DNA damages formation by the reactive oxygen species (R.O.S.). This way leads to the formation of oxidative DNA damages. In 1990, works have suggested an indirect way of DNA damages formation, the lipids peroxidation. Instead of oxidizing directly DNA, the R.O.S. oxide the lipids present in the cells and their membranes; The products coming from this degradation are able to provoke DNA damages. This way has not been studied very much. The work of this thesis is axed on this DNA theme and lipids peroxidation. In the first chapter, we begin by presenting DNA and the direct way of oxidative damages formation by the R.O.S.Then, we speak about the cell lipids suffering oxidation reactions and the different ways of lipids oxidation. Then, we present how the lipid peroxidation is a source of damages for DNA. (N.C.)

  8. Investigation of the chemical mechanisms involved in the electropulsation of membranes at the molecular level.

    Science.gov (United States)

    Breton, Marie; Mir, Lluis M

    2018-02-01

    The chemical consequences of electropulsation on giant unilamellar vesicles (GUVs), in particular the possible oxidation of unsaturated phospholipids, have been investigated by mass spectrometry, flow cytometry and absorbance methods. Pulse application induced oxidation of the GUV phospholipids and the oxidation level depended on the duration of the pulse. Light and O 2 increased the level of pulse-induced lipid peroxidation whereas the presence of antioxidants either in the membrane or in the solution completely suppressed peroxidation. Importantly, pulse application did not create additional reactive oxygen species (ROS) in GUV-free solution. Lipid peroxidation seems to result from a facilitation of the lipid peroxidation by the ROS already present in the solution before pulsing, not from a direct pulse-induced peroxidation. The pulse would facilitate the entrance of ROS in the core of the membrane, allowing the contact between ROS and lipid chains and provoking the oxidation. Our findings demonstrate that the application of electric pulses on cells could induce the oxidation of the membrane phospholipids since cell membranes contain unsaturated lipids. The chemical consequences of electropulsation will therefore have to be taken into account in future biomedical applications of electropulsation since oxidized phospholipids play a key role in many signaling pathways and diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Modeling of interactions between nanoparticles and cell membranes

    Science.gov (United States)

    Ban, Young-Min

    containing the nanoparticles exhibit localized perturbation around the nanoparticle. The nanoparticles are not likely to affect membrane protein function by the weak perturbation of the internal stress in the membrane. Due to the short-ranged interactions between the nanoparticles, the nanoparticles would not form aggregates inside membranes. The effect of lipid peroxidation on cell membrane deformation is assessed. The peroxidized lipids introduce a perturbation to the internal structure of the membrane leading to higher amplitude of the membrane fluctuations. Higher concentration of the peroxidized lipids induces more significant perturbation. Cumulative effects of lipid peroxidation caused by nanoparticles are examined for the first time. The considered amphiphilic particle appears to reduce the perturbation of the membrane structure at its equilibrium position inside the peroxidized membrane. This suggests a possibility of antioxidant effect of the nanoparticle.

  10. Radiation-induced lipid peroxidation, fish diet, and modulation of the effects by vitamin E

    International Nuclear Information System (INIS)

    Paranich, A.V.; Chajkina, L.A.; Zharkov, S.V.

    1990-01-01

    Data are presented in this paper on the effect of vitamin E on rats given a fish diet after whole-body gamma-irradiation. The content of lipid peroxidation products in rat plasma, brain and liver and also content of vitamin E have been investigated. Irradiation increases lipid peroxidation in the studied tissues and decreases vitamin E content. This process is aggravat ed by the fish diet. Vitamin E given in addition to fish diet helps the organism to stabilize the antioxidant homeostasis at a qualitatively different level

  11. Effect of ethanol and the catalase inhibitor aminotriazole on lipid peroxidation in the rat myocardium

    International Nuclear Information System (INIS)

    Panchenko, L.F.; Pirozhkov, S.V.; Popova, S.V.; Antonenkov, V.D.

    1987-01-01

    The authors study the effect of chronic administration of ethanol and aminotriazole on the level of lipid peroxidation in the ray myocardium. The action of natural and artificial antioxidants on alcohol-induced lipid peroxidation also was studied. To determine the level of chemiluminescence, 1 ml of a sample of nuclear free homogenate or of the total fraction of particles was introduced for radioactivity measurement. After incubation the spontaneous weak luminescence was measured

  12. Effects of cisplatin on lipid peroxidation and the glutathione redox status in the liver of male rats: The protective role of selenium

    Directory of Open Access Journals (Sweden)

    Trbojević Ivana S.

    2010-01-01

    Full Text Available The role of oxidative stress in cisplatin (CP toxicity and its prevention by pretreatment with selenium (Se was investigated. Male Wistar albino rats were injected with a single dose of cisplatin (7.5 mg CP/kg b.m., i.p. and selenium (6 mg Se/kg b.m, as Na2SeO3, i.p. alone or in combination. The results suggest that CP intoxication induces oxidative stress and alters the glutathione redox status: reduced glutathione (GSH, oxidized glutathione (GSSG and the GSH/GSSG ratio (GSH RI, resulting in increased lipid peroxidation (LPO in rat liver. The pretreatment with selenium prior to CP treatment showed a protective effect against the toxic influence of CP on peroxidation of the membrane lipids and an altering of the glutathione redox status in the liver of rats. From our results we conclude that selenium functions as a potent antioxidant and suggest that it can control CP-induced hepatotoxicity in rats.

  13. Imaging of blood plasma coagulation at supported lipid membranes.

    Science.gov (United States)

    Faxälv, Lars; Hume, Jasmin; Kasemo, Bengt; Svedhem, Sofia

    2011-12-15

    The blood coagulation system relies on lipid membrane constituents to act as regulators of the coagulation process upon vascular trauma, and in particular the 2D configuration of the lipid membranes is known to efficiently catalyze enzymatic activity of blood coagulation factors. This work demonstrates a new application of a recently developed methodology to study blood coagulation at lipid membrane interfaces with the use of imaging technology. Lipid membranes with varied net charges were formed on silica supports by systematically using different combinations of lipids where neutral phosphocholine (PC) lipids were mixed with phospholipids having either positively charged ethylphosphocholine (EPC), or negatively charged phosphatidylserine (PS) headgroups. Coagulation imaging demonstrated that negatively charged SiO(2) and membrane surfaces exposing PS (obtained from liposomes containing 30% of PS) had coagulation times which were significantly shorter than those for plain PC membranes and EPC exposing membrane surfaces (obtained from liposomes containing 30% of EPC). Coagulation times decreased non-linearly with increasing negative surface charge for lipid membranes. A threshold value for shorter coagulation times was observed below a PS content of ∼6%. We conclude that the lipid membranes on solid support studied with the imaging setup as presented in this study offers a flexible and non-expensive solution for coagulation studies at biological membranes. It will be interesting to extend the present study towards examining coagulation on more complex lipid-based model systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Lipid peroxidation is increased in tears from the elderly.

    Science.gov (United States)

    Benlloch-Navarro, Soledad; Franco, Ilenia; Sánchez-Vallejo, Violeta; Silvestre, Dolores; Romero, Francisco Javier; Miranda, María

    2013-10-01

    We describe a procedure in which tears, obtained from Schirmer strips, are used to measure a marker of lipid peroxidation, malondialdehyde (MDA). We also compared the levels of proteins and MDA in tears from two groups of people: young adults (18-30 years old) and elderly adults (65-85 years old), because the data related to total protein concentration of human tears vary widely and because the majority of people over the age of 65 experience some symptoms of dry eyes and this condition has been recognized as an oxidative stress-induced disease. Our results show a significant difference in the protein concentration of the tears taken from the two age categories, younger adults (18-30 years old) and older adults (65-85 years old). Herein, we report for the first time an increase in MDA concentrations determined by HPLC in human tears based on age. It is possible that alterations in the tear lipid layer may lead to an increase in lipid peroxidation. Further studies are needed to understand the nature and function of tear film and stability in order to obtain new methods to analyze tears in patients with different diseases. In this sense, it would be interesting to compare MDA concentration in tears from control subjects and from people with meibomian gland dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of the microfiltration process on antioxidant activity and lipid peroxidation protection capacity of blackberry juice

    Directory of Open Access Journals (Sweden)

    Gabriela Azofeifa

    2011-08-01

    Full Text Available Phytochemicals are highly concentrated in berries, especially polyphenols as anthocyanins and ellagitannins. These compounds have been associated with antioxidant capacity, lipid peroxidation protection, anti-inflammatory activity, anti-carcinogenic activity, obesity prevention and others. Blackberries are commonly grown and consumed as juice in Latin-American countries. However, blackberry juice is easily fermented and different industrial techniques are being applied to enable the juice to be stored for longer periods. One important issue required for these techniques is to preserve the health-promoting capacities of blackberries. This study compared the antioxidant activity and the lipid peroxidation protector effect between a fresh blackberry juice (FJ and a microfiltrated blackberry juice (MJ. Chemical analysis of both juices show less polyphenols concentration in the MJ. Despite this difference, values for biological activities, such as protection of lipid peroxidation, was not significantly different between FJ and MJ. These results suggest that the compounds responsible for the antioxidant activity are maintained even after microfiltration and the free radical scavenging capacity of these compounds could protect the initiation of lipid peroxidation. Microfiltration could be used as an industrial technique to produce blackberry juice that maintains biological activities of polyphenols.

  16. Membrane-lipid therapy: A historical perspective of membrane-targeted therapies - From lipid bilayer structure to the pathophysiological regulation of cells.

    Science.gov (United States)

    Escribá, Pablo V

    2017-09-01

    Our current understanding of membrane lipid composition, structure and functions has led to the investigation of their role in cell signaling, both in healthy and pathological cells. As a consequence, therapies based on the regulation of membrane lipid composition and structure have been recently developed. This novel field, known as Membrane Lipid Therapy, is growing and evolving rapidly, providing treatments that are now in use or that are being studied for their application to oncological disorders, Alzheimer's disease, spinal cord injury, stroke, diabetes, obesity, and neuropathic pain. This field has arisen from relevant discoveries on the behavior of membranes in recent decades, and it paves the way to adopt new approaches in modern pharmacology and nutrition. This innovative area will promote further investigation into membranes and the development of new therapies with molecules that target the cell membrane. Due to the prominent roles of membranes in the cells' physiology and the paucity of therapeutic approaches based on the regulation of the lipids they contain, it is expected that membrane lipid therapy will provide new treatments for numerous pathologies. The first on-purpose rationally designed molecule in this field, minerval, is currently being tested in clinical trials and it is expected to enter the market around 2020. However, it seems feasible that during the next few decades other membrane regulators will also be marketed for the treatment of human pathologies. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  17. Siofor influence on the process of lipid peroxidation and antioxidant status at patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elena N. Chernysheva

    2014-10-01

    Full Text Available The purpose of the work is to research siofor influence (metformin on the activity of the process of lipid peroxidation and antioxidant activity of blood serum at patients with metabolic syndrome. Material and Methods — 62 patients with metabolic syndrome at the age from 30 till 60 were examined and treated by siofor (1700 mg per day during a year. The process of lipid peroxidation was studied due to the level of lipid hydroperoxide of blood serum. Antioxidant capacity was based on the antioxidant reaction in the blood serum with definite number of exogenic hydrogen dioxide (mkmole/l with the method of enzyme-linked immunosorbent assay (ELISA. Results — Intensification of process of lipid peroxidation has been observed at patients with metabolic syndrome — the level of lipid hydroperoxide of blood serum has been 2.9 (1.9, 3.9 mkM (presented as median and interquartile range, antioxidant activity of blood serum has been decreased — 276.4 (239.0, 379.9 mkmole/l. In 12 months of siofor intake hydroperoxide level has been decreased till 1.1 (0.8, 1.9 mkМ, but antioxidant activity has been increased and amounted 320.0 (278.9, 334.3 mkmole/l. Conclusion — Siofor has been proved to be a highly effective medicine for correction of process of lipid peroxidation and for improvement of antioxidant activity of blood serum at patients with metabolic syndrome.

  18. Dietary docosahexaenoic acid-induced generation of liver lipid peroxides is not suppressed further by elevated levels of glutathione in ODS rats.

    Science.gov (United States)

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2006-04-01

    We examined the effects of ascorbic acid (AsA) and glutathione (GSH; experiment 1) and of GSH in acetaminophen-fed rats (experiment 2) on dietary docosahexaenoic acid (DHA)-induced tissue lipid peroxidation. In experiment 1, AsA-requiring Osteogenic Disorder Shionogi/Shi-od/od (ODS) rats were fed soybean protein diets containing DHA (10.0% total energy) and AsA at 50 (low) or 300 (normal) mg/kg without (low) or with (normal) methionine at 2 g/kg for 32 d. In experiment 2, ODS rats were fed diets containing DHA (7.8% total energy) and acetaminophen (4 g/kg) with different levels of dietary methionine (low, moderate, high, and excessive at 0, 3, 6, and 9 g/kg, respectively) for 30 d. Tissue lipid peroxides and antioxidant levels were determined. In experiment 1, liver lipid peroxide levels in the low-AsA group were lower than those in the normal-AsA group, but kidney and testis lipid peroxide levels in the low-AsA group were higher than those in the normal-AsA group. Dietary methionine tended to decrease tissue lipid peroxide levels but did not decrease vitamin E (VE) consumption. In experiment 2, a high level of methionine (6 g/kg) decreased liver lipid peroxide levels and VE consumption. However, generation of tissue lipid peroxides and VE consumption were not decreased further by a higher dose of methionine (9 g/kg). Higher than normal levels of dietary methionine are not necessarily associated with decreased dietary DHA-induced generation of tissue lipid peroxides and VE consumption except that the GSH requirement is increased in a condition such as acetaminophen feeding.

  19. Lipid peroxidation and antioxidant activity in patients in labor with nonreassuring fetal status.

    Science.gov (United States)

    Dede, F S; Guney, Yildiz; Dede, Hulya; Koca, Cemile; Dilbaz, Berna; Bilgihan, Ayse

    2006-01-01

    The aim of our study was to evaluate lipid peroxidation products and antioxidant enzyme activity in placental tissue and umbilical cord blood, as a marker for fetal hypoxia in patients in labor with nonreassuring fetal status. Umbilical cord arterial blood and placental tissue samples were collected from 24 patients with term pregnancies in labor and nonreassuring fetal heart rate (FHR) patterns (study) and 24 women with normal pregnancies in labor and normal FHR tracings (controls) for determination of malondialdehyde (MDA) as a marker for lipid peroxidation and superoxide dismutase (SOD) for the antioxidant activity. Measured values were compared statistically between two groups using independent samples t-test or Mann-Whitney U-test. The median 1min Apgar score was 8 (range 4-9) in the study group and 9 (range 8-10) in the control group, respectively (p 0.05). Placental MDA levels in patients with nonreassuring fetal status were found to be significantly elevated compared to the control group (12.14 nmol/g tissue versus 9.75 nmol/g tissue; p < 0.01). The placental SOD activity in the study group was significantly higher (p < 0.01) compared to controls (3.57 U/mg protein versus 2.63 U/mg protein). The umbilical cord blood MDA levels in the study group were higher than in normal pregnancies (4.99 nmol/mL, 3.88 nmol/mL; p < 0.05). The activity of SOD in umbilical cord blood was significantly higher (p < 0.001) in patients with nonreassuring fetal status when compared with the control group (11.62 versus 6.95 U/mL). Lipid peroxidation products and antioxidant functions were elevated in the umbilical cord blood and placenta of patients having nonreassuring FHR tracings during labor. These findings indicate that lipid peroxidation products in placenta and umbilical cord blood can be used as a possible marker for fetal hypoxia during labor and SOD levels may discriminate acute from chronic hypoxia. Further investigations are needed with large number of series to

  20. Lipid Peroxidation and Transforming Growth Factor-β1 Levels in Gastric Cancer at Pathologic Stages.

    Science.gov (United States)

    Tüzün, Sefa; Yücel, Ahmet Fikret; Pergel, Ahmet; Kemik, Ahu Sarbay; Kemik, Ozgür

    2012-09-01

    High levels of TGF-β1 and enhanced TGF-β1 receptor signaling are related to the pathology of gastric cancer. This effect is caused by oxidative stress and lipid peroxidation products. The aim of this study was to investigate the levels of TGF-β1 and lipid peroxidation products in gastric cancer patients and their correlation with pathologic stage. Lipid peroxidation products and TGF-β1 levels were studied in the serum samples of 50 gastric cancer patients and 18 control subjects. HNE-protein adducts and TGF-β1 levels were significantly higher in T2, T3 and T4 gastric cancers than in either the T1 stage or controls (p<0.001). Pathologic stage was correlated with TGF-β1 levels (r=0.702, p<0.05). These markers production may contribute to tumor angiogenesis and aid in the prognosis of the gastric cancer.

  1. Artificial Lipid Membranes: Past, Present, and Future.

    Science.gov (United States)

    Siontorou, Christina G; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Karapetis, Stefanos K

    2017-07-26

    The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life.

  2. Comparative analysis of changes in protein and lipid metabolism, lipid peroxidation, and hemostasis under the effects of polychlorinated dibenzo-p-dioxins and radiation

    International Nuclear Information System (INIS)

    Kuntsevich, A.D.; Baulin, S.I.; Golovkov, V.F.; Rembovskii, V.R.; Smirnova, L.A.; Troshkin, N.M.

    1994-01-01

    Polychlorinated dibenzo-p-dioxins (PCDD) and ionizing radiation are among the most hazardous environmental factors causing ecological catastrophes and mass afflications in various accidents involving nuclear power plants and chemical industrial enterprises. The authors previously established that the simultaneous action of a toxic dose of PCDD and ionizing radiation increases the combined toxic effect. The effects of these chemical and physical factors were superadditive (the biological potentiation effect). Here, the authors compare the effects of PCDD and irradiation on protein and lipid metabolism, lipid peroxidation, and hemostasis in order to learn more about biochemical mechanisms mediating the potentiation effect. The experimental evidence suggests that PCDD can modify the biological effects of ionizing radiation through the generation of free radicals and activation of the chain reactions of free-radical lipid peroxidation, such as the formation of peroxides or malonic dialdehyde. The toxic effects of PCDD and ionizing radiation are based on free-radical reactions and chemical pathology. In other words, the chemical and physical factors directly and selectively hit the same biological target, thereby increasing their combined toxic effects. The results can partially explain the observed potentiating effect of the combined action of ionizing radiation and PCDD on the body. This phenomenon is based on biochemical processes generating an abundance of products of lipid peroxidation and the decrease in the body's defenses caused by disorders in protein and lipid metabolism and blood coagulation

  3. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    Science.gov (United States)

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  4. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  5. Some peculiarities of lipides peroxide oxidation and anti oxidation therapy of duodenal peptic ulcer in the persons who stayed in the zone of the Chernobyl accident

    International Nuclear Information System (INIS)

    Babak, O.Ya.; Chernyak, A.M.; Goncharova, L.Yi.; Pasyijeshvyilyi, L.M.

    1994-01-01

    The authors have studied the links of lipides peroxide oxidation (LPO) in the blood plasma, i.e. the level of antioxidant protection at duodenal peptic ulcer (DPU) in the persons who stayed in the zone of the accident at Chernobyl Atomic Power Station. LPO intensification takes place at the expense of the primary stages (spontaneous and hydrogen peroxide induced chemo luminescence) in the liquidators with DPU, when compared with the patients having DPU who did not stay in the zone of the accident. It suggests of exhaustion of cell membranes anti-oxidate protection level which provides atypical course of inflammatory processes in the gastrointestinal tract mucous membrane. The peculiarities of blood plasma LPO changes suggest that it would be reasonable to include antioxidants (Unithiolum) to the complex treatment of the liquidators

  6. The effect of deferoxamine on brain lipid peroxide levels and Na-K ATPase activity following experimental subarachnoid hemorrhage.

    Science.gov (United States)

    Bilgihan, A; Türközkan, N; Aricioğlu, A; Aykol, S; Cevik, C; Göksel, M

    1994-05-01

    1. In the present study we have studied the effects of deferoxamine treatment on lipid peroxidation and Na-K ATPase activity after experimental induction of subarachnoid haemorrhage (SAH) in guinea pigs. 2. We assessed the extent of lipid peroxidation by measuring the level of malondialdehyde and Na-K ATPase activity in 3 different groups (sham-operated, SAH, SAH + deferoxamine). 3. There was no significant difference in lipid peroxide content between sham-operated and haemorrhagic animals, but Na-K ATPase activity decreased after SAH. 4. Deferoxamine treatment reduced the malondialdehyde content and induced the recovery of Na-K ATPase activity, exerting a brain protective role against the detrimental effects of the haemorrhage.

  7. Protective effect of morin on lipid peroxidation and lipid profile in ammonium chloride-induced hyperammonemic rats

    OpenAIRE

    S Subash; P Subramanian

    2012-01-01

    Objective: To evaluated the protective effects of morin (3, 5, 7, 2', 4'-pentahydroxyflavone) on lipid peroxidation and lipid levels during ammonium chloride (AC) induced hyperammonemia in experimental rats. Methods: Thirty two male albino Wistar rats, which are weighing between 180-200 g were used for the study. The hyperammonemia was induced by administration of 100 mg/kg body weight (i.p. ) thrice in a week of AC for 8 weeks. Rats were treated with morin at dose (30 mg/kg bo...

  8. The effect of ghee (clarified butter) on serum lipid levels and microsomal lipid peroxidation.

    Science.gov (United States)

    Sharma, Hari; Zhang, Xiaoying; Dwivedi, Chandradhar

    2010-04-01

    Ghee, also known as clarified butter, has been utilized for thousands of years in Ayurveda as a therapeutic agent. In ancient India, ghee was the preferred cooking oil. In the last several decades, ghee has been implicated in the increased prevalence of coronary artery disease (CAD) in Asian Indians due to its content of saturated fatty acids and cholesterol and, in heated ghee, cholesterol oxidation products. Our previous research on Sprague-Dawley outbred rats, which serve as a model for the general population, showed no effect of 5 and 10% ghee-supplemented diets on serum cholesterol and triglycerides. However, in Fischer inbred rats, which serve as a model for genetic predisposition to diseases, results of our previous research showed an increase in serum total cholesterol and triglyceride levels when fed a 10% ghee-supplemented diet. In the present study, we investigated the effect of 10% dietary ghee on microsomal lipid peroxidation, as well as serum lipid levels in Fischer inbred rats to assess the effect of ghee on free radical mediated processes that are implicated in many chronic diseases including cardiovascular disease. Results showed that 10% dietary ghee fed for 4 weeks did not have any significant effect on levels of serum total cholesterol, but did increase triglyceride levels in Fischer inbred rats. Ghee at a level of 10% in the diet did not increase liver microsomal lipid peroxidation or liver microsomal lipid peroxide levels. Animal studies have demonstrated many beneficial effects of ghee, including dose-dependent decreases in serum total cholesterol, low density lipoprotein (LDL), very low density lipoprotein (VLDL), and triglycerides; decreased liver total cholesterol, triglycerides, and cholesterol esters; and a lower level of nonenzymatic-induced lipid peroxidation in liver homogenate. Similar results were seen with heated (oxidized) ghee which contains cholesterol oxidation products. A preliminary clinical study showed that high doses of

  9. Lipid Peroxidation and Transforming Growth Factor-β1 Levels in Gastric Cancer at Pathologic Stages

    Directory of Open Access Journals (Sweden)

    Özgür Kemik

    2012-09-01

    Full Text Available Objective: High levels of TGF-β1 and enhanced TGF-β1 receptor signaling are related to the pathology of gastric cancer. This effect is caused by oxidative stress and lipid peroxidation products. The aim of this study was to investigate the levels of TGF-β1 and lipid peroxidation products in gastric cancer patients and their correlation with pathologic stage. Material and Methods: Lipid peroxidation products and TGF-β1 levels were studied in the serum samples of 50 gastric cancer patients and 18 control subjects.Results: HNE-protein adducts and TGF-β1 levels were significantly higher in T2, T3 and T4 gastric cancers than in either the T1 stage or controls (p<0.001. Pathologic stage was correlated with TGF-β1 levels (r=0.702, p<0.05.Conclusion: These markers production may contribute to tumor angiogenesis and aid in the prognosis of the gastric cancer.

  10. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  11. Changes in non-enzymatic antioxidant capacity and lipid peroxidation during germination of white, yellow and purple maize seeds

    International Nuclear Information System (INIS)

    Deng, B.; Zhang, Y.; Yang, K.

    2016-01-01

    In this study, the changes in non-enzymatic antioxidant capacity and lipid peroxidation during the germination process of purple, yellow and white maize seeds were compared, under favorable conditions. Results showed that germination can increase non-enzymatic antioxidant capacity (evaluated with ferric reducing power and 2, 2-diphenyl-1-picryl-hydrazyl-hydrate radical scavenging capacity) and lipid peroxidation levels for all these seeds. In addition, non-enzymatic antioxidant capacity observed in the germinating seeds were in the order of purple > yellow > white. However, the highest and lowest levels of lipid peroxidation could be seen during the germination processes of the white and purple seeds, respectively. In addition, the germination rates of the seeds followed the order of white > yellow > purple. Further studies showed that H/sub 2/O/sub 2/ treatment can significantly promote seed germination, especially for purple seeds. In addition, DMTU (dimethylthiourea), a specific scavenger for H/sub 2/O/sub 2/, could slightly but significantly arrest dormancy release. Data analysis showed that a high negative correlation (R/sup 2/ = -0.955) existed between non-enzymatic antioxidant capacity and germination rates. However, a high positive correlation (R/sup 2/ = 0.860) could be detected between lipid peroxidation and germination rates. Finally, lipid peroxidation as a possible novel signaling mechanism for seed germination has been discussed under stress-free conditions. (author)

  12. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    Science.gov (United States)

    Koga, Yosuke

    2012-01-01

    The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1) the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2) the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3) the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.” PMID:22927779

  13. Thermal Adaptation of the Archaeal and Bacterial Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Yosuke Koga

    2012-01-01

    Full Text Available The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1 the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2 the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3 the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.”

  14. Effects of dietary alpha-tocopherol and beta-carotene on lipid peroxidation induced by methyl mercuric chloride in mice

    DEFF Research Database (Denmark)

    Andersen, H R; Andersen, O

    1993-01-01

    -Tocopherol did not protect against CH3HgCl induced lipid peroxidation in the brain. Excess dietary beta-carotene further enhanced CH3HgCl induced lipid peroxidation in liver, kidney and brain. CH3HgCl significantly decreased the activity of total glutathione peroxidase (T-GSH-Px) and Se-dependent glutathione...

  15. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  16. Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells.

    Science.gov (United States)

    Montanari, Ricardo M; Barbosa, Luiz C A; Demuner, Antonio J; Silva, Cleber J; Andrade, Nelio J; Ismail, Fyaz M D; Barbosa, Maria C A

    2012-08-14

    The chemical composition of the volatile oils from five Anacardiaceae species and their activities against Gram positive and negative bacteria were assessed. The peroxidative damage within bacterial cell membranes was determined through the breakdown product malondialdehyde (MDA). The major constituents in Anacardium humile leaves oil were (E)-caryophyllene (31.0%) and α-pinene (22.0%), and in Anacardium occidentale oil they were (E)-caryophyllene (15.4%) and germacrene-D (11.5%). Volatile oil from Astronium fraxinifolium leaves were dominated by (E)-β-ocimene (44.1%) and α-terpinolene (15.2%), whilst the oil from Myracrodruon urundeuva contained an abundance of δ-3-carene (78.8%). However, Schinus terebinthifolius leaves oil collected in March and July presented different chemical compositions. The oils from all species, except the one from A. occidentale, exhibited varying levels of antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli. Oil extracted in July from S. terebinthifolius was more active against all bacterial strains than the corresponding oil extracted in March. The high antibacterial activity of the M. urundeuva oil could be ascribed to its high δ-3-carene content. The amounts of MDA generated within bacterial cells indicate that the volatile oils induce lipid peroxidation. The results suggest that one putative mechanism of antibacterial action of these volatile oils is pro-oxidant damage within bacterial cell membrane explaining in part their preservative properties.

  17. Lipids and Protein Peroxidation in Children and Teenager Patients with Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    Yu.V. Poliakova

    2015-09-01

    Full Text Available A review of literature about the study of lipid and protein peroxidation in children and teenagers with pulmonary tuberculosis nowadays was carried out. It was established that there is a great number works dedicated to the lipid peroxidation and antioxidant protective system in various pathological conditions of the respiratory system, including pulmonary tuberculosis in children and teenagers today. Oxidative modification proteins products are the earliest markers of oxidative stress in patients. There is no information on the oxidative modification of proteins in children and teenagers suffering from pulmonary tuberculosis in the literature. The study of oxidative modification of proteins will facilitate the development of more efficient new diagnosis methods and pathogenetic treatment of children and teenagers with pulmonary tuberculosis, that will increase the treatment effectiveness.

  18. Effects of extremely low frequency electromagnetic fields on paraoxonase serum activity and lipid peroxidation metabolites in rat.

    Science.gov (United States)

    Seifirad, Soroush; Farzampour, Shahrokh; Nourbakhsh, Mitra; Amoli, Mahsa Mohammad; Razzaghy-Azar, Maryam; Larijani, Bagher

    2014-01-01

    Atherogenic effects of ELF-MF exposure have not been studied well so far. Therefore we have hypothesized that ELF-MF exposure might have atherogenic effect by impairing antioxidant function and increasing lipid peroxidation. This study was therefore undertaken to examine the effects of ELF-MF on paraoxonase (PON) activity, antioxidant capacity and lipid peroxidation metabolites. Effects of time on remodeling of antioxidant system were also investigated in this study. Seventy five Wistar rats were randomly allocated into five groups as follows: 1) Sham exposure, 2) Single exposure to 60 Hz, sacrificed immediately after exposure, 3) Single exposure to 60 Hz, sacrificed 72 hours after exposure, 4) Fourteen days of exposure to 60 Hz, sacrificed immediately after exposure, and 5) Fourteen days of exposure to 60 Hz, sacrificed 72 hours after exposure. Blood samples were collected and analyzed. The results were compared using ANOVA and post hoc Tukey HSD for multiple caparisons. Single ELF-MF exposure significantly increased lipid peroxidation (CD and MDA) and increased antioxidant serum activity (HDL, paraoxonase activity, and serum total antioxidant capacity). Chronic ELF-MF exposure increased lipid peroxidation and affected antioxidant system. Free fatty acids levels were significantly increased after both single and two weeks exposure. Chronic exposure led to irreversible changes while acute exposure tended to reversible alterations on above mentioned parameters. According to the results of this study, ELF-MF exposure could impair oxidant-antioxidant function and might increase oxidative stress and lipid peroxidation. Antioxidant capability was dependent on the duration and continuity of ELF-MF exposure.

  19. Importance of the hexagonal lipid phase in biological membrane organisation

    Directory of Open Access Journals (Sweden)

    Juliette eJouhet

    2013-12-01

    Full Text Available Abstract:Domains are present in every natural membrane. They are characterised by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organisation are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  20. Importance of the hexagonal lipid phase in biological membrane organization.

    Science.gov (United States)

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  1. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    2014-10-01

    Full Text Available Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2, in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  2. Binding of Neurotransmitters to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Werge, Mikkel; Elf-Lind, Maria Northved

    2014-01-01

    / acetylated g-aminobutyrate (GABAneu) with a dipalmitoylphosphatidylcholine (DPPC) bilayer. This study was motivated by recent research results that suggested that neural transmission may also be affected by nonspecific interactions of NTs with the lipid matrix of the synaptic membrane. Our results revealed...... backbone of the phospholipids. It is surprising that hydrophilic solutes can deeply penetrate into the membrane pointing to the fact that membrane affinity is governed by specific interactions. Our MD simulations identified the salt-bridge between the primary amine of NTs and the lipid phosphate group...

  3. Lipid peroxidation, detoxification capacity, and genome damage in mice after transplacental exposure to pharmaceutical drugs

    Directory of Open Access Journals (Sweden)

    D. Markovic

    2013-12-01

    Full Text Available Data on genome damage, lipid peroxidation, and levels of glutathione peroxidase (GPX in newborns after transplacental exposure to xenobiotics are rare and insufficient for risk assessment. The aim of the current study was to analyze, in an animal model, transplacental genotoxicity, lipid peroxidation, and detoxification disturbances caused by the following drugs commonly prescribed to pregnant women: paracetamol, fluconazole, 5-nitrofurantoin, and sodium valproate. Genome damage in dams and their newborn pups transplacentally exposed to these drugs was investigated using the in vivo micronucleus (MN assay. The drugs were administered to dams intraperitoneally in three consecutive daily doses between days 12 and 14 of pregnancy. The results were correlated, with detoxification capacity of the newborn pups measured by the levels of GPX in blood and lipid peroxidation in liver measured by malondialdehyde (HPLC-MDA levels. Sodium valproate and 5-nitrofurantoin significantly increased MN frequency in pregnant dams. A significant increase in the MN frequency of newborn pups was detected for all drugs tested. This paper also provides reference levels of MDA in newborn pups, according to which all drugs tested significantly lowered MDA levels of newborn pups, while blood GPX activity dropped significantly only after exposure to paracetamol. The GPX reduction reflected systemic oxidative stress, which is known to occur with paracetamol treatment. The reduction of MDA in the liver is suggested to be an unspecific metabolic reaction to the drugs that express cytotoxic, in particular hepatotoxic, effects associated with oxidative stress and lipid peroxidation.

  4. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes.

    Science.gov (United States)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B

    2017-06-07

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  5. Differential Effect of Plant Lipids on Membrane Organization

    Science.gov (United States)

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  6. [Participation of final products of lipid peroxidation in the anticancer mechanism of ionizing radiation and radiomimetic cytostatics].

    Science.gov (United States)

    Przybyszewski, W M

    2001-01-01

    This review reports the evidence for the participation of final products of lipid peroxidation in the anticancer mechanism of ionising radiation and radiomimetic cytostatics. Processes of lipid peroxidation occur endogenously in response to oxidative stress and great diversity of reactive metabolites is formed. However, direct observation of radical reaction in pathophysiology of cells, tissues and organs is limited technically. Most investigations focused on the indirect assessment of their final products, aldehydes. The peroxidative breakdown of polyunsaturated fatty acids is believed to be involved in the regulation of cell division, and antitumor effect through biochemical and genetic processes.

  7. Radioprotection by dipyridamole in the aging mouse. Effects on lipid peroxidation in mouse liver, spleen and brain after whole-body X-ray irradiation

    International Nuclear Information System (INIS)

    Seino, Noritaka

    1995-01-01

    To investigate the radioprotective effect of dipyridamole in the aging mouse, the lipid peroxide content in aging mouse liver, spleen and brain irradiated by X-ray were measured both before and after injection of dipyridamole. The lipid peroxide content increased with aging from 2 months old to 16 months old in the mouse liver, spleen and brain. The content of lipid peroxide in the liver and spleen of the aging mouse was significantly increased in 7 days after whole-body irradiation with 8 Gy, but was unchanged in the brain. Dipyridamole, given before irradiation, significantly inhibited the increase of lipid peroxide after irradiation. These results suggest that dipyridamole may have radioprotective effects on aging mouse liver and spleen as well as on young mouse, and that inhibition of lipid peroxidation is a possible factor in the radioprotective effect of dipyridamole. (author)

  8. Combined effect of vanadium and nickel on lipid peroxidation and ...

    African Journals Online (AJOL)

    The exposure to nickel led to a significant decrease (p < 0.001) in SOD, GST activities in liver and GSH content in kidney and a significant (p < 0.001) increase in the hepatic MDA content and renal SOD activity. When the metals were administered in combination, the elevation of lipid peroxidation did not potentiate. However ...

  9. Understanding carbon nanotube channel formation in the lipid membrane

    Science.gov (United States)

    Choi, Moon-ki; Kim, Hyunki; Lee, Byung Ho; Kim, Teayeop; Rho, Junsuk; Kim, Moon Ki; Kim, Kyunghoon

    2018-03-01

    Carbon nanotubes (CNTs) have been considered a prominent nano-channel in cell membranes because of their prominent ion-conductance and ion-selectivity, offering agents for a biomimetic channel platform. Using a coarse-grained molecular dynamics simulation, we clarify a construction mechanism of vertical CNT nano-channels in a lipid membrane for a long period, which has been difficult to observe in previous CNT-lipid interaction simulations. The result shows that both the lipid coating density and length of CNT affect the suitable fabrication condition for a vertical and stable CNT channel. Also, simulation elucidated that a lipid coating on the surface of the CNT prevents the CNT from burrowing into the lipid membrane and the vertical channel is stabilized by the repulsion force between the lipids in the coating and membrane. Our study provides an essential understanding of how CNTs can form stable and vertical channels in the membrane, which is important for designing new types of artificial channels as biosensors for bio-fluidic studies.

  10. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    Science.gov (United States)

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  11. Non-Brownian diffusion in lipid membranes: Experiments and simulations.

    Science.gov (United States)

    Metzler, R; Jeon, J-H; Cherstvy, A G

    2016-10-01

    The dynamics of constituents and the surface response of cellular membranes-also in connection to the binding of various particles and macromolecules to the membrane-are still a matter of controversy in the membrane biophysics community, particularly with respect to crowded membranes of living biological cells. We here put into perspective recent single particle tracking experiments in the plasma membranes of living cells and supercomputing studies of lipid bilayer model membranes with and without protein crowding. Special emphasis is put on the observation of anomalous, non-Brownian diffusion of both lipid molecules and proteins embedded in the lipid bilayer. While single component, pure lipid bilayers in simulations exhibit only transient anomalous diffusion of lipid molecules on nanosecond time scales, the persistence of anomalous diffusion becomes significantly longer ranged on the addition of disorder-through the addition of cholesterol or proteins-and on passing of the membrane lipids to the gel phase. Concurrently, experiments demonstrate the anomalous diffusion of membrane embedded proteins up to macroscopic time scales in the minute time range. Particular emphasis will be put on the physical character of the anomalous diffusion, in particular, the occurrence of ageing observed in the experiments-the effective diffusivity of the measured particles is a decreasing function of time. Moreover, we present results for the time dependent local scaling exponent of the mean squared displacement of the monitored particles. Recent results finding deviations from the commonly assumed Gaussian diffusion patterns in protein crowded membranes are reported. The properties of the displacement autocorrelation function of the lipid molecules are discussed in the light of their appropriate physical anomalous diffusion models, both for non-crowded and crowded membranes. In the last part of this review we address the upcoming field of membrane distortion by elongated membrane

  12. Self-assembled tethered bimolecular lipid membranes.

    Science.gov (United States)

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules

  13. Molecular Transport Studies Through Unsupported Lipid Membranes

    Science.gov (United States)

    Rock, William; Parekh, Sapun; Bonn, Mischa

    2014-03-01

    Dendrimers, spherical polymeric nanoparticles made from branched monomers around a central core, show great promise as drug delivery vehicles. Dendrimer size, core contents, and surface functionality can be synthetically tuned, providing unprecedented versatility. Polyamidoamine (PAMAM) dendrimers have been shown to enter cells; however, questions remain about their biophysical interactions with the cell membrane, specifically about the presence and size of transient pores. We monitor dendrimer-lipid bilayer interactions using unsupported black lipid membranes (BLMs) as model cell membranes. Custom bilayer slides contain two vertically stacked aqueous chambers separated by a 25 μm Teflon sheet with a 120 μm aperture where the bilayer is formed. We vary the composition of model membranes (cholesterol content and lipid phase) to create biomimetic systems and study the interaction of PAMAM G6 and G3 dendrimers with these bilayers. Dendrimers, dextran cargo, and bilayers are monitored and quantified using time-lapse fluorescence imaging. Electrical capacitance measurements are simultaneously recorded to determine if the membrane is porous, and the pore size is deduced by monitoring transport of fluorescent dextrans of increasing molecular weight. These experiments shed light on the importance of cholesterol content and lipid phase on the interaction of dendrimer nanoparticles with membranes.

  14. Lipid peroxidation in radiation pneumonitis in mouse lung and its preventation

    International Nuclear Information System (INIS)

    Kodama, Akihisa; Tsujino, Kayoko; Kono, Michio

    1998-01-01

    Lipid peroxidation of the lung in irradiated C57BL6J mice was analyzed by gas chromatography. Among six major fatty acids in the mouse lung tissue, the amounts of two unsaturated fatty acids, arachidonic acid and DHA reduced one day after irradiation, and then recovered up to the level of in the control group four weeks after irradiation. In contrast, the amounts of stearic and palmitic acid did not change significantly. The mice fed with vitamin E-enriched food showed no significant changes of fatty acids which were compatible with pathophysiological findings 4 weeks after irradiation. Reduction of both arachidonic acid and DHA following lipid peroxidation in lung tissue, was assumed to play an important role in development of radiation pneumonitis. Vitamin E seems to enable to prevent or reduce the occurrence and progression of radiation pneumonitis, but as a radical scavenger, it may also weaken the anti-tumor growth effect of low linear energy transfer (LET) irradiation as photon. (author)

  15. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  16. [Methodological aspects of evaluation of potential lipid capacity for peroxidation from the serum levels of TBA-active products during iron ion stimulation].

    Science.gov (United States)

    Kulikova, A I; Tugusheva, F A; Zubina, I M; Shepilova, I N

    2008-05-01

    The authors propose a simple and reproducible procedure for using iron ions to stimulate serum lipid peroxidation, with TBA-active products being further determined. The procedure determines the reserve of lipids that can be oxidized during oxidative stress. A combination of direct studies and correlation analysis suggests that low-density lipoproteins and very low-density lipoproteins are the major substrates for lipid peroxidation while high-density lipoproteins show a high resistance to this process. The presented procedure may be used to monitor lipid peroxidation in various conditions and upon various exposures in common laboratory practice.

  17. EFFECT OF PHYSICAL EXERCISE ON LIPID PEROXIDATION AND ANTIOXIDANT ASCORBIC ACID DEFENSE

    Directory of Open Access Journals (Sweden)

    Ljiljana M. Popović

    2006-06-01

    Full Text Available Strenuous exercises greatly increase oxygen consumption in the whole body, especially in skeletal muscles. Large part of oxygen consumption is reduced to H2O and ATP, but smaller part (2-5% results in an increased leakage of electrons from the mitochondrial respiratory chain, forming various reactive oxygen species ─ ROS (O2˙¯, H2O2 i OH˙. These free radicals are capable of triggering a chain of damaging biochemical and physiological reactions (oxidative stress, lipid peroxidation,as a base for skeletal muscles damage after exercise. MDA (malondialdehide is a marker of exercise induced lipid peroxidation process. L–ascorbic acid is a major aqueous-phase antioxidant. To estimate antioxidant role of ascorbic acid we use rate between dehidroascorbate and ascorbate. In this paper those markers were determinated in 30 students, in rest and after treadmill running protocol (Bruce Treadmill Protocol. It was found that after the treadmill test , plasma MDA level had increased from 3,04 to 4,39 μM/L. Plasma ascorbic acid was also found to be higher after the treadmill test comparing to rest level (from 55,4 to 67,6 μM/L. DHA/A level in rest was 1,62 and after treadmill test it increased to 2,05. These results suggests that strenuous exercise increased process of lipid peroxidation, but in the same time increased ascorbic acid level in plasma and DHA/A rate indicates stronger antioxidant defense system.

  18. Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure

    International Nuclear Information System (INIS)

    Nishi, J.; Ogura, R.; Sugiyama, M.; Hidaka, T.; Kohno, M.

    1991-01-01

    To elucidate the radical mechanism of lipid peroxidation induced by ultraviolet light (UV) irradiation, an electron spin resonance (ESR) study was made on epidermal homogenate prepared from albino rat skin. The exposure of the homogenate to UV light resulted in an increase in lipid peroxide content, which was proportional to the time of UV exposure. Using ESR spin trapping (dimethyl-1-pyrroline-N-oxide, DMPO), the DMPO spin adduct spectrum of lipid radicals (L.) was measured following UV exposure (DMPO-L.:aN = 15.5 G, aH = 22.7 G), as was the spectrum of DMPO-hydroxyl radical (DMPO-OH, aN = aH = 15.5 G). In the presence of superoxide dismutase, the DMPO spin adduct spectrum of lipid radicals was found to be reduced remarkably. Therefore, it was shown that the generation of the lipid radicals partially involves superoxide anion radicals, in addition to hydroxyl radicals. In the ESR free-radical experiment, an ESR signal appeared at g = 2.0064 when the ESR tube filled with homogenate was exposed to UV light at -150 degrees C. The temperature-dependent change in the ESR free radical signal of homogenate exposed to UV light was observed at temperatures varying from -150 degrees C to room temperature. By using degassed samples, it was confirmed that oxygen is involved in the formation of the lipid peroxide radicals (LOO.) from the lipid radicals (L.)

  19. Evaluation of antioxidant capacity and membrane stabilizing ...

    African Journals Online (AJOL)

    Both the leaf and root of C. adenocaulis were extracted with 70% ethanol to yield the ... ELE and ERE were able to protect red blood cell (RBC) membrane against ... antioxidant, anti-inflammatory, lipid peroxidation, membrane stabilization.

  20. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    Science.gov (United States)

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  1. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  2. Synthesis and phototoxicity of isomeric 7,9-diglutathione pyrrole adducts: Formation of reactive oxygen species and induction of lipid peroxidation

    Directory of Open Access Journals (Sweden)

    Liang Ma

    2015-09-01

    Full Text Available Pyrrolizidine alkaloids (PAs are hepatotoxic, genotoxic, and carcinogenic in experimental animals. Because of their widespread distribution in the world, PA-containing plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Upon metabolism, PAs generate reactive dehydro-PAs and other pyrrolic metabolites that lead to toxicity. Dehydro-PAs are known to react with glutathione (GSH to form 7-GSH-(+/−-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (7-GS-DHP in vivo and in vitro and 7,9-diGS-DHP in vitro. To date, the phototoxicity of GS-DHP adducts has not been well studied. In this study, we synthesized 7-GS-DHP, a tentatively assigned 9-GS-DHP, and two enantiomeric 7,9-diGS-DHP adducts by reaction of dehydromonocrotaline with GSH. The two 7,9-diGS-DHPs were separated by high performance liquid chromatography (HPLC and their structures were characterized by 1H nuclear magnetic resonance (NMR and 1H–1H correlation spectroscopy (COSY NMR spectral analysis. Photoirradiation of 7-GS-DHP, 9-GS-DHP, and the two 7,9-diGS-DHPs as well as dehydromonocrotaline, dehydroheliotrine, and the 7-R enantiomer of DHP (DHR, by UVA light at 0 J/cm2, 14 J/cm2, and 35 J/cm2 in the presence of a lipid, methyl linoleate, all resulted in lipid peroxidation in a light dose-responsive manner. The levels of lipid peroxidation induced by the two isomeric 7,9-diGS-DHPs were significantly higher than that by 7-GS-DHP and 9-GS-DHP. When 7,9-diGS-DHP was irradiated in the presence of sodium azide (NaN3, the level of lipid peroxidation decreased; lipid peroxidation was enhanced when methanol was replaced by deuterated methanol. These results suggest that singlet oxygen is a product induced by the irradiation of 7,9-diGS-DHP. When irradiated in the presence of superoxide dismutase (SOD, the level of lipid peroxidation decreased, indicating that lipid peroxidation is also mediated by superoxide. These results indicate that lipid

  3. Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains

    Science.gov (United States)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060

  4. Lipidomics in research on yeast membrane lipid homeostasis.

    Science.gov (United States)

    de Kroon, Anton I P M

    2017-08-01

    Mass spectrometry is increasingly used in research on membrane lipid homeostasis, both in analyses of the steady state lipidome at the level of molecular lipid species, and in pulse-chase approaches employing stable isotope-labeled lipid precursors addressing the dynamics of lipid metabolism. Here my experience with, and view on mass spectrometry-based lipid analysis is presented, with emphasis on aspects of quantification of membrane lipid composition of the yeast Saccharomyces cerevisiae. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The effects of therapeutic concentrations ofamisulpride andrisperidone on human plasma lipid peroxidation – invitro studies

    Directory of Open Access Journals (Sweden)

    Anna Dietrich-Muszalska

    2011-09-01

    Full Text Available Introduction: Antipsychotics may in different ways affect the oxidative stress measured by plasma lipid peroxidation. Probably some of them may intensify the oxidative balance disturbances occurring in schizophrenia. The effects of amisulpride and risperidone on redox processes are not known sufficiently yet. Aim of the study: Establishment of the effects of amisulpride and risperidone on human plasma lipid peroxidation measured by determination of the level of thiobarbituric acid-reactive substances (TBARS, in vitro. Material and methods: Blood for the studies was collected from healthy volunteers (aged 24-26 years for ACD solution. Active substances of the examined drugs were dissolved in 0.01% dimethylsulfoxide (DMSO to the final concentrations (of amisulpride 578 ng/ml and risperidone 64 ng/ml and incubated with plasma for 1 and 24 hours at 37ºC. For each experiment the control samples of plasma with DMSO (without the drug were performed. The lipid peroxidation level was measured in plasma by determining the TBARS concentration, using the spectrophotometric method (acc. to Rice-Evans, 1991. The results were analysed using the following statistical methods: the paired Student t-test and ANOVA II variance analysis and NIR test (StatSoft Inc., Statistica v. 6.0. Results: The ANOVA II variance analysis indicated significant differences in the effects of both drugs on TBARS level (F=4.26; df=2, p0.05. Conclusion: Amisulpride and risperidone in concentrations corresponding to doses recommended for treatment of acute episode of schizophrenia do not induce oxidative stress measured by lipid peroxidation. Unlike risperidone, amisulpride exhibits antioxidative effects.

  6. Individual and Combined Effects of Fumonisin B1, Deoxynivalenol and Zearalenone on the Hepatic and Renal Membrane Lipid Integrity of Rats

    Directory of Open Access Journals (Sweden)

    András Szabó

    2017-12-01

    Full Text Available (1 Background and (2 Methods: A 14-day in vivo, multitoxic (pure mycotoxins rat experiment was conducted with zearalenone (ZEA; 15 μg/animal/day, deoxynivalenol (DON; 30 μg/animal/day and fumonisin B1 (FB1; 150 μg/animal/day, as individual mycotoxins, binary (FD, FZ and DZ and ternary combinations (FDZ, via gavage in 1 mL water boluses. (3 Results: Body weight was unaffected, while liver (ZEA↑ vs. DON and kidney weight (ZEA↑ vs. FDZ increased. Hepatocellular membrane lipid fatty acids (FAs referred to ceramide synthesis disturbance (C20:0, C22:0, and decreased unsaturation (C22:5 n3 and unsat. index, mainly induced by DON and to a lesser extent by ZEA. The DON-FB1 interaction was additive on C20:0 in liver lipids. In renal phospholipids, ZEA had the strongest effect on the FA profile, affecting the saturated (C18:0 and many n6 FAs; ZEA was in an antagonistic relationship with FB1 (C18:0 or DON (C18:2 n6, C20:1 n9. Hepatic oxidative stress was the most expressed in FD (reduced glutathione and glutathione peroxidase, while the nephrotoxic effect was further supported by lipid peroxidation (malondialdehyde in the DON treatment. (4 Conclusions: In vivo study results refer to multiple mycotoxin interactions on membrane FAs, antioxidants and lipid peroxidation compounds, needing further testing.

  7. Assessing the nature of lipid raft membranes

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Ollila, Samuli; Hyvönen, Marja T

    2007-01-01

    of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins......-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM), and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide...... heterogeneity more difficult. The findings reveal aspects of the role of favored (specific) lipid-lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads...

  8. Raised concentrations of lipid peroxidation products (LPO in pregnant women with impaired glucose tolerance

    Directory of Open Access Journals (Sweden)

    Krzysztof C. Lewandowski

    2014-06-01

    Full Text Available introduction. Lipid peroxidation (LPO results from oxidative damage to membrane lipids. Whereas LPO rises in normal pregnancy, the effect of gestational diabetes mellitus (GDM on this process has not been clearly defined. materials and method. Fasting blood concentrations of malondialdehyde+4-hydroxyalkenals (MDA+4-HDA, as LPO index, TNFa soluble receptors (sTNF-R1 and sTNF-R2, and soluble adhesion molecules (sICAM-1, sVCAM-1, were measured in 51 women at 28 weeks of gestation. The women were divided according to the results of 50.0 g glucose challenge test (GCT and 75.0 g oral glucose tolerance test (OGTT: Controls (n=20, normal responses to both GCT and OGTT; Intermediate Group (IG (n=15, abnormal GCT but normal OGTT; GDM group (n=16, abnormal both GCT and OGTT. results. Glucose concentrations in women diagnosed with GDM were within the range of impaired glucose tolerance. There were no significant differences in concentrations of either TNF a soluble receptors R1 and R2, or sICAM-1 or sVCAM-1. LPO concentrations [MDA+4-HDA (nmol/mg protein] were significantly higher in women with GDM than in the other two groups [64.1±24.3 (mean±SD, 39.3±23.1, 47.0±18.1, for GDM, IG and Controls, respectively; p<0.05]. In multivariate analysis, the only significant independent correlation was between LPO level and glucose at 120 minutes of OGTT (rs=0.42; p=0.009. conclusions. Oxidative damage to membrane lipids is increased in GDM and might result directly from hyperglycaemia. Physiological significance of this phenomenon remains to be elucidated.

  9. Lipid organization of the plasma membrane

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Melo, Manuel N; van Eerden, Floris J; Arnarez, Clément; Lopez, Cesar A; Wassenaar, Tsjerk A; Periole, Xavier; de Vries, Alex H; Tieleman, D Peter; Marrink, Siewert J

    2014-01-01

    The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different

  10. Atomistic study of lipid membranes containing chloroform: looking for a lipid-mediated mechanism of anesthesia.

    Directory of Open Access Journals (Sweden)

    Ramon Reigada

    Full Text Available The molecular mechanism of general anesthesia is still a controversial issue. Direct effect by linking of anesthetics to proteins and indirect action on the lipid membrane properties are the two hypotheses in conflict. Atomistic simulations of different lipid membranes subjected to the effect of small volatile organohalogen compounds are used to explore plausible lipid-mediated mechanisms. Simulations of homogeneous membranes reveal that electrostatic potential and lateral pressure transversal profiles are affected differently by chloroform (anesthetic and carbon tetrachloride (non-anesthetic. Simulations of structured membranes that combine ordered and disordered regions show that chloroform molecules accumulate preferentially in highly disordered lipid domains, suggesting that the combination of both lateral and transversal partitioning of chloroform in the cell membrane could be responsible of its anesthetic action.

  11. Yeast lipids can phase separate into micrometer-scale membrane domains

    DEFF Research Database (Denmark)

    Klose, Christian; Ejsing, Christer S; Garcia-Saez, Ana J

    2010-01-01

    The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although there is bioc......The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although...... there is biochemical evidence for lipid raft-dependent protein and lipid sorting in the yeast Saccharomyces cerevisiae, direct evidence for an interaction between yeast sphingolipids and the yeast sterol ergosterol, resulting in membrane domain formation, is lacking. Here we show that model membranes formed from yeast...... total lipid extracts possess an inherent self-organization potential resulting in Ld-Lo phase coexistence at physiologically relevant temperature. Analyses of lipid extracts from mutants defective in sphingolipid metabolism as well as reconstitution of purified yeast lipids in model membranes of defined...

  12. Drinking orange juice increases total antioxidant status and decreases lipid peroxidation in adults.

    Science.gov (United States)

    Foroudi, Shahrzad; Potter, Andrew S; Stamatikos, Alexis; Patil, Bhimanagouda S; Deyhim, Farzad

    2014-05-01

    Cardiovascular disease (CVD) is the leading cause of death in the world and is the primary cause of mortality among Americans. One of the many reasons for the pathogenesis of CVD is attributed to eating diets high in saturated fat and refined carbohydrates and low in fruits and vegetables. Epidemiological evidence has supported a strong association between eating diets rich in fruits and vegetables and cardiovascular health. An experiment was conducted utilizing 24 adults with hypercholesterolemia and hypertriglyceridemia to evaluate the impact of drinking 20 fl oz of freshly squeezed orange juice daily for 90 days on blood pressure, lipid panels, plasma antioxidant capacity, metabolic hormones, lipid peroxidation, and inflammatory markers. Except for addition of drinking orange juice, subjects did not modify their eating habits. The findings suggested that drinking orange juice does not affect (P>.1) blood pressure, lipid panels, metabolic hormones, body fat percentage, or inflammatory markers. However, total plasma antioxidant capacity was significantly increased (Pjuice consumption. Drinking orange juice may protect the cardiovascular system by increasing total plasma antioxidant status and by lowering lipid peroxidation independent of other cardiovascular risk markers evaluated in this study.

  13. Pollen viability and membrane lipid composition

    NARCIS (Netherlands)

    Bilsen, van D.G.J.L.

    1993-01-01

    In this thesis membrane lipid composition is studied in relation to pollen viability during storage. Chapter 1 reviews pollen viability, membranes in the dry state and membrane changes associated with cellular aging. This chapter is followed by a study of age-related changes in phospholipid

  14. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    Directory of Open Access Journals (Sweden)

    T.I. Omotayo

    2015-04-01

    Full Text Available The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump.

  15. Astaxanthin Restrains Nitrative-Oxidative Peroxidation in Mitochondrial-Mimetic Liposomes: A Pre-Apoptosis Model

    Science.gov (United States)

    Mano, Camila M.; Cardozo, Karina H. M.; Colepicolo, Pio; Bechara, Etelvino J. H.

    2018-01-01

    Astaxanthin (ASTA) is a ketocarotenoid found in many marine organisms and that affords many benefits to human health. ASTA is particularly effective against radical-mediated lipid peroxidation, and recent findings hypothesize a “mitochondrial-targeted” action of ASTA in cells. Therefore, we examined the protective effects of ASTA against lipid peroxidation in zwitterionic phosphatidylcholine liposomes (PCLs) and anionic phosphatidylcholine: phosphatidylglycerol liposomes (PCPGLs), at different pHs (6.2 to 8.0), which were challenged by oxidizing/nitrating conditions that mimic the regular and preapoptotic redox environment of active mitochondria. Pre-apoptotic conditions were created by oxidized/nitr(osyl)ated cytochrome c and resulted in the highest levels of lipoperoxidation in both PCL and PCPGLs (pH 7.4). ASTA was less protective at acidic conditions, especially in anionic PCPGLs. Our data demonstrated the ability of ASTA to hamper oxidative and nitrative events that lead to cytochrome c-peroxidase apoptosis and lipid peroxidation, although its efficiency changes with pH and lipid composition of membranes. PMID:29649159

  16. Aerobic training suppresses exercise-induced lipid peroxidation and inflammation in overweight/obese adolescent girls.

    Science.gov (United States)

    Youssef, Hala; Groussard, Carole; Lemoine-Morel, Sophie; Pincemail, Joel; Jacob, Christophe; Moussa, Elie; Fazah, Abdallah; Cillard, Josiane; Pineau, Jean-Claude; Delamarche, Arlette

    2015-02-01

    This study aimed to determine whether aerobic training could reduce lipid peroxidation and inflammation at rest and after maximal exhaustive exercise in overweight/obese adolescent girls. Thirty-nine adolescent girls (14-19 years old) were classified as nonobese or overweight/obese and then randomly assigned to either the nontrained or trained group (12-week multivariate aerobic training program). Measurements at the beginning of the experiment and at 3 months consisted of body composition, aerobic fitness (VO2peak) and the following blood assays: pre- and postexercise lipid peroxidation (15F2a-isoprostanes [F2-Isop], lipid hydroperoxide [ROOH], oxidized LDL [ox-LDL]) and inflammation (myeloperoxidase [MPO]) markers. In the overweight/ obese group, the training program significantly increased their fat-free mass (FFM) and decreased their percentage of fat mass (%FM) and hip circumference but did not modify their VO2peak. Conversely, in the nontrained overweight/obese group, weight and %FM increased, and VO2peak decreased, during the same period. Training also prevented exercise-induced lipid peroxidation and/or inflammation in overweight/obese girls (F2-Isop, ROOH, ox-LDL, MPO). In addition, in the trained overweight/obese group, exercise-induced changes in ROOH, ox-LDL and F2-Isop were correlated with improvements in anthropometric parameters (waist-to-hip ratio, %FM and FFM). In conclusion aerobic training increased tolerance to exercise-induced oxidative stress in overweight/obese adolescent girls partly as a result of improved body composition.

  17. DMSO does not protect against hydroxyl radical induced peroxidation in model membranes

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, J A; Kremers, W [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1981-04-01

    Dimethylsulphoxide (DMSO) promoted peroxidation in both linolenate and linoleate micelles. The promotional effect was most evident at concentrations of DMSO above 0.3 M with 0.012 M fatty acid. This was well above the DMSO concentration at which all the OH was scavenged by DMSO on the basis of the relative rate constants recorded. It was also found that DMSO did not decrease the yield of lipid hydroperoxide in a concentration range (0.01 to 0.1 M) where DMSO scavenges OH in competition with the unsaturated fatty acids. The sustaining mechanism could be accounted for in terms of CHsup(.)/sub 3/ and CH/sub 3/OOsup(.) being as effective as OH in initiating lipid peroxidation. A possible alternative explanation for the absence of protection by DMSO is that OH scavenging by DMSO is equivalent to lowering the dose-rate. The promotion of peroxidation at high DMSO concentration (> 1.0 M) was more difficult to account for, but may be analogous to the promotional effect of caesium and rubidium counterions.

  18. Influence Of Pentoxifylline And Mexidol On Lipid Peroxidation And Anti-oxidant System In Patients With Urolithiasis

    Directory of Open Access Journals (Sweden)

    A.B. Polozov

    2009-12-01

    Full Text Available Research objective is to prove correction possibility of lipid peroxidation and antioxidant system protection in neph-rolithiasis by taking pentoxifylline and mexidol. 158 patients with kidney concretion have been under the research. Distance shock-wave lithotripsy (ESWL has been carried out. Structure of stones and antioxidant system state have been investigated in all patients. They have been divided into three groups - control, receiving pentoxifylline and receiving mexidol. Influence of indicated preparations on processes of lipid peroxidation and antioxidant system has been studied in case of different structure of concretion

  19. Influence of Curcumin on the Redox System and Lipid Peroxidation in Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    Zahran, A.M.

    2007-01-01

    Naturally occurring micro nutrients polyphenolic compounds have received increased attention in the maintenance of health. Curcumin, the main active biological phyto chemical constituents of Turmeric (Curcuma longa L. rhizomes), is known for its wide range of medicinal properties. The present study was designed to evaluate the potential efficacy of curcumin administration against redox imbalance state and cytotoxic induced by protracted exposure to 'y-rays. Curcumin was orally administered to Sprague Dawley male albino rats simultaneously via intragastric intubation (80 mg/ Kg body wt) for 7 days before exposure to gamma- rays and continued during the whole period of irradiation processing. Whole body γ-rays was delivered as fractionated doses (3 weeks) 3 Gy increment every week up to total cumulative dose of (9 Gy). The results obtained showed increased level of lipid peroxides contents and xanthine oxidase (XO) activity in irradiated animal groups with concomitant depletion in the level of reduced glutathione (GSH) and activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSFI-Px). Administration of curcumin has significantly lowered the level of lipid peroxidation and enhanced the antioxidant status of irradiated animals. It could he concluded that curcumin exerts a protective effect against radiation-induced cytotoxic by modulating the extent of lipid peroxidation and augmenting antioxidant defence system

  20. Effect of Flavonoids on Glutathione Level, Lipid Peroxidation and Cytochrome P450 CYP1A1 Expression in Human Laryngeal Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Lidija Vuković

    2007-01-01

    Full Text Available Flavonoids are phytochemicals exhibiting a wide range of biological activities, among which are antioxidant activity, the ability to modulate activity of several enzymes or cell receptors and possibility to interfere with essential biochemical pathways. Using human laryngeal carcinoma HEp2 cells and their drug-resistant CK2 subline, we examined the effect of five flavonoids, three structurally related flavons (quercetin, fisetin, and myricetin, one flavonol (luteolin and one glycosilated flavanone (naringin for: (i their ability to inhibit mitochondrial dehydrogenases as an indicator of cytotoxic effect, (ii their influence on glutathione level, (iii antioxidant/prooxidant effects and influence on cell membrane permeability, and (iv effect on expression of cytochrome CYP1A1. Cytotoxic action of the investigated flavonoids after 72 hours of treatment follows this order: luteolin>quercetin>fisetin>naringin>myricetin. Our results show that CK2 were more resistant to toxic concentrations of flavonoids as compared to parental cells. Quercetin increased the total GSH level in both cell lines. CK2 cells are less perceptible to lipid peroxidation and damage caused by free radicals. Quercetin showed prooxidant effect in both cell lines, luteolin only in HEp2 cells, whereas other tested flavonoids did not cause lipid peroxidation in the tested cell lines. These data suggest that the same compound, quercetin, can act as a prooxidant, but also, it may prevent damage in cells caused by free radicals, due to the induction of GSH, by forming less harmful complex. Quercetin treatment damaged cell membranes in both cell lines. Fisetin caused higher cell membrane permeability only in HEp2 cells. However, these two compounds did not enhance the damage caused by hydrogen peroxide. Quercetin, naringin, myricetin and fisetin increased the expression of CYP1A1 in both cell lines, while luteolin decreased basal level of CYP1A1 only in HEp2 cells. In conclusion, small

  1. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  2. Role of charged lipids in membrane structures — Insight given by simulations

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Vattulainen, Ilpo

    2016-01-01

    Lipids and proteins are the main components of cell membranes. It is becoming increasingly clear that lipids, in addition to providing an environment for proteins to work in, are in many cases also able to modulate the structure and function of those proteins. Particularly charged lipids...... to fruitful directions. In this paper, we review studies that have utilized molecular dynamics simulations to unravel the roles of charged lipids in membrane structures. We focus on lipids as active constituents of the membranes, affecting both general membrane properties as well as non-lipid membrane...

  3. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Fadhlaoui, Mariem; Couture, Patrice

    2016-01-01

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  4. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    Energy Technology Data Exchange (ETDEWEB)

    Fadhlaoui, Mariem; Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca

    2016-11-15

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  5. Oxidative Stress Induced Lipid Peroxidation And DNA Adduct Formation In The Pathogenesis Of Multiple Myeloma And Lymphoma

    Directory of Open Access Journals (Sweden)

    Tandon, Ravi

    2013-02-01

    Full Text Available Objective: To access the oxidative stress status by quantification of byproducts generated during lipid peroxidation and DNA breakdown products generated during DNA damage in the blood serum of multiple myeloma and lymphoma patients.Material & Methods: Case control study comprised of 40 patients of multiple myeloma and 20 patients of lymphoma along with 20 age and sex-matched healthy subjects as controls. Levels of Malondialdehyde and 8-hydroxy-2-deoxy-Guanosine were measured to study the oxidative stress status in the study subjects.Results: The level of markers of DNA damage and lipid peroxidation were found to be raised significantly in the study subjects in comparison to healthy controls. The results indicate oxidative stress and DNA damage activity increase progressively with the progression of disease.Conclusion: Oxidative stress causes DNA damage and Lipid peroxidation which results in the formation of DNA adducts leading to mutations thereby indicate the role of oxidative stress in the pathogenesis of multiple myeloma and lymphoma.

  6. Influence of supplemental ultraviolet-B radiation on lipid peroxidation of Chinese cabbage

    International Nuclear Information System (INIS)

    Huang Shaobai; Zhang Jingjuan; Liu Xiaozhong

    1998-01-01

    Chinese cabbage cultivar Aijiaohuang was grown in an indoor experiment treated by 0.0,130 (simulating 20% ozone depletion)kJm~(-2)day~(-1) of ultraviolet-B(UV-B) for 4 and 7 days to study the effect of supplemental UV-B radiation on flavoniods and lipid peroxidation in the leaves of Chinese cabbage. Accumulation of UV-ABSORBING flavonoids in the leaves of Chinese cabbage was induced by UV-B radiation. Enhanced UV-B radiation reduced ascorbic acid content in the leaves of Chinese cabbage. It was also found that 13.0kJm~(2)day~(-1) UV-B inhibited catalase and superoxide dismutase activities and increased malondiadehyde content in the leaves of Chinese cabbage. These effects induced by UV-B radiation was enhanced with the time course of treatment. The results above suggested that supplemental UV-B radiation enhanced lipid peroxidation of Chinese cabbage, and the accumulation of UV-absorbing flavonoid could not alleviate the damage of UV-B radiation

  7. Selective Interaction of a Cationic Polyfluorene with Model Lipid Membranes: Anionic versus Zwitterionic Lipids

    Directory of Open Access Journals (Sweden)

    Zehra Kahveci

    2014-03-01

    Full Text Available This paper explores the interaction mechanism between the conjugated polyelectrolyte {[9,9-bis(6'-N,N,N-trimethylammoniumhexyl]fluorene-phenylene}bromide (HTMA-PFP and model lipid membranes. The study was carried out using different biophysical techniques, mainly fluorescence spectroscopy and microscopy. Results show that despite the preferential interaction of HTMA-PFP with anionic lipids, HTMA-PFP shows affinity for zwitterionic lipids; although the interaction mechanism is different as well as HTMA-PFP’s final membrane location. Whilst the polyelectrolyte is embedded within the lipid bilayer in the anionic membrane, it remains close to the surface, forming aggregates that are sensitive to the physical state of the lipid bilayer in the zwitterionic system. The different interaction mechanism is reflected in the polyelectrolyte fluorescence spectrum, since the maximum shifts to longer wavelengths in the zwitterionic system. The intrinsic fluorescence of HTMA-PFP was used to visualize the interaction between polymer and vesicles via fluorescence microscopy, thanks to its high quantum yield and photostability. This technique allows the selectivity of the polyelectrolyte and higher affinity for anionic membranes to be observed. The results confirmed the appropriateness of using HTMA-PFP as a membrane fluorescent marker and suggest that, given its different behaviour towards anionic and zwitterionic membranes, HTMA-PFP could be used for selective recognition and imaging of bacteria over mammalian cells.

  8. Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane

    Science.gov (United States)

    Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas

    2011-01-01

    The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624

  9. Membrane proteins bind lipids selectively to modulate their structure and function.

    Science.gov (United States)

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  10. Engineering lipid structure for recognition of the liquid ordered membrane phase

    International Nuclear Information System (INIS)

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; Stachowiak, Jeanne C.; Sasaki, Darryl Y.

    2016-01-01

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L_o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L_o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L_d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L_o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L_o phase.

  11. How membrane lipids control the 3D structure and function of receptors

    Directory of Open Access Journals (Sweden)

    Jacques Fantini

    2018-02-01

    Full Text Available The cohabitation of lipids and proteins in the plasma membrane of mammalian cells is controlled by specific biochemical and biophysical rules. Lipids may be either constitutively tightly bound to cell-surface receptors (non-annular lipids or less tightly attached to the external surface of the protein (annular lipids. The latter are exchangeable with surrounding bulk membrane lipids on a faster time scale than that of non-annular lipids. Not only do non-annular lipids bind to membrane proteins through stereoselective mechanisms, they can also help membrane receptors acquire (or maintain a functional 3D structure. Cholesterol is the prototype of membrane lipids that finely controls the 3D structure and function of receptors. However, several other lipids such as sphingolipids may also modulate the function of membrane proteins though conformational adjustments. All these concepts are discussed in this review in the light of representative examples taken from the literature.

  12. Changes of nitric oxide system and lipid peroxidation parameters in the digestive system of rats under conditions of acute stress, and use of nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Fomenko Iryna

    2015-03-01

    Full Text Available The use of nonsteroidal anti-inflammatory drugs (NSAIDs in combination with being physiologically stressed often occurs in in the course of different pathologies. This situation may result in the alteration of digestive system functioning. The effect of stress brings about changes in the activity of nitric oxide synthase (NOS, arginase, cyclooxygenase (COX and lipid peroxidation, whereas the use of NSAIDs interrupts the multiple functions of the cell via the inhibition of prostaglandins (PGs synthesis. Taking into account that NOS and COX-systems are connected in their regulation, the aim of the study was to determine the role played by NOS and lipid peroxidation under conditions of the combined action of NSAIDs and stress. In our study, male rats were used. The NSAIDs (naproxen - a non-selective COX inhibitor, celecoxib - a selective COX-2 blocker, and the compound 2A5DHT (which is the active substance of dual COX, and the lipoxygenase (LOX inhibitor, darbufelone were all administered at a dose 10 mg/kg, prior to water restraint stress (WRS. WRS brought about an increase of inducible NOS (iNOS activity in the intestinal mucosal and muscular membranes, as well as in the pancreas. Because of this, constitutive NOS izoform (cNOS and arginase activities decreased. Moreover, the MDA concentration increased, indicating the development of oxidative stress. In our work, pretreatment with naproxen, as in the WRS model, engendered a decrease in iNOS activity. What is more, administration of Celecoxib did not change iNOS activity, as compared to WRS alone, and it showed a tendency to reduce lipid peroxidation. In addition, 2A5DHT prior WRS brought about a decrease of iNOS activity, with the subsequent rise of cNOS activity. Of note, MDA concentration decreased in all studied organs, indicating the reduction of lipid peroxidation under the action of the darbufelone active substance.

  13. Simulation of water transport through a lipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Marrink, S.J.; Berendsen, H.J.C. (Univ. of Groningen (Netherlands))

    1994-04-14

    To obtain insight in the process of water permeation through a lipid membrane we performed molecular dynamics simulations on a phospholipid (DPPC)/water system with atomic detail. Since the actual process of permeation is too slow to be studied directly, we deduced the permeation rate indirectly via computation of the free energy and diffusion rate profiles of a water molecule across the bilayer. We concluded that the permeation of water through a lipid membrane cannot be described adequately by a simple homogeneous solubility-diffusion model. Both the excess free energy and the diffusion rate strongly depend on the position in the membrane, as a result from the inhomogeneous nature of the membrane. The calculated excess free energy profile has a shallow slope and a maximum height of 26 kJ/mol. The diffusion rate is highest in the middle of the membrane where the lipid density is low. In the interfacial region almost all water molecules are bound by the lipid headgroups, and the diffusion turns out to be 1 order of magnitude smaller. The total transport process is essentially determined by the free energy barrier. 78 refs., 12 figs.

  14. No Evidence for Spontaneous Lipid Transfer at ER-PM Membrane Contact Sites.

    Science.gov (United States)

    Merklinger, Elisa; Schloetel, Jan-Gero; Spitta, Luis; Thiele, Christoph; Lang, Thorsten

    2016-04-01

    Non-vesicular lipid transport steps play a crucial role in lipid trafficking and potentially include spontaneous exchange. Since membrane contact facilitates this lipid transfer, it is most likely to occur at membrane contact sites (MCS). However, to date it is unknown whether closely attached biological membranes exchange lipids spontaneously. We have set up a system for studying the exchange of lipids at MCS formed between the endoplasmic reticulum (ER) and the plasma membrane. Contact sites were stably anchored and the lipids cholesterol and phosphatidylcholine (PC) were not capable of transferring spontaneously into the opposed bilayer. We conclude that physical contact between two associated biological membranes is not sufficient for transfer of the lipids PC and cholesterol.

  15. Ageing mechanisms in chickpea seeds: Relationship of sugar hydrolysis and lipid peroxidation with Amadori and Millard reactions

    Directory of Open Access Journals (Sweden)

    mahdi shaaban

    2017-05-01

    Full Text Available This experiment was performed in order to study on ageing mechanisms of chickpea seeds (Cicer arietinum L. in natural storage and accelerated ageing conditions in seed laboratory of Gorgan Agricultural Science and Natural Resources, Gorgan, Iran at 2015. Experiment was in completely randomized design arrangement with four replications. Treatments were 2 and 4 years natural storage and 1-5 days of accelerated ageing with control treatment. The results showed that with increasing of natural storage and accelerated ageing duration, germination percentage was decreased. Increasing of ageing duration decreased soluble sugars, non-reducing sugars and soluble proteins but lipid peroxidation, reducing sugars, protein carbonylation and Amadori and Millard reaction were increased. In natural storage condition lipid peroxidation was more than sugar hydrolysis but in accelerated ageing condition sugar hydrolysis was more than lipid peroxidation. These results show that the main reason of Amadori and Millard reaction in chickpea seeds in natural storage condition is lipid peroxidation and in accelerated ageing condition is sugar hydrolysis. Also, the results showed that Amadori reaction in natural storage condition was more than Amadori reaction and in accelerated ageing condition Millard reaction was more than Amadori reaction. The results of the present study showed that sever Millard reaction after Amadori reaction induced higher damage on seed and results to more decrease of seed viability and reduce of seed germination percentage in accelerated ageing than natural storage.

  16. Ballistic impact response of lipid membranes.

    Science.gov (United States)

    Zhang, Yao; Meng, Zhaoxu; Qin, Xin; Keten, Sinan

    2018-03-08

    Therapeutic agent loaded micro and nanoscale particles as high-velocity projectiles can penetrate cells and tissues, thereby serving as gene and drug delivery vehicles for direct and rapid internalization. Despite recent progress in developing micro/nanoscale ballistic tools, the underlying biophysics of how fast projectiles deform and penetrate cell membranes is still poorly understood. To understand the rate and size-dependent penetration processes, we present coarse-grained molecular dynamics simulations of the ballistic impact of spherical projectiles on lipid membranes. Our simulations reveal that upon impact, the projectile can pursue one of three distinct pathways. At low velocities below the critical penetration velocity, projectiles rebound off the surface. At intermediate velocities, penetration occurs after the projectile deforms the membrane into a tubular thread. At very high velocities, rapid penetration occurs through localized membrane deformation without tubulation. Membrane tension, projectile velocity and size govern which phenomenon occurs, owing to their positive correlation with the reaction force generated between the projectile and the membrane during impact. Two critical membrane tension values dictate the boundaries among the three pathways for a given system, due to the rate dependence of the stress generated in the membrane. Our findings provide broad physical insights into the ballistic impact response of soft viscous membranes and guide design strategies for drug delivery through lipid membranes using micro/nanoscale ballistic tools.

  17. The Protective Effect of Hippophae Rhamnoides Carotenoid Extract Against Lipid Peroxidation in Crude Vegetable Oils

    Directory of Open Access Journals (Sweden)

    Sanda Andrei

    2014-11-01

    Full Text Available Vegetable oils are important elements of the human diet because they contain essential nutritional factors. Due to the manufacturing processes or inadequate conditions of storage, they may also contain lipid oxidation products that are toxic to the body. The purpose of this paper is to test the protective effect of carotenoid-rich extracts obtained from the fruits of Hippophae rhamnoides on crude sunflower, pumpkin and olive oils oxidative processes. In order to evaluate the effect of antioxidant carotenoids, three stages were followed: thermal induction of lipid peroxidation in the presence of AAPH (2,2'-Azobis(2-amidinopropane dihydrochloride; determination of the level of lipid peroxidation in oxidized oils in the presence and absence of antioxidants, by quantifying the concentration of conjugated dienes and malonyl dialdehyde (MDA; determination of the level of lipid peroxidation by evaluating the profile of the fatty acids and the ratio between the saturated and unsaturated fatty acids (UFA / SFA, using an GC-MS method. In the case of sunflower oil, it was observed that sea buckthorn fruit extract significantly decreased MDA concentration but does not significantly reduce the concentration of conjugated dienes. The protective effect of carotenoids is more evident in the case of oil from pumpkin seeds. In the olive oil, unlike the first two types of oils, the carotenoids extract inhibits both the MDA and the conjugated dienes formation to a lesser extent, statistically insignificant. Overall, the ratio UFA / SFA decreases in crude oxidized oils. In the oils in which carotenoids were added was observed an increase in the UFA / SFA ratio. Carotenoids fraction from sea buckthorn fruits, rich in xanthophylls’ esters, possess a good antioxidant effect, protecting vegetable oils against peroxidation processes induced in the presence of AAPH

  18. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  19. [Changes of lipid peroxidation parameters in children being treated for cancer].

    Science.gov (United States)

    Kazanova, G V; Baĭkova, V N; Dumbraĭs, K O; Gracheva, I V; Durnov, L A; Gorozhanskaia, E G; Zakharova, N V; Kurmashov, V I; Belkina, B M

    1997-01-01

    Lipid peroxidation (LP) occurring in pediatric cancer patients receiving polychemotherapy has been investigated. Plasma level of malonic dialdehyde in children with retinoblastoma (Rtb) was found to drop while it remained unchanged in patients with acute lymphoblastic leukemia (ALL). The treatment caused different changes in the red cell catalase levels in said groups: the enzyme concentration increased in the Rtb patients in the course of therapy and decreased in the ALL group. A slight decline in alpha-tocopherol and retinol levels the Rtb group was matched by a relevant rise in blood-plasma in the ALL group. To adjust LP regulation and improve resistance, antioxidants should be given to pediatric cancer patients suffering peroxidation-related stress.

  20. Protective role of edible clam Paphia malabarica (Chemnitz) against lipid peroxidation and free radicals

    Digital Repository Service at National Institute of Oceanography (India)

    Pawar, R.T.; Nagvenkar, S.S.; Jagtap, T.G.

    In vitro inhibition of lipid peroxidation and free radical scavenging properties of a seafood Paphia malabarica (Chemnitz) as a natural source of antioxidants was observed. Antioxidant activities of Paphia malabarica extracts were tested...

  1. A new look at lipid-membrane structure in relation to drug research

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Jørgensen, Kent

    1998-01-01

    Lipid-bilayer membranes are key objects in drug research in relation to (i) interaction of drugs with membrane-bound receptors, (ii) drug targeting, penetration, and permeation of cell membranes, and (iii) use of liposomes in micro-encapsulation technologies for drug delivery. Rational design...... of new drugs and drug-delivery systems therefore requries insight into the physical properties of lipid-bilayer membranes. This mini-review provides a perspective on the current view of lipid-bilayer structure and dynamics based on information obtained from a variety of recent experimental...... and theoretical studies. Special attention is paid to trans-bilayer structure, lateral molecular organization of the lipid bilayer, lipid-mediated protein assembly, and lipid-bilayer permeability. It is argued that lipids play a major role in lipid membrane-organization and functionality....

  2. Effect of Amphotericin B antibiotic on the properties of model lipid membrane

    International Nuclear Information System (INIS)

    Kiryakova, S; Dencheva-Zarkova, M; Genova, J

    2014-01-01

    Model membranes formed from natural and synthetic lipids are an interesting object for scientific investigations due to their similarity to biological cell membrane and their simple structure with controlled composition and properties. Amphotericin B is an important polyene antifungal antibiotic, used for treatment of systemic fungal infections. It is known from the literature that the studied antibiotic has a substantial effect on the transmembrane ionic channel structures. When applied to the lipid membranes it has the tendency to create pores and in this way to affect the structure and the properties of the membrane lipid bilayer. In this work the thermally induced shape fluctuations of giant quasi-spherical liposomes have been used to study the influence of polyene antibiotic amphotericin B on the elastic properties of model lipid membranes. It have been shown experimentally that the presence of 3 mol % of AmB in the lipid membrane reduces the bending elasticity of the lipid membrane for both studied cases: pure SOPC membrane and mixed SOPC-Cholesterol membrane. Interaction of the amphotericin B with bilayer lipid membranes containing channels have been studied in this work. Model membranes were self-assembled using the patch-clamp and tip-dip patch clamp technique. We have found that amphotericin B is an ionophore and reduces the resistance of the lipid bilayer

  3. Plasma membrane lipids and their role in fungal virulence.

    Science.gov (United States)

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  4. Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.

    Science.gov (United States)

    Lu, Stella M; Fairn, Gregory D

    2018-04-01

    The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.

  5. Effect of exercise on lipid peroxidation in student soccer players

    OpenAIRE

    Puspaningtyas, Desty Ervira; Afriani, Yuni; Mahfida, Silvi Lailatul; Kushartanti, Wara; Farmawati, Arta

    2018-01-01

    Training is conducted to improve physiological functions that can support improvementof cardio-respiratory function (O2max). However, intensive training can lead to oxidativestress, which can contribute to health problems. The purpose of this study was to evaluatethe effect of training on serum lipid peroxidation levels in student soccer players. Thestudy was pre-experimental study with a one-shot case design conducted in April 2014.Twelve student soccer players from UGM who chosen by purposi...

  6. Lipid peroxidation and seed emergency in progenies of the yellow passion fruit plant

    Directory of Open Access Journals (Sweden)

    João Paulo Bestete de Oliveira

    2012-09-01

    Full Text Available The objective was to evaluate the percentage of emergency plantlets and lipid peroxidation in seeds of 29 half-sib progenies of yellow passion fruit (Passiflora edulis Sims. after 24 months under storage. The experimental design was completely randomized, with four replications of 50 seeds each, from which the treatments were the progenies (1-29. The evaluation of the percent plantlet emergency was accomplished at 14 and 28 days after sowing. The lipid peroxidation of the seeds was expressed as malondialdehyde (MDA content that was determined by the TBARS method. Approximately 21% of those half-sib progenies maintained the viability of their seeds for twenty-four months under storage. The results point out a remarkable genetic variability for vigor and emergency of the yellow passion fruit plantlets, with occurrence of individuals with high and other ones with low capacity to maintaining the physiologic quality of their seeds after storage.

  7. How membrane lipids control the 3D structure and function of receptors

    OpenAIRE

    Jacques Fantini; Francisco J. Barrantes

    2018-01-01

    The cohabitation of lipids and proteins in the plasma membrane of mammalian cells is controlled by specific biochemical and biophysical rules. Lipids may be either constitutively tightly bound to cell-surface receptors (non-annular lipids) or less tightly attached to the external surface of the protein (annular lipids). The latter are exchangeable with surrounding bulk membrane lipids on a faster time scale than that of non-annular lipids. Not only do non-annular lipids bind to membrane prote...

  8. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Dylan Myers Owen

    2013-12-01

    Full Text Available The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid domains with liquid-ordered and liquid-disordered properties. These observations are the basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched ordered-phase lipid domains in cell membranes that could regulate protein mobility, localization and interaction. Here we review the evidence that nano-scaled lipid complexes and meso-scaled lipid domains exist in cell membranes and how new fluorescence microscopy techniques that overcome the diffraction limit provide new insights into lipid organization in cell membranes.

  9. Atomistic Monte Carlo Simulation of Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Daniel Wüstner

    2014-01-01

    Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.

  10. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    Science.gov (United States)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  11. Reactive oxygen species and lipid peroxidation product-scavenging ability of yogurt organisms.

    Science.gov (United States)

    Lin, M Y; Yen, C L

    1999-08-01

    The antioxidative activity of the intracellular extracts of yogurt organisms was investigated. All 11 strains tested, including five strains of Streptococcus thermophilus and six strains of Lactobacillus delbrueckii ssp. bulgaricus, demonstrated an antioxidative effect on the inhibition of linoleic acid peroxidation. The antioxidative effect of intracellular extracts of 10(8) cells of yogurt organisms was equivalent to 25 to 96 ppm butylated hydroxytoluene, which indicated that all strains demonstrated excellent antioxidative activity. The scavenging of reactive oxygen species, hydroxyl radical, and hydrogen peroxide was studied for intracellular extracts of yogurt organisms. All strains showed reactive oxygen species-scavenging ability. Lactobacillus delbrueckii ssp. bulgaricus Lb demonstrated the highest hydroxyl radical-scavenging ability at 234 microM. Streptococcus thermophilus MC and 821 and L. delbrueckii ssp. bulgaricus 448 and 449 scavenged the most hydrogen peroxide at approximately 50 microM. The scavenging ability of lipid peroxidation products, t-butylhydroperoxide and malondialdehyde, was also evaluated. Results showed that the extracts were not able to scavenge the t-butylhydroperoxide. Nevertheless, malondialdehyde was scavenged well by most strains.

  12. Protective Effect of Pulp Oil Extracted from Canarium odontophyllum Miq. Fruit on Blood Lipids, Lipid Peroxidation, and Antioxidant Status in Healthy Rabbits

    Directory of Open Access Journals (Sweden)

    Faridah Hanim Shakirin

    2012-01-01

    Full Text Available The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids. The pulp oil is rich in polyphenols. Male New Zealand white (NZW rabbits were fed for 4 weeks on a normal diet containing pulp (NP or kernel oil (NK of CO while corn oil was used as control (NC. Total cholesterol (TC, HDL-C, LDL-c and triglycerides (TG levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise, thiobarbiturate reactive substances (TBARSs, and plasma total antioxidant status (TAS were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil.

  13. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    DEFF Research Database (Denmark)

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller

    2015-01-01

    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...

  15. [The effect of focused ultrasound on the physicochemical properties of Sarcoma 180 cell membrane].

    Science.gov (United States)

    Li, Tao; Hao, Qiao; Wang, Xiaobing; Liu, Quanhong

    2009-10-01

    This study was amied to detect the changes in the cell membrane of Sarcoma 180 (S180) cells induced by focused ultrasound and to probe the underlying mechanism. The viability of tumor cells was examined at various intensities and different treatment times by ultrasound at the frequency of 2.2MHz. Flow cytometry and fluorescence microscopy were used to detect the loading of fluorescein isothiocyanate dextran (FD500) which signifies the change of membrane permeability. The results showed that after the cells were treated by ultrasound, especially when irradiated for 60s, the number of fluorescent cell, which represented the transient change of membrane permeabilization with cell survival, increased significantly. Then the damage of cell membrane was evaluated by the measurement of lactate dehydrogenase (LDH) release which became more severe as the radiation time was increasing. The generation of lipid peroxidation was estimated using the Thibabituric Acid (TBA) method after irradiation. The results reveal that the instant cell damage effects induced by ultrasound may be related to the improved membrane lipid peroxidation levels post-treatment. The physicochemical properties of S180 cell membrane were changed by focused ultrasound. The findings also imply an exposure time-dependent pattern and suggest that the lipid peroxidation produced by acoustic cavitation may play important roles in these actions.

  16. Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes.

    Directory of Open Access Journals (Sweden)

    Himanshu Khandelia

    Full Text Available Triglycerides have a limited solubility, around 3%, in phosphatidylcholine lipid bilayers. Using millisecond-scale course grained molecular dynamics simulations, we show that the model lipid bilayer can accommodate a higher concentration of triolein (TO than earlier anticipated, by sequestering triolein molecules to the bilayer center in the form of a disordered, isotropic, mobile neutral lipid aggregate, at least 17 nm in diameter, which forms spontaneously, and remains stable on at least the microsecond time scale. The results give credence to the hotly debated existence of mobile neutral lipid aggregates of unknown function present in malignant cells, and to the early biogenesis of lipid droplets accommodated between the two leaflets of the endoplasmic reticulum membrane. The TO aggregates give the bilayer a blister-like appearance, and will hinder the formation of multi-lamellar phases in model, and possibly living membranes. The blisters will result in anomalous membrane probe partitioning, which should be accounted for in the interpretation of probe-related measurements.

  17. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    Directory of Open Access Journals (Sweden)

    Ellen Wallace

    Full Text Available The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive

  18. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. FEATURES OF LIPID PEROXIDATION AND NEUROTROPHIC REGULATION IN PATIENTS SUFFERING FROM PARANOID SCHIZOPHRENIA

    Directory of Open Access Journals (Sweden)

    E.V. Kolesnichenko

    2008-09-01

    Full Text Available The article deals with the features of lipid peroxidation, activity of the antioxidative systems and level of brain-derived neurotrophic factor in patients with paranoid schizophrenia. Present study indicates associations between the studied parameters and type of progression, duration of disease and gender of patients.

  20. Effect of Cu2+ and pH on intracellular calcium content and lipid peroxidation in winter wheat roots

    Directory of Open Access Journals (Sweden)

    M. E. Riazanova

    2015-06-01

    Full Text Available The study investigates the effect of copper ions and pH of external solution on intracellular calcium homeostasis and lipid peroxidation in winter wheat roots. Experiment was carried out with winter wheat. Sterile seeds were germinated in Petri dishes on the filter paper soaked with acetic buffer (pH 4.7 and 6.2 at 20 °Cin the dark for 48 hours. Copper was added as CuSO4. It’s concentrations varied from 0 to 50 µM. The Ca2+-fluorescent dye Fluo-3/AM ester was loaded on 60 hour. Root fluorescence with Fluo-3 loading was detected using X-Cite Series 120 Q unit attached to microscope Olympus BX53 with camera Olympus DP72. Imaging of root cells was achieved after exciting with 488 nm laser and collection of emission signals above 512 nm. Preliminary analysis of the images was performed using software LabSens; brightness (fluorescence intensity analysis was carried out by means of ImageJ. Peroxidation of lipids was determined according to Kumar and Knowles method. It was found that pH of solution had effect on release of calcium from intracellular stores. Low pH provokes an increase of [Ca2+]cyt which may be reaction of roots to acidic medium. Copper induces increase in non-selective permeability of plasma membrane and leads to its faster depolarization. This probably initiates Ca-dependent depolarization channels which are responsible for the influx of calcium from apoplast into the cell. Changing of the membrane permeability may occur due to interaction between Cu2+ ions and Ca-binding sites on plasma membrane or may be due to binding of copper with sulfhydryl groups and increasing of POL. Copper may also damage lipid bilayer and change the activity of some non-selective channels and transporters. Reactive oxygen species which are formed under some types of stress factors, especially the effect of heavy metals, can be activators of Ca-channels. Cu2+ ions rise MDA content and promote the oxidative stress. Low medium pH also induces its

  1. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  2. Affinity of four polar neurotransmitters for lipid bilayer membranes

    DEFF Research Database (Denmark)

    Wang, Chunhua; Ye, Fengbin; Valardez, Gustavo F.

    2011-01-01

    . The simulations suggest that this attraction mainly relies on electrostatic interactions of the amino group of the neurotransmitter and the lipid phosphate. We conclude that moderate attraction to lipid membranes occurs for some polar neurotransmitters and hence that one premise for a theory of bilayer-mediated......Weak interactions of neurotransmitters and the lipid matrix in the synaptic membrane have been hypothesized to play a role in synaptic transmission of nerve signals, particularly with respect to receptor desensitization (Cantor, R. S. Biochemistry 2003, 42, 11891). The strength of such interactions......, however, was not measured, and this is an obvious impediment for further evaluation and understanding of a possible role for desensitization. We have used dialysis equilibrium to directly measure the net affinity of selected neurotransmitters for lipid membranes and analyzed this affinity data...

  3. Lipid peroxidation inhibition and antiradical activities of some leaf fractions of Mangifera indica.

    Science.gov (United States)

    Badmus, Jelili A; Adedosu, Temitope O; Fatoki, John O; Adegbite, Victor A; Adaramoye, Oluwatosin A; Odunola, Oyeronke A

    2011-01-01

    This study was undertaken to assess in vitro lipid peroxidation inhibitions and anti-radical activities of methanolic, chloroform, ethyl acetate and water fractions of Mangifera indica leaf. Inhibition of Fe(2+)-induced lipid peroxidation (LPO) in egg, brain, and liver homogenates, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (OH-) radical scavenging activities were evaluated. Total phenol was assessed in all fractions, and the reducing power of methanolic fraction was compared to gallic acid and ascorbic acid. The results showed that Fe2+ induced significant lipid peroxidation (LPO) in all the homogenates. Ethyl acetate fraction showed the highest percentage inhibition of LPO in both egg yolk (68.3%) and brain (66.3%), while the aqueous fraction exerted the highest inhibition in liver homogenate (89.1%) at a concentration of 10 microg/mL. These observed inhibitions of LPO by these fractions were higher than that of ascorbic acid used as a standard. The DPPH radical scavenging ability exhibited by ethyl acetate fraction was found to be the highest with IC50 value of 1.5 microg/mL. The ethyl acetate and methanolic fractions had the highest OH- radical scavenging ability with the same IC50 value of 5 microg/mL. The total phenol content of ethyl acetate fraction was the highest with 0.127 microg/mg gallic acid equivalent (GAE). The reductive potential of methanolic fraction showed a concentration-dependent increase. This study showed that inhibition of LPO and the DPPH and OH- radicals scavenging abilities of Mangifera indica leaf could be related to the presence of phenolic compounds. Therefore, the ethyl acetate fraction of the leaf may be a good source of natural antioxidative agent.

  4. Effects of dietary [alpha]-tocopherol and [beta]-carotene on lipid peroxidation induced by methyl mercuric chloride in mice

    Energy Technology Data Exchange (ETDEWEB)

    Raun Andersen, H; Andersen, O [Department of Environmental Medicine, University of Odense, Odense (Denmark)

    1993-01-01

    Exposure of male CBA mice to methyl mercuric chloride, CH[sub 3]HgCl, (10-40 mg/l in drinking water) for 2 weeks resulted in dose-related Hg deposition and enhanced lipid peroxidation in liver, kidney and brain. Mice were fed well-defined semisynthetic diets containing different levels of [alpha]-tocopherol (10, 100 or 1000 mg/kg) or [beta]-carotene (1000, 10,000 or 100,000 IU/kg) for four weeks, two groups on each diet. The concentration of [alpha]-tocopherol and [beta]-carotene used corresponded to deficient, normal and high levels. During the last two weeks, one group on each diet was given 40 mg CH[sub 3]HgCl/l of drinking water. High dietary [alpha]-tocopherol protected against CH[sub 3]HgCl induced hepatic lipid peroxidation, whereas the [alpha]-tocopherol deficient diet further enhanced CH[sub 3]HgCl induced hepatic lipid peroxidation. Similar, though statistically non-significant effects occurred in the kidneys, [alpha]-tocopherol did not protect against CH[sub 3]HgCl induced lipid peroxidation in the brain. Excess dietary [beta]-carotene further enhanced CH[sub 3]HgCl induced lipid peroxidation in liver, kidney and brain. CH[sub 3]HgCl significantly decreased the activity of total glutathione peroxidase (T-GSH-Px) and Se-dependent glutathione peroxidase (Se-GSH-Px) in the kidneys in all dietary groups. High dietary [alpha]-tocopherol enhanced the activity of Se-GSH-Px in liver and kidney compared to the activity in mice fed the normal level of [alpha]-tocopherol. This occurred in mice exposed to CH[sub 3]-HgCl as well as in unexposed mice, and the difference between CH[sub 3]HgCl exposed and unexposed mice was not diminished. High dietary [alpha]-tocopherol increased the activity of both Se-GSH-Px and T-GSH-Px in the brain of CH[sub 3]HgCl-exposed mice. The dietary level of [beta]-carotene did not affect the activity of the two enzymes in the organs investigated. (au) (43 refs.).

  5. Effects of dietary α-tocopherol and β-carotene on lipid peroxidation induced by methyl mercuric chloride in mice

    International Nuclear Information System (INIS)

    Raun Andersen, H.; Andersen, O.

    1993-01-01

    Exposure of male CBA mice to methyl mercuric chloride, CH 3 HgCl, (10-40 mg/l in drinking water) for 2 weeks resulted in dose-related Hg deposition and enhanced lipid peroxidation in liver, kidney and brain. Mice were fed well-defined semisynthetic diets containing different levels of α-tocopherol (10, 100 or 1000 mg/kg) or β-carotene (1000, 10,000 or 100,000 IU/kg) for four weeks, two groups on each diet. The concentration of α-tocopherol and β-carotene used corresponded to deficient, normal and high levels. During the last two weeks, one group on each diet was given 40 mg CH 3 HgCl/l of drinking water. High dietary α-tocopherol protected against CH 3 HgCl induced hepatic lipid peroxidation, whereas the α-tocopherol deficient diet further enhanced CH 3 HgCl induced hepatic lipid peroxidation. Similar, though statistically non-significant effects occurred in the kidneys, α-tocopherol did not protect against CH 3 HgCl induced lipid peroxidation in the brain. Excess dietary β-carotene further enhanced CH 3 HgCl induced lipid peroxidation in liver, kidney and brain. CH 3 HgCl significantly decreased the activity of total glutathione peroxidase (T-GSH-Px) and Se-dependent glutathione peroxidase (Se-GSH-Px) in the kidneys in all dietary groups. High dietary α-tocopherol enhanced the activity of Se-GSH-Px in liver and kidney compared to the activity in mice fed the normal level of α-tocopherol. This occurred in mice exposed to CH 3 -HgCl as well as in unexposed mice, and the difference between CH 3 HgCl exposed and unexposed mice was not diminished. High dietary α-tocopherol increased the activity of both Se-GSH-Px and T-GSH-Px in the brain of CH 3 HgCl-exposed mice. The dietary level of β-carotene did not affect the activity of the two enzymes in the organs investigated. (au) (43 refs.)

  6. Investigations of antioxidant-mediated protection and mitigation of radiation-induced DNA damage and lipid peroxidation in murine skin.

    Science.gov (United States)

    Jelveh, Salomeh; Kaspler, Pavel; Bhogal, Nirmal; Mahmood, Javed; Lindsay, Patricia E; Okunieff, Paul; Doctrow, Susan R; Bristow, Robert G; Hill, Richard P

    2013-08-01

    Radioprotection and mitigation effects of the antioxidants, Eukarion (EUK)-207, curcumin, and the curcumin analogs D12 and D68, on radiation-induced DNA damage or lipid peroxidation in murine skin were investigated. These antioxidants were studied because they have been previously reported to protect or mitigate against radiation-induced skin reactions. DNA damage was assessed using two different assays. A cytokinesis-blocked micronucleus (MN) assay was performed on primary skin fibroblasts harvested from the skin of C3H/HeJ male mice 1 day, 1 week and 4 weeks after 5 Gy or 10 Gy irradiation. Local skin or whole body irradiation (100 kVp X-rays or caesium (Cs)-137 γ-rays respectively) was performed. DNA damage was further quantified in keratinocytes by immunofluorescence staining of γ-histone 2AX (γ-H2AX) foci in formalin-fixed skin harvested 1 hour or 1 day post-whole body irradiation. Radiation-induced lipid peroxidation in the skin was investigated at the same time points as the MN assay by measuring malondialdehyde (MDA) with a Thiobarbituric acid reactive substances (TBARS) assay. None of the studied antioxidants showed significant mitigation of skin DNA damage induced by local irradiation. However, when EUK-207 or curcumin were delivered before irradiation they provided some protection against DNA damage. In contrast, all the studied antioxidants demonstrated significant mitigating and protecting effects on radiation-induced lipid peroxidation at one or more of the three time points after local skin irradiation. Our results show no evidence for mitigation of DNA damage by the antioxidants studied in contrast to mitigation of lipid peroxidation. Since these agents have been reported to mitigate skin reactions following irradiation, the data suggest that changes in lipid peroxidation levels in skin may reflect developing skin reactions better than residual post-irradiation DNA damage in skin cells. Further direct comparison studies are required to confirm

  7. Novel Eicosapentaenoic Acid-derived F3-isoprostanes as Biomarkers of Lipid Peroxidation*

    Science.gov (United States)

    Song, Wen-Liang; Paschos, Georgios; Fries, Susanne; Reilly, Muredach P.; Yu, Ying; Rokach, Joshua; Chang, Chih-Tsung; Patel, Pranav; Lawson, John A.; FitzGerald, Garret A.

    2009-01-01

    Isoprostanes (iPs) are prostaglandin (PG) isomers generated by free radical-catalyzed peroxidation of polyunsaturated fatty acids (PUFAs). Urinary F2-iPs, PGF2α isomers derived from arachidonic acid (AA) are used as indices of lipid peroxidation in vivo. We now report the characterization of two major F3-iPs, 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI, derived from the ω-3 fatty acid, eicosapentaenoic acid (EPA). Although the potential therapeutic benefits of EPA receive much attention, a shift toward a diet rich in ω-3 PUFAs may also predispose to enhanced lipid peroxidation. Urinary 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI are highly correlated and unaltered by cyclooxygenase inhibition in humans. Fish oil dose-dependently elevates urinary F3-iPs in mice and a shift in dietary ω-3/ω-6 PUFAs is reflected by an increasing slope [m] of the line relating urinary 8, 12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI. Administration of bacterial lipopolysaccharide evokes a reversible increase in both urinary 8,12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI in humans on an ad lib diet. However, while excretion of the iPs is highly correlated (R2 median = 0.8), [m] varies by an order of magnitude, reflecting marked inter-individual variability in the relative peroxidation of ω-3 versus ω-6 substrates. Clustered analysis of F2- and F3-iPs refines assessment of the oxidant stress response to an inflammatory stimulus in vivo by integrating variability in dietary intake of ω-3/ω-6 PUFAs. PMID:19520854

  8. [Correcting influence of vitamin E short chain derivatives on lipid peroxidation, liver cell membrane, and chromatin structure when rats are exposed to embichin].

    Science.gov (United States)

    Kovalenko, V M; Byshovets', T F; Hubs'kyĭ, Iu I; Levyts'kyĭ, Ie L; Shaiakhmetova, H M; Marchenko, O M; Voloshyna, O S; Saĭfetdinova, H A; Okhrimenko, V O; Donchenko, H V

    2000-01-01

    Embikhin causes activation of LPO processes in endoplasmic reticulum and in nuclear chromatine fractions of rat liver cells. The latter is accompanied by the impairment of repressive and active nuclear chromatine fractions structure. Derivate of vitamin E in these conditions renders correcting action on parameters of lipid peroxidation in the investigated subcellular structures, testifying its positive influence on the cell heredity apparatus state. The normalizing action of tocopherol derivative on cytochromes P450 and b5 levels is shown.

  9. Analysis of lipid peroxidation kinetics. I

    DEFF Research Database (Denmark)

    Doktorov, Alexander B.; Lukzen, Nikita N.; Pedersen, Jørgen Boiden

    2008-01-01

    concentrations of reactants or different ways of initiating the re-  action. Nor has it been possible to predict the time dependence of the  products. The reason for these problems is the complicated structure  of the kinetic scheme, which includes a chain reaction. In this work  we perform an in depth analysis......  The kinetics of the lipid peroxidation reaction is only partly under-  stood. Although the set of reactions constituting the overall reaction  is believed to be known, it has not been possible to predict how the  reaction will respond to a change of one or more of the parameters, e.g.  initial...... of the importance of the individual  reaction steps and we introduce a new quasi-stationary concentration  method based on the assumption that one or more concentrations vary  much slower than the others. We show that it is justified to use a  quasi-stationary concentration approximation for the alkyl radical L...

  10. Life as a matter of fat : lipids in a membrane biophysics perspective

    CERN Document Server

    Mouritsen, Ole G

    2016-01-01

    The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids (fats) and the lipid-bilayer component of cell membranes. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nanotechnology and biomedicine are also described.   The first edition of the present book was published in 2005 when lipidomics was still very much an emerging science and lipids about to be recognized as being...

  11. Exposure to Anacardiaceae Volatile Oils and Their Constituents Induces Lipid Peroxidation within Food-Borne Bacteria Cells

    Directory of Open Access Journals (Sweden)

    Ricardo M. Montanari

    2012-08-01

    Full Text Available The chemical composition of the volatile oils from five Anacardiaceae species and their activities against Gram positive and negative bacteria were assessed. The peroxidative damage within bacterial cell membranes was determined through the breakdown product malondialdehyde (MDA. The major constituents in Anacardium humile leaves oil were (E-caryophyllene (31.0% and α-pinene (22.0%, and in Anacardium occidentale oil they were (E-caryophyllene (15.4% and germacrene-D (11.5%. Volatile oil from Astronium fraxinifolium leaves were dominated by (E-β-ocimene (44.1% and α-terpinolene (15.2%, whilst the oil from Myracrodruon urundeuva contained an abundance of δ-3-carene (78.8%. However, Schinus terebinthifolius leaves oil collected in March and July presented different chemical compositions. The oils from all species, except the one from A. occidentale, exhibited varying levels of antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli. Oil extracted in July from S. terebinthifolius was more active against all bacterial strains than the corresponding oil extracted in March. The high antibacterial activity of the M. urundeuva oil could be ascribed to its high δ-3-carene content. The amounts of MDA generated within bacterial cells indicate that the volatile oils induce lipid peroxidation. The results suggest that one putative mechanism of antibacterial action of these volatile oils is pro-oxidant damage within bacterial cell membrane explaining in part their preservative properties.

  12. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    DEFF Research Database (Denmark)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco

    2014-01-01

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary...... phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic...... and explain how cells switch neutral lipid metabolism from storage to consumption....

  13. Medicinal Mushroom Cracked-Cap Polypore, Phellinus rimosus (Higher Basidiomycetes) Attenuates Acute Ethanol-Induced Lipid Peroxidation in Mice.

    Science.gov (United States)

    Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K

    2015-01-01

    Alcohol abuse and alcoholism remain one of the major health issues worldwide, especially in developing countries. The protective effect of Phellinus rimosus against acute alcohol-induced lipid peroxidation in the liver, kidney, and brain as well as its effect against antioxidant enzyme activity such as superoxide (SOD) and catalase (CAT) in the liver was evaluated in mice. Ethyl acetate extract of Ph. Rimosus (50 mg/kg body wt, p.o.) 1 h before each administration of alcohol (3 mL/kg, p.o.; total 2 doses at 24-h intervals) protected against lipid peroxidation in all organs and attenuated the decline of SOD and CAT activity in the liver. The fold increase in lipid peroxidation, including conjugated diene and thiobarbituric acid reactive substance (TBARS) levels, was highest in the liver. There were 2.6- and 1.5- fold increases in TBARS levels in the liver of the alcohol alone- and alcohol+Ph. Rimosus-treated groups, compared with that of the normal group. Activity of SOD and CAT in the liver of alcohol- and alcohol+Ph. Rimosus- treated animals was 9.05±1.38, 18.76±1.71, and 11.26±1.02, 31.58±3.35 IU/mg protein, respectively. Extract at 1 mg/mL inhibited 50.6% activity of aniline hydroxylase (CYP2E1) in liver homogenate. From these results, we concluded that the extract significantly protected against the lipid peroxidation. Protection in the liver may be due to the inhibitory effect on CYP2E1 as well as the direct radical scavenging effect of Ph. Rimosus, which warrants further research.

  14. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.

    Science.gov (United States)

    Li, Shixin; Luo, Zhen; Xu, Yan; Ren, Hao; Deng, Li; Zhang, Xianren; Huang, Fang; Yue, Tongtao

    2017-10-01

    Lipid nanodisc, a model membrane platform originally synthesized for study of membrane proteins, has recently been used as the carrier to deliver amphiphilic drugs into target tumor cells. However, the central question of how cells interact with such emerging nanomaterials remains unclear and deserves our research for both improving the delivery efficiency and reducing the side effect. In this work, a binary lipid nanodisc is designed as the minimum model to investigate its interactions with plasma membranes by using the dissipative particle dynamics method. Three typical interaction pathways, including the membrane attachment with lipid domain exchange of nanodiscs, the partial membrane wrapping with nanodisc vesiculation, and the receptor-mediated endocytosis, are discovered. For the first pathway, the boundary normal lipids acting as ligands diffuse along the nanodisc rim to gather at the membrane interface, repelling the central bola lipids to reach a stable membrane attachment. If bola lipids are positioned at the periphery and act as ligands, they diffuse to form a large aggregate being wrapped by the membrane, leaving the normal lipids exposed on the membrane exterior by assembling into a vesicle. Finally, by setting both central normal lipids and boundary bola lipids as ligands, the receptor-mediated endocytosis occurs via both deformation and self-rotation of the nanodiscs. All above pathways for soft lipid nanodiscs are quite different from those for rigid nanoparticles, which may provide useful guidelines for design of soft lipid nanodiscs in widespread biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Membrane damage induced in cultured human skin fibroblasts by UVA irradiation

    International Nuclear Information System (INIS)

    Gaboriau, F.; Morliere, P.; Marquis, I.; Moysan, A.; Geze, M.; Dubertret, L.

    1993-01-01

    Irradiation of cultured human skin fibroblasts with ultraviolet light from 320 to 400 nm (UVA) leads to a decrease in the membrane fluidity exemplified by an enhanced fluorescence anisotropy of the lipophilic fluorescent probe 1-[4-trimethylamino)-phenyl]-6-phenylhexa-1,3,5-triene. This UVA-induced decrease in fluidity is associated with lactate dehydrogenase leakage in the supernatant. Vitamin E, an inhibitor of lipid peroxidation, exerts a protective effect on both phenomena. Therefore, this UVA-induced damage in membrane properties may be related to lipid peroxidation processes. Moreover, exponentially growing cells are more sensitive to these UVA-induced alterations than confluent cells. (Author)

  16. Alterations in lipids & lipid peroxidation in rats fed with flavonoid rich fraction of banana (Musa paradisiaca) from high background radiation area.

    Science.gov (United States)

    Krishnan, Kripa; Vijayalakshmi, N R

    2005-12-01

    A group of villages in Kollam district of Kerala, southern part of India are exposed to a higher dose of natural radiation than global average. Yet no adverse health effects have been found in humans, animals and plants in these areas. The present study was carried out to understand whether radiation affects the quantity and quality of flavonoids in plants grown in this area of high radiation, and to assess the effect of feeding flavonoid rich fraction (FRF) of the two varieties of banana to rats on their biochemical parameters like lipids, lipid peroxides and antioxidant enzyme levels. A total of 42 albino rats were equally divided into 7 groups. Rats fed laboratory diet alone were grouped under group I (normal control). Groups II and V received flavonoid rich fraction (FRF) from the fruits of two varieties of Musa paradisiaca, Palayamkodan and Rasakadali respectively from normal background radiation area (Veli) and treated as controls. Rats of groups III and IV received FRF of Palayamkodan from high background radiation areas (HBRAs) - Neendakara and Karunagappally respectively while groups VI and VII received FRF of Rasakadali from HBRAs. At the end of the experimental period of 45 days, lipids, lipid peroxides and antioxidant enzymes from liver, heart and kidney were analyzed. FRF of Palayamkodan and Rasakadali varieties showed significant hypolipidaemic and antioxidant activities. But these activities were found to be lowered in plants grown in HBRAs, particularly in Karunagappally area. Of the two, Palayamkodan variety was more effective in reducing lipids and lipid peroxides. MDA and hydroperoxides were significantly diminished in rats given FRF of banana from Veli (control area) only. FRF from plants grown in HBRAs exerted inhibition in the activities of antioxidant enzymes in the liver of rats and this inhibitory effect was maximum in rats fed FRF from Karunagappally. Banana grown in HBRAs is of lower quality with less efficient antioxidant system

  17. Membrane-sculpting BAR domains generate stable lipid microdomains

    DEFF Research Database (Denmark)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.

    2013-01-01

    Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR...... domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced...... phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved...

  18. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...

  19. Effect of high linear energy transfer radiation on biological membranes

    International Nuclear Information System (INIS)

    Choudhary, D.; Srivastava, M.; Kale, R.K.; Sarma, A.

    1998-01-01

    Cellular membranes are vital elements, and their integrity is extremely essential for the viability of the cells. We studied the effects of high linear energy transfer (LET) radiation on the membranes. Rabbit erythrocytes (1 x 10 7 cells/ml) and microsomes (0.6 mg protein/ml) prepared from liver of rats were irradiated with 7 Li ions of energy 6.42 MeV/u and 16 O ions of energy 4.25 MeV/u having maximum LET values of 354 keV/μm and 1130 keV/μm, respectively. 7 Li- and 16 O-induced microsomal lipid peroxidation was found to increase with fluence. The 16 O ions were more effective than 7 Li ions, which could be due to the denser energy distribution in the track and the yield of free radicals. These findings suggested that the biological membranes could be peroxidized on exposure to high-LET radiation. Inhibition of the lipid peroxidation was observed in the presence of a membrane-active drug, chlorpromazine (CPZ), which could be due to scavenging of free radicals (mainly HO. and ROO.), electron donation, and hydrogen transfer reactions. The 7 Li and 16 O ions also induced hemolysis in erythrocytes. The extent of hemolysis was found to be a function of time and fluence, and showed a characteristic sigmoidal pattern. The 16 O ions were more effective in the lower fluence range than 7 Li ions. These results were compared with lipid peroxidation and hemolysis induced by gamma-radiation. (orig.)

  20. The Fungicidal Activity of Thymol against Fusarium graminearum via Inducing Lipid Peroxidation and Disrupting Ergosterol Biosynthesis

    Directory of Open Access Journals (Sweden)

    Tao Gao

    2016-06-01

    Full Text Available Thymol is a natural plant-derived compound that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism for thymol against phytopathogens remains unclear. In this study, we identified the antifungal action of thymol against Fusarium graminearum, an economically important phytopathogen showing severe resistance to traditional chemical fungicides. The sensitivity of thymol on different F. graminearum isolates was screened. The hyphal growth, as well as conidial production and germination, were quantified under thymol treatment. Histochemical, microscopic, and biochemical approaches were applied to investigate thymol-induced cell membrane damage. The average EC50 value of thymol for 59 F. graminearum isolates was 26.3 μg·mL−1. Thymol strongly inhibited conidial production and hyphal growth. Thymol-induced cell membrane damage was indicated by propidium iodide (PI staining, morphological observation, relative conductivity, and glycerol measurement. Thymol induced a significant increase in malondialdehyde (MDA concentration and a remarkable decrease in ergosterol content. Taken together, thymol showed potential antifungal activity against F. graminearum due to the cell membrane damage originating from lipid peroxidation and the disturbance of ergosterol biosynthesis. These results not only shed new light on the antifungal mechanism of thymol, but also imply a promising alternative for the control of Fusarium head blight (FHB disease caused by F. graminearum.

  1. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    International Nuclear Information System (INIS)

    Schmid, Friederike; Dolezel, Stefan; Meinhardt, Sebastian; Lenz, Olaf

    2014-01-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model

  2. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    Science.gov (United States)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  3. Shiga toxin induces membrane reorganization and formation of long range lipid order

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Johannes, Ludger; Simonsen, Adam Cohen

    2015-01-01

    membrane reordering. When Shiga toxin was added above the lipid chain melting temperature, the toxin interaction with the membrane induced rearrangement and clustering of Gb3 lipids that resulted in the long range order and alignment of lipids in gel domains. The toxin induced redistribution of Gb3 lipids...... inside gel domains is governed by the temperature at which Shiga toxin was added to the membrane: above or below the phase transition. The temperature is thus one of the critical factors controlling lipid organization and texture in the presence of Shiga toxin. Lipid chain ordering imposed by Shiga toxin...... binding can be another factor driving the reconstruction of lipid organization and crystallization of lipids inside gel domains....

  4. The effects of 1800 MHz radiofrequency waves on lipid peroxidation in pregnant rabbits

    International Nuclear Information System (INIS)

    Tomruk, Arin; Guler, Goknur; Seyhan, Nesrin

    2008-01-01

    Full text: The radiofrequency (RF) part of the Electromagnetic (EM) spectrum includes EM waves used mainly for telecommunications purposes (Radio and TV broadcasting, wireless phones, pagers, cordless phones, police and fire department radios, point-to-point links and satellite communications all rely on RF energy) and also used in some industrial technologies (industrial heaters and sealers), medical treatments (Diathermy units), microwave ovens and radar technologies. With rapid advances in these technologies, exposure to RF radiation of people has also increased. Some biological effects have been associated with exposure to RF and it is well established that RF exposures may lead to changes in cell membrane functions, cell metabolism. Changes in cell membrane functions include chemical reactions occurred between main membrane components (phospholipids, cholesterol, etc) and oxidative stress products such as Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). Oxidative attacks of ROS and RNS can cause degradation of these unsaturated lipids and this degradation can be referred as lipid peroxidation (LPO). Malondialdehyde (MDA) is the end product of the major chain reactions leading to oxidation of polyunsaturated fatty acids and serves as a reliable marker of oxidative stress mediated LPO. Membrane LPO may initialize many forms of oxygen toxicity at molecular level including structural derangement of the bilayer and altered fluidity, increased permeability of cytosolic constituents, inactivation of intrinsic enzymes and transporters, covalent cross-linking of lipids and proteins, polypeptide strand scission and DNA damage and mutagenesis. In the present study, the investigation of the possible RF radiation's effects on LPO was aimed particularly. A total forty New Zeland White rabbits (weighted 3-5 kg, 16 months) were randomly divided into four groups which are composed of 10 rabbits each for groups. 1) Group I (sham, non-pregnant group); 2) Group

  5. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    Directory of Open Access Journals (Sweden)

    Morita Mizuki

    2011-12-01

    Full Text Available Abstract Background Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. Results To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. Conclusions We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function.

  6. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    International Nuclear Information System (INIS)

    Morita, Mizuki; Katta, AVSK Mohan; Ahmad, Shandar; Mori, Takaharu; Sugita, Yuji; Mizuguchi, Kenji

    2011-01-01

    Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function

  7. Evaluation of lipid peroxidation activity at intravenous administration of gold nanorods in rats with simulated diabetes and transplanted liver cancer

    Science.gov (United States)

    Bucharskaya, Alla B.; Dikht, Natalia I.; Afanasyeva, Galina A.; Terentyuk, Georgy S.; Maslyakova, Galina N.; Zaraeva, Nadezhda V.; Khlebtsov, Nikolai G.; Khlebtsov, Boris N.

    2014-01-01

    In the experiment the white outbred rats with transplanted liver cancer (cholangiocarcinoma line PC-1) and simulated alloxan diabetes were treated by single intravenous injection of gold nanorods. State of lipid peroxidation was evaluated by the following parameters: the malondialdehyde, lipid hydroperoxide, the average weght molecules in the serum of animals by conventional spectrophotometric methods study using a spectrofluorometer RF-5301 PC (Shimadzu, Japan). In both experimental groups of animals the significant increasing of levels of lipid peroxidation products was noted compared with control group. After intravenous administration of nanoparticles in the group of animals with alloxan diabetes the activation of a free radical oxidation was not observed, in group with transplanted liver cancer the increasing of levels of lipid hydroperoxide, malondialdehyde was established.

  8. Changes in plasma membrane structure upon irradiation on thymocytes

    International Nuclear Information System (INIS)

    Dreval', V.I.

    1993-01-01

    Thymocytes were irradiated with doses of 4 to 10 4 Gy. The binding of 1-anilinonaphtalene-8-sulphonate and Ca 2+ to plasma membranes; viscosity and lipid peroxidation; Stern-Folmer constant; and the number of Sh-groups of membrane proteins were determined. The structural changes in plasma membranes after irradiation of thymocytes were found to be cooperative

  9. Mobility of drugs in lipid membranes by NMR

    International Nuclear Information System (INIS)

    Yoshii, Noriyuki; Okamura, Emiko

    2011-01-01

    Mobility of drugs and biomembrane constituents is a key to elucidate the membrane transport mechanism in the cell. Lipid bilayer membrane is a dynamic structure where molecules are always fluctuating under physiological conditions. The mechanism of drug transport is related to the molecular dynamics in such soft, fluid membrane interface. To gain insight into molecular movements in membranes, we develop a noninvasive method to monitor dynamics properties of drugs and lipid components in membranes by applying multinuclear high-resolution solution NMR in combination with the pulsed-field-gradient (PFG) technique. We have quantified the diffusivity, the kinetics of membrane binding, and the bound fraction of the drug in situ by using large unilamellar vesicles of egg phosphatidylcholine as model cell membranes. The combination of 1D and PFG NMR serves to quantify the kinetics of membrane binding where the bound and the free components are unable to distinguish because of the rapid exchange on the NMR timescale. A small-sized 5-fluorouracil and fluorinated bisphenol A are used as model drug. (author)

  10. Linearly concatenated cyclobutane (ladderane) lipids form a dense bacterial membrane

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Strous, M.; Rijpstra, W.I.C.; Hopmans, E.C.; Geenevasen, J.A.J.; Duin, A.C.T. van; Niftrik, L.A.; Jetten, M.S.M.

    2002-01-01

    Lipid membranes are essential to the functioning of cells, enabling the existence of concentration gradients of ions and metabolites. Microbial membrane lipids can contain three-, five-, six- and even seven-membered aliphatic rings, but four-membered aliphatic cyclobutane rings have never been

  11. Polymalic Acid Tritryptophan Copolymer Interacts with Lipid Membrane Resulting in Membrane Solubilization

    Directory of Open Access Journals (Sweden)

    Hui Ding

    2017-01-01

    Full Text Available Anionic polymers with membrane permeation functionalities are highly desirable for secure cytoplasmic drug delivery. We have developed tritryptophan containing copolymer (P/WWW of polymalic acid (PMLA that permeates membranes by a mechanism different from previously described PMLA copolymers of trileucine (P/LLL and leucine ethyl ester (P/LOEt that use the “barrel stave” and “carpet” mechanism, respectively. The novel mechanism leads to solubilization of membranes by forming copolymer “belts” around planar membrane “packages.” The formation of such packages is supported by results obtained from studies including size-exclusion chromatography, confocal microscopy, and fluorescence energy transfer. According to this “belt” mechanism, it is hypothesized that P/WWW first attaches to the membrane surface. Subsequently the hydrophobic tryptophan side chains translocate into the periphery and insert into the lipid bilayer thereby cutting the membrane into packages. The reaction is driven by the high affinity between the tryptophan residues and lipid side chains resulting in a stable configuration. The formation of the membrane packages requires physical agitation suggesting that the success of the translocation depends on the fluidity of the membrane. It is emphasized that the “belt” mechanism could specifically function in the recognition of abnormal cells with high membrane fluidity and in response to hyperthermia.

  12. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Peter G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swingle, Kirstie L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Paxton, Walter F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nogan, John J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stromberg, Loreen R. [Univ. of New Mexico, Albuquerque, NM (United States); Firestone, Millicent A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Harshini [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Consortium, Los Alamos, NM (United States); Montaño, Gabriel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.

  13. Immunoaffinity Knockout of Saponin Glycosides from Asparagus racemosus to Assess Anti-lipid Peroxidation.

    Science.gov (United States)

    Onlom, Churanya; Phrompittayarat, Watoo; Putalun, Waraporn; Waranuch, Neti; Ingkaninan, Kornkanok

    2017-07-01

    Asparagus racemosus Willd (Asparagaceae family), known as Shatavari, is important in Ayurveda and traditional Thai medicines. The saponin glycosides, shatavarin I and IV are major constituents in its roots and may be responsible for their actions including protection against lipid peroxidation and carcinogenesis. To develop an immunoaffinity column for isolating compounds with structures related to shatavarin IV from crude extracts of A. racemosus root. The monoclonal antibody recognising shatavarin IV (mAbShavIV) was coupled to an Affi-Gel Hz gel to isolate compounds with structures related to shatavarin IV from the other components of crude extracts of A. racemosus root. The saponin glycosides in each fraction were analysed by mAbShavIV ELISA and LC-MS/MS. The pooled wash-through fractions contained 3% of loaded mAbShavIV reactive saponin glycosides, while eluted fractions released ~ 90% of shatavarin saponin glycosides in a single step. Using thiobarbiturate (TBARs) to measure lipid-peroxidation, the extract, and the pooled wash-through fractions showed moderate protection against Cu + -induced oxidation of human low density lipoprotein (LDL) (IC 50 11.3 ± 1.4 and 12.6 ± 0.9 μg/mL, respectively). In contrast, the saponin glycosides eluted from the mAbShavIV-column had weaker protectant (IC 50 29.7 ± 1.8 μg/mL) suggesting that A. racemosus shatavarins do not inhibit carcinogenesis through preventing lipid peroxidation. The strategy described here demonstrates its utility for isolating a group of related compounds from the rest of the extract with selectivity and recovery rate. Pharmacological efficacy and synergistic effects of the components obtained can be further investigated. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Watching individual molecules flex within lipid membranes using SERS

    Science.gov (United States)

    Taylor, Richard W.; Benz, Felix; Sigle, Daniel O.; Bowman, Richard W.; Bao, Peng; Roth, Johannes S.; Heath, George R.; Evans, Stephen D.; Baumberg, Jeremy J.

    2014-08-01

    Interrogating individual molecules within bio-membranes is key to deepening our understanding of biological processes essential for life. Using Raman spectroscopy to map molecular vibrations is ideal to non-destructively `fingerprint' biomolecules for dynamic information on their molecular structure, composition and conformation. Such tag-free tracking of molecules within lipid bio-membranes can directly connect structure and function. In this paper, stable co-assembly with gold nano-components in a `nanoparticle-on-mirror' geometry strongly enhances the local optical field and reduces the volume probed to a few nm3, enabling repeated measurements for many tens of minutes on the same molecules. The intense gap plasmons are assembled around model bio-membranes providing molecular identification of the diffusing lipids. Our experiments clearly evidence measurement of individual lipids flexing through telltale rapid correlated vibrational shifts and intensity fluctuations in the Raman spectrum. These track molecules that undergo bending and conformational changes within the probe volume, through their interactions with the environment. This technique allows for in situ high-speed single-molecule investigations of the molecules embedded within lipid bio-membranes. It thus offers a new way to investigate the hidden dynamics of cell membranes important to a myriad of life processes.

  15. Effect of nickel chloride on hepatic lipid peroxidation and glutathione concentration in mice

    DEFF Research Database (Denmark)

    Andersen, H R; Andersen, O

    1989-01-01

    Intraperitoneal administration of nickel chloride enhanced hepatic lipid peroxidation (HLP) in 6-wk-old and 8-12-wk-old male CBA-mice but not in 3-wk-old mice. Nickel chloride administration depleted hepatic GSH in 8-12-wk-old mice but not in the younger age groups. After 300 mumol NiCl2/kg...

  16. Inducing morphological changes in lipid bilayer membranes with microfabricated substrates

    Science.gov (United States)

    Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick

    2016-11-01

    Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.

  17. Impact of monoolein on aquaporin1-based supported lipid bilayer membranes

    International Nuclear Information System (INIS)

    Wang, Zhining; Wang, Xida; Ding, Wande; Wang, Miaoqi; Gao, Congjie; Qi, Xin

    2015-01-01

    Aquaporin (AQP) based biomimetic membranes have attracted considerable attention for their potential water purification applications. In this paper, AQP1 incorporated biomimetic membranes were prepared and characterized. The morphology and structure of the biomimetic membranes were characterized by in situ atomic force microscopy (AFM), infrared absorption spectroscopy, fluorescence microscopy, and contact angle measurements. The nanofiltration performance of the AQP1 incorporated membranes was investigated at 4 bar by using 2 g l −1 NaCl as feed solution. Lipid mobility plays an important role in the performance of the AQP1 incorporated supported lipid bilayer (SLB) membranes. We demonstrated that the lipid mobility is successfully tuned by the addition of monoolein (MO). Through in situ AFM and fluorescence recovery after photo-bleaching (FRAP) measurements, the membrane morphology and the molecular mobility were studied. The lipid mobility increased in the sequence DPPC < DPPC/MO (R MO = 5/5) < DOPC/MO (R MO = 5/5) < DOPC, which is consistent with the flux increment and salt rejection. This study may provide some useful insights for improving the water purification performance of biomimetic membranes. (paper)

  18. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.

    Science.gov (United States)

    Grison, Magali S; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M

    2015-04-01

    Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. © 2015 American Society of Plant Biologists. All rights reserved.

  19. Lipid self-assembly and lectin-induced reorganization of the plasma membrane.

    Science.gov (United States)

    Sych, Taras; Mély, Yves; Römer, Winfried

    2018-05-26

    The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  20. Interrelationships between lipid peroxidation and total antioxidant status in sedentary controls and unprofessional athletes.

    Science.gov (United States)

    Caimi, Gregorio; Canino, Baldassare; Lo Presti, Rosalia

    2010-01-01

    We examined the thiobarbituric acid-reactive substances (TBARS) as an index of lipid peroxidation, and the total antioxidant status (TAS) in 81 unprofessional athletes subdivided into three subgroups. The first group included 28 subjects who practised endurance sports, the second included 30 subjects who practised mixed sports, the third included 23 subjects who practised power sports. We enrolled also a group of 61 sedentary controls (SC). TBARS were increased and TAS was decreased in the whole group of athletes in comparison with SC; an almost similar behaviour was present also subdividing athletes according to the practised sport. A significant negative correlation between these two parameters emerged in SC but not in the whole group of athletes. Unless for the athletes that practised endurance sports a similar trend was found in athletes that practised mixed and power sports. In conclusion, at rest the symmetrical behaviour between the lipid peroxidation increase and the TAS decrease, observed in sedentary controls, was not evident in unprofessional athletes who practised different sports.

  1. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    Science.gov (United States)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  2. How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis.

    Science.gov (United States)

    Schubert, Thomas; Römer, Winfried

    2015-11-01

    Synthetic membrane systems, such as giant unilamellar vesicles and solid supported lipid bilayers, have widened our understanding of biological processes occurring at or through membranes. Artificial systems are particularly suited to study the inherent properties of membranes with regard to their components and characteristics. This review critically reflects the emerging molecular mechanism of lipid-driven endocytosis and the impact of model membrane systems in elucidating the complex interplay of biomolecules within this process. Lipid receptor clustering induced by binding of several toxins, viruses and bacteria to the plasma membrane leads to local membrane bending and formation of tubular membrane invaginations. Here, lipid shape, and protein structure and valency are the essential parameters in membrane deformation. Combining observations of complex cellular processes and their reconstitution on minimal systems seems to be a promising future approach to resolve basic underlying mechanisms. This article is part of a Special Issue entitled: Mechanobiology. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  4. Phospatidylserine or ganglioside--which of anionic lipids determines the effect of cationic dextran on lipid membrane?

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Wydro, Paweł; Cetnar, Andrzej; Włodarczyk, Grzegorz

    2015-02-01

    In this work the influence of cationic polymer, namely diethylaminoethyl DEAE-dextran on model lipid membranes was investigated. This polymer is of a wide application as a biomaterial and a drug carrier and its cytotoxicity toward various cancer cells was also confirmed. It was suggested that anticancer effect of cationic dextran is connected with the binding of the polymer to the negatively charged sialic acid residues overexpressed in cancer membrane. This fact encouraged us to perform the studies aimed at verifying whether the effect of cationic DEAE-dextran on membrane is determined only by the presence of the negatively charged lipid in the system or the kind of anionic lipid is also important. To reach this goal systematic investigations on the effect of dextran on various one-component lipid monolayers and multicomponent hepatoma cell model membranes differing in the level and the kind of anionic lipids (phosphatidylserine, sialic acid-containing ganglioside GM3 or their mixture) were done. As evidenced the results the effect of DEAE-dextran on the model system is determined by anionic lipid-polymer electrostatic interactions. However, the magnitude of the effect of cationic polymer is strongly dependent on the kind of anionic lipid in the model system. Namely, the packing and ordering of the mixtures containing ganglioside GM3 were more affected by DEAE-dextran than phosphatidylserine-containing monolayers. Although the experiments were done on model systems and therefore further studies are highly needed, the collected data may indicate that ganglioside may be important in the differentiation of the effect of cationic dextran on membranes. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Digestibility of Quinoa (Chenopodium quinoa Willd.) Protein Concentrate and Its Potential to Inhibit Lipid Peroxidation in the Zebrafish Larvae Model.

    Science.gov (United States)

    Vilcacundo, R; Barrio, D; Carpio, C; García-Ruiz, A; Rúales, J; Hernández-Ledesma, B; Carrillo, W

    2017-09-01

    Quinoa protein concentrate (QPC) was extracted and digested under in vitro gastrointestinal conditions. The protein content of QPC was in the range between 52.40 and 65.01% depending on the assay used. Quinoa proteins were almost completely hydrolyzed by pepsin at pH of 1.2, 2.0, and 3.2. At high pH, only partial hydrolysis was observed. During the duodenal phase, no intact proteins were visible, indicating their susceptibility to the in vitro simulated digestive conditions. Zebrafish larvae model was used to evaluate the in vivo ability of gastrointestinal digests to inhibit lipid peroxidation. Gastric digestion at pH 1.2 showed the highest lipid peroxidation inhibition percentage (75.15%). The lipid peroxidation activity increased after the duodenal phase. The digest obtained at the end of the digestive process showed an inhibition percentage of 82.10%, comparable to that showed when using BHT as positive control (87.13%).

  6. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  7. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells.

    Science.gov (United States)

    Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi

    2014-01-22

    Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes. © 2013 Elsevier Ltd. All rights reserved.

  8. An in vitro model to test relative antioxidant potential: Ultraviolet-induced lipid peroxidation in liposomes

    International Nuclear Information System (INIS)

    Pelle, E.; Maes, D.; Padulo, G.A.; Kim, E.K.; Smith, W.P.

    1990-01-01

    Since antioxidants have been shown to play a major role in preventing some of the effects of aging and photoaging in skin, it is important to study this phenomenon in a controlled manner. This was accomplished by developing a simple and reliable in vitro technique to assay antioxidant efficacy. Inhibition of peroxidation by antioxidants was used as a measure of relative antioxidant potential. Liposomes, high in polyunsaturated fatty acids (PUFA), were dispersed in buffer and irradiated with ultraviolet (UV) light. Irradiated liposomes exhibited a significantly higher amount of hydroperoxides than liposomes containing antioxidants in a dose- and concentration-dependent manner. Lipid peroxidation was determined spectrophotometrically by an increase in thiobarbituric acid reacting substances. To further substantiate the production of lipid peroxides, gas chromatography was used to measure a decrease in PUFA substrate. In order of decreasing antioxidant effectiveness, the following results were found among lipophilic antioxidants: BHA greater than catechin greater than BHT greater than alpha-tocopherol greater than chlorogenic acid. Among hydrophilic antioxidants, ascorbic acid and dithiothreitol were effective while glutathione was ineffective. In addition, ascorbic acid was observed to act synergistically with alpha-tocopherol, which is in agreement with other published reports on the interaction of these two antioxidants. Although peroxyl radical scavengers seem to be at a selective advantage in this liposomal/UV system, these results demonstrate the validity of this technique as an assay for measuring an antioxidant's potential to inhibit UV-induced peroxidation

  9. The effect of different levels of garlic extract administration at various time periods on the extent of serumic lipid peroxidation in laying hens

    Directory of Open Access Journals (Sweden)

    saeed rasoulinejad

    2013-02-01

    Full Text Available Free radicals are involved in molecular changes and mutation and if they are not inactivated the resultant lipid peroxidation will damage all types of cellular macromolecules such as proteins, carbohydrates, lipids and nucleic acids. Natural diet containing antioxidants plays an important role in health, reproduction, performance, safety and growth in poultry. Garlic extract with a high antioxidant effect very useful against free radicals and infective agents. In this study, the effect of concentration of 0.01 and 0.02% of garlic extract in drinking water with periods of 2, 4 and 6 days a week were evaluated on lipid peroxidation. In addition to assessing the best concentration, economic aspects were also considered. So at the end of the third week, the best effect on reducing lipid peroxidation was seen in T3 which had received the concentration of 0.02% of garlic extract, two days a week.  After six weeks of trial, Group T7 which had received the concentration of 0.02% garlic extract for 6 days a week, showed the best effect on reducing lipid peroxidation. Our studies also showed that garlic extract improved mass production in all groups compared to the control group.  Considering the amount of lipid peroxidation at the end of the sixth week, herd performance in six weeks and calculating the average sale price of mass production, minus the cost of feed consumed per group, it is concluded that group T4 which received garlic extract concentration of 0.01% for 4 days a week (Saturday, Monday, Wednesday, Thursday showed the best option in view of the economic conditions.

  10. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    Science.gov (United States)

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  11. Binding of Serotonin to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Wang, Chunhua; Cruys-Bagger, Nicolaj

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a prevalent neurotransmitter throughout the animal kingdom. It exerts its effect through the specific binding to the serotonin receptor, but recent research has suggested that neural transmission may also be affected by its nonspecific interactions...... with the lipid matrix of the synaptic membrane. However, membrane–5-HT interactions remain controversial and superficially investigated. Fundamental knowledge of this interaction appears vital in discussions of putative roles of 5-HT, and we have addressed this by thermodynamic measurements and molecular...... dynamics (MD) simulations. 5-HT was found to interact strongly with lipid bilayers (partitioning coefficient ∼1200 in mole fraction units), and this is highly unusual for a hydrophilic solute like 5-HT which has a bulk, oil–water partitioning coefficient well below unity. It follows that membrane affinity...

  12. Reconstitution of a Kv channel into lipid membranes for structural and functional studies.

    Science.gov (United States)

    Lee, Sungsoo; Zheng, Hui; Shi, Liang; Jiang, Qiu-Xing

    2013-07-13

    To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.

  13. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart.

    Science.gov (United States)

    Anderson, Ethan J; Katunga, Lalage A; Willis, Monte S

    2012-02-01

    The heart is a highly oxidative organ in which cardiomyocyte turnover is virtually absent, making it particularly vulnerable to accumulation of lipid peroxidation products (LPP) formed as a result of oxidative damage. Reactive oxygen and nitrogen species are the most common electrophiles formed during lipid peroxidation and lead to the formation of both stable and unstable LPP. Of the LPP formed, highly reactive aldehydes are a well-recognized causative factor in ageing and age-associated diseases, including cardiovascular disease and diabetes. Recent studies have identified that the mitochondria are both a primary source and target of LPP, with specific emphasis on aldehydes in cardiomyocytes and how these affect the electron transport system and Ca(2+) balance. Numerous studies have found that there are functional consequences in the heart following exposure to specific aldehydes (acrolein, trans-2-hexanal, 4-hydroxynonenal and acetaldehyde). Because these LPP are known to form in heart failure, cardiac ischaemia-reperfusion injury and diabetes, they may have an underappreciated role in the pathophysiology of these disease processes. Lipid peroxidation products are involved in the transcriptional regulation of endogenous anti-oxidant systems. Recent evidence demonstrates that transient increases in LPP may be beneficial in cardioprotection by contributing to mitohormesis (i.e. induction of anti-oxidant systems) in cardiomyocytes. Thus, exploitation of the cardioprotective actions of the LPP may represent a novel therapeutic strategy for future treatment of heart disease. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  14. [The composition of lipids and lipid peroxidation in the pancreas of quails exposed to nitrates and correction by the amaranth's seeds].

    Science.gov (United States)

    Tsekhmistrenko, S I; Ponomarenko, N V

    2013-01-01

    Researches of features of lipid composition, functioning of the system of antioxidant defense, maintenance of lipid peroxidation products in the quail's pancreas on the early postnatal ontogenesis stages are conducted for actions of nitrates and feeding with amaranth's seeds in mixed fodder. The arrival of nitrates in the organism of quails results in the decline of general lipids maintenance and nonetherified fat acids in the pancreas. Using of amaranth's seeds in mixed fodder on the background of the nitrate loading results in the increase of activity of the enzimes system of antioxidant defence, the growth of general lipid level in the quail's pancreas. Thus in correlation with separate classes of lipid maintenance of cholesterol goes down for certain, whereas the maintenance of triacylglycerols and ethers of cholesterol rises. The results obtained in the researches show the ability of amaranth's seeds to avert oxidative stress in quail's pancreas under nitrates influence.

  15. The influense of herbs origin drugs on lipid peroxidization during acute toxic damage of liver

    NARCIS (Netherlands)

    Katikova, OY; Kostin, UV; Yagudina, RI; Tishcin, VC

    2001-01-01

    The influence of the original vegetable complexes (which include: juices of beet-rout and carrot, decoction of degrose berries, extracts of corn silk, leaves of peppermint and some other components) on the indicators of the cytolysis, lipid peroxidation and antioxidant system of serum of the

  16. Reinterpreting the best biomarker of oxidative stress: The 8-iso-PGF(2α)/PGF(2α) ratio distinguishes chemical from enzymatic lipid peroxidation.

    Science.gov (United States)

    van 't Erve, Thomas J; Lih, Fred B; Kadiiska, Maria B; Deterding, Leesa J; Eling, Thomas E; Mason, Ronald P

    2015-06-01

    The biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) is regarded as the gold standard for detection of excessive chemical lipid peroxidation in humans. However, biosynthesis of 8-iso-PGF2α via enzymatic lipid peroxidation by prostaglandin-endoperoxide synthases (PGHSs), which are significantly induced in inflammation, could lead to incorrect biomarker interpretation. To resolve the ambiguity with this biomarker, the ratio of 8-iso-PGF2α to prostaglandin F2α (PGF2α) is established as a quantitative measure to distinguish enzymatic from chemical lipid peroxidation in vitro, in animal models, and in humans. Using this method, we find that chemical lipid peroxidation contributes only 3% to the total 8-iso-PGF2α in the plasma of rats. In contrast, the 8-iso-PGF2α levels in plasma of human males are generated >99% by chemical lipid peroxidation. This establishes the potential for an alternate pathway of biomarker synthesis, and draws into question the source of increases in 8-iso-PGF2α seen in many human diseases. In conclusion, increases in 8-iso-PGF2α do not necessarily reflect increases in oxidative stress; therefore, past studies using 8-iso-PGF2α as a marker of oxidative stress may have been misinterpreted. The 8-iso-PGF2α/PGF2α ratio can be used to distinguish biomarker synthesis pathways and thus confirm the potential change in oxidative stress in the myriad of disease and chemical exposures known to induce 8-iso-PGF2α. Published by Elsevier Inc.

  17. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice.

    Science.gov (United States)

    Hiratsuka, Seiichi; Ishihara, Kenji; Kitagawa, Tomoko; Wada, Shun; Yokogoshi, Hidehiko

    2008-12-01

    The effect of dietary docosahexaenoic acid (DHA, C22:6n-3) with two lipid types on lipid peroxidation of the brain was investigated in streptozotocin (STZ)-induced diabetic mice. Each group of female Balb/c mice was fed a diet containing DHA-connecting phospholipids (DHA-PL) or DHA-connecting triacylglycerols (DHA-TG) for 5 wk. Safflower oil was fed as the control. The lipid peroxide level of the brain was significantly lower in the mice fed the DHA-PL diet when compared to those fed the DHA-TG and safflower oil diets, while the alpha-tocopherol level was significantly higher in the mice fed the DHA-PL diet than in those fed the DHA-TG and safflower oil diets. The DHA level of phosphatidylethanolamine in the brain was significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil diet. The dimethylacetal levels were significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil and DHA-TG diets. These results suggest that the dietary DHA-connecting phospholipids have an antioxidant activity on the brain lipids in mice, and the effect may be related to the brain plasmalogen.

  18. Bioactive Structure of Membrane Lipids and Natural Products Elucidated by a Chemistry-Based Approach.

    Science.gov (United States)

    Murata, Michio; Sugiyama, Shigeru; Matsuoka, Shigeru; Matsumori, Nobuaki

    2015-08-01

    Determining the bioactive structure of membrane lipids is a new concept, which aims to examine the functions of lipids with respect to their three-dimensional structures. As lipids are dynamic by nature, their "structure" does not refer solely to a static picture but also to the local and global motions of the lipid molecules. We consider that interactions with lipids, which are completely defined by their structures, are controlled by the chemical, functional, and conformational matching between lipids and between lipid and protein. In this review, we describe recent advances in understanding the bioactive structures of membrane lipids bound to proteins and related molecules, including some of our recent results. By examining recent works on lipid-raft-related molecules, lipid-protein interactions, and membrane-active natural products, we discuss current perspectives on membrane structural biology. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Protective effect of serotonin on phospholipids and lipid peroxides contents in brain and liver of gamma irradiated rats

    International Nuclear Information System (INIS)

    Mohamed, M.A.; Saada, H.A.

    1999-01-01

    Treatment of normal rats with serotonin (2 mg/100 g body weight) produced no significant change in levels of phospholipids and lipid peroxides of the cerebral hemispheres and liver 1,3 and days after treatment. The content of lipid peroxides was measured as malondialdehyde (MDA). Whole body gamma-irradiation of rats at 8 Gy resulted in significant decrease in the level of phospholipids and significant increase in MDA level in cerebral hemispheres and lever. Changes were more pronounced in liver. Treatment with serotonin, 15 minutes before irradiation, had a pronounced protective effect against the radiation induced changes in the levels of phospholipids and MDA only in the liver through all the experimental period

  20. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  1. Aldehyde-sequestering drugs: tools for studying protein damage by lipid peroxidation products.

    Science.gov (United States)

    Burcham, Philip C; Kaminskas, Lisa M; Fontaine, Frank R; Petersen, Dennis R; Pyke, Simon M

    2002-12-27

    Elevated levels of reactive alpha,beta-unsaturated aldehydes (e.g. malondialdehyde, 4-hydroxynonenal and acrolein) in the affected tissues of various degenerative conditions suggest these substances are active propagators of the disease process. One experimental approach to attenuating damage by these intermediates employs 'aldehyde-sequestering drugs' as sacrificial nucleophiles, thereby sparing cell macromolecules and perhaps slowing disease progression. Drugs with demonstrated trapping activity toward lipid-derived aldehydes include various amine compounds such as aminoguanidine, carnosine and pyridoxamine. We have focused on identifying scavengers of acrolein, perhaps the most toxic aldehyde formed during lipid peroxidation cascades. Various phthalazine compounds (hydralazine and dihydralazine) were found to trap acrolein readily, forming hydrazone derivatives in a rapid Schiff-type reaction. These compounds strongly protect against acrolein-mediated toxicity in isolated hepatocytes.

  2. Neutron scattering to study membrane systems: from lipid vesicles to living cells.

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, Jonathan D. [ORNL; Chatterjee, Sneha [ORNL; Stanley, Christopher B. [ORNL; Qian, Shuo [ORNL; Cheng, Xiaolin [ORNL; Myles, Dean A A [ORNL; Standaert, Robert F. [ORNL; Elkins, James G. [ORNL; Katsaras, John [ORNL

    2017-03-01

    The existence and role of lateral lipid organization in biological membranes has been studied and contested for more than 30 years. Lipid domains, or rafts, are hypothesized as scalable compartments in biological membranes, providing appropriate physical environments to their resident membrane proteins. This implies that lateral lipid organization is associated with a range of biological functions, such as protein co-localization, membrane trafficking, and cell signaling, to name just a few. Neutron scattering techniques have proven to be an excellent tool to investigate these structural features in model lipids, and more recently, in living cells. I will discuss our recent work using neutrons to probe the structure and mechanical properties in model lipid systems and our current efforts in using neutrons to probe the structure and organization of the bilayer in a living cell. These efforts in living cells have used genetic and biochemical strategies to generate a large neutron scattering contrast, making the membrane visible. I will present our results showing in vivo bilayer structure and discuss the outlook for this approach.

  3. Lipolysis, lipid peroxidation, and color characteristics of Serrano Hams from Duroc and large white pigs during dry-curing.

    Science.gov (United States)

    del Olmo, Ana; Calzada, Javier; Nuñez, Manuel

    2013-11-01

    Lipolysis, lipid peroxidation, and colorimetric characteristics of Serrano hams from Duroc and Large White pigs along a 15-mo curing period were investigated. Physicochemical parameters of both types of hams evolved similarly during curing. Twelve of 13 free fatty acids (FFAs) increased during curing, eicosatrienoic acid being the only exception. Linoleic, stearic, and arachidonic acids and the minor heptadecanoic acid reached lower concentrations, and the rest of minor FFAs higher concentrations, in Duroc hams than in Large White hams. The index measuring the early stage of lipid peroxidation declined from month 5 onwards, indicating that the phenomenon had been completed by month 5, while the index of the secondary stage of lipid peroxidation increased with curing time. Higher values were found for the 1st index in Duroc hams. Curing affected color parameters. Lightness decreased and redness increased in both types of hams, while yellowness decreased only in Duroc hams. Lower redness values were found for Duroc hams. Major differences in color parameters were found between muscles. Principal components analysis of FFAs yielded 2 main principal components. The 1st factor, correlated with all FFAs excepting eicosatrienoic acid, allowed discrimination between curing times. The 2nd factor, correlated with eicosatrienoic acid, permitted discrimination between breeds. © 2013 Institute of Food Technologists®

  4. Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids.

    Science.gov (United States)

    Ashrafuzzaman, Mohammad; Tseng, Chih-Yuan; Duszyk, Marek; Tuszynski, Jack A

    2012-12-01

    We demonstrate the effects on membrane of the tubulin-binding chemotherapy drugs: thiocolchicoside and taxol. Electrophysiology recordings across lipid membranes in aqueous phases containing drugs were used to investigate the drug effects on membrane conductance. Molecular dynamics simulation of the chemotherapy drug-lipid complexes was used to elucidate the mechanism at an atomistic level. Both drugs are observed to induce stable ion-flowing pores across membranes. Discrete pore current-time plots exhibit triangular conductance events in contrast to rectangular ones found for ion channels. Molecular dynamics simulations indicate that drugs and lipids experience electrostatic and van der Waals interactions for short periods of time when found within each other's proximity. The energies from these two interactions are found to be similar to the energies derived theoretically using the screened Coulomb and the van der Waals interactions between peptides and lipids due to mainly their charge properties while forming peptide-induced ion channels in lipid bilayers. Experimental and in silico studies together suggest that the chemotherapy drugs induce ion pores inside lipid membranes due to drug-lipid physical interactions. The findings reveal cytotoxic effects of drugs on the cell membrane, which may aid in novel drug development for treatment of cancer and other diseases. © 2012 John Wiley & Sons A/S.

  5. Potentiation of intraocular absorption and drug metabolism of N-acetylcarnosine lubricant eye drops: drug interaction with sight threatening lipid peroxides in the treatment for age-related eye diseases.

    Science.gov (United States)

    Babizhayev, Mark A

    2009-01-01

    Cataract is the dominant cause of blindness worldwide. Studies of the morphological structure and biophysical changes of the lens in human senile cataracts have demonstrated the disappearance of normal fiber structure in the opaque region of the lens and the disintegration of the lens fiber plasma membrane in the lens tissue. Morphological and biochemical techniques have revealed the regions in human cataractous lenses in which the plasma membrane derangement occurs as the primary light scattering centers which cause the observed lens opacity. Human cataract formation is mostly considered to be a multifactorial disease; however, oxidative stress might be one of the leading causes for both nuclear and cortical cataract. Phospholipid molecules modified with oxygen, accumulating in the lipid bilayer, change its geometry and impair lipid-lipid and protein-lipid interactions in lenticular fiber membranes. Electron microscopy data of human lenses at various stages of age-related cataract document that these disruptions were globules, vacuoles, multilamellar membranes, and clusters of highly undulating membranes. The opaque shades of cortical cataracts represent cohorts of locally affected fibres segregated from unaffected neighbouring fibres by plasma membranes. Other potential scattering centers found throughout the mature cataract nucleus included variations in staining density between adjacent cells, enlarged extracellular spaces between undulating membrane pairs, and protein-like deposits in the extracellular space. These affected parts had membranes with a fine globular aspect and in cross-section proved to be filled with medium to large globular elements. Lipid peroxidation (LPO) is a pathogenetic and causative factor of cataract. Increased concentrations of primary molecular LPO products (diene conjugates, lipid hydroperoxides, fatty acid oxy-derivatives) and end fluorescent LPO products were detected in the lipid moieties of the aqueous humor samples and human

  6. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    Science.gov (United States)

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (Pofficinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  7. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.

    Science.gov (United States)

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi

    2016-04-19

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.

  8. Concerted diffusion of lipids in raft-like membranes

    NARCIS (Netherlands)

    Apajalahti, Touko; Niemela, Perttu; Govindan, Praveen Nedumpully; Miettinen, Markus S.; Salonen, Emppu; Marrink, Siewert-Jan; Vattulainen, Ilpo

    2010-01-01

    Currently, there is no comprehensive model for the dynamics of cellular membranes. The understanding of even the basic dynamic processes, such as lateral diffusion of lipids, is still quite limited. Recent studies of one-component membrane systems have shown that instead of single-particle motions,

  9. Lipid raft localization of TLR2 and its co-receptors is independent of membrane lipid composition

    Directory of Open Access Journals (Sweden)

    Christine Hellwing

    2018-01-01

    Full Text Available Background Toll like receptors (TLRs are an important and evolutionary conserved class of pattern recognition receptors associated with innate immunity. The recognition of Gram-positive cell wall constituents strongly depends on TLR2. In order to be functional, TLR2 predominantly forms a heterodimer with TLR1 or TLR6 within specialized membrane microdomains, the lipid rafts. The membrane lipid composition and the physicochemical properties of lipid rafts are subject to modification by exogenous fatty acids. Previous investigations of our group provide evidence that macrophage enrichment with polyunsaturated fatty acids (PUFA induces a reordering of lipid rafts and non-rafts based on the incorporation of supplemented PUFA as well as their elongation and desaturation products. Methods In the present study we investigated potential constraining effects of membrane microdomain reorganization on the clustering of TLR2 with its co-receptors TLR1 and TLR6 within lipid rafts. To this end, RAW264.7 macrophages were supplemented with either docosahexaenoic acid (DHA or arachidonic acid (AA and analyzed for receptor expression and microdomain localization in context of TLR stimulation. Results and Conclusions Our analyses showed that receptor levels and microdomain localization were unchanged by PUFA supplementation. The TLR2 pathway, in contrast to the TLR4 signaling cascade, is not affected by exogenous PUFA at the membrane level.

  10. Hypoxia-induced lipid peroxidation in rat brain and protective effect of carnitine and phosphocreatine

    Czech Academy of Sciences Publication Activity Database

    Rauchová, Hana; Koudelová, J.; Drahota, Zdeněk; Mourek, J.

    2002-01-01

    Roč. 27, č. 9 (2002), s. 899-904 ISSN 0364-3190 R&D Projects: GA MŠk LN00A069 Grant - others:GA UK(XC) 22/2001 Institutional research plan: CEZ:AV0Z5011922 Keywords : hypobaric hypoxia-lipid peroxidation * carnitine * lactate/pyruvate ratio Subject RIV: ED - Physiology Impact factor: 1.672, year: 2002

  11. On the interaction between fluoxetine and lipid membranes: Effect of the lipid composition

    Science.gov (United States)

    Pham, Vy T.; Nguyen, Trinh Q.; Dao, Uyen P. N.; Nguyen, Trang T.

    2018-02-01

    Molecular interaction between the antidepressant fluoxetine and lipid bilayers was investigated in order to provide insights into the drug's incorporation to lipid membranes. In particular, the effects of lipid's unsaturation degree and cholesterol content on the partitioning of fluoxetine into large unilamellar vesicles (LUVs) comprised of unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated using second derivative spectrophotometry and Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). It was found that fluoxetine partitioned to a greater extent into the liquid-crystalline DOPC LUVs than into the solid-gel DPPC LUVs. The lipid physical state dependence of drug partitioning was verified by increasing the temperature in which the partition coefficient of fluoxetine significantly increased upon the change of the lipid phase from solid-gel to liquid-crystalline. The incorporation of 28 mol% cholesterol into the LUVs exerted a significant influence on the drug partitioning into both DOPC and DPPC LUVs. The ATR-FTIR study revealed that fluoxetine perturbed the conformation of DOPC more strongly than that of DPPC due to the cis-double bonds in the lipid acyl chains. Fluoxetine possibly bound to the carbonyl moiety of the lipids through the hydrogen bonding formation while displaced some water molecules surrounding the PO2- regions of the lipid head groups. Cholesterol, however, could lessen the interaction between fluoxetine and the carbonyl groups of both DOPC and DPPC LUVs. These findings provided a better understanding of the role of lipid structure and cholesterol on the interaction between fluoxetine and lipid membranes, shedding more light into the drug's therapeutic action.

  12. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Jakob Andersson

    2016-05-01

    Full Text Available Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.

  13. Suppression by ellagic acid of 60Co-irradiation-induced lipid peroxidation in placenta and fetus of rats

    International Nuclear Information System (INIS)

    Oku, Hirotsugu

    1992-01-01

    The effect of ellagic acid, a component of Eucalyptus maculata, on lipid peroxidation was examined in placenta and fetus of pregnant rats irradiated with 60 Co. The increase in lipid peroxide levels by the irradiation of the placenta and fetus brain as well as those of the serum and organs of mother was suppressed by treatment of the mother rats with ellagic acid. This suppressing effect found in placenta and fetus was significantly correlated with that found in mother rats. Moreover, ellagic acid suppressed the morphological changes such as degeneration in the endothelial cells of placenta and liver cells of fetus caused by the irradiation and improved the survival rate after the irradiation. These suppressing effects of ellagic acid were approximately the same as those of α-tocopherol. (author)

  14. Thermal conductivity and rectification in asymmetric archaeal lipid membranes

    Science.gov (United States)

    Youssefian, Sina; Rahbar, Nima; Van Dessel, Steven

    2018-05-01

    Nature employs lipids to construct nanostructured membranes that self-assemble in an aqueous environment to separate the cell interior from the exterior environment. Membrane composition changes among species and according to environmental conditions, which allows organisms to occupy a wide variety of different habitats. Lipid bilayers are phase-change materials that exhibit strong thermotropic and lyotropic phase behavior in an aqueous environment, which may also cause thermal rectification. Among different types of lipids, archaeal lipids are of great interest due to their ability to withstand extreme conditions. In this paper, nonequilibrium molecular dynamics simulations were employed to study the nanostructures and thermal properties of different archaeols and to investigate thermal rectification effects in asymmetric archaeal membranes. In particular, we are interested in understanding the role of bridged phytanyl chains and cyclopentane groups in controlling the phase transition temperature and heat flow across the membrane. Our results indicate that the bridged phytanyl chains decrease the molecular packing of lipids, whereas the existence of cyclopentane rings on the tail groups increases the molecular packing by enhancing the interactions between isoprenoid chains. We found that macrocyclic archaeols have the highest thermal conductivity, whereas macrocyclic archaeols with two cyclopentane rings have the lowest. The effect of the temperature on the variation of thermal conductivity was found to be progressive. Our results further indicate that small thermal rectification effects occur in asymmetric archaeol bilayer membranes at around 25 K temperature gradient. The calculated thermal rectification factor was around 0.09 which is in the range of rectification factor obtained experimentally for nanostructures such as carbon nanotubes (0.07). Such phenomena may be of biological significance and could also be optimized for use in various engineering

  15. Effect of Copper on Fatty-Acid Composition and Peroxidation of Lipids in the Roots of Copper Tolerant and Sensitive Silene-Cucubalus.

    NARCIS (Netherlands)

    De Vos, C.H.R.; TenBookum, W.M.; Vooijs, R.; Schat, H.; De Kok, L.J.

    1993-01-01

    The effect of high copper exposure in vivo on the lipid and fatty acid composition and lipid peroxidation was studied in the roots of plants from one copper sensitive and two copper tolerant genotypes of Silene cucubalus. At 0.5 muM Cu (control treatment) the compositions of lipids and fatty acids

  16. Exercise performance, red blood cell deformability, and lipid peroxidation: effects of fish oil and vitamin E

    NARCIS (Netherlands)

    Oostenbrug, G. S.; Mensink, R. P.; Hardeman, M. R.; de Vries, T.; Brouns, F.; Hornstra, G.

    1997-01-01

    Previous studies have indicated that fish oil supplementation increases red blood cell (RBC) deformability, which may improve exercise performance. Exercise alone, or in combination with an increase in fatty acid unsaturation, however, may enhance lipid peroxidation. Effects of a bicycle time trial

  17. Quantitative studies of antimicrobial peptide-lipid membrane interactions

    DEFF Research Database (Denmark)

    Kristensen, Kasper

    antimicrobial peptides interact with phospholipid membranes. Motivated by that fact, the scope of this thesis is to study these antimicrobial peptide-lipid membrane interactions. In particular, we attempt to study these interactions with a quantitative approach. For that purpose, we consider the three...... a significant problem for quantitative studies of antimicrobial peptide-lipid membrane interactions; namely that antimicrobial peptides adsorb to surfaces of glass and plastic. Specifically, we demonstrate that under standard experimental conditions, this effect is significant for mastoparan X, melittin...... lead to inaccurate conclusions, or even completely wrong conclusions, when interpreting the FCS data. We show that, if all of the pitfalls are avoided, then FCS is a technique with a large potential for quantitative studies of antimicrobial peptide-induced leakage of fluorescent markers from large...

  18. Asymmetric Hybrid Polymer-Lipid Giant Vesicles as Cell Membrane Mimics.

    Science.gov (United States)

    Peyret, Ariane; Ibarboure, Emmanuel; Le Meins, Jean-François; Lecommandoux, Sebastien

    2018-01-01

    Lipid membrane asymmetry plays an important role in cell function and activity, being for instance a relevant signal of its integrity. The development of artificial asymmetric membranes thus represents a key challenge. In this context, an emulsion-centrifugation method is developed to prepare giant vesicles with an asymmetric membrane composed of an inner monolayer of poly(butadiene)- b -poly(ethylene oxide) (PBut- b -PEO) and outer monolayer of 1-palmitoyl-2-oleoyl- sn -glycero-3-phosphocholine (POPC). The formation of a complete membrane asymmetry is demonstrated and its stability with time is followed by measuring lipid transverse diffusion. From fluorescence spectroscopy measurements, the lipid half-life is estimated to be 7.5 h. Using fluorescence recovery after photobleaching technique, the diffusion coefficient of 1,2-dioleoyl- sn -glycero-3-phosphoethanolamine- N -(lissamine rhodamine B sulfonyl) (DOPE-rhod, inserted into the POPC leaflet) is determined to be about D = 1.8 ± 0.50 μm 2 s -1 at 25 °C and D = 2.3 ± 0.7 μm 2 s -1 at 37 °C, between the characteristic values of pure POPC and pure polymer giant vesicles and in good agreement with the diffusion of lipids in a variety of biological membranes. These results demonstrate the ability to prepare a cell-like model system that displays an asymmetric membrane with transverse and translational diffusion properties similar to that of biological cells.

  19. Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes

    Directory of Open Access Journals (Sweden)

    T.R. Oliveira

    2009-09-01

    Full Text Available Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR and normotensive control rat strains (WKY and NWR. Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.

  20. Interaction of Dendritic Polymers with Synthetic Lipid and Cell Membranes

    Science.gov (United States)

    Mecke, Almut; Hong, Seungpyo; Bielinska, Anna U.; Banaszak Holl, Mark M.; Orr, Bradford G.; Baker, James R., Jr.

    2004-03-01

    Polyamidoamine (PAMAM) dendrimers are promising candidates for the development of nanoscale therapeutic transport agents. Here we present studies on dendrimer-membrane interactions leading to a better understanding of possible uptake mechanisms into cells. Using synthetic lipid and natural cell membranes as model systems it is shown that the effect of PAMAM dendrimers on a membrane strongly depends on the dendrimer generation, architecture and chemical properties of the branch end groups. Atomic force microscopy data indicates that generation 7 dendrimers have the ability to form small ( 10-100 nm) holes in a lipid bilayer. When dendrimers with otherwise identical chemical properties are arranged in a covalently linked cluster, no hole formation occurs. Dendrimer-lipid micelle formation is proposed and investigated as a possible mechanism for this behavior. Smaller dendrimers (generation 5) have a greatly reduced ability to remove lipid molecules from a bilayer. In addition to the size of the dendrimer, the charge of the branch end groups plays a significant role for dendrimer-membrane interactions. These results agree well with biological studies using cultured cells and point to a new mechanism of specific targeting and uptake into cells.

  1. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves.

    Science.gov (United States)

    Shabbir, Maria; Khan, Muhammad Rashid; Saeed, Naima

    2013-06-22

    Maytenus royleanus is traditionally used in gastro-intestinal disorders. The aim of this study was to evaluate the methanol extract of leaves and its derived fractions for various antioxidant assays and for its potential against lipid peroxidation and hemolytic activity. Various parameters including scavenging of free-radicals (DPPH, ABTS, hydroxyl and superoxide radical), hydrogen peroxide scavenging, Fe3+ to Fe2+ reducing capacity, total antioxidant capacity, anti-lipid peroxidation and anti-hemolytic activity were investigated. Methanol extract and its derived fractions were also subjected for chemical constituents. LC-MS was also performed on the methanol extract. Qualitative analysis of methanol extract exhibited the presence of alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, saponins, phlobatannins, tannins and terpenoids. LC-MS chromatogram indicated the composition of diverse compounds including flavonoids, phenolics and phytoestrogens. Methanol extract, its ethyl acetate and n-butanol fractions constituted the highest amount of total phenolic and flavonoid contents and showed a strong correlation coefficient with the IC50 values for the scavenging of DPPH, hydrogen peroxide radicals, superoxide radicals, anti-lipid peroxidation and anti-hemolytic efficacy. Moreover, n-butanol fraction showed the highest scavenging activity for ABTS radicals and for reduction of Fe3+ to Fe2+. Present results suggested the therapeutic potential of Maytenus royleanus leaves, in particular, methanol extract, ethyl acetate and n-butanol fraction as therapeutic agent against free-radical associated damages. The protective potential of the extract and or fraction may be attributed due to the high concentration of phenolic, flavonoid, tannins and terpenoids.

  2. Influence of the Siberian larch extract on the processes of peroxide oxidation of lipids in experiment

    Directory of Open Access Journals (Sweden)

    Pateyuk Andrey

    2016-03-01

    Full Text Available In modern conditions wood processing is one of the primary branches of production in Transbaikal region. In connection with big squares of logging the question of processing and utilizing waste products directly on the spot is particularly acute. We researched the activity of water extract from sawdust of Siberian larch "Ekstrapinus" on the power exchange and processes of peroxide oxidation of lipids against immobilized stress in experiment. The data provided in the article prove that the use of Ekstrapinus extract reduces the pathological violations arising under stress. So, Ekstrapinus extract restores energy potential of cages when modeling stress, restores energy potential of cells, normalizes balance in the system "peroxide oxidation of lipids – antioxidant protection" and supports the balance of tiol in an animal organism in the state of stress. Considering absence of toxicity in the recommended doses, it is possible to recommend their application under stress.

  3. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Mishin, Vladimir; Black, Adrienne T. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Shakarjian, Michael P. [Environmental Health Science, New York Medical College, Valhalla, NY (United States); Kong, Ah-Ng Tony; Laskin, Debra L. [Pharmacology and Toxicology and Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-03-01

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  4. Probing protein-lipid interactions by FRET between membrane fluorophores

    Science.gov (United States)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  5. Dynamical and structural properties of lipid membranes in relation to liposomal drug delivery systems

    DEFF Research Database (Denmark)

    Jørgensen, Kent; Høyrup, Lise Pernille Kristine; Pedersen, Tina B.

    2001-01-01

    The structural and dynamical properties of DPPC liposomes containing lipopolymers (PEG-lipids) and charged DPPS lipids have been,studied in relation to the lipid membrane interaction of enzymes and peptides. The results suggest that both the lipid membrane structure and dynamics and in particular...

  6. Novel tilt-curvature coupling in lipid membranes

    Science.gov (United States)

    Terzi, M. Mert; Deserno, Markus

    2017-08-01

    On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain—an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile—which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯ m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯ m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.

  7. Lipid reorganization induced by Shiga toxin clustering on planar membranes.

    Directory of Open Access Journals (Sweden)

    Barbara Windschiegl

    Full Text Available The homopentameric B-subunit of bacterial protein Shiga toxin (STxB binds to the glycolipid Gb(3 in plasma membranes, which is the initial step for entering cells by a clathrin-independent mechanism. It has been suggested that protein clustering and lipid reorganization determine toxin uptake into cells. Here, we elucidated the molecular requirements for STxB induced Gb(3 clustering and for the proposed lipid reorganization in planar membranes. The influence of binding site III of the B-subunit as well as the Gb(3 lipid structure was investigated by means of high resolution methods such as fluorescence and scanning force microscopy. STxB was found to form protein clusters on homogenous 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC/cholesterol/Gb(3 (65:30:5 bilayers. In contrast, membranes composed of DOPC/cholesterol/sphingomyelin/Gb(3 (40:35:20:5 phase separate into a liquid ordered and liquid disordered phase. Dependent on the fatty acid composition of Gb(3, STxB-Gb(3 complexes organize within the liquid ordered phase upon protein binding. Our findings suggest that STxB is capable of forming a new membrane phase that is characterized by lipid compaction. The significance of this finding is discussed in the context of Shiga toxin-induced formation of endocytic membrane invaginations.

  8. Effects of flaxseed oil on anti-oxidative system and membrane deformation of human peripheral blood erythrocytes in high glucose level.

    Science.gov (United States)

    Yang, Wei; Fu, Juan; Yu, Miao; Huang, Qingde; Wang, Di; Xu, Jiqu; Deng, Qianchun; Yao, Ping; Huang, Fenghong; Liu, Liegang

    2012-07-08

    The erythrocyte membrane lesion is a serious diabetic complication. A number of studies suggested that n-3 fatty acid could reduce lipid peroxidation and elevate α- or γ-tocopherol contents in membrane of erythrocytes. However, evidence regarding the protective effects of flaxseed oil, a natural product rich in n-3 fatty acid, on lipid peroxidation, antioxidative capacity and membrane deformation of erythrocytes exposed to high glucose is limited. Human peripheral blood erythrocytes were isolated and treated with 50 mM glucose to mimic hyperglycemia in the absence or presence of three different doses of flaxseed oil (50, 100 or 200 μM) in the culture medium for 24 h. The malondialdehyde (MDA) and L-glutathione (GSH) were measured by HPLC and LC/MS respectively. The phospholipids symmetry and membrane fatty acid composition of human erythrocytes were detected by flow cytometry and gas chromatograph (GC). The morphology of human erythrocyte was illuminated by ultra scanning electron microscopy. Flaxseed oil attenuated hyperglycemia-induced increase of MDA and decrease of GSH in human erythrocytes. Human erythrocytes treated with flaxseed oil contained higher C22:5 and C22:6 than those in the 50 mM glucose control group, indicating that flaxseed oil could reduce lipid asymmetric distribution and membrane perturbation. The ultra scanning electron microscopy and flow cytometer have also indicated that flaxseed oil could protect the membrane of human erythrocytes from deformation at high glucose level. The flaxseed oil supplementation may prevent lipid peroxidation and membrane dysfunction of human erythrocytes in hyperglycemia.

  9. Recent progress on lipid lateral heterogeneity in plasma membranes: from rafts to submicrometric domains

    Science.gov (United States)

    Carquin, Mélanie; D'Auria, Ludovic; Pollet, Hélène; Bongarzone, Ernesto R.; Tyteca, Donatienne

    2016-01-01

    The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicholson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decade, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (> min vs sec) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryotes to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution. PMID:26738447

  10. Fluorescent Lipids: Functional Parts of Fusogenic Liposomes and Tools for Cell Membrane Labeling and Visualization

    Directory of Open Access Journals (Sweden)

    Christian Kleusch

    2012-01-01

    Full Text Available In this paper a rapid and highly efficient method for controlled incorporation of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent molecules have two consecutive functions: First, they trigger rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their carrier particles, so called fusogenic liposomes, and second, after insertion into cellular membranes these molecules enable fluorescence imaging of cell membranes and membrane traffic processes. We tested the fluorescent derivatives of the following essential membrane lipids for membrane fusion: Ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, ganglioside, cholesterol, and cholesteryl ester. Our results show that all probed lipids could more efficiently be incorporated into the plasma membrane of living cells than by using other methods. Moreover, labeling occurred in a gentle manner under classical cell culture conditions reducing cellular stress responses. Staining procedures were monitored by fluorescence microscopy and it was observed that sphingolipids and cholesterol containing free hydroxyl groups exhibit a decreased distribution velocity as well as a longer persistence in the plasma membrane compared to lipids without hydroxyl groups like phospholipids or other artificial lipid analogs. After membrane staining, the fluorescent molecules were sorted into membranes of cell organelles according to their chemical properties and biological functions without any influence of the delivery system.

  11. The properties of the outer membrane localized Lipid A transporter LptD

    International Nuclear Information System (INIS)

    Haarmann, Raimund; Ibrahim, Mohamed; Stevanovic, Mara; Bredemeier, Rolf; Schleiff, Enrico

    2010-01-01

    Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of Gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other Gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all Gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.

  12. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Martin Kreuzer

    2015-12-01

    Full Text Available In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride (PAH in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions.

  13. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers.

    Science.gov (United States)

    García-Blanco, Ana; Peña-Bautista, Carmen; Oger, Camille; Vigor, Claire; Galano, Jean-Marie; Durand, Thierry; Martín-Ibáñez, Nuria; Baquero, Miguel; Vento, Máximo; Cháfer-Pericás, Consuelo

    2018-07-01

    Lipid peroxidation plays an important role in Alzheimer Disease, so corresponding metabolites found in urine samples could be potential biomarkers. The aim of this work is to develop a reliable ultra-performance liquid chromatography-tandem mass spectrometry analytical method to determine a new set of lipid peroxidation compounds in urine samples. Excellent sensitivity was achieved with limits of detection between 0.08 and 17 nmol L -1 , which renders this method suitable to monitor analytes concentrations in real samples. The method's precision was satisfactory with coefficients of variation around 5-17% (intra-day) and 8-19% (inter-day). The accuracy of the method was assessed by analysis of spiked urine samples obtaining recoveries between 70% and 120% for most of the analytes. The utility of the described method was tested by analyzing urine samples from patients early diagnosed with mild cognitive impairment or mild dementia Alzheimer Disease following the clinical standard criteria. As preliminary results, some analytes (17(RS)-10-epi-SC-Δ 15 -11-dihomo-IsoF, PGE 2 ) and total parameters (Neuroprostanes, Isoprostanes, Isofurans) show differences between the control and the clinical groups. So, these analytes could be potential early Alzheimer Disease biomarkers assessing the patients' pro-oxidant condition. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Interaction of Hematoporphyrin with Lipid Membranes

    DEFF Research Database (Denmark)

    Stepniewski, M.; Kepczynski, M.; Jamroz, D.

    2012-01-01

    Natural or synthetic porphyrins are being used as photosensitizers in photodiagnosis (PD) and photodynamic therapy (PDT) of malignancies and some other diseases. Understanding the interactions between porphyrins and cell membranes is therefore important to rationalize the uptake of photosensitizers...... and their passive transport through cell membranes. In this study, we consider the properties of hematoporphyrin (Hp), a well-known photosensitizer for PD and PDT, in the presence of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer that we use as a model system for protein-free cell membranes....... The dianions, being in the aqueous phase, formed stable dimers with a strictly determined geometry. Our results fully supported the experimental data and provide a more detailed molecular-level description of the interactions of photosensitizers with lipid membranes....

  15. Ultrastructural and cytochemical study of membrane alterations in x-irradiated liver tissue from normal and vitamin E-deficient ducklings

    International Nuclear Information System (INIS)

    Huijbers, W.A.R.; Oosterbaan, J.A.; Meskendorp-Haarsma, T.J.; Hardonk, M.J.; Molenaar, I.

    1979-01-01

    An investigation into the differential susceptibility of liver cellular membranes to peroxidative processes has been performed, using x irradiation on the liver surface, resulting in a a 3-mm penetrating gradient of membrane damage. Ultrastructural, cytochemical, and histochemical findings in this area point to a differential sensitivity of cellular membranes to x irradiation. The plasma membrane and the lysosomal membrane, containing much lipid and cholesterol and little membrane and the lysosomal membrane, containing much lipid and cholesterol and little vitamin E, are highly susceptible to x irradiation. Less sensitive are the membranes of mitochondria and endoplasmic reticulum, containing relatively much vitamin E and proteins and a lower amount of lipids and cholesterol

  16. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.

    Science.gov (United States)

    Wang, Zhen; Schey, Kevin L

    2015-12-01

    Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.

  17. Effects of chilled storage and cryopreservation on sperm characteristics, antioxidant enzyme activities, and lipid peroxidation in Pacific cod Gadus microcephalus

    Science.gov (United States)

    Wang, Xueying; Shi, Xuehui; Liu, Yifan; Yu, Daode; Guan, Shuguang; Liu, Qinghua; Li, Jun

    2016-07-01

    The present study evaluated the effects of chilled storage and cryopreservation on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod Gadus macrocephalus. Sperm motility and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (Gr), and lipid peroxidation (measured via malondialdehyde (MDA) content) were determined after the milt was stored at 4°C for 12 h, cryopreserved without cryoprotectant in 12% propylene glycol (PG), cryopreserved in 12% PG+0.1 mol/L trehalose, or cryopreserved in 12% PG spermatozoa but centrifuged to decant the supernatant prior to cryopreservation (only sperm cells were cryopreserved). After chilled storage or cryopreservation, the SOD, CAT and GPx activities were reduced in sperm cells and increased in seminal plasma in almost all treatments; sperm motility parameters were also decreased. However, the addition of trehalose into the cryoprotectant could significantly improve the postthaw sperm quality as revealed by the sperm average path velocity. This improvement might be attributed to the function of trehalose in scavenging reactive oxygen species. Chilled storage and cryopreservation had significant effects on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod.

  18. Air pollutant sulfur dioxide-induced alterations on the levels of lipids, lipid peroxidation and lipase activity in various regions of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Haider, S S; Hasan, M; Khan, N H

    1982-07-01

    The exposure of rats to SO/sub 2/ (10 p.p.m.) for one hour daily for 30 days caused depletion of total lipids in all brain areas. The contents of phospholipid were elevated in cerebellum and brain stem, but were depleted in cerebral hemisphere. Cholesterol levels showed an increase in various brain regions. On the other hand, gangliosides were increased in cerebellum and brain stem, but were decreased in cerebral hemisphere. Interestingly, cholesterol/phospholipid ratio was increased in different regions of the brain. Lipase activity was elevated in cerebral hemisphere. Lipid peroxidation showed marked increment in whole brain and in all the brain areas studied. The results suggest that SO/sub 2/-exposure induces degradation of lipids. Interestingly, the lipid contents are affected differentially in the various parts of the brain.

  19. Water extractable phytochemicals from Capsicum pubescens (tree pepper) inhibit lipid peroxidation induced by different pro-oxidant agents in brain

    International Nuclear Information System (INIS)

    Oboh, G.; Rocha, J.B.T.

    2006-03-01

    Reactive oxygen species (ROS) is the cause of neurodegenerative disorders such as Lou Gehrig's disease, Parkinson's disease and Huntington's disease; one practical way to prevent and manage neurodegenerative diseases is through the eating of food rich in antioxidants (dietary means). In this study, the antioxidant and neuroprotective properties of aqueous extract of ripe and unripe Capsicum pubescens (popularly known as tree pepper) on different pro-oxidant induced lipid peroxidation in Rat's brain (in vitro) is been investigated. Aqueous extract of freshly harvested pepper was prepared, and the total phenol content, vitamin C, ferric reducing antioxidant property (FRAP) and Fe (II) chelating ability was determined. In addition, the ability of the extracts to protect the Rat's brain against some pro-oxidant FeSO 4 , Sodium nitroprusside and Quinolinic acid) - induced oxidative stress was also determined. The results of the study revealed that ripe Capsicum pubescens had a significantly higher (P 2 O 2 induced decomposition of deoxyribose. Therefore, ripe and unripe Capsicum pubescens would inhibit lipid peroxidation in vitro. However, the ripe potent was a more potent inhibitor of lipid peroxidation, which is probably due to its higher vitamin C and phenol content, reducing power and Fe (II) chelating ability. (author)

  20. Effects of antioxidants on lipid peroxide formation in irradiated synthetic diets

    International Nuclear Information System (INIS)

    Wills, E.D.

    1980-01-01

    The effects of the antioxidants, vitamin E, propyl gallate, 2-t-butyl-4-methoxy phenol (BHA), 2,6-di-t-butyl-4-methoxy phenol (BHT), nor-dihydroguaiaretic acid (NDGA) and diphenyl-p-phenylene diamine (DPPD) in concentrations ranging between 0.001 per cent and 0.1 per cent have been tested on lipid peroxide formation in synthetic diet mixtures containing herring oil (10 per cent) mixed with starch (90 per cent) irradiated with γ-ray doses of 100 to 2000 krad. On a weight basis NDGA, DPPD, BHA and BHT were most effective and vitamin E and propyl gallate were least effective. An antioxidant concentration of 0.01 per cent normally protected against peroxide formation after a dose of 500 krad but if the dose was increased to 1000 or 2000 krad, much higher doses of antioxidant, up to 0.1 per cent, were required to give protection. Antioxidants prevented peroxide developing during post-irradiation storage even when added after irradiation. Antioxidants were partially or completely destroyed by irradiation with doses of 100 krad or more. The percentage of total antioxidant destroyed depended on the concentration; much greater destruction occurred in dilute solutions than in concentrated solutions. Vitamin E and propyl gallate were most sensitive whereas NDGA was relatively resistant. Antioxidant destruction was much enhanced if irradiation was carried out in presence of herring oil. Free radicals formed in unsaturated fatty acids of the herring oil are believed to be responsible. Lecithin and citric acid, which have been described as antioxidant synergists when added with vitamin E, caused a limited enhancement of its antioxidant action against radiation-induced peroxidation. (author)

  1. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    Science.gov (United States)

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  2. Effects of Acetate-Free Citrate Dialysate on Glycoxidation and Lipid Peroxidation Products in Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Atsumi Masuda

    2012-09-01

    Full Text Available Background/Aims: Previous studies have shown the presence of high levels of glycoxidation and lipid peroxidation products in association with atherosclerosis in patients with end-stage kidney disease. Acetates are commonly used buffer for correcting metabolic acidosis in hemodialysis (HD patients. Since the toxic effects of acetates are well established, acetate-free citrate dialysate (AFD has become available in Japan. The objective of the present study was to evaluate the suppressive effects of AFD on oxidative stress in maintenance HD patients by measuring plasma pentosidine and malondialdehyde-modified low-density lipoprotein (MDA-LDL levels as markers for glycoxidation and lipid peroxidation products. Methods: Plasma pentosidine, MDA-LDL and other laboratory parameters were examined on maintenance HD at the Juntendo University Hospital before and after switching to AFD. Results: MDA-LDL levels divided by LDL cholesterol were significantly lower than those before switching to AFD. Furthermore, levels of plasma pentosidine were lower than those before switching to AFD. Stepwise multiple regression analysis revealed that the percent change of the calcium-phosphorus product in the nondiabetic group and that of phosphorus in the diabetic group were predictive variables for the percent change of MDA-LDL/LDL, whereas the percent change of log high-sensitive C-reactive protein and that of systolic blood pressure in the nondiabetic group and that of diastolic blood pressure in the diabetic group were predictive variables for the percent change of plasma pentosidine. Conclusions: It appears that AFD decreases glycoxidation and lipid peroxidation products when compared with acid citrate dextrose in HD patients. The reduction of oxidative stress by AFD during HD may have possible beneficial effects on atherosclerosis through calcium-phosphorus metabolism and blood pressure.

  3. Acyl transfer from membrane lipids to peptides is a generic process.

    Science.gov (United States)

    Dods, Robert H; Bechinger, Burkhard; Mosely, Jackie A; Sanderson, John M

    2013-11-15

    The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography-mass spectrometry analysis of peptide-lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins. © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Johan-Owen De Craene

    2017-03-01

    Full Text Available Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy.

  5. Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment

    DEFF Research Database (Denmark)

    Larsen, Jannik B.; Kennard, Celeste; Pedersen, Søren L.

    2017-01-01

    Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We...

  6. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    Science.gov (United States)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Directory of Open Access Journals (Sweden)

    Daniel F. Markgraf

    2014-01-01

    Full Text Available Eukaryotic cells store neutral lipids such as triacylglycerol (TAG in lipid droplets (LDs. Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER. We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG. During LD breakdown in early exponential phase, an ER membrane protein (Ice2p facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  8. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs

    OpenAIRE

    Laat, S.W. de; Tetteroo, P.A.T.; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van

    1984-01-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xaopus Levis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein (“HEDAF”) and 5-(N-tetradecanoyl)aminofluorescein (“TEDAF”) as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FP...

  9. Importance of the hexagonal lipid phase in biological membrane organization

    OpenAIRE

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particu...

  10. Influence of dihydroquercetin on the lipid peroxidation of mice during post-radiation period

    Energy Technology Data Exchange (ETDEWEB)

    Teselkin, Yu. O.; Babenkova, I. V.; Tjukavkina, N. A.; Rulenko, I. A.; Kolesnik, Yu. A.; Kolhir, V. K.; Eichholz, A. A. [Department of Biophysics, Russian Medical University, Ostrovityanova Street 1, Moscow 117869 (Russian Federation)

    1998-07-01

    The effect of the natural antioxidant dihydroquercetin was examined on the process of free radical oxidation of serum and liver lipids of mice, after a single 4 Gy dose of γ-irradiation. The content of lipid peroxidation products reacting with thiobarbituric acid in irradiated animals receiving oral dihydroquercetin (experimental) for 155 days after irradiation was significantly lower compared with animals receiving irradiation and no antioxidant (controls). The intensity of Fe{sup 2+}-induced chemiluminescence of liver homogenates of experimental mice was lower by the end of the experiment (p < 0.001) than the chemiluminescence of liver homogenates of both control and intact animals. It is assumed that this was due to the preferential uptake of dihydroquercetin by the liver. (author)

  11. The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

    Science.gov (United States)

    Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri

    2011-06-21

    In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar

  12. Trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line.

    Science.gov (United States)

    Elkin, Elana R; Harris, Sean M; Loch-Caruso, Rita

    2018-01-01

    Trichloroethylene (TCE), a prevalent environmental contaminant, is a potent renal and hepatic toxicant through metabolites such as S-(1, 2-dichlorovinyl)-l-cysteine (DCVC). However, effects of TCE on other target organs such as the placenta have been minimally explored. Because elevated apoptosis and lipid peroxidation in placenta have been observed in pregnancy morbidities involving poor placentation, we evaluated the effects of DCVC exposure on apoptosis and lipid peroxidation in a human extravillous trophoblast cell line, HTR-8/SVneo. We exposed the cells in vitro to 10-100μM DCVC for various time points up to 24h. Following exposure, we measured apoptosis using flow cytometry, caspase activity using luminescence assays, gene expression using qRT-PCR, and lipid peroxidation using a malondialdehyde quantification assay. DCVC significantly increased apoptosis in time- and concentration-dependent manners (p<0.05). DCVC also significantly stimulated caspase 3, 7, 8 and 9 activities after 12h (p<0.05), suggesting that DCVC stimulates the activation of both the intrinsic and extrinsic apoptotic signaling pathways simultaneously. Pre-treatment with the tBID inhibitor Bl-6C9 partially reduced DCVC-stimulated caspase 3 and 7 activity, signifying crosstalk between the two pathways. Additionally, DCVC treatment increased lipid peroxidation in a concentration-dependent manner. Co-treatment with the antioxidant peroxyl radical scavenger (±)-α-tocopherol attenuated caspase 3 and 7 activity, suggesting that lipid peroxidation mediates DCVC-induced apoptosis in extravillous trophoblasts. Our findings suggest that DCVC-induced apoptosis and lipid peroxidation in extravillous trophoblasts could contribute to poor placentation if similar effects occur in vivo in response to TCE exposure, indicating that further studies into this mechanism are warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C. (Northwestern)

    2010-01-18

    DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.

  14. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  15. Effect of dietary Astaxanthin sources supplementation on muscle pigmentation and lipid peroxidation in rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Marco Saroglia

    2010-01-01

    Full Text Available Astaxanthin is one of the major carotenoids in aquatic animals including salmonid fishes and is the preferred pigments added to salmon feed. It’s also a powerful antioxidant compared to other carotenoids and that may confer numerous health benefits. The aim of the present experi- ment was to investigate the effect of Astaxanthin deposition on the lipids peroxidation by studying the Malondialdeide (MDA level in muscle of rainbow trout (Oncorhynchus mykiss. The Astaxanthin concentrations in fish fed with a commercial sources as Lucantin®Pink (BASF Ludwigshafen, Ger- many reached values to 5.76±0.18x10-3 mg/g after 50 days feeding, while the MDA concentration de- creased from 1.56x103 to 0.45x103 ng/g. The correlation between MDA and Astaxanthin concentrations decreased linearly and confirmed the antioxidant properties of the pigment by reducing the lipids peroxidation.

  16. Lipid peroxidation analysis in salmon (Salmo salar L.) processed by e-beam

    International Nuclear Information System (INIS)

    Thomaz, Fernanda S.; Trindade, Reginaldo A.; Fanaro, Gustavo B.; Araujo, Michel M.; Villavicencio, Ana Lucia C.H.; Mancini-Filho, Jorge

    2007-01-01

    In Brazil the consumption of fish is relatively small when compared with other source of meat protein. However the diets rich in fish have association with a wide range of positive health effects, due your great deal the fat acids omega 3, EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). Salmon (Salmo salar L.) specifically have those fat acids in main quantity. The omega 3 fat acids are related to the prevention of several not transmissible illness; with emphasis to cardiovascular, hypertriglyceridemia, cancer, osteoporosis and inflammatory and anti immune diseases. Food borne illnesses have been a growing concern to the governments, producers and consumers, mainly regarding the damages they cause to human health. In this context, irradiation is used as a method to preserve food. The present work aim to evaluate the lipid peroxidation in natura salmon filet irradiated on the basis of thiobarbituric acid reactive substances (TBARS). Samples were irradiated in an e beam accelerator (Radiation Dynamics Co. model JOB, New York, USA), 1,5 MeV-25mA at doses of 0, 1.0 and 2.0 kGy, analyzed 7, 15, 21, 30 e 45 days after irradiation. Irradiated samples analyzed during a 45 day period, showed a higher lipid peroxidation than the control samples at the same period, increasing with dose and storage time. However, it did not pass the permitted value. Irradiation demonstrated effective without compromising the quality of the food. (author)

  17. Lipid peroxidation analysis in salmon (Salmo salar L.) processed by e-beam

    Energy Technology Data Exchange (ETDEWEB)

    Thomaz, Fernanda S.; Trindade, Reginaldo A.; Fanaro, Gustavo B.; Araujo, Michel M.; Villavicencio, Ana Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: villavic@ipen.br; Mancini-Filho, Jorge [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: jmancini@usp.br

    2007-07-01

    In Brazil the consumption of fish is relatively small when compared with other source of meat protein. However the diets rich in fish have association with a wide range of positive health effects, due your great deal the fat acids omega 3, EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid). Salmon (Salmo salar L.) specifically have those fat acids in main quantity. The omega 3 fat acids are related to the prevention of several not transmissible illness; with emphasis to cardiovascular, hypertriglyceridemia, cancer, osteoporosis and inflammatory and anti immune diseases. Food borne illnesses have been a growing concern to the governments, producers and consumers, mainly regarding the damages they cause to human health. In this context, irradiation is used as a method to preserve food. The present work aim to evaluate the lipid peroxidation in natura salmon filet irradiated on the basis of thiobarbituric acid reactive substances (TBARS). Samples were irradiated in an e beam accelerator (Radiation Dynamics Co. model JOB, New York, USA), 1,5 MeV-25mA at doses of 0, 1.0 and 2.0 kGy, analyzed 7, 15, 21, 30 e 45 days after irradiation. Irradiated samples analyzed during a 45 day period, showed a higher lipid peroxidation than the control samples at the same period, increasing with dose and storage time. However, it did not pass the permitted value. Irradiation demonstrated effective without compromising the quality of the food. (author)

  18. Increased lipid peroxidation in pregnant women after iron and vitamin C supplementation.

    Science.gov (United States)

    Lachili, B; Hininger, I; Faure, H; Arnaud, J; Richard, M J; Favier, A; Roussel, A M

    2001-11-01

    Iron overload could promote the generation of free radicals and result in deleterious cellular damages. A physiological increase of oxidative stress has been observed in pregnancy. A routine iron supplement, especially a combined iron and vitamin C supplementation, without biological justifications (low hemoglobin [Hb] and iron stores) could therefore aggravate this oxidative risk. We investigated the effect of a daily combined iron supplementation (100 mg/d as fumarate) and vitamin C (500 mg/d as ascorbate) for the third trimester of pregnancy on lipid peroxidation (plasma TBARS), antioxidant micronutriments (Zn, Se, retinol, vitamin E, (beta-carotene) and antioxidant metalloenzymes (RBC Cu-Zn SOD and Se-GPX). The iron-supplemented group (n = 27) was compared to a control group (n = 27), age and number of pregnancies matched. At delivery, all the women exhibited normal Hb and ferritin values. In the supplemented group, plasma iron level was higher than in the control group (26.90 +/- 5.52 mmol/L) and TBARs plasma levels were significantly enhanced (p cell antioxidant metalloenzymes. Furthermore, the alpha-tocopherol plasma level was lowered in the iron-supplemented groups, suggesting an increased utilization of vitamin E. These data show that pharmalogical doses of iron, associated with high vitamin C intakes, can result in uncontrolled lipid peroxidation. This is predictive of adverse effects for the mother and the fetus. This study illustrates the potential harmful effects of iron supplementation when prescribed only on the assumption of anemia and not on the bases of biological criteria.

  19. A Coarse Grained Model for a Lipid Membrane with Physiological Composition and Leaflet Asymmetry.

    Directory of Open Access Journals (Sweden)

    Satyan Sharma

    Full Text Available The resemblance of lipid membrane models to physiological membranes determines how well molecular dynamics (MD simulations imitate the dynamic behavior of cell membranes and membrane proteins. Physiological lipid membranes are composed of multiple types of phospholipids, and the leaflet compositions are generally asymmetric. Here we describe an approach for self-assembly of a Coarse-Grained (CG membrane model with physiological composition and leaflet asymmetry using the MARTINI force field. An initial set-up of two boxes with different types of lipids according to the leaflet asymmetry of mammalian cell membranes stacked with 0.5 nm overlap, reliably resulted in the self-assembly of bilayer membranes with leaflet asymmetry resembling that of physiological mammalian cell membranes. Self-assembly in the presence of a fragment of the plasma membrane protein syntaxin 1A led to spontaneous specific positioning of phosphatidylionositol(4,5bisphosphate at a positively charged stretch of syntaxin consistent with experimental data. An analogous approach choosing an initial set-up with two concentric shells filled with different lipid types results in successful assembly of a spherical vesicle with asymmetric leaflet composition. Self-assembly of the vesicle in the presence of the synaptic vesicle protein synaptobrevin 2 revealed the correct position of the synaptobrevin transmembrane domain. This is the first CG MD method to form a membrane with physiological lipid composition as well as leaflet asymmetry by self-assembly and will enable unbiased studies of the incorporation and dynamics of membrane proteins in more realistic CG membrane models.

  20. Peculiarities of Airway Inflammation and Lipid Peroxidation in the Development of Hyperosmotic Airway Hyperresponsiveness in Patients with Asthma

    Directory of Open Access Journals (Sweden)

    Alexey B. Pirogov

    2016-12-01

    Full Text Available The aim of our study was to evaluate the role of airway cellular inflammation and the lipid peroxidation level in the development of airway hyperresponsiveness (AHR to inhalation of hypertonic saline (IHS. Methods and Results: The study included the estimation of inflammatory-cellular composition, intracellular concentration of myeloperoxidase (MPO in induced sputum (IS, serum levels of lipid hydroperoxides (LHP, ceruloplasmin, and vitamin E in 29 patients with asthma and 12 healthy persons. AHR to IHS was assessed by spirometry after 3-min IHS via ultrasonic nebulizer. Patients with asthma had higher indices of leukocytes destruction and cytolysis intensity with the increased leukocyte count in IS. Maximum values of neutrophils cytolysis intensity and leukocytic MPO were found in IS of the patients with AHR to IHS. After the bronchial provocation, serum concentration of LHP was higher in these patients in comparison with the patients without the AHR and control groups. In addition, patients with asthma had lower level of antioxidants than healthy subjects. Conclusion: Marked inflammation involving MPO-activated leukocytes and intensive lipid peroxidation underlie the excessive airway response to IHS.

  1. Lipid peroxidation: A phytotoxic consequence of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Kunert, K J; Mehlhorn, H; Schmidt, A; Horsch, F; Filby, G; Fund, N; Gross, S; Hanisch, B; Kilz, E; Seidel, A [comps.

    1986-04-01

    Spruce and fir, both 10 years of age, were exposed to purified air, ozone (0.14 mg/m/sup 3/ air), SO/sub 2/ (0.03 mg/m/sup 3/ air), or a combination of both gases in open top chambers. With age, a combination of both gases significantly increased the content of the antioxidants vitamin E and C and glutathione in needles of fir and spruce when compared to the control treated with purified air. The increase was stronger in needles of fir than in needles of spruce. Further, the increase was already found in the youngest needles of fir. Compared to the control, no significant higher amount of antioxidants was observed when trees were exposed to ozone alone. Moreover, ozone exposure was less effective than SO/sub 2/ exposure. Combination of both air pollutants induced synergistic effects. In field studies (location: Schwarzwald, Kaelbelescheuer/Haldenhof), needles of spruce also showed an increase in the vitamin E content dependent on the extent of damage. This increase was partly accompanied by a higher amount of vitamin C and an increased degree of lipid peroxidation, measured as ethane production. Our results from open top experiments are consistent with our previous data investigating natural aging in higher plants. Therefore we suggest that by the phytotoxic action of air pollutants, such as SO/sub 2/ and SO/sub 2/ + ozone, age-related peroxidative processes are accelerated. Further, both vitamin E and glutathione are specific indicators of these processes. By now, no direct and significant correlation between field studies and studies with open tops has been found.

  2. Evaluation of antioxidant activity of Ruta graveolens L. extract on inhibition of lipid peroxidation and DPPH radicals and the effects of some external factors on plant extract's potency.

    Directory of Open Access Journals (Sweden)

    S. Mohammadi- Motamed

    2014-01-01

    Full Text Available The antioxidant properties of Ruta graveolens L. were evaluated by two different methods; free radical scavenging using DPPH and inhibition of lipid peroxidation by the ferric thiocyanate method. The IC50 value of the methanol extract in DPPH inhibition was 200.5 μg/mL which was acceptable in comparison with BHT (41.8 μg/mL. In thiocyanate method, the plant extract demonstrated activity as much as BHT in prevention of lipid peroxidation. Increasing the temperature during extraction, significantly decreased the extract power in inhibition of DPPH radicals. The storage time and temperature had no effect on lipid peroxidation inhibition.

  3. Effects of alginate on frozen-thawed boar spermatozoa quality, lipid peroxidation and antioxidant enzymes activities.

    Science.gov (United States)

    Hu, Jinghua; Geng, Guoxia; Li, Qingwang; Sun, Xiuzhu; Cao, Hualin; Liu, Yawei

    2014-06-30

    Although alginate was reported to play an important role as free radical scavengers in vitro and could be used as sources of natural antioxidants, there was no study about the cryoprotective effects of alginate on boar spermatozoa freezing. The objective of this research was to evaluate the effects of different concentrations of alginate added to the freezing extenders on boar spermatozoa motility, plasma membrane integrity, acrosomal integrity, mitochondrial activities, lipid peroxidation and antioxidative enzymes activities (SOD and GSH-Px) after thawing. Alginate was added to the TCG extender to yield six different final concentrations: 0, 0.2, 0.4, 0.6, 0.8, and 1.0mg/mL. The semen extender supplemented with various doses of alginate increased (Pboar spermatozoa acrosomal integrity at concentrations of 0.6, 0.8, 1.0mg/mL, compared with that of the control (Pextenders with the presence of alginate led to higher SOD and GSH-Px activities and lower MDA levels, in comparison to the control (Pboar spermatozoa motility, functional integrity and antioxidative capacity at appropriate concentrations. Therefore alginate could be employed as an effective cryoprotectant in boar spermatozoa cryopreservation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Impact of air pollution on oxidative DNA damage and lipid peroxidation in mothers and their newborns.

    Czech Academy of Sciences Publication Activity Database

    Ambrož, Antonín; Vlková, Veronika; Rössner ml., Pavel; Rössnerová, Andrea; Švecová, Vlasta; Milcová, Alena; Pulkrabová, J.; Hajslová, J.; Velemínský Jr., M.; Solanský, Ivo; Šrám, Radim

    2016-01-01

    Roč. 219, č. 6 (2016), s. 545-556 ISSN 1438-4639 R&D Projects: GA ČR(CZ) GA13-13458S Institutional support: RVO:68378041 Keywords : air pollution * benzo[a]pyrene * lipid peroxidation Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.643, year: 2016

  5. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Influence of electromagnetic field (1800 MHz on lipid peroxidation in brain, blood, liver and kidney in rats

    Directory of Open Access Journals (Sweden)

    Paweł Bodera

    2015-08-01

    Full Text Available Objectives: The aim of this study is the evaluation of the influence of repeated (5 times for 15 min exposure to electromagnetic field (EMF of 1800 MHz frequency on tissue lipid peroxidation (LPO both in normal and inflammatory state, combined with analgesic treatment. Material and Methods: The concentration of malondialdehyde (MDA as the end-product of the lipid peroxidation (LPO was estimated in blood, liver, kidneys, and brain of Wistar rats, both healthy and those with complete Freund’s adjuvant (CFA-induced persistent paw inflammation. Results: The slightly elevated levels of the MDA in blood, kidney, and brain were observed among healthy rats in electromagnetic field (EMF-exposed groups, treated with tramadol (TRAM/EMF and exposed to the EMF. The malondialdehyde remained at the same level in the liver in all investigated groups: the control group (CON, the exposed group (EMF, treated with tramadol (TRAM as well as exposed to and treated with tramadol (TRAM/EMF. In the group of animals treated with the complete Freund’s adjuvant (CFA we also observed slightly increased values of the MDA in the case of the control group (CON and the exposed groups (EMF and TRAM/EMF. The MDA values concerning kidneys remained at the same levels in the control, exposed, and not-exposed group treated with tramadol. Results for healthy rats and animals with inflammation did not differ significantly. Conclusions: The electromagnetic field exposure (EMF, applied in the repeated manner together with opioid drug tramadol (TRAM, slightly enhanced lipid peroxidation level in brain, blood, and kidneys.

  7. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues.

    Science.gov (United States)

    Nicolson, Garth L; Ash, Michael E

    2017-09-01

    Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights

  8. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs.

    Science.gov (United States)

    Tetteroo, P A; Bluemink, J G; Dictus, W J; van Zoelen, E J; de Laat, S W

    1984-07-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xenopus laevis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein ("HEDAF") and 5-(N-tetradecanoyl)aminofluorescein ("TEDAF") as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FPR method (D much less than 10(-10) cm2/sec). In contrast, the preexisting plasma membrane of the vegetal side exhibited homogeneous fluorescence and the lateral diffusion coefficient of both probes used was relatively high (HEDAF, D = 2.8 X 10(-8) cm2/sec; TEDAF, D = 2.4 X 10(-8) cm2/sec). In the cleaving egg visible transfer of HEDAF or TEDAF from prelabeled plasma membrane to the new membrane in the furrow did not occur, even on the vegetal side. Upon labeling during cleavage, however, the new membrane was uniformly labeled and both probes were mobile, as in the vegetal preexisting plasma membrane. These data show that the membrane of the dividing Xenopus egg comprises three macrodomains: (i) the animal preexisting plasma membrane; (ii) the vegetal preexisting plasma membrane; (iii) the new furrow membrane.

  9. In vitro study of interaction of synaptic vesicles with lipid membranes

    International Nuclear Information System (INIS)

    Ghosh, S K; Castorph, S; Salditt, T; Konovalov, O; Jahn, R; Holt, M

    2010-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane in neurons is a crucial step in the release of neurotransmitters, which are responsible for carrying signals between nerve cells. While many of the molecular players involved in this fusion process have been identified, a precise molecular description of their roles in the process is still lacking. A case in point is the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Although PIP 2 is known to be essential for vesicle fusion, its precise role in the process remains unclear. We have re-investigated the role of this lipid in membrane structure and function using the complementary experimental techniques of x-ray reflectivity, both on lipid monolayers at an air-water interface and bilayers on a solid support, and grazing incidence x-ray diffraction on lipid monolayers. These techniques provide unprecedented access to structural information at the molecular level, and detail the profound structural changes that occur in a membrane following PIP 2 incorporation. Further, we also confirm and extend previous findings that the association of SVs with membranes is enhanced by PIP 2 incorporation, and reveal the structural changes that underpin this phenomenon. Further, the association is further intensified by a physiologically relevant amount of Ca 2+ ions in the subphase of the monolayer, as revealed by the increase in interfacial pressure seen with the lipid monolayer system. Finally, a theoretical calculation concerning the products arising from the fusion of these SVs with proteoliposomes is presented, with which we aim to illustrate the potential future uses of this system.

  10. LIPID PEROXIDATION AND BIOCHEMICAL PROFILE IN PRE AND POST ELECTROCONVULSIVE THERAPY IN PSYCHIATRIC PATIENTS

    OpenAIRE

    Narasimha Rao Babji; Santhisree

    2014-01-01

    OBJECTIVE: Electroconvulsive therapy (ECT) is an important treatment for a variety of neuropsychiatric disorders. The invasiveness of the procedure and major adverse effects of memory loss and confusion are limiting variables in the use of ECT. Free radical molecules are released during a shock seizure. The effect of electroconvulsive therapy on lipid peroxidation and on enzymes is not well studied. In the present study Malondialdehyde (MDA), Aspartate transaminase (AST), Alan...

  11. The value of polymorphism RRO12ALA gene PPARG in violation of lipid peroxidation and antioxidant protection in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    S. V. Ziablytsev

    2016-09-01

      Resume. The incidence of type 2 diabetes mellitus is increasing in Ukraine and worldwide. The severity of this disease is determined by the number of complications, which are based on lipid peroxidation (LPO. Today, the influence of gene polymorphisms Pro12Ala PPARG on oxidative and antioxidant processes is not in doubt. We studied the association between gene polymorphism Pro12Ala rs1801282 PPARG and intensification of lipid peroxidation and antioxidant systems (AOS in 88 patients with type 2 diabetes, using analysis of variance. In the 12Pro allele carriers male found probable increased intensification of lipid peroxidation than in women, with increasing levels of DC (p=0,034 and MDA (p=0,001. Reducing the enzyme catalase level of AOC in patients with type 2 diabetes was observed in the case of genotype Pro12Pro gene PPARG on 21.7% compared with heterozygotes (F=8,17; p=0,005 and the presence of the allele 12Pro (F=6,28 , p=0,013. Found significantly higher activity of AOC in the form of increasing the level of α-TF (p=0,016 and catalase activity (p=0,034 among male patients with gene polymorphism Pro12Ala PPARG, than homozygotes for allele 12Pro.   Key words: lipid peroxidation; antioxidant system; type 2 diabetes mellitus; polymorphism Pro12Ala rs1801282 of gene PPARG

  12. Age-dependent variation in membrane lipid synthesis in leaves of garden pea (Pisum sativum L.)

    DEFF Research Database (Denmark)

    Hellgren, Lars; Sandelius, A.S.

    2001-01-01

    To study membrane lipid synthesis during the lifespan of a dicotyledon leaf, the second oldest leaf of 10-40-d-old plants of garden pea (Pisum sativum L.) was labelled with [1-C- 14]acetate and the distribution of radioactivity between the major membrane lipids was followed for 3 d. In the expand......To study membrane lipid synthesis during the lifespan of a dicotyledon leaf, the second oldest leaf of 10-40-d-old plants of garden pea (Pisum sativum L.) was labelled with [1-C- 14]acetate and the distribution of radioactivity between the major membrane lipids was followed for 3 d...

  13. Quantitative Structure-Activity Relationships Predicting the Antioxidant Potency of 17β-Estradiol-Related Polycyclic Phenols to Inhibit Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Katalin Prokai-Tatrai

    2013-01-01

    Full Text Available The antioxidant potency of 17β-estradiol and related polycyclic phenols has been well established. This property is an important component of the complex events by which these types of agents are capable to protect neurons against the detrimental consequences of oxidative stress. In order to relate their molecular structure and properties with their capacity to inhibit lipid peroxidation, a marker of oxidative stress, quantitative structure-activity relationship (QSAR studies were conducted. The inhibition of Fe3+-induced lipid peroxidation in rat brain homogenate, measured through an assay detecting thiobarbituric acid reactive substances for about seventy compounds were correlated with various molecular descriptors. We found that lipophilicity (modeled by the logarithm of the n-octanol/water partition coefficient, logP was the property that influenced most profoundly the potency of these compounds to inhibit lipid peroxidation in the biological medium studied. Additionally, the important contribution of the bond dissociation enthalpy of the phenolic O-H group, a shape index, the solvent-accessible surface area and the energy required to remove an electron from the highest occupied molecular orbital were also confirmed. Several QSAR equations were validated as potentially useful exploratory tools for identifying or designing novel phenolic antioxidants incorporating the structural backbone of 17β-estradiol to assist therapy development against oxidative stress-associated neurodegeneration.

  14. Assessment of semen function and lipid peroxidation among lead exposed men

    International Nuclear Information System (INIS)

    Kasperczyk, Aleksandra; Kasperczyk, Slawomir; Horak, Stanislaw; Ostalowska, Alina; Grucka-Mamczar, Ewa; Romuk, Ewa; Olejek, Anita; Birkner, Ewa

    2008-01-01

    The study population included healthy, fertile men, employees of Zinc and Lead Metalworks (n = 63). Workers exposed to lead were divided into two groups: a group with moderate exposure to lead (ME) - blood lead level (PbB) 25-40 μg/dl and a group with high exposure to lead (HE) PbB = 40-81 μg/dl. The control group consisted of office workers with no history of occupational exposure to lead. Evaluation of lead, cadmium and zinc level in blood and seminal plasma, zinc protoporphyrin in blood (ZPP), 5-aminolevulinic acid in urine (ALA), malondialdehyde (MDA) in seminal plasma and sperm analysis were performed. No differences were noted in the concentration of cadmium and zinc in blood and seminal plasma in the study population. Lipid peroxidation in seminal plasma, represented as MDA concentration, significantly increased by about 56% in the HE group and the percentage of motile sperm cells after 1 h decreased by about 34% in comparison to the control group. No statistically significant correlation between other parameters of sperm analysis and lead exposure parameters nor between lead, cadmium and zinc concentration in blood and seminal plasma were found. A positive association between lead intoxication parameters (PbB, ZPP, lead seminal plasma) and MDA concentration in sperm plasma and inverse correlation with sperm cells motility (PbB, ZPP) was found. An increased concentration of MDA was accompanied by a drop in sperm cells motility. In conclusion, we report that high exposure to lead causes a decrease of sperm motility in men most likely as a result of increased lipid peroxidation, especially if the level in the blood surpasses the concentration of 40 μg/dl

  15. Pressure effects on lipids and bio-membrane assemblies

    Directory of Open Access Journals (Sweden)

    Nicholas J. Brooks

    2014-11-01

    Full Text Available Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid–protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.

  16. Critical composition fluctuations in artificial and cell-derived lipid membranes

    Science.gov (United States)

    Honerkamp-Smith, Aurelia

    2014-03-01

    Cell plasma membranes contain a mixture of lipid types which can segregate into coexisting liquids, a thermodynamic phenomenon which may contribute to biological functions. Simplified, artificial three-component lipid vesicles can be prepared which display a critical miscibility transition near room temperature. We found that such vesicles exhibit concentration fluctuations whose size, composition, and timescales vary consistently with critical exponents for two-dimensional conserved order parameter systems. However, the critical miscibility transition is also observed in vesicles formed directly from the membranes of living cells, despite their more complex composition and the presence of membrane proteins. I will describe our critical fluctuation measurements and also review a variety of more recent work by other researchers. Proximity to a critical point alters the spatial distribution and aggregation tendencies of proteins, and makes lipid mixtures more susceptible to domain formation by protein-mediated interactions, such as adhesion zones. Recent work suggests that critical temperature depression may also be relevant to the mechanism of anaesthetic action.

  17. Water extractable phytochemicals from Capsicum pubescens (tree pepper) inhibit lipid peroxidation induced by different pro-oxidant agents in brain

    Energy Technology Data Exchange (ETDEWEB)

    Oboh, G [Biochemistry Department, Federal University of Technology, Akure, Ondo State (Nigeria); [Departamento de Quimica, Universidade Federal de Santa Maria (UFSM), Campus Universitario - Camobi, Santa Maria RS (Brazil); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: goboh2001@yahoo.com; Rocha, J B.T. [Campus Universitario - Camobi, Santa Maria RS (Brazil)

    2006-03-15

    Reactive oxygen species (ROS) is the cause of neurodegenerative disorders such as Lou Gehrig's disease, Parkinson's disease and Huntington's disease; one practical way to prevent and manage neurodegenerative diseases is through the eating of food rich in antioxidants (dietary means). In this study, the antioxidant and neuroprotective properties of aqueous extract of ripe and unripe Capsicum pubescens (popularly known as tree pepper) on different pro-oxidant induced lipid peroxidation in Rat's brain (in vitro) is been investigated. Aqueous extract of freshly harvested pepper was prepared, and the total phenol content, vitamin C, ferric reducing antioxidant property (FRAP) and Fe (II) chelating ability was determined. In addition, the ability of the extracts to protect the Rat's brain against some pro-oxidant FeSO{sub 4}, Sodium nitroprusside and Quinolinic acid - induced oxidative stress was also determined. The results of the study revealed that ripe Capsicum pubescens had a significantly higher (P<0.05) total phenol [ripe (113.7mg/100g), unripe (70.5mg/100g)] content and ferric reducing antioxidant property than the unripe pepper. However, there was no significant difference in the vitamin C [ripe (231.5{mu}g/g), unripe (224.4{mu}g/g)] content and Fe (II) chelating ability. Furthermore, the pepper extracts caused a significant decrease (P<0.05) in 25{mu}M Fe(II), 7{mu}M Sodium Nitroprusside and 1mM Quinolinic acid induced lipid peroxidation in the Rat's brain in a dose-dependent manner. However, the ripe pepper inhibited MDA (Malondialdehyhide) production in the Rat's brain than the unripe pepper. Conversely, both extract did not significantly inhibit Fe (II)/H{sub 2}O{sub 2} induced decomposition of deoxyribose. Therefore, ripe and unripe Capsicum pubescens would inhibit lipid peroxidation in vitro. However, the ripe potent was a more potent inhibitor of lipid peroxidation, which is probably due to its higher vitamin C and phenol content, reducing power and Fe

  18. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb.

    Science.gov (United States)

    Jiang, Hongqin; Wang, Zhenzhen; Ma, Yong; Qu, Yanghua; Lu, Xiaonan; Luo, Hailing

    2015-07-01

    Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p0.05). The levels of TG (pCAT, pCAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment stress and maintain normal physiological metabolism.

  19. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy.

    Science.gov (United States)

    Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2015-04-01

    Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/Escherichia coli (E. coli) polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    Science.gov (United States)

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  1. Impact of dietary oils and fats on lipid peroxidation in liver and blood of albino rats

    Science.gov (United States)

    Haggag, Mohammad El-Sayed Yassin El-Sayed; Elsanhoty, Rafaat Mohamed; Ramadan, Mohamed Fawzy

    2014-01-01

    Objective To investigate the effects of different dietary fat and oils (differing in their degree of saturation and unsaturation) on lipid peroxidation in liver and blood of rats. Methods The study was conducted on 50 albino rats that were randomly divided into 5 groups of 10 animals. The groups were fed on dietary butter (Group I), margarine (Group II), olive oil (Group III), sunflower oil (Group IV) and corn oil (Group V) for 7 weeks. After 12 h of diet removal, livers were excised and blood was collected to measure malondialdehyde (MDA) levels in the supernatant of liver homogenate and in blood. Blood superoxide dismutase activity (SOD), glutathione peroxidase activity (GPx), serum vitamin E and total antioxidant capacity (TAC) levels were also measured to determine the effects of fats and oils on lipid peroxidation. Results The results indicated that no significant differences were observed in SOD activity, vitamin E and TAC levels between the five groups. However, there was significant decrease of GPx activity in groups IV and V when compared with other groups. The results indicated that feeding corn oil caused significant increases in liver and blood MDA levels as compared with other oils and fats. There were positive correlations between SOD and GPx, vitamin E and TAC as well as between GPx and TAC (r: 0.743; P<0.001) and between blood MDA and liver MDA (r: 0.897; P<0.001). The results showed also negative correlations between blood MDA on one hand and SOD, GPx, vitamin E and TAC on the other hand. Conclusions The results demonstrated that feeding oils rich in polyunsaturated fatty acids (PUFA) increases lipid peroxidation significantly and may raise the susceptibility of tissues to free radical oxidative damage. PMID:24144131

  2. Lipid rafts generate digital-like signal transduction in cell plasma membranes.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2012-06-01

    Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Study on the relationship between red blood cell immunity and lipid peroxidation in patients with endometriosis

    International Nuclear Information System (INIS)

    Yang Jingxiu; Shi Shaohong; Wang Yuping; Xie Xueqin; Qin Jibao

    2005-01-01

    Objective: To assess the relationship between red blood cell immunity and lipid peroxidation (LPO) in patients with endometriosis. Methods: The percentage of positive red blood cell c3b receptor rosette (RBC c3b -RR) and red blood cell immune complex rosette (RBC-ICR) were examined in 54 patients with endometriosis and 30 controls. Serum levels of malondialdehyde (MDA), superoxidase (SOD) and glutathione peroxidase (GSH-PX) were measured by chemocolorimetry in these subjects. Results: Percentage of positive RBC-ICR and MDA levels were significantly higher in patients with endometriosis than those in controls (P c3b RR, SOD, GSH-PX, SOD/MDA ratio were significantly lower in patients with endometriosis than those in controls (P c3b -RR was negatively correlated with MDA levels (r= -0. 4428, P < 0.05) and RBC-ICRR was positively correlated with MDA(r=0.5488, P0.05). Conclusion: The lower red cell immune adhesion function was closely associated with the disturbance of metabolism of lipid peroxidation in patients with endometriosis. (authors)

  4. Association of lipids with integral membrane surface proteins of Mycoplasma hyorhinis

    International Nuclear Information System (INIS)

    Bricker, T.M.; Boyer, M.J.; Keith, J.; Watson-McKown, R.; Wise, K.S.

    1988-01-01

    Triton X-114 (TX-114)-phase fractionation was used to identify and characterize integral membrane surface proteins of the wall-less procaryote Mycoplasma hyorhinis GDL. Phase fractionation of mycoplasmas followed by analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed selective partitioning of approximately 30 [ 35 S]methionine-labeled intrinsic membrane proteins into the TX-114 phase. Similar analysis of [ 3 H]palmitate-labeled cells showed that approximately 20 proteins of this organism were associated with lipid, all of which also efficiently partitioned as integral membrane components into the detergent phase. Immunoblotting and immunoprecipitation of TX-114-phase proteins from 125 I-surface-labeled cells with four monoclonal antibodies to distinct surface epitopes of M. hyorhinis identified surface proteins p120, p70, p42, and p23 as intrinsic membrane components. Immunoprecipitation of [ 3 H]palmitate-labeled TX-114-phase proteins further established that surface proteins p120, p70, and p23 (a molecule that mediates complement-dependent mycoplasmacidal monoclonal antibody activity) were among the lipid-associated proteins of this organism. Two of these proteins, p120 and p123, were acidic (pI less than or equal to 4.5), as shown by two-dimensional isoelectric focusing. This study established that M. hyorhinis contains an abundance of integral membrane proteins tightly associated with lipids and that many of these proteins are exposed at the external surface of the single limiting plasma membrane. Monoclonal antibodies are reported that will allow detailed analysis of the structure and processing of lipid-associated mycoplasma proteins

  5. Plant cell plasma membrane structure and properties under clinostatting

    Science.gov (United States)

    Polulakh, Yu. A.; Zhadko, S. I.; Klimchuk, D. A.; Baraboy, V. A.; Alpatov, A. N.; Sytnik, K. M.

    Structural-functional organization of plasma membrane of pea roots seedling was investigated by methods of chemiluminescence, fluorescence probes, chromatography and freeze-fracture studies under normal conditions and clinostatting. Phase character of lipid peroxidation intensity was fixed. The initial phase of this process is characterized by lipid peroxidation decreasing with its next induction. The primary changes depending on free-radical mechanisms of lipid peroxidation were excellently revealed by chemiluminescence. Plasmalemma microviscosity increased on the average of 15-20 % under microgravity at the initial stages of its phenomenon. There were major changes of phosphatidilcholine and phosphatidilethanolamine contents. The total quantity of phospholipids remained rather stable. Changes of phosphatide acid concentration point to degradation and phospholipids biosynthesis. There were increases of unsaturated fatty acids mainly at the expense of linoleic and linolenic acids and also a decrease of saturated fatty acid content at the expense of palmitic and stearic acids. Unsaturation index of fatty acids increased as well. On the whole fatty acid composition was variable in comparison with phospholipids. Probably it is one of mechanisms of maintaining of microviscosity within definite limits. Considerable structural changes in organization of plasmalemma protein-lipid complex were not revealed by the freeze-fracture studies.

  6. Manipulating lipid membrane architecture by liquid crystal-analog curvature elasticity (Presentation Recording)

    Science.gov (United States)

    Lee, Sin-Doo

    2015-10-01

    Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.

  7. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs

    NARCIS (Netherlands)

    Laat, S.W. de; Tetteroo, P.A.T.; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van

    1984-01-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xaopus Levis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein (“HEDAF”) and 5-(N-tetradecanoyl)aminofluorescein (“TEDAF”) as probes. The

  8. In vitro study of interaction of synaptic vesicles with lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S K; Castorph, S; Salditt, T [Institute for X-ray Physics, University of Goettingen, 37077 Goettingen (Germany); Konovalov, O [European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Jahn, R; Holt, M, E-mail: sghosh1@gwdg.d, E-mail: mholt@gwdg.d, E-mail: tsaldit@gwdg.d [Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen (Germany)

    2010-10-15

    The fusion of synaptic vesicles (SVs) with the plasma membrane in neurons is a crucial step in the release of neurotransmitters, which are responsible for carrying signals between nerve cells. While many of the molecular players involved in this fusion process have been identified, a precise molecular description of their roles in the process is still lacking. A case in point is the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}). Although PIP{sub 2} is known to be essential for vesicle fusion, its precise role in the process remains unclear. We have re-investigated the role of this lipid in membrane structure and function using the complementary experimental techniques of x-ray reflectivity, both on lipid monolayers at an air-water interface and bilayers on a solid support, and grazing incidence x-ray diffraction on lipid monolayers. These techniques provide unprecedented access to structural information at the molecular level, and detail the profound structural changes that occur in a membrane following PIP{sub 2} incorporation. Further, we also confirm and extend previous findings that the association of SVs with membranes is enhanced by PIP{sub 2} incorporation, and reveal the structural changes that underpin this phenomenon. Further, the association is further intensified by a physiologically relevant amount of Ca{sup 2+} ions in the subphase of the monolayer, as revealed by the increase in interfacial pressure seen with the lipid monolayer system. Finally, a theoretical calculation concerning the products arising from the fusion of these SVs with proteoliposomes is presented, with which we aim to illustrate the potential future uses of this system.

  9. Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking

    Science.gov (United States)

    Schoch, Rafael L.; Barel, Itay; Brown, Frank L. H.; Haran, Gilad

    2018-03-01

    Supported lipid bilayers (SLBs) have been studied extensively as simple but powerful models for cellular membranes. Yet, potential differences in the dynamics of the two leaflets of a SLB remain poorly understood. Here, using single particle tracking, we obtain a detailed picture of bilayer dynamics. We observe two clearly separate diffusing populations, fast and slow, that we associate with motion in the distal and proximal leaflets of the SLB, respectively, based on fluorescence quenching experiments. We estimate diffusion coefficients using standard techniques as well as a new method based on the blur of images due to motion. Fitting the observed diffusion coefficients to a two-leaflet membrane hydrodynamic model allows for the simultaneous determination of the intermonolayer friction coefficient and the substrate-membrane friction coefficient, without any prior assumptions on the strengths of the relevant interactions. Remarkably, our calculations suggest that the viscosity of the interfacial water confined between the membrane and the substrate is elevated by ˜104 as compared to bulk water. Using hidden Markov model analysis, we then obtain insight into the transbilayer movement of lipids. We find that lipid flip-flop dynamics are very fast, with half times in the range of seconds. Importantly, we find little evidence for membrane defect mediated lipid flip-flop for SLBs at temperatures well above the solid-to-liquid transition, though defects seem to be involved when the SLBs are cooled down. Our work thus shows that the combination of single particle tracking and advanced hydrodynamic modeling provides a powerful means to obtain insight into membrane dynamics.

  10. Neuronal sphingolipidoses: Membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism.

    Science.gov (United States)

    Sandhoff, Konrad

    2016-11-01

    Glycosphingolipids and sphingolipids of cellular plasma membranes (PMs) reach luminal intra-lysosomal vesicles (LVs) for degradation mainly by pathways of endocytosis. After a sorting and maturation process (e.g. degradation of sphingomyelin (SM) and secretion of cholesterol), sphingolipids of the LVs are digested by soluble enzymes with the help of activator (lipid binding and transfer) proteins. Inherited defects of lipid-cleaving enzymes and lipid binding and transfer proteins cause manifold and fatal, often neurodegenerative diseases. The review summarizes recent findings on the regulation of sphingolipid catabolism and cholesterol secretion from the endosomal compartment by lipid modifiers, an essential stimulation by anionic membrane lipids and an inhibition of crucial steps by cholesterol and SM. Reconstitution experiments in the presence of all proteins needed, hydrolase and activator proteins, reveal an up to 10-fold increase of ganglioside catabolism just by the incorporation of anionic lipids into the ganglioside carrying membranes, whereas an additional incorporation of cholesterol inhibits GM2 catabolism substantially. It is suggested that lipid and other low molecular modifiers affect the genotype-phenotype relationship observed in patients with lysosomal diseases. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Effectiveness of carthamus tinctorius L. in the restitution of lipid composition in irradiated rats

    International Nuclear Information System (INIS)

    Zahran, A.M.; Omran, M.F.; Mansour, S.Z.; Ibrahim, N.K.

    2007-01-01

    Lipid peroxidation is a well known example of oxidative damage in cell membranes, lipoproteins, and other lipid-containing structures. The degenerative process of lipid peroxidation is induced under conditions of oxidative stress. This study was designated to evaluate in one aspect, the susceptibility of blood and liver lipid fractions to oxidative stress under influence of whole body gamma irradiation (6.5 Gy). The other aspect was to investigate the compensatory role of the Safflower extract (Carthamus tinctorius L., Composite) a premier oil containing the highest levels of polyunsaturated fats (rich in n-6 PUFA) to maintain and restore the biological membranes from oxidative stress. Mixture of safflower essential oils and hydro-alcoholic extract was orally administered to Sprague Dawley rats by gavages vehicle (150 mg/ Kg body wt) for 21 successive days before exposure to y-rays and 7 days after irradiation. Exposure to y-rays resulted in significant increase in triacylglycerols, phospholipids, cholesterol indices and MDA contents. Meanwhile, the results show a significant decline in most fractionated unsaturated fatty acids concentrations. The administration of safflower essential oils and ethanolic extract exerted a noticeable compensation in the radiation-induced changes in most of the studied parameters. The results point out the promising role of safflower, a natural product, on oxidative damage and lipid composition

  12. Single Molecule Kinetics of ENTH Binding to Lipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rozovsky, Sharon [Univ. of Delaware, Newark, DE (United States); Forstner, Martin B. [Syracuse Univ., NY (United States); Sondermann, Holger [Cornell Univ., Ithaca, NY (United States); Groves, Jay T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-04-03

    Transient recruitment of proteins to membranes is a fundamental mechanism by which the cell exerts spatial and temporal control over proteins’ localization and interactions. Thus, the specificity and the kinetics of peripheral proteins’ membrane residence are an attribute of their function. In this article, we describe the membrane interactions of the interfacial epsin N-terminal homology (ENTH) domain with its target lipid phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2). The direct visualization and quantification of interactions of single ENTH molecules with supported lipid bilayers is achieved using total internal reflection fluorescence microscopy (TIRFM) with a time resolution of 13 ms. This enables the recording of the kinetic behavior of ENTH interacting with membranes with physiologically relevant concentrations of PtdIns(4,5)P2 despite the low effective binding affinity. Subsequent single fluorophore tracking permits us to build up distributions of residence times and to measure ENTH dissociation rates as a function of membrane composition. In addition, due to the high time resolution, we are able to resolve details of the motion of ENTH associated with a simple, homogeneous membrane. In this case ENTH’s diffusive transport appears to be the result of at least three different diffusion processes.

  13. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death

    OpenAIRE

    Zilka, Omkar; Shah, Ron; Li, Bo; Friedmann Angeli, Jos? Pedro; Griesser, Markus; Conrad, Marcus; Pratt, Derek A.

    2017-01-01

    Ferroptosis is a form of regulated necrosis associated with the iron-dependent accumulation of lipid hydroperoxides that may play a key role in the pathogenesis of degenerative diseases in which lipid peroxidation has been implicated. High-throughput screening efforts have identified ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) as potent inhibitors of ferroptosis ? an activity that has been ascribed to their ability to slow the accumulation of lipid hydroperoxides. Herein we demonstrate t...

  14. Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation.

    Science.gov (United States)

    Buchholz, K; Tinazli, A; Kleefen, A; Dorfner, D; Pedone, D; Rant, U; Tampé, R; Abstreiter, G; Tornow, M

    2008-11-05

    We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 µm down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.

  15. Generalized Anxiety Disorder (GAD) and Comorbid Major Depression with GAD Are Characterized by Enhanced Nitro-oxidative Stress, Increased Lipid Peroxidation, and Lowered Lipid-Associated Antioxidant Defenses.

    Science.gov (United States)

    Maes, Michael; Bonifacio, Kamila Landucci; Morelli, Nayara Rampazzo; Vargas, Heber Odebrecht; Moreira, Estefânia Gastaldello; St Stoyanov, Drozdstoy; Barbosa, Décio Sabbatini; Carvalho, André F; Nunes, Sandra Odebrecht Vargas

    2018-05-07

    Accumulating evidence shows that nitro-oxidative pathways play an important role in the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD) and maybe anxiety disorders. The current study aims to examine superoxide dismutase (SOD1), catalase, lipid hydroperoxides (LOOH), nitric oxide metabolites (NOx), advanced oxidation protein products (AOPP), malondialdehyde (MDA), glutathione (GSH), paraoxonase 1 (PON1), high-density lipoprotein cholesterol (HDL), and uric acid (UA) in participants with and without generalized anxiety disorder (GAD) co-occurring or not with BD, MDD, or tobacco use disorder. Z unit-weighted composite scores were computed as indices of nitro-oxidative stress driving lipid and protein oxidation. SOD1, LOOH, NOx, and uric acid were significantly higher and HDL and PON1 significantly lower in participants with GAD than in those without GAD. GAD was more adequately predicted by increased SOD + LOOH + NOx and lowered HDL + PON1 composite scores. Composite scores of nitro-oxidative stress coupled with aldehyde and AOPP production were significantly increased in participants with comorbid GAD + MDD as compared with all other study groups, namely MDD, GAD + BD, BD, GAD, and healthy controls. In conclusion, GAD is characterized by increased nitro-oxidative stress and lipid peroxidation and lowered lipid-associated antioxidant defenses, while increased uric acid levels in GAD may protect against aldehyde production and protein oxidation. This study suggests that increased nitro-oxidative stress and especially increased SOD1 activity, NO production, and lipid peroxidation as well as lowered HDL-cholesterol and PON1 activity could be novel drug targets for GAD especially when comorbid with MDD.

  16. Generation of volatile hydrocarbons as a measure of radiation-induced lipid peroxidation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, C R; Kumar, K S; Weiss, J F; Catravas, G N [Armed Forces Radiobiology Research Inst., Bethesda, MD (USA)

    1981-04-01

    Using gas chromatography techniques, pentane production from microsomes could be detected at gamma radiation doses as low as 50 Gy, but definite increases were observed only with the addition of the peroxidation promoter ADP-Fe. There was a small but linear increase in pentane production, and presumably lipid peroxidation, when nonirradiated microsomes alone were incubated. The addition of ADP-Fe induced a further production of pentane which was linear with incubation time. Radiation alone (700 and 2000 Gy) also induced pentane production, but the highest levels were observed with the combination of ADP-Fe and radiation. In microsomes irradiated with 700 Gy, the rate of pentane production was greatest during the first 100 min post-irradiation. In comparing radiation-induced pentane generation to the enzymatic-induced system, it was seen that pentane production was much greater in the latter system.

  17. Ethanol extract of Tetrapleura tetraptera fruit peels: Chemical characterization, and antioxidant potentials against free radicals and lipid peroxidation in hepatic tissues

    Directory of Open Access Journals (Sweden)

    Ochuko L. Erukainure

    2017-11-01

    Full Text Available The chemical and antioxidant properties of the ethanolic extract of Tetrapleura tetraptera fruit peels were investigated. Dried peels of T. tetraptera fruits were extracted with ethanol. The extract was subjected to preliminary phytochemical screening using standard procedures. GC–MS was used in identifying the secondary metabolites. The antioxidant properties of the extract were determined by its ferric reducing activity, 2,2′-diphenyl-1-picrylhydrazyl (DPPH and nitric oxide (NO radicals scavenging activities, and the inhibition of lipid peroxidation in hepatic tissues of albino male rats. Preliminary phytochemical screening revealed the presence of flavonoids, phenols, tannins, saponins, terpenoids and phlebotannin. GC–MS analysis revealed the presence of D-fructose, piperazine, octodrine, glycidol, glyceraldehydes, 6-octadecenoic acid and 9,12-octadecenoic acid, with D–fructose being the most predominant compound. The extract exhibited high antioxidant activities both in vitro and ex vivo, as indicated by its ability to scavenge DPPH and nitric oxide as well as inhibition of lipid peroxidation. This is further portrayed by its ferric reducing activity. These results suggest an antioxidant protective effect of the extract against oxidative hepatic damage and can be attributed to a synergetic action of the identified bioactive compounds. Keywords: Antioxidant, Lipid peroxidation, Phytochemicals, Secondary metabolites

  18. Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice.

    Science.gov (United States)

    Andziak, Blazej; Buffenstein, Rochelle

    2006-12-01

    A key tenet of the oxidative stress theory of aging is that levels of accrued oxidative damage increase with age. Differences in damage generation and accumulation therefore may underlie the natural variation in species longevity. We compared age-related profiles of whole-organism lipid peroxidation (urinary isoprostanes) and liver lipid damage (malondialdehyde) in long living naked mole-rats [maximum lifespan (MLS) > 28.3 years] and shorter-living CB6F1 hybrid mice (MLS approximately 3.5 years). In addition, we compared age-associated changes in liver non-heme iron to assess how intracellular conditions, which may modulate oxidative processes, are affected by aging. Surprisingly, even at a young age, concentrations of both markers of lipid peroxidation, as well as of iron, were at least twofold (P naked mole tats than in mice. This refutes the hypothesis that prolonged naked mole-rat longevity is due to superior protection against oxidative stress. The age-related profiles of all three parameters were distinctly species specific. Rates of lipid damage generation in mice were maintained throughout adulthood, while accrued damage in old animals was twice that of young mice. In naked mole-rats, urinary isoprostane excretion declined by half with age (P naked mole-rats is independent of oxidative stress parameters.

  19. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro.

    Science.gov (United States)

    Shodehinde, Sidiqat Adamson; Oboh, Ganiyu

    2013-06-01

    To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe(2+) chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress.

  20. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro

    Science.gov (United States)

    Shodehinde, Sidiqat Adamson; Oboh, Ganiyu

    2013-01-01

    Objective To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Methods Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. Results The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe2+ chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Conclusions Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress. PMID:23730557

  1. Ascorbic acid improves the antioxidant activity of European grape juices by improving the juices' ability to inhibit lipid peroxidation of human LDL in vitro

    DEFF Research Database (Denmark)

    Landbo, Anne-Katrine Regel; Meyer, Anne Boye Strunge

    2001-01-01

    . Red grape juice concentrate inhibited lipid peroxidation of LDL by prolonging the lag phase by 2.7 times relative to a control when evaluated at a total phenolic concentration of 10 muM gallic acid equivalents (GAE). Both red grape juices tested blocked lipid peroxidation of LDL at 20 muM GAE. White.......96, P acid alone did not exert antioxidant activity towards LDL, but combinations of 5 muM ascorbic acid with 5 muM GAE juice phenols eliminated the prooxidant activity of white grape juice, and significantly...

  2. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    International Nuclear Information System (INIS)

    Sun, Sheng; Yin, Guangyao; Lee, Yi-Kuen; Wong, Joseph T.Y.; Zhang, Tong-Yi

    2011-01-01

    Research highlights: → MD simulations show that deformability and thermal motion of membrane affect electroporation. → Stiffer membrane inhibits electroporation and makes water penetrate from both sides. → Higher temperature accelerates electroporation. -- Abstract: Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0 kcal/(mol A 2 ) in the external electric field of 1.4 kcal/(mol A e), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2 kcal/(mol A 2 ) in the position constraints on lipid tails in the external electric field of 2.0 kcal/(mol A e), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease.

  3. Structural studies of the lipid membranes at the Siberia-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Kiselev, M. A.; Ermakova, E. V.; Ryabova, N. Yu.; Nayda, O. V.; Zabelin, A. V.; Pogorely, D. K.; Korneev, V. N.; Balagurov, A. M.

    2010-01-01

    Lipid membranes are a subject of contemporary interdisciplinary studies at the junction of biology, biophysics, pharmacology, and bionanotechnology. The results of the structural studies of several types of lipid membranes by the lamellar and lateral diffraction of X-ray synchrotron radiation are presented. The experiments were performed at the Mediana and DICSI stations of the Siberia-2 synchrotron radiation source at the Russian Research Center Kurchatov Institute. The data obtained are compared with the results of studying lipid membranes at the small-angle scattering beamlines D22 and D24 at LURE (France) and at the A2 beamline at DESY (Germany). The parameters of the DICSI station are shown to meet the basic requirements for the structural study of lipid systems, which are of fundamental and applied interest.

  4. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations

    International Nuclear Information System (INIS)

    Barragán Vidal, I. A.; Müller, M.; Rosetti, C. M.; Pastorino, C.

    2014-01-01

    The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated

  5. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barragán Vidal, I. A., E-mail: vidal@theorie.physik.uni-goettingen.de; Müller, M., E-mail: mmueller@theorie.physik.uni-goettingen.de [Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Rosetti, C. M., E-mail: carla@dqb.fcq.unc.edu.ar [Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba (Argentina); Pastorino, C., E-mail: pastor@cnea.gov.ar [Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA/CONICET, Av. Gral. Paz 1499, 1650 Pcia. de Buenos Aires (Argentina)

    2014-11-21

    The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models—a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated.

  6. Changes in lipid membrane mechanics induced by di- and tri-phenyltins

    DEFF Research Database (Denmark)

    Przybyło, Magda; Drabik, Dominik; Szostak, Kamila

    2017-01-01

    properties of biological membranes. It was found that the membrane/water partition coefficient equals 4, a value significantly higher than octanol/water partition coefficient. In addition, the effect of di- and tri-phenyltin chlorides on the mechanics of model lipid membranes was measured for the first time...

  7. Biosynthesis of membrane lipids of thermophilic archaebacteria and its implication to early evolution of life

    International Nuclear Information System (INIS)

    Oshima, Tairo

    1995-01-01

    The unit lipid of cell membranes of archaebacteria is unique ether lipids, O-dialkylated glycerol with a polar head group at sn-1 position. The chirality of glycerol moiety of the lipids is opposite to that of other kingdoms. The hydrophobic potion consists of saturated C 20 isoprenoid hydrocarbon backbone and is connected to glycerol by an ether linkage. In addition, cell membrane of some of thermophilic archaebacteria are monolayer (in stead of bilayer) of tetraether lipids in which both tails of hydrocarbon chains of two diether lipids are covalently connected in a tail-to-tail fashion. Although the host cell from which contemporary eukaryotes have been derived by endosymbiosis, is speculated to be an archaebacterium, the unique ether lipids raised a serious question to the idea of archabacterial origin of eukaryote cells; why the unique ether lipids are not used to construct cytoplasmic membranes of eukaryotes? The author and his colleagues have studied biosynthesis of membrane liquids of two thermo-acidophilic archaebacteria, Thermoplasma and Sulfolobus. It was found that origins of stereospecificity of glycerol moiety of archaebacterial ether lipids differs form species to species. In Sulfolobus sn-glycerol-1-phosphate (the abnormal isomer of glycerol phosphate) seems to be directly synthesized from glycerol, whereas in Halobacterium stereospecificity of glycerol phosphate is inverted during the lipid synthesis. Recently we found that specific inhibitors for eukaryotes squalene epoxidase inhibit the condensation of diether lipids to tetraether lipids in cell-free extracts of these thermophilic archaebacteria. The results suggest evolutionary implication of archaebacterial tetraether condensing enzyme to eukaryote sterol biosynthesis. Relationships between chemical structures of membrane lipids and early evolution of life will be discussed. (author). Abstract only

  8. Elasto-plasticity in wrinkled polymerized lipid membranes

    KAUST Repository

    Chaieb, Sahraoui

    2014-01-15

    Biomembranes shown to behave like elastic sheets, can also suffer plastic deformations. Neutron scattering experiments on partially polymerised wrinkled membranes revealed that when a critical degree of polymerisation is crossed, the wrinkled membranes do not resume their spherical shapes. Instead they remain wrinkled and rigid while their non-polymerised counterparts resume their spherical floppy shapes. The yield stress of these membranes, measured for the first time via the fractal dimension, is intimately related to the degree of polymerisation probably through a 2D disorder that quenches the lateral diffusion of the lipid molecules. This work might shed light on the physical reason behind the irreversible deformation of echinocytes, acanthocytes and malaria infected red blood cells.

  9. Elasto-plasticity in wrinkled polymerized lipid membranes

    KAUST Repository

    Chaieb, Saharoui

    2014-01-01

    Biomembranes shown to behave like elastic sheets, can also suffer plastic deformations. Neutron scattering experiments on partially polymerised wrinkled membranes revealed that when a critical degree of polymerisation is crossed, the wrinkled membranes do not resume their spherical shapes. Instead they remain wrinkled and rigid while their non-polymerised counterparts resume their spherical floppy shapes. The yield stress of these membranes, measured for the first time via the fractal dimension, is intimately related to the degree of polymerisation probably through a 2D disorder that quenches the lateral diffusion of the lipid molecules. This work might shed light on the physical reason behind the irreversible deformation of echinocytes, acanthocytes and malaria infected red blood cells.

  10. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    DEFF Research Database (Denmark)

    Rønnest, A. K.; Peters, Günther H.J.; Hansen, Flemming Yssing

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid...... compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have...... the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic...

  11. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices.

    Science.gov (United States)

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu

    2012-07-01

    Spices have been used as food adjuncts and in folklore for ages. Inhibition of key enzymes (α-amylase and α-glucosidase) involved in the digestion of starch and protection against free radicals and lipid peroxidation in pancreas could be part of the therapeutic approach towards the management of hyperglycemia and dietary phenolics have shown promising potentials. This study investigated and compared the inhibitory properties of aqueous extracts of some tropical spices: Xylopia aethiopica [Dun.] A. Rich (Annonaceae), Monodora myristica (Gaertn.) Dunal (Annonaceae), Syzygium aromaticum [L.] Merr. et Perry (Myrtaceae), Piper guineense Schumach. et Thonn (Piperaceae), Aframomum danielli K. Schum (Zingiberaceae) and Aframomum melegueta (Rosc.) K. Schum (Zingiberaceae) against α-amylase, α-glucosidase, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and sodium nitroprusside (SNP)-induced lipid peroxidation in rat pancreas--in vitro using different spectrophotometric method. Aqueous extract of the spices was prepared and the ability of the spice extracts to inhibit α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in rat pancreas--in vitro was investigated using various spectrophotometric methods. All the spice extracts inhibited α-amylase (IC(50) = 2.81-4.83 mg/mL), α-glucosidase (IC(50) = 2.02-3.52 mg/mL), DPPH radicals (EC(50) = 15.47-17.38 mg/mL) and SNP-induced lipid peroxidation (14.17-94.38%), with the highest α-amylase & α-glucosidase inhibitory actions and DPPH radical scavenging ability exhibited by X. aethiopica, A. danielli and S. aromaticum, respectively. Also, the spices possess high total phenol (0.88-1.3 mg/mL) and flavonoid (0.24-0.52 mg/mL) contents with A. melegueta having the highest total phenolic and flavonoid contents. The inhibitory effects of the spice extracts on α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in pancreas (in vitro) could be attributed to the presence of biologically

  12. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    International Nuclear Information System (INIS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-01-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10 8 –10 9 V m −1 , which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10 8 V m −1 ) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10 8 V m −1 ) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3

  13. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y., E-mail: flemming@kemi.dtu.dk [Department of Chemistry, Technical University of Denmark, IK 207 DTU, DK-2800 Lyngby (Denmark); Taub, H.; Miskowiec, A. [Department of Physics and Astronomy and the University of Missouri Research Reactor,University of Missouri, Columbia, Missouri 65211 (United States)

    2016-04-14

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10{sup 8}–10{sup 9} V m{sup −1}, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10{sup 8} V m{sup −1}) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10{sup 8} V m{sup −1}) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1

  14. Insertion of Neurotransmitters into a Lipid Bilayer Membrane and Its Implication on Membrane Stability: A Molecular Dynamics Study.

    Science.gov (United States)

    Shen, Chun; Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2017-03-17

    The signaling molecules in neurons, called neurotransmitters, play an essential role in the transportation of neural signals, during which the neurotransmitters interact with not only specific receptors, but also cytomembranes, such as synaptic vesicle membranes and postsynaptic membranes. Through extensive molecular dynamics simulations, the atomic-scale insertion dynamics of typical neurotransmitters, including methionine enkephalin (ME), leucine enkephalin (LE), dopamine (DA), acetylcholine (ACh), and aspartic acid (ASP), into lipid bilayers is investigated. The results show that the first three neurotransmitters (ME, LE, and DA) are able to diffuse freely into both 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) membranes, and are guided by the aromatic residues Tyr and Phe. Only a limited number of these neurotransmitters are allowed to penetrate into the membrane, which suggests an intrinsic mechanism by which the membrane is protected from being destroyed by excessive inserted neurotransmitters. After spontaneous insertion, the neurotransmitters disturb the surrounding phospholipids in the membrane, as indicated by the altered distribution of components in lipid leaflets and the disordered lipid tails. In contrast, the last two neurotransmitters (ACh and ASP) cannot enter the membrane, but instead always diffuse freely in solution. These findings provide an understanding at the atomic level of how neurotransmitters interact with the surrounding cytomembrane, as well as their impact on membrane behavior. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina

    2009-01-01

    Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin...... and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...... domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate...

  16. Polyphenols of Salix aegyptiaca modulate the activities of drug metabolizing and antioxidant enzymes, and level of lipid peroxidation.

    Science.gov (United States)

    Nauman, Mohd; Kale, R K; Singh, Rana P

    2018-03-07

    Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and

  17. Lipid transfer proteins do their thing anchored at membrane contact sites… but what is their thing?

    Science.gov (United States)

    Wong, Louise H; Levine, Tim P

    2016-04-15

    Membrane contact sites are structures where two organelles come close together to regulate flow of material and information between them. One type of inter-organelle communication is lipid exchange, which must occur for membrane maintenance and in response to environmental and cellular stimuli. Soluble lipid transfer proteins have been extensively studied, but additional families of transfer proteins have been identified that are anchored into membranes by transmembrane helices so that they cannot diffuse through the cytosol to deliver lipids. If such proteins target membrane contact sites they may be major players in lipid metabolism. The eukaryotic family of so-called Lipid transfer proteins Anchored at Membrane contact sites (LAMs) all contain both a sterol-specific lipid transfer domain in the StARkin superfamily (related to StART/Bet_v1), and one or more transmembrane helices anchoring them in the endoplasmic reticulum (ER), making them interesting subjects for study in relation to sterol metabolism. They target a variety of membrane contact sites, including newly described contacts between organelles that were already known to make contact by other means. Lam1-4p target punctate ER-plasma membrane contacts. Lam5p and Lam6p target multiple contacts including a new category: vacuolar non-NVJ cytoplasmic ER (VancE) contacts. These developments confirm previous observations on tubular lipid-binding proteins (TULIPs) that established the importance of membrane anchored proteins for lipid traffic. However, the question remaining to be solved is the most difficult of all: are LAMs transporters, or alternately are they regulators that affect traffic more indirectly? © 2016 Authors; published by Portland Press Limited.

  18. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria.

    Science.gov (United States)

    Xiao, Mengqing; Zhong, Huiqin; Xia, Lin; Tao, Yongzhen; Yin, Huiyong

    2017-10-01

    Mitochondrial lipids are essential for maintaining the integrity of mitochondrial membranes and the proper functions of mitochondria. As the "powerhouse" of a cell, mitochondria are also the major cellular source of reactive oxygen species (ROS). Oxidative stress occurs when the antioxidant system is overwhelmed by overproduction of ROS. Polyunsaturated fatty acids in mitochondrial membranes are primary targets for ROS attack, which may lead to lipid peroxidation (LPO) and generation of reactive lipids, such as 4-hydroxynonenal. When mitochondrial lipids are oxidized, the integrity and function of mitochondria may be compromised and this may eventually lead to mitochondrial dysfunction, which has been associated with many human diseases including cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. How mitochondrial lipids are oxidized and the underlying molecular mechanisms and pathophysiological consequences associated with mitochondrial LPO remain poorly defined. Oxidation of the mitochondria-specific phospholipid cardiolipin and generation of bioactive lipids through mitochondrial LPO has been increasingly recognized as an important event orchestrating apoptosis, metabolic reprogramming of energy production, mitophagy, and immune responses. In this review, we focus on the current understanding of how mitochondrial LPO and generation of bioactive lipid mediators in mitochondria are involved in the modulation of mitochondrial functions in the context of relevant human diseases associated with oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.

    Science.gov (United States)

    Krause, Martin R; Regen, Steven L

    2014-12-16

    CONSPECTUS: Defining the two-dimensional structure of cell membranes represents one of the most daunting challenges currently facing chemists, biochemists, and biophysicists. In particular, the time-averaged lateral organization of the lipids and proteins that make up these natural enclosures has yet to be established. As the classic Singer-Nicolson model of cell membranes has evolved over the past 40 years, special attention has focused on the structural role played by cholesterol, a key component that represents ca. 30% of the total lipids that are present. Despite extensive studies with model membranes, two fundamental issues have remained a mystery: (i) the mechanism by which cholesterol condenses low-melting lipids by uncoiling their acyl chains and (ii) the thermodynamics of the interaction between cholesterol and high- and low-melting lipids. The latter bears directly on one of the most popular notions in modern cell biology, that is, the lipid raft hypothesis, whereby cholesterol is thought to combine with high-melting lipids to form "lipid rafts" that float in a "sea" of low-melting lipids. In this Account, we first describe a chemical approach that we have developed in our laboratories that has allowed us to quantify the interactions between exchangeable mimics of cholesterol and low- and high-melting lipids in model membranes. In essence, this "nearest-neighbor recognition" (NNR) method involves the synthesis of dimeric forms of these lipids that contain a disulfide moiety as a linker. By means of thiolate-disulfide interchange reactions, equilibrium mixtures of dimers are then formed. These exchange reactions are initiated either by adding dithiothreitol to a liposomal dispersion to generate a small amount of thiol monomer or by including a small amount of thiol monomer in the liposomes at pH 5.0 and then raising the pH to 7.4. We then show how such NNR measurements have allowed us to distinguish between two very different mechanisms that have been

  20. Effects of ha berlea rho dopensis extract on antioxidation and lipid peroxidation in rabbits after exposure to 60Co-γ-rays

    Directory of Open Access Journals (Sweden)

    Popov B.

    2013-01-01

    Full Text Available Haberlea rhodopensis extract (HRE possesses strong antioxidant activity. The aim of the present study was to evaluate the protective ability of HRE against oxidative damage induced by a non-lethal dose of 60Co-γ-rays. Experimental animals (New Zealand rabbits were exposed to 2.0 Gy γ-rays before and after HRE administration. Lipid peroxidation (MDA and activities of antioxidant enzymes superoxide dismutase (SOD and catalase (CAT were analyzed. Results show that administration of HRE before and after irradiation decreased the MDA level and increased SOD and CAT activity, thus providing protection against the radiation-induced decrease in antioxidative ability and increase in lipid peroxidation. This finding supports the idea that HRE is a potent free radical scavenger and antioxidant.

  1. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Application of lipid peroxidation and protein oxidation biomarkers for oxidative damage in mammalian cells. A comparison with two fluorescent probes

    NARCIS (Netherlands)

    Orhan, H.; Gurer-Orhan, H.; Vriese, E.; Vermeulen, N.P.E.; Meerman, J.H.N.

    2006-01-01

    We recently developed two biomarker sets for oxidative damage: one for determination of lipid peroxidation (LPO) degradation products; acetaldehyde, propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal, malondialdehyde and acetone, by a gas chromatography-electron capture detection

  3. Biomarcadores de peroxidação lipídica na aterosclerose Lipid peroxidation biomarkers in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Dulcinéia Saes Parra Abdalla

    2008-12-01

    characterized by a chronic inflammatory response in the arterial wall triggered by endothelial injury. Its etiology is associated with the oxidative modification of low density lipoprotein. The objective of this work is to present the main metabolites involved in the biochemical process of lipid peroxidation and discuss the advantages and disadvantages of the methods used to measure the lipid peroxidation biomarkers associated with atherosclerosis. Lipoprotein oxidation can be assessed by determining the products generated during lipid peroxidation, such as isoprostanes, lipid hydroperoxides, aldehydes, oxidized phospholipids and products of cholesterol oxidation. The susceptibility of low density lipoprotein particles to oxidation can be assessed in vitro after induction of lipid peroxidation by oil-soluble or water-soluble azo initiators or more commonly by copper ions. On the other hand, low density lipoprotein modification by lipoxygenases and peroxidases or non-enzymatic oxidation increases the negative charge of these particles and may contribute to in vivo generation of a minimally oxidized low density lipoprotein subfraction called electronegative low density lipoprotein (low density lipoprotein. Plasma concentrations of these particles can be determined by liquid chromatography or immunoassays. Many methods can be used to assess lipid peroxidation biomarkers in vivo and in vitro, however determination of the most suitable biomarker depends on a minute assessment of the advantages, disadvantages and particularities of each analysis, bearing in mind the objectives of the study that will be performed.

  4. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0kcal/(molÅ2) in the external electric field of 1.4kcal/(molÅe), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2kcal/(molÅ2) in the position constraints on lipid tails in the external electric field of 2.0kcal/(molÅe), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease. © 2010 Elsevier Inc.

  5. Study on the relationship between serum TNF-α, IGF-I levels and lipid peroxidation in patients with fatty liver

    International Nuclear Information System (INIS)

    Li Yuqiang; Niu Guoping

    2006-01-01

    Objective: To assess the relationship between serum TNF-α, IGF-I levels and lipid peroxidation in patients with fatty liver. Methods: Serum TNF-α, IGF-I (with RIA) levels were examined in 44 patients with fatty liver and 30 controls. Ser- um levels of malondialdehyde (MDA), superoxidase (SOD) were measured with chemocolorimetry in these subjects. Results: Serum levels of TNF-α, IGF-I were significantly higher in patients with fatty liver than those in controls P<0.01 ), while the serum levels of MDA, SOD were significantly lower (P<0.01). Serum levels of IGF-I were negatively correlated with MDA levels ( r -0. 4132, P<0.05), TNF-α levels were positive correlated with MDA levels (r=0.4318, P<0.05). Conclusion: Lipid peroxidation was present in patients with fatty liver, with correlated changes of TNF-α and IGF-I levels. (authors)

  6. Salt Bridge Formation between the I-BAR Domain and Lipids Increases Lipid Density and Membrane Curvature.

    Science.gov (United States)

    Takemura, Kazuhiro; Hanawa-Suetsugu, Kyoko; Suetsugu, Shiro; Kitao, Akio

    2017-07-28

    The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight "zeppelin-shaped" dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.

  7. Bioactive potential of Vitis labrusca L. grape juices from the Southern Region of Brazil: phenolic and elemental composition and effect on lipid peroxidation in healthy subjects.

    Science.gov (United States)

    Toaldo, Isabela Maia; Cruz, Fernanda Alves; Alves, Tatiana de Lima; de Gois, Jefferson Santos; Borges, Daniel L G; Cunha, Heloisa Pamplona; da Silva, Edson Luiz; Bordignon-Luiz, Marilde T

    2015-04-15

    Grapes are rich in polyphenols with biologically active properties. Although the bioactive potential of grape constituents are frequently reported, the effects of Brazilian Vitis labrusca L. grape juices ingestion have not been demonstrated in humans. This study identified the phenolic and elemental composition of red and white grape juices and the effect of organic and conventional red grape juice consumption on lipid peroxidation in healthy individuals. Concentrations of anthocyanins, flavanols and phenolic acids and the in vitro antioxidant activity were significantly higher in the organic juice. The macro-elements K, Ca, Na and Mg were the most abundant minerals in all juices. The acute consumption of red grape juices promoted significant decrease of lipid peroxides in serum and TBARS levels in plasma. It is concluded that red V. labrusca L. grape juices produced in Southern Brazil showed lipid peroxidation inhibition abilities in healthy subjects, regardless of the cultivation system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. High fat diet-induced modifications in membrane lipid and mitochondrial-membrane protein signatures precede the development of hepatic insulin resistance in mice.

    Science.gov (United States)

    Kahle, M; Schäfer, A; Seelig, A; Schultheiß, J; Wu, M; Aichler, M; Leonhardt, J; Rathkolb, B; Rozman, J; Sarioglu, H; Hauck, S M; Ueffing, M; Wolf, E; Kastenmueller, G; Adamski, J; Walch, A; Hrabé de Angelis, M; Neschen, S

    2015-01-01

    Excess lipid intake has been implicated in the pathophysiology of hepatosteatosis and hepatic insulin resistance. Lipids constitute approximately 50% of the cell membrane mass, define membrane properties, and create microenvironments for membrane-proteins. In this study we aimed to resolve temporal alterations in membrane metabolite and protein signatures during high-fat diet (HF)-mediated development of hepatic insulin resistance. We induced hepatosteatosis by feeding C3HeB/FeJ male mice an HF enriched with long-chain polyunsaturated C18:2n6 fatty acids for 7, 14, or 21 days. Longitudinal changes in hepatic insulin sensitivity were assessed via the euglycemic-hyperinsulinemic clamp, in membrane lipids via t-metabolomics- and membrane proteins via quantitative proteomics-analyses, and in hepatocyte morphology via electron microscopy. Data were compared to those of age- and litter-matched controls maintained on a low-fat diet. Excess long-chain polyunsaturated C18:2n6 intake for 7 days did not compromise hepatic insulin sensitivity, however, induced hepatosteatosis and modified major membrane lipid constituent signatures in liver, e.g. increased total unsaturated, long-chain fatty acid-containing acyl-carnitine or membrane-associated diacylglycerol moieties and decreased total short-chain acyl-carnitines, glycerophosphocholines, lysophosphatidylcholines, or sphingolipids. Hepatic insulin sensitivity tended to decrease within 14 days HF-exposure. Overt hepatic insulin resistance developed until day 21 of HF-intervention and was accompanied by morphological mitochondrial abnormalities and indications for oxidative stress in liver. HF-feeding progressively decreased the abundance of protein-components of all mitochondrial respiratory chain complexes, inner and outer mitochondrial membrane substrate transporters independent from the hepatocellular mitochondrial volume in liver. We assume HF-induced modifications in membrane lipid- and protein-signatures prior to and

  9. A novel biotinylated lipid raft reporter for electron microscopic imaging of plasma membrane microdomains[S

    Science.gov (United States)

    Krager, Kimberly J.; Sarkar, Mitul; Twait, Erik C.; Lill, Nancy L.; Koland, John G.

    2012-01-01

    The submicroscopic spatial organization of cell surface receptors and plasma membrane signaling molecules is readily characterized by electron microscopy (EM) via immunogold labeling of plasma membrane sheets. Although various signaling molecules have been seen to segregate within plasma membrane microdomains, the biochemical identity of these microdomains and the factors affecting their formation are largely unknown. Lipid rafts are envisioned as submicron membrane subdomains of liquid ordered structure with differing lipid and protein constituents that define their specific varieties. To facilitate EM investigation of inner leaflet lipid rafts and the localization of membrane proteins therein, a unique genetically encoded reporter with the dually acylated raft-targeting motif of the Lck kinase was developed. This reporter, designated Lck-BAP-GFP, incorporates green fluorescent protein (GFP) and biotin acceptor peptide (BAP) modules, with the latter allowing its single-step labeling with streptavidin-gold. Lck-BAP-GFP was metabolically biotinylated in mammalian cells, distributed into low-density detergent-resistant membrane fractions, and was readily detected with avidin-based reagents. In EM images of plasma membrane sheets, the streptavidin-gold-labeled reporter was clustered in 20–50 nm microdomains, presumably representative of inner leaflet lipid rafts. The utility of the reporter was demonstrated in an investigation of the potential lipid raft localization of the epidermal growth factor receptor. PMID:22822037

  10. Triglyceride Blisters in Lipid Bilayers: Implications for Lipid Droplet Biogenesis and the Mobile Lipid Signal in Cancer Cell Membranes

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Duelund, Lars; Pakkanen, Kirsi Inkeri

    2010-01-01

    triolein molecules to the bilayer center in the form of a disordered, isotropic, mobile neutral lipid aggregate, at least 17 nm in diameter, which forms spontaneously, and remains stable on at least the microsecond time scale. The results give credence to the hotly debated existence of mobile neutral lipid...... aggregates of unknown function present in malignant cells, and to the early biogenesis of lipid droplets accommodated between the two leaflets of the endoplasmic reticulum membrane. The TO aggregates give the bilayer a blister-like appearance, and will hinder the formation of multi-lamellar phases in model...

  11. Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins.

    Science.gov (United States)

    Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Rousseau, Denis; Boissan, Mathieu; Mannella, Carmen; Epand, Richard; Lacombe, Marie-Lise

    2014-04-01

    Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Characterization of membrane lipid fluidity in human embryo cells malignantly transfer med post 238Pu α irradiation

    International Nuclear Information System (INIS)

    Qi Zirong; Sun Ling; Liu Guolian; Shen Zhiyuan

    1992-01-01

    The membrane lipid fluidity of malignantly transformed human embryo cells following 238 Pu α particlce irradiation in vitro has been studied. The results indicate that the ontogenesis depends on irradiation dose (Gy) and the membrane lipid fluidity in malignantly transformed cells is higher than that in normal embryo cells. With the microviscosity (η) of cells plotted against the cell counts, the correlation coefficient (γ) is calculated to be between 0.9936 and 0.9999. Since the malignant transformation of irradiated embryo cells is manifested early on cell membrane lipid, the fluidity of membrane lipid can be used as an oncologic marker

  13. Daconate Herbicide Toxicity on Lipid Peroxidation And Antioxidant Enzymes in Blood of Rats

    International Nuclear Information System (INIS)

    Tawfik, S.M.F.

    2005-01-01

    The effect of daconate herbicide on lipid peroxidation and antioxidant enzyme systems was investigated in rats after one and two weeks post-treatment. Animals were treated daily with an oral dose of 18 mg/kg body weight or 90 mg/kg body weight daconate for one and two consecutive weeks. Lipid peroxide content, as thiobarbituric acid reactive substances (TBARS), was determined in blood of rats as indication for cytotoxicity. Blood glutathion (GSH), gamma glutamyl transpeptidase (γ GT) and superoxide dismutase (SOD) were estimated as indication of antioxidant status. Also, daconate effect on peroxidase action of catalase in rats was studied using 14 C -formate. The results revealed significant elevation in TBARS level and γ GT activity accompanied by reduced level of GSH content and SOD activity after treatment of rats with a daily oral dose of 90 mg/kg for one and two weeks and also in rats treated with 18 mg/kg daconate for two weeks. Rats treated with daconate at the dose level of 18 mg/kg for one week revealed non-appreciable changes in the tested parameters of blood as compared to the control ones. Radioactivities eliminated in both the expired air and in urine were reduced at the dose level of 90 mg/kg after one and two weeks, while it were reduced only after two weeks at the dose level of 18 mg/kg daconate. The data revealed that daconate had a marked effect on the activities of catalase enzyme in blood and liver of treated rats

  14. Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans.

    Science.gov (United States)

    Bernat, Przemysław; Gajewska, Ewa; Szewczyk, Rafał; Słaba, Mirosława; Długoński, Jerzy

    2014-03-01

    To investigate the response of the tributyltin-degrading fungal strain Cunninghamella elegans to the organotin, a comparative lipidomics strategy was employed using an LC/MS-MS technique. A total of 49 lipid species were identified. Individual phospholipids were then quantified using a multiple reaction monitoring method. Tributyltin (TBT) caused a decline in the amounts of many molecular species of phosphatidylethanolamine or phosphatidylserine and an increase in the levels of phosphatidic acid, phosphatidylinositol and phosphatidylcholine. In the presence of TBT, it was observed that overall unsaturation was lower than in the control. Lipidome data were analyzed using principal component analysis, which confirmed the compositional changes in membrane lipids in response to TBT. Additionally, treatment of fungal biomass with butyltin led to a significant increase in lipid peroxidation. It is suggested that modification of the phospholipids profile and lipids peroxidation may reflect damage to mycelium caused by TBT.

  15. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death.

    Science.gov (United States)

    Zilka, Omkar; Shah, Ron; Li, Bo; Friedmann Angeli, José Pedro; Griesser, Markus; Conrad, Marcus; Pratt, Derek A

    2017-03-22

    Ferroptosis is a form of regulated necrosis associated with the iron-dependent accumulation of lipid hydroperoxides that may play a key role in the pathogenesis of degenerative diseases in which lipid peroxidation has been implicated. High-throughput screening efforts have identified ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) as potent inhibitors of ferroptosis - an activity that has been ascribed to their ability to slow the accumulation of lipid hydroperoxides. Herein we demonstrate that this activity likely derives from their reactivity as radical-trapping antioxidants (RTAs) rather than their potency as inhibitors of lipoxygenases. Although inhibited autoxidations of styrene revealed that Fer-1 and Lip-1 react roughly 10-fold more slowly with peroxyl radicals than reactions of α-tocopherol (α-TOH), they were significantly more reactive than α-TOH in phosphatidylcholine lipid bilayers - consistent with the greater potency of Fer-1 and Lip-1 relative to α-TOH as inhibitors of ferroptosis. None of Fer-1, Lip-1, and α-TOH inhibited human 15-lipoxygenase-1 (15-LOX-1) overexpressed in HEK-293 cells when assayed at concentrations where they inhibited ferroptosis. These results stand in stark contrast to those obtained with a known 15-LOX-1 inhibitor (PD146176), which was able to inhibit the enzyme at concentrations where it was effective in inhibiting ferroptosis. Given the likelihood that Fer-1 and Lip-1 subvert ferroptosis by inhibiting lipid peroxidation as RTAs, we evaluated the antiferroptotic potential of 1,8-tetrahydronaphthyridinols (hereafter THNs): rationally designed radical-trapping antioxidants of unparalleled reactivity. We show for the first time that the inherent reactivity of the THNs translates to cell culture, where lipophilic THNs were similarly effective to Fer-1 and Lip-1 at subverting ferroptosis induced by either pharmacological or genetic inhibition of the hydroperoxide-detoxifying enzyme Gpx4 in mouse fibroblasts, and glutamate

  16. Study of the ion-channel behavior on glassy carbon electrode supported bilayer lipid membranes stimulated by perchlorate anion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiquan; Shi, Jun; Huang, Weimin, E-mail: huangwm@jlu.edu.cn

    2015-10-01

    In this paper, a kind of didodecyldimethylammonium bromide (DDAB) layer membranes was supported on a glassy carbon electrode (GCE). We studied the ion channel behavior of the supported bilayer lipid membrane by scanning electrochemical microscopy (SCEM) in tris(2,2′-bipyridine) ruthenium(II) solution. Perchlorate anion was used as a presence of stimulus and ruthenium(II) complex cations as the probing ions for the measurement of SECM, the lipid membrane channel was opened and exhibited the behavior of distinct SECM positive feedback curve. The channel was in a closed state in the absence of perchlorate anions while reflected the behavior of SECM negative feedback curve. The rates of electron transfer reaction in the lipid membranes surface were detected and it was dependant on the potential of SECM. - Highlights: • The rates of electron transfer reaction in the lipid membranes surface were detected. • Dynamic investigations of ion-channel behavior of supported bilayer lipid membranes by scanning electrochemical microscopy • A novel way to explore the interaction between molecules and supported bilayer lipid membranes.

  17. Atomistic simulations of anionic Au-144(SR)(60) nanoparticles interacting with asymmetric model lipid membranes

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    whose lipid composition and transmembrane distribution are to a large extent consistent with real plasma membranes of eukaryotic cells. To this end, we use a model system which comprises two cellular compartments, extracellular and cytosolic, divided by two asymmetric lipid bilayers. The simulations...... clearly show that AuNP- attaches to the extracellular membrane surface within a few tens of nanoseconds, while it avoids contact with the membrane on the cytosolic side. This behavior stems from several factors. In essence, when the nanoparticle interacts with lipids in the extracellular compartment...

  18. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth

    DEFF Research Database (Denmark)

    Degreif, Daniel; de Rond, Tristan; Bertl, Adam

    2017-01-01

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. Here we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggere...

  19. Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Orädd, Greger; Bagatolli, Luis

    2009-01-01

    surfactant membranes and membranes reconstituted from two surfactant hydrophobic fractions (i.e., all the lipids plus the hydrophobic proteins SP-B and SP-C, or only the total lipid fraction). These preparations show micrometer-sized fluid ordered/disordered phase coexistence, associated with a broad...... endothermic transition ending close to 37°C. However, both types of membrane exhibit uniform lipid mobility when analyzed by electron paramagnetic resonance with different spin-labeled phospholipids. A similar feature is observed with pulse-field gradient NMR experiments on oriented membranes reconstituted...... from the two types of surfactant hydrophobic extract. These latter results suggest that lipid dynamics are similar in the coexisting fluid phases observed by fluorescence microscopy. Additionally, it is found that surfactant proteins significantly reduce the average intramolecular lipid mobility...

  20. Longxuetongluo Capsule Improves Erythrocyte Function against Lipid Peroxidation and Abnormal Hemorheological Parameters in High Fat Diet-Induced ApoE−/− Mice

    Directory of Open Access Journals (Sweden)

    Jiao Zheng

    2016-01-01

    Full Text Available Chinese dragon’s blood, the red resin of Dracaena cochinchinensis, one of the renowned traditional medicines, has been used to facilitate blood circulation and disperse blood stasis for thousands of years. Phenolic compounds are considered to be responsible for its main biological activities. In this study, total phenolic compounds of Chinese dragon’s blood were made into capsule (Longxuetongluo Capsule, LTC and their effects on the abnormal hemorheological properties were examined by high fat diet (HFD induced ApoE−/− mice. Compared to the model group, LTC recovered the abnormal hemorheological parameters in HFD-induced ApoE−/− mice by reducing whole blood viscosity (WBV at high rate and improving erythrocyte function. In conclusion, LTC could ameliorate erythrocyte deformability and osmotic fragility through the reduction of lipid peroxidation on plasma and erythrocyte membranes in HFD-induced ApoE−/− mice, which supported the traditional uses of Chinese dragon’s blood as an effective agent for improving blood microcirculation in hypercholesterolemia.

  1. The Effects of Subacute Exposure of Peracetic Acid on Lipid Peroxidation and Hepatic Enzymes in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Abdoljalal Marjani

    2010-10-01

    Full Text Available Objectives: This study was undertaken to determine the effect of subacute exposure of peracetic acid on lipid peroxidation and hepatic enzymes in Wistar rats.Methods: 48 male animals in Treatment Group I, II and III received 0.2%, 2% and 20% peracetic acid daily for 2 and 4 weeks.Results: Serum malondialdehyde increased and Alanine Transaminase and Aspartate Transaminase decreased significantly in groups 2 and 3, compared to the control group. The malondialdehyde, Alanine Transaminase and Aspartate Transaminase with 0.2% and 2% doses of peracetic acid for 2 weeks do not lead to the alteration of malondialdehyde and enzyme activities.Conclusion: This study demonstrated that the enhancement of malondialdehyde could provide an oxidative damage induced by disinfectant peroxidation at 20% and 2% doses at 2 and 4 weeks. The consumption of peroxidation with 20% for 2 weeks and 2% for 4 weeks can cause the increase of malondialdehyde and the decrease of enzyme activities, respectively.

  2. The Effects of Subacute Exposure of Peracetic Acid on Lipid Peroxidation and Hepatic Enzymes in Wistar Rats

    Science.gov (United States)

    Marjani, Abdoljalal; Golalipour, Mohammad J.; Gharravi, Anneh M.

    2010-01-01

    Objectives This study was undertaken to determine the effect of subacute exposure of peracetic acid on lipid peroxidation and hepatic enzymes in Wistar rats. Methods 48 male animals in Treatment Group I, II and III received 0.2%, 2% and 20% peracetic acid daily for 2 and 4 weeks. Results Serum malondialdehyde increased and Alanine Transaminase and Aspartate Transaminase decreased significantly in groups 2 and 3, compared to the control group. The malondialdehyde, Alanine Transaminase and Aspartate Transaminase with 0.2% and 2% doses of peracetic acid for 2 weeks do not lead to the alteration of malondialdehyde and enzyme activities. Conclusion This study demonstrated that the enhancement of malondialdehyde could provide an oxidative damage induced by disinfectant peroxidation at 20% and 2% doses at 2 and 4 weeks. The consumption of peroxidation with 20% for 2 weeks and 2% for 4 weeks can cause the increase of malondialdehyde and the decrease of enzyme activities, respectively. PMID:22043353

  3. Effect of pomegranate supplementation and aerobic training on total antioxidant capacity and lipid peroxidation in overweight men

    Directory of Open Access Journals (Sweden)

    Soheila Rahimifardin

    2014-11-01

    Results: It was found that MDA index decreased in the pomegranate supplementation group compared to placebo group (P=0.016. But, total antioxidant capacity (TAC index in neither of the groups was significant (P=0.72. Conclusion: Results of the study indicate that pomegranate supplementation can reduce MDA derived from lipid peroxidation after 8 week running training in the obese. .

  4. Two-Phase Contiguous Supported Lipid Bilayer Model for Membrane Rafts via Polymer Blotting and Stenciling.

    Science.gov (United States)

    Richards, Mark J; Daniel, Susan

    2017-02-07

    The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts. Micropatterned polymer templates of two types are investigated for generating patterned bilayer formation: polymer blotting and polymer lift-off stenciling. While these approaches have been used previously to create bilayer arrays by corralling bilayers patches with various types of boundaries impenetrable to bilayer diffusion, unique to the methods presented here, there are no physical barriers to diffusion. In this work, interfaces between contiguous lipid phases define the pattern shapes, with continuity between them allowing transfer of membrane-bound biomolecules between the phases. We examine effectors of membrane domain stability including temperature and cholesterol content to investigate domain dynamics. Contiguous patterning of supported bilayers as a model of lipid rafts expands the application of the SLB to an area with current appeal and brings with it a useful toolset for characterization and analysis. These combined tools should be helpful to researchers investigating lipid raft dynamics and function and biomolecule partitioning studies. Additionally, this patterning technique may be useful for applications such as bioseparations that exploit differences in lipid phase partitioning or creation of membranes that bind species like viruses preferentially at lipid phase boundaries, to name a few.

  5. The radiation effects on lipid bilayers

    International Nuclear Information System (INIS)

    Ikigai, Hajime; Matsuura, Tomio; Narita, Noboru; Ozawa, Atsushi.

    1980-01-01

    The Radiation effects on lipid bilayers are studied by the electron spin resonance. Egg lecithin liposomes and human erythrocytes are labeled with spin probes (5 SAL, 12 SAL). Effects of membrane fluidity by X-Ray (or ultraviolet) irradiation are measured by change of the order parameter S. The results obtained are as follows: 1) A similar tendency is observed on the order parameter S between X-Ray irradiated egg lecithin liposomes and human erythrocytes. 2) The rapid changes of the membrane fluidity are observed below 1 krad. The fluctuation of membrane fluidity decreases above 1 krad, consequently the membrane has a tendency changing to a rigid state at low dose area. 3) It is suggested that the more effective radicals are hydroxyl radicals and superoxide radicals. 4) The effects of ultraviolet irradiation with hydrogen peroxide show that hydroxyl radicals lead to changes of membrane fluidity. (author)

  6. Studies on cutaneous lipid peroxide with special reference to the influences of ultraviolet irradiation

    International Nuclear Information System (INIS)

    Nomura, Kazuo

    1981-01-01

    The purpose of this study was to investigate the participation of lipid peroxide (LP) in some skin damages due to ultraviolet (UV) irradiation. Results obtained were as follows. 1) Long wave UV (UVA) was irradiated to rat skin homogenates. The levels of LP increased linearly with irradiation time. 2) When 8-methoxypsoralen was added to the homogenates prior to UVA irradiation, however, the LP levels showed no increase. 3) Various anti-oxidative agents were added to homogenates and UVA was irradiated. Only Vit. E reduced the LP levels in proportion to its concentrations. 4) Anti-oxidative agents were given to rats which were then exposed to PUVA (8-methoxypsoralen plus UVA) treatment. Among them, administration of Vit. E and pantethine was associated with reduction of serum and cutaneous LP levels with only slight histologic changes in the involved skin. 5) Vit. E deficient rats were treated with PUVA. In these models, cutaneous LP levels raised from 24 hours to 96 hours after PUVA treatment and histologic changes such as vacuolization, blister formation and cell degeneration were remarkable. From the above data, it became evident that lipid peroxidation took place in skin tissue per se and even in the UVA wave length region. After PUVA treatment, cutaneous LP levels relatively well correlated with histologic changes of the involved skin. The results suggested that LP played a certain role in skin damages due to UV. (author)

  7. Regional differences in the lateral mobility of plasma membrane lipids in a molluscan embryo

    OpenAIRE

    Speksnijder, J.E.; Dohmen, M.R.; Tertoolen, L.G.J.; Laat, S.W. de

    1985-01-01

    Regional and temporal differences in plasma membrane lipid mobility have been analyzed during the first three cleavage cycles of the embryo of the polar-lobe-forming mollusc Nassarius reticulatus by the fluorescence photobleaching recovery (FPR) method, using 1,1′-ditetradecyl 3,3,3′,3′-tetramethylindocarbocyanine iodide (C14diI) as a fluorescent lipid probe. During this period of development the lateral diffusion coefficient of membrane lipids is consistently greater in the vegetal polar lob...

  8. Hepatoprotective effects of Nigella sativa L and Urtica dioica L on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats

    Science.gov (United States)

    Kanter, Mehmet; Coskun, Omer; Budancamanak, Mustafa

    2005-01-01

    AIM: To investigate the effects of Nigella sativa L (NS) and Urtica dioica L (UD) on lipid peroxidation, antioxidant enzyme systems and liver enzymes in CCl4-treated rats. METHODS: Fifty-six healthy male Wistar albino rats were used in this study. The rats were randomly allotted into one of the four experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated) and D (CCl4+UD+NS treated), each containing 14 animals. All groups received CCl4 (0.8 mL/kg of body weight, sc, twice a week for 60 d). In addition, B, C and D groups also received daily i.p. injections of 0.2 mL/kg NS or/and 2 mL/kg UD oils for 60 d. Group A, on the other hand, received only 2 mL/kg normal saline solution for 60 d. Blood samples for the biochemical analysis were taken by cardiac puncture from randomly chosen-seven rats in each treatment group at beginning and on the 60th d of the experiment. RESULTS: The CCl4 treatment for 60 d increased the lipid peroxidation and liver enzymes, and also decreased the antioxidant enzyme levels. NS or UD treatment (alone or combination) for 60 d decreased the elevated lipid peroxidation and liver enzyme levels and also increased the reduced antioxidant enzyme levels. The weight of rats decreased in group A, and increased in groups B, C and D. CONCLUSION: NS and UD decrease the lipid per-oxidation and liver enzymes, and increase the anti-oxidant defense system activity in the CCl4-treated rats. PMID:16425366

  9. Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Camley, Brian A. [Center for Theoretical Biological Physics and Department of Physics, University of California, San Diego, California 92093 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Lerner, Michael G. [Department of Physics and Astronomy, Earlham College, Richmond, Indiana 47374 (United States); Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States); Pastor, Richard W. [Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States); Brown, Frank L. H. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States)

    2015-12-28

    The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed simulations to accurately predict membrane-protein diffusivities and related transport properties. Estimates for the relative error associated with periodic boundary artifacts are 50% and higher for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion in pure DPPC bilayers support the underlying hydrodynamic model.

  10. Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes

    International Nuclear Information System (INIS)

    Camley, Brian A.; Lerner, Michael G.; Pastor, Richard W.; Brown, Frank L. H.

    2015-01-01

    The Saffman-Delbrück hydrodynamic model for lipid-bilayer membranes is modified to account for the periodic boundary conditions commonly imposed in molecular simulations. Predicted lateral diffusion coefficients for membrane-embedded solid bodies are sensitive to box shape and converge slowly to the limit of infinite box size, raising serious doubts for the prospects of using detailed simulations to accurately predict membrane-protein diffusivities and related transport properties. Estimates for the relative error associated with periodic boundary artifacts are 50% and higher for fully atomistic models in currently feasible simulation boxes. MARTINI simulations of LacY membrane protein diffusion and LacY dimer diffusion in DPPC membranes and lipid diffusion in pure DPPC bilayers support the underlying hydrodynamic model

  11. Impact of two different saponins on the organization of model lipid membranes.

    Science.gov (United States)

    Korchowiec, Beata; Gorczyca, Marcelina; Wojszko, Kamila; Janikowska, Maria; Henry, Max; Rogalska, Ewa

    2015-10-01

    Saponins, naturally occurring plant compounds are known for their biological and pharmacological activity. This activity is strongly related to the amphiphilic character of saponins that allows them to aggregate in aqueous solution and interact with membrane components. In this work, Langmuir monolayer techniques combined with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and Brewster angle microscopy were used to study the interaction of selected saponins with lipid model membranes. Two structurally different saponins were used: digitonin and a commercial Merck Saponin. Membranes of different composition, namely, cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) were formed at the air/water and air/saponin solution interfaces. The saponin-lipid interaction was characterized by changes in surface pressure, surface potential, surface morphology and PM-IRRAS signal. Both saponins interact with model membranes and change the physical state of membranes by perturbing the lipid acyl chain orientation. The changes in membrane fluidity were more significant upon the interaction with Merck Saponin. A higher affinity of saponins for cholesterol than phosphatidylglycerols was observed. Moreover, our results indicate that digitonin interacts strongly with cholesterol and solubilize the cholesterol monolayer at higher surface pressures. It was shown, that digitonin easily penetrate to the cholesterol monolayer and forms a hydrogen bond with the hydroxyl groups. These findings might be useful in further understanding of the saponin action at the membrane interface and of the mechanism of membrane lysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network.

    Science.gov (United States)

    Thibault, Guillaume; Shui, Guanghou; Kim, Woong; McAlister, Graeme C; Ismail, Nurzian; Gygi, Steven P; Wenk, Markus R; Ng, Davis T W

    2012-10-12

    Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Dominguez-Gonzalez, Mayelin; Ayala, Victoria; Jové, Mariona; Mota-Martorell, Natalia; Piñol-Ripoll, Gerard; Gil-Villar, Maria Pilar; Rué, Montserrat; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2017-05-01

    Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach. To this end, we compared 12 different regions of CNS of healthy adult subjects, and the fatty acid profile and vulnerability to lipid peroxidation, were determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), respectively. In addition, different components involved in PUFA biosynthesis, as well as adaptive defense mechanisms against lipid peroxidation, were also measured by western blot and immunohistochemistry, respectively. We found that: i) four fatty acids (18.1n-9, 22:6n-3, 20:1n-9, and 18:0) are significant discriminators among CNS regions; ii) these differential fatty acid profiles generate a differential selective neural vulnerability (expressed by the peroxidizability index); iii) the cross-regional differences for the fatty acid profiles follow a caudal-cranial gradient which is directly related to changes in the biosynthesis pathways which can be ascribed to neuronal cells; and iv) the higher the peroxidizability index for a given human brain region, the lower concentration of the protein damage markers, likely supported by the presence of adaptive antioxidant mechanisms. In conclusion, our results suggest that there is a region-specific vulnerability to lipid peroxidation and offer evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the human central nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. HAMLET interacts with lipid membranes and perturbs their structure and integrity.

    Science.gov (United States)

    Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-02-23

    Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.

  15. Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a Preconditioning Process

    Directory of Open Access Journals (Sweden)

    Rui Yatabe

    2015-09-01

    Full Text Available It is possible to evaluate the taste of foods or medicines using a taste sensor. The taste sensor converts information on taste into an electrical signal using several lipid/polymer membranes. A lipid/polymer membrane for bitterness sensing can evaluate aftertaste after immersion in monosodium glutamate (MSG, which is called “preconditioning”. However, we have not yet analyzed the change in the surface structure of the membrane as a result of preconditioning. Thus, we analyzed the change in the surface by performing contact angle and surface zeta potential measurements, Fourier transform infrared spectroscopy (FTIR, X-ray photon spectroscopy (XPS and gas cluster ion beam time-of-flight secondary ion mass spectrometry (GCIB-TOF-SIMS. After preconditioning, the concentrations of MSG and tetradodecylammonium bromide (TDAB, contained in the lipid membrane were found to be higher in the surface region than in the bulk region. The effect of preconditioning was revealed by the above analysis methods.

  16. Interaction of red pepper (Capsicum annum, Tepin) polyphenols with Fe(II)-induced lipid peroxidation in brain and liver

    Energy Technology Data Exchange (ETDEWEB)

    Oboh, G [Biochemistry Department, Federal University of Technology, Akure, Ondo State (Nigeria); [Departamento de Quimica, Universidade Federal de Santa Maria (UFSM), Campus Universitario - Camobi, Santa Maria RS (Brazil); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: goboh2001@yahoo.com; Rocha, J B.T. [Campus Universitario - Camobi, Santa Maria RS (Brazil)

    2006-03-15

    Polyphenols exhibit a wide range of biological effects because of their antioxidant properties. Several types of polyphenols (phenolic acids, hydrolyzable tannins, and flavonoids) show anticarcinogenic and antimutagenic effects. Comparative studies were carried on the protective ability of free and bound polyphenol extracts of red Capsicum annuum Tepin (CAT) on brain and liver - In vitro. Free polyphenols of red Capsicum annuum Tepin (CAT) were extracted with 80% acetone, while the bound polyphenols were extracted with ethyl acetate from acid and alkaline hydrolysis of the pepper residue from free polyphenols extract. The phenol content, Fe (II) chelating ability, OH radical scavenging ability and protective ability of the extract against Fe (II)-induced lipid peroxidation in brain and liver was subsequently determined. The results of the study revealed that the free polyphenols (218.2mg/100g) content of the pepper were significantly higher than the bound polyphenols (42.5mg/100g). Furthermore, the free polyphenol extract had a significantly higher (<0.05) Fe (II) chelating ability, OH radical scavenging ability than the bound polyphenols. In addition, both extracts significantly inhibited (P<0.05) basal and 25{mu}M Fe (II)- induced lipid peroxidation in Rat's brain and liver in a dose dependent. However, the free polyphenols caused a significantly higher inhibition in the MDA (Malondialdehyde) production in the brain and liver homogenates than the bound phenols. Furthermore, the polyphenols protected the liver more than the brain. In conclusion, free polyphenols from Capsicum annuum protects both the liver and brain from Fe{sup 2+} induced lipid peroxidation, and this is probably due to the higher Fe (II) chelating ability and OH radical scavenging ability of the free polyphenols from the pepper. (author)

  17. Effect of temperature and pH on the lipid photoperoxidation and the structural state of erythrocyte membranes

    International Nuclear Information System (INIS)

    Roshchupkin, D.I.; Pelenitsyn, A.B.; Vladimirov, Yu.A.

    1978-01-01

    The degree of lipid photoperoxidation in erythrocytes (the amount of TBA-active products accumulated under the given dose of ultraviolet irradiation at 254 nm) increased abruptly with temperature in the interval 12 - 20 0 C, then it increased more slowly and later on passed over the maximum at about 30 - 32 0 C. Apparently, the degree of lipid photoperoxidation can serve as a sensitive index of lipid structural state. Using a method of modelling of erythrocyte membranes by liposomes of different chemical content, it was shown that under temperature changes in physiological limits the lipids of erythrocyte membranes undergo at least two structural transformations. The first might be a change in the relative position of cholesterol and phospholipids. The second is followed by the enhancement of membrane antioxidant activity. The degree of lipid photoperoxidation in erythrocytes grows with increasing pH from 6 to 8 according to S-shaped curve with middle point at pH 7.0. This effect can be attributed to structural transformation of membrane lipid zone associated with ionization of membrane protein hystidine. The swelling of erythrocytes in hypotonic medium also leads to structural transformation of lipid zone. (author)

  18. Simulation of Water Transport through a Lipid Membrane

    NARCIS (Netherlands)

    Marrink, Siewert-Jan; Berendsen, Herman J.C.

    1994-01-01

    To obtain insight in the process of water permeation through a lipid membrane, we performed molecular dynamics simulations on a phospholipid (DPPC)/water system with atomic detail. Since the actual process of permeation is too slow to be studied directly, we deduced the permeation rate indirectly

  19. Saturation recovery EPR spin-labeling method for quantification of lipids in biological membrane domains.

    Science.gov (United States)

    Mainali, Laxman; Camenisch, Theodore G; Hyde, James S; Subczynski, Witold K

    2017-12-01

    The presence of integral membrane proteins induces the formation of distinct domains in the lipid bilayer portion of biological membranes. Qualitative application of both continuous wave (CW) and saturation recovery (SR) electron paramagnetic resonance (EPR) spin-labeling methods allowed discrimination of the bulk, boundary, and trapped lipid domains. A recently developed method, which is based on the CW EPR spectra of phospholipid (PL) and cholesterol (Chol) analog spin labels, allows evaluation of the relative amount of PLs (% of total PLs) in the boundary plus trapped lipid domain and the relative amount of Chol (% of total Chol) in the trapped lipid domain [ M. Raguz, L. Mainali, W. J. O'Brien, and W. K. Subczynski (2015), Exp. Eye Res., 140:179-186 ]. Here, a new method is presented that, based on SR EPR spin-labeling, allows quantitative evaluation of the relative amounts of PLs and Chol in the trapped lipid domain of intact membranes. This new method complements the existing one, allowing acquisition of more detailed information about the distribution of lipids between domains in intact membranes. The methodological transition of the SR EPR spin-labeling approach from qualitative to quantitative is demonstrated. The abilities of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses. Statistical analysis (Student's t -test) of the data allowed determination of the separations of mean values above which differences can be treated as statistically significant ( P ≤ 0.05) and can be attributed to sources other than preparation/technique.

  20. Influence of separate and combined impact both of radiation and chemical factors on state of lipid peroxide oxidation system and antioxidant protection at pregnant rats

    International Nuclear Information System (INIS)

    Danil'chik, V.S.; Spivak, L.V.; Kolb, V.G.; Zubovskaya, E.T.; Rogov, Yu.I.

    2000-01-01

    Influence of low dozed ionizing irradiation and chemical toxicant was studied both under separate and combined action in the process of pregnancy. The lipid peroxidation (LPO) indices and antioxidant protection (AOP) parameters of females rats were studied. The result received proved that irradiation during pregnancy induced activation both of lipids free radical oxidation and of antioxidant protection in female rats. Chemical toxicants introduction resulted in shifts on the LPO-AOP system the hydrogen peroxide blood level increasing and the antioxidants ones reducing. Combined action of both factors led to development of a new level of LPO-AOP

  1. PLASMA-MEMBRANE LIPID ALTERATIONS INDUCED BY NACL IN WINTER-WHEAT ROOTS

    NARCIS (Netherlands)

    MANSOUR, MMF; VANHASSELT, PR; KUIPER, PJC

    A highly enriched plasma membrane fraction was isolated by two phase partitioning from wheat roots (Triticum aestivum L. cv. Vivant) grown with and without 100 mM NaCl. The lipids of the plasma membrane fraction were extracted and characterized. Phosphatidylcholine and phosphatidylethanolamine were

  2. Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation.

    Science.gov (United States)

    Oboh, Ganiyu; Olasehinde, Tosin A; Ademosun, Ayokunle O

    2014-01-01

    This study sought to investigate the effects of essential oil from lemon (Citrus limoni) peels on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. The essential oil was extracted by hydrodistillation, dried with anhydrous Na2SO4 and characterized using gas chromatography. Antioxidant properties of the oil and inhibition of pro-oxidant-induced lipid peroxidation in rats brain homogenate were also assessed. The essential oil inhibited AChE and BChE activities in a concentration-dependent manner. GC analysis revealed the presence of sabinene, limonene, α-pinene, β-pinene, neral, geranial, 1,8-cineole, linalool, borneol, α-terpineol, terpinen-4-ol, linalyl acetate and β-caryophyllene. Furthermore, the essential oil exhibited antioxidant activities as typified by ferric reducing property, Fe(2+)-chelation and radicals [DPPH, ABTS, OH, NO] scavenging abilities. The inhibition of AChE and BChE activities, inhibition of pro-oxidant induced lipid peroxidation and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress-induced neurodegeneration.

  3. The effect of ionizing radiation on the fatty acid composition of natural fats and on lipid peroxide formation

    International Nuclear Information System (INIS)

    Hammer, C.T.; Wills, E.D.

    1979-01-01

    The effects of irradiation doses of 200 to 1000 krad on the fatty acid composition of saturated and unsaturated natural food fats have been studied. Lard, coconut oil, corn oil, methyl linoleate and herring oil have been analysed before and after irradiation for lipid peroxide content and fatty acid composition. The effects of storage under varied conditions after irradiation have also been investigated. Irradiation doses of 200 to 1000 krad had little effect on the fatty acid compositions of saturated fats (lard and coconut oil) or of fats with a high antioxidant content (corn oil) but caused destruction of 98 per cent of the highly unsaturated acids (18:4, 20:5, 22:6) and 46 per cent of the diene acids (18:2) in herring oil. The destruction of the polyunsaturated fatty acids increased with increasing storage temperature and storage time. The destruction of polyunsaturated fatty acids was accompanied by an increase in lipid peroxide formation. It is considered that changes in fatty acid composition in natural foods after irradiation are important in consideration of the use of irradiation of food preservation. (author)

  4. Plasma lipid pattern and red cell membrane structure in β-thalassemia patients in Jakarta

    Directory of Open Access Journals (Sweden)

    Seruni K.U. Freisleben

    2011-08-01

    Full Text Available Background: Over the last 10 years, we have investigated thalassemia patients in Jakarta to obtain a comprehensive picture of iron overload, oxidative stress, and cell damage.Methods: In blood samples from 15 transfusion-dependent patients (group T, 5 non-transfused patients (group N and 10 controls (group C, plasma lipids and lipoproteins, lipid-soluble vitamin E, malondialdehyde (MDA and thiol status were measured. Isolated eryhtrocyte membranes were investigated with electron paramagnetic resonance (EPR spectroscopy using doxyl-stearic acid and maleimido-proxyl spin lables. Data were analyzed statistically with ANOVA.Results: Plasma triglycerides were higher and cholesterol levels were lower in thalassemic patients compared to controls. Vitamin E, group C: 21.8 vs T: 6.2 μmol/L and reactive thiols (C: 144 vs. T: 61 μmol/L were considerably lower in transfused patients, who exert clear signs of oxidative stress (MDA, C: 1.96 vs T: 9.2 μmol/L and of tissue cell damage, i.e., high transaminases plasma levels. Non-transfused thalassemia patients have slight signs of oxidative stress, but no significant indication of cell damage. Erythrocyte membrane parameters from EPR spectroscopy differ considerably between all groups. In transfusion-dependent patients the structure of the erythrocyte membrane and the gradients of polarity and fluidity are destroyed in lipid domains; binding capacity of protein thiols in the membrane is lower and immobilized.Conclusion: In tranfusion-dependent thalassemic patients, plasma lipid pattern and oxidative stress are associated with structural damage of isolated erythrocyte membranes as measured by EPR spectroscopy with lipid and proteinthiol spin labels. (Med J Indones 2011; 20:178-84Keywords: electron paramagnetic resonance spectroscopy, erythrocyte membrane, lipoproteins, oxidative stress, thalassemia, plasma lipids.

  5. Responses of Algal Cells to Engineered Nanoparticles Measured as Algal Cell Population, Chlorophyll a, and Lipid Peroxidation: Effect of Particle Size and Type

    Directory of Open Access Journals (Sweden)

    D. M. Metzler

    2012-01-01

    Full Text Available This paper investigated toxicity of three engineered nanoparticles (ENP, namely, Al2O3, SiO2, and TiO2 to the unicellular green algae, exemplified by Pseudokirchneriella subcapitata with an emphasis on particle size. The changes in pH, cell counts, chlorophyll a, and lipid peroxidation were used to measure the responses of the algal species to ENP. The most toxic particle size was TiO2 at 42 nm with an EC20 of 5.2 mg/L and Al2O3 at 14–18 nm with an EC20 of 5.1 mg/L. SiO2 was the least toxic with an EC20 of 318 mg/L. Toxicity was positively related to the surface charge of both ENP and algae. The chlorophyll content of the algal cells was influenced by the presence of ENP, which resulted in limited light and availability of nutrients due to increase in turbidity and nutrient adsorption onto the ENP surface, separately. Lipid peroxidation was attributed to reactive oxygen species (ROS. Fast reaction between algal cells and ROS due to direct contact between TiO2 and algal cells is an important factor for lipid peroxidation.

  6. Melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers - A study in postmenopausal women.

    Science.gov (United States)

    Sagan, Dorota; Stepniak, Jan; Gesing, Adam; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata

    2017-12-23

    Protective antioxidative effects of melatonin have been repeatedly documented in experimental and clinical studies. One of the most spectacular exogenous prooxidative agents is cigarette smoking. The aim of the study was to evaluate the level of oxidative damage to membrane lipids (lipid peroxidation; LPO) in blood serum, and in epidermis exfoliated during microdermabrasion collected from former-smokers who were treated with melatonin. The study was performed in postmenopausal women. Ninety (90) female volunteers, aged 46-67 years, were enrolled. Two major groups, i.e. never-smokers (n=44) and former-smokers (n=46), were divided into: Control, melatonin topical skin application, Restructurer (containing antioxidants) topical skin application, and melatonin oral treatment. Microdermabrasion was performed at point '0', after 2 weeks, and after 4 weeks of treatment. The following parameters were measured: LPO in blood serum, LPO in epidermis exfoliated during microdermabrasion, and skin biophysical characteristics, such as sebum, moisture, elasticity, and pigmentation. Malondialdehyde+4-hydroxyalkenals level (LPO index) was measured spectrophotometrically. Melatonin oral treatment significantly reversed the increased serum LPO level in former-smokers already after 2 weeks of treatment. In a univariate regression model, LPO blood level constituted the only independent factor negatively associated with melatonin oral treatment. After 4 weeks of treatment, melatonin given orally increased skin sebum, moisture and elasticity levels, and melatonin applied topically increased sebum level. Exogenous melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers.

  7. Platelet rebound effect of alcohol withdrawal and wine drinking in rats. Relation to tannins and lipid peroxidation.

    Science.gov (United States)

    Ruf, J C; Berger, J L; Renaud, S

    1995-01-01

    We investigated in rats fed a purified diet for 2 and 4 months whether wine drinking was associated with the rebound effect on thrombin-induced platelet aggregation observed after alcohol withdrawal. With 6% ethanol drinking or its equivalent in red or white wine, platelet aggregation was reduced similarly by 70% when the animals drank the alcoholic beverages up to the venipuncture. Depriving the rats of alcoholic beverages for 18 hours was associated with an increase in the platelet response of 124% in those receiving 6% ethanol, of 46% with white wine but a decrease of 59% in those with red wine. The protective effect of red wine on platelets could be reproduced by tannins (procyanidins) extracted from grape seeds or red wine and added to 6% ethanol, but not by glycerol or wine without alcohol. That was related to inhibition of the alcohol-induced lipid peroxidation as shown by the lowering of conjugated dienes, lipid peroxides, and the increase in vitamin E in plasma. Owing to tannins, the platelets of rats drinking red wine did not exhibit the rebound effect observed hours after alcohol drinking, eventually associated with sudden death and stroke in humans.

  8. Lipid Peroxidation, Nitric Oxide Metabolites, and Their Ratio in a Group of Subjects with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Gregorio Caimi

    2014-01-01

    Full Text Available Our aim was to evaluate lipid peroxidation, expressed as thiobarbituric acid-reactive substances (TBARS, nitric oxide metabolites (nitrite + nitrate expressed as NOx, and TBARS/NOx ratio in a group of subjects with metabolic syndrome (MS. In this regard we enrolled 106 subjects with MS defined according to the IDF criteria, subsequently subdivided into diabetic (DMS and nondiabetic (NDMS and also into subjects with a low triglycerides/HDL-cholesterol (TG/HDL-C index or with a high TG/HDL-C index. In the entire group and in the four subgroups of MS subjects we found an increase in TBARS and NOx levels and a decrease in TBARS/NOx ratio in comparison with normal controls. Regarding all these parameters no statistical difference between DMS and NDMS was evident, but a significant increase in NOx was present in subjects with a high TG/HDL-C index in comparison with those with a low index. In MS subjects we also found a negative correlation between TBARS/NOx ratio and TG/HDL-C index. Considering the hyperactivity of the inducible NO synthase in MS, these data confirm the altered redox and inflammatory status that characterizes the MS and suggest a link between lipid peroxidation, inflammation, and insulin resistance, evaluated as TG/HDL-C index.

  9. Reorganization of plasma membrane lipid domains during conidial germination.

    Science.gov (United States)

    Santos, Filipa C; Fernandes, Andreia S; Antunes, Catarina A C; Moreira, Filipe P; Videira, Arnaldo; Marinho, H Susana; de Almeida, Rodrigo F M

    2017-02-01

    Neurospora crassa, a filamentous fungus, in the unicellular conidial stage has ideal features to study sphingolipid (SL)-enriched domains, which are implicated in fundamental cellular processes ranging from antifungal resistance to apoptosis. Several changes in lipid metabolism and in the membrane composition of N. crassa occur during spore germination. However, the biophysical impact of those changes is unknown. Thus, a biophysical study of N. crassa plasma membrane, particularly SL-enriched domains, and their dynamics along conidial germination is prompted. Two N. crassa strains, wild-type (WT) and slime, which is devoid of cell wall, were studied. Conidial growth of N. crassa WT from a dormancy state to an exponential phase was accompanied by membrane reorganization, namely an increase of membrane fluidity, occurring faster in a supplemented medium than in Vogel's minimal medium. Gel-like domains, likely enriched in SLs, were found in both N. crassa strains, but were particularly compact, rigid and abundant in the case of slime cells, even more than in budding yeast Saccharomyces cerevisiae. In N. crassa, our results suggest that the melting of SL-enriched domains occurs near growth temperature (30°C) for WT, but at higher temperatures for slime. Regarding biophysical properties strongly affected by ergosterol, the plasma membrane of slime conidia lays in between those of N. crassa WT and S. cerevisiae cells. The differences in biophysical properties found in this work, and the relationships established between membrane lipid composition and dynamics, give new insights about the plasma membrane organization and structure of N. crassa strains during conidial growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts.

    Science.gov (United States)

    Kardash, Maria E; Dzuba, Sergei A

    2017-05-25

    The clustering of molecules is an important feature of plasma membrane organization. It is challenging to develop methods for quantifying membrane heterogeneities because of their transient nature and small size. Here, we obtained evidence that transient membrane heterogeneities can be frozen at cryogenic temperatures which allows the application of solid-state experimental techniques sensitive to the nanoscale distance range. We employed the pulsed version of electron paramagnetic resonance (EPR) spectroscopy, the electron spin echo (ESE) technique, for spin-labeled molecules in multilamellar lipid bilayers. ESE decays were refined for pure contribution of spin-spin magnetic dipole-dipolar interaction between the labels; these interactions manifest themselves at a nanometer distance range. The bilayers were prepared from different types of saturated and unsaturated lipids and cholesterol (Chol); in all cases, a small amount of guest spin-labeled substances 5-doxyl-stearic-acid (5-DSA) or 3β-doxyl-5α-cholestane (DChl) was added. The local concentration found of 5-DSA and DChl molecules was remarkably higher than the mean concentration in the bilayer, evidencing the formation of lipid-mediated clusters of these molecules. To our knowledge, formation of nanoscale clusters of guest amphiphilic molecules in biological membranes is a new phenomenon suggested only recently. Two-dimensional 5-DSA molecular clusters were found, whereas flat DChl molecules were found to be clustered into stacked one-dimensional structures. These clusters disappear when the Chol content is varied between the boundaries known for lipid raft formation at room temperatures. The room temperature EPR evidenced entrapping of DChl molecules in the rafts.

  11. The interaction of antibodies with lipid membranes unraveled by fluorescence methodologies

    Science.gov (United States)

    Figueira, Tiago N.; Veiga, Ana Salomé; Castanho, Miguel A. R. B.

    2014-12-01

    The interest and investment in antibody therapies has reached an overwhelming scale in the last decade. Yet, little concern has been noticed among the scientific community to unravel important interactions of antibodies with biological structures other than their respective epitopes. Lipid membranes are particularly relevant in this regard as they set the stage for protein-protein recognition, a concept potentially inclusive of antibody-antigen recognition. Fluorescence techniques allow experimental monitoring of protein partition between aqueous and lipid phases, deciphering events of adsorption, insertion and diffusion. This review focuses on the available fluorescence spectroscopy methodologies directed to the study of antibody-membrane interactions.

  12. [Age-related change in the alpha-tocopherolquinone/alpha-tocopherol ratio in the rat erythrocyte membrane].

    Science.gov (United States)

    Yanagawa, K; Takeda, H; Matsumiya, T; Takasaki, M

    1999-05-01

    alpha-Tocopherol (alpha-Toc), a lipophilic phenolic antioxidant that is localized mainly in the biomembrane, protects cells against oxidation-associated cytotoxicity by prevention of membrane lipid peroxidation, maintenance of the redox balance intracellular thiols and stabilization of the membrane structure. We investigated the age-related changes in redox dynamics of alpha-Toc in plasma and erythrocyte membrane of an elderly (66 weeks old) and young group (10 weeks old). Total, alpha-, beta + gamma-, delta-Toc and alpha-tocopherolquinone (alpha-TocQ) in plasma and erythrocyte membrane were determined by high-performance liquid chromatography (HPLC) with a series of multiple coulometric working electrodes (CWE). Rat venous blood sample was divided into plasma and erythrocyte layers by centrifugation, and then erythrocyte membrane sample was prepared according to the method of Dodge et al. under a stream of nitrogen. In plasma, total and alpha-Toc concentrations were increased, and beta + gamma-, delta-Toc and alpha-TocQ concentrations were decreased age-dependently. In the erythrocyte membrane, total, alpha-TocQ concentrations and three fractions of tocopherols decreased age-dependently. Also, a decrease in the alpha-TocQ/alpha-Toc ratio in erythrocyte membrane was observed in the elderly group. These findings suggest that the alpha-Toc uptake in erythrocyte membrane and utilization rate of alpha-Toc in erythrocyte membrane decline age-dependently. This decline may promote membrane lipid peroxidation. alpha-Toc redox dynamics in erythrocyte membrane were useful to investigate the pathophysiology of aging mechanisms related to oxidative stress.

  13. Influence of ester-modified lipids on bilayer structure.

    Science.gov (United States)

    Villanueva, Diana Y; Lim, Joseph B; Klauda, Jeffery B

    2013-11-19

    Lipid membranes function as barriers for cells to prevent unwanted chemicals from entering the cell and wanted chemicals from leaving. Because of their hydrophobic interior, membranes do not allow water to penetrate beyond the headgroup region. We performed molecular simulations to examine the effects of ester-modified lipids, which contain ester groups along their hydrocarbon chains, on bilayer structure. We chose two lipids from those presented in Menger et al. [J. Am. Chem. Soc. 2006, 128, 14034] with ester groups in (1) the upper half of the lipid chain (MEPC) and (2) the middle and end of the lipid chain (MGPC). MGPC (30%)/POPC bilayers formed stable water pores of diameter 5-7 Å, but MGPC (22%)/POPC and MEPC (30%)/POPC bilayers did not form these defects. These pores were similar to those formed during electroporation; i.e., the head groups lined the pore and allowed water and ions to transport across the bilayer. However, we found that lateral organization of the MGPC lipids into clusters, instead of an electric field or charge disparity as in electroporation, was essential for pore formation. On the basis of this, we propose an overall mechanism for pore formation. The similarities between the ester-modified lipids and byproducts of lipid peroxidation with multiple hydrophilic groups in the middle of the chain suggest that free radical reactions with unsaturated lipids and sterols result in fundamental changes that may be similar to what is seen in bilayers with ester-modified lipids.

  14. UVA Photoirradiation of Oxygenated Benz[a]anthracene and 3-Methylcholanthene - Generation of Singlet Oxygen and Induction of Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Diógenes Herreño Sáenz

    2008-03-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are widespread genotoxic environmental pollutants and potentially pose a health risk to humans. Although the biological and toxicological activities, including metabolism, mutagenicity, and carcinogenicity, of PAHs have been thoroughly studied, their phototoxicity and photo-induced biological activity have not been well examined. We have long been interested in phototoxicity of PAHs and their derivatives induced by irradiation with UV light. In this paper we report the photoirradiation of a series of oxygenated benz[a]anthracene (BA and 3-methylcholanthene (3-MC by UVA light in the presence of a lipid, methyl linoleate. The studied PAHs include 2-hydroxy-BA (2-OH-BA, 3-hydroxy-BA (3-OH-BA, 5-hydroxymethyl-BA (5-CH2OH-BA, 7-hydroxymethyl-BA (7-CH2OH-BA, 12-hydroxymethyl-BA (12-CH2OH-BA, 7-hydroxymethyl-12-methyl-BA (7-CH2OH-12-MBA, 5-formyl-BA (5-CHO-BA, BA 5,6-cis-dihydrodiol (BA 5,6-cis-diol, 1-hydroxy-3- methylcholanthene (1-OH-3-MC, 1-keto-3-methylcholanthene (1-keto-3-MC, and 3-MC 1,2-diol. The results indicate that upon photoirradiation by UVA at 7 and 21 J/cm2, respectively all these compounds induced lipid peroxidation and exhibited a relationship between the dose of the light and the level of lipid peroxidation induced. To determine whether or not photoirradiation of these compounds by UVA light produces ROS, an ESR spin-trap technique was employed to provide direct evidence. Photoirradiation of 3-keto-3-MC by UVA (at 389 nm in the presence of 2,2,6,6-tetramethylpiperidine (TEMP, a specific probe for singlet oxygen, resulted in the formation of TEMPO, indicating that singlet oxygen was generated. These overall results suggest that UVA photoirradiation of oxygenated BA and 3-methylcholanthrene generates singlet oxygen, one of the reactive oxygen species (ROS, which induce lipid peroxidation.

  15. ROLE OF PHYSICAL EXERCISE, FITNESS AND AEROBIC TRAINING IN TYPE 1 DIABETIC AND HEALTHY MEN IN RELATION TO THE LIPID PROFILE, LIPID PEROXIDATION AND THE METABOLIC SYNDROME

    Directory of Open Access Journals (Sweden)

    David E. Laaksonen

    2003-06-01

    Full Text Available Dyslipidemia and possibly lipid peroxidation play important roles in the development of macro- and microvascular disease in type 1 diabetes mellitus. Little is known, however, of the role of aerobic exercise in dyslipidemia and resting and exercise-induced lipid peroxidation in type 1 diabetes. Despite the well-known effect of leisure-time physical activity (LTPA on components of the metabolic syndrome, little is known of the association of LTPA and cardiorespiratory fitness (maximal oxygen consumption, VO2max with development of the metabolic syndrome itself. A randomized controlled trial assessing the effect of a 12-16 week aerobic exercise program on VO2max and the lipid profile was carried out in otherwise healthy young men with type 1 diabetes. The effect of acute physical exercise on oxidative stress and antioxidant defenses and the relation to VO2max in men with type 1 diabetes was also evaluated. To test four recently proposed definitions by the World Health Organization (WHO and National Cholesterol Education Program (NCEP of the metabolic syndrome, the sensitivity and specificity of the definitions for prevalent and incident diabetes were assessed in a population-based cohort of middle-aged men. We also studied the associations of LTPA and cardiorespiratory fitness with prevalent and incident cases of the metabolic syndrome. A 12-16 week endurance exercise program produced antiatherogenic changes in lipid, lipoprotein and apolipoprotein levels in 20 type 1 diabetic men who for the most part were already physically active at baseline. The most favorable training-induced changes in the high-density lipoprotein cholesterol (HDL/low-density lipoprotein cholesterol (LDL and apolipoprotein A-I/apolipoprotein B ratios were in patients with low baseline HDL/LDL levels, likely the group with the most benefit to be gained by such changes. Plasma thiobarbituric acid reactive substances (TBARS, a measure of lipid peroxidation, was higher in nine

  16. The problem of peroxidation in radiolis logy

    International Nuclear Information System (INIS)

    Baraboj, V.A.; Chebotarev, E.E.

    1986-01-01

    A hypothesis is validated concerning the products of freeradical oxidation of lipids and the phenol compounds as a mediator of the stress-syndrome. The data are reviewed on activation of peroxidation under the effect of radiation, cytochemical agents, etc., secondarily stimulating the neurohumoral system function of homeostasis regulation. With the emotional-algesic and cold-stresses, the regulatory system stimulation is of primary, reflex, nature, but it secondarily promotes the peroxidation activation. The radiotoxins (of the quinoid and lipid nature) appearing in tissues under the effect of ionizing radiation, are smilar in structure and mechanism of action to peroxidation activation products formed under the effect of other stress-agents

  17. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    Science.gov (United States)

    Aberle, Daniel; Oetter, Kay-Marcus; Meyers, Gregor

    2015-01-01

    Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  18. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    Directory of Open Access Journals (Sweden)

    Daniel Aberle

    Full Text Available Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  19. Understanding Detergent Effects on Lipid Membranes: A Model Study of Lysolipids

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Andresen, Thomas Lars; Feldborg, Lise Nørkjær

    2010-01-01

    Lysolipids and fatty acids are the natural products formed by the hydrolysis of phospholipids. Lysolipids and fatty acids form micelles in solution and acts as detergents in the presence of lipid membranes. In this study, we investigate the detergent strength of a homologous series of lyso......-chain mismatch between LPC and POPC determines the magnitude of the membrane mechanical perturbation per LPC molecule in the membrane. Finally, the three-stage model describing detergent membrane interaction has been extended by a parameter D-MCI, which governs the membrane curvature stability in the detergent...

  20. Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide.

    Science.gov (United States)

    Bienert, Gerd P; Heinen, Robert B; Berny, Marie C; Chaumont, François

    2014-01-01

    Plant aquaporins play important roles in transmembrane water transport processes, but some also facilitate the diffusion of other small uncharged solutes ranging from gases to metalloids. Recent evidence suggests that the transmembrane movement of hydrogen peroxide, an intra- and intercellular multifunctional signaling and defense compound, can be regulated by aquaporins. We addressed the question whether maize aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily facilitate hydrogen peroxide diffusion using heterologous expression in the yeast Saccharomyces cerevisiae. We showed that ZmPIP proteins belonging to the PIP1 and PIP2 groups were significantly expressed in yeast cells only after codon optimization of their cDNA. In accordance with previous localization studies in oocytes and plants, ZmPIP1;2 was mainly retained in intracellular membranes, while ZmPIP2;5 was localized to the plasma membrane. However, upon co-expression with ZmPIP2;5, ZmPIP1;2 was re-localized to the plasma membrane. Using a non-functional plasma membrane-localized ZmPIP2;5 mutant to deliver ZmPIP1;2 to the plasma membrane, we demonstrated that, in contrast to wild type ZmPIP2;5, ZmPIP1;2 was not permeable to hydrogen peroxide. Our study further highlighted the fact that, when using the yeast system, which is widely employed to study substrates for plant aquaporins and other transporters, although positive transport assay results allow direct conclusions to be drawn regarding solute permeability, negative results require additional control experiments to show that the protein is expressed and localized correctly before concluding on the lack of transport activity. © 2013.