WorldWideScience

Sample records for membrane inlet system

  1. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    Science.gov (United States)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  2. Temperature-programmed desorption for membrane inlet mass spectrometry

    DEFF Research Database (Denmark)

    Ketola, R.A.; Grøn, C.; Lauritsen, F.R.

    1998-01-01

    We present a novel technique for analyzing volatile organic compounds in air samples using a solid adsorbent together with temperature-programmed desorption and subsequent detection by membrane inlet mass spectrometry (TPD-MIMS). The new system has the advantage of a fast separation of compounds...... to diffuse through the membrane into the mass spectrometer in a few seconds. In this fashion we could completely separate many similar volatile compounds, for example toluene from xylene and trichloroethene from tetrachloroethene. Typical detection limits were at low or sub-nanogram levels, the dynamic range...

  3. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  4. A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples.

    Science.gov (United States)

    Visser, Ate; Singleton, Michael J; Hillegonds, Darren J; Velsko, Carol A; Moran, Jean E; Esser, Bradley K

    2013-11-15

    Noble gases dissolved in groundwater can reveal paleotemperatures, recharge conditions, and precise travel times. The collection and analysis of noble gas samples are cumbersome, involving noble gas purification, cryogenic separation and static mass spectrometry. A quicker and more efficient sample analysis method is required for introduced tracer studies and laboratory experiments. A Noble Gas Membrane Inlet Mass Spectrometry (NG-MIMS) system was developed to measure noble gases at natural abundances in gas and water samples. The NG-MIMS system consists of a membrane inlet, a dry-ice water trap, a carbon-dioxide trap, two getters, a gate valve, a turbomolecular pump and a quadrupole mass spectrometer equipped with an electron multiplier. Noble gases isotopes (4)He, (22)Ne, (38)Ar, (84)Kr and (132)Xe are measured every 10 s. The NG-MIMS system can reproduce measurements made on a traditional noble gas mass spectrometer system with precisions of 2%, 8%, 1%, 1% and 3% for He, Ne, Ar, Kr and Xe, respectively. Noble gas concentrations measured in an artificial recharge pond were used to monitor an introduced xenon tracer and to reconstruct temperature variations to within 2 °C. Additional experiments demonstrated the capability to measure noble gases in gas and in water samples, in real time. The NG-MIMS system is capable of providing analyses sufficiently accurate and precise for introduced noble gas tracers at managed aquifer recharge facilities, groundwater fingerprinting based on excess air and noble gas recharge temperature, and field and laboratory studies investigating ebullition and diffusive exchange. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Effect of inlet conditions on the performance of a palladium membrane reactor

    International Nuclear Information System (INIS)

    Birdsell, S.A.; Willms, R.S.; Arzu, P.; Costello, A.

    1997-10-01

    Palladium membrane reactors (PMR) will be used to remove tritium and other hydrogen isotopes from impurities, such as tritiated methane and tritiated water, in the exhaust of the International Thermonuclear Experimental Reactor. In addition to fusion-fuel processing, the PMR system can be used to recover tritium from tritiated waste water. This paper investigates the effect of inlet conditions on the performance of a PMR. A set of experiments were run to determine, independently, the effect of inlet compositions and residence time on performance. Also, the experiments were designed to determine if the injected form of hydrogen (CH 4 or H 2 O) effects performance. Results show that the PMR operates at optimal hydrogen recovery with a broad range of inlet compositions and performance is shown to increase with increased residence time. PMR performance is shown to be independent of whether hydrogen is injected in the form of CH 4 or H 2 O

  6. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    International Nuclear Information System (INIS)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung; Chun, Myung-Suk

    2014-01-01

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference

  7. Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Soo; Ryoo, Won; Chung, Gui Yung [Hong-Ik University, Seoul (Korea, Republic of); Chun, Myung-Suk [Korea Institute of Science and Technology (KIST), Seoul (Korea, Republic of)

    2014-02-15

    In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1-11 atm, the flow rate in the feed-channel decreased about 8-13% and that in the draw-channel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.

  8. Feed gas contaminant control in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  9. Membrane Inlet Mass Spectrometry for Homeland Security and Forensic Applications

    Science.gov (United States)

    Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; France, Neil

    2015-02-01

    A man-portable membrane inlet mass spectrometer has been built and tested to detect and monitor characteristic odors emitted from the human body and also from threat substances. In each case, a heated membrane sampling probe was used. During human scent monitoring experiments, data were obtained for inorganic gases and volatile organic compounds emitted from human breath and sweat in a confined space. Volatile emissions were detected from the human body at low ppb concentrations. Experiments with compounds associated with narcotics, explosives, and chemical warfare agents were conducted for a range of membrane types. Test compounds included methyl benzoate (odor signature of cocaine), piperidine (precursor in clandestine phencyclidine manufacturing processes), 2-nitrotoluene (breakdown product of TNT), cyclohexanone (volatile signature of plastic explosives), dimethyl methylphosphonate (used in sarin and soman nerve agent production), and 2-chloroethyl ethyl sulfide (simulant compound for sulfur mustard gas). Gas phase calibration experiments were performed allowing sub-ppb LOD to be established. The results showed excellent linearity versus concentration and rapid membrane response times.

  10. Dynamic analysis of CO₂ labeling and cell respiration using membrane-inlet mass spectrometry.

    Science.gov (United States)

    Yang, Tae Hoon

    2014-01-01

    Here, we introduce a mass spectrometry-based analytical method and relevant technical details for dynamic cell respiration and CO2 labeling analysis. Such measurements can be utilized as additional information and constraints for model-based (13)C metabolic flux analysis. Dissolved dynamics of oxygen consumption and CO2 mass isotopomer evolution from (13)C-labeled tracer substrates through different cellular processes can be precisely measured on-line using a miniaturized reactor system equipped with a membrane-inlet mass spectrometer. The corresponding specific rates of physiologically relevant gases and CO2 mass isotopomers can be quantified within a short-term range based on the liquid-phase dynamics of dissolved fermentation gases.

  11. Detecting Extracellular Carbonic Anhydrase Activity Using Membrane Inlet Mass Spectrometry

    Science.gov (United States)

    Delacruz, Joannalyn; Mikulski, Rose; Tu, Chingkuang; Li, Ying; Wang, Hai; Shiverick, Kathleen T.; Frost, Susan C.; Horenstein, Nicole A.; Silverman, David N.

    2010-01-01

    Current research into the function of carbonic anhydrases in cell physiology emphasizes the role of membrane-bound carbonic anhydrases, such as carbonic anhydrase IX that has been identified in malignant tumors and is associated with extracellular acidification as a response to hypoxia. We present here a mass spectrometric method to determine the extent to which total carbonic anhydrase activity is due to extracellular carbonic anhydrase in whole cell preparations. The method is based on the biphasic rate of depletion of 18O from CO2 measured by membrane inlet mass spectrometry. The slopes of the biphasic depletion are a sensitive measure of the presence of carbonic anhydrase outside and inside of the cells. This property is demonstrated here using suspensions of human red cells in which external carbonic anhydrase was added to the suspending solution. It is also applied to breast and prostate cancer cells which both express exofacial carbonic anhydrase IX. Inhibition of external carbonic anhydrase is achieved by use of a membrane impermeant inhibitor that was synthesized for this purpose, p-aminomethylbenzenesulfonamide attached to a polyethyleneglycol polymer. PMID:20417171

  12. Reactions of nitrite with hemoglobin measured by membrane inlet mass spectrometry

    Science.gov (United States)

    Tu, Chingkuang; Mikulski, Rose; Swenson, Erik R.; Silverman, David N.

    2010-01-01

    Membrane inlet mass spectrometry was used to observe nitric oxide in the well-studied reaction of nitrite with hemoglobin. The membrane inlet was submerged in the reaction solutions and measured NO in solution via its flux across a semipermeable membrane leading to the mass spectrometer detecting the mass-to-charge ratio m/z 30. This method measures NO directly in solution and is an alternate approach compared with methods that purge solutions to measure NO. Addition to deoxy-Hb(FeII) (near 38 µM heme concentration) of nitrite in a range of 80 µM to 16 mM showed no accumulation of either NO or N2O3 on a physiologically relevant time scale with a sensitivity near 1 nM. The addition of nitrite to oxy-Hb(FeII) and met-Hb(FeIII) did not accumulate free NO to appreciable extents. These observations show that for several minutes after mixing nitrite with hemoglogin, free NO does not accumulate to levels exceeding the equilibrium level of NO. The presence of cyanide ions did not alter the appearance of the data; however, the presence of 2 mM mercuric ions at the beginning of the experiment with deoxy-Hb(FeII) shortened the initial phase of NO accumulation and increased the maximal level of free, unbound NO by about twofold. These experiments appear consistent with no role of met-Hb(FeIII) in the generation of NO and an increase in nitrite reductase activity caused by the presumed binding of mercuric to cysteine residues. These results raise questions about the ability of reduction of nitrite mediated by deoxy-Hb(FeII) to play a role in vasodilation. PMID:18848984

  13. Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems

    KAUST Repository

    Farhat, Nadia; Staal, M.; Bucs, Szilard; Van Loosdrecht, M.C.M.; Vrouwenvelder, Johannes S.

    2016-01-01

    the spatial heterogeneity of biofilm development over the membrane fouling simulator (MFS) length (inlet and outlet part) at three different cross-flow velocities (0.08, 0.12 and 0.16 m/s). The MFS contained sheets of membrane and feed spacer and simulatedComparison of the inlet and outlet position of the MFS showed a more (i) heterogeneous biofilm distribution and a (ii) higher biological activity at the inlet side (first 2.5 cm) for all cross-flow velocities. The lowest cross-flow velocity had

  14. Modelling Morphological Response of Large Tidal Inlet Systems to Sea Level Rise

    NARCIS (Netherlands)

    Dissanayake, P.K.

    2011-01-01

    This dissertation qualitatively investigates the morphodynamic response of a large inlet system to IPCC projected relative sea level rise (RSLR). Adopted numerical approach (Delft3D) used a highly schematised model domain analogous to the Ameland inlet in the Dutch Wadden Sea. Predicted inlet

  15. Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system

    International Nuclear Information System (INIS)

    Hosseinzadeh, Elham; Rokni, Masoud; Rabbani, Abid; Mortensen, Henrik Hilleke

    2013-01-01

    Highlights: ► Developing a general zero dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model for a forklift. ► System performance with different cooling fluids. ► Water and thermal management of fuel cell system. ► Effect of inlet temperature, outlet temperature and temperature gradient on system performance. - Abstract: A general zero-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed for forklift truck application. The balance of plant (BOP) comprises of a compressor, an air humidifier, a set of heat exchangers and a recirculation pump. Water and thermal management of the fuel cell stack and BOP has been investigated in this study. The results show that humidification of the inlet air is of great importance. By decreasing the relative humidity of inlet air from 95% to 25%, the voltage can drop by 29%. In addition, elevated stack temperature can lead to a higher average cell voltage when membrane is fully hydrated otherwise it causes a drastic voltage drop in the stack. Furthermore, by substituting liquid water with water–ethylene glycol mixture of 50%, the mass flow of coolant increases by about 32–33% in the inner loop and 60–65% in the outer loop for all ranges of current. The system can then be started up at about −25 °C with negligible change in the efficiency

  16. Membrane inlet mass spectrometry reveals that Ceriporiopsis subvermispora bicupin oxalate oxidase is inhibited by nitric oxide.

    Science.gov (United States)

    Moomaw, Ellen W; Uberto, Richard; Tu, Chingkuang

    2014-07-18

    Membrane inlet mass spectrometry (MIMS) uses a semipermeable membrane as an inlet to a mass spectrometer for the measurement of the concentration of small uncharged molecules in solution. We report the use of MIMS to characterize the catalytic properties of oxalate oxidase (E.C. 1.2.3.4) from Ceriporiopsis subvermispora (CsOxOx). Oxalate oxidase is a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The MIMS method of measuring OxOx activity involves continuous, real-time direct detection of oxygen consumption and carbon dioxide production from the ion currents of their respective mass peaks. (13)C2-oxalate was used to allow for accurate detection of (13)CO2 (m/z 45) despite the presence of adventitious (12)CO2. Steady-state kinetic constants determined by MIMS are comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxidase catalyzed oxidation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid). Furthermore, we used MIMS to determine that NO inhibits the activity of the CsOxOx with a KI of 0.58±0.06 μM. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Efficient energy recovering air inlet system for an internal combustion engine

    NARCIS (Netherlands)

    2011-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  18. Efficient energy recovering air inlet system for an international combustion engine

    NARCIS (Netherlands)

    2013-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  19. Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems

    KAUST Repository

    Farhat, Nadia

    2016-09-06

    The spatially heterogeneous distribution of biofouling in spiral wound membrane systems restricts (i) the water distribution over the membrane surface and therefore (ii) the membrane-based water treatment. The objective of the study was to assess the spatial heterogeneity of biofilm development over the membrane fouling simulator (MFS) length (inlet and outlet part) at three different cross-flow velocities (0.08, 0.12 and 0.16 m/s). The MFS contained sheets of membrane and feed spacer and simulated the first 0.20 m of spiral-wound membrane modules where biofouling accumulates the most in practice. In-situ non-destructive oxygen imaging using planar optodes was applied to determine the biofilm spatially resolved activity and heterogeneity.

  20. Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system

    International Nuclear Information System (INIS)

    Yang, Tingting; Athienitis, Andreas K.

    2015-01-01

    Highlights: • BIPV/T system thermal efficiency is 5% higher using two inlets compared to one. • BIPV/T thermal efficiency is 7.6% higher using semi-transparent than opaque PV. • Detailed air temperature profile in BIPV/T channel is obtained. • Nusselt number correlations are developed. - Abstract: An experimental study of thermal characteristics of a novel two-inlet air-based open-loop building integrated photovoltaic/thermal (BIPV/T) system using a full-scale solar simulator is presented. Experimental prototypes of one-inlet and two-inlet BIPV/T systems were constructed for conducting comparative experiments. Variations of BIPV/T systems are also investigated including systems employing opaque mono-crystalline silicon photovoltaic (PV) panels and systems employing semi-transparent mono-crystalline PV panels. Experimental results demonstrate that an equivalent two-inlet system with frameless PV panels can increase the thermal efficiency by 5% compared to a conventional one-inlet system, and that the BIPV/T system with semi-transparent PV panels achieves 7.6% higher thermal efficiency due to the absorption of some solar radiation at the bottom surface in the BIPV/T system cavity. Also, the two-inlet BIPV/T design is easily implemented and does not add significant cost. Detailed air temperature measurements reveal that the mixing of the warm outlet air from the first section and the cool ambient air drawn in from the second inlet contributes to the improved performance of the two-inlet system. Based on a thermal network model of the BIPV/T system and experimental data, correlations are developed for the convective heat transfer coefficients in the two sections. These are necessary for further analysis and development of BIPV/T system with multiple inlets.

  1. Ion transport membrane module and vessel system with directed internal gas flow

    Science.gov (United States)

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  2. Dynamics of the inlet system of a four-stroke engine

    Science.gov (United States)

    Boden, R H; Schecter, Harry

    1944-01-01

    Tests were run on a single-cylinder and a multicylinder four-stroke engine in order to determine the effect of the dynamics of the inlet system upon indicated mean effective pressure. Tests on the single-cylinder engine were made at various speeds, inlet valve timings, and inlet pipe lengths. These tests indicated that the indicated mean effective pressure could be raised considerably at any one speed by the use of a suitably long inlet pipe. Tests at other speeds with this length of pipe showed higher indicated mean effective pressure than with a very short pipe, although not so high as could be obtained with the pipe length adjusted for each speed. A general relation was discovered between optimum time of inlet valve closing and pipe length; namely, that longer pipes require later inlet valve closing in order to be fully effective. Tests were also made on three cylinders connected to a single pipe. With this arrangement, increased volumetric efficiency at low speed was obtainable by using a long pipe, but only with a sacrifice of volumetric efficiency at high speed. Volumetric efficiency at high speed was progressively lower as the pipe length was increased.

  3. Study on the design of inlet and exhaust system of a stationary internal combustion engine

    International Nuclear Information System (INIS)

    Kesgin, Ugur

    2005-01-01

    The design and operational variables of inlet and exhaust systems are decisive to determine overall engine performance. The best engine overall performance can be obtained by proper design of the engine inlet and exhaust systems and by matching the correct turbocharger to the engine. This paper presents the results of investigations to design the inlet and exhaust systems of a stationary natural gas engine family. To do this, a computational model is verified in which zero dimensional phenomena within the cylinder and one dimensional phenomena in the engine inlet and exhaust systems are used. Using this engine model, the effects of the parameters of the inlet and exhaust systems on the engine performance are obtained. In particular, the following parameters are chosen: valve timing, valve diameter, valve lift profiles, diameter of the exhaust manifold, inlet and exhaust pipe lengths, and geometry of pipe junctions. Proper sizing of the inlet and exhaust pipe systems is achieved very precisely by these investigations. Also, valve timing is tuned by using the results obtained in this study. In general, a very high improvement potential for the engines studied here is presented

  4. Variable geometry for supersonic mixed-compression inlets

    Science.gov (United States)

    Sorensen, N. E.; Latham, E. A.; Smeltzer, D. B.

    1974-01-01

    Study of two-dimensional and axisymmetric supersonic mixed-compression inlet systems has shown that the geometry of both systems can be varied to provide adequate transonic airflow to satisfy the airflow demand of most jet engines. Collapsing geometry systems for both types of inlet systems provide a generous amount of transonic airflow for any design Mach number inlet system. However, the mechanical practicality of collapsing centerbodies for axisymmetric inlet systems is doubtful. Therefore, translating centerbody axisymmetric inlets with auxiliary airflow systems to augment the transonic airflow capability are an attractive alternative. Estimates show that the capture mass-flow ratio at Mach number 1.0 can be increased approximately 0.20 for a very short axisymmetric inlet system designed for Mach number 2.37. With this increase in mass-flow ratio, even variable-cycle engine transonic airflow demand can be matched without oversizing the inlet at the design Mach number.

  5. Diffuse Ceiling Inlet Systems and the Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Rong, Li

    2010-01-01

    A diffuse ceiling inlet system is an air distribution system which is supplying the air through the whole ceiling. The system can remove a large heat load without creating draught in the room. The paper describes measurements in the case of both cooling and heating, and CFD predictions are given...

  6. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  7. Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes

    KAUST Repository

    Ghaffour, Noreddine

    2016-06-30

    Vacuumed gap membrane distillation (VAGMED) modules, and multi-stage VAGMED systems and processes using the modules are provided. In an embodiment, the membrane distillation modules (10) can comprise: a) a condenser (12) including a condensation surface (15); b) a first passageway (13) having an inlet for receiving a first feed stream (14) and an outlet through which the first stream can pass out of the first passageway, the first passageway configured to bring the first feed stream into thermal communication with the condensation surface; c) an evaporator (17) including a permeable evaporation surface allowing condensable gas to pass there through; d) a second passageway (18) having an inlet for receiving a second feed stream (19) and an outlet through which the second feed stream can pass out of the second passageway, the second passageway configured to bring the second feed stream into communication with the permeable evaporation surface; and e) an enclosure (24) providing a vacuum compartment within which the condenser, the evaporator and the first and second passageways of the module are contained.

  8. Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes

    KAUST Repository

    Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Francis, Lijo

    2016-01-01

    Vacuumed gap membrane distillation (VAGMED) modules, and multi-stage VAGMED systems and processes using the modules are provided. In an embodiment, the membrane distillation modules (10) can comprise: a) a condenser (12) including a condensation surface (15); b) a first passageway (13) having an inlet for receiving a first feed stream (14) and an outlet through which the first stream can pass out of the first passageway, the first passageway configured to bring the first feed stream into thermal communication with the condensation surface; c) an evaporator (17) including a permeable evaporation surface allowing condensable gas to pass there through; d) a second passageway (18) having an inlet for receiving a second feed stream (19) and an outlet through which the second feed stream can pass out of the second passageway, the second passageway configured to bring the second feed stream into communication with the permeable evaporation surface; and e) an enclosure (24) providing a vacuum compartment within which the condenser, the evaporator and the first and second passageways of the module are contained.

  9. Geometry of tidal inlet systems : A key factor for the net sediment transport in tidal inlets

    NARCIS (Netherlands)

    Ridderinkhof, W.; de Swart, H. E.; van der Vegt, M.; Alebregtse, N. C.; Hoekstra, P.

    2014-01-01

    The net transport of sediment between the back-barrier basin and the sea is an important process for determining the stability of tidal inlet systems. Earlier studies showed that in a short basin, tidal flats favor peak ebb-currents stronger than peak flood currents, implying export of coarse

  10. Control of distributed heat transfer mechanisms in membrane distillation plants

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-01-05

    Various examples are provided that are related to boundary control in membrane distillation (MD) processes. In one example, a system includes a membrane distillation (MD) process comprising a feed side and a permeate side separated by a membrane boundary layer; and processing circuitry configured to control a water production rate of the MD process based at least in part upon a distributed heat transfer across the membrane boundary layer. In another example, a method includes determining a plurality of estimated temperature states of a membrane boundary layer separating a feed side and a permeate side of a membrane distillation (MD) process; and adjusting inlet flow rate or inlet temperature of at least one of the feed side or the permeate side to maintain a difference temperature along the membrane boundary layer about a defined reference temperature based at least in part upon the plurality of estimated temperature states.

  11. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Amy, Gary L.

    2013-01-01

    Polyvinylidene fluoride hollow fiber and nanofibrous membranes are engineered and successfully fabricated using dry-jet wet spinning and electrospinning techniques, respectively. Fabricated membranes are characterized for their morphology, average pore size, pore size distribution, nanofiber diameter distribution, thickness, and water contact angle. Direct contact membrane distillation (DCMD) performances of the fabricated membranes have been investigated using a locally designed and fabricated, fully automated MD bench scale unit and DCMD module. Electrospun nanofibrous membranes showed a water flux as high as 36 L m-2 h-1 whereas hollow fiber membranes showed a water flux of 31.6 L m-2 h-1, at a feed inlet temperature of 80 °C and at a permeate inlet temperature of 20 °C.

  12. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation

    KAUST Repository

    Francis, Lijo

    2013-11-26

    Polyvinylidene fluoride hollow fiber and nanofibrous membranes are engineered and successfully fabricated using dry-jet wet spinning and electrospinning techniques, respectively. Fabricated membranes are characterized for their morphology, average pore size, pore size distribution, nanofiber diameter distribution, thickness, and water contact angle. Direct contact membrane distillation (DCMD) performances of the fabricated membranes have been investigated using a locally designed and fabricated, fully automated MD bench scale unit and DCMD module. Electrospun nanofibrous membranes showed a water flux as high as 36 L m-2 h-1 whereas hollow fiber membranes showed a water flux of 31.6 L m-2 h-1, at a feed inlet temperature of 80 °C and at a permeate inlet temperature of 20 °C.

  13. Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry.

    Science.gov (United States)

    Schenk, H Jochen; Espino, Susana; Visser, Ate; Esser, Bradley K

    2016-04-01

    A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples. © 2015 John Wiley & Sons Ltd.

  14. A Method for Estimating Mass-Transfer Coefficients in a Biofilter from Membrane Inlet Mass Spectrometer Data

    DEFF Research Database (Denmark)

    Nielsen, Anders Michael; Nielsen, Lars Peter; Feilberg, Anders

    2009-01-01

    A membrane inlet mass spectrometer (MIMS) was used in combination with a developed computer model to study and improve management of a biofilter (BF) treating malodorous ventilation air from a meat rendering facility. The MIMS was used to determine percentage removal efficiencies (REs) of selected...... sulfur gases and to provide toluene retention profiles for the model to determine the air velocity and overall mass-transfer coefficient of toluene. The mass-transfer coefficient of toluene was used as a reference for determining the mass transfer of sulfur gases. By presenting the model to scenarios...... of a filter bed with a consortium of effective sulfur oxidizers, the most likely mechanism for incomplete removal of sulfur compounds from the exhaust air was elucidated. This was found to be insufficient mass transfer and not inadequate bacterial activity as anticipated by the manager of the BF. Thus...

  15. Using adaptive neuro fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modeling

    International Nuclear Information System (INIS)

    Rezazadeh, S.; Mirzaee, I.; Mehrabi, M.

    2012-01-01

    In this paper, an adaptive neuro fuzzy inference system (ANFIS) is used for modeling proton exchange membrane fuel cell (PEMFC) performance using some numerically investigated and compared with those to experimental results for training and test data. In this way, current density I (A/cm 2 ) is modeled to the variation of pressure at the cathode side P C (atm), voltage V (V), membrane thickness (mm), Anode transfer coefficient α an , relative humidity of inlet fuel RH a and relative humidity of inlet air RH c which are defined as input (design) variables. Then, we divided these data into train and test sections to do modeling. We instructed ANFIS network by 80% of numerical validated data. 20% of primary data which had been considered for testing the appropriateness of the models was entered ANFIS network models and results were compared by three statistical criterions. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states

  16. Using adaptive neuro fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, S.; Mirzaee, I. [Urmia Univ., Urmia (Iran, Islamic Republic of); Mehrabi, M. [University of Pretoria, Pretoria (South Africa)

    2012-11-15

    In this paper, an adaptive neuro fuzzy inference system (ANFIS) is used for modeling proton exchange membrane fuel cell (PEMFC) performance using some numerically investigated and compared with those to experimental results for training and test data. In this way, current density I (A/cm{sup 2}) is modeled to the variation of pressure at the cathode side P{sup C} (atm), voltage V (V), membrane thickness (mm), Anode transfer coefficient {alpha}{sup an}, relative humidity of inlet fuel RH{sup a} and relative humidity of inlet air RH{sup c} which are defined as input (design) variables. Then, we divided these data into train and test sections to do modeling. We instructed ANFIS network by 80% of numerical validated data. 20% of primary data which had been considered for testing the appropriateness of the models was entered ANFIS network models and results were compared by three statistical criterions. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states.

  17. A Tale of Two Inlets: Tidal Currents at Two Adjacent Inlets in the Indian River Lagoon

    Science.gov (United States)

    Webb, B. M.; Weaver, R. J.

    2012-12-01

    The tidal currents and hydrography at two adjacent inlets of the Indian River Lagoon estuary (Florida) were recently measured using a personal watercraft-based coastal profiling system. Although the two inlets—Sebastian Inlet and Port Canaveral Inlet—are separated by only 60 km, their characteristics and dynamics are quite unique. While Sebastian Inlet is a shallow (~4 m), curved inlet with a free connection to the estuary, Port Canaveral Inlet is dominated by a deep (~13 m), straight ship channel and has limited connectivity to the Banana River through a sector gate lock. Underway measurements of tidal currents were obtained using a bottom tracking acoustic Doppler current profiler; vertical casts of hydrography were obtained with a conductivity-temperature-depth profiling instrument; and continuous underway measurements of surface water hydrography were made using a Portable SeaKeeper system. Survey transects were performed to elucidate the along-channel variability of tidal flows, which appears to be significant in the presence of channel curvature. Ebb and flood tidal currents in Sebastian Inlet routinely exceeded 2.5 m/s from the surface to the bed, and an appreciable phase lag exists between tidal stage and current magnitude. The tidal currents at Port Canaveral Inlet were much smaller (~0.2 m/s) and appeared to be sensitive to meteorological forcing during the study period. Although the lagoon has free connections to the ocean 145 km to the north and 45 km to the south, Sebastian Inlet likely drains much of the lagoon to its north, an area of ~550 sq. km.

  18. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    Science.gov (United States)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  19. Luminescent Measurement Systems for the Investigation of a Scramjet Inlet-Isolator

    Directory of Open Access Journals (Sweden)

    Azam Che Idris

    2014-04-01

    Full Text Available Scramjets have become a main focus of study for many researchers, due to their application as propulsive devices in hypersonic flight. This entails a detailed understanding of the fluid mechanics involved to be able to design and operate these engines with maximum efficiency even at their off-design conditions. It is the objective of the present cold-flow investigation to study and analyse experimentally the mechanics of the fluid structures encountered within a generic scramjet inlet at M = 5. Traditionally, researchers have to rely on stream-thrust analysis, which requires the complex setup of a mass flow meter, a force balance and a heat transducer in order to measure inlet-isolator performance. Alternatively, the pitot rake could be positioned at inlet-isolator exit plane, but this method is intrusive to the flow, and the number of pitot tubes is limited by the model size constraint. Thus, this urgent need for a better flow diagnostics method is addressed in this paper. Pressure-sensitive paint (PSP has been applied to investigate the flow characteristics on the compression ramp, isolator surface and isolator sidewall. Numerous shock-shock interactions, corner and shoulder separation regions, as well as shock trains were captured by the luminescent system. The performance of the scramjet inlet-isolator has been shown to improve when operated in a modest angle of attack.

  20. Geologic framework and petroleum systems of Cook Inlet basin, south-central Alaska

    Science.gov (United States)

    LePain, D.L.; Stanley, R.G.; Helmold, K.P.; Shellenbaum, D.P.; Stone, D.M.; Hite, D.M.

    2013-01-01

    This report provides a comprehensive overview of the stratigraphy, structure, tectonics, and petroleum systems of the Cook Inlet basin, an important oil- and gas-producing region in south-central Alaska.

  1. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    Science.gov (United States)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  2. Inlet Geomorphology Evolution

    Science.gov (United States)

    2015-04-01

    APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Inlet Geomorphology Evolution 5a. CONTRACT NUMBER 5b...Std Z39-18 Coastal Inlets Research Program Inlet Geomorphology Evolution The Inlet Geomorphology Evolution work unit of the CIRP evaluates

  3. Impact of the use of a hybrid turbine inlet air cooling system in arid climates

    International Nuclear Information System (INIS)

    Al-Ansary, Hany A.; Orfi, Jamel A.; Ali, Mohamed E.

    2013-01-01

    Graphical abstract: Cooling the air entering the compressor section of a gas turbine is a proven method of increasing turbine power output, especially during peak summer demand, and it is increasingly being used in powerplants worldwide. Two turbine inlet air cooling (TIAC) systems are widely used: evaporative cooling and mechanical chilling. In this work, the prospects of using a hybrid turbine inlet air cooling (TIAC) system are investigated. The hybrid system consists of mechanical chilling followed by evaporative cooling. Such a system is capable of achieving a significant reduction in inlet air temperature that satisfies desired power output levels, while consuming less power than conventional mechanical chilling and less water than conventional evaporative cooling, thus combining the benefits of both approaches. Two hybrid system configurations are studied. In the first configuration, the first stage of the system uses water-cooled chillers that are coupled with dry coolers such that the condenser cooling water remains in a closed loop. In the second configuration, the first stage of the system uses water-cooled chillers but with conventional cooling towers. An assessment of the performance and economics of those two configurations is made by comparing them to conventional mechanical chilling and using realistic data. It was found that the TIAC systems are capable of boosting the power output of the gas turbine by 10% or more (of the power output of the ISO conditions). The cost operation analysis shows clearly the hybrid TIAC method with wet cooling has the advantage over the other methods and It would be profitable to install it in the new gas turbine power plants. The figure below shows a comparison of the water consumption for the three different cases. - Highlights: • New hybrid system for the turbine inlet air cooling is studied. • Hybrid system of mechanical chilling followed by evaporative cooling is used. • Hybrid turbine inlet air cooling

  4. Quantifying Contribution of Synthrophic Acetate Oxidation to Methane Production in Thermophilic Anaerobic Reactors by Membrane Inlet Mass Spectrometry

    DEFF Research Database (Denmark)

    Mulat, Daniel Girma; Ward, Alastair James; Adamsen, Anders Peter S.

    2014-01-01

    A unique method was developed and applied for monitoring methanogenesis pathways based on isotope labeled substrates combined with online membrane inlet quadrupole mass spectrometry (MIMS). In our study, a fermentation sample from a full-scale biogas plant fed with pig and cattle manure, maize...... silage, and deep litter was incubated with 100 mM of [2-13C] sodium acetate under thermophilic anaerobic conditions. MIMS was used to measure the isotopic distribution of dissolved CO2 and CH4 during the degradation of acetate, while excluding interference from water by applying a cold trap. After 6 days...... a new approach for online quantification of the relative contribution of methanogenesis pathways to methane production with a time resolution shorter than one minute. The observed contribution of SAO-HM to methane production under the tested conditions challenges the current widely accepted anaerobic...

  5. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  6. Performance study for inlet installations

    Science.gov (United States)

    Bingaman, Donald C.

    1992-01-01

    A conceptual design trade study was conducted by McDonnell Aircraft Company (MCAIR) and NASA LARC PAB to determine the impact of inlet design features incorporated for reduced detectability on inlet performance, weight, and cost, for both fighter and attack-type aircraft. Quality Function Deployment (QFD) techniques were used to prioritize trade study issues, and select 'best' air induction system configurations for each of two notional aircraft, the Multi-Role Fighter (MRF) and the Advanced Medium Attack (AMA) bomber. Database deficiencies discovered in the trade study process were identified, and technology roadmaps were developed to address these deficiencies. Finally, two high speed inlet wind tunnel model concepts were developed for follow-on wind tunnel investigations.

  7. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  8. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan; Srivatsa Bettahalli, N.M.; Fedoroff, Nina V.; Nunes, Suzana Pereira; Leiknes, TorOve

    2018-01-01

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  9. Simultaneous mass detection for direct inlet mass spectrometry

    International Nuclear Information System (INIS)

    Gordon, R.L.

    1979-05-01

    The evolution of analytical techniques for application in trace analysis has led to interest in practical methods for real-time monitoring. Direct inlet mass spectrometry (DIMS) has been the subject of considerable activity in recent years. A DIMS instrument is described which consists of an inlet system designed to permit particles entrained in the inlet air stream to strike a hot, oxidized rhenium filament which serves as a surface ionization source. A mass analyzer and detection system then permits identification of the elemental composition of particulates which strike the filament

  10. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  11. INLET STRATIFICATION DEVICE

    DEFF Research Database (Denmark)

    2006-01-01

    An inlet stratification device (5) for a circuit circulating a fluid through a tank (1 ) and for providing and maintaining stratification of the fluid in the tank (1 ). The stratification de- vice (5) is arranged vertically in the tank (1) and comprises an inlet pipe (6) being at least partially...... formed of a flexible porous material and having an inlet (19) and outlets formed of the pores of the porous material. The stratification device (5) further comprises at least one outer pipe (7) surrounding the inlet pipe (6) in spaced relationship thereto and being at least partially formed of a porous...

  12. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.

    Science.gov (United States)

    Tabak, Henry H; Govind, Rakesh

    2003-12-01

    Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 degrees C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in

  13. Numerical and experimental investigation on effects of inlet humidity and fuel flow rate and oxidant on the performance on polymer fuel cell

    International Nuclear Information System (INIS)

    Takalloo, Pourya Karimi; Nia, Ehsan Shabahang; Ghazikhani, Mohsen

    2016-01-01

    Highlights: • The impact of alteration in humidification on performance of fuel cell. • The impact of variation of temperature on performance of fuel cell. • The effects of using pure oxygen on the polarity curve are studied. • Fuel cell has been investigated both experimentally and numerically. - Abstract: Considering the importance of water management in a fuel cell and in order to increase the rate of the electro-chemical process in fuel cells with polymer membrane, it is required to optimize the humidity and inlet flow rates on anode and cathode sides. In this study, the impact of alteration in humidification and inlet flow rates on performance improvements for polymer membrane fuel cells is investigated both experimentally and numerically. To obtain the objective, employing the results from experiments and simulations, polarity curve and power density are produced and further used to conduct the desired investigations. In addition, through the conducted simulations the effects of using pure oxygen in the cathode side and inlet gas temperatures on the polarity curve is studied. The results demonstrate that an increase in humidity of the inlet gases will lead to performance amelioration in the cell, due to reduction in ionic resistance at the membrane. Furthermore, with the aforementioned increment; molar fractions of hydrogen and oxygen are decreased through the channel which results in produced water increment. Amplification in inlet flow rates to a certain level will improve the penetration possibility for gaseous forms leading to betterment of the cell performance in this specified range. Performance improvements with inlet gases temperature increment conclude other results of this study.

  14. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    Science.gov (United States)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  15. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking

    KAUST Repository

    Karam, Ayman M.; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.

  16. Real time optimization of solar powered direct contact membrane distillation based on multivariable extremum seeking

    KAUST Repository

    Karam, Ayman M.

    2015-09-21

    This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.

  17. Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages

    International Nuclear Information System (INIS)

    Han, Feng Hui; Mao, Yi Jun; Tan, Ji Jian

    2016-01-01

    Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets

  18. Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng Hui; Mao, Yi Jun [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an (China); Tan, Ji Jian [Dept. of Research and Development, Shenyang Blower Works Group Co., Ltd., Shenyang (China)

    2016-11-15

    Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets.

  19. Study on the relationship between uranium mine cage hoisting system and quality of inlet air

    International Nuclear Information System (INIS)

    Hu Penghua; Li Xianjie; Hong Changshou; Li Xiangyang

    2014-01-01

    Those skip hoisting shafts and cage hoisting shafts with over 100000-ton hoisting capacity per year can not be designed as air inlet shafts is particularly emphasized in nuclear industrial standard Technical Regulations for Radon Exhaustion and Ventilation in Underground Uranium Mine (EJ/T 359-2006) referring to previous production experiences of the former Soviet Union's uranium mines. Cage hoisting shafts are generally served as the main air inlet shafts for the widely adopted of exhaust ventilation in terms of uranium mines in China. Nevertheless, the above-mentioned standard has been considered as a constraint on designing and producing of China's prospective large uranium mines. Through theoretical analysis and field experiments on the main influencing factors over the quality of inlet air of selected experimental uranium mines hoisting system such as piston wind pressure, ore heap's radon emanation of shaft station, radon contamination of loaded mine cars etc, we finally established the calculation model of inlet air contamination deriving from ore heap and loaded mine cars' radon emanation in vertical shaft station. The acquired research achievements would lav a theoretical foundation for further works on revising relevant standards. (authors)

  20. Optimization of fog inlet air cooling system for combined cycle power plants using genetic algorithm

    International Nuclear Information System (INIS)

    Ehyaei, Mehdi A.; Tahani, Mojtaba; Ahmadi, Pouria; Esfandiari, Mohammad

    2015-01-01

    In this research paper, a comprehensive thermodynamic modeling of a combined cycle power plant is first conducted and the effects of gas turbine inlet fogging system on the first and second law efficiencies and net power outputs of combined cycle power plants are investigated. The combined cycle power plant (CCPP) considered for this study consist of a double pressure heat recovery steam generator (HRSG) to utilize the energy of exhaust leaving the gas turbine and produce superheated steam to generate electricity in the Rankine cycle. In order to enhance understanding of this research and come up with optimum performance assessment of the plant, a complete optimization is using a genetic algorithm conducted. In order to achieve this goal, a new objective function is defined for the system optimization including social cost of air pollution for the power generation systems. The objective function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. It is concluded that using inlet air cooling system for the CCPP system and its optimization results in an increase in the average output power, first and second law efficiencies by 17.24%, 3.6% and 3.5%, respectively, for three warm months of year. - Highlights: • To model the combined cycle power plant equipped with fog inlet air cooling method. • To conduct both exergy and economic analyses for better understanding. • To conduct a complete optimization using a genetic algorithm to determine the optimal design parameters of the system

  1. Classification of tidal inlets along the Central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.A.; Vikas, M.; Rao, S.; JayaKumar S.

    ) as long as the alongshore sediment bypasses the tidal inlet. Classification of coastal systems in a broader view is necessary for the management of tidal inlets. There are several methods to classify tidal inlets based on different perspectives namely geo...

  2. Inlet Geomorphology Evolution Work Unit

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program Inlet Geomorphology Evolution Work Unit The Inlet Geomorphology Evolution work unit of the CIRP develops methods...morphologic response. Presently, the primary tool of the Inlet Geomorphology Evolution work unit is the Sediment Mobility Tool (SMT), which allows the user

  3. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    Science.gov (United States)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  4. Should we attempt global (inlet engine airframe) control design?

    Science.gov (United States)

    Carlin, C. M.

    1980-01-01

    The feasibility of multivariable design of the entire airplane control system is briefly addressed. An intermediate step in that direction is to design a control for an inlet engine augmentor system by using multivariable techniques. The supersonic cruise large scale inlet research program is described which will provide an opportunity to develop, integrate, and wind tunnel test a control for a mixed compression inlet and variable cycle engine. The integrated propulsion airframe control program is also discussed which will introduce the problem of implementing MVC within a distributed processing avionics architecture, requiring real time decomposition of the global design into independent modules in response to hardware communication failures.

  5. Geomorphic Analysis of Mattituck Inlet and Goldsmith Inlet, Long Island, New York

    National Research Council Canada - National Science Library

    Morgan, Michael J; Kraus, Nicholas C; McDonald, Jodi M

    2005-01-01

    This study of Mattituck Inlet and Goldsmith Inlet, Long Island, NY, covers the historic and geomorphic background, literature, field measurements, numerical modeling of tidal circulation, and analysis...

  6. Improvement of the inlet system for the spray-jet technique for use in spectroscopic studies and molecular deposition

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Mashiko, Shinro

    2006-01-01

    We previously developed a molecular beam apparatus with a spray-jet technique in order to produce a molecular beam of non-volatile molecules in vacuum from the sprayed mist of a sample solution. The apparatus is for use in spectroscopic studies or a means of molecular deposition. The spray-jet inlet system consisted of an ultrasonic nebulizer, an inlet chamber and a pulsed nozzle. In the present paper, further improvements to the spray-jet inlet system are reported. The main improvement is the introduction of a pneumatic nebulizer to replace the previous ultrasonic nebulizer. The efficiency of molecular beam generation was evaluated on the basis of the signal intensity of the resonantly enhanced multiphoton ionization time-of-flight mass (REMPI-TOFMS) spectra for a Rhodamine B/methanol solution and the amount of sample consumed. The introduction of the pneumatic nebulizer increased the efficiency by a factor of 20

  7. Performance investigation of a solar-assisted direct contact membrane distillation system

    KAUST Repository

    Kim, Youngdeuk

    2013-01-01

    This paper presents a solar-assisted direct contact membrane distillation (DCMD) system with novel energy recovery concepts for a continuous 24-h-a-day operation. A temperature modulating scheme is introduced to the solar-thermal system that supplies feed seawater to the DCMD modules. This scheme attenuates extreme temperature fluctuations of the feed water by storing the collected energy during solar-peak hours and reutilizing it throughout the day. Thus, the energy savings is realized yet the feed seawater temperature is maintained within the desired range. Additionally, the system employs heat recovery from the permeate and brine streams to the feed seawater. The simulations for such a system with a shell-and-tube type DCMD modules are carried out to examine the spatial property variations and the sensitivity of system performance (i.e., transmembrane pressure, permeate flux and performance ratio) to the operating conditions (inlet temperature and flow rate) and the fiber dimensions (fiber length and packing density). It is found that there are trade-offs between mean permeate flux and performance ratio with respect to permeate inlet temperature and flow rate and between total distillate production and performance ratio with respect to packing density. For the solar-assisted DCMD system having evacuated-tube collectors of 3360m2 with 160m3 seawater storage tanks and 50 DCMD modules, the annual solar fraction and the collector efficiency are found to be 77% and 53%, respectively, whilst the overall permeate production capacity is 31m3/day. The overall specific thermal energy consumption of the DCMD system with heat recovery is found to be 436kWh/m3 and it is about 43% lower as compared to the system without heat recovery. It is observed that the specific thermal energy consumption decreases significantly by 55% with increased collector area from 1983m2 to 3360m2 whereas the specific electrical energy consumption increases slightly by 16%. © 2012 Elsevier B.V.

  8. Background-Oriented Schlieren used in a hypersonic inlet test at NASA GRC

    Science.gov (United States)

    Clem, Michelle; Woike, Mark; Saunders, John

    2016-01-01

    Background Oriented Schlieren (BOS) is a derivative of the classical schlieren technology, which is used to visualize density gradients, such as shock wave structures in a wind tunnel. Changes in refractive index resulting from density gradients cause light rays to bend, resulting in apparent motion of a random background pattern. The apparent motion of the pattern is determined using cross-correlation algorithms (between no-flow and with-flow image pairs) producing a schlieren-like image. One advantage of BOS is its simplified setup which enables a larger field-of-view (FOV) than traditional schlieren systems. In the present study, BOS was implemented into the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) in the 10x10 Supersonic Wind Tunnel at NASA Glenn Research Center. The model hardware for the CCE LIMX accommodates a fully integrated turbine based combined cycle propulsion system. To date, inlet mode transition between turbine and ramjet operation has been successfully demonstrated. High-speed BOS was used to visualize the behavior of the flow structures shock waves during unsteady inlet unstarts, a phenomenon known as buzz. Transient video images of inlet buzz were recorded for both the ramjet flow path (high speed inlet) and turbine flow path (low speed inlet). To understand the stability limits of the inlet, operation was pushed to the point of unstart and buzz. BOS was implemented in order to view both inlets simultaneously, since the required FOV was beyond the capability of the current traditional schlieren system. An example of BOS data (Images 1-6) capturing inlet buzz are presented.

  9. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  10. Impact of inlet coherent motions on compressor performance

    Science.gov (United States)

    Forlese, Jacopo; Spoleti, Giovanni

    2017-08-01

    Automotive engine induction systems may be characterized by significant flow angularity and total pressure distortion at the compressor inlet. The impact of the swirl on compressor performance should be quantified to guide the design of the induction systems. In diesel engines, the presence of a valve for flow reduction and control of low pressure EGR recirculation could generate coherent motion and influence the performance of the compressor. Starting from experimental map, the compressor speed-lines have been simulated using a 3D CFD commercial code imposing different concept motion at the inlet. The swirl intensity, the direction and the number of vortices have been imposed in order to taking into account some combinations. Finally, a merit function has been defined to evaluate the performance of the compressor with the defined swirl concepts. The aim of the current work is to obtain an indication on the effect of a swirling motion at the compressor inlet on the engine performance and provide a guideline to the induction system design.

  11. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet

    Science.gov (United States)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined, where the second cone of a two cone center body collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  12. Utilization of solar energy for direct contact membrane distillation process: An experimental study for desalination of real seawater

    International Nuclear Information System (INIS)

    Palanisami, Nallasamy; He, Ke; Moon, Il Shik

    2014-01-01

    Membrane distillation (MD), a non-isothermal membrane separation process, is based on the phenomenon that pure water in its vapor state can be extracted from aqueous solutions by passing vapor through a hydrophobic microporous membrane when a temperature difference is established across it. We used three commercially available hydrophobic microporous membranes (C02, C07 and C12; based on the pore size 0.2, 0.7 and 1.2 µm respectively) for desalination via direct contact MD (DCMD). The effects of operating parameters on permeation flux were studied. In addition, the desalination of seawater by solar assisted DCMD process was experimentally investigated. First, using solar power only short-term (one day), successful desalination of real seawater was achieved without temperature control under the following conditions: feed inlet temperature 65.0 .deg. C, permeate inlet temperature 25.0 .deg. C, and a flow rate of 2.5 L/min. The developed system also worked well in the long-term (150 days) for seawater desalination using both solar and electric power. Long-term test flux was reduced from 28.48 to only 26.50 L/m 2 hr, indicating system feasibility

  13. Utilization of solar energy for direct contact membrane distillation process: An experimental study for desalination of real seawater

    Energy Technology Data Exchange (ETDEWEB)

    Palanisami, Nallasamy; He, Ke; Moon, Il Shik [Sunchon National University, Suncheon (Korea, Republic of)

    2014-01-15

    Membrane distillation (MD), a non-isothermal membrane separation process, is based on the phenomenon that pure water in its vapor state can be extracted from aqueous solutions by passing vapor through a hydrophobic microporous membrane when a temperature difference is established across it. We used three commercially available hydrophobic microporous membranes (C02, C07 and C12; based on the pore size 0.2, 0.7 and 1.2 µm respectively) for desalination via direct contact MD (DCMD). The effects of operating parameters on permeation flux were studied. In addition, the desalination of seawater by solar assisted DCMD process was experimentally investigated. First, using solar power only short-term (one day), successful desalination of real seawater was achieved without temperature control under the following conditions: feed inlet temperature 65.0 .deg. C, permeate inlet temperature 25.0 .deg. C, and a flow rate of 2.5 L/min. The developed system also worked well in the long-term (150 days) for seawater desalination using both solar and electric power. Long-term test flux was reduced from 28.48 to only 26.50 L/m{sup 2}hr, indicating system feasibility.

  14. Stability analysis for tidal inlets of Thuan An and Tu Hien using Escoffier diagram

    NARCIS (Netherlands)

    Lam, N.T.; Verhagen, H.J.; Van der Wegen, M.

    2004-01-01

    Stability analysis of tidal inlets is very important in providing knowledge on the behaviour of tidal inlet and lagoon systems. The analysis results can help to plan and manage the system effectively as well as to provide information for stability design of the inlets. This paper presents a method

  15. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  16. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  17. Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack

    International Nuclear Information System (INIS)

    Huang, Zhen-Ming; Su, Ay; Liu, Ying-Chieh

    2014-01-01

    In this study, the performance of a polymer electrolyte membrane fuel cell stack has been evaluated for a hybrid power system test platform. To simulate vehicle acceleration, the stack was operated under dynamic-loading, and to demonstrate the exchange of power flow between two power sources the hybrid power system was tested under three different modes. A unit cell was fabricated for high stack performance and the stack was constructed with 18 open-cathode type fuel cells. Air which acts as a coolant as well as an oxidant for electrochemical reactions is provided by a pair of fans. The capabilities of the stack for hybrid power system test platform were validated by successful dynamic-loading tests. The performance of the stack for various air fan voltage was evaluated and an optimal value was concluded. The conditions like inlet temperature of H 2 and the stack current were established for maximum power. It was also found that humidification of hydrogen at anode inlet degrades the stack performance and stability due to flooding. Evidence shows that for the higher overall performance, the fuel cell acts continuously on constant current output. The study contributes to the design of mobility hybrid system to get better performance and reliability. - Highlights: • An open-cathode type PEMFC (polymer electrolyte membrane fuel cell) stack (rated output 300 W) was fabricated. • The open-cathode configuration simplifies the design of a stack system. • Assess the feasibility of combining a fuel cell stack in a hybrid system. • The study contributes to the design of mobility hybrid system to get better performance and reliability

  18. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  19. Inlet design for high-speed propfans

    Science.gov (United States)

    Little, B. H., Jr.; Hinson, B. L.

    1982-01-01

    A two-part study was performed to design inlets for high-speed propfan installation. The first part was a parametric study to select promising inlet concepts. A wide range of inlet geometries was examined and evaluated - primarily on the basis of cruise thrust and fuel burn performance. Two inlet concepts were than chosen for more detailed design studies - one apropriate to offset engine/gearbox arrangements and the other to in-line arrangements. In the second part of this study, inlet design points were chosen to optimize the net installed thrust, and detailed design of the two inlet configurations was performed. An analytical methodology was developed to account for propfan slipstream effects, transonic flow efects, and three-dimensional geometry effects. Using this methodology, low drag cowls were designed for the two inlets.

  20. Wave-driven fluxes through New River Inlet, NC

    Science.gov (United States)

    Wargula, A.; Raubenheimer, B.; Elgar, S.

    2012-12-01

    The importance of wave forcing to inlet circulation is examined using observations of waves, water levels, and currents collected in and near New River Inlet, NC during April and May, 2012. A boat-mounted system was used to measure current profiles along transects across the inlet mouth during three 14-hr periods, providing information on cross-inlet current structure, as well as discharge. Additionally, an array of 13 colocated pressure gages and profilers were deployed along 2 km of the inlet channel (5 to 10 m water depths) and ebb shoal channel (2 to 3 m water depths) and 19 colocated pressure gages and acoustic Doppler velocimeters were deployed across and offshore of the ebb shoal (1 to 5 m water depths) (Figure 1). The inlet is well mixed and tidal currents ranged from +/- 1.5 m/s, maximum discharge rates at peak ebb and flood were about 700 to 900 m3/s, offshore significant wave heights Hsig were 0.5 to 2.5 m, and wind speeds ranged from 0 to 14 m/s. Time-integrated residual discharge over semi-diurnal tidal cycles with similar ranges was ebb dominant during calm conditions (May 11, net out-of-inlet discharge ~ 55 m3, Hsig ~ 0.5 m, NW winds ~ 3 m/s) and flood dominant during stormier conditions (May 14, net into-inlet discharge ~ 15 m3, Hsig ~ 1.2 m, S winds ~ 6.5 m/s). Low-pass filtered in situ profiler data suggest wave-forcing affects the fluxes into and out of the inlet. The observations will be used to examine the momentum balance governing the temporal and cross-inlet (channel vs. shoal) variation of these fluxes, as well as the effect of waves on ebb and flood flow dominance. Funding provided by the Office of Naval Research and a National Security Science and Engineering Faculty Fellowship.; Figure 1: Google Earth image of New River Inlet, NC. Colors are depth contours (scale on the right, units are m relative to mean sea level) and symbols are locations of colocated current meters and pressure gages.

  1. Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud; Rabbani, Raja Abid

    2013-01-01

    A general zero-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed for forklift truck application. The balance of plant (BOP) comprises of a compressor, an air humidifier, a set of heat exchangers and a recirculation pump. Water and thermal management of the fuel cell...... stack and BOP has been investigated in this study. The results show that humidification of the inlet air is of great importance. By decreasing the relative humidity of inlet air from 95% to 25%, the voltage can drop by 29%. In addition, elevated stack temperature can lead to a higher average cell...... voltage when membrane is fully hydrated otherwise it causes a drastic voltage drop in the stack. Furthermore, by substituting liquid water with water-ethylene glycol mixture of 50%, the mass flow of coolant increases by about 32-33% in the inner loop and 60-65% in the outer loop for all ranges of current...

  2. Exergy, Economic and Environmental Analyses of Gas Turbine Inlet Air Cooling with a Heat Pump Using a Novel System Configuration

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Majdi Yazdi

    2015-10-01

    Full Text Available Gas turbines incur a loss of output power during hot seasons due to high ambient air temperatures, and input air cooling systems are often used to partly offset this problem. Here, results are reported for an investigation of the utilization of a heat pump to cool the inlet air of a gas turbine compressor. The analyses are carried out for two climates: the city of Yazd, Iran, which has a hot, arid climate, and Tehran, Iran, which has a temperate climate. The heat pump input power is obtained from the gas turbine. The following parameters are determined, with and without the heat pump: net output power, first and second law efficiencies, quantities and costs of environmental pollutants, entropy generation and power generation. The results suggest that, by using the air-inlet cooling system, the mean output power increases during hot seasons by 11.5% and 10% for Yazd and Tehran, respectively, and that the costs of power generation (including pollution costs decrease by 11% and 10% for Yazd and Tehran, respectively. Also, the rate of generation of pollutants such as NOx and CO decrease by about 10% for Yazd and 35% for Tehran, while the average annual entropy generation rate increases by 9% for Yazd and 7% for Tehran, through air-inlet cooling. The average increase of the system first law efficiency is 2% and of the system second law efficiency is 1.5% with the inlet-air cooling system.

  3. Total water production capacity inversion phenomenon in multi-stage direct contact membrane distillation: A theoretical study

    KAUST Repository

    Lee, Jung Gil

    2017-09-09

    The low thermal efficiency and low water production are among the major challenges that prevent membrane distillation (MD) process from being commercialized. In an effort to design an efficient multi-stage direct contact MD (DCMD) unit through mathematical simulation, a new phenomenon that we refer to as total water production capacity inversion (WPI) has been detected. It is represented by a decrease in the total water production beyond a number of stages or a certain module length. WPI phenomenon, which was confirmed by using two different mathematical models validated experimentally, was found to take place due to the decrease in water vapor flux across the membrane as well as the increase in heat loss by conduction as the membrane length increases. Therefore, WPI should be considered as a critical MD design-criterion, especially for large scale units. Investigations conducted for a simulated multi-stage DCMD process showed that inlet feed and permeate temperatures difference, feed and permeate flow rates, and feed salinity have different effects on WPI. The number of stages (or module length at constant width) that leads to a maximum water production has been determined for different operating parameters. Decreasing inlet feed and permeate temperatures difference, or inlet feed and permeate flow rates and increasing inlet feed temperature at constant temperature difference or inlet feed salinity cause the WPI to take place at lower number of stages. Even though the feed salinity affects negligibly the mean permeate flux, it was clearly shown that it can affect WPI. The results presented herein unveil a hidden phenomenon that is likely to occur during process scale-up procedures and should be considered by process engineers for a proper choice of system design and operating conditions.

  4. Residual currents in a multiple-inlet system and the conundrum of the tidal period

    Science.gov (United States)

    Duran-Matute, Matias; Gerkema, Theo

    2015-04-01

    In multiple-inlet systems, one may find that, on average, flood dominates in some inlets, while ebb dominates in others. In that case, there is a residual flow through the system, i.e. there is a net flow if one integrates over a tidal period. Conceptually, this seems straightforward. However, to measure such a residual flow presents several difficulties. First, one needs to cover the entire cross-sections of all the inlets over a year or longer to take into account the variability due to wind. Second, the residual flow is usually much smaller than the tidal prisms and hence more uncertain in view of error bars. Third, the duration of 'the' tidal period when calculating a tidally averaged flow is not well defined. Should one take the time between alternate slack tides, or between consecutive high (or low) waters, or other options? There appears to be a fundamental ambiguity in the duration of the tidal period; here we discuss its origins. The problem of defining the tidal period seems to have received little attention in the literature, or perhaps it has not been perceived as a problem at all. One reason for this neglect may be that the focus in tidal analysis is often on the (main) individual tidal constituents, whose periods are well-defined. Indeed, the harmonic method developed by Kelvin exploits this fact, making it possible to predict high and low waters precisely by adding up the different constituents after their amplitudes and phases have been determined empirically for the location in question. The period between subsequent high (or low) waters is then simply an outcome of this method. Another reason for neglecting this problem may be that the main interest was in computing a representative quantity such as the yearly average residual flow through the inlets. For such quantities, the definition of the tidal period is not as relevant since one integrates over a much longer period. Recently, however, it has been shown, for the Western Dutch Wadden Sea, that

  5. A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves

    International Nuclear Information System (INIS)

    Il, Doh; Cho, Young-Ho

    2009-01-01

    We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of 6.09±0.32 μl/s over the inlet pressure range of 20∼50 kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems

  6. Operation of staged membrane oxidation reactor systems

    Science.gov (United States)

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  7. Seasonal behaviour of tidal inlets in a tropical monsoon area

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Verhagen, H.J.; Wang, Z.B.

    2008-01-01

    Morphodynamics of a tidal inlet system on a micro-tidal coast in a tropical monsoon influenced region is modelled and discussed. Influences of river flow and wave climate on the inlet morphology are investigated with the aid of process-based state-of-the-art numerical models. Seasonal and episodic

  8. A pilot marine monitoring program in Cook Inlet, Alaska 1993--1994

    International Nuclear Information System (INIS)

    Brown, J.S.; Boehm, P.D.; Hyland, J.L.; Prest, H.F.

    1995-01-01

    Under the mandate of the Oil Pollution Act of 1990 (OPA'90) the Cook Inlet Regional Citizens Advisory Council (CIRCAC) sponsored the initiation of a pilot monitoring program in Cook Inlet, Alaska, The objectives of the pilot monitoring program were to provide baseline data on petroleum hydrocarbon concentrations in sediments and biota of Cook Inlet, and to evaluate the effectiveness of selected monitoring techniques in detecting petroleum hydrocarbon inputs from industry based sources. A sampling program was initiated in 1993 that included petroleum industry, specific sites and reference sites. Sample measurements included polynuclear aromatic hydrocarbons (PAH) in sediments, caged mussels, and semipermeable membrane devices (SPMDs), sediment toxicity using the amphipod, Ampelisca abdita, and estimates of population size and physiological condition of indigenous bivalves. Results of the 1993 sampling program indicated that (1) background levels of petrogenic, pyrogenic, and diagenetic hydrocarbons were present in sediments and indigenous bivalves, and (2) that limited amphipod toxicity and variations in bivalve measurements did not correlate with the hydrocarbons in the sediments. Modifications to the 1993 program were instituted for the 1994 sampling and included, the selection of new industry specific sites, discontinued use of caged bivalves, and design changes to SPMDs to enhance sensitivity. The results of the 1994 sampling program, and comparisons with the 1993 data are presented

  9. Coupled Analysis of an Inlet and Fan for a Quiet Supersonic Jet

    Science.gov (United States)

    Chima, Rodrick V.; Conners, Timothy R.; Wayman, Thomas R.

    2010-01-01

    A computational analysis of a Gulfstream isentropic external compression supersonic inlet coupled to a Rolls-Royce fan has been completed. The inlet was designed for a small, low sonic boom supersonic vehicle with a design cruise condition of M = 1.6 at 45,000 ft. The inlet design included an annular bypass duct that routed flow subsonically around an engine-mounted gearbox and diverted flow with high shock losses away from the fan tip. Two Reynolds-averaged Navier-Stokes codes were used for the analysis: an axisymmetric code called AVCS for the inlet and a three dimensional (3-D) code called SWIFT for the fan. The codes were coupled at a mixing plane boundary using a separate code for data exchange. The codes were used to determine the performance of the inlet/fan system at the design point and to predict the performance and operability of the system over the flight profile. At the design point the core inlet had a recovery of 96 percent, and the fan operated near its peak efficiency and pressure ratio. A large hub radial distortion generated in the inlet was not eliminated by the fan and could pose a challenge for subsequent booster stages. The system operated stably at all points along the flight profile. Reduced stall margin was seen at low altitude and Mach number where flow separated on the interior lips of the cowl and bypass ducts. The coupled analysis gave consistent solutions at all points on the flight profile that would be difficult or impossible to predict by analysis of isolated components.

  10. Coupled Analysis of an Inlet and Fan for a Quiet Supersonic Aircraft

    Science.gov (United States)

    Chima, Rodrick V.; Conners, Timothy R.; Wayman, Thomas R.

    2009-01-01

    A computational analysis of a Gulfstream isentropic external compression supersonic inlet coupled to a Rolls-Royce fan was completed. The inlet was designed for a small, low sonic boom supersonic vehicle with a design cruise condition of M = 1.6 at 45,000 feet. The inlet design included an annular bypass duct that routed flow subsonically around an engine-mounted gearbox and diverted flow with high shock losses away from the fan tip. Two Reynolds-averaged Navier-Stokes codes were used for the analysis: an axisymmetric code called AVCS for the inlet and a 3-D code called SWIFT for the fan. The codes were coupled at a mixing plane boundary using a separate code for data exchange. The codes were used to determine the performance of the inlet/fan system at the design point and to predict the performance and operability of the system over the flight profile. At the design point the core inlet had a recovery of 96 percent, and the fan operated near its peak efficiency and pressure ratio. A large hub radial distortion generated in the inlet was not eliminated by the fan and could pose a challenge for subsequent booster stages. The system operated stably at all points along the flight profile. Reduced stall margin was seen at low altitude and Mach number where flow separated on the interior lips of the cowl and bypass ducts. The coupled analysis gave consistent solutions at all points on the flight profile that would be difficult or impossible to predict by analysis of isolated components.

  11. Flow control in axial fan inlet guide vanes by synthetic jets

    Directory of Open Access Journals (Sweden)

    Wurst P.

    2013-04-01

    Full Text Available Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV, rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz – 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 – 12 mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  12. Flow control in axial fan inlet guide vanes by synthetic jets

    Science.gov (United States)

    Cyrus, V.; Trávníček, Z.; Wurst, P.; Kordík, J.

    2013-04-01

    Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV), rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz - 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 - 12) mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  13. Unsteady flow characteristic analysis of turbine based combined cycle (TBCC inlet mode transition

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-09-01

    Full Text Available A turbine based combined cycle (TBCC propulsion system uses a turbine-based engine to accelerate the vehicle from takeoff to the mode transition flight condition, at which point, the propulsion system performs a “mode transition” from the turbine to ramjet engine. Smooth inlet mode transition is accomplished when flow is diverted from one flowpath to the other, without experiencing unstart or buzz. The smooth inlet mode transition is a complex unsteady process and it is one of the enabling technologies for combined cycle engine to become a functional reality. In order to unveil the unsteady process of inlet mode transition, the research of over/under TBCC inlet mode transition was conducted through a numerical simulation. It shows that during the mode transition the terminal shock oscillates in the inlet. During the process of inlet mode transition mass flow rate and Mach number of turbojet flowpath reduce with oscillation. While in ramjet flowpath the flow field is non-uniform at the beginning of inlet mode transition. The speed of mode transition and the operation states of the turbojet and ramjet engines will affect the motion of terminal shock. The result obtained in present paper can help us realize the unsteady flow characteristic during the mode transition and provide some suggestions for TBCC inlet mode transition based on the smooth transition of thrust.

  14. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    Science.gov (United States)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  15. CFD analysis of flow distribution at the core inlet of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin, E-mail: ybae@kaeri.re.kr [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Young In; Park, Cheon Tae [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2013-05-15

    Highlights: ► Core inlet flow distribution of system-integrated modular advanced reactor (SMART) is numerically investigated. ► Effects of mesh resolution, turbulence model, Reynolds number, and inflow condition are examined. ► Numerical results show that lower core support plate effectively distributes the flow at the core inlet of SMART. -- Abstract: This study numerically investigates the flow distribution at the core inlet region of the system-integrated modular advanced reactor (SMART). The single-phase turbulent flow is computed by the commercial CFD code, Fluent 12.0 on the computational domain consisting of three main parts: fuel assemblies, a lower core support plate, and a flow skirt. Simulations are carried out with different mesh resolutions, turbulence models, and upstream boundary conditions. The CFD results show that the flow distribution at the core inlet is almost identical for the two Reynolds numbers and turbulence models tested here, and the effect of mesh refinement on the flow distribution at the core inlet is negligible. It is also found that under a uniform upstream boundary condition, the maximum difference in mass flow rate between the fuel assemblies is less than 2%, while it slightly increases to 2.3% under a non-uniform condition. These results consequently indicate that the present design of the lower core support plate effectively distributes the flow at the core inlet of SMART, even when the flow discharged from the upstream has a certain degree of non-uniformity.

  16. A numerical investigation of the effects of membrane swelling in polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Tiss, Faysal; Chouikh, Ridha; Guizani, Amenallah

    2013-01-01

    Highlights: ► Membrane water content is controlled by the operating conditions in the cathode. ► When the membrane is in contact with water, only pore size varies. ► Membrane water content increase by increasing the functioning temperature. ► Good agreement between computational results and previous reported experimental data. - Abstract: A two-dimensional computational fluid dynamics model of PEM fuel cell is developed by taking into account the electrochemical, mass and heat transfer process occurring in the cathode compartment. Additionally, this model includes the effect of water content in the membrane swelling phenomenon. Several parameters such as gases temperature, inlet velocity and membrane characteristics are too investigated to establish their effect on the PEM fuel cell performance. The membrane water content and the air fraction variation in the gas channel are examined for diverse values of Reynolds number. In particular, the desirable inlet flow for enhancing the performance of the PEM fuel cell is determined by examining membrane water content patterns. The methodology in this study is useful to the control of water management and gas diffusion layer design

  17. Biochar-amended filter socks reduce herbicide losses via tile line surface inlets

    Science.gov (United States)

    Standing water in depressions and behind terraces in fields with subsurface drainage systems can result in reduced crop yields. This concern can be partially alleviated by installing surface inlets that reduce the duration of ponding. Unfortunately, these inlets provide an open conduit for surface w...

  18. On-line monitoring of CO2 production in Lactococcus lactis during physiological pH decrease using membrane inlet mass spectrometry with dynamic pH calibration.

    Science.gov (United States)

    Andersen, Ann Zahle; Lauritsen, Frants Roager; Olsen, Lars Folke

    2005-12-20

    Monitoring CO2 production in systems, where pH is changing with time is hampered by the chemical behavior and pH-dependent volatility of this compound. In this article, we present the first method where the concentration and production rate of dissolved CO2 can be monitored directly, continuously, and quantitatively under conditions where pH changes rapidly ( approximately 2 units in 15 min). The method corrects membrane inlet mass spectrometry (MIMS) measurements of CO2 for pH dependency using on-line pH analysis and an experimentally established calibration model. It is valid within the pH range of 3.5 to 7, despite pH-dependent calibration constants that vary in a non-linear fashion with more than a factor of 3 in this interval. The method made it possible to determine the carbon dioxide production during Lactococcus lactis fermentations, where pH drops up to 3 units during the fermentation. The accuracy was approximately 5%. We used the method to investigate the effect of initial extracellular pH on carbon dioxide production during anarobic glucose fermentation by non-growing Lactocoocus lactis and demonstrated that the carbon dioxide production rate increases considerably, when the initial pH was increased from 6 to 6.8. (c) 2005 Wiley Periodicals, Inc.

  19. Integration of steam injection and inlet air cooling for a gas turbine generation system

    International Nuclear Information System (INIS)

    Wang, F.J.; Chiou, J.S.

    2004-01-01

    The temperature of exhaust gases from simple cycle gas turbine generation sets (GENSETs) is usually very high (around 500 deg. C), and a heat recovery steam generator (HRSG) is often used to recover the energy from the exhaust gases and generate steam. The generated steams can be either used for many useful processes (heating, drying, separation etc.) or used back in the power generation system for enhancing power generation capacity and efficiency. Two well-proven techniques, namely steam injection gas turbine (STIG) and inlet air cooling (IAC) are very effective features that can use the generated steam to improve the power generation capacity and efficiency. Since the energy level of the generated steam needed for steam injection is different from that needed by an absorption chiller to cool the inlet air, a proper arrangement is required to implement both the STIG and the IAC features into the simple cycle GENSET. In this study, a computer code was developed to simulate a Tai power's Frame 7B simple cycle GENSET. Under the condition of local summer weather, the benefits obtained from the system implementing both STIG and IAC features are more than a 70% boost in power and 20.4% improvement in heat rate

  20. Chronostratigraphic Analysis of Geomorphic Features within the Former Sinepuxent Inlet: A Wave-Dominated Tidal Inlet along Assateague Island, MD, USA

    Science.gov (United States)

    Seminack, C.; McBride, R.; Petruny, L. M.

    2017-12-01

    The former Sinepuxent Inlet, located along the mixed-energy, wave-dominated Assateague Island, MD-VA, USA, contains some of the most robust recurved-spit ridges along the span of the barrier island. In addition, this former tidal inlet exhibits a poorly developed flood-tidal delta containing at least two sets of curvilinear ridges known as "washarounds". Historical maps and nautical charts indicate that the former Sinepuxent Inlet was open from 1755 to 1832. However, previous studies conducted at the former Sinepuxent Inlet hypothesized that the site was exposed to episodic breaching events because of the extensive width of the former inlet throat, constrained by the northern and southern recurved-spit ridges. A total of 16 sediment cores, 10 optically stimulated luminescence (OSL) samples, and three 14C samples (mixed benthic foraminifera and eastern mud snail [Ilyanassa obsolete]) were collected from the former Sinepuxent Inlet to place morphostratigraphic units into a chronological context. Six OSL samples were collected from the northern and southern recurved-spit ridges at mean sea level (MSL) to constrain genesis ages. Southern recurved-spit ages varied more than their northern counterparts, ranging from 1640 to 1990 AD. The northern recurved-spit ridges varied in age from 1770 to 1900 AD. Two OSL samples collected from flood-tidal delta ridges yielded ages from 1680 to 2000 AD. In addition, two 14C samples collected at 128 and 101 cm below MSL within the inlet throat yielded ages between 1720 and post-1950 AD. Ultimately, these dates overlap with the inlet activity phase as indicated in historical documents. Conversely, two OSL samples (155 and 201 cm below MSL) and one 14C sample (134 cm below MSL) collected from the inlet throat returned ages between 760 and 1465 AD. The contrast in ages between the older inlet throat and subaerial ridge samples supports the hypothesis that the former Sinepuxent Inlet was reactivated numerous times. Thus, the three age

  1. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet. [Supersonic Cruise Aircraft Research

    Science.gov (United States)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined where the second cone of a two cone centerbody collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  2. Control Volume Analysis of Boundary Layer Ingesting Propulsion Systems With or Without Shock Wave Ahead of the Inlet

    Science.gov (United States)

    Kim, Hyun Dae; Felder, James L.

    2011-01-01

    The performance benefit of boundary layer or wake ingestion on marine and air vehicles has been well documented and explored. In this article, a quasi-one-dimensional boundary layer ingestion (BLI) benefit analysis for subsonic and transonic propulsion systems is performed using a control volume of a ducted propulsion system that ingests the boundary layer developed by the external airframe surface. To illustrate the BLI benefit, a relationship between the amount of BLI and the net thrust is established and analyzed for two propulsor types. One propulsor is an electric fan, and the other is a pure turbojet. These engines can be modeled as a turbofan with an infinite bypass ratio for the electric fan, and with a zero bypass ratio for the pure turbojet. The analysis considers two flow processes: a boundary layer being ingested by an aircraft inlet and a shock wave sitting in front of the inlet. Though the two processes are completely unrelated, both represent a loss of total pressure and velocity. In real applications, it is possible to have both processes occurring in front of the inlet of a transonic vehicle. Preliminary analysis indicates that the electrically driven propulsion system benefits most from the boundary layer ingestion and the presence of transonic shock waves, whereas the benefit for the turbojet engine is near zero or negative depending on the amount of total temperature rise across the engine.

  3. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system co...... elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures....

  4. Coastal inlets and tidal basins

    NARCIS (Netherlands)

    De Vriend, H.J.; Dronkers, J.; Stive, M.J.F.; Van Dongeren, A.; Wang, J.H.

    2002-01-01

    lecture note: Tidal inlets and their associated basins (lagoons) are a common feature of lowland coasts all around the world. A significant part ofthe world's coastlines is formed by barrier island coasts, and most other tidal coasts are interrupted by estuaries and lagoon inlets. These tidal

  5. Biofouling of spiral wound membrane systems

    NARCIS (Netherlands)

    Vrouwenvelder, J.S.

    2009-01-01

    Biofouling of spiral wound membrane systems High quality drinking water can be produced with membrane filtration processes like reverse osmosis (RO) and nanofiltration (NF). Because the global demand for fresh clean water is increasing, these membrane technologies will increase in importance in the

  6. Variability of residual fluxes of suspended sediment in a multiple tidal-inlet system : the Dutch Wadden Sea

    NARCIS (Netherlands)

    Sassi, M.; Duran-Matute, M.; van Kessel, Th.; Gerkema, Th.

    2015-01-01

    In multiple tidal-inlet systems such as the Dutch Wadden Sea, the exchange of sediments between the coastal lagoon and the adjacent sea is controlled by the combined effect of the tides, wind-driven flows, and density-driven flows. We investigate the variability of residual (tidally averaged) fluxes

  7. Reconstruction of paleo-inlet dynamics using sedimentologic analyses, geomorphic features, and benthic foraminiferal assemblages: former ephemeral inlets of Cedar Island, Virginia, USA

    Science.gov (United States)

    McBride, R.; Wood, E. T.

    2017-12-01

    Cedar Island, VA is a low-profile, washover-dominated barrier island that has breached at least three times in the past sixty years. Cedar Island Inlet, a former wave-dominated tidal inlet, was open for the following time periods: 1) 1956-1962, 2) 1992-1997, and 3) 1998-2007. Air photos, satellite imagery, and geomorphic features (i.e., relict flood tidal deltas, recurved-spit ridges) record the spatial and temporal extent of the three ephemeral inlets. Based on three sediment vibracores, benthic foraminiferal and sedimentologic analyses offer high resolution insights of inlet dynamics and lifecycle evolution. Four foraminiferal biofacies are completely dominated by Elphidium excavatum (54-100%) and contain unique assemblages of accessory species based on cluster analyses: tidal inlet floor (low abundance estuarine and shelf species; 23% Haynesina germanica); flood tidal delta/inlet fill (high abundance estuarine and shelf species; 2% Buccella frigida, 2% Ammonia parkinsoniana, and 2% Haynesina germanica); high-energy inlet fill (low abundance, low diversity shelf species; 9% Elphidium gunteri); and washover/beach/aeolian (low abundance, predominantly shelf species; 3% Buccella frigida and 3% Ammonia parkinsoniana). The estuarine biofacies is barren of all foraminifera. Grain size trends indicate a first order coarsening-upward succession with second order coarsening- and fining-upwards packages in inlet throat deposits, while a first order fining-upward succession is observed in flood tidal delta deposits with two second order coarsening-upward packages in the proximal flood tidal delta. Contrary to typical wave-dominated tidal inlets that open, migrate laterally in the direction of net longshore transport, and close, the 1998-2007 tidal inlet, and possibly the 1956-1962 inlet, migrated laterally and rotated, whereas the 1992-1997 inlet remained stationary and did not rotate. In the vicinity of the vibracores, preserved deposits are attributed to the 1956-1962 and

  8. Performance analysis of a direct expansion air dehumidification system combined with membrane-based total heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Cai-Hang; Zhang, Li-Zhi; Pei, Li-Xia [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-09-15

    A direct expansion (DX) air dehumidification system is an efficient way to supply fresh and dry air to a built environment. It plays a key role in preventing the spread of respiratory disease like Swine flu (H1N1). To improve the efficiency of a conventional DX system in hot and humid regions, a new system of DX in combination with a membrane-based total heat exchanger is proposed. Air is supplied with dew points. A detailed mathematical modeling is performed. A cell-by-cell simulation technique is used to simulate its performances. A real prototype is built in our laboratory in South China University of Technology to validate the model. The effects of inlet air humidity and temperature, evaporator and condenser sizes on the system performance are investigated. The results indicate that the model can predict the system accurately. Compared to a conventional DX system, the air dehumidification rate (ADR) of the novel system is 0.5 times higher, and the coefficient of performance (COP) is 1 times higher. Furthermore, the system performs well even under harsh hot and humid weather conditions. (author)

  9. Selective catalytic reduction converter design: The effect of ammonia nonuniformity at inlet

    International Nuclear Information System (INIS)

    Paramadayalan, Thiyagarajan; Pant, Atul

    2013-01-01

    A three-dimensional CFD model of SCR converter with detailed chemistry is developed. The model is used to study the effects of radial variation in inlet ammonia profile on SCR emission performance at different temperatures. The model shows that radial variation in inlet ammonia concentration affects the SCR performance in the operating range of 200-400 .deg. C. In automotive SCR systems, ammonia is non-uniformly distributed due to evaporation/reaction of injected urea, and using a 1D model or a 3D model with flat ammonia profile at inlet for these conditions can result in erroneous emission prediction. The 3D SCR model is also used to study the effect of converter design parameters like inlet cone angle and monolith cell density on the SCR performance for a non-uniform ammonia concentration profile at the inlet. The performance of SCR is evaluated using DeNO x efficiency and ammonia slip

  10. Effect of inlet cone pipe angle in catalytic converter

    Science.gov (United States)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  11. Critical flashing flows in nozzles with subcooled inlet conditions

    International Nuclear Information System (INIS)

    Abuaf, N.; Jones, O.C. Jr.; Wu, B.J.C.

    1983-01-01

    Examination of a large number of experiments dealing with flashing flows in converging and converging-diverging nozzles reveals that knowledge of the flashing inception point is the key to the prediction of critical flow rates. An extension of the static flashing inception correlation of Jones [16] and Alamgir and Lienhard [17] to flowing systems has allowed the determination of the location of flashing inception in nozzle flows with subcooled inlet conditions. It is shown that in all the experiments examined with subcooled inlet regardless of the degree of inlet subcooling, flashing inception invariably occurred very close to the throat. A correlation is given to predict flashing inception in both pipes and nozzles which matches all data available, but is lacking verification in intermediate nozzle geometries where turbulence may be important. A consequence of this behavior is that the critical mass flux may be correlated to the pressure difference between the nozzle inlet and flashing inception, through a single phase liquid discharge coefficient and an accurate prediction of the flashing inception pressure at the throat. Comparison with the available experiments indicate that the predicted mass fluxes are within 5 percent of the measurements

  12. Numerical modelling to assess maintenance strategy management options for a small tidal inlet

    Science.gov (United States)

    Shaeri, Saeed; Tomlinson, Rodger; Etemad-Shahidi, Amir; Strauss, Darrell

    2017-03-01

    Small tidal inlets are found to be more sensitive to anthropogenic alteration than their larger counterparts. Such alterations, although typically supported by technical design reports, sometimes require amendments or modification. One of the most suitable tools to conduct the necessary studies in this regard is numerical modelling, since the behaviour of the inlet system in response to proposed remedial actions, can easily be identified. In this paper, various alternative proposals are investigated to determine the most practical and viable option to mitigate the need for ongoing maintenance at a typical small, jettied tidal inlet. The main tool to investigate the alternatives is the hydro-sedimentological modelling of the inlet system, which was performed using the Delft3D software package. The proposed alternative entrance modifications were based upon structural alterations of the inlet system (such as a jetty extension or submerged weir) and non-structural scenarios (such as a change of the time of the dredging campaign or the deposition location of the dredged material). It was concluded that whilst a detailed study is inevitable in order to achieve a comprehensive design plan, based upon the results of this study the construction of a submerged weir at the entrance channel can satisfy the needs of most of the stakeholders, with justifiable costs over a longer period.

  13. Hydrogen production using the waste heat of Benchmark pressurized Molten carbonate fuel cell system via combination of organic Rankine cycle and proton exchange membrane (PEM) electrolysis

    International Nuclear Information System (INIS)

    Nami, Hossein; Akrami, Ehsan; Ranjbar, Faramarz

    2017-01-01

    Highlights: • Waste heat of the Benchmark system recovered using an ORC. • An integrated system is proposed to produce power and hydrogen. • The effects of some decision parameters on the produced hydrogen have investigated. - Abstract: Energy and exergy analyses are carried out for hydrogen production via combination of Benchmark system and organic Rankine cycle (ORC) coupled with a proton exchange membrane electrolyzer. A parametric study is reported and effects of such organic Rankine cycle significant variables as evaporator temperature, pinch point temperature difference in the evaporator and degree of superheat at the ORC turbine inlet on the rate of produced hydrogen, sustainability index, overall exergy efficiency and organic Rankine cycle net produced power are investigated. It is observed that the rate of produced hydrogen and overall exergy efficiency of the proposed combined system take the maximum value to change in the evaporator temperature. Also, it is revealed that increasing the pinch point temperature difference in the evaporator decreases the rate of produced hydrogen and the overall exergy efficiency of the system. Furthermore, the effects on the rate of produced hydrogen and the overall exergy efficiency of the degree of superheat at the ORC turbine inlet are the same as the effect of pinch point temperature difference.

  14. Investigation on inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet

    Science.gov (United States)

    Yang, Ce; Wang, Yingjun; Lao, Dazhong; Tong, Ding; Wei, Longyu; Liu, Yixiong

    2016-08-01

    The inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet structures were studied in numerical method, mainly focused on three issues including the amounts and differences of the inlet recirculation in different working conditions, the circumferential non-uniform distributions of the inlet recirculation, the recirculation velocity distributions of the upstream slot of the rear impeller. The results show that there are some differences between the recirculation of the front impeller and that of the rear impeller in whole working conditions. In design speed, the recirculation flow rate of the rear impeller is larger than that of the front impeller in the large flow range, but in the small flow range, the recirculation flow rate of the rear impeller is smaller than that of the front impeller. In different working conditions, the recirculation velocity distributions of the front and rear impeller are non-uniform along the circumferential direction and their non-uniform extents are quite different. The circumferential non-uniform extent of the recirculation velocity varies with the working conditions change. The circumferential non-uniform extent of the recirculation velocity of front impeller and its distribution are determined by the static pressure distribution of the front impeller, but that of the rear impeller is decided by the coupling effects of the inlet flow distortion of the rear impeller, the circumferential unsymmetrical distribution of the upstream slot and the asymmetric structure of the volute. In the design flow and small flow conditions, the recirculation velocities at different circumferential positions of the mean line of the upstream slot cross-section of the rear impeller are quite different, and the recirculation velocities distribution forms at both sides of the mean line are different. The recirculation velocity distributions in the cross-section of the upstream slot depend on the static pressure

  15. Performance modeling of industrial gas turbines with inlet air filtration system

    Directory of Open Access Journals (Sweden)

    Samuel O. Effiom

    2015-03-01

    Full Text Available The effect of inlet air filtration on the performance of two industrial gas turbines (GT is presented. Two GTs were modeled similar to GE LM2500+ and Alstom GT13 E2-2012, using TURBOMATCH and chosen to operate at environmental conditions of Usan offshore oilfield and Maiduguri dessert in Nigeria. The inlet pressure recovered (Precov from the selected filters used in Usan offshore, and Maiduguri ranged between 98.36≤Precov≤99.51% and 98.67≤Precov≤99.56% respectively. At reduced inlet Precov by 98.36% (1.66 kPa and, at a temperature above 15 °C (ISA, a reduction of 16.9%, and 7.3% of power output and efficiency was obtained using GT13 E2-2012, while a decrease of 14.8% and 4.7% exist for power output and efficiency with GE LM2500+. In addition, a reduction in mass flow rate of air and fuel under the same condition was between 4.3≤mair≤10.6% and 10.4≤mfuel≤11.5% for GT13 E2-2012 and GE LM2500+, correspondingly. However, the GE LM2500+ was more predisposed to intake pressure drops since it functioned at a higher overall pressure ratio. The results obtained were found worthwhile and could be the basis for filter selection and efficient compressor housing design in the locations concerned.

  16. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry--a comparison with reference gas chromatography.

    Science.gov (United States)

    Kretzschmar, Moritz; Schilling, Thomas; Vogt, Andreas; Rothen, Hans Ulrich; Borges, João Batista; Hachenberg, Thomas; Larsson, Anders; Baumgardner, James E; Hedenstierna, Göran

    2013-10-15

    The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.

  17. North Inlet • Winyah Bay (NIW) National Estuarine Research Reserve Meteorological Data, North Inlet Estuary, Georgetown, South Carolina: 1997 • 1999.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The North Inlet Estuary and the adjacent lower northeastern section of Winyah Bay Estuary were designated as part of the National Estuarine Research Reserve System...

  18. A novel multi-stage direct contact membrane distillation module: Design, experimental and theoretical approaches

    KAUST Repository

    Lee, Jung Gil

    2016-10-24

    An economic desalination system with a small scale and footprint for remote areas, which have a limited and inadequate water supply, insufficient water treatment and low infrastructure, is strongly demanded in the desalination markets. Here, a direct contact membrane distillation (DCMD) process has the simplest configuration and potentially the highest permeate flux among all of the possible MD processes. This process can also be easily instituted in a multi-stage manner for enhanced compactness, productivity, versatility and cost-effectiveness. In this study, an innovative, multi-stage, DCMD module under countercurrent-flow configuration is first designed and then investigate both theoretically and experimentally to identify its feasibility and operability for desalination application. Model predictions and measured data for mean permeate flux are compared and shown to be in good agreement. The effect of the number of module stages on the mean permeate flux, performance ratio and daily water production of the MDCMD system has been theoretically identified at inlet feed and permeate flow rates of 1.5 l/min and inlet feed and permeate temperatures of 70 °C and 25 °C, respectively. The daily water production of a three-stage DCMD module with a membrane area of 0.01 m2 at each stage is found to be 21.5 kg.

  19. Economical analysis of the spray drying process by pre-dehumidification of the inlet air

    Energy Technology Data Exchange (ETDEWEB)

    Madeira, A.N.; Camargo, J.R. [University of Taubate (UNITAU), SP (Brazil). Mechanical Engineering Dept.

    2009-07-01

    Spray drying is a dehumidification process by atomization in a closed chamber that aims to remove moisture of a product by heat and mass transfer from the product's contained water to the air that, in this process is previously heated. This paper presents a case study for an industry that produces food ingredients. The current process applied in the product to heat the air can uses one of these two systems: a direct heating process that burns liquid petroleum gas in contact with the inlet air or indirect heating that uses a heat exchanger which heat the air. This heating system consumes 90% of the total process energy. However, this inlet air can reach the dehumidifier with high moisture from the atmosphere condition requesting, in this case, more energy consumption according to the year's seasons. This paper promotes a utilization study of the current process through the installation of a pre-dehumidification device of the inlet air and shows a study to three different dehumidification systems that means by refrigeration, adsorption and actual comparing their performance in an energetic and economical point of view. The goals of this study are to analyze the capacity of moisture removing of each removing device, the influence of moisture variation of the inlet air in the process as well as the economic impact of each device in the global system. It concludes that the utilization of dehumidification devices can eliminate the heating system reducing this way the energy consumption. Moreover it promotes the increasing of moisture gradient between the inlet air and the product optimizing the drying process and increasing the global energy efficiency in the global system. Choosing the most appropriate system for the pre-dehumidification device depends on the desired initial and final moisture content of the product, but applying pre-dehumidifiers at the inlet air promotes an energetic optimization in the spray drying process. (author)

  20. Second order tidally induced flow in the inlet of a coastal lagoon

    Science.gov (United States)

    Eguiluz, Ana; Wong, Kuo-Chuin

    2005-08-01

    Current meter data obtained in Indian River Inlet and Indian River Bay, Delaware are analyzed to compute second order low-frequency tidal flow and tidally induced mean flow in the system. Results from least-squares harmonic analysis show that nonlinearly induced M4 currents in the inlet and bay occur at order 10 -1 of the M2 amplitudes, indicating weak nonlinearity in the system. Tidally rectified mean flow computed from Mm and Msf is ˜3 cm s -1, which is of the same order of magnitude as the observed mean current. The estimated low-frequency tidal flow and the tidally induced mean flow agree well with scalings computed for the inlet and with results found by Münchow et al. [Münchow, A., Masse, A.K., Garvine, R.W., 1992. Astronomical and nonlinear tidal currents in a coupled estuary shelf system. Continental Shelf Research 12, 471-498] in Delaware Bay.

  1. Mass independent kinetic energy reducing inlet system for vacuum environment

    Science.gov (United States)

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  2. Effect of a dual inlet channel on cell loading in microfluidics.

    Science.gov (United States)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2014-11-01

    Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new " upstream inlet " to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4(+) T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in

  3. Sediment Budget Analysis; Masonboro Inlet, North Carolina

    Science.gov (United States)

    2017-08-15

    ER D C/ CH L TR -1 7- 13 Regional Sediment Management (RSM) Program Sediment Budget Analysis; Masonboro Inlet, North Carolina Co as ta...ERDC/CHL TR-17-13 August 2017 Sediment Budget Analysis; Masonboro Inlet, North Carolina Kevin B. Conner U.S. Army Engineer District, Wilmington P...Engineers Washington, DC 20314-1000 Under Project 454632, “Sediment Budget Analysis, Masonboro Inlet, NC” ERDC/CHL TR-17-13 ii Abstract A

  4. Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons

    Science.gov (United States)

    Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.

  5. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  6. Cogen-absorption plants for refrigeration purposes and turbine air inlet cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langreck, Juergen [Colibri bv (Netherlands)

    2000-04-01

    Most cogeneration systems produce power and heat but with absorption refrigeration plants (ARP) the products are power and 'cold'. An ARP driven by heat from a turbine exhaust can provide the cooling for the inlet air with very low consumption of electricity, consequently there is a significant increase in power output from the cogeneration unit. Two different ARP systems are currently available but the author describes only the ammonia-water system, which can achieve temperatures down to -60 degrees C. The article discusses the principle behind ARP, the capital cost and returns on investment, how the cogeneration plant is linked to the ARP, ARP for turbine inlet air cooling, and the potential applications of cogeneration-ARP.

  7. A study on flow development in an APU-style inlet and its effect on centrifugal compressor performance

    Science.gov (United States)

    Lou, Fangyuan

    The objectives of this research were to investigate the flow development inside an APU-style inlet and its effect on centrifugal compressor performance. The motivation arises from the increased applications of gas turbine engines installed with APU-style inlets such as unmanned aerial vehicles, auxiliary power units, and helicopters. The inlet swirl distortion created from these complicated inlet systems has become a major performance and operability concern. To improve the integration between the APU-style inlet and gas turbine engines, better understanding of the flow field in the APU-style inlet and its effect on gas turbine is necessary. A research facility for the purpose of performing an experimental investigation of the flow field inside an APU-style inlet was developed. A subcritical air ejector is used to continuously flow the inlet at desired corrected mass flow rates. The facility is capable of flowing the APU inlet over a wide range of corrected mass flow rate that matches the same Mach numbers as engine operating conditions. Additionally, improvement in the system operational steadiness was achieved by tuning the pressure controller using a PID control method and utilizing multi-layer screens downstream of the APU inlet. Less than 1% relative unsteadiness was achieved for full range operation. The flow field inside the rectangular-sectioned 90? bend of the APU-style inlet was measured using a 3-Component LDV system. The structures for both primary flow and the secondary flow inside the bend were resolved. Additionally, the effect of upstream geometry on the flow development in the downstream bend was also investigated. Furthermore, a Single Stage Centrifugal Compressor research facility was developed at Purdue University in collaboration with Honeywell to operate the APU-style inlet at engine conditions with a compressor. To operate the facility, extensive infrastructure for facility health monitoring and performance control (including lubrication

  8. Thermal stratification built up in hot water tank with different inlet stratifiers

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Dannemand, Mark

    2017-01-01

    Thermal stratification in a water storage tank can strongly increase the thermal performance of solar heating systems. Thermal stratification can be built up in a storage tank during charge, if the heated water enters through an inlet stratifier. Experiments with a test tank have been carried out...... in order to elucidate how well thermal stratification is established in the tank with differently designed inlet stratifiers under different controlled laboratory conditions. The investigated inlet stratifiers are from Solvis GmbH & Co KG and EyeCular Technologies ApS. The inlet stratifier from Solvis Gmb...... for Solvis GmbH & Co KG had a better performance at 4 l/min. In the intermediate charge test the stratifier from EyeCular Technologies ApS had a better performance in terms of maintaining the thermal stratification in the storage tank while charging with a relative low temperature. [All rights reserved...

  9. Data supporting the validation of a simulation model for multi-component gas separation in polymeric membranes.

    Science.gov (United States)

    Giordano, Lorena; Roizard, Denis; Bounaceur, Roda; Favre, Eric

    2016-12-01

    The article describes data concerning the separation performances of polymeric hollow-fiber membranes. The data were obtained using a model for simulating gas separation, described in the research article entitled "Interplay of inlet temperature and humidity on energy penalty for CO 2 post-combustion capture: rigorous analysis and simulation of a single stage gas permeation process" (L. Giordano, D. Roizard, R. Bounaceur, E. Favre, 2016) [1]. The data were used to validate the model by comparison with literature results. Considering a membrane system based on feed compression only, data from the model proposed and that from literature were compared with respect to the molar composition of permeate stream, the membrane area and specific energy requirement, varying the feed pressure and the CO 2 separation degree.

  10. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2013-01-01

    Full Text Available The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  11. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  12. Bedform evolution in a tidal inlet referred from wavelet analysis

    DEFF Research Database (Denmark)

    Fraccascia, Serena; Winter, Christian; Ernstsen, Verner Brandbyge

    2011-01-01

    Bedforms are common morphological features in subaqueous and aeolian environments and their characterization is commonly the first step to better understand forcing factors acting in the system. The aim of this study was to investigate the spectral characteristics of compound bedforms in a tidal...... inlet and evaluate how they changed over consecutive years, when morphology was modified and bedforms migrated. High resolution bathymetric data from the Grådyb tidal inlet channel (Danish Wadden Sea) from seven years from 2002 to 2009 (not in 2004) were analyzed. Continuous wavelet transform of bed...

  13. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    Science.gov (United States)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the present study, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the study is to advance the current understanding of the flow interaction between two different ultra-compact inlets and a transonic fan for future design applications. Both URANS and LES approaches are used to calculate the unsteady flow field and are compared with the available measured data. The present study indicates that stall inception is mildly affected by the distortion pattern generated by the inlet with the current test set-up. The numerical study indicates that the inlet distortion pattern decays significantly before it reaches the fan face for the current configuration. Numerical results with a shorter distance between the inlet and fan show that counter-rotating vortices near the rotor tip due to the serpentine diffuser affects fan characteristics significantly.

  14. Utilization of membranes for H2O recycle system

    Science.gov (United States)

    Ohya, H.; Oguchi, M.

    1986-01-01

    Conceptual studies of closed ecological life support systems (CELSS) carried out at NAL in Japan for a water recycle system using membranes are reviewed. The system will treat water from shower room, urine, impure condensation from gas recycle system, and so on. The H2O recycle system is composed of prefilter, ultrafiltration membrane, reverse osmosis membrane, and distillator. Some results are shown for a bullet train of toilet-flushing water recycle equipment with an ultraviltration membrane module. The constant value of the permeation rate with a 4.7 square meters of module is about 70 1/h after 500th of operation. Thermovaporization with porous polytetrafluorocarbon membrane is also proposed to replce the distillator.

  15. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane

    KAUST Repository

    So, Hongyun; Pisano, Albert P.; Seo, Young Ho

    2014-01-01

    This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar's hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems. © the Partner Organisations 2014.

  16. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane

    KAUST Repository

    So, Hongyun

    2014-01-01

    This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar\\'s hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems. © the Partner Organisations 2014.

  17. Brazos Santiago Inlet, Texas, Shoaling Study

    Science.gov (United States)

    2018-02-01

    Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Final report Approved for public release; distribution is unlimited. Prepared...focus of this study was to understand the shoaling process in the BSI and to suggest sand management alternatives to reduce inlet maintenance ...Santiago Inlet Entrance Channel maintenance dredging quantities (normal distribution). ........................................................ 20

  18. Memcomputing with membrane memcapacitive systems

    International Nuclear Information System (INIS)

    Pershin, Y V; Traversa, F L; Ventra, M Di

    2015-01-01

    We show theoretically that networks of membrane memcapacitive systems—capacitors with memory made out of membrane materials—can be used to perform a complete set of logic gates in a massively parallel way by simply changing the external input amplitudes, but not the topology of the network. This polymorphism is an important characteristic of memcomputing (computing with memories) that closely reproduces one of the main features of the brain. A practical realization of these membrane memcapacitive systems, using, e.g., graphene or other 2D materials, would be a step forward towards a solid-state realization of memcomputing with passive devices. (paper)

  19. Inlet Trade Study for a Low-Boom Aircraft Demonstrator

    Science.gov (United States)

    Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.

    2016-01-01

    Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.

  20. Digital integrated control of a Mach 2.5 mixed-compression supersonic inlet and an augmented mixed-flow turbofan engine

    Science.gov (United States)

    Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.

    1974-01-01

    A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.

  1. Soft sensing of system parameters in membrane distillation

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-01-01

    Various examples of methods and systems are provided for soft sensing of system parameters in membrane distillation (MD). In one example, a system includes a MD module comprising a feed side and a permeate side separated by a membrane boundary layer

  2. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    Science.gov (United States)

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  3. Dynamic solar-powered multi-stage direct contact membrane distillation system: Concept design, modeling and simulation

    KAUST Repository

    Lee, Jung Gil

    2017-04-26

    This paper presents a theoretical analysis of the monthly average daily and hourly performances of a solar-powered multi-stage direct contact membrane distillation (SMDCMD) system with an energy recovery scheme and dynamic operating system. Mid-latitude meteorological data from Busan, Korea is employed, featuring large climate variation over the course of one year. The number of module stages used by the dynamic operating scheme changes dynamically based on the inlet feed temperature of the successive modules, which results in an improvement of the water production and thermal efficiency. The simulations of the SMDCMD system are carried out to investigate the spatial and temporal variations in the feed and permeate temperatures and permeate flux. The monthly average daily water production increases from 0.37m3/day to 0.4m3/day and thermal efficiency increases from 31% to 45% when comparing systems both without and with dynamic operation in December. The water production with respect to collector area ranged from 350m2 to 550m2 and the seawater storage tank volume ranged from 16m3 to 28.8m3, and the solar fraction at various desired feed temperatures from 50°C to 80°C have been investigated in October and December.

  4. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann-Vocke, Jonas, E-mail: jh63@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Neale, James, E-mail: jamesn@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Walmsley, Michael, E-mail: walmsley@waikato.ac.nz [University of Waikato, Department of Engineering, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand)

    2011-08-15

    Highlights: > Measured the effects of air heater inlet header geometry on hydraulic performance. > Measured the effects of inlet header flow maldistribution on hydraulic performance. > Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  5. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    International Nuclear Information System (INIS)

    Hoffmann-Vocke, Jonas; Neale, James; Walmsley, Michael

    2011-01-01

    Highlights: → Measured the effects of air heater inlet header geometry on hydraulic performance. → Measured the effects of inlet header flow maldistribution on hydraulic performance. → Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  6. A novel multi-stage direct contact membrane distillation module: Design, experimental and theoretical approaches.

    Science.gov (United States)

    Lee, Jung-Gil; Kim, Woo-Seung; Choi, June-Seok; Ghaffour, Noreddine; Kim, Young-Deuk

    2016-12-15

    An economic desalination system with a small scale and footprint for remote areas, which have a limited and inadequate water supply, insufficient water treatment and low infrastructure, is strongly demanded in the desalination markets. Here, a direct contact membrane distillation (DCMD) process has the simplest configuration and potentially the highest permeate flux among all of the possible MD processes. This process can also be easily instituted in a multi-stage manner for enhanced compactness, productivity, versatility and cost-effectiveness. In this study, an innovative, multi-stage, DCMD module under countercurrent-flow configuration is first designed and then investigate both theoretically and experimentally to identify its feasibility and operability for desalination application. Model predictions and measured data for mean permeate flux are compared and shown to be in good agreement. The effect of the number of module stages on the mean permeate flux, performance ratio and daily water production of the MDCMD system has been theoretically identified at inlet feed and permeate flow rates of 1.5 l/min and inlet feed and permeate temperatures of 70 °C and 25 °C, respectively. The daily water production of a three-stage DCMD module with a membrane area of 0.01 m 2  at each stage is found to be 21.5 kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    Science.gov (United States)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  8. An experimental study of the air humidification process using a membrane contactor

    Directory of Open Access Journals (Sweden)

    Englart Sebastian

    2017-01-01

    Full Text Available The article presents the results of the experimental examination of the effectiveness of air humidification using a membrane module. The construction of the membrane module and the measuring stand is also discussed. In order to assess the effectiveness of air humidification using the membrane module, the measurements of temperature and humidity at the membrane module’s inlet and outlet, air flow rate, water flow rate and water temperature were taken. Based on the measurements, the effectiveness coefficients, E, have been determined. The power demand for the solution under study has also been discussed.

  9. Reconstruction of core inlet temperature distribution by cold leg temperature measurements

    International Nuclear Information System (INIS)

    Saarinen, S.; Antila, M.

    2010-01-01

    The reduced core of Loviisa NPP contains 33 thermocouple measurements measuring the core inlet temperature. Currently, these thermocouple measurements are not used in determining the inlet temperature distribution. The average of cold leg temperature measurements is used as inlet temperature for each fuel assembly. In practice, the inlet temperature distribution is not constant. Thus, using a constant inlet temperature distribution induces asymmetries in the measured core power distribution. Using a more realistic inlet temperature distribution would help us to reduce virtual asymmetries of the core power distribution and increase the thermal margins of the core. The thermocouples at the inlet cannot be used directly to measure the inlet temperature accurately because the calibration of the thermocouples that is done at hot zero power conditions is no longer valid at full power, when there is temperature change across the core region. This is due to the effect of neutron irradiation on the Seebeck coefficient of the thermocouple wires. Therefore, we investigate in this paper a method to determine the inlet temperature distribution based on the cold leg temperature measurements. With this method we rely on the assumption that although the core inlet thermocouple measurements do not measure the absolute temperature accurately they do measure temperature changes with sufficient accuracy particularly in big disturbances. During the yearly testing of steam generator safety valves we observe a large temperature increase up to 12 degrees in the cold leg temperature. The change in the temperature of one of the cold legs causes a local disturbance in the core inlet temperature distribution. Using the temperature changes observed in the inlet thermocouple measurements we are able to fit six core inlet temperature response functions, one for each cold leg. The value of a function at an assembly inlet is determined only by the corresponding cold leg temperature disturbance

  10. Experimental Investigation of a Large-Scale Low-Boom Inlet Concept

    Science.gov (United States)

    Hirt, Stefanie M.; Chima, Rodrick V.; Vyas, Manan A.; Wayman, Thomas R.; Conners, Timothy R.; Reger, Robert W.

    2011-01-01

    A large-scale low-boom inlet concept was tested in the NASA Glenn Research Center 8- x 6- foot Supersonic Wind Tunnel. The purpose of this test was to assess inlet performance, stability and operability at various Mach numbers and angles of attack. During this effort, two models were tested: a dual stream inlet designed to mimic potential aircraft flight hardware integrating a high-flow bypass stream; and a single stream inlet designed to study a configuration with a zero-degree external cowl angle and to permit surface visualization of the vortex generator flow on the internal centerbody surface. During the course of the test, the low-boom inlet concept was demonstrated to have high recovery, excellent buzz margin, and high operability. This paper will provide an overview of the setup, show a brief comparison of the dual stream and single stream inlet results, and examine the dual stream inlet characteristics.

  11. Development of an Experimental Data Base to Validate Compressor-Face Boundary Conditions Used in Unsteady Inlet Flow Computations

    Science.gov (United States)

    Sajben, Miklos; Freund, Donald D.

    1998-01-01

    The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study

  12. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  13. Problems in creation of modern air inlet filters of power gas turbine plants in Russia and methods of their solving

    Science.gov (United States)

    Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.

    2016-08-01

    The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.

  14. Attainability and minimum energy of multiple-stage cascade membrane Systems

    KAUST Repository

    Alshehri, Ali

    2015-08-12

    Process design and simulation of multi-stage membrane systems have been widely studied in many gas separation systems. However, general guidelines have not been developed yet for the attainability and the minimum energy consumption of a multi-stage membrane system. Such information is important for conceptual process design and thus it is the topic of this work. Using a well-mixed membrane model, it was determined that the attainability curve of multi-stage systems is defined by the pressure ratio and membrane selectivity. Using the constant recycle ratio scheme, the recycle ratio can shift the attainability behavior between single-stage and multi-stage membrane systems. When the recycle ratio is zero, all of the multi-stage membrane processes will decay to a single-stage membrane process. When the recycle ratio approaches infinity, the required selectivity and pressure ratio reach their absolute minimum values, which have a simple relationship with that of a single-stage membrane process, as follows: View the MathML sourceSn=S1, View the MathML sourceγn=γ1, where n is the number of stages. The minimum energy consumption of a multi-stage membrane process is primarily determined by the membrane selectivity and recycle ratio. A low recycle ratio can significantly reduce the required membrane selectivity without substantial energy penalty. The energy envelope curve can provide a guideline from an energy perspective to determine the minimum required membrane selectivity in membrane process designs to compete with conventional separation processes, such as distillation.

  15. Inlet effects on vertical-downward air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Shouxu; Mena, Daniel; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • Inlet effects on two-phase flow parameters in vertical-downward flow are studied. • Flow regimes in the vertical-downward two-phase flow are defined. • Vertical-downward flow regime maps for three inlet configurations are developed. • Frictional pressure loss analysis for three different inlets is performed. • Database of local two-phase flow parameters for each inlet configuration. - Abstract: This paper focuses on investigating the geometric effects of inlets on global and local two-phase flow parameters in vertical-downward air–water two-phase flow. Flow visualization, frictional pressure loss analysis, and local experiments are performed in a test facility constructed from 50.8 mm inner diameter acrylic pipes. Three types of inlets of interest are studied: (1) two-phase flow injector without a flow straightener (Type A), (2) two-phase flow injector with a flow straightener (Type B), and (3) injection through a horizontal-to-vertical-downward 90° vertical elbow (Type C). A detailed flow visualization study is performed to characterize flow regimes including bubbly, slug, churn-turbulent, and annular flow. Flow regime maps for each inlet are developed and compared to identify the effects of each inlet. Frictional pressure loss analysis shows that the Lockhart–Martinelli method is capable of correlating the frictional loss data acquired for Type B and Type C inlets with a coefficient value of C = 25, but additional data may be needed to model the Type A inlet. Local two-phase flow parameters measured by a four-sensor conductivity probe in four bubbly and near bubbly flow conditions are analyzed. It is observed that vertical-downward two-phase flow has a characteristic center-peaked void profile as opposed to a wall-peaked profile as seen in vertical-upward flow. Furthermore, it is shown that the Type A inlet results in the most pronounced center-peaked void fraction profile, due to the coring phenomenon. Type B and Type C inlets

  16. Coolant inlet device for nuclear reactors

    International Nuclear Information System (INIS)

    Ando, Hiroshi; Abe, Yasuhiro; Iwabuchi, Toshihiko; Yamamoto, Kenji.

    1969-01-01

    Herein disclosed is a coolant inlet device for liquid-metal cooled reactors which employs a coolant distributor serving also as a supporting means for the reactor core. The distributor is mounted within the reactor vessel so as to slide horizontally on supporting lugs, and is further slidably connected via a junction pipe to a coolant inlet conduit protruding through the floor of the vessel. The distributor is adapted to uniformly disperse the highly pressured coolant over the reactor core so as to reduce the stresses sustained by the reactor vessel as well as the supporting lugs. Moreover, the slidable nature of the distributor allows thermal shock and excessive coolant pressures to be prevented or alleviated, factors which posed major difficulties in conventional coolant inlet devices. (Owens, K. J.)

  17. Poppet valve control of throat stability bypass to increase stable airflow range of a Mach 2.5. inlet with 60 percent internal contraction

    Science.gov (United States)

    Mitchell, G. A.; Sanders, B. W.

    1975-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. System variations included several stability bypass entrance configurations. Poppet valves controlled the bypass airflow. The inlet stable airflow range achieved with each configuration was determined for both steady state conditions and internal pulse transients. Results are compared with those obtained without a stability bypass system. Transient results were also obtained for the inlet with a choke point at the diffuser exit and for the inlet with large and small stability bypass plenum volumes. Poppet valves at the stability bypass exit provided the inlet with a stable airflow range of 20 percent or greater at all static and transient conditions.

  18. An Investigation of the Drag and Pressure Recovery of a Submerged Inlet and a Nose Inlet in the Transonic Flight Range with Free-fall Models

    Science.gov (United States)

    Selna, James; Schlaff, Bernard A

    1951-01-01

    The drag and pressure recovery of an NACA submerged-inlet model and an NACA series I nose-inlet model were investigated in the transonic flight range. The tests were conducted over a mass-flow-ratio range of 0.4 to 0.8 and a Mach number range of about 0.8 to 1.10 employing large-scale recoverable free-fall models. The results indicate that the Mach number of drag divergence of the inlet models was about the same as that of a basic model without inlets. The external drag coefficients of the nose-inlet model were less than those of the submerged-inlet model throughout the test range. The difference in drag coefficient based on the maximum cross-sectional area of the models was about 0.02 at supersonic speeds and about 0.015 at subsonic speeds. For a hypothetical airplane with a ratio of maximum fuselage cross-sectional area to wing area of 0.06, the difference in airplane drag coefficient would be relatively small, about 0.0012 at supersonic speeds and about 0.0009 at subsonic speeds. Additional drag comparisons between the two inlet models are made considering inlet incremental and additive drag.

  19. Apparatus for plasma surface treating and preparation of membrane layers

    NARCIS (Netherlands)

    1990-01-01

    An apparatus suitable for plasma surface treating (e.g., forming a membrane layer on a substrate surface) comprises a plasma generation section which is operable at least at substantially atmospheric pressure and is in communication via at least one plasma inlet (e.g., a nozzle) with an enclosed

  20. Thermo-osmosis in Membrane Systems: A Review

    Science.gov (United States)

    Barragán, V. María; Kjelstrup, Signe

    2017-06-01

    We give a first review of experimental results for a phenomenon little explored in the literature, namely thermal osmosis or thermo-osmosis. Such systems are now getting increased attention because of their ability to use waste heat for separation purposes. We show that this volume transport of a solution or a pure liquid caused by a temperature difference across a membrane can be understood as a property of the membrane system, i. e. the membrane with its adjacent solutions. We present experimental values found in the literature of thermo-osmotic coefficients of neutral and hydrophobic as well as charged and hydrophilic membranes, with water and other permeant fluids as well as electrolyte solutions. We propose that the coefficient can be qualitatively explained by a formula that contains the entropy of adsorption of permeant into the membrane, the hydraulic permeability, and a factor that depends on the interface resistance to heat transfer. A variation in the entropy of adsorption with hydrophobic/hydrophilic membranes and structure breaking/structure making cations could then explain the sign of the permeant flux. Systematic experiments in the field are lacking and we propose an experimental program to mend this situation.

  1. Advantages using inlet stratification devices in solar domestic hot water storage tanks

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Bava, Federico

    2017-01-01

    performances of two solar domestic hot water systems are presented. One system is a traditional high flow system with a heat exchanger spiral in the tank. The other system is a low flow system with an external heat exchanger and a newly developed inlet stratifier from EyeCular Technologies ApS installed......The thermal performance of a domestic hot water system is strongly affected by whether the storage tank is stratified or not. Thermal stratification can be built up in a solar storage tank if the heated water from the solar collectors enters the tank through an inlet stratifier.Measured thermal...... with the stratification device has a higher thermal performance compared to the system with the heat exchanger spiral inside the tank.The relative performance (defined as the ratio between the net utilized solar energy of the low flow system and the net utilized solar energy of the high flow system), is a function...

  2. The effect of fan speed control system on the inlet air temperature uniformity in a solar dryer

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2015-09-01

    Full Text Available Introduction: Drying process of agricultural products, fruits and vegetables are highly energy demanding and hence are the most expensive postharvest operation. Nowadays, the application of control systems in different area of science and engineering plays a key role and is considered as the important and inseparable parts of any industrial process. The review of literature indicates that enormous efforts have been donefor the intelligent control of solar driers and in this regard some simulation models are used through computer programming. However, because of the effect of air velocity on the inlet air temperature in dryers, efforts have been made to control the fan speed based ont he temperature of the absorber plate in this study, and the behavior of this system was compared with an ordinary dryer without such a control system. Materials and methods: In this study, acabinet type solar dryer with forced convection and 5kg capacity of fresh herbs was used. The dryer was equipped with a fan in the outlet chamber (the chimney for creating air flow through the dryer. For the purpose of research methods and automatic control of fan speed and for adjusting the temperature of the drying inlet air, a control system consisting of a series of temperature and humidity sensors and a microcontroller was designed. To evaluatethe effect of the system with fan speed control on the uniformity of air temperature in the drying chamber and hence the trend of drying process in the solar dryer, the dryer has been used with two different modes: with and without the control of fan speed, each in twodays (to minimize the errors of almost the same ambient temperature. The ambient air temperature during the four days of experiments was obtained from the regional Meteorological Office. Some fresh mint plants (Mentha longifolia directly harvested from the farm in the morning of the experiment days were used as the drying materials. Each experimental run continued for 9

  3. Processing radioactive wastes using membrane (UF/HF/RO) systems

    International Nuclear Information System (INIS)

    Doyle, R.D.

    1988-01-01

    Over the years many technologies have been utilized to process low level radioactive waste streams generated by the nuclear industry, including: demineralization, evaporation, reverse osmosis and filtration. In the early 1980's interest was generated in membrane technologies and their application to radioactive wastes. This interest was generated based on the capabilities shown by membrane systems in non-radioactive environments and the promise that reverse osmosis systems showed in early testing with radioactive wastes. Membrane technologies have developed from the early development of reverse osmosis system to also include specifically designed membranes for ultrafiltration and hyperfiltration applications

  4. Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology

    Directory of Open Access Journals (Sweden)

    Shamim Haider

    2016-10-01

    Full Text Available A shift to renewable energy sources will reduce emissions of greenhouse gases and secure future energy supplies. In this context, utilization of biogas will play a prominent role. Focus of this work is upgrading of biogas to fuel quality by membrane separation using a carbon hollow fibre (CHF membrane and compare with a commercially available polymeric membrane (polyimide through economical assessment. CHF membrane modules were prepared for pilot plant testing and performance measured using CO2, O2, N2. The CHF membrane was modified through oxidation, chemical vapour deposition (CVD and reduction process thus tailoring pores for separation and increased performance. The post oxidized and reduced carbon hollow fibres (PORCHFs significantly exceeded CHF performance showing higher CO2 permeance (0.021 m3(STP/m2 h bar and CO2/CH4 selectivity of 246 (5 bar feed vs 50 mbar permeate pressure. The highest performance recorded through experiments (CHF and PORCHF was used as simulation basis. A membrane simulation model was used and interfaced to 8.6 V Aspen HYSYS. A 300 Nm3/h mixture of CO2/CH4 containing 30–50% CO2 at feed pressures 6, 8 and 10 bar, was simulated and process designed to recover 99.5% CH4 with 97.5% purity. Net present value (NPV was calculated for base case and optimal pressure (50 bar for CHF and PORCHF. The results indicated that recycle ratio (recycle/feed ranged from 0.2 to 10, specific energy from 0.15 to 0.8 (kW/Nm3feed and specific membrane area from 45 to 4700 (m2/Nm3feed. The high recycle ratio can create problems during start-up, as it would take long to adjust volumetric flow ratio towards 10. The best membrane separation system employs a three-stage system with polyimide at 10 bar, and a two-stage membrane system with PORCHF membranes at 50 bar with recycle. Considering biomethane price of 0.78 $/Nm3 and a lifetime of 15 years, the techno-economic analysis showed that payback time for

  5. Solar fuel production at high temperatures using ceria as a dense membrane

    International Nuclear Information System (INIS)

    Zhu, Liya; Lu, Youjun; Shen, Shaohua

    2016-01-01

    In this paper, ceria was proposed as a candidate material of membrane reactor for solar fuel production. A thermodynamic model of the membrane reactor system based on ceria with heat recovery was established and solar-to-fuel efficiency of both inert gas-assisted and pump-assisted CO_2 splitting was calculated under a broad range of conditions. For system using inert gas, gas heat recovery is the determining factor for energy conversion efficiency. The energy efficiency is calculated to be >10% at 1800 K when the oxygen pressure at the inlet of reduction zone is lower than 10"−"6MPa. Increase of total pressure of the oxidation zone could improve the energy efficiency due to decrease of gas heat loss. Significant promotion in efficiency could be expected when a pump is applied to avoid using inert gas. Solar-to-fuel efficiency could be above 40% assuming good heat recovery. For the membrane reactor with a pump applied to maintain a vacuum atmosphere of the reduction zone, a simplified steady state model was put forward to predict the converting process and estimate the productivity. The diffusion rate of oxygen ions in the membrane is fast enough for conversion of considerable amount of CO_2 in the reactor with a limited geometry. - Highlights: • Ceria membrane reactor was proposed for solar fuel production. • A thermodynamic model of the ceria membrane reactor system was established. • Inert gas-assisted and pump-assisted systems were evaluated. • High efficiency >40% could be expected when using a pump instead of inert gas. • A steady state model concerning oxygen diffusion rate was established.

  6. Data supporting the validation of a simulation model for multi-component gas separation in polymeric membranes

    Directory of Open Access Journals (Sweden)

    Lorena Giordano

    2016-12-01

    The data were obtained using a model for simulating gas separation, described in the research article entitled “Interplay of inlet temperature and humidity on energy penalty for CO2 post-combustion capture: rigorous analysis and simulation of a single stage gas permeation process” (L. Giordano, D. Roizard, R. Bounaceur, E. Favre, 2016 [1]. The data were used to validate the model by comparison with literature results. Considering a membrane system based on feed compression only, data from the model proposed and that from literature were compared with respect to the molar composition of permeate stream, the membrane area and specific energy requirement, varying the feed pressure and the CO2 separation degree.

  7. Oregon inlet: Hydrodynamics, volumetric flux and implications for larval fish transport

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, C.R. [National Oceanic and Atmospheric Administration, Silver Springs, MD (United States); Pietrafesa, L.J. [North Carolina State Univ., Raleigh, NC (United States). Department of Marine, Earth and Atmospheric Sciences

    1997-05-01

    The temporal response of Oregon Inlet currents to atmospheric forcing and sea level fluctuations is analyzed using time and frequency domain analysis. Temporally persistent and spatially extensive ebb and flood events are identified using data sets from both within and outside of Oregon Inlet. Prism estimates are made to generate a time series of volumetric flux of water transported through the inlet. Water masses flooding into the Pamlico Sound via Oregon Inlet are identified in temperature (T) and salinity (S) space to determine their source of origin. Correlations are examined between the atmospheric wind field, the main axial slope of the inlet`s water level, inlet flow and T, S properties. Synoptic scale atmospheric wind events are found to dramatically and directly affect the transport of water towards (away from) the inlet on the ocean side, in concert with the contemporaneous transport away from (towards) the inlet on the estuary side, and a subsequent flooding into (out of) the estuary via Oregon Inlet. Thus, while astronomical tidal flooding and ebbing events are shown to be one-sided as coastal waters either set-up or set-down, synoptic scale wind events are shown to be manifested as a two-sided in-phase response set-up and set-down inside and outside the inlet, and thus are extremely effective in driving currents through the inlet. These subinertial frequency flood events are believed to be essential for both the recruitment and subsequent retention of estuarine dependent larval fish from the coastal ocean into Pamlico Sound. Year class strength of these finish may be determined annually by the relative strength and timing of these climatological wind events.

  8. Status of the variable diameter centerbody inlet program

    Science.gov (United States)

    Saunders, John D.; Linne, A. A.

    1992-01-01

    The Variable Diameter Centerbody (VDC) inlet is an ongoing research program at LeRC. The VDC inlet is a mixed compression, axisymmetric inlet that has potential application on the next generation supersonic transport. This inlet was identified as one of the most promising axisymmetric concepts for supersonic cruise aircraft during the SCAR program in the late 1970's. Some of its features include high recovery, low bleed, good angle-of-attack tolerance, and excellent engine airflow matching. These features were demonstrated at LeRC in the past by the design and testing of fixed hardware models. A current test program in the LeRC 10' x 10' Supersonic Wind Tunnel (SWT) will attempt to duplicate these features on model hardware that actually incorporates a flight-like variable diameter centerbody mechanism.

  9. Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling

    International Nuclear Information System (INIS)

    Shirazi, Ali; Najafi, Behzad; Aminyavari, Mehdi; Rinaldi, Fabio; Taylor, Robert A.

    2014-01-01

    In this study, a mathematical model of an ice thermal energy storage (ITES) system for gas turbine cycle inlet air cooling is developed and thermal, economic, and environmental (emissions cost) analyses have been applied to the model. While taking into account conflicting thermodynamic and economic objective functions, a multi-objective genetic algorithm is employed to obtain the optimal design parameters of the plant. Exergetic efficiency is chosen as the thermodynamic objective while the total cost rate of the system including the capital and operational costs of the plant and the social cost of emissions, is considered as the economic objective. Performing the optimization procedure, a set of optimal solutions, called a Pareto front, is obtained. The final optimal design point is determined using TOPSIS decision-making method. This optimum solution results in the exergetic efficiency of 34.06% and the total cost of 28.7 million US$ y −1 . Furthermore, the results demonstrate that inlet air cooling using an ITES system leads to 11.63% and 3.59% improvement in the output power and exergetic efficiency of the plant, respectively. The extra cost associated with using the ITES system is paid back in 4.72 years with the income received from selling the augmented power. - Highlights: • Mathematical model of an ITES system for a GT cycle inlet air cooling is developed. • Exergetic, economic and environmental analyses were performed on the developed model. • Exergy efficiency and total cost rate were considered as the objective functions. • The total cost rate involves the capital, maintenance, operational and emissions costs. • Multi-objective optimization was applied to obtain the Pareto front

  10. Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.

    Science.gov (United States)

    Nakamura, Yuki

    2018-03-01

    Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.

  11. Method for plasma surface treating and preparation of membrane layers

    NARCIS (Netherlands)

    1992-01-01

    The invention relates to an apparatus suitable for plasma surface treating (e.g. forming a membrane layer on a substrate) which comprises a plasma generation section (2) which is in communication via at least one plasma inlet means (4) (e.g. a nozzle) with an enclosed plasma treating section (3)

  12. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  13. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-02-01

    The interactions between oxygen permeation and homogeneous fuel oxidation reactions on the sweep side of an ion transport membrane (ITM) are examined using a comprehensive model, which couples the dependency of the oxygen permeation rate on the membrane surface conditions and detailed chemistry and transport in the vicinity of the membrane. We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. Results show that increasing the sweep gas inlet temperature and fuel concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases the gas temperature near the membrane. Faster reactions at higher fuel concentration and higher inlet gas temperature support substantial fuel conversion and lead to a higher oxygen permeation flux without the contribution of surface catalytic activity. Beyond a certain maximum in the fuel concentration, extensive heat loss to the membrane (and feed side) reduces the oxidation kinetic rates and limits oxygen permeation as the reaction front reaches the membrane. The sweep gas flow rate and channel height have moderate impacts on oxygen permeation and fuel conversion due to the residence time requirements for the chemical reactions and the location of the reaction zone relative to the membrane surface. © 2012 Elsevier B.V.

  14. Jet Inlet Efficiency

    Science.gov (United States)

    2013-08-08

    AFRL-RW-EG-TR-2014-044 Jet Inlet Efficiency Nigel Plumb Taylor Sykes-Green Keith Williams John Wohleber Munitions Aerodynamics Sciences...CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Nigel Plumb Taylor Sykes-Green Keith Williams John

  15. Sustainability of thermoplastic vinyl roofing membrane systems

    Energy Technology Data Exchange (ETDEWEB)

    Graveline, S. P. [Sika Sanarfil, Canton, (United States)

    2010-07-01

    The International Council for Research and Innovation in Building and Construction (CIB-RILEM) has developed a framework for sustainable roofing based on a series of tenets divided into three key areas: preservation of the environment, conservation of energy, and extended roof life. This paper investigated the sustainability of thermoplastic vinyl roof membranes using these guidelines and the relevant tenets for roof system selection. Several tenets provided alternatives for minimizing the burden on the environment using non-renewable raw materials, conserving energy with thermal insulation, and extending the lifespan of all roof components by using long lasting membranes. A life cycle assessment was carried out to provide a quantitative framework for assessing the sustainability of roofing materials. It was found that the PVC membrane systems had a lesser impact on the environment than other competing systems.

  16. Unsteady supercritical/critical dual flowpath inlet flow and its control methods

    Directory of Open Access Journals (Sweden)

    Jun LIU

    2017-12-01

    Full Text Available The characteristics of unsteady flow in a dual-flowpath inlet, which was designed for a Turbine Based Combined Cycle (TBCC propulsion system, and the control methods of unsteady flow were investigated experimentally and numerically. It was characterized by large-amplitude pressure oscillations and traveling shock waves. As the inlet operated in supercritical condition, namely the terminal shock located in the throat, the shock oscillated, and the period of oscillation was about 50 ms, while the amplitude was 6 mm. The shock oscillation was caused by separation in the diffuser. This shock oscillation can be controlled by extending the length of diffuser which reduces pressure gradient along the flowpath. As the inlet operated in critical condition, namely the terminal shock located at the shoulder of the third compression ramp, the shock oscillated, and the period of oscillation was about 7.5 ms, while the amplitude was 12 mm. At this condition, the shock oscillation was caused by an incompatible backpressure in the bleed region. It can be controlled by increasing the backpressure of the bleed region. Keywords: Airbreathing hypersonic vehicle, Dual flowpath inlet, Terminal shock oscillation, Turbine based combined cycle, Unsteady flow

  17. Nonlinear observer to estimate polarization phenomenon in membrane distillation

    Directory of Open Access Journals (Sweden)

    Khoukhi Billal

    2015-01-01

    Full Text Available This paper presents a bi-dimensional dynamic model of Direct Contact Membrane Desalination (DCMD process. Most of the MD configuration processes have been modeled as steady-state one-dimensional systems. Stationary two-dimensional MD models have been considered only in very few studies. In this work, a dynamic model of a DCMD process is developed. The model is implemented using Matlab/Simulink environment. Numerical simulations are conducted for different operational parameters at the module inlets such as the feed and permeate temperature or feed and permeate flow rate. The results are compared with experimental data published in the literature. The work presents also a feed forward control that compensates the possible decrease of the temperature gradient by increasing the flow rate. This work also deals with a development of nonlinear observer to estimate temperature polarization inside the membrane. The observer gives a good profile and longitudinal temperature estimations and shows a good prediction of pure water flux production.

  18. 36 CFR 13.320 - Preference to Cook Inlet Region, Incorporated.

    Science.gov (United States)

    2010-07-01

    ... Region, Incorporated. 13.320 Section 13.320 Parks, Forests, and Public Property NATIONAL PARK SERVICE... to Cook Inlet Region, Incorporated. (a) The Cook Inlet Region, Incorporated (CIRI), in cooperation with village corporations within the Cook Inlet region when appropriate, will have a right of first...

  19. Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, M. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Opus International Consultants (New Zealand); AL-Waked, R. [Mechanical Engineering Department, Prince Mohammad Bin Fahd University (PMU), P.O. Box 1614, AlKhobar 31952 (Saudi Arabia); Morrison, G. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Behnia, M. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2010-10-15

    The thermal performance of an enthalpy/membrane heat exchanger is experimentally investigated. The heat exchanger utilizes a 60gsm Kraft paper as the heat and moisture transfer surface for HVAC energy recovery. The heat exchanger sensible, latent and total effectiveness have been determined through temperature and moisture content measurements. The annual energy consumption of an air conditioner coupled with an enthalpy/membrane heat exchanger is also studied and compared with a conventional air conditioning cycle using in-house modified HPRate software. The heat exchanger effectiveness are used as thermal performance indicators and incorporated in the modified software. Energy analysis showed that an air conditioning system coupled with a membrane heat exchanger consumes less energy than a conventional air conditioning system in hot and humid climates where the latent load is high. It has been shown that in humid climate a saving of up to 8% in annual energy consumption can be achieved when membrane heat exchanger is used instead of a conventional HVAC system. (author)

  20. Protein secretion and membrane insertion systems in gram-negative bacteria.

    Science.gov (United States)

    Saier, Milton H

    2006-01-01

    In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.

  1. Cross contamination in dual inlet isotope ratio mass spectrometers

    NARCIS (Netherlands)

    Meijer, H.A.J.; Neubert, R.E.M.; Visser, G.H.

    2000-01-01

    Since the early days of geochemical isotope ratio mass spectrometry there has always been the problem of cross contamination, i.e. the contamination of the sample gas with traces of reference gas land vice versa) in a dual inlet system and the analyzer itself. This was attributable to valve leakages

  2. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system

    OpenAIRE

    Richards, B.S.; Capão, D.P.S.; Schäfer, Andrea

    2008-01-01

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration-nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized u...

  3. Continuous Membrane-Based Screening System for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Matthias Kraume

    2011-02-01

    Full Text Available The use of membrane reactors for enzymatic and co-factor regenerating reactions offers versatile advantages such as higher conversion rates and space-time-yields and is therefore often applied in industry. However, currently available screening and kinetics characterization systems are based on batch and fed-batch operated reactors and were developed for whole cell biotransformations rather than for enzymatic catalysis. Therefore, the data obtained from such systems has only limited transferability for continuous membrane reactors. The aim of this study is to evaluate and to improve a novel screening and characterization system based on the membrane reactor concept using the enzymatic hydrolysis of cellulose as a model reaction. Important aspects for the applicability of the developed system such as long-term stability and reproducibility of continuous experiments were very high. The concept used for flow control and fouling suppression allowed control of the residence time with a high degree of precision (±1% accuracy in a long-term study (>100 h.

  4. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high-speed civil aircraft will require breakthrough developments in propulsion systems, including novel techniques to optimize inlet...

  5. Observations and a linear model of water level in an interconnected inlet-bay system

    Science.gov (United States)

    Aretxabaleta, Alfredo; Ganju, Neil K.; Butman, Bradford; Signell, Richard

    2017-01-01

    A system of barrier islands and back-barrier bays occurs along southern Long Island, New York, and in many coastal areas worldwide. Characterizing the bay physical response to water level fluctuations is needed to understand flooding during extreme events and evaluate their relation to geomorphological changes. Offshore sea level is one of the main drivers of water level fluctuations in semienclosed back-barrier bays. We analyzed observed water levels (October 2007 to November 2015) and developed analytical models to better understand bay water level along southern Long Island. An increase (∼0.02 m change in 0.17 m amplitude) in the dominant M2 tidal amplitude (containing the largest fraction of the variability) was observed in Great South Bay during mid-2014. The observed changes in both tidal amplitude and bay water level transfer from offshore were related to the dredging of nearby inlets and possibly the changing size of a breach across Fire Island caused by Hurricane Sandy (after December 2012). The bay response was independent of the magnitude of the fluctuations (e.g., storms) at a specific frequency. An analytical model that incorporates bay and inlet dimensions reproduced the observed transfer function in Great South Bay and surrounding areas. The model predicts the transfer function in Moriches and Shinnecock bays where long-term observations were not available. The model is a simplified tool to investigate changes in bay water level and enables the evaluation of future conditions and alternative geomorphological settings.

  6. Quantifying the residual volume transport through a multiple-inlet system in response to wind forcing: The case of the western Dutch Wadden Sea

    NARCIS (Netherlands)

    Duran-Matute, M.; Gerkema, T.; Sassi, M.

    2016-01-01

    In multiple-inlet coastal systems like the western Dutch Wadden Sea, the tides (and their interaction with the bathymetry), the fresh water discharge, and the wind drive a residual flow through the system. In the current paper, we study the effect of the wind on the residual volume transport through

  7. Computational Fluid Dynamics (CFD) Simulation of Hypersonic Turbine-Based Combined-Cycle (TBCC) Inlet Mode Transition

    Science.gov (United States)

    Slater, John W.; Saunders, John D.

    2010-01-01

    Methods of computational fluid dynamics were applied to simulate the aerodynamics within the turbine flowpath of a turbine-based combined-cycle propulsion system during inlet mode transition at Mach 4. Inlet mode transition involved the rotation of a splitter cowl to close the turbine flowpath to allow the full operation of a parallel dual-mode ramjet/scramjet flowpath. Steady-state simulations were performed at splitter cowl positions of 0deg, -2deg, -4deg, and -5.7deg, at which the turbine flowpath was closed half way. The simulations satisfied one objective of providing a greater understanding of the flow during inlet mode transition. Comparisons of the simulation results with wind-tunnel test data addressed another objective of assessing the applicability of the simulation methods for simulating inlet mode transition. The simulations showed that inlet mode transition could occur in a stable manner and that accurate modeling of the interactions among the shock waves, boundary layers, and porous bleed regions was critical for evaluating the inlet static and total pressures, bleed flow rates, and bleed plenum pressures. The simulations compared well with some of the wind-tunnel data, but uncertainties in both the windtunnel data and simulations prevented a formal evaluation of the accuracy of the simulation methods.

  8. Experimental study of permeation and selectivity of zeolite membranes for tritium processes

    Energy Technology Data Exchange (ETDEWEB)

    Borisevich, Olga; Antunes, Rodrigo; Demange, David, E-mail: david.demange@kit.edu

    2015-10-15

    Highlights: • We report about new experimental results on advanced membranes for tritium processing especially for the DEMO breeding blanket. • High permeances are measured on different zeolite MFI membranes made by film deposition or pore plugging. • Selectivity for H{sub 2}/He is limited requiring a multi-stage membrane process. • Selectivity of H{sub 2}O/He seems high enough to operate one single module. - Abstract: Zeolites are known as tritium compatible inorganic materials widely used in packed beds as driers in detritiation systems and are also suggested for tritium removal from helium at cryogenic temperature. The Tritium Laboratory Karlsruhe (TLK) proposed a new fully continuous approach for tritium extraction from the solid breeding blanket of fusion machines that improves the overall tritium management and minimizes both the tritium inventory and processing time. It is based on membrane permeation as a pre-concentration stage upstream of a final tritium recovery stage using a catalytic Pd-based membrane reactor. Zeolite membranes were identified as the most promising candidates for the pre-concentration stage. In the present work the tubular zeolite MFI membrane provided by the Institute for Ceramic Technologies and Systems (IKTS, Hermsdorf, Germany) is studied to consolidate the proposed approach. The permeation measurements for single gases hydrogen (replacing radioactive tritium) and helium, for binary mixtures H{sub 2}/He and H{sub 2}O/He at different concentrations and temperatures are presented. The tested membrane demonstrates a high performance, almost independent from the inlet composition in the case of a gaseous mixture, while the transport in the presence of water vapour is strongly related to the temperature of the mixture and component concentrations.

  9. A novel cogeneration system: A proton exchange membrane fuel cell coupled to a heat transformer

    International Nuclear Information System (INIS)

    Huicochea, A.; Romero, R.J.; Rivera, W.; Gutierrez-Urueta, G.; Siqueiros, J.; Pilatowsky, I.

    2013-01-01

    This study focuses on the potential of a novel cogeneration system which consists of a 5 kW proton exchange membrane fuel cell (PEMFC) and an absorption heat transformer (AHT). The dissipation heat resulting from the operation of the PEMFC would be used to feed the absorption heat transformer, which is integrated to a water purification system. Therefore, the products of the proposed cogeneration system are heat, electricity and distilled water. The study includes a simulation for the PEMFC as well as experimental results obtained with an experimental AHT facility. Based on the simulation results, experimental tests were performed in order to estimate the performance parameters of the overall system. This is possible due to the matching in power and temperatures between the outlet conditions of the simulated fuel cell and the inlet requirements of the AHT. Experimental coefficients of performance are reported for the AHT as well as the overall cogeneration efficiency for the integrated system. The results show that experimental values of coefficient of performance of the AHT and the overall cogeneration efficiency, can reach up to 0.256 and 0.571, respectively. This represents an increment in 12.4% of efficiency, compared to the fuel cell efficiency working individually. This study shows that the combined use of AHT systems with a PEMFC is possible and it is a very feasible project to be developed in the Centro de Investigación en Energía (Centre of Energy Research), México.

  10. Development of divertor pumping system with superpermeable membrane

    International Nuclear Information System (INIS)

    Nakamura, Y.; Ohyabu, N.; Suzuki, H.; Nakahara, Y.; Livshits, A.; Notkin, M.; Alimov, V.; Busnyuk, A.

    2000-01-01

    A new divertor pumping system with superpermeable membranes of group Va-metals (Nb, V) is now under research and development. Properties of membrane pumping were investigated with the use of a plasma device simulating divertor plasma conditions. The deposition of metal (Fe) and non-metal (C) impurities on the membrane upstream surface results in a degradation of plasma driven superpermeation at the membrane temperature T m m ≥800 deg. C. The same temperature effect on superpermeation is observed at sputtering of membrane surface by energetic plasma ions. In addition, the first application of the membrane pumping to fusion devices has been carried out and a deuterium pumping through the membrane was demonstrated under the conditions of divertor plasma in the JFT-2M tokamak

  11. Modeling of a Membrane Based Humidifier for Fuel Cell Applications Subject to End-Of-Life Conditions

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Olesen, Anders Christian; Menard, Alan

    2014-01-01

    applications. For instance for automotive applications and various backup power systems substituting batteries. Humidification of the inlet air of PEM fuel cell stacks is essential to obtain optimum proton conductivity. Operational humidities of the anode and cathode streams having dew points close to the fuel......Proton Exchange Membrane (PEM) Fuel Cell Stacks efficiently convert the chemical energy in hydrogen to electricity through electrochemical reactions occurring on either side of a proton conducting electrolyte. This is a promising and very robust energy conversion process which can be used in many...... cell operating temperature are required. These conditions must be met at the Beginning-Of-Life (BOL) as well as at the End-Of-Life (EOL) of the fuel cell system. This paper presents results of a numerical 1D model of the heat- and mass transport phenomena in a membrane humidifier with a Nafion...

  12. RNL NDT studies related to PWR pressure vessel inlet nozzle inspection

    International Nuclear Information System (INIS)

    Rogerson, A.; Poulter, L.N.J.; Clough, P.; Cooper, A.

    1984-01-01

    Non-destructive examinations of the Reactor Pressure Vessel (RPV) of a Pressurized Water Reactor (PWR) play an important role in assuring vessel integrity throughout its operational life. Automated ultrasonic techniques for the detection and sizing of flaws in thick-section seam welds and near-surface regions in a PWR RPV have been under development at RNL for some time. Techniques for the inspection of complex geometry welds and other regions of the vessel are now being assessed and further developed as part of the UK NDT development programme in support of the Sizewell PWR. One objective of this programme is to demonstrate that the range of ultrasonic techniques already shown to be effective for the inspection of seam welds and inlet nozzle corner regions, through exercises such as the Defect Detection Trials, can also be effective for inspection of these other vessel regions. The nozzle-to-vessel welds and nozzle crotch corners associated with the RPV water inlet and outlet nozzles are two such regions being examined in this programme. In this paper, a review is given of the work performed at RNL in the development of a laboratory-based inspection system for inlet nozzle inspection. The main features of the system in its current stage of development are explained. (author)

  13. Numerical Simulation of Boundary Layer Ingesting (BLI) Inlet-Fan Interaction

    Science.gov (United States)

    Giuliani, James; Chen, Jen-Ping; Beach, Timothy; Bakhle, Milind

    2014-01-01

    Future civil transport designs may incorporate engine inlets integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlet ingests the lower momentum boundary layer flow. Previous studies have shown, however, that efficiency benefits of Boundary Layer Ingesting (BLI) ingestion are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This paper presents an effort to extend the modeling capabilities of an existing rotating turbomachinery unsteady analysis code to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations, such as the development of rotating stall and inlet distortion through compressor stages. This paper describes the first phase of an effort to extend the TURBO model to calculate the external and inlet flowfield upstream of fan so that accurate pressure distortions that result from BLI configurations can be computed and used to analyze fan aerodynamics and structural response. To validate the TURBO program modifications for the BLI flowfield, experimental test data obtained by NASA for a flushmounted S-duct with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Quantitative data is presented that indicates good predictive capability of the model in the upstream flow. A representative fan is attached to the inlet and results are presented for the coupled inlet/fan model. The impact on the total pressure distortion at the AIP after the fan is attached is examined.

  14. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    Science.gov (United States)

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  15. Optimal sensor placement for control of a supersonic mixed-compression inlet with variable geometry

    Science.gov (United States)

    Moore, Kenneth Thomas

    A method of using fluid dynamics models for the generation of models that are useable for control design and analysis is investigated. The problem considered is the control of the normal shock location in the VDC inlet, which is a mixed-compression, supersonic, variable-geometry inlet of a jet engine. A quasi-one-dimensional set of fluid equations incorporating bleed and moving walls is developed. An object-oriented environment is developed for simulation of flow systems under closed-loop control. A public interface between the controller and fluid classes is defined. A linear model representing the dynamics of the VDC inlet is developed from the finite difference equations, and its eigenstructure is analyzed. The order of this model is reduced using the square root balanced model reduction method to produce a reduced-order linear model that is suitable for control design and analysis tasks. A modification to this method that improves the accuracy of the reduced-order linear model for the purpose of sensor placement is presented and analyzed. The reduced-order linear model is used to develop a sensor placement method that quantifies as a function of the sensor location the ability of a sensor to provide information on the variable of interest for control. This method is used to develop a sensor placement metric for the VDC inlet. The reduced-order linear model is also used to design a closed loop control system to control the shock position in the VDC inlet. The object-oriented simulation code is used to simulate the nonlinear fluid equations under closed-loop control.

  16. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system.

    Science.gov (United States)

    Richards, B S; Capão, D P S; Schäfer, A I

    2008-06-15

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration--nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized using four different NF membranes (BW30, NF90, ESPA4, TFC-S), and examined in more detail for the BW30 membrane. On an Australian spring day, the system produced 1.1 m3 of permeate with an average conductivity of 0.28 mS x cm(-1), recovering 28% of the brackish (8.29 mS x cm(-1) conductivity) feedwater with an average specific energy consumption of 2.3 kWh x m(-3). The RE-membrane system tolerated large fluctuations in solar irradiance (500--1200 W x m(-2)), resulting in only small increases in the permeate conductivity. When equipped with the NF90 (cloudy day) and ESPA4 (rainy day) membranes, the system was still able to produce 1.36 m(-3) and 0.85 m(-3) of good quality permeate, respectively. The TFC-S membrane was not able to produce adequate water quality from the bore water tested. It is concluded that batteryless operation is a simple and robust way to operate such systems under conditions ranging from clear skies to medium cloud cover.

  17. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation.

    Science.gov (United States)

    Alexander, Brittany E; Mueller, Benjamin; Vermeij, Mark J A; van der Geest, Harm H G; de Goeij, Jasper M

    2015-01-01

    Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium) were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell) proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community). This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality.

  18. Rocket Based Combined Cycle Exchange Inlet Performance Estimation at Supersonic Speeds

    Science.gov (United States)

    Murzionak, Aliaksandr

    A method to estimate the performance of an exchange inlet for a Rocket Based Combined Cycle engine is developed. This method is to be used for exchange inlet geometry optimization and as such should be able to predict properties that can be used in the design process within a reasonable amount of time to allow multiple configurations to be evaluated. The method is based on a curve fit of the shocks developed around the major components of the inlet using solutions for shocks around sharp cones and 2D estimations of the shocks around wedges with blunt leading edges. The total pressure drop across the estimated shocks as well as the mass flow rate through the exchange inlet are calculated. The estimations for a selected range of free-stream Mach numbers between 1.1 and 7 are compared against numerical finite volume method simulations which were performed using available commercial software (Ansys-CFX). The total pressure difference between the two methods is within 10% for the tested Mach numbers of 5 and below, while for the Mach 7 test case the difference is 30%. The mass flow rate on average differs by less than 5% for all tested cases with the maximum difference not exceeding 10%. The estimation method takes less than 3 seconds on 3.0 GHz single core processor to complete the calculations for a single flight condition as oppose to over 5 days on 8 cores at 2.4 GHz system while using 3D finite volume method simulation with 1.5 million elements mesh. This makes the estimation method suitable for the use with exchange inlet geometry optimization algorithm.

  19. Aerosol Inlet Characterization Experiment Report

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Robert L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kuang, Chongai [Brookhaven National Lab. (BNL), Upton, NY (United States); Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  20. Concentration gradient driven molecular dynamics: a new method for simulations of membrane permeation and separation.

    Science.gov (United States)

    Ozcan, Aydin; Perego, Claudio; Salvalaglio, Matteo; Parrinello, Michele; Yazaydin, Ozgur

    2017-05-01

    In this study, we introduce a new non-equilibrium molecular dynamics simulation method to perform simulations of concentration driven membrane permeation processes. The methodology is based on the application of a non-conservative bias force controlling the concentration of species at the inlet and outlet of a membrane. We demonstrate our method for pure methane, ethane and ethylene permeation and for ethane/ethylene separation through a flexible ZIF-8 membrane. Results show that a stationary concentration gradient is maintained across the membrane, realistically simulating an out-of-equilibrium diffusive process, and the computed permeabilities and selectivity are in good agreement with experimental results.

  1. 20% inlet header break analysis of Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Srivastava, A.; Gupta, S.K.; Venkat Raj, V.; Singh, R.; Iyer, K.

    2001-01-01

    The proposed Advanced Heavy Water Reactor (AHWR) is a 750 MWt vertical pressure tube type boiling light water cooled and heavy water moderated reactor. A passive design feature of this reactor is that the heat removal is achieved through natural circulation of primary coolant at all power levels, with no primary coolant pumps. Loss of coolant due to failure of inlet header results in depressurization of primary heat transport (PHT) system and containment pressure rise. Depressurization activates various protective and engineered safety systems like reactor trip, isolation condenser and advanced accumulator, limiting the consequences of the event. This paper discusses the thermal hydraulic transient analysis for evaluating the safety of the reactor, following 20% inlet header break using RELAP5/MOD3.2. For the analysis, the system is discretized appropriately to simulate possible flow reversal in one of the core paths during the transient. Various modeling aspects are discussed in this paper and predictions are made for different parameters like pressure, temperature, steam quality and flow in different parts of the Primary Heat Transport (PHT) system. Flow and energy discharges into the containment are also estimated for use in containment analysis. (author)

  2. Proton Exchange Membrane Fuel Cell Modelling Using Moving Least Squares Technique

    Directory of Open Access Journals (Sweden)

    Radu Tirnovan

    2009-07-01

    Full Text Available Proton exchange membrane fuel cell, with low polluting emissions, is a great alternative to replace the traditional electrical power sources for automotive applications or for small stationary consumers. This paper presents a numerical method, for the fuel cell modelling, based on moving least squares (MLS. Experimental data have been used for developing an approximated model of the PEMFC function of the current density, air inlet pressure and operating temperature of the fuel cell. The method can be applied for modelling others fuel cell sub-systems, such as the compressor. The method can be used for off-line or on-line identification of the PEMFC stack.

  3. U-Pb zircon age for a volcanic suite in the Rankin Inlet Group, Rankin Inlet map area, District of Keewatin, Northwest Territories

    International Nuclear Information System (INIS)

    Tella, S.; Roddick, J.C.; VanBreemen, O.

    1996-01-01

    U-Pb zircon analyses from a felsic band within dominantly mafic volcanics of the Rankin Inlet Group yields a U-Pb upper concordia intercept age of 2663 ± 3 Ma. These supracrustals at Rankin Inlet appear to be 15-20 Ma younger than volcanics of the Kaminak Group in the Tavani area, 70 km to the southwest. The 2.68-2.66 Ga volcanism in the Tavani and Rankin Inlet areas coincided with the last stage of the main phase of magmatism in the Slave Structural Province. (author). 16 refs., 1 tab., 3 figs

  4. U-Pb zircon age for a volcanic suite in the Rankin Inlet Group, Rankin Inlet map area, District of Keewatin, Northwest Territories

    Energy Technology Data Exchange (ETDEWEB)

    Tella, S; Roddick, J C; VanBreemen, O [Geological Survey of Canada, Ottawa, ON (Canada)

    1997-12-31

    U-Pb zircon analyses from a felsic band within dominantly mafic volcanics of the Rankin Inlet Group yields a U-Pb upper concordia intercept age of 2663 {+-} 3 Ma. These supracrustals at Rankin Inlet appear to be 15-20 Ma younger than volcanics of the Kaminak Group in the Tavani area, 70 km to the southwest. The 2.68-2.66 Ga volcanism in the Tavani and Rankin Inlet areas coincided with the last stage of the main phase of magmatism in the Slave Structural Province. (author). 16 refs., 1 tab., 3 figs.

  5. JET ENGINE INLET DISTORTION SCREEN AND DESCRIPTOR EVALUATION

    Directory of Open Access Journals (Sweden)

    Jiří Pečinka

    2017-02-01

    Full Text Available Total pressure distortion is one of the three basic flow distortions (total pressure, total temperature and swirl distortion that might appear at the inlet of a gas turbine engine (GTE during operation. Different numerical parameters are used for assessing the total pressure distortion intensity and extent. These summary descriptors are based on the distribution of total pressure in the aerodynamic interface plane. There are two descriptors largely spread around the world, however, three or four others are still in use and can be found in current references. The staff at the University of Defence decided to compare the most common descriptors using basic flow distortion patterns in order to select the most appropriate descriptor for future department research. The most common descriptors were identified based on their prevalence in widely accessible publications. The construction and use of these descriptors are reviewed in the paper. Subsequently, they are applied to radial, angular, and combined distortion patterns of different intensities and with varied mass flow rates. The tests were performed on a specially designed test bench using an electrically driven standalone industrial centrifugal compressor, sucking air through the inlet of a TJ100 small turbojet engine. Distortion screens were placed into the inlet channel to create the desired total pressure distortions. Of the three basic distortions, only the total pressure distortion descriptors were evaluated. However, both total and static pressures were collected using a multi probe rotational measurement system.

  6. Experimental Research on Optimizing Inlet Airflow of Wet Cooling Towers under Crosswind Conditions

    Science.gov (United States)

    Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong

    2018-01-01

    A new approach of installing air deflectors around tower inlet circumferentially was proposed to optimize the inlet airflow and reduce the adverse effect of crosswinds on the thermal performance of natural draft wet cooling towers (NDWCT). And inlet airflow uniformity coefficient was defined to analyze the uniformity of circumferential inlet airflow quantitatively. Then the effect of air deflectors on the NDWCT performance was investigated experimentally. By contrast between inlet air flow rate and cooling efficiency, it has been found that crosswinds not only decrease the inlet air flow rate, but also reduce the uniformity of inlet airflow, which reduce NDWCT performance jointly. After installing air deflectors, the inlet air flow rate and uniformity coefficient increase, the uniformity of heat and mass transfer increases correspondingly, which improve the cooling performance. In addition, analysis on Lewis factor demonstrates that the inlet airflow optimization has more enhancement of heat transfer than mass transfer, but leads to more water evaporation loss.

  7. Development of solid supports for electrochemical study of biomimetic membrane systems

    DEFF Research Database (Denmark)

    Mech-Dorosz, Agnieszka

    cushion directly on a gold electrode microchip and on a polyethersulfone (PES) support grafted by in situ polymerized hydrogel. Both strategies proved to be suitable for immobilization of functional bRh loaded lipo-polymersomes. Amperometric monitoring showed that the PES membrane support facilitated......Biomimetic membranes are model membrane systems used as an experimental tool to study fundamental cellular membrane physics and functionality of reconstituted membrane proteins. By exploiting the properties of biomimetic membranes resembling the functions of biological membranes, it is possible...... to construct biosensors for high-throughput screening of potential drug candidates. Among a variety of membrane model systems used for biomimetic approach, lipid bilayers in the form of black lipid membranes (BLMs) and lipo-polymersomes (vesicle structures composed of lipids and polymers), both...

  8. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  9. Effect of inlet straighteners on centrifugal fan performance

    Energy Technology Data Exchange (ETDEWEB)

    Bayomi, N.N.; Abdel Hafiz, A. [Faculty of Engineering, Mataria, Helwan University, 11718 Masaken, El-Helmia, Cairo (Egypt); Osman, A.M. [Faculty of Engineering, Shoubra, Zagazig University, Cairo (Egypt)

    2006-11-15

    The use of straighteners in the inlet duct of centrifugal fans is suggested for eliminating any inlet distortion. An experimental investigation was performed to study the effect of inlet straighteners on the performance characteristics of centrifugal fans. Two types of straighteners were used, circular tubes and zigzag cross section, with different lengths. Circular tubes with different diameters have been investigated. The study was conducted on three types of fans, namely radial, backward with exit blade angles 60{sup o} and 75{sup o} and forward with 105{sup o} and 120{sup o}. The results confirm that the inlet straighteners exhibit different effects on the fan performance for the different blade angles. Accordingly, the results indicate the selection of long circular tube straighteners with large diameter for radial blades, long zigzag type for backward 60{sup o} blade angle and short zigzag type for backward 75{sup o} blade angle. Generally, good improvements in efficiency are observed for radial and backward blades on account of a slight drop in static head. In addition, an increase in the flow margin up to 12% and a decrease in the noise level from 3 to 5dB are indicated compared to the free inlet condition. On the contrary, unfavorable influences are exerted on the forward fan performance. (author)

  10. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    Science.gov (United States)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  11. Development of compact tritium confinement system using gas separation membrane

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Okuno, Kenji

    1994-01-01

    In order to develop more compact and cost-effective tritium confinement system for fusion reactor, a new system using gas separation membranes has been studied at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute. The preliminary result showed that the gas separation membrane system could reduce processing volume of tritium contaminated gas to more than one order of magnitude compared with the conventional system, and that most of tritiated water vapor (humidity) could be directly recovered by water condenser before passing through dryer such as molecular sieves. More detail investigations of gas separation characteristics of membrane were started to design ITER Atmospheric Detritiation System (ADS). Furthermore, a scaled polyimide membrane module (hollow-filament type) loop was just installed to investigate the actual tritium confinement performance under various ITER-ADS conditions. (author)

  12. The Scale Effects of Engineered Inlets in Urban Hydrologic Processes

    Science.gov (United States)

    Shevade, L.; Montalto, F. A.

    2017-12-01

    Runoff from urban surfaces is typically captured by engineered inlets for conveyance to receiving water bodies or treatment plants. Normative hydrologic and hydraulic (H&H) modeling tools generally assume 100% efficient inlets, though observations by the authors suggest this assumption is invalid. The discrepancy is key since the more efficiently the inlet, the more linearly hydrologic processes scale with catchment area. Using several years of remote sensing, the observed efficiencies of urban green infrastructure (GI) facility inlets in New York City are presented, as a function of the morphological and climatological properties of their catchments and events. The rainfall-runoff response is modeled with EPA to assess the degree of inaccuracy that the assumption of efficient inlets introduces in block and neighborhood-scale simulations. Next, an algorithm is presented that incorporates inlet efficiency into SWMM and the improved predictive skill evaluated using Nash-Sutcliffe and root-mean-square error (RMSE). The results are used to evaluate the extent to which decentralized green stormwater management facilities positioned at the low points of urban catchments ought to be designed with larger capacities than their counterparts located further upslope.

  13. Automatic design of deterministic and non-halting membrane systems by tuning syntactical ingredients.

    Science.gov (United States)

    Zhang, Gexiang; Rong, Haina; Ou, Zhu; Pérez-Jiménez, Mario J; Gheorghe, Marian

    2014-09-01

    To solve the programmability issue of membrane computing models, the automatic design of membrane systems is a newly initiated and promising research direction. In this paper, we propose an automatic design method, Permutation Penalty Genetic Algorithm (PPGA), for a deterministic and non-halting membrane system by tuning membrane structures, initial objects and evolution rules. The main ideas of PPGA are the introduction of the permutation encoding technique for a membrane system, a penalty function evaluation approach for a candidate membrane system and a genetic algorithm for evolving a population of membrane systems toward a successful one fulfilling a given computational task. Experimental results show that PPGA can successfully accomplish the automatic design of a cell-like membrane system for computing the square of n ( n ≥ 1 is a natural number) and can find the minimal membrane systems with respect to their membrane structures, alphabet, initial objects, and evolution rules for fulfilling the given task. We also provide the guidelines on how to set the parameters of PPGA.

  14. Terminal-shock and restart control of a Mach 2.5, axisymmetric, mixed compression inlet with 40 percent internal contraction. [wind tunnel tests

    Science.gov (United States)

    Baumbick, R. J.

    1974-01-01

    Results of experimental tests conducted on a supersonic, mixed-compression, axisymmetric inlet are presented. The inlet is designed for operation at Mach 2.5 with a turbofan engine (TF-30). The inlet was coupled to either a choked orifice plate or a long duct which had a variable-area choked exit plug. Closed-loop frequency responses of selected diffuser static pressures used in the terminal-shock control system are presented. Results are shown for Mach 2.5 conditions with the inlet coupled to either the choked orifice plate or the long duct. Inlet unstart-restart traces are also presented. High-response inlet bypass doors were used to generate an internal disturbance and also to achieve terminal-shock control.

  15. Feasibility analysis of gas turbine inlet air cooling by means of liquid nitrogen evaporation for IGCC power augmentation

    International Nuclear Information System (INIS)

    Morini, Mirko; Pinelli, Michele; Spina, Pier Ruggero; Vaccari, Anna; Venturini, Mauro

    2015-01-01

    Integrated Gasification Combined Cycles (IGCC) are energy systems mainly composed of a gasifier and a combined cycle power plant. Since the gasification process usually requires oxygen as the oxidant, an Air Separation Unit (ASU) is also part of the plant. In this paper, a system for power augmentation in IGCC is evaluated. The system is based on gas turbine inlet air cooling by means of liquid nitrogen spray. In fact, nitrogen is a product of the ASU, but is not always exploited. In the proposed plant, the nitrogen is first liquefied to be used for inlet air cooling or stored for later use. This system is not characterized by the limits of water evaporative cooling systems (the lower temperature is limited by air saturation) and refrigeration cooling (the effectiveness is limited by the pressure drop in the heat exchanger). A thermodynamic model of the system is built by using a commercial code for energy conversion system simulation. A sensitivity analysis on the main parameters is presented. Finally the model is used to study the capabilities of the system by imposing the real temperature profiles of different sites for a whole year and by comparing to traditional inlet air cooling strategies. - Highlights: • Gas turbine inlet air cooling by means of liquid nitrogen spray. • Humidity condensation may form a fog which provides further power augmentation. • High peak and off peak electric energy price ratios make the system profitable

  16. Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm

    International Nuclear Information System (INIS)

    Yang, Shipin; Chellali, Ryad; Lu, Xiaohua; Li, Lijuan; Bo, Cuimei

    2016-01-01

    Accurate models of PEM (proton exchange membrane) fuel cells are of great significance for the analysis and the control for power generation. We present a new semi-empirical model to predict the voltage outputs of PEM fuel cell stacks. We also introduce a new estimation method, called AC-POA (aging and challenging P systems based optimization algorithm) allowing deriving the parameters of the semi-empirical model. In our model, the cathode inlet pressure is selected as an additional factor to modify the expression of concentration over-voltage V con for traditional Amphlett's PEM fuel cell model. In AC-POA, the aging-mechanism inspired object updating rule is merged in existing P system. We validate through experiments the effectiveness of AC-POA and the fitting accuracy of our model. Modeling comparison results show that the predictions of our model are the best in terms of fitting to actual sample data. - Highlights: • Presented a p c -based modificatory semi-empirical model for PEMFC stack. • Introduced a new aging inspired improved parameter estimation algorithm, AC-POA. • Validated the effectiveness of the AC-POA and the new model. • Remodeled the practical PEM fuel cell system.

  17. Biofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation

    Directory of Open Access Journals (Sweden)

    Brittany E. Alexander

    2015-12-01

    Full Text Available Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen species (nitrate, nitrite, and ammonium were measured in aquarium water when biofouling organisms were present within a 7-year old inlet pipe feeding a tropical reef running seawater aquaria system, compared with aquarium water fed by a new, biofouling-free inlet pipe. These water quality changes are indicative of the feeding activity and waste production of the suspension- and filter-feeding communities found in the old pipe, which included sponges, bivalves, barnacles, and ascidians. To illustrate the physiological consequences of these water quality changes on a model organism kept in the aquaria system, we investigated the influence of the presence and absence of the biofouling community on the functioning of the filter-feeding sponge Halisarca caerulea, by determining its choanocyte (filter cell proliferation rates. We found a 34% increase in choanocyte proliferation rates following the replacement of the inlet pipe (i.e., removal of the biofouling community. This indicates that the physiological functioning of the sponge was compromised due to suboptimal food conditions within the aquarium resulting from the presence of the biofouling organisms in the inlet pipe. This study has implications for the husbandry and performance of experiments with marine organisms in running seawater aquaria systems. Inlet pipes should be checked regularly, and replaced if necessary, in order to avoid excessive biofouling and to approach in situ water quality.

  18. Apparatus suitable for plasma surface treating and process for preparing membrane layers

    NARCIS (Netherlands)

    1988-01-01

    The invention relates to an apparatus suitable for plasma surface treating (e.g. forming a membrane layer on a substrate) which comprises a plasma generation section (2) which is in communication via at least one plasma inlet means (4) (e.g. a nozzle) with an enclosed plasma treating section (3)

  19. Applications of membrane computing in systems and synthetic biology

    CERN Document Server

    Gheorghe, Marian; Pérez-Jiménez, Mario

    2014-01-01

    Membrane Computing was introduced as a computational paradigm in Natural Computing. The models introduced, called Membrane (or P) Systems, provide a coherent platform to describe and study living cells as computational systems. Membrane Systems have been investigated for their computational aspects and employed to model problems in other fields, like: Computer Science, Linguistics, Biology, Economy, Computer Graphics, Robotics, etc. Their inherent parallelism, heterogeneity and intrinsic versatility allow them to model a broad range of processes and phenomena, being also an efficient means to solve and analyze problems in a novel way. Membrane Computing has been used to model biological systems, becoming with time a thorough modeling paradigm comparable, in its modeling and predicting capabilities, to more established models in this area. This book is the result of the need to collect, in an organic way, different facets of this paradigm. The chapters of this book, together with the web pages accompanying th...

  20. Performance of the University of Denver Low Turbulence, Airborne Aerosol Inlet in ACE-Asia

    Science.gov (United States)

    Lafleur, B.; Wilson, J. C.; Seebaugh, W. R.; Gesler, D.; Hilbert, H.; Mullen, J.; Reeves, J. M.

    2002-12-01

    The University of Denver Low Turbulence Inlet (DULTI) was flown on the NCAR C-130 in ACE-Asia. This inlet delivered large sample flows at velocities of a few meters per second at the exit of the inlet. This flow was slowed from the true air speed of the aircraft (100 to 150 m/s) to a few meters per second in a short diffuser with porous walls. The flow in the diffusing section was laminar. The automatic control system kept the inlet operating at near isokinetic intake velocities and in laminar flow for nearly all the flight time. The DULTI permits super micron particles to be sampled and delivered with high efficiency to the interior of the aircraft where they can be measured or collected. Because most of the air entering the inlet is removed through the porous medium, the sample flow experiences inertial enhancements. Because these enhancements occur in laminar flow, they are calculable using FLUENT. Enhancement factors are defined as the ratio of the number of particles of a given size per unit mass of air in the sample to the number of particles of that size per unit mass of air in the ambient. Experimenters divide measured mixing ratios of the aerosol by the enhancement factor to get the ambient mixing ratio of the particles. The diffuser used in ACE-Asia differed from that used in PELTI (2000), TexAQS2000 (2000) and ITCT (2002). In this poster, the flow parameters measured in the inlet in flight are compared with those calculated from FLUENT. And enhancement factors are presented for flight conditions. The enhancement factors are found to depend upon the Stokes number of particles in the entrance to the inlet and the ratio of the mass flow rate of air removed by suction to the mass flow rate delivered as sample.

  1. The dew point temperature as a criterion for optimizing the operating conditions of proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Berning, Torsten

    2012-01-01

    In this article an analytical method to calculate the dew point temperatures of the anode and cathode exit gas streams of a proton exchange membrane fuel cell is developed. The results of these calculations are used to create diagrams that show the dew point temperatures as function of the operat...... for conventional flow field plates. The diagrams presented here are created for completely dry inlet gases, but they can be easily corrected for a nonzero inlet relative humidity....

  2. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-04-01

    Industrial separation processes consume a significant portion of the energy used in the United States. A 1986 survey by the Office of Industrial Programs estimated that about 4.2 quads of energy are expended annually on distillation, drying and evaporation operations. This survey also concluded that over 0.8 quads of energy could be saved in the chemical, petroleum and food industries alone if these industries adopted membrane separation systems more widely. Membrane separation systems offer significant advantages over existing separation processes. In addition to consuming less energy than conventional processes, membrane systems are compact and modular, enabling easy retrofit to existing industrial processes. The present study was commissioned by the Department of Energy, Office of Program Analysis, to identify and prioritize membrane research needs in light of DOE's mission. Each report will be individually cataloged.

  3. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cook Inlet Intrastate Air Quality...

  4. The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons

    Science.gov (United States)

    Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.

  5. How to express tumours using membrane systems

    Institute of Scientific and Technical Information of China (English)

    Miguel A. Gutiérrez-Naranjo; Mario J. Pérez-Jiménez; Agustín Riscos-Nú(n)ez; Francisco J. Romero-Campero

    2007-01-01

    In this paper we discuss the potential usefulness of membrane systems as tools for modelling tumours. The approach is followed both from a macroscopic and a microscopic point of view. In the first case, one considers the tumour as a growing mass of cells,focusing on its external shape. In the second case, one descends to the microscopic level, studying molecular signalling pathways that are crucial to determine if a cell is cancerous or not. In each of these approaches we work with appropriate variants of membrane systems.

  6. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    Science.gov (United States)

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  8. Water-Permeable Dialysis Membranes for Multi-Layered Micro Dialysis System

    Directory of Open Access Journals (Sweden)

    Naoya eTo

    2015-06-01

    Full Text Available This paper presents the development of water-permeable dialysis membranes that are suitable for an implantable microdialysis system that does not use dialysis fluid. We developed a microdialysis system integrating microfluidic channels and nanoporous filtering membranes made of polyethersulfone (PES, aiming at a fully implantable system that drastically improves the quality of life of patients. Simplicity of the total system is crucial for the implantable dialysis system, where the pumps and storage tanks for the dialysis fluid pose problems. Hence, we focus on hemofiltration, which does not require the dialysis fluid but water-permeable membranes. We investigated the water-permeability of the PES membrane with respect to the concentrations of the PES, the additives, and the solvents in the casting solution. Sufficiently water-permeable membranes were found through in vitro experiments using whole bovine blood. The filtrate was verified to have the concentrations of low-molecular-weight molecules, such as sodium, potassium, urea, and creatinine, while proteins, such as albumin, were successfully blocked by the membrane. We conducted in vivo experiments using rats, where the system was connected to the femoral artery and jugular vein. The filtrate was successfully collected without any leakage of blood inside the system and it did not contain albumin but low-molecular-weight molecules whose concentrations were identical to those of the blood. The rat model with renal failure showed 100% increase of creatinine in 5 h, while rats connected to the system showed only a 7.4% increase, which verified the effectiveness of the proposed microdialysis system.

  9. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.; Breward, C. J. W.; Howell, P. D.; Oliver, J. M.

    2012-01-01

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown

  10. Forced Response Analysis of a Fan with Boundary Layer Inlet Distortion

    Science.gov (United States)

    Bakhle, Milind A.; Reddy, T. S. R.; Coroneos, Rula M.

    2014-01-01

    Boundary layer ingesting propulsion systems have the potential to significantly reduce fuel burn for future generations of commercial aircraft, but these systems must be designed to overcome the challenge of high dynamic stresses in fan blades due to forced response. High dynamic stresses can lead to high cycle fatigue failures. High-fidelity computational analysis of the fan aeromechanics is integral to an ongoing effort to design a boundary layer ingesting inlet and fan for a wind-tunnel test. An unsteady flow solution from a Reynoldsaveraged Navier Stokes analysis of a coupled inlet-fan system is used to calculate blade unsteady loading and assess forced response of the fan to distorted inflow. Conducted prior to the mechanical design of a fan, the initial forced response analyses performed in this study provide an early look at the levels of dynamic stresses that are likely to be encountered. For the boundary layer ingesting inlet, the distortion contains strong engine order excitations that act simultaneously. The combined effect of these harmonics was considered in the calculation of the forced response stresses. Together, static and dynamic stresses can provide the information necessary to evaluate whether the blades are likely to fail due to high cycle fatigue. Based on the analyses done, the overspeed condition is likely to result in the smallest stress margin in terms of the mean and alternating stresses. Additional work is ongoing to expand the analyses to off-design conditions, on-resonance conditions, and to include more detailed modeling of the blade structure.

  11. Biogenesis of the demarcation membrane system (DMS) in megakaryocytes.

    Science.gov (United States)

    Eckly, Anita; Heijnen, Harry; Pertuy, Fabien; Geerts, Willie; Proamer, Fabienne; Rinckel, Jean-Yves; Léon, Catherine; Lanza, François; Gachet, Christian

    2014-02-06

    The demarcation membrane system (DMS) in megakaryocytes forms the plasma membrane (PM) of future platelets. Using confocal microscopy, electron tomography, and large volume focused ion beam/scanning electron microscopy (FIB/SEM), we determined the sequential steps of DMS formation. We identified a pre-DMS that initiated at the cell periphery and was precisely located between the nuclear lobes. At all developmental stages, the DMS remained continuous with the cell surface. The number of these connections correlated well with the nuclear lobulation, suggesting a relationship with cleavage furrow formation and abortive cytokinesis. On DMS expansion, Golgi complexes assembled around the pre-DMS, and fusion profiles between trans-golgi network-derived vesicles and the DMS were observed. Brefeldin-A reduced DMS expansion, indicating that the exocytic pathway is essential for DMS biogenesis. Close contacts between the endoplasmic reticulum (ER) and the DMS were detected, suggesting physical interaction between the 2 membrane systems. FIB/SEM revealed that the DMS forms an intertwined tubular membrane network resembling the platelet open canalicular system. We thus propose the following steps in DMS biogenesis: (1) focal membrane assembly at the cell periphery; (2) PM invagination and formation of a perinuclear pre-DMS; (3) expansion through membrane delivery from Golgi complexes; and (4) ER-mediated lipid transfer.

  12. How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis.

    Science.gov (United States)

    Schubert, Thomas; Römer, Winfried

    2015-11-01

    Synthetic membrane systems, such as giant unilamellar vesicles and solid supported lipid bilayers, have widened our understanding of biological processes occurring at or through membranes. Artificial systems are particularly suited to study the inherent properties of membranes with regard to their components and characteristics. This review critically reflects the emerging molecular mechanism of lipid-driven endocytosis and the impact of model membrane systems in elucidating the complex interplay of biomolecules within this process. Lipid receptor clustering induced by binding of several toxins, viruses and bacteria to the plasma membrane leads to local membrane bending and formation of tubular membrane invaginations. Here, lipid shape, and protein structure and valency are the essential parameters in membrane deformation. Combining observations of complex cellular processes and their reconstitution on minimal systems seems to be a promising future approach to resolve basic underlying mechanisms. This article is part of a Special Issue entitled: Mechanobiology. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Calculation of external-internal flow fields for mixed-compression inlets

    Science.gov (United States)

    Chyu, W. J.; Kawamura, T.; Bencze, D. P.

    1987-01-01

    Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.

  14. Soft sensing of system parameters in membrane distillation

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-03-23

    Various examples of methods and systems are provided for soft sensing of system parameters in membrane distillation (MD). In one example, a system includes a MD module comprising a feed side and a permeate side separated by a membrane boundary layer; and processing circuitry configured to estimate feed solution temperatures and permeate solution temperatures of the MD module using monitored outlet temperatures of the feed side and the permeate side. In another example, a method includes monitoring outlet temperatures of a feed side and a permeate side of a MD module to determine a current feed outlet temperature and a current permeate outlet temperature; and determining a plurality of estimated temperature states of a membrane boundary layer separating the feed side and the permeate side of the MD module using the current feed outlet temperature and the current permeate outlet temperature.

  15. Evaluation of PM-10 commercial inlets for new surveillance air sampler

    International Nuclear Information System (INIS)

    Langer, G.

    1986-01-01

    The inlet for the present Rock Flats Plant surveillance sampler does not meet the new but still tentative PM-10 (<10-μm particle mass) criterion for sampling the hazardous fraction of airborne dust. Since this criterion relates mainly to non-radioactive emissions, DOE and EPA are presently in the process of promulgating emission guidelines specifically for non-reactor DOE nuclear facilities. The authors present approach is to select a commercial inlet and modify its, if necessary, to meet the PM-10 criterion, keeping in mind that they may have to recover the dust collected in the inlet. There is no EPA-approved PM-10 inlet design; instead, EPA issued a performance specification. As a nuclear operation, Rocky Flats has to sample continuously to ensure no period remains unmonitored, instead of every sixth day, as set forth by EPA for non-nuclear installations. During this study period, the authors developed an inlet evaluation methodology to meet the above, anticipated EPA requirements. Also, they started testing two potential inlets. 6 references, 2 figures, 1 table

  16. A master-follower type distributed scheme for reactor inlet temperature control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Dean, E.M.; Vilim, R.B.

    1995-01-01

    This paper describes the implementation of a computer-based controller for regulating reactor inlet temperature in a pool-type power plant. The elements of the control system are organized in a master-follower hierarchical architecture that takes advantage of existing in-plant hardware and software to minimize the need for plant modifications. Low level control algorithms are executed on existing local digital controllers (followers) with the high level algorithms executed on a new plant supervisory computer (master). A distributed computing strategy provides integration of the existing and additional computer platforms. The control system operates by having the master controller first estimate the secondary sodium flow needed to achieve a given reactor inlet temperature. The estimated flow is then used as a setpoint by the follower controller to regulate sodium flow using a motor-generator pump set. The control system has been implemented in a Hardware-In-the-Loop (FM) setup and qualified for operation in the Experimental Breader reactor 11 of Argonne National Laboratory. Some HIL results are provided

  17. Tidal and subtidal exchange flows at an inlet of the Wadden Sea

    Science.gov (United States)

    Valle-Levinson, Arnoldo; Stanev, Emil; Badewien, Thomas H.

    2018-03-01

    Observations of underway velocity profiles during complete spring and neap tidal cycles were used to determine whether the spatial structures of tidal and subtidal flows at a tidal inlet in a multiple-inlet embayment are consistent with those observed at single-inlet embayments. Measurements were obtained at the Otzumer Balje, one of the multiple inlets among the East Frisian Islands of the Wadden Sea. The 1.5 km-wide inlet displayed a bathymetric profile consisting of a channel ∼15 m deep flanked by tide observations spanned 36 h in the period May 11-12, 2011, while spring tide measurements exceeded 48 h from May 17 to May 19, 2011. Analysis of observations indicate that frictional effects from bathymetry molded tidal flows. Spatial distributions of semidiurnal tidal current amplitude and phase conform to those predicted by an analytical model for a basin with one inlet. Maximum semidiurnal flows appear at the surface in the channel, furthest away from bottom friction effects. Therefore, Otzumer Balje displays tidal hydrodynamics that are independent of the other inlets of the embayment. Subtidal exchange flows are laterally sheared, with residual inflow in the channel combined with outflow over shoals. The spatial distribution of these residual flows follow theoretical expectations of tidally driven flows interacting with bathymetry. Such distribution is similar to the tidal residual circulation at other inlets with only one communication to the ocean, suggesting that at subtidal scales the Otzumer Balje responds to tidal forcing independently of the other inlets.

  18. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2016-01-01

    Full Text Available Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  19. Interactions of sugar-based bolaamphiphiles with biomimetic systems of plasma membranes.

    Science.gov (United States)

    Nasir, Mehmet Nail; Crowet, Jean-Marc; Lins, Laurence; Obounou Akong, Firmin; Haudrechy, Arnaud; Bouquillon, Sandrine; Deleu, Magali

    2016-11-01

    Glycolipids constitute a class of molecules with various biological activities. Among them, sugar-based bolaamphiphiles characterized by their biocompatibility, biodegradability and lower toxicity, became interesting for the development of efficient and low cost lipid-based drug delivery systems. Their activity seems to be closely related to their interactions with the lipid components of the plasma membrane of target cells. Despite many works devoted to the chemical synthesis and characterization of sugar-based bolaamphiphiles, their interactions with plasma membrane have not been completely elucidated. In this work, two sugar-based bolaamphiphiles differing only at the level of their sugar residues were chemically synthetized. Their interactions with membranes have been investigated using model membranes containing or not sterol and with in silico approaches. Our findings indicate that the nature of sugar residues has no significant influence for their membrane interacting properties, while the presence of sterol attenuates the interactions of both bolaamphiphiles with the membrane systems. The understanding of this distinct behavior of bolaamphiphiles towards sterol-containing membrane systems could be useful for their applications as drug delivery systems. Copyright © 2016. Published by Elsevier B.V.

  20. Validation of helium inlet design for ITER toroidal field coil

    International Nuclear Information System (INIS)

    Boyer, C.; Seo, K.; Hamada, K.; Foussat, A.; Le Rest, M.; Mitchell, N.; Decool, P.; Savary, F.; Sgobba, S.; Weiss, K.P.

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb 3 Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are preparing the helium inlet mock-up for a qualification test. (authors)

  1. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the

  2. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    International Nuclear Information System (INIS)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan; Yu, Weiping

    2008-01-01

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m 3 min -1 .min -1 and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-ε turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  3. Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-08-01

    This factsheet describes a project that developed and demonstrated a new hybrid system for industrial wastewater treatment that synergistically combines a forward osmosis system with a membrane distillation technology and is powered by waste heat.

  4. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  5. Development of a method for in situ measurement of denitrification in aquifers using 15N tracer tests and membrane inlet mass spectrometry

    Science.gov (United States)

    Eschenbach, W.; Well, R.; Flessa, H.; Walther, W.; Duijnisveld, W. H. M.

    2009-04-01

    In NO3- contaminated aquifers containing reduced compounds like organic carbon or sulfides, denitrification is an intense process. Its characterization is of interest because NO3- consump-tion improves water quality and N2O production can cause emission of this greenhouse gas to the atmosphere. Spatial distribution of NO3- and N2 produced by denitrification in groundwa-ter (excess N2) reflects the NO3- input as well as cumulative denitrification during aquifer pas-sage. Reaction progress (RP) at a given location, i.e. the relative consumption by denitrifica-tion of the NO3- that had been leached to the aquifers, characterizes the stage of the denitrifi-cation process. RP can be derived from the ratio between accumulated gaseous denitrification products and initial NO3- concentrations. The amount and spatial distribution of reduced com-pounds within denitrifying aquifers is not well known. Recent findings from parallel investi-gations on in situ denitrification and reactive compounds suggests that single-well 15N tracer tests might be suitable to characterize the stock of reduced compounds in aquifers (Konrad 2007). The overall objective of our studies is measure the spatial dynamics of denitrification within two sandy aquifers in northern Germany. This includes measurement of the actually occurring denitrification process. Moreover we want to determine the long-term denitrification potential which is governed by the stock of reactive material. Here we present a new approach for in situ-measurement of denitrification at monitoring wells using a combination of 15N-tracer push-pull experiments with in situ analysis of 15N-labled N2 and N2O using membrane inlet mass spectrometry (MIMS). We will present first results from a laboratory test with aquifer mesocosms using the MIMS method. In this test we supplemented aquifer material of two depths (2 and 7 m below surface) of a drinking water catchment in Northwest Germany with K15NO3 solution. After tracer application we

  6. 33 CFR 110.170 - Lockwoods Folly Inlet, N.C.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lockwoods Folly Inlet, N.C. 110.170 Section 110.170 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.170 Lockwoods Folly Inlet, N.C. (a) Explosives...

  7. Long time durability tests of fabric inlet stratification pipes

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    and that this destroys the capability of building up thermal stratification for the fabric inlet stratification pipe. The results also show that although dirt, algae etc. are deposited in the fabric pipes in the space heating tank, the capability of the fabric inlet stratifiers to build up thermal stratification...

  8. Flow Control in a Compact Inlet

    Science.gov (United States)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  9. Effect of the inlet throttling on the thermal-hydraulic instability of the natural circulation BWR

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Inada, Fumio; Yoneda, Kimitoshi

    1997-01-01

    Although it is well-established that inlet restriction has a stabilizing for forced circulation BWR, the effect of inlet on the thermal-hydraulic stability of natural circulation BWR remains unknown since increasing inlet restriction affect thermal-hydraulic stability due to reduction of the recirculation flow rate. Therefore experiments have been conducted to investigate the effect of inlet restriction on the thermal-hydraulic stability. A test facility used in this experiments was designed and constructed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation was described as a function of heat flux and inlet subcooling independent of inlet restriction. Stability maps in reference to the channel inlet subcooling, heat flux were presented for various inlet restriction which were carried out by an analysis based on the homogeneous flow various using this function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (author)

  10. Atrazine sorption by biochar, tire chips, and steel slag as media for blind inlets: A kinetic and isotherm sorption approach

    Science.gov (United States)

    Surface inlets are installed in subsurface drainage systems to reduce ponding duration and surface runoff, but can contribute to water quality concerns by allowing water to directly enter buried drains. Blind inlets, consist of perforated pipes covered with gravel and are separated from an overlying...

  11. Design and experimental validation of the inlet guide vane system of a mini hydraulic bulb-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, L.M.C. [Department of Mechanical Engineering, Escola Superior de Tecnologia de Setubal, Polytechnic Institute of Setubal, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais,1049-001 Lisboa (Portugal); Gato, L.M.C.; Falcao, A.F.O. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais,1049-001 Lisboa (Portugal)

    2010-09-15

    The paper presents a fast design method for the inlet guide vanes of low-cost mini hydraulic bulb turbines. The guide vanes are positioned between two conical surfaces with a common vertex and have constant thickness distribution, except close to the leading and the trailing edges. The conical-walled inlet guide vane row is designed using a quasi-three-dimensional calculation method, by prescribing the angular-momentum distribution along the span at the outlet section of the guide vanes. The meridional through-flow is computed by a streamline curvature method and the blade-to-blade flow by a singularity surface method. The stagger angle and the vane camber are computed to fulfil the required design circulation and zero-incidence flow at the leading edge. The final vane shape is a single-curvature surface with straight leading and trailing edges. To validate the design method, a conical-walled inlet guide vane row nozzle-model with six fixed vanes was designed, manufactured and tested in an airflow rig. Traversing measurements along the circumferential and radial directions were made with a five-hole probe. The experimental results are compared with the prescribed design conditions and with numerical results from the three-dimensional inviscid and viscous flow computed with the FLUENT code. (author)

  12. Effect of inlet conditions for numerical modelling of the urban boundary layer

    Science.gov (United States)

    Gnatowska, Renata

    2018-01-01

    The paper presents the numerical results obtained with the use of the ANSYS FLUENT commercial code for analysing the flow structure around two rectangular inline surface-mounted bluff bodies immersed in a boundary layer. The effects of the inflow boundary layer for the accuracy of the numerical modelling of the flow field around a simple system of objects are described. The analysis was performed for two concepts. In the former case, the inlet velocity profile was defined using the power law, whereas the kinetic and dissipation energy was defined from the equations according to Richards and Hoxey [1]. In the latter case, the inlet conditions were calculated for the flow over the rough area composed of the rectangular components.

  13. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor.

    Science.gov (United States)

    Munasinghe, Pradeep Chaminda; Khanal, Samir Kumar

    2012-10-01

    In this study, the volumetric mass transfer coefficients (Ka) for CO were examined in a composite hollow fiber (CHF) membrane bioreactor. The mass transfer experiments were conducted at various inlet gas pressures (from 5 to 30 psig (34.5-206.8 kPa(g))) and recirculation flow rates (300, 600, 900, 1200 and 1500 mL/min) through CHF module. The highest Ka value of 946.6 1/h was observed at a recirculation rate of 1500 mL/min and at an inlet gas pressure of 30 psig(206.8 kPa(g)). The findings of this study confirm that the use of CHF membranes is effective and improves the efficiency CO mass transfer into the aqueous phase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Massive sediment bypassing on the lower shoreface offshore of a wide tidal inlet: Cat Island Pass, Louisiana

    Science.gov (United States)

    Jaffe, B.E.; List, J.H.; Sallenger, A.H.

    1997-01-01

    Analysis of a series of historical bathymetric and shoreline surveys along the Louisiana coast west of the Mississippi River mouth detected a large area of deposition in water depths of 2.0–8.5 m offshore of a 9-km-wide tidal inlet, the Cat Island Pass/Wine Island Pass system. A 59.9 · 106 m3 sandy deposit formed from the 1930s–1980s, spanning 27 km in the alongshore direction, delineating the transport pathway for sediment bypassing offshore of the inlet on the shoreface. Bypassing connected the shorefaces of two barrier island systems, the Isles Dernieres and the Bayou Lafourche.The processes responsible for formation of this deposit are not well understood, but sediment-transport modeling suggests that sediment is transported primarily by wind-driven coastal currents during large storms and hurricanes. Deposition appears to be related to changes in shoreline orientation, closing of transport pathways into a large bay to the east and the presence of tidal inlets. This newly documented type of bypassing, an offshore bypassing of the inlet system, naturally nourished the immediate downdrift area, the eastern Isles Dernieres, where shoreface and shoreline erosion rates are about half of pre-bypassing rates. Erosion rates remained the same farther downdrift, where bypassing has not yet reached. As this offshore bypassing continues, the destruction of the Isles Dernieres will be slowed.

  15. Energy efficient air inlet humidity control; Energiezuinige inblaasvochtregeling

    Energy Technology Data Exchange (ETDEWEB)

    Gielen, J.H. [C Point, DLV Plant, Horst (Netherlands)

    2005-03-15

    This project report describes the results of research conducted on the control of the inlet, humidification and dehumidification, based on the air inlet humidity rate. The project was carried out at a mushroom cultivation business in Heijen, the Netherlands [Dutch] Deze projectrapportage geeft de resultaten van het onderzoek naar het regelen van de luchtklep, bevochtiging en ontvochtiging, op basis van het inblaasvochtgehalte. Het project werd uitgevoerd op een champignonkwekerij in Heijen.

  16. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Worthington, Monty [ORPC Alaska, LLC, Anchorage, AK (United States)

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the

  17. Interactions Between Wetlands and Tidal Inlets

    National Research Council Canada - National Science Library

    Sanchez, Alejandro

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note (CHETN) presents numerical simulations investigating how the loss of wetlands in estuaries modifies tidal processes in inlet navigation channels...

  18. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan [Tsinghua University, Beijing (China); Yu, Weiping [Zhejiang Pump Works, Zhejiang (China)

    2008-10-15

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m{sup 3}min{sup -1}.min{sup -1} and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-{epsilon} turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  19. Analysis of hollow fibre membrane systems for multicomponent gas separation

    KAUST Repository

    Khalilpour, Rajab

    2013-02-01

    This paper analysed the performance of a membrane system over key design/operation parameters. A computation methodology is developed to solve the model of hollow fibre membrane systems for multicomponent gas feeds. The model represented by a nonlinear differential algebraic equation system is solved via a combination of backward differentiation and Gauss-Seidel methods. Natural gas sweetening problem is investigated as a case study. Model parametric analyses of variables, namely feed gas quality, pressure, area, selectivity and permeance, resulted in better understanding of operating and design optima. Particularly, high selectivities and/or permeabilities are shown not to be necessary targets for optimal operation. Rather, a medium selectivity (<60 in the given example) combined with medium permeance (∼300-500×10-10mol/sm2Pa in the given case study) is more advantageous. This model-based membrane systems engineering approach is proposed for the synthesis of efficient and cost-effective multi-stage membrane networks. © 2012 The Institution of Chemical Engineers.

  20. Evaluation for membrane components of water recycling system. Mizu saisei junkan system yoso no tokusei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Tanemura, T; Otsubo, K; Oguchi, M [National Aerospace Laboratory, Tokyo (Japan); Ashida, A; Hamano, N; Mitani, K [Hitachi, Ltd., Tokyo (Japan)

    1992-04-01

    The configuration of water recycling systems with membrane filters was studied to purify waste water discharged from human beings, animals and plants which is a key subsystem for closed ecological life support systems (CELSS) essential to long-term manned space activity. The filter performance test apparatus with three kinds of filters such as pre-filter, reverse osmosis membrane filter and ultra membrane filter was fabricated to conduct long-term cycling high-concentration tests using artificial urine as original waste water. As a result, since every membrane filter offered their nominal performance incompletely in high-concentration tests, it was necessary to add an NaCl removing apparatus to the system as primary treated water should be used for vegetation. It was also required to test the membrane performance preliminarily because the performance such as membrane life was different between various waste waters. 7 refs., 32 figs., 9 tabs.

  1. Physics of Acoustic Radiation from Jet Engine Inlets

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Envia, Edmane; Chien, Eugene W.

    2012-01-01

    Numerical simulations of acoustic radiation from a jet engine inlet are performed using advanced computational aeroacoustics (CAA) algorithms and high-quality numerical boundary treatments. As a model of modern commercial jet engine inlets, the inlet geometry of the NASA Source Diagnostic Test (SDT) is used. Fan noise consists of tones and broadband sound. This investigation considers the radiation of tones associated with upstream propagating duct modes. The primary objective is to identify the dominant physical processes that determine the directivity of the radiated sound. Two such processes have been identified. They are acoustic diffraction and refraction. Diffraction is the natural tendency for an acoustic wave to follow a curved solid surface as it propagates. Refraction is the turning of the direction of propagation of sound waves by mean flow gradients. Parametric studies on the changes in the directivity of radiated sound due to variations in forward flight Mach number and duct mode frequency, azimuthal mode number, and radial mode number are carried out. It is found there is a significant difference in directivity for the radiation of the same duct mode from an engine inlet when operating in static condition and in forward flight. It will be shown that the large change in directivity is the result of the combined effects of diffraction and refraction.

  2. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-03-01

    Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conducted by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.

  3. Evaluation of magnetic resonance imaging in thoracic inlet tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Eiro (Kobe Univ. (Japan). School of Medicine)

    1993-06-01

    To evaluate the detectability of tumor invasion to the thoracic inlet, MRI was performed in 57 patients with thoracic inlet tumor, and the diagnostic accuracy of MRI was compared with that of CT concerning the utility for thoracic inlet lesions. And we assessed abnormal findings in comparison with surgical or autopsy findings. In the local extent of the tumor, the accuracy for tumor invasion to the vessels such as subclavian artery and vein was 94.9% for MRI, and 83.5% for CT, and to the brachial plexus was 95.0% for MRI, and 60.0% for CT. MRI was superior to CT, but MRI was equivalent to CT with regard to invasion to the base of the neck, lateral chest wall, ribs, and vertebral bodies. However on MRI, it is easier to understand the longitudinal tumor extent than on CT. CT has superior spatial resolusion but CT has also disadvantages, such as streak artifact caused by shoulder joints, resulting in image degradation. In contrast, MRI has inherent advantages, and multiple images which facilitate the relationship between tumor and normal structures. Coronal and sagittal MR images facilitated three-dimensional observation of tumor of invasion in the thoracic inlet. Furthermore to improve image quality of MRI for the thoracic inlet, we newly devised a high molecular polyester shell for fixing a surface coil. On the high resolution MR (HR-MR) imaging using our shell, normal lymph nodes, muscles, blood vessels and the branches of the branchial plexus were clearly visualized in detail. Our shell was simple to process and facilitated immobilization of a surface coil. HR-MR technique produces images of high resolution after simple preparation. In conclusion, MRI was very useful for detecting lesions of the thoracic inlet and in deciding surgical indication and the planning for radiotherapy. (author).

  4. Can barrier islands survive sea level rise? Tidal inlets versus storm overwash

    Science.gov (United States)

    Nienhuis, J.; Lorenzo-Trueba, J.

    2017-12-01

    Barrier island response to sea level rise depends on their ability to transgress and move sediment to the back barrier, either through flood-tidal delta deposition or via storm overwash. Our understanding of these processes over decadal to centennial timescales, however, is limited and poorly constrained. We have developed a new barrier inlet environment (BRIE) model to better understand the interplay between tidal dynamics, overwash fluxes, and sea-level rise on barrier evolution. The BRIE model combines existing overwash and shoreface formulations [Lorenzo-Trueba and Ashton, 2014] with alongshore sediment transport, inlet stability [Escoffier, 1940], inlet migration and flood-tidal delta deposition [Nienhuis and Ashton, 2016]. Within BRIE, inlets can open, close, migrate, merge with other inlets, and build flood-tidal delta deposits. The model accounts for feedbacks between overwash and inlets through their mutual dependence on barrier geometry. Model results suggest that when flood-tidal delta deposition is sufficiently large, barriers require less storm overwash to transgress and aggrade during sea level rise. In particular in micro-tidal environments with asymmetric wave climates and high alongshore sediment transport, tidal inlets are effective in depositing flood-tidal deltas and constitute the majority of the transgressive sediment flux. Additionally, we show that artificial inlet stabilization (via jetty construction or maintenance dredging) can make barrier islands more vulnerable to sea level rise. Escoffier, F. F. (1940), The Stability of Tidal Inlets, Shore and Beach, 8(4), 114-115. Lorenzo-Trueba, J., and A. D. Ashton (2014), Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model, J. Geophys. Res. Earth Surf., 119(4), 779-801, doi:10.1002/2013JF002941. Nienhuis, J. H., and A. D. Ashton (2016), Mechanics and rates of tidal inlet migration: Modeling and application to

  5. A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taiping; Yang, Zhaoqing

    2017-12-01

    Previous tidal energy projects in Puget Sound have focused on major deep channels such as Admiralty Inlet that have a larger power potential but pose greater technical challenges than minor tidal channels connecting to small sub-basins. This paper focuses on the possibility of extracting energy from minor tidal channels by using a hydrodynamic model to quantify the power potential and the associated impact on tidal circulation. The study site is a multi-inlet bay system connected by two narrow inlets, Agate Pass and Rich Passage, to the Main Basin of Puget Sound. A three-dimensional hydrodynamic model was applied to the study site and calibrated for tidal elevations and currents. We examined three energy extraction scenarios in which turbines were deployed in each of the two passages and concurrently in both. Extracted power rates and associated changes in tidal elevation, current, tidal flux, and residence time were examined. Maximum instantaneous power rates reached 250 kW, 1550 kW, and 1800 kW, respectively, for the three energy extraction scenarios. The model suggests that with the proposed level of energy extraction, the impact on tidal circulation is very small. It is worth investigating the feasibility of harnessing tidal energy from minor tidal channels of Puget Sound.

  6. Phosphorus mass balance in a highly eutrophic semi-enclosed inlet near a big metropolis: a small inlet can contribute towards particulate organic matter production.

    Science.gov (United States)

    Asaoka, Satoshi; Yamamoto, Tamiji

    2011-01-01

    Terrigenous loading into enclosed water bodies has been blamed for eutrophic conditions marked by massive algal growth and subsequent hypoxia due to decomposition of dead algal cells. This study aims to describe the eutrophication and hypoxia processes in a semi-enclosed water body lying near a big metropolis. Phosphorus mass balance in a small inlet, Ohko Inlet, located at the head of Hiroshima Bay, Japan, was quantified using a numerical model. Dissolved inorganic phosphorous inflow from Kaita Bay next to the inlet was five times higher than that from terrigenous load, which may cause an enhancement of primary production. Therefore, it was concluded that not only the reduction of material load from the land and the suppression of benthic flux are needed, but also reducing the inflow of high phosphorus and oxygen depleted water from Kaita Bay will form a collective alternative measure to remediate the environmental condition of the inlet. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. A New Concept of a Drug Delivery System with Improved Precision and Patient Safety Features

    Directory of Open Access Journals (Sweden)

    Florian Thoma

    2014-12-01

    Full Text Available This paper presents a novel dosing concept for drug delivery based on a peristaltic piezo-electrically actuated micro membrane pump. The design of the silicon micropump itself is straight-forward, using two piezoelectrically actuated membrane valves as inlet and outlet, and a pump chamber with a piezoelectrically actuated pump membrane in-between. To achieve a precise dosing, this micropump is used to fill a metering unit placed at its outlet. In the final design this metering unit will be made from a piezoelectrically actuated inlet valve, a storage chamber with an elastic cover membrane and a piezoelectrically actuated outlet valve, which are connected in series. During a dosing cycle the metering unit is used to adjust the drug volume to be dispensed before delivery and to control the actually dispensed volume. To simulate the new drug delivery concept, a lumped parameter model has been developed to find the decisive design parameters. With the knowledge taken from the model a drug delivery system is designed that includes a silicon micro pump and, in a first step, a silicon chip with the storage chamber and two commercial microvalves as a metering unit. The lumped parameter model is capable to simulate the maximum flow, the frequency response created by the micropump, and also the delivered volume of the drug delivery system.

  8. Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System

    Science.gov (United States)

    Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay

    2016-01-01

    The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.

  9. Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Han XU

    2017-10-01

    Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.

  10. Dynamic nanoplatforms in biosensor and membrane constitutional systems.

    Science.gov (United States)

    Mahon, Eugene; Aastrup, Teodor; Barboiu, Mihail

    2012-01-01

    Molecular recognition in biological systems occurs mainly at interfacial environments such as membrane surfaces, enzyme active sites, or the interior of the DNA double helix. At the cell membrane surface, carbohydrate-protein recognition principles apply to a range of specific non-covalent interactions including immune response, cell proliferation, adhesion and death, cell-cell interaction and communication. Protein-protein recognition meanwhile accounts for signalling processes and ion channel structure. In this chapter we aim to describe such constitutional dynamic interfaces for biosensing and membrane transport applications. Constitutionally adaptive interfaces may mimic the recognition capabilities intrinsic to natural recognition processes. We present some recent examples of 2D and 3D constructed sensors and membranes of this type and describe their sensing and transport capabilities.

  11. Biogenesis of the demarcation membrane system (DMS) in megakaryocytes

    NARCIS (Netherlands)

    Eckly, A.; Heijnen, H.F.G.; Pertuy, F.; Geerts, W.J.C.; Proamer, F.; Rinckel, J.Y.; Leon, C.; Lanza, F; Gachet, C.

    2014-01-01

    The demarcation membrane system (DMS) in megakaryocytes forms the plasma membrane (PM) of future platelets. Using confocal microscopy, electron tomography, and large volume focused ion beam/scanning electron microscopy (FIB/SEM), we determined the sequential steps of DMS formation. We identified a

  12. Mini-review: novel non-destructivein situbiofilm characterization techniques in membrane systems

    KAUST Repository

    Valladares Linares, Rodrigo; Fortunato, Luca; Farhat, Nadia; Bucs, Szilard; Staal, M.; Fridjonsson, E.O.; Johns, M.L.; Vrouwenvelder, Johannes S.; Leiknes, TorOve

    2016-01-01

    Membrane systems are commonly used in the water industry to produce potable water and for advanced wastewater treatment. One of the major drawbacks of membrane systems is biofilm formation (biofouling), which results in an unacceptable decline in membrane performance. Three novel in situ biofouling characterization techniques were assessed: (i) optical coherence tomography (OCT), (ii) planar optodes, and (iii) nuclear magnetic resonance (NMR). The first two techniques were assessed using a biofilm grown on the surface of nanofiltration (NF) membranes using a transparent membrane fouling simulator that accurately simulates spiral wound modules, modified for in situ biofilm imaging. For the NMR study, a spiral wound reverse osmosis membrane module was used. Results show that these techniques can provide information to reconstruct the biofilm accurately, either with 2-D (OCT, planar optodes and NMR), or 3-D (OCT and NMR) scans. These non-destructive tools can elucidate the interaction of hydrodynamics and mass transport on biofilm accumulation in membrane systems. Oxygen distribution in the biofilm can be mapped and linked to water flow and substrate characteristics; insights on the effect of crossflow velocity, flow stagnation, and feed spacer presence can be obtained, and in situ information on biofilm structure, thickness, and spatial distribution can be quantitatively assessed. The combination of these novel non-destructive in situ biofilm characterization techniques can provide real-time observation of biofilm formation at the mesoscale. The information obtained with these tools could potentially be used for further improvement in the design of membrane systems and operational parameters to reduce impact of biofouling on membrane performance. © 2016 Balaban Desalination Publications. All rights reserved.

  13. Mini-review: novel non-destructivein situbiofilm characterization techniques in membrane systems

    KAUST Repository

    Valladares Linares, R.

    2016-05-12

    Membrane systems are commonly used in the water industry to produce potable water and for advanced wastewater treatment. One of the major drawbacks of membrane systems is biofilm formation (biofouling), which results in an unacceptable decline in membrane performance. Three novel in situ biofouling characterization techniques were assessed: (i) optical coherence tomography (OCT), (ii) planar optodes, and (iii) nuclear magnetic resonance (NMR). The first two techniques were assessed using a biofilm grown on the surface of nanofiltration (NF) membranes using a transparent membrane fouling simulator that accurately simulates spiral wound modules, modified for in situ biofilm imaging. For the NMR study, a spiral wound reverse osmosis membrane module was used. Results show that these techniques can provide information to reconstruct the biofilm accurately, either with 2-D (OCT, planar optodes and NMR), or 3-D (OCT and NMR) scans. These non-destructive tools can elucidate the interaction of hydrodynamics and mass transport on biofilm accumulation in membrane systems. Oxygen distribution in the biofilm can be mapped and linked to water flow and substrate characteristics; insights on the effect of crossflow velocity, flow stagnation, and feed spacer presence can be obtained, and in situ information on biofilm structure, thickness, and spatial distribution can be quantitatively assessed. The combination of these novel non-destructive in situ biofilm characterization techniques can provide real-time observation of biofilm formation at the mesoscale. The information obtained with these tools could potentially be used for further improvement in the design of membrane systems and operational parameters to reduce impact of biofouling on membrane performance. © 2016 Balaban Desalination Publications. All rights reserved.

  14. Environmental Sensitivity Index (ESI) Atlas: Cook Inlet, Alaska, maps and geographic information systems (NODC Accession 0046027)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) data for Cook Inlet and Kenai Peninsula, Alaska. ESI data characterize estuarine environments and...

  15. ASSESSING CLIMATE CHANGE IMPACTS ON THE STABILITY OF SMALL TIDAL INLETS: Part 2- DATA RICH ENVIRONMENTS.

    Science.gov (United States)

    Duong, Trang Minh; Ranasinghe, Roshanka; Thatcher, Marcus; Mahanama, Sarith; Wang, Zheng Bing; Dissanayake, Pushpa Kumara; Hemer, Mark; Luijendijk, Arjen; Bamunawala, Janaka; Roelvink, Dano; Walstra, Dirkjan

    2018-01-01

    Climate change (CC) is likely to affect the thousands of bar-built or barrier estuaries (here referred to as Small tidal inlets - STIs) around the world. Any such CC impacts on the stability of STIs, which governs the dynamics of STIs as well as that of the inlet-adjacent coastline, can result in significant socio-economic consequences due to the heavy human utilisation of these systems and their surrounds. This article demonstrates the application of a process based snap-shot modelling approach, using the coastal morphodynamic model Delft3D , to 3 case study sites representing the 3 main STI types; Permanently open, locationally stable inlets (Type 1), Permanently open, alongshore migrating inlets (Type 2) and Seasonally/Intermittently open, locationally stable inlets (Type 3). The 3 case study sites (Negombo lagoon - Type 1, Kalutara lagoon - Type 2, and Maha Oya river - Type 3) are all located along the southwest coast of Sri Lanka. After successful hydrodynamic and morphodynamic model validation at the 3 case study sites, CC impact assessment are undertaken for a high end greenhouse gas emission scenario. Future CC modified wave and riverflow conditions are derived from a regional scale application of spectral wave models (WaveWatch III and SWAN) and catchment scale applications of a hydrologic model (CLSM) respectively, both of which are forced with IPCC Global Climate Model output dynamically downscaled to ~ 50 km resolution over the study area with the stretched grid Conformal Cubic Atmospheric Model CCAM. Results show that while all 3 case study STIs will experience significant CC driven variations in their level of stability, none of them will change Type by the year 2100. Specifically, the level of stability of the Type 1 inlet will decrease from 'Good' to 'Fair to poor' by 2100, while the level of (locational) stability of the Type 2 inlet will also decrease with a doubling of the annual migration distance. Conversely, the stability of the Type 3 inlet

  16. Jet Engine Fan Response to Inlet Distortions Generated by Ingesting Boundary Layer Flow

    Science.gov (United States)

    Giuliani, James Edward

    Future civil transport designs may incorporate engines integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlets ingest the lower momentum boundary layer flow that develops along the surface of the aircraft. Previous studies have shown, however, that the efficiency benefits of Boundary Layer Ingesting (BLI) inlets are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This project represents an effort to extend the modeling capabilities of TURBO, an existing rotating turbomachinery unsteady analysis code, to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations. Extending TURBO to simulate the external and inlet flow field upstream of the fan will allow accurate pressure distortions that result from BLI inlet configurations to be computed and used to analyze fan aerodynamics and structural response. To validate the modifications for the BLI inlet flow field, an experimental NASA project to study flush-mounted S-duct inlets with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Once the inlet modifications were validated, a hypothetical compressor fan was connected to the inlet, matching the inlet operating conditions so that the effect on the distortion could be evaluated. Although the total pressure distortion upstream of the fan was symmetrical for this geometry, the pressure rise generated by the fan blades was not, because of the velocity non-uniformity of the distortion

  17. Comparison of Engine/Inlet Distortion Measurements with MEMS and ESP Pressure Sensors

    Science.gov (United States)

    Soto, Hector L.; Hernandez, Corey D.

    2004-01-01

    A study of active-flow control in a small-scale boundary layer ingestion inlet was conducted at the NASA Langley Basic Aerodynamic Research Tunnel (BART). Forty MEMS pressure sensors, in a rake style configuration, were used to examine both the mean (DC) and high frequency (AC) components of the total pressure across the inlet/engine interface plane. The mean component was acquired and used to calculate pressure distortion. The AC component was acquired separately, at a high sampling rate, and is used to study the unsteady effects of the active-flow control. An identical total pressure rake, utilizing an Electronically Scanned Pressure (ESP) system, was also used to calculate distortion; a comparison of the results obtained using the two rakes is presented.

  18. Fraction Reduction in Membrane Systems

    Directory of Open Access Journals (Sweden)

    Ping Guo

    2014-01-01

    Full Text Available Fraction reduction is a basic computation for rational numbers. P system is a new computing model, while the current methods for fraction reductions are not available in these systems. In this paper, we propose a method of fraction reduction and discuss how to carry it out in cell-like P systems with the membrane structure and the rules with priority designed. During the application of fraction reduction rules, synchronization is guaranteed by arranging some special objects in these rules. Our work contributes to performing the rational computation in P systems since the rational operands can be given in the form of fraction.

  19. Effect of DS Concentration on the PRO Performance Using a 5-Inch Scale Cellulose Triacetate-Based Hollow Fiber Membrane Module

    Directory of Open Access Journals (Sweden)

    Masahiro Yasukawa

    2018-05-01

    Full Text Available In this study, pressure-retarded osmosis (PRO performance of a 5-inch scale cellulose triacetate (CTA-based hollow fiber (HF membrane module was evaluated under a wide range of operating conditions (0.0–6.0 MPa of applied pressure, 0.5–2.0 L/min feed solution (FS inlet flow rate, 1.0–6.0 L/min DS inlet flow rate and 0.1–0.9 M draw solution (DS concentration by using a PRO/reverse osmosis (RO hybrid system. The subsequent RO system for DS regeneration enabled the evaluation of the steady-stated module performance. In the case of pilot-scale module operation, since the DS dilution and the feed solution (FS up-concentration had occurred and was not negligible, unlike the lab-scale experiment, PRO performance strongly depended on operating conditions such as inlet flow rates of both the DS and FS concentration. To compare the module performance with different configurations, we proposed a converted parameter in which a difference of the packing density between the spiral wound (SW and the HF module was fairly considered. In the case of HF configuration, because of high packing density, volumetric-based performance was higher than that of SW module, that is, the required number of the module would be less than that of SW module in a full-scale PRO plant.

  20. Membrane morphology and topology for fouling control in Reverse Osmosis filtration systems

    Science.gov (United States)

    Ling, Bowen; Battiato, Ilenia

    2017-11-01

    Reverse Osmosis Membrane (ROM) filtration systems are widely utilized in waste-water recovery, seawater desalination, landfill water treatment, etc. During filtration, the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. Design and optimization of ROM filtration systems aim at reducing membrane fouling by studying the coupling between membrane structure, local flow field and foulant adsorption patterns. Yet, current studies focus exclusively on oversimplified steady-state models that ignore any dynamic coupling between fluid flow and transport through the membrane. In this work, we develop a customized solver (SUMembraneFoam) under OpenFOAM to solve the transient equations. The simulation results not only predict macroscopic quantities (e.g. permeate flux, pressure drop, etc.) but also show an excellent agreement with the fouling patterns observed in experiments. It is observed that foulant deposition is strongly controlled by the local shear stress on the membrane, and channel morphology or membrane topology can be modified to control the shear stress distribution and reduce fouling. Finally, we identify optimal regimes for design.

  1. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb$_{3}$Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, a...

  2. Inlet effect induced ''upstream'' critical heat flux in smooth tubes

    International Nuclear Information System (INIS)

    Kitto, J.B. Jr.

    1986-01-01

    An unusual form of ''upstream'' critical heat flux (CHF) has been observed and directly linked to the inlet flow pattern during an experimental study of high pressure (17 - 20 MPa) water flowing through a vertical 38.1 mm ID smooth bore tube with uniform axial and nonuniform circumferential heating. These upstream CHF data were characterized by temperature excursions which initially occurred at a relatively fixed axial location in the middle of the test section while the outlet and inlet heated lengths experienced no change. A rifled tube inlet flow conditioner could be substituted for a smooth tube section to generate the desired swirling inlet flow pattern. The upstream CHF data were found to match data from a uniformly heated smooth bore tube when the comparison was made using the peak local heat flux. The mechanism proposed to account for the upstream CHF observations involves the destructive interference between the decaying swirl flow and the secondary circumferential liquid flow field resulting from the one-sided heating

  3. Calculating residual flows through a multiple-inlet system: the conundrum of the tidal period

    Science.gov (United States)

    Duran-Matute, Matias; Gerkema, Theo

    2015-11-01

    The concept of residual, i.e., tidally-averaged, flows through a multiple inlet system is reappraised. The evaluation of the residual through-flow depends on the time interval over which is integrated, in other words, on how one defines the tidal period. It is demonstrated that this definition is ambiguous and that different definitions (based on, e.g., high waters, slack tides, etc.) yield very different results for the residual, also in terms of their long-term statistical properties (median and standard deviation). A basin-wide applicable method of defining the tidal period, in terms of enclosed water volume, is analyzed. We compare the different methods on the basis of high-resolution model results for the Western Dutch Wadden Sea. The multitude of tidal constituents together with wind variability creates broad distributions for the residuals, with standard deviations much larger than the mean or median residual flows.

  4. Turing Incompleteness of Asynchronous P Systems with Active Membranes

    OpenAIRE

    Leporati, Alberto; Manzoni, Luca; Porreca, Antonio E.

    2013-01-01

    We prove that asynchronous P systems with active membranes without divi- sion rules can be simulated by place/transition Petri nets, and hence are computationally weaker than Turing machines. This result holds even if the synchronisation mechanisms provided by electrical charges and membrane dissolution are exploited.

  5. Understanding processes controlling sediment transports at the mouth of a highly energetic inlet system (San Francisco Bay, CA)

    Science.gov (United States)

    Elias, Edwin P.L.; Hansen, Jeff E.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    San Francisco Bay is one of the largest estuaries along the U.S. West Coast and is linked to the Pacific Ocean through the Golden Gate, a 100 m deep bedrock inlet. A coupled wave, flow and sediment transport model is used to quantify the sediment linkages between San Francisco Bay, the Golden Gate, and the adjacent open coast. Flow and sediment transport processes are investigated using an ensemble average of 24 climatologically derived wave cases and a 24.8 h representative tidal cycle. The model simulations show that within the inlet, flow and sediment transport is tidally dominated and driven by asymmetry of the ebb and flood tides. Peak ebb velocities exceed the peak flood velocities in the narrow Golden Gate channel as a result of flow convergence and acceleration. Persistent flow and sediment gyres at the headland tips are formed that limit sediment transfer from the ebb-tidal delta to the inlet and into the bay. The residual transport pattern in the inlet is dominated by a lateral segregation with a large ebb-dominant sediment transport (and flow) prevailing along the deeper north side of the Golden Gate channel, and smaller flood dominant transports along the shallow southern margin. The seaward edge of the ebb-tidal delta largely corresponds to the seaward extent of strong tidal flows. On the ebb-tidal delta, both waves and tidal forcing govern flow and sediment transport. Wave focusing by the ebb-tidal delta leads to strong patterns of sediment convergence and divergence along the adjacent Ocean Beach.

  6. Natural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems

    Directory of Open Access Journals (Sweden)

    Vedat Uyak

    2014-01-01

    Full Text Available The objective of this study was to investigate powdered activated carbon (PAC contribution to natural organic matter (NOM removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters.

  7. Influence of high range of mass transfer coefficient and convection heat transfer on direct contact membrane distillation performance

    KAUST Repository

    Lee, Jung Gil; Jeong, Sanghyun; Alsaadi, Ahmad Salem; Ghaffour, NorEddine

    2017-01-01

    (>2.1×10−6kg/m2sPa: membranes under development) were simulated using an experimentally validated model at different ranges of convection heat transfer by varying the inlet flow rates and spacer enhancement factor. The effect of mass transfer

  8. Classifier utility modeling and analysis of hypersonic inlet start/unstart considering training data costs

    Science.gov (United States)

    Chang, Juntao; Hu, Qinghua; Yu, Daren; Bao, Wen

    2011-11-01

    Start/unstart detection is one of the most important issues of hypersonic inlets and is also the foundation of protection control of scramjet. The inlet start/unstart detection can be attributed to a standard pattern classification problem, and the training sample costs have to be considered for the classifier modeling as the CFD numerical simulations and wind tunnel experiments of hypersonic inlets both cost time and money. To solve this problem, the CFD simulation of inlet is studied at first step, and the simulation results could provide the training data for pattern classification of hypersonic inlet start/unstart. Then the classifier modeling technology and maximum classifier utility theories are introduced to analyze the effect of training data cost on classifier utility. In conclusion, it is useful to introduce support vector machine algorithms to acquire the classifier model of hypersonic inlet start/unstart, and the minimum total cost of hypersonic inlet start/unstart classifier can be obtained by the maximum classifier utility theories.

  9. Detection of inhomogeneities in membrane ohmic resistance in geometrically complex systems

    DEFF Research Database (Denmark)

    Svirskis, G; Hounsgaard, J; Gutman, A

    2000-01-01

    DC field-evoked transients in arbitrarily shaped neurons and syncytia were analyzed theoretically. In systems with homogeneous passive membrane properties, the transients develop much faster than the membrane discharges. Conductance of the proximal membrane could be larger due to the injury impos...

  10. Development of technique to apply induction heating stress improvement to recirculation inlet nozzle

    International Nuclear Information System (INIS)

    Chiba, Kunihiko; Nihei, Kenichi; Ootaka, Minoru

    2009-01-01

    Stress corrosion cracking (SCC) have been found in the primary loop recirculation (PLR) systems of boiling water reactors (BWR). Residual stress in welding heat-affected zone is one of the factors of SCC, and the residual stress improvement is one of the most effective methods to prevent SCC. Induction heating stress improvement (IHSI) is one of the techniques to improve reduce residual stress. However, it is difficult to apply IHSI to the place such as the recirculation inlet nozzle where the flow stagnates. In this present study, the technique to apply IHSI to the recirculation inlet nozzle was developed using water jet which blowed into the crevice between the nozzle safe end and the thermal sleeve. (author)

  11. A life-cycle model for wave-dominated tidal inlets along passive margin coasts of North America

    Science.gov (United States)

    Seminack, Christopher T.; McBride, Randolph A.

    2018-03-01

    A regional overview of 107 wave-dominated tidal inlets along the U.S. Atlantic coast, U.S. Gulf of Mexico coast, and Canadian Gulf of St. Lawrence coast yielded a generalized wave-dominated tidal inlet life-cycle model that recognized the rotational nature of tidal inlets. Tidal inlets are influenced by concurrently acting processes transpiring over two timescales: short-term, event-driven processes and long-term, evolutionary processes. Wave-dominated tidal inlets are classified into three rotational categories based on net longshore sediment transport direction and rotation direction along the landward (back-barrier) portion of the inlet channel: downdrift channel rotation, updrift channel rotation, or little-to-no channel rotation. Lateral shifting of the flood-tidal delta depocenter in response to available estuarine accommodation space appears to control inlet channel rotation. Flood-tidal delta deposits fill accommodation space locally within the estuary (i.e., creating bathymetric highs), causing the tidal-inlet channel to rotate. External influences, such as fluvial discharge, pre-existing back-barrier channels, and impeding salt marsh will also influence inlet-channel rotation. Storm events may rejuvenate the tidal inlet by scouring sediment within the flood-tidal delta, increasing local accommodation space. Wave-dominated tidal inlets are generally unstable and tend to open, concurrently migrate laterally and rotate, infill, and close. Channel rotation is a primary reason for wave-dominated tidal inlet closure. During rotation, the inlet channel lengthens and hydraulic efficiency decreases, thus causing tidal prism to decrease. Tidal prism, estuarine accommodation space, and sediment supply to the flood-tidal delta are the primary variables responsible for tidal inlet rotation. Stability of wave-dominated tidal inlets is further explained by: stability (S) = tidal prism (Ω) + estuarine accommodation space (V) - volume of annual sediment supply (Mt

  12. Design and simulation of the surface shape control system for membrane mirror

    Science.gov (United States)

    Zhang, Gengsheng; Tang, Minxue

    2009-11-01

    The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.

  13. High anisotropy of flow-aligned bicellar membrane systems

    KAUST Repository

    Kogan, Maxim; Nordé n, Bengt; Beke-Somfai, Tamá s

    2013-01-01

    In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far

  14. Thermography of the New River Inlet plume and nearshore currents

    Science.gov (United States)

    Chickadel, C.; Jessup, A.

    2012-12-01

    As part of the DARLA and RIVET experiments, thermal imaging systems mounted on a tower and in an airplane captured water flow in the New River Inlet, NC, USA. Kilometer-scale, airborne thermal imagery of the inlet details the ebb flow of the estuarine plume water mixing with ocean water. Multiple fronts, corresponding to the preferred channels through the ebb tidal delta, are imaged in the aerial data. A series of internal fronts suggest discreet sources of the tidal plume that vary with time. Focused thermal measurements made from a tower on the south side of the inlet viewed an area within a radius of a few hundred meters. Sub-meter resolution video from the tower revealed fine-scale flow features and the interaction of tidal exchange and wave-forced surfzone currents. Using the tower and airborne thermal image data we plan to provide geophysical information to compare with numerical models and in situ measurements made by other investigators. From the overflights, we will map the spatial and temporal extent of the estuarine plume to correlate with tidal phase and local wind conditions. From the tower data, we will investigate the structure of the nearshore flow using a thermal particle image velocimetry (PIV) technique, which is based on tracking motion of the surface temperature patterns. Long term variability of the mean and turbulent two-dimensional PIV currents will be correlated to local wave, tidal, and wind forcing parameters.

  15. Euler Calculations at Off-Design Conditions for an Inlet of Inward Turning RBCC-SSTO Vehicle

    Science.gov (United States)

    Takashima, N.; Kothari, A. P.

    1998-01-01

    The inviscid performance of an inward turning inlet design is calculated computationally for the first time. Hypersonic vehicle designs based on the inward turning inlets have been shown analytically to have increased effective specific impulse and lower heat load than comparably designed vehicles with two-dimensional inlets. The inward turning inlets are designed inversely from inviscid stream surfaces of known flow fields. The computational study is performed on a Mach 12 inlet design to validate the performance predicted by the design code (HAVDAC) and calculate its off-design Mach number performance. The three-dimensional Euler equations are solved for Mach 4, 8, and 12 using a software package called SAM, which consists of an unstructured mesh generator (SAMmesh), a three-dimensional unstructured mesh flow solver (SAMcfd), and a CAD-based software (SAMcad). The computed momentum averaged inlet throat pressure is within 6% of the design inlet throat pressure. The mass-flux at the inlet throat is also within 7 % of the value predicted by the design code thereby validating the accuracy of the design code. The off-design Mach number results show that flow spillage is minimal, and the variation in the mass capture ratio with Mach number is comparable to an ideal 2-D inlet. The results from the inviscid flow calculations of a Mach 12 inward turning inlet indicate that the inlet design has very good on and off-design performance which makes it a promising design candidate for future air-breathing hypersonic vehicles.

  16. Development of membrane moisture separator for BWR off-gas system

    International Nuclear Information System (INIS)

    Ogata, H.; Kawamura, S.; Kumasaka, M.; Nishikubo, M.

    2001-01-01

    In BWR plant off-gas treatment systems, dehumidifiers are used to maintain noble gas adsorption efficiency in the first half of the charcoal hold-up units. From the perspective of simplifying and reducing the cost of such a dehumidification system, Japanese BWR utilities and plant fabricators have been developing a dehumidification system employing moisture separation membrane of the type already proven in fields such as medical instrumentation and precision measuring apparatus. The first part of this development involved laboratory testing to simulate the conditions found in an actual off-gas system, the results of which demonstrated satisfactory results in terms of moisture separation capability and membrane durability, and suggested favorable prospects for application in actual off-gas systems. Further, in-plant testing to verify moisture separation capability and membrane durability in the presence of actual gases is currently underway, with results so far suggesting that the system is capable of obtaining good moisture separation capability. (author)

  17. General Investigation of Tidal Inlets: Stability of Selected United States Tidal Inlets

    Science.gov (United States)

    1991-09-01

    characteristics in relation to the variability of the hydr; aulic parameters. An inlet can fall into any of four "stability" classes 48 Orientation Parameter 80...nlot he ~ :Ke(: t 93. If a fairly straight coast with uniform offshore slopes and a regionally homogeneous wave climate is considered, a reasonable...expectation is LhaL the longshore transport quantities and directions are homogeneous. Given a long-term variability in wave climate , a corresponding

  18. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Science.gov (United States)

    2010-07-01

    ... Section 77.303 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  19. Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development

    Energy Technology Data Exchange (ETDEWEB)

    Pschirer, James [Alstom Power Inc., Windsor, CT (United States); Burgess, Joshua [Alstom Power Inc., Windsor, CT (United States); Schrecengost, Robert [Alstom Power Inc., Windsor, CT (United States)

    2017-08-16

    Alstom Power Inc., a wholly owned subsidiary of the General Electric Company (GE), has completed the project “Advanced Ultrasupercritical (AUSC) Tube Membrane Panel Development” under U.S. Department of Energy (DOE) Award Number DE-FE0024076. This project was part of DOE’s Novel Crosscutting Research and Development to Support Advanced Energy Systems program. AUSC Tube Membrane Panel Development was a two and one half year project to develop and verify the manufacturability and serviceability of welded tube membrane panels made from high performance materials suitable for the AUSC steam cycles, defined as high pressure steam turbine inlet conditions of 700-760°C (1292-1400°F) and 24.5-35MPa (3500-5000psi). The difficulty of this challenge lies in the fact that the membrane-welded construction imposes demands on the materials that are unlike any that exist in other parts of the boiler. Tube membrane panels have been designed, fabricated, and installed in boilers for over 50 years with relatively favorable experience when fabricated from carbon and Cr-Mo low alloy steels. The AUSC steam cycle requires membrane tube panels fabricated from materials that have not been used in a weldment with metal temperatures in the range of 582-610°C (1080-1130°F). Fabrication materials chosen for the tubing were Grade 92 and HR6W. Grade 92 is a creep strength enhanced ferritic Cr-Mo alloy and HR6W is a high nickel alloy. Once the materials were chosen, GE performed the engineering design of the panels, prepared shop manufacturing drawings, and developed manufacturing and inspection plans. After the materials were purchased, GE manufactured and inspected the tube membrane panels, determined if post fabrication heat treatment of the tube membrane panels was needed, performed pre- and post-weld heat treatment on the Grade 92 panels, conducted final nondestructive inspection of any heat treated tube membrane panels, conducted destructive inspection of the completed tube

  20. Sorting of bacterial lipoproteins to the outer membrane by the Lol system.

    Science.gov (United States)

    Narita, Shin-ichiro; Tokuda, Hajime

    2010-01-01

    Bacterial lipoproteins comprise a subset of membrane proteins with a lipid-modified cysteine residue at their amino termini through which they are anchored to the membrane. In Gram-negative bacteria, lipoproteins are localized on either the inner or the outer membrane. The Lol system is responsible for the transport of lipoproteins to the outer membrane.The Lol system comprises an inner-membrane ABC transporter LolCDE complex, a periplasmic carrier protein, LolA, and an outer membrane receptor protein, LolB. Lipoproteins are synthesized as precursors in the cytosol and then translocated across the inner membrane by the Sec translocon to the outer leaflet of the inner membrane, where lipoprotein precursors are processed to mature lipoproteins. The LolCDE complex then mediates the release of outer membrane-specific lipoproteins from the inner membrane while the inner membrane-specific lipoproteins possessing Asp at position 2 are not released by LolCDE because it functions as a LolCDE avoidance signal, causing the retention of these lipoproteins in the inner membrane. A water-soluble lipoprotein-LolA complex is formed as a result of the release reaction mediated by LolCDE. This complex traverses the hydrophilic periplasm to reach the outer membrane, where LolB accepts a lipoprotein from LolA and then catalyzes its incorporation into the inner leaflet of the outer membrane.

  1. Biofouling investigation in membrane filtration systems using Optical Coherence Tomography (OCT)

    KAUST Repository

    Fortunato, Luca

    2017-10-01

    Biofouling represents the main problem in membrane filtration systems. Biofouling arises when the biomass growth negatively impacts the membrane performance parameters (i.e. flux decrease and feed channel pressure drop). Most of the available techniques for characterization of biofouling involve membrane autopsies, providing information ex-situ destructively at the end of the process. OCT, is non-invasive imaging technique, able to acquire scans in-situ and non-destructively. The objective of this study was to evaluate the suitability of OCT as in-situ and non-destructive tool to gain a better understanding of biofouling behavior in membrane filtration systems. The OCT was employed to study the fouling behavior in two different membrane configurations: (i) submerged flat sheet membrane and (ii) spacer filled channel. Through the on-line acquisition of OCT scans and the study of the biomass morphology, it was possible to relate the impact of the fouling on the membrane performance. The on-line monitoring of biofilm formation on a flat sheet membrane was conducted in a gravity-driven submerged membrane bioreactor (SMBR) for 43 d. Four different phases were observed linking the variations in permeate flux with changes in biofilm morphology. Furthermore, the biofilm morphology was used in computational fluid dynamics (CFD) simulation to better understand the role of biofilm structure on the filtration mechanisms. The time-resolved OCT analysis was employed to study the biofouling development at the early stage. Membrane coverage and average biofouling layer thickness were found to be linearly correlated with the permeate flux pattern. An integrated characterization methodology was employed to characterize the fouling on a flat sheet membrane, involving the use of OCT as first step followed by membrane autopsies, revealing the presence of a homogeneous layer on the surface. In a spacer filled channel a 3D OCT time series analysis of biomass development under

  2. Surface Water Quality Survey of Northern Indian River Lagoon from Sebastian Inlet to Mosquito Lagoon

    Science.gov (United States)

    Weaver, R. J.; Webb, B. M.

    2012-12-01

    Following news of an emerging brown tide algal bloom in the northern Indian River Lagoon (IRL), researchers sought to gain insight into the surface water quality in the IRL, as well as the extent of the algae coverage. A Portable SeaKeeper from YSI, mounted to a personal watercraft-based coastal profiling system, autonomously collected and analyzed the surface water. The system operates by recording sample data every 12 seconds while continuously underway at speeds up to and greater than 50 km/hr. The researchers covered a transect that started at Sebastian Inlet and followed a zig-zag path extending up through the Haulover Canal and into the Mosquito Lagoon. The survey path covered 166.7 km, and collected 2248 samples. Along the way stops were made at water quality stations used by the Saint John's River Water Management District, so that the data collected can be incorporated into ongoing monitoring efforts. The system analyzed the surface water for dissolved oxygen, pH, chlorophyll-a, salinity, temperature, turbidity, refined fuels, and CDOM. In the two days following the lagoon survey, the inlets at Port Canaveral and Sebastian were also surveyed for tidal currents and hydrography. The IRL transect survey data recorded evidence of the southern extent of the algae bloom in both chlorophyll-a and pH levels. Visual evidence of the bloom was striking as the water in the northern IRL turned a milk chocolaty brown color. Chlorophyll-a levels in the two inlets suggested bloom activity at these locations; however this bloom was different. This oceanic bloom was a result of a persistent upwelling event along the East Florida shelf, and the color was a paler green-yellow. The near-synoptic nature of the comprehensive lagoon survey, conducted in just over 7 hours, allows researchers to obtain a better understanding of water quality in coastal lagoons. Elevated levels of salinity, temperature, and refined fuels in the northern IRL indicate a low exchange rate and absence

  3. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Computational fluid dynamics simulations are performed as part of a process to design a vortex generator array for a two-dimensional inlet for Mach 1.6. The objective is to improve total pressure recovery a on at the engine face of the inlet. Both vane-type and ramp-type vortex generators are examined.

  4. Parametric Data from a Wind Tunnel Test on a Rocket-Based Combined-Cycle Engine Inlet

    Science.gov (United States)

    Fernandez, Rene; Trefny, Charles J.; Thomas, Scott R.; Bulman, Mel J.

    2001-01-01

    A 40-percent scale model of the inlet to a rocket-based combined-cycle (RBCC) engine was tested in the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT). The full-scale RBCC engine is scheduled for test in the Hypersonic Tunnel Facility (HTF) at NASA Glenn's Plum Brook Station at Mach 5 and 6. This engine will incorporate the configuration of this inlet model which achieved the best performance during the present experiment. The inlet test was conducted at Mach numbers of 4.0, 5.0, 5.5, and 6.0. The fixed-geometry inlet consists of an 8 deg.. forebody compression plate, boundary layer diverter, and two compressive struts located within 2 parallel sidewalls. These struts extend through the inlet, dividing the flowpath into three channels. Test parameters investigated included strut geometry, boundary layer ingestion, and Reynolds number (Re). Inlet axial pressure distributions and cross-sectional Pitot-pressure surveys at the base of the struts were measured at varying back-pressures. Inlet performance and starting data are presented. The inlet chosen for the RBCC engine self-started at all Mach numbers from 4 to 6. Pitot-pressure contours showed large flow nonuniformity on the body-side of the inlet. The inlet provided adequate pressure recovery and flow quality for the RBCC cycle even with the flow separation.

  5. Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: influence of wastewater salinity variation.

    Science.gov (United States)

    Di Trapani, Daniele; Di Bella, Gaetano; Mannina, Giorgio; Torregrossa, Michele; Viviani, Gaspare

    2014-06-01

    Two pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed. Both plants showed very high efficiency in terms of carbon and ammonium removal and the gradual salinity increase led to a good acclimation of the biomass, as confirmed by the respirometric tests. Significant biofilm detachments from carriers were experienced, which contributed to increase the irreversible superficial cake deposition. However, this aspect prevented the pore fouling tendency in the membrane module of MB-MBR system. On the contrary, the MBR pilot, even showing a lower irreversible cake deposition, was characterized by a higher pore fouling tendency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    Science.gov (United States)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  7. Design of a reactor inlet temperature controller for EBR-2 using state feedback

    International Nuclear Information System (INIS)

    Vilim, R.B.; Planchon, H.P.

    1990-01-01

    A new reactor inlet temperature controller for pool type liquid-metal reactors has been developed and will be tested in EBR-II. The controller makes use of modern control techniques to take into account stratification and mixing in the cold pool during normal operation. Secondary flowrate is varied so that the reactor inlet temperature tracks a setpoint while reactor outlet temperature, primary flowrate and secondary cold leg temperature are treated as exogenous disturbances and are free to vary. A disturbance rejection technique minimizes the effect of these disturbances on inlet temperature. A linear quadratic regulator improves inlet temperature response. Tests in EBR-II will provide experimental data for assessing the performance improvements that modern control can produce over the existing EBR-II analog inlet temperature controller. 10 refs., 8 figs

  8. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States); Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Kim, Gyu Dong [RTI International, Research Triangle Park, NC (United States)

    2017-03-31

    In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade waste heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m2·h) for flat-sheet membranes and >20 L/(m2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data

  9. Phycocyanin stability in microcapsules processed by spray drying method using different inlet temperature

    Science.gov (United States)

    Purnamayati, L.; Dewi, EN; Kurniasih, R. A.

    2018-02-01

    Phycocyanin is natural blue colorant which easily damages by heat. The inlet temperature of spray dryer is an important parameter representing the feature of the microcapsules.The aim of this study was to investigate the phycocyanin stability of microcapsules made from Spirulina sp with maltodextrin and κ-Carrageenan as the coating material, processed by spray drying method in different inlet temperature. Microcapsules were processed in three various inlet temperaturei.e. 90°C, 110°C, and 130°C, respectively. The results indicated that phycocyanin microcapsule with 90°C of inlet temperature produced the highest moisture content, phycocyanin concentration and encapsulation efficiency of 3,5%, 1,729% and 29,623%, respectively. On the other hand, the highest encapsulation yield was produced by 130°C of theinlet temperature of 29,48% and not significantly different with 110°C. The results of Scanning Electron Microscopy (SEM) showed that phycocyanin microcapsules with 110°C of inlet temperature produced the most rounded shape. To sum up, 110°C was the best inlet temperature to phycocyanin microencapsulation by the spray dryer.

  10. Cellulose Nanocrystal Membranes as Excipients for Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Ananda M. Barbosa

    2016-12-01

    Full Text Available In this work, cellulose nanocrystals (CNCs were obtained from flax fibers by an acid hydrolysis assisted by sonochemistry in order to reduce reaction times. The cavitation inducted during hydrolysis resulted in CNC with uniform shapes, and thus further pretreatments into the cellulose are not required. The obtained CNC exhibited a homogeneous morphology and high crystallinity, as well as typical values for surface charge. Additionally, CNC membranes were developed from CNC solution to evaluation as a drug delivery system by the incorporation of a model drug. The drug delivery studies were carried out using chlorhexidine (CHX as a drug and the antimicrobial efficiency of the CNC membrane loaded with CHX was examined against Gram-positive bacteria Staphylococcus aureus (S. Aureus. The release of CHX from the CNC membranes is determined by UV-Vis. The obtaining methodology of the membranes proved to be simple, and these early studies showed a potential use in antibiotic drug delivery systems due to the release kinetics and the satisfactory antimicrobial activity.

  11. Submerged membrane distillation for seawater desalination

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    A submerged membrane distillation (SMD) process for fresh water production from Red Sea water using commercially available hollow fiber membranes has been successfully employed and compared with the conventional direct contact membrane distillation (DCMD) process. The hollow fiber membranes have been characterized for its morphology using field effect scanning electron microscope. In SMD process, a bunch of hollow fiber membranes are glued together at both ends to get a simplified open membrane module assembly submerged into the coolant tank equipped with a mechanical stirrer. Hot feed stream is allowed to pass through the lumen side of the membrane using a feed pump. Continuous stirring at the coolant side will reduce the temperature and concentration polarization. During the conventional DCMD process, using feed-coolant streams with co-current and counter-current flows has been tested and the results are compared in this study. In SMD process, a water vapor flux of 10.2 kg m-2 h-1 is achieved when using a feed inlet temperature of 80°C and coolant temperature of 20°C. Under the same conditions, during conventional DCMD process, a water vapor flux of 11.6 and 10.1 kg m-2 h-1 were observed during counter-current and co-current flow streams, respectively. Results show that the water production in the SMD process is comparable with the conventional DCMD process, while the feed-coolant flow streams are in the co-current direction. During conventional DCMD operation, a 15% increase in the water production is observed when feed-coolant streams are in the counter-current direction compared to the co-current direction. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  12. Submerged membrane distillation for seawater desalination

    KAUST Repository

    Francis, Lijo

    2014-08-11

    A submerged membrane distillation (SMD) process for fresh water production from Red Sea water using commercially available hollow fiber membranes has been successfully employed and compared with the conventional direct contact membrane distillation (DCMD) process. The hollow fiber membranes have been characterized for its morphology using field effect scanning electron microscope. In SMD process, a bunch of hollow fiber membranes are glued together at both ends to get a simplified open membrane module assembly submerged into the coolant tank equipped with a mechanical stirrer. Hot feed stream is allowed to pass through the lumen side of the membrane using a feed pump. Continuous stirring at the coolant side will reduce the temperature and concentration polarization. During the conventional DCMD process, using feed-coolant streams with co-current and counter-current flows has been tested and the results are compared in this study. In SMD process, a water vapor flux of 10.2 kg m-2 h-1 is achieved when using a feed inlet temperature of 80°C and coolant temperature of 20°C. Under the same conditions, during conventional DCMD process, a water vapor flux of 11.6 and 10.1 kg m-2 h-1 were observed during counter-current and co-current flow streams, respectively. Results show that the water production in the SMD process is comparable with the conventional DCMD process, while the feed-coolant flow streams are in the co-current direction. During conventional DCMD operation, a 15% increase in the water production is observed when feed-coolant streams are in the counter-current direction compared to the co-current direction. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  13. Nonlinear Effects in Osmotic Volume Flows of Electrolyte Solutions through Double-Membrane System

    NARCIS (Netherlands)

    Slezak, A.; Jasik-Slezak, J.; Grzegorczyn, S.; Slezak-Prochazka, I.

    The results of experimental study of volume osmotic flows in a double-membrane system are presented in this article. The double-membrane system consists of two membranes (M-u, M-d) oriented in horizontal planes and three identical compartments (u, m, d), containing unstirred binary or ternary ionic

  14. Converting differential-equation models of biological systems to membrane computing.

    Science.gov (United States)

    Muniyandi, Ravie Chandren; Zin, Abdullah Mohd; Sanders, J W

    2013-12-01

    This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Review on strategies for biofouling mitigation in spiral wound membrane systems

    KAUST Repository

    Bucs, Szilard

    2018-02-01

    Because of the uneven distribution of fresh water in time and space, a large number of regions are experiencing water scarcity and stress. Membrane based desalination technologies have the potential to solve the fresh water crisis in coastal areas. However, in many cases membrane performance is restricted by biofouling. The objective of this review is to provide an overview on the state of the art strategies to control biofouling in spiral wound reverse osmosis membrane systems and point to possible future research directions. A critical review on biofouling control strategies such as feed water pre-treatment, membrane surface modification, feed spacer geometry optimization and hydrodynamics in spiral wound membrane systems is presented. In conclusion, biofouling cannot be avoided in the long run, and thus biofouling control strategies should focus on delaying the biofilm formation, reducing its impact on membrane performance and enhancing biofilm removal by advanced cleaning strategies. Therefore, future studies should aim on: (i) biofilm structural characterization; (ii) understanding to what extent biofilm properties affect membrane filtration performance, and (iii) developing methods to engineer biofilm properties such that biofouling would have only a low or delayed impact on the filtration process and accumulated biomass can be easily removed.

  16. Ion transport membrane reactor systems and methods for producing synthesis gas

    Science.gov (United States)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  17. Evaluation of PM-10 commercial inlets for new surveillance air sampler

    International Nuclear Information System (INIS)

    Langer, G.

    1987-01-01

    The purpose of this project is to adapt an existing sampling inlet or develop a new one to collect airborne dust particles <10-μm aerodynamic equivalent diameter. These inlets are necessary to meet new EPA and DOE guidelines for surveillance of nuclear facilities

  18. Application of monochloramine for wastewater reuse: Effect on biostability during transport and biofouling in RO membranes

    KAUST Repository

    Farhat, Nadia

    2018-02-23

    The rising demand for clean and safe water has increased the interest in advanced wastewater treatment and reuse. Reverse osmosis (RO) can provide reliable and high-quality water from treated wastewater. Biofouling inevitably occurs, certainly with wastewater effluents, resulting in RO performance decline and operational problems. Chlorination of feed water has been commonly applied to limit biological growth. However, chlorine use may lead to a loss of membrane integrity of RO systems. In this study the potential of monochloramine as an alternative for chlorine was studied by (i) evaluating the biological stability of a full-scale wastewater membrane bioreactor (MBR) effluent during transport over 13 km to a full-scale RO plant and (ii) assessing the biofouling control potential in membrane fouling simulator (MFS) and pilot-scale RO installation. Microbial water analysis was performed on samples taken at several locations in the full-scale water reuse system (MBR effluent, during transport, and at the RO inlet and outlet) using a suite of tools including heterotrophic plate counts (HPC), adenosine triphosphate (ATP), flow cytometry (FCM), and 16 S rRNA gene pyrosequencing. Growth potential tests were used to evaluate the effect of monochloramine presence and absence on bacterial growth. Results showed limited changes in the microbial water quality in the presence of monochloramine. MFS studies showed that membrane biofouling could be effectively repressed by monochloramine over prolonged time periods. The normalized salt passage in a pilot RO system with monochloramine dosage was constant over a one year period (data of last 130 days presented), demonstrating that no membrane damage occurred. From this study, it can be concluded that monochloramine dosage in wastewater applications is effective in controlling biofouling in RO systems and maintaining a monochloramine residual during water transport provides biologically stable water.

  19. High anisotropy of flow-aligned bicellar membrane systems

    KAUST Repository

    Kogan, Maxim

    2013-10-01

    In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic orientation. Recently, it was shown that bicelles could be aligned also by shear flow in a Couette flow cell, making it applicable to structural and biophysical studies by polarized light spectroscopy. Considering the sensitivity of this lipid system to small variations in composition and physicochemical parameters, efficient use of such a flow-cell method with coupled techniques will critically depend on the detailed understanding of how the lipid systems behave under flow conditions. In the present study we have characterized the flow alignment behavior of the commonly used dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine (DMPC/DHPC) bicelle system, for various temperatures, lipid compositions, and lipid concentrations. We conclude that at optimal flow conditions the selected bicellar systems can produce the most efficient flow alignment out of any lipid systems used so far. The highest degree of orientation of DMPC/DHPC samples is noticed in a narrow temperature interval, at a practical temperature around 25 C, most likely in the phase transition region characterized by maximum sample viscosity. The change of macroscopic orientation factor as function of the above conditions is now described in detail. The increase in macroscopic alignment observed for bicelles will most likely allow recording of higher resolution spectra on membrane systems, which provide deeper structural insight and analysis into properties of biomolecules interacting with solution phase lipid membranes. © 2013 Elsevier Ireland Ltd.

  20. Air Motion and Thermal Environment in Pig Housing Facilities with Diffuse Inlet

    DEFF Research Database (Denmark)

    Jacobsen, Lis

    A ventilation system with ambient air supply through diffuse ceiling used in pig production facilities is presented. The climatic conditions were examined both experimentally and numerically in an full scale experimental room and the inlet boundary conditions of the diffuse inlet were examined...... in ambient temperature and air exchange rate. The effect of housing equipment on environmental conditions has been examined both experimental and numerically and it was found that impervious housing equipment has a significant effect on the climatic conditions close to the wall in the occupational zone...... in a wind tunnel model. In the full scale experiments the focus has been on the correlation between variations in ambient climatic conditions and changes in environmental condition in the occupational zone. It was found that the environmental conditions in the occupational zone were independent on changes...

  1. Development and Characterization a Single-Active-Chamber Piezoelectric Membrane Pump with Multiple Passive Check Valves

    Directory of Open Access Journals (Sweden)

    Ronghui Zhang

    2016-12-01

    Full Text Available In order to prevent the backward flow of piezoelectric pumps, this paper presents a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Under the condition of a fixed total number of passive check valves, by means of changing the inlet valves and outlet valves’ configuration, the pumping characteristics in terms of flow rate and backpressure are experimentally investigated. Like the maximum flow rate and backpressure, the testing results show that the optimal frequencies are significantly affected by changes in the number inlet valves and outlet valves. The variation ratios of the maximum flow rate and the maximum backpressure are up to 66% and less than 20%, respectively. Furthermore, the piezoelectric pump generally demonstrates very similar flow rate and backpressure characteristics when the number of inlet valves in one kind of configuration is the same as that of outlet valves in another configuration. The comparison indicates that the backflow from the pumping chamber to inlet is basically the same as the backflow from the outlet to the pumping chamber. No matter whether the number of inlet valves or the number of outlet valves is increased, the backflow can be effectively reduced. In addition, the backpressure fluctuation can be significantly suppressed with an increase of either inlet valves or outlet valves. It also means that the pump can prevent the backflow more effectively at the cost of power consumption. The pump is very suitable for conditions where more accurate flow rates are needed and wear and fatigue of check valves often occur.

  2. Development and Characterization a Single-Active-Chamber Piezoelectric Membrane Pump with Multiple Passive Check Valves.

    Science.gov (United States)

    Zhang, Ronghui; You, Feng; Lv, Zhihan; He, Zhaocheng; Wang, Haiwei; Huang, Ling

    2016-12-12

    In order to prevent the backward flow of piezoelectric pumps, this paper presents a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Under the condition of a fixed total number of passive check valves, by means of changing the inlet valves and outlet valves' configuration, the pumping characteristics in terms of flow rate and backpressure are experimentally investigated. Like the maximum flow rate and backpressure, the testing results show that the optimal frequencies are significantly affected by changes in the number inlet valves and outlet valves. The variation ratios of the maximum flow rate and the maximum backpressure are up to 66% and less than 20%, respectively. Furthermore, the piezoelectric pump generally demonstrates very similar flow rate and backpressure characteristics when the number of inlet valves in one kind of configuration is the same as that of outlet valves in another configuration. The comparison indicates that the backflow from the pumping chamber to inlet is basically the same as the backflow from the outlet to the pumping chamber. No matter whether the number of inlet valves or the number of outlet valves is increased, the backflow can be effectively reduced. In addition, the backpressure fluctuation can be significantly suppressed with an increase of either inlet valves or outlet valves. It also means that the pump can prevent the backflow more effectively at the cost of power consumption. The pump is very suitable for conditions where more accurate flow rates are needed and wear and fatigue of check valves often occur.

  3. Performance and Adaptive Surge-Preventing Acceleration Prediction of a Turboshaft Engine under Inlet Flow Distortion

    Directory of Open Access Journals (Sweden)

    Cao Dalu

    2017-01-01

    Full Text Available The intention of this paper is to research the inlet flow distortion influence on overall performance of turboshaft engine and put forward a method called Distortion Factor Item (DFI to improve the fuel supply plan for surge-preventing acceleration when turboshaft engine suddenly encounters inlet flow distortion. Based on the parallel compressor theory, steady-state and transition-state numerical simulation model of turboshaft engine with sub-compressor model were established for researching the influence of inlet flow distortion on turboshaft engine. This paper made a detailed analysis on the compressor operation from the aspects of performance and stability, and then analyzed the overall performance and dynamic response of the whole engine under inlet flow distortion. Improved fuel supply plan with DFI method was applied to control the acceleration process adaptively when encountering different inlet flow distortion. Several simulation examples about extreme natural environments were calculated to testify DFI method’s environmental applicability. The result shows that the inlet flow distortion reduces the air inflow and decreases the surge margin of compressor, and increase the engine exhaust loss. Encountering inlet flow distortion has many adverse influences such as sudden rotor acceleration, turbine inlet temperature rise and power output reduction. By using improved fuel supply plan with DFI, turboshaft engine above-idle acceleration can avoid surge effectively under inlet flow distortion with environmental applicability.

  4. Performance Prediction of Darrieus-Type Hydroturbine with Inlet Nozzle Operated in Open Water Channels

    Science.gov (United States)

    Nakashima, K.; Watanabe, S.; Matsushita, D.; Tsuda, S.; Furukawa, A.

    2016-11-01

    Small hydropower is one of the renewable energies and is expected to be effectively used for local supply of electricity. We have developed Darrieus-type hydro-turbine systems, and among them, the Darrieus-turbine with a weir and a nozzle installed upstream of turbine is, so far, in success to obtain more output power by gathering all water into the turbine. However, there can several cases exist, in which installing the weir covering all the flow channel width is unrealistic, and in such cases, the turbine should be put alone in open channels without upstream weir. Since the output power is very small in such a utilization of small hydropower, it is important to derive more power for the cost reduction. In the present study, we parametrically investigate the preferable shape of the inlet nozzle for the Darrieus-type hydroturbine operated in an open flow channel. Experimental investigation is carried out in the open channel in our lab. Tested inlet nozzles are composed of two flat plates with the various nozzle converging angles and nozzle outlet (runner inlet) widths with the nozzle inlet width kept constant. As a result, the turbine with the nozzles having large converging angle and wide outlet width generates higher power. Two-dimensional unsteady numerical simulation is also carried out to qualitatively understand the flow mechanism leading to the better performance of turbine. Since the depth, the width and the flow rate in the real open flow channels are different from place to place and, in some cases from time to time, it is also important to predict the onsite performance of the hydroturbine from the lab experiment at planning stage. One-dimensional stream-tube model is developed for this purpose, in which the Darrieus-type hydroturbine with the inlet nozzle is considered as an actuator-disk modelled based on our experimental and numerical results.

  5. Microjet flow control in an ultra-compact serpentine inlet

    Directory of Open Access Journals (Sweden)

    Da Xingya

    2015-10-01

    Full Text Available Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interface plane (AIP face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90° circumferential distortion pattern to 180° circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the momentum coefficient affects the control effectiveness in a dual stepping manner.

  6. Improved Hypersonic Inlet Performance Using Validated Strut Compression Designs

    Science.gov (United States)

    Bulman, M. J.; Stout, P. W.; Fernandez, R.

    1997-01-01

    Aerojet is currently executing two Strutjet propulsion contracts: one a Rocket Based Combined Cycle (RBCC) engine for a NASA-Marshall Space Flight Center (MSFC) Advanced Reusable Transportation Technology (ARTT) program, the second a Dual Mode Ram/Scramjet engine for a USAF Wright Laboratories Storable Fuel Scramjet Flow Path Concepts program. The engines employed in both programs operate at supersonic and low hypersonic speeds and use inlets employing forebody external and sidewall compression. Aerojet has developed and validated a successful design methodology applicable to these inlet types. Design features include an integrated vehicle forebody, external side compression struts, strut sidewall and throat bleed, a throat shock trap, and variable geometry internal contraction. Computation Fluid Dynamic (CFD) predictions and test data show these inlets allow substantially increased flow turning angles over other designs. These increased flow turning angles allow shorter and lighter engines than current designs, which in turn enables higher performing vehicles with broad operating characteristics. This paper describes the designs of two different inlets evaluated by the NASA-MSFC and USAF programs, discusses the results of wind tunnel tests performed by NASA-Lewis Research Center, and provides correlations of test data with CFD predictions. Parameters of interest include low Mach number starting capability, start sensitivity as a function of back pressure at various contraction ratios, flow turning angles, strut and throat bleed effects, and pressure recovery at various Mach numbers.

  7. Experimental Investigation of Inlet Distortion in a Multistage Axial Compressor

    Science.gov (United States)

    Rusu, Razvan

    The primary objective of this research is to present results and methodologies used to study total pressure inlet distortion in a multi-stage axial compressor environment. The study was performed at the Purdue 3-Stage Axial Compressor Facility (P3S) which models the final three stages of a production turbofan engine's high-pressure compressor (HPC). The goal of this study was twofold; first, to design, implement, and validate a circumferentially traversable total pressure inlet distortion generation system, and second, to demonstrate data acquisition methods to characterize the inter-stage total pressure flow fields to study the propagation and attenuation of a one-per-rev total pressure distortion. The datasets acquired for this study are intended to support the development and validation of novel computational tools and flow physics models for turbomachinery flow analysis. Total pressure inlet distortion was generated using a series of low-porosity wire gauze screens placed upstream of the compressor in the inlet duct. The screens are mounted to a rotatable duct section that can be precisely controlled. The P3S compressor features fixed instrumentation stations located at the aerodynamic interface plane (AIP) and downstream and upstream of each vane row. Furthermore, the compressor features individually indexable stator vanes which can be traverse by up to two vane passages. Using a series of coordinated distortion and vane traverses, the total pressure flow field at the AIP and subsequent inter-stage stations was characterized with a high circumferential resolution. The uniformity of the honeycomb carrier was demonstrated by characterizing the flow field at the AIP while no distortion screens where installed. Next, the distortion screen used for this study was selected following three iterations of porosity reduction. The selected screen consisted of a series of layered screens with a 100% radial extent and a 120° circumferential extent. A detailed total

  8. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance

    International Nuclear Information System (INIS)

    Mohapatra, Alok Ku; Sanjay

    2014-01-01

    The article is focused on the comparison of impact of two different methods of inlet air cooling (vapor compression and vapor absorption cooling) integrated to a cooled gas turbine based combined cycle plant. Air-film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor pressure ratio, compressor inlet temperature (T i , C ), turbine inlet temperature (T i , T ), ambient relative humidity and ambient temperature on performance parameters of plant has been carried out. Optimum T i , T corresponding to maximum plant efficiency of combined cycle increases by 100 °C due to the integration of inlet air cooling. It has been observed that vapor compression cooling improves the efficiency of gas turbine cycle by 4.88% and work output by 14.77%. In case of vapor absorption cooling an improvement of 17.2% in gas cycle work output and 9.47% in gas cycle efficiency has been observed. For combined cycle configuration, however, vapor compression cooling should be preferred over absorption cooling in terms of higher plant performance. The optimum value of compressor inlet temperature has been observed to be 20 °C for the chosen set of conditions for both the inlet air cooling schemes. - Highlights: • Inlet air cooling improves performance of cooled gas turbine based combined cycle. • Vapor compression inlet air cooling is superior to vapor absorption inlet cooling. • For every turbine inlet temperature, there exists an optimum pressure ratio. • The optimum compressor inlet temperature is found to be 293 K

  9. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  10. Experimental Investigation of a Forward Swept Rotor in a Multistage Fan with Inlet Distortion

    Directory of Open Access Journals (Sweden)

    Aspi R. Wadia

    2011-01-01

    Full Text Available Previous studies of transonic swept rotors in single stage fans have demonstrated the potential of significant improvements in both efficiency and stall margin with forward swept blading. This paper extends the assessment of the payoff derived from forward sweep to multistage configurations. The experimental investigation compare two builds of an advanced two-stage fan configuration tested alternately with a radial and a forward swept stage 1 blade. In the two-stage evaluations, the testing was extended to include the effect on inlet flow distortion. While the common second stage among the two builds prevented the overall fan from showing clean inlet performance and stability benefits with the forward swept rotor 1, this configuration did demonstrate superior front stage efficiency and tolerance to inlet distortion. Having obtained already low distortion sensitivity with the radial rotor 1 configuration relative to current production military fan standards, the sensitivity to inlet distortion was halved with the forward swept rotor 1 configuration. In the case of the 180-degree one-per-rev distortion pattern, the two-stage configuration was evaluated both with and without inlet guide vanes (IGVs. The presence of the inlet guide vanes had a profound impact in lowering the two-stage fan's sensitivity with inlet distortion.

  11. Biofouling investigation in membrane filtration systems using Optical Coherence Tomography (OCT)

    KAUST Repository

    Fortunato, Luca

    2017-01-01

    Biofouling represents the main problem in membrane filtration systems. Biofouling arises when the biomass growth negatively impacts the membrane performance parameters (i.e. flux decrease and feed channel pressure drop). Most of the available

  12. System analysis of membrane facilitated water generation from air humidity

    NARCIS (Netherlands)

    Bergmair, D.; Metz, S.J.; Lange, de H.C.; Steenhoven, van A.A.

    2014-01-01

    The use of water vapor selective membranes can reduce the energy requirement for extracting water out of humid air by more than 50%. We performed a system analysis of a proposed unit, that uses membranes to separate water vapor from other atmospheric gases. This concentrated vapor can then be

  13. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.

    2012-08-10

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.

  14. Observation and modeling of the evolution of an ephemeral storm-induced inlet: Pea Island Breach, North Carolina, USA

    Science.gov (United States)

    Velasquez Montoya, Liliana; Sciaudone, Elizabeth J.; Mitasova, Helena; Overton, Margery F.

    2018-03-01

    The Outer Banks of North Carolina is a wave-dominated barrier island system that has experienced the opening and closure of numerous inlets in the last four centuries. The most recent of those inlets formed after the breaching of Pea Island during Hurricane Irene in 2011. The Pea Island Breach experienced a rapid evolution including episodic curvature of the main channel, rotation of the ebb channel, shoaling, widening by Hurricane Sandy in 2012, and finally closing before the summer of 2013. Studying the life cycle of Pea Island Breach contributes to understanding the behavior of ephemeral inlets in breaching-prone regions. This topic has gained relevance due to rising sea levels, a phenomenon that increases the chances of ephemeral inlet formation during extreme events. This study explores the spatiotemporal effects of tides, waves, and storms on flow velocities and morphology of the breach by means of remotely sensed data, geospatial metrics, and a numerical model. The combined use of observations and results from modeling experiments allowed building a conceptual model to explain the life cycle of Pea Island Breach. Wave seasonality dominated the morphological evolution of the inlet by controlling the magnitude and direction of the longshore current that continuously built transient spits at both sides of the breach. Sensitivity analysis to external forcings indicates that ocean waves can modify water levels and velocities in the back barrier. Sound-side storm surge regulates overall growth rate, duration, and decay of peak water levels entering the inlet during extreme events.

  15. Effect of blade sweep on inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Hao Chang

    2015-02-01

    Full Text Available This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep. A computational fluid dynamics (CFD package was used to simulate the cascades and obtain the required three-dimensional (3D flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation (CF terms in the momentum equation. A program for data reduction was conducted to obtain a circumferentially averaged flow field. The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.

  16. Optimization of inlet plenum of A PBMR using surrogate modeling

    International Nuclear Information System (INIS)

    Lee, Sang-Moon; Kim, Kwang-Yong

    2009-01-01

    The purpose of present work is to optimize the design of inlet plenum of PBMR type gas cooled nuclear reactor numerically using a combining of three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. Shear stress transport (SST) turbulence model is used as a turbulence closure. Three geometric design variables are selected, namely, rising channel diameter to plenum height ratio, aspect ratio of the plenum cross section, and inlet port angle. The objective function is defined as a linear combination of uniformity of three-dimensional flow distribution term and pressure drop in the inlet plenum and rising channels of PBMR term with a weighting factor. Twenty design points are selected using Latin-hypercube method of design of experiment and objective function values are obtained at each design point using RANS solver. (author)

  17. Metal membrane-type 25-kW methanol fuel processor for fuel-cell hybrid vehicle

    Science.gov (United States)

    Han, Jaesung; Lee, Seok-Min; Chang, Hyuksang

    A 25-kW on-board methanol fuel processor has been developed. It consists of a methanol steam reformer, which converts methanol to hydrogen-rich gas mixture, and two metal membrane modules, which clean-up the gas mixture to high-purity hydrogen. It produces hydrogen at rates up to 25 N m 3/h and the purity of the product hydrogen is over 99.9995% with a CO content of less than 1 ppm. In this fuel processor, the operating condition of the reformer and the metal membrane modules is nearly the same, so that operation is simple and the overall system construction is compact by eliminating the extensive temperature control of the intermediate gas streams. The recovery of hydrogen in the metal membrane units is maintained at 70-75% by the control of the pressure in the system, and the remaining 25-30% hydrogen is recycled to a catalytic combustion zone to supply heat for the methanol steam-reforming reaction. The thermal efficiency of the fuel processor is about 75% and the inlet air pressure is as low as 4 psi. The fuel processor is currently being integrated with 25-kW polymer electrolyte membrane fuel-cell (PEMFC) stack developed by the Hyundai Motor Company. The stack exhibits the same performance as those with pure hydrogen, which proves that the maximum power output as well as the minimum stack degradation is possible with this fuel processor. This fuel-cell 'engine' is to be installed in a hybrid passenger vehicle for road testing.

  18. Anion-exchange membranes in electrochemical energy systems

    NARCIS (Netherlands)

    Varcoe, J.R.; Atanassov, P.; Dekel, D.R.; Herring, A.M.; Hickner, M.A.; Kohl, P.A.; Kucernak, A. R.; Mustain, W.E.; Nijmeijer, K.; Scott, Keith; Xu, Tongwen; Zhuang, Lin

    2014-01-01

    This article provides an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells). The aim is to highlight key concepts, misconceptions, the current

  19. Influence of inlet water on the biotic and abiotic variables in a fish pond

    Directory of Open Access Journals (Sweden)

    L. H. Sipaúba-Tavares

    Full Text Available Abstract The effects of treated and untreated water inlets with macrophytes on the improvement of water quality and zooplankton community were evaluated in a fish pond with continuous water flow. Water and zooplankton samples were retrieved at four sites during nine months. There were differences (p<0.01 between inlet water from fish pond and inlet water from canal with macrophytes, featuring higher concentrations of nutrient load, mainly TAN and TP in the former. The inlet water from fish pond contained a higher number of abundant species (9 species, whilst the water supply from the canal with macrophytes had a greater richness (31 species of zooplankton species. Results showed that inlet water without macrophytes directly affected the characteristics of the water column and the dominance of zooplankton species such as Thermocyclops decipiens, and greater abundance of Rotifera species. Since aquatic plants in the inlet water of fish pond analyzed showed lower allochthonous material loads from the previous fish pond, the management adopted with macrophytes may be applied to avoid eutrophication risks, common in farm ponds.

  20. Prediction of the Inlet Nozzle Velocity Profiles for the CANDU-6 Moderator Analysis

    International Nuclear Information System (INIS)

    Yoon, Churl; Park, Joo Hwan

    2006-01-01

    For the moderator analysis of the CANDU reactors in Korea, predicting local moderator subcooling in the Calandria vessels is one of the main concerns for the estimation of heat sink capability of moderator under LOCA transients. The moderator circulation pattern is determined by the combined forces of the inlet jet momentum and the buoyancy flow. Even though the inlet boundary condition plays an important role in determining the moderator circulations, no measured data of detailed inlet velocity profiles is available. The purpose of this study is to produce the velocity profiles at the inlet nozzles by a CFD simulation. To produce the velocity vector fields at the inlet nozzle surfaces, the internal flows in the nozzle assembly were simulated by using a commercial CFD code, CFX-5.7. In the reference, the analytical capability of CFX-5.7 had been estimated by a validation of the CFD code against available experimental data for separate flow phenomena. Various turbulence models and grid spacing had been also tested. In the following section, the interface treatment between the computational domains would be explained. In section 3, the inlet nozzle flow through the CANDU moderator nozzle assembly was predicted by using the obtained technology of the CFD simulation

  1. Empirical membrane lifetime model for heavy duty fuel cell systems

    Science.gov (United States)

    Macauley, Natalia; Watson, Mark; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-12-01

    Heavy duty fuel cells used in transportation system applications such as transit buses expose the fuel cell membranes to conditions that can lead to lifetime-limiting membrane failure via combined chemical and mechanical degradation. Highly durable membranes and reliable predictive models are therefore needed in order to achieve the ultimate heavy duty fuel cell lifetime target of 25,000 h. In the present work, an empirical membrane lifetime model was developed based on laboratory data from a suite of accelerated membrane durability tests. The model considers the effects of cell voltage, temperature, oxygen concentration, humidity cycling, humidity level, and platinum in the membrane using inverse power law and exponential relationships within the framework of a general log-linear Weibull life-stress statistical distribution. The obtained model is capable of extrapolating the membrane lifetime from accelerated test conditions to use level conditions during field operation. Based on typical conditions for the Whistler, British Columbia fuel cell transit bus fleet, the model predicts a stack lifetime of 17,500 h and a membrane leak initiation time of 9200 h. Validation performed with the aid of a field operated stack confirmed the initial goal of the model to predict membrane lifetime within 20% of the actual operating time.

  2. Observations of Seafloor Roughness in a Tidally Modulated Inlet

    Science.gov (United States)

    Lippmann, T. C.; Hunt, J.

    2014-12-01

    The vertical structure of shallow water flows are influenced by the presence of a bottom boundary layer, which spans the water column for long period waves or mean flows. The nature of the boundary is determined in part by the roughness elements that make up the seafloor, and includes sometimes complex undulations associated with regular and irregular shaped bedforms whose scales range several orders of magnitude from orbital wave ripples (10-1 m) to mega-ripples (100 m) and even larger features (101-103) such as sand waves, bars, and dunes. Modeling efforts often parameterize the effects of roughness elements on flow fields, depending on the complexity of the boundary layer formulations. The problem is exacerbated by the transient nature of bedforms and their large spatial extent and variability. This is particularly important in high flow areas with large sediment transport, such as tidally dominated sandy inlets like New River Inlet, NC. Quantification of small scale seafloor variability over large spatial areas requires the use of mobile platforms that can measure with fine scale (order cm) accuracy in wide swaths. The problem is difficult in shallow water where waves and currents are large, and water clarity is often limited. In this work, we present results from bathymetric surveys obtained with the Coastal Bathymetry Survey System, a personal watercraft equipped with a Imagenex multibeam acoustic echosounder and Applanix POS-MV 320 GPS-aided inertial measurement unit. This system is able to measure shallow water seafloor bathymetry and backscatter intensity with very fine scale (10-1 m) resolution and over relatively large scales (103 m) in the presence of high waves and currents. Wavenumber spectra show that the noise floor of the resolved multibeam bathymetry is on the order of 2.5 - 5 cm in amplitude, depending on water depths ranging 2 - 6 m, and about 30 cm in wavelength. Seafloor roughness elements are estimated from wavenumber spectra across the inlet

  3. Root cause analysis of pump valve failures of three membrane pump systems

    NARCIS (Netherlands)

    Buijs, L.J.; Eijk, A.; Hooft, L. van

    2014-01-01

    This paper will present the root cause analysis and the solution of fatigue failures of the pump valves of three membrane pump systems installed on a chemical plant of Momentive in Pernis, the Netherlands. The membrane pumps were installed approximately 30 years ago. Each system has encountered

  4. Inlet throttling effect on the boiling two-phase flow stability in a natural circulation loop with a chimney

    International Nuclear Information System (INIS)

    Furuya, M.; Inada, F.; Yasuo, A.

    2001-01-01

    Experiments have been conducted to investigate an effect of inlet restriction on the thermal-hydraulic stability. A Test facility used in this study was designed and constructed to have non-dimensional values that are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation at the stability boundary was described as a function of heat flux and inlet subcooling independent of inlet restriction. In order to extend experimental database regarding thermal-hydraulic stability to different inlet restriction, numerical analysis was carried out based on the homogeneous flow model. Stability maps in reference to the core inlet subcooling and heat flux were presented for various inlet restrictions using the above-mentioned function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (orig.)

  5. Automation Activator of Hydrogen Gas Inlet Valve on Reduction Furnace ME-11

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2007-01-01

    Operational of hydrogen inlet valve of the reduction furnace ME-11 was actuated manually by furnace operator if all its requirements have been fulfilled. Automation of the valve has been constructed as an additional option of the furnace operating system, in which any interruption by the existing manual system by the operator is still valid even though the automatic option is being used. This paper describes the information concerning the automation construction and its logical status of control in the form of its finite state machine. This automation system has been tested successfully. (author)

  6. CFD modelling of a membrane reactor for hydrogen production from ammonia

    Science.gov (United States)

    Shwe Hla, San; Dolan, Michael D.

    2018-01-01

    /day can be produced from a 30-70 L min-1 NH3 inlet flow with 80-90% NH3-cracking efficiency. At lower NH3 inlet flow rates, higher H2 yields can be obtained within a shorter distance of the membrane tubes due to relatively slower velocities and longer residence times. At high inlet flow rates, H2 yields were significantly lower due to their faster velocities and shorter resident times, but high yields (>95%) were still observed at the membrane reactor outlet. A sensitivity analysis of the model showed that even if metal membranes functioned at only 50% of the maximum permeability, a high H2 yield similar to that estimated using 100% permeability can still be achieved at the H2 outlets.

  7. A comparison of micropore membrane inlet mass spectrometry-derived pulmonary shunt measurement with Riley shunt in a porcine model.

    Science.gov (United States)

    Duenges, Bastian; Vogt, Andreas; Bodenstein, Marc; Wang, Hemei; Böhme, Stefan; Röhrig, Bernd; Baumgardner, James E; Markstaller, Klaus

    2009-12-01

    The multiple inert gas elimination technique was developed to measure shunt and the ratio of alveolar ventilation to simultaneous alveolar capillary blood flow in any part of the lung (V(A)'/Q') distributions. Micropore membrane inlet mass spectrometry (MMIMS), instead of gas chromatography, has been introduced for inert gas measurement and shunt determination in a rabbit lung model. However, agreement with a frequently used and accepted method for quantifying deficits in arterial oxygenation has not been established. We compared MMIMS-derived shunt (M-S) as a fraction of total cardiac output (CO) with Riley shunt (R-S) derived from the R-S formula in a porcine lung injury model. To allow a broad variance of atelectasis and therefore shunt fraction, 8 sham animals did not receive lavage, and 8 animals were treated by lung lavages with 30 mL/kg warmed lactated Ringer's solution as follows: 2 animals were lavaged once, 5 animals twice, and 1 animal 3 times. Variables were recorded at baseline and twice after induction of lung injury (T1 and T2). Retention data of sulfur hexafluoride, krypton, desflurane, enflurane, diethyl ether, and acetone were analyzed by MMIMS, and M-S was derived using a known algorithm for the multiple inert gas elimination technique. Standard formulas were used for the calculation of R-S. Forty-four pairs of M-S and R-S were recorded. M-S ranged from 0.1% to 35.4% and R-S from 3.7% to 62.1%. M-S showed a correlation with R-S described by linear regression: M-S = -4.26 + 0.59 x R-S (r(2) = 0.83). M-S was on average lower than R-S (mean = -15.0% CO, sd = 6.5% CO, and median = -15.1), with lower and upper limits of agreement of -28.0% and -2.0%, respectively. The lower and upper limits of the 95% confidence intervals were -17.0 and -13.1 (P < 0.001, Student's t-test). Shunt derived from MMIMS inert gas retention data correlated well with R-S during breathing of oxygen. Shunt as derived by MMIMS was generally less than R-S.

  8. 76 FR 24513 - Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida

    Science.gov (United States)

    2011-05-02

    ...] Public Land Order No. 7765; Partial Revocation Jupiter Inlet Lighthouse Withdrawal; Florida AGENCY... as part of the Jupiter Inlet Lighthouse Outstanding Natural Area. DATES: Effective Date: May 2, 2011... U.S.C. 1787), which created the Jupiter Inlet Lighthouse Outstanding Natural Area, and which...

  9. Research on mass transfer and actual performance of the membrane regeneration air-conditioning system

    International Nuclear Information System (INIS)

    Li, Xiu-Wei; Zhang, Xiao-Song; Chen, Qing

    2015-01-01

    Highlights: • Experimental research has been made on the membrane air-conditioning system. • We develop mass transfer models for the membrane regeneration process. • The paper exposes the actual performance of the system. • Increase of membrane pairs improves the performance. - Abstract: Absorption air-conditioning system has great advantages in energy conservation and environmental protection. To improve the performance of the traditional system, the membrane regeneration absorption system was proposed. Its COP could approach 6 by regenerating absorbent solution with the ion exchange membranes. However, the theoretical conclusion has not been supported by the experiment. This paper presents the experimental research of the membrane regeneration process. It has investigated the mass transfer process, energy efficiency and actual performance under different working conditions. Based on that, a mass transfer model has been developed and the influences of some key parameters have been exposed. It found the regeneration performance is mainly influenced by the current intensity. The calculation results with the model agree well the experimental data. The actual efficiency was lower than 50%, caused by energy loss in heat and electrochemical reactions. The actual COP is between 1 and 3, lower current intensity and more membrane pairs could improve it.

  10. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  12. Empirical method to calculate Clinch River Breeder Reactor (CRBR) inlet plenum transient temperatures

    International Nuclear Information System (INIS)

    Howarth, W.L.

    1976-01-01

    Sodium flow enters the CRBR inlet plenum via three loops or inlets. An empirical equation was developed to calculate transient temperatures in the CRBR inlet plenum from known loop flows and temperatures. The constants in the empirical equation were derived from 1/4 scale Inlet Plenum Model tests using water as the test fluid. The sodium temperature distribution was simulated by an electrolyte. Step electrolyte transients at 100 percent model flow were used to calculate the equation constants. Step electrolyte runs at 50 percent and 10 percent flow confirmed that the constants were independent of flow. Also, a transient was tested which varied simultaneously flow rate and electrolyte. Agreement of the test results with the empirical equation results was good which verifies the empirical equation

  13. Evaluation of inlet sampling integrity on NSF/NCAR airborne platforms

    Science.gov (United States)

    Campos, T. L.; Stith, J. L.; Stephens, B. B.; Romashkin, P.

    2017-12-01

    An inlet test project was conducted during IDEAS-IV-GV (2013), to evaluate the sampling integrity of two inlet designs. Use of a single CO2 sensor provided a high precision detector and a large difference in the mean cabin and external concentrations (500-700 ppmv in the cabin). The original HIAPER Modular InLet (HIMIL) is comprised of a tapered flow straightening flow through `cigar' mounted to a strut. The cigar center sampling line sits 12" from the fuselage skin. An o-ring seals the feedthrough plate coupling sampling lines from the strut into the cigar. However, there is no seal to prevent air inside the strut from seeping out around the cigar body. A pressure-equalizing drain hole in the strut access panel; it was positioned at an approximate distance of 4" from the fuselage to ensure that air from any source that drained out of the strut was confined to a low release point. A second aft-facing inlet design was also evaluated. The sampling center line was moved farther from the fuselage at a height of 16". A similar approach was also applied to sampling locations on the C-130 in 2015. The results of these tests and recommendations for best practices will be presented.

  14. Pilot testing of a membrane system for postcombustion CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim [Membrane Technology And Research, Incorporated, Newark, CA (United States); Kniep, Jay [Membrane Technology And Research, Incorporated, Newark, CA (United States); Wei, Xiaotong [Membrane Technology And Research, Incorporated, Newark, CA (United States); Carlisle, Trevor [Membrane Technology And Research, Incorporated, Newark, CA (United States); White, Steve [Membrane Technology And Research, Incorporated, Newark, CA (United States); Pande, Saurabh [Membrane Technology And Research, Incorporated, Newark, CA (United States); Fulton, Don [Membrane Technology And Research, Incorporated, Newark, CA (United States); Watson, Robert [Membrane Technology And Research, Incorporated, Newark, CA (United States); Hoffman, Thomas [Membrane Technology And Research, Incorporated, Newark, CA (United States); Freeman, Brice [Membrane Technology And Research, Incorporated, Newark, CA (United States); Baker, Richard [Membrane Technology And Research, Incorporated, Newark, CA (United States)

    2015-09-30

    This final report summarizes work conducted for the U.S. Department of Energy, National Energy Technology Laboratory (DOE) to scale up an efficient post-combustion CO2 capture membrane process to the small pilot test stage (award number DE-FE0005795). The primary goal of this research program was to design, fabricate, and operate a membrane CO2 capture system to treat coal-derived flue gas containing 20 tonnes CO2/day (20 TPD). Membrane Technology and Research (MTR) conducted this project in collaboration with Babcock and Wilcox (B&W), the Electric Power Research Institute (EPRI), WorleyParsons (WP), the Illinois Sustainable Technology Center (ISTC), Enerkem (EK), and the National Carbon Capture Center (NCCC). In addition to the small pilot design, build and slipstream testing at NCCC, other project efforts included laboratory membrane and module development at MTR, validation field testing on a 1 TPD membrane system at NCCC, boiler modeling and testing at B&W, a techno-economic analysis (TEA) by EPRI/WP, a case study of the membrane technology applied to a ~20 MWe power plant by ISTC, and an industrial CO2 capture test at an Enerkem waste-to-biofuel facility. The 20 TPD small pilot membrane system built in this project successfully completed over 1,000 hours of operation treating flue gas at NCCC. The Polaris™ membranes used on this system demonstrated stable performance, and when combined with over 10,000 hours of operation at NCCC on a 1 TPD system, the risk associated with uncertainty in the durability of postcombustion capture membranes has been greatly reduced. Moreover, next-generation Polaris membranes with higher performance and lower cost were validation tested on the 1 TPD system. The 20 TPD system also demonstrated successful operation of a new low-pressure-drop sweep module that will reduce parasitic energy losses at full scale by as much as 10 MWe. In modeling and pilot boiler testing, B&W confirmed the

  15. Review on strategies for biofouling mitigation in spiral wound membrane systems

    KAUST Repository

    Bucs, Szilard; Farhat, Nadia; Kruithof, Joop C.; Picioreanu, Cristian; van Loosdrecht, Mark C.M.; Vrouwenvelder, Johannes S.

    2018-01-01

    . However, in many cases membrane performance is restricted by biofouling. The objective of this review is to provide an overview on the state of the art strategies to control biofouling in spiral wound reverse osmosis membrane systems and point to possible

  16. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    International Nuclear Information System (INIS)

    Wijmans, J.G.

    2003-01-01

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  17. Parametric Geometry, Structured Grid Generation, and Initial Design Study for REST-Class Hypersonic Inlets

    Science.gov (United States)

    Ferlemann, Paul G.; Gollan, Rowan J.

    2010-01-01

    Computational design and analysis of three-dimensional hypersonic inlets with shape transition has been a significant challenge due to the complex geometry and grid required for three-dimensional viscous flow calculations. Currently, the design process utilizes an inviscid design tool to produce initial inlet shapes by streamline tracing through an axisymmetric compression field. However, the shape is defined by a large number of points rather than a continuous surface and lacks important features such as blunt leading edges. Therefore, a design system has been developed to parametrically construct true CAD geometry and link the topology of a structured grid to the geometry. The Adaptive Modeling Language (AML) constitutes the underlying framework that is used to build the geometry and grid topology. Parameterization of the CAD geometry allows the inlet shapes produced by the inviscid design tool to be generated, but also allows a great deal of flexibility to modify the shape to account for three-dimensional viscous effects. By linking the grid topology to the parametric geometry, the GridPro grid generation software can be used efficiently to produce a smooth hexahedral multiblock grid. To demonstrate the new capability, a matrix of inlets were designed by varying four geometry parameters in the inviscid design tool. The goals of the initial design study were to explore inviscid design tool geometry variations with a three-dimensional analysis approach, demonstrate a solution rate which would enable the use of high-fidelity viscous three-dimensional CFD in future design efforts, process the results for important performance parameters, and perform a sample optimization.

  18. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    Science.gov (United States)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  19. Miniature piezo electric vacuum inlet valve

    Science.gov (United States)

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  20. Mercury in Sediment, Water, and Biota of Sinclair Inlet, Puget Sound, Washington, 1989-2007

    Science.gov (United States)

    Paulson, Anthony J.; Keys, Morgan E.; Scholting, Kelly L.

    2010-01-01

    Historical records of mercury contamination in dated sediment cores from Sinclair Inlet are coincidental with activities at the U.S. Navy Puget Sound Naval Shipyard; peak total mercury concentrations occurred around World War II. After World War II, better metallurgical management practices and environmental regulations reduced mercury contamination, but total mercury concentrations in surface sediment of Sinclair Inlet have decreased slowly because of the low rate of sedimentation relative to the vertical mixing within sediment. The slopes of linear regressions between the total mercury and total organic carbon concentrations of sediment offshore of Puget Sound urban areas was the best indicator of general mercury contamination above pre-industrial levels. Prior to the 2000-01 remediation, this indicator placed Sinclair Inlet in the tier of estuaries with the highest level of mercury contamination, along with Bellingham Bay in northern Puget Sound and Elliott Bay near Seattle. This indicator also suggests that the 2000/2001 remediation dredging had significant positive effect on Sinclair Inlet as a whole. In 2007, about 80 percent of the area of the Bremerton naval complex had sediment total mercury concentrations within about 0.5 milligrams per kilogram of the Sinclair Inlet regression. Three areas adjacent to the waterfront of the Bremerton naval complex have total mercury concentrations above this range and indicate a possible terrestrial source from waterfront areas of Bremerton naval complex. Total mercury concentrations in unfiltered Sinclair Inlet marine waters are about three times higher than those of central Puget Sound, but the small numbers of samples and complex physical and geochemical processes make it difficult to interpret the geographical distribution of mercury in marine waters from Sinclair Inlet. Total mercury concentrations in various biota species were compared among geographical locations and included data of composite samples, individual

  1. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  2. Analytical and Experimental Investigation of Inlet-engine Matching for Turbojet-powered Aircraft at Mach Numbers up to 2.0

    Science.gov (United States)

    Esenwein, Fred T; Schueller, Carl F

    1952-01-01

    An analysis of inlet-turbojet-engine matching for a range of Mach numbers up to 2.0 indicates large performance penalties when fixed-geometry inlets are used. Use of variable-geometry inlets, however, nearly eliminates th The analysis was confirmed experimentally by investigating at Mach numbers of 0, 0.63, and 1.5 to 2.0 two single oblique-shock-type inlets of different compression-ramp angles, which simulated a variable-geometry configuration. The experimental investigation indicated that total-pressure recoveries comparable withose attainable with well designed nose inlets were obtained with the side inlets when all the boundary layer ahead of the inlets was removed. Serious drag penalties resulted at a Mach number of 2.0 from the use of blunt-cowl leading edges. However, sharp-lip inlets produced large losses in thrust for the take-off condition. These thrust penalties which are associated with the the low-speed operation of the sharp-lip inlet designs can probably be avoided without impairing the supersonic performance of the inlet by the use of auxiliary inlets or blow-in doors.

  3. Biofouling Control in Spiral-Wound Membrane Systems: Impact of Feed Spacer Modification and Biocides

    KAUST Repository

    Siddiqui, Amber

    2016-12-01

    High-quality drinking water can be produced with membrane-based filtration processes like reverse osmosis and nanofiltration. One of the major problems in these membrane systems is biofouling that reduces the membrane performance, increasing operational costs. Current biofouling control strategies such as pre-treatment, membrane modification, and chemical cleaning are not sufficient in all cases. Feed spacers are thin (0.8 mm), complex geometry meshes that separate membranes in a module. The main objective of this research was to evaluate whether feed spacer modification is a suitable strategy to control biofouling. Membrane fouling simulator studies with six feed spacers showed differences in biofouled spacer performance, concluding that (i) spacer geometry influences biofouling impact and (ii) biofouling studies are essential for evaluation of spacer biofouling impact. Computed tomography (CT) was found as a suitable technique to obtain three-dimensional (3D) measurements of spacers, enabling more representative mathematical modeling of hydraulic behavior of spacers in membrane systems. A strategy for developing, characterizing, and testing of spacers by numerical modeling, 3D printing of spacers and experimental membrane fouling simulator studies was developed. The combination of modeling and experimental testing of 3D printed spacers is a promising strategy to develop advanced spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral-wound membrane systems.

  4. Viscous flow considerations in the design of the Busemann hypersonic air inlet

    International Nuclear Information System (INIS)

    Walsh, P.C.; Tahir, R.B.; Molder, S.

    2002-01-01

    A cost effective means of traveling to a low earth orbit is using an aircraft that relies on air-breathing engine technology for most of its trajectory while in the atmosphere. The scramjets that would be used to provide propulsion require inlet air diffusion with minimal total pressure losses to maintain efficiency. The Busemann inlet was designed using inviscid flow assumptions specifically for such purposes. This paper presents an investigation into the effects of viscosity on inlet performance in terms of static pressure rise and internal shockwave configuration. The viscous effects within the inlet can alter the design pressure ratio as much as 50%. It was shown that a correction based on a displacement radius calculation was sufficient to restore the static pressure performance of the inviscid design. An improvement of 16% in total pressure losses was observed with the corrected Busemann profile. Results are compared to experimentally determined surface pressure values. (author)

  5. Investigation into the impacts of distributed inlet temperature on thermal limit during LFWH event in Chinshan plant

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shao-Shih; Hsu, Keng-Hsien; Chen, Bo-Yan; Hsu, Shi-Sen [Institute of Nuclear Energy Research, Taoyuan City (China)

    2017-12-15

    The Condensate and Feedwater System of the Chinshan BWR units is used to provide reliable and high-quality water to maintain the reactor water level during operation. If a Loss of Feedwater Heating (LFWH) event occurs, the core inlet subcooling increases and then induces corresponding power excursion and the reactor pressure rise. In the Chinshan Final Safety Analysis Report (FSAR), a loss of the feedwater temperature of 55.6 C (100 F) is conservatively assumed in the event. This study analyzes the integral reactor system response with RETRAN. Furthermore, a partial vessel model (PVM) of CFD is used to acquire the conditions of the fuel channel inlet to compensate the weakness of the RETRAN system model to generate detailed thermal-hydraulic conditions. The evaluation shows that the feedwater temperature drop is about 40 C which is lower than the FSAR value. In addition, the sensitivity study shows that the hot channel method underestimates the ΔCPR about 0.025, and there is no direct relation between ΔCPR and either of inlet subcooling or power fraction in transient, which is quite different from the conclusion of the hot channel method. Finally, the sensitivity study also proves the ΔT of 55.6 C (100 F) used in FSAR analysis conservative enough to cover the worst channel with a margin of 0.015 in ΔCPR.

  6. Bathymetric survey of the Cayuga Inlet flood-control channel and selected tributaries in Ithaca, New York, 2016

    Science.gov (United States)

    Wernly, John F.; Nystrom, Elizabeth A.; Coon, William F.

    2017-09-08

    From July 14 to July 20, 2016, the U.S. Geological Survey, in cooperation with the City of Ithaca, New York, and the New York State Department of State, surveyed the bathymetry of the Cayuga Inlet flood-control channel and the mouths of selected tributaries to Cayuga Inlet and Cayuga Lake in Ithaca, N.Y. The flood-control channel, built by the U.S. Army Corps of Engineers between 1965 and 1970, was designed to convey flood flows from the Cayuga Inlet watershed through the City of Ithaca and minimize possible flood damages. Since that time, the channel has infrequently been maintained by dredging, and sediment accumulation and resultant shoaling have greatly decreased the conveyance of the channel and its navigational capability.U.S. Geological Survey personnel collected bathymetric data by using an acoustic Doppler current profiler. The survey produced a dense dataset of water depths that were converted to bottom elevations. These elevations were then used to generate a geographic information system bathymetric surface. The bathymetric data and resultant bathymetric surface show the current condition of the channel and provide the information that governmental agencies charged with maintaining the Cayuga Inlet for flood-control and navigational purposes need to make informed decisions regarding future maintenance measures.

  7. Numerical Study on Shape of Liquid Inlet for Venturi Scrubber in Self-Priming Mode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. W.; Kim, H. S.; Kim, W. S. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the simulation was developed for different design of liquid inlet to improve injection in submerged self-priming mode venturi scrubber. 1. A hole type is easy to discharged gas from liquid inlet for submerged self-priming mode. 2. A spit type, the liquid is injected into venturi scrubber for all gas volume rate in submerged self-priming mode. 3. A spit type is better than a hole type on improving injection of liquid inlet for submerged self-priming mode in venturi scrubber.The gas accelerate in convergent segment and reach maximum velocity at throat. The liquid is injected into venturi scrubber depends on static pressure difference between outside and inside of the venturi throat, then liquid is atomized into fine droplet when it contacts with high speed airflow. Aerosol removal occur in the diverging section as the inlet gas stream mixes with the fog of tiny liquid droplets. Many studies dealing with the non-submerged selfpriming venturi scrubber. In a non-submerged condition, outlet nozzle of venturi scrubber is not immersed in water pool of a tank whereas in a submerged condition, the outlet of a venturi scrubber is immersed in water pool. The scrubbing liquid is supplied by water reservoir surrounding the throat and is drawn in due to a pressure difference between the outside and the inside of the venturi throat that arises out of the hydrostatic pressure of the liquid and static pressure of the flowing gas. The performance of a venturi scrubber is improved with high gas velocities and high liquid flow rate. Therefore, it is important to study the liquid fraction in venturi scrubber operated at different condition. The venturi scrubber is used to a submerged self-priming mode because the system operates in a passive mode in CFVS. The present study focuses on the liquid flow characteristics for various shapes of liquid inlet in submerged self-priming venturi scrubber.

  8. Numerical Study on Shape of Liquid Inlet for Venturi Scrubber in Self-Priming Mode

    International Nuclear Information System (INIS)

    Lee, J. W.; Kim, H. S.; Kim, W. S.

    2016-01-01

    In this study, the simulation was developed for different design of liquid inlet to improve injection in submerged self-priming mode venturi scrubber. 1. A hole type is easy to discharged gas from liquid inlet for submerged self-priming mode. 2. A spit type, the liquid is injected into venturi scrubber for all gas volume rate in submerged self-priming mode. 3. A spit type is better than a hole type on improving injection of liquid inlet for submerged self-priming mode in venturi scrubber.The gas accelerate in convergent segment and reach maximum velocity at throat. The liquid is injected into venturi scrubber depends on static pressure difference between outside and inside of the venturi throat, then liquid is atomized into fine droplet when it contacts with high speed airflow. Aerosol removal occur in the diverging section as the inlet gas stream mixes with the fog of tiny liquid droplets. Many studies dealing with the non-submerged selfpriming venturi scrubber. In a non-submerged condition, outlet nozzle of venturi scrubber is not immersed in water pool of a tank whereas in a submerged condition, the outlet of a venturi scrubber is immersed in water pool. The scrubbing liquid is supplied by water reservoir surrounding the throat and is drawn in due to a pressure difference between the outside and the inside of the venturi throat that arises out of the hydrostatic pressure of the liquid and static pressure of the flowing gas. The performance of a venturi scrubber is improved with high gas velocities and high liquid flow rate. Therefore, it is important to study the liquid fraction in venturi scrubber operated at different condition. The venturi scrubber is used to a submerged self-priming mode because the system operates in a passive mode in CFVS. The present study focuses on the liquid flow characteristics for various shapes of liquid inlet in submerged self-priming venturi scrubber.

  9. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant

    International Nuclear Information System (INIS)

    Chacartegui, R.; Jimenez-Espadafor, F.; Sanchez, D.; Sanchez, T.

    2008-01-01

    In this work, combustion turbine inlet air cooling (CTIAC) systems are analyzed from an economic outlook, their effects on the global performance parameters and the economic results of the power plant. The study has been carried out on a combined cogeneration system, composed of a General Electric PG 6541 gas turbine and a heat recovery steam generator. The work has been divided into three parts. First, a revision of the present CTIAC technologies is shown, their effects on power plant performance and evaluation of the associated investment and maintenance costs. In a second phase of the work, the cogeneration plant was modelled with the objective of evaluating the power increase and the effects on the generated steam and the thermal oil. The cogeneration power plant model was developed, departing from the recorded operational data of the plant in 2005 and the gas turbine model offered by General Electric, to take into consideration that, in 2000, the gas turbine had been remodelled and the original performance curves should be corrected. The final objective of this model was to express the power plant main variables as a function of the gas turbine intake temperature, pressure and relative humidity. Finally, this model was applied to analyze the economic interest of different intake cooling systems, in different operative ranges and with different cooling capacities

  10. Nuclear research reactor IEA-R1 heat exchanger inlet nozzle flow - a preliminary study

    International Nuclear Information System (INIS)

    Angelo, Gabriel; Andrade, Delvonei Alves de; Fainer, Gerson; Angelo, Edvaldo

    2009-01-01

    As a computational fluid mechanics training task, a preliminary model was developed. ANSYS-CFX R code was used in order to study the flow at the inlet nozzle of the heat exchanger of the primary circuit of the nuclear research reactor IEA-R1. The geometry of the inlet nozzle is basically compounded by a cylinder and two radial rings which are welded on the shell. When doing so there is an offset between the holes through the shell and the inlet nozzle. Since it is not standardized by TEMA, the inlet nozzle was chosen for a preliminary study of the flow. Results for the proposed model are presented and discussed. (author)

  11. Oblique second-order sand transport pathways on an intertidal sand flat in a natural tidal inlet system

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Kroon, Aart

    2013-01-01

    tide, sand is transported along ESE-oriented pathways across the intertidal flat towards the inner tidal basin. During the late stages of ebb tide, sand is transported in drainage channels (WSWoriented) from the intertidal flat towards the inlet channel. During storm events with winds from SW, wave...

  12. Seawater desalination with solar-energy-integrated vacuum membrane distillation system

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2017-03-01

    Full Text Available This study designed and tested a novel type of solar-energy-integrated vacuum membrane distillation (VMD system for seawater desalination under actual environmental conditions in Wuhan, China. The system consists of eight parts: a seawater tank, solar collector, solar cooker, inclined VMD evaporator, circulating water vacuum pump, heat exchanger, fresh water tank, and brine tank. Natural seawater was used as feed and a hydrophobic hollow-fiber membrane module was used to improve seawater desalination. The experiment was conducted during a typical summer day. Results showed that when the highest ambient temperature was 33 °C, the maximum value of the average solar intensity was 1,080 W/m2. The system was able to generate 36 kg (per m2 membrane module distilled fresh water during 1 day (7:00 am until 6:00 pm, the retention rate was between 99.67 and 99.987%, and electrical conductivity was between 0.00276 and 0.0673 mS/cm. The average salt rejection was over 90%. The proposed VMD system shows favorable potential application in desalination of brackish waters or high-salt wastewater treatment, as well.

  13. Optimization Study of Small-Scale Solar Membrane Distillation Desalination Systems (s-SMDDS

    Directory of Open Access Journals (Sweden)

    Hsuan Chang

    2014-11-01

    Full Text Available Membrane distillation (MD, which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m2 and 23 m2 are analyzed. The lowest water production costs are $5.92/m3 and $5.16/m3 for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction.

  14. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  15. Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Rugholt, Mark; Nielsen, Morten Busk

    2014-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However, the membrane of which PEMFCs are made tends to dry out when...

  16. Performance analysis of a membrane humidifier containing porous metal foam as flow distributor in a PEM fuel cell system

    International Nuclear Information System (INIS)

    Afshari, Ebrahim; Baharlou Houreh, Nasser

    2014-01-01

    Highlights: • Three metal foam configurations for the membrane humidifier are introduced. • The performances of the humidifiers containing metal foam are investigated. • A 3D CFD model is developed to compare the introduced humidifiers with one another. • Using metal foam at dry side has no positive effect on the humidifier performance. - Abstract: Using metal foam as flow distributor in membrane humidifier for proton exchange membrane (PEM) fuel cell system has some unique characteristics like more water transfer, low manufacturing complexity and low cost compared to the conventional flow channel plate. Metal foam can be applied at wet side or dry side or both sides of a humidifier. The three-dimensional CFD models are developed to investigate the performance of the above mentioned meanwhile compare them with the conventional humidifier. This model consists of a set of coupled equations including conservations of mass, momentum, species and energy for all regions of the humidifier. The results indicate that with the metal foam installed at wet side and both sides, water recovery ratio and dew point at dry side outlet are more than that of the conventional humidifier, indicating a better humidifier performance; while using metal foam at dry side has no positive effect on humidifier performance. At dry side mass flow rates higher than 10 mgr/s pressure drop in humidifier containing metal foam at wet side is lower than that of the conventional humidifier. As the mass flow rate increases from 9 to 15 mgr/s humidifier containing metal foam at wet side has better performance, while at mass flow rates lower than 9 mgr/s, the humidifier containing metal foam at both sides has better performance. At dry side inlet temperatures lower than 303 K, humidifier containing metal foam at wet side has better performance and at temperatures higher than 303 K, humidifier containing metal foam at both sides has better performance

  17. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  18. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    Science.gov (United States)

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  19. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Baiwang Zhao

    2015-11-01

    Full Text Available In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  20. Development of an optimization technique of CETOP-D inlet flow factor for reactor core thermal margin improvement

    International Nuclear Information System (INIS)

    Hong, Sung Duk; Im, Jong Sun; Yoo, Yun Jong; Kwon, Jung Taek; Park, Jong Ryool

    1995-01-01

    The recent ABB/CE(Asea Brown Boveri Combustion Engineering) type pressurized water reactors have the on-line monitoring system, i.e., the COLSS(core operating limit supervisory system), to prevent the specified acceptable fuel design limits from being violated during normal operation and anticipated operational occurrences. One of the main functions of COLSS is the on-line monitoring of the DNB(departure from nucleate boiling) overpower margin by calculating the MDNBR(minimum DNB ratio) for the measured operating condition at every second. The CETOP-D model, used in the MDNBR calculation of COLSS, is benchmarked conservatively against the TORC model using an inlet flow factor of hot assembly in CETOP-D as an adjustment factor for TORC. In this study, a technique to optimize the CETOP-D inlet flow factor has been developed by eliminating the excessive conservatism in the ABB/CE's. A correlation is introduced to account for the actual variation of the CETOP-D inlet flow factor within the core operating limits. This technique was applied to the core operating range of the Yonggwang Units 3 and 4 Cycle 1, which results in the increase of 2% in the DNB overpower margin at the normal operating condition, compared with that from the ABB/CE method. 7 figs., 2 tabs., 10 refs. (Author)

  1. Ceramic membrane reactor with two reactant gases at different pressures

    Science.gov (United States)

    Balachandran, Uthamalingam; Mieville, Rodney L.

    2001-01-01

    The invention is a ceramic membrane reactor for syngas production having a reaction chamber, an inlet in the reactor for natural gas intake, a plurality of oxygen permeating ceramic slabs inside the reaction chamber with each slab having a plurality of passages paralleling the gas flow for transporting air through the reaction chamber, a manifold affixed to one end of the reaction chamber for intake of air connected to the slabs, a second manifold affixed to the reactor for removing the oxygen depleted air, and an outlet in the reaction chamber for removing syngas.

  2. Inlet for fuel assembly having finger control rods

    International Nuclear Information System (INIS)

    Berglund, A.; Suvanto, A.; Tornblom, L.

    1975-01-01

    A nuclear reactor with vertically arranged fuel assemblies positioned on supporting members and with control rods displaceably arranged in guide tubes between the fuel rods inside the fuel assemblies is described. The supporting plate is provided with a transverse end piece with throttling means for the liquid flow which passes from below up through the supporting member and past the fuel rods in the fuel assembly. The inlets for the guide tubes for the control rods are located below the end piece and the throttling means. In this way a higher pressure prevails at the inlet to the guide tubes than above the end piece, so that a stronger flow of coolant is produced through guide tubes than through the fuel assembly. (U.S.)

  3. Research on ration selection of mixed absorbent solution for membrane air-conditioning system

    International Nuclear Information System (INIS)

    Li, Xiu-Wei; Zhang, Xiao-Song; Wang, Fang; Zhao, Xiao; Zhang, Zhuo

    2015-01-01

    Highlights: • We derive models of the membrane air-conditioning system with mixed absorbents. • We make analysis on system COP, cost-effectiveness and economy. • The paper provides a new method for ideal absorbent selection. • The solutes concentration of 50% achieves the best cost-effectiveness and the economy. - Abstract: Absorption air-conditioning system is a good alternative to vapor compression system for developing low carbon society. To improve the performance of the traditional absorption system, the membrane air-conditioning system is configured and its COP can reach as high as 6. Mixed absorbents are potential for cost reduction of the membrane system while maintaining a high COP. On the purpose of finding ideal mixed absorbent groups, this paper makes analysis on COP, cost-effectiveness and economy of the membrane system with mixed LiBr–CaCl 2 absorbent solution. The models of the system have been developed for the analysis. The results show the COP is higher for the absorbent groups with lower concentration of the total solute and higher concentration ratio of LiBr. It also reveals when the total solutes concentration is about 50%, it achieves the best cost-effectiveness and the economy. The process of the analysis provides a useful method for mixed absorbents selection

  4. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  5. A Combined CFD/Characteristic Method for Prediction and Design of Hypersonic Inlet with Nose Bluntness

    Science.gov (United States)

    Gao, Wenzhi; Li, Zhufei; Yang, Jiming

    Leading edge bluntness is widely used in hypersonic inlet design for thermal protection[1]. Detailed research of leading edge bluntness on hypersonic inlet has been concentrated on shock shape correlation[2], boundary layer flow[3], inlet performance[4], etc. It is well known that blunted noses cause detached bow shocks which generate subsonic regions around the noses and entropy layers in the flowfield.

  6. Automatic efficiency optimization of an axial compressor with adjustable inlet guide vanes

    Science.gov (United States)

    Li, Jichao; Lin, Feng; Nie, Chaoqun; Chen, Jingyi

    2012-04-01

    The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.

  7. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Variable Temperature Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    2013-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by periods of standby, they must be able to start at any instant in the shortest possible time. However, the membranes of which proton exchange membrane fuel cells are made...

  8. Large Eddy Simulation and the effect of the turbulent inlet conditions in the mixing Tee

    International Nuclear Information System (INIS)

    Ndombo, Jean-Marc; Howard, Richard J.A.

    2011-01-01

    Highlights: → LES of Tee junctions can easily reproduce the bulk flow. → The presence or absence of a turbulent inlet condition has an affect on the wall heat transfer. → The maximum heat transfer moves 1 cm and reduces by 10% when a turbulent inlet is used. - Abstract: Thermal fatigue in Pressurized Water Reactor plants has been found to be very acute in some hot/cold Tee junction mixing zones. Large Eddy Simulation (LES) can be used to capture the unsteadiness which is responsible for the large mechanical stresses associated with thermal fatigue. Here one LES subgrid model is studied, namely the Dynamic Smagorinsky model. This paper has two goals. The first is to demonstrate some results obtained using the EDF R and D Code Saturne applied to the Vattenfall Tee junction benchmark (version 2006) and the second is to look at the effect of including synthetic turbulence at the Tee junction pipe inlets. The last goal is the main topic of this paper. The Synthetic Eddy Method is used to create the turbulent inlet conditions and is applied to two kinds of grids. One contains six million cells and the other ten million. The addition of turbulence at the inlet does not seem to have much effect on the bulk flow and all computations are in good agreement with the experimental data. However, the inlet turbulence does have an effect on the near wall flow. All cases show that the wall temperature fluctuation and the wall temperature/velocity correlation are not the same when a turbulent inlet condition is used. Inclusion of the turbulent inlet condition moves the downstream location of the maximum temperature/velocity correlation by 1 cm and reduces its magnitude by 10%. This result is very important because the temperature/velocity correlation is closely related to the turbulent heat transfer in the flow, which is in turn responsible for the mechanical stresses on the structure. Finally we have studied in detail the influence of the turbulent inlet condition just

  9. Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements

    Science.gov (United States)

    Kumar, N.; George, D.; Sajeesh, P.; Manivannan, P. V.; Sen, A. K.

    2016-07-01

    We report a planar solenoid actuated valveless micropump with multiple inlet-outlet configurations. The self-priming characteristics of the multiple inlet-multiple outlet micropump are studied. The filling dynamics of the micropump chamber during start-up and the effects of fluid viscosity, voltage and frequency on the dynamics are investigated. Numerical simulations for multiple inlet-multiple outlet micropumps are carried out using fluid structure algorithm. With DI water and at 5.0 Vp-p, 20 Hz frequency, the two inlet-two outlet micropump provides a maximum flow rate of 336 μl min-1 and maximum back pressure of 441 Pa. Performance characteristics of the two inlet-two outlet micropump are studied for aqueous fluids of different viscosity. Transport of biological cell lines and diluted blood samples are demonstrated; the flow rate-frequency characteristics are studied. Viability of cells during pumping with multiple inlet multiple outlet configuration is also studied in this work, which shows 100% of cells are viable. Application of the proposed micropump for simultaneous pumping, mixing and distribution of fluids is demonstrated. The proposed integrated, standalone and portable micropump is suitable for drug delivery, lab-on-chip and micro-total-analysis applications.

  10. The effect of inlet conditions on lean premixed gas turbine combustor performance

    Science.gov (United States)

    Vilayanur, Suresh Ravi

    The combustion community is today faced with the goal to reduce NOx at high efficiencies. This requirement has directed attention to the manner by which air and fuel are treated prior to and at the combustor inlet. This dissertation is directed to establishing the role of combustor inlet conditions on combustor performance, and to deriving an understanding of the relationship between inlet conditions and combustion performance. To investigate the complex effect of inlet parameters on combustor performance, (1) a test facility was designed and constructed, (2) hardware was designed and fabricated, (3) a statistically based technique was designed and applied, and (4) detailed in-situ measurements were acquired. Atmospheric tests were performed at conditions representative of industrial combustors: 670 K inlet preheat and an equivalence ratio of 0.47, and make the study immediately relevant to the combustion community. The effects of premixing length, fuel distribution, swirl angle, swirl vane thickness and swirl solidity were investigated. The detailed in-situ measurements were performed to form the database necessary to study the responsible mechanisms. A host of conventional and advanced diagnostics were used for the investigation. In situ measurements included the mapping of the thermal and velocity fields of the combustor, obtaining species concentrations inside the combustor, and quantifying the fuel-air mixing entering the combustor. Acoustic behavior of the combustor was studied, including the application of high speed videography. The results reveal that the principal statistically significant effect on NOx production is the inlet fuel distribution, and the principal statistically significant effect on CO production is the swirl strength. Elevated levels of NOx emission result when the fuel is weighted to the centerline. Eddies shedding off the swirler hub ignite as discrete packets, and due to the elevated concentrations of fuel, reach higher temperatures

  11. Characterizing Interferences in an NOy Thermal Dissociation Inlet

    Science.gov (United States)

    Womack, C.; Veres, P. R.; Brock, C. A.; Neuman, J. A.; Eilerman, S. J.; Zarzana, K. J.; Dube, W. P.; Wild, R. J.; Wooldridge, P. J.; Cohen, R. C.; Brown, S. S.

    2016-12-01

    Nitrogen oxides (NOx = NO and NO2) are emitted into the troposphere by various anthropogenic and natural sources, and contribute to increased levels of ambient ozone. Reactive nitrogen species (NOy), which include nitric acid, peroxy acetyl and organic nitrates, and other species, serve as reservoirs and sinks for NOx, thus influencing O3 production. Their detection is therefore critical to understanding ozone chemistry. However, accurate measurements of NOy have proven to be difficult to obtain, and measurements of total NOy sometimes do not agree with the sum of measurements of its individual components. In recent years, quartz thermal dissociation (TD) inlets have been used to thermally convert all NOy species to NO2, followed by detection by techniques such as laser induced fluorescence (LIF) or cavity ringdown spectroscopy (CRDS). Here we discuss recent work in characterizing the NOy channel of our four-channel TD-CRDS instrument. In particular, we have examined the thermal conversion efficiency of several representative NOy species under a range of experimental conditions. We find that under certain conditions, the conversion efficiency is sensitive to inlet residence time and to the concentration of other trace gases found in ambient sampling, such as ozone. We also report the thermal dissociation curves of N2O5 and ammonium nitrate aerosol, and discuss the interferences observed when ammonia and ozone are co-sampled in the inlet.

  12. A hybrid CFD/characteristics method for fast characterization of hypersonic blunt forebody/inlet flow

    Science.gov (United States)

    Gao, WenZhi; Li, ZhuFei; Yang, JiMing

    2015-10-01

    A hybrid CFD/characteristic method (CCM) was proposed for fast design and evaluation of hypersonic inlet flow with nose bluntness, which targets the combined advantages of CFD and method of characteristics. Both the accuracy and efficiency of the developed CCM were verified reliably, and it was well demonstrated for the external surfaces design of a hypersonic forebody/inlet with nose bluntness. With the help of CCM method, effects of nose bluntness on forebody shock shapes and the flowfield qualities which dominate inlet performance were examined and analyzed on the two-dimensional and axisymmetric configurations. The results showed that blunt effects of a wedge forebody are more substantial than that of related cone cases. For a conical forebody with a properly blunted nose, a recovery of the shock front back to that of corresponding sharp nose is exhibited, accompanied with a gradually fading out of entropy layer effects. Consequently a simplification is thought to be reasonable for an axisymmetric inlet with a proper compression angle, and a blunt nose of limited radius can be idealized as a sharp nose, as the spillage and flow variations at the entrance are negligible, even though the nose scale increases to 10% cowl lip radius. Whereas for two-dimensional inlets, the blunt effects are substantial since not only the inlet capturing/starting capabilities, but also the flow uniformities are obviously degraded.

  13. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

  14. Assessing Fan Flutter Stability in the Presence of Inlet Distortion Using One-way and Two-way Coupled Methods

    Science.gov (United States)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully)embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. A three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is applied to analyze and corroborate fan performance with clean inlet flow. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a loosely-coupled approach, is modified to include a tightly-coupled aeroelastic simulation capability, and then loosely-coupled and tightly-coupled methods arecompared in their evaluation of flutter stability in distorted in-flows.

  15. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    Science.gov (United States)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  16. Design study of fuel circulating system using Pd-alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Yamanaka, T.; Aizawa, T.; Kasahara, T.; Nishikawa, M.; Asami, N.

    1980-01-01

    Design study on the fuel circulating system (FCS) for a tokamak experimental fusion reactor (JXFR) has been carried out to establish the system concept, to plan the development program, and to evaluate the feasibility of diffusion system. The FCS consists of main vacuum system, fuel gas refiners, isotope separators, fuel feeders, and auxiliary systems. In the system design, Pd-alloy membrane permeation method is adopted for fuel refining and isotope separating. All impurities are effectively removed and hydrogen isotopes are sufficiently separated by Pd-alloy membrane. The isotope separation system consists of 1st (47 separators) and 2nd (46 separators) cascades for removing protium and separating deuterium, respectively. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane diffusion method is attractive for isotope separation and refining of fuel gas. The choice will have to be based on reliability, economic, and safety analyses

  17. Highlights from a Mach 4 Experimental Demonstration of Inlet Mode Transition for Turbine-Based Combined Cycle Hypersonic Propulsion

    Science.gov (United States)

    Foster, Lancert E.; Saunders, John D., Jr.; Sanders, Bobby W.; Weir, Lois J.

    2012-01-01

    NASA is focused on technologies for combined cycle, air-breathing propulsion systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments along with improved safety. Among the most critical TBCC enabling technologies are: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development and 3) innovative turbine based combined cycle integration. To address these challenges, NASA initiated an experimental mode transition task including analytical methods to assess the state-of-the-art of propulsion system performance and design codes. One effort has been the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE-LIMX) which is a fully integrated TBCC propulsion system with flowpath sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment was tested in the NASA GRC 10 by 10-Foot Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle engine issues including: (1) dual integrated inlet operability and performance issues-unstart constraints, distortion constraints, bleed requirements, and controls, (2) mode-transition sequence elements caused by switching between the turbine and the ramjet/scramjet flowpaths (imposed variable geometry requirements), and (3) turbine engine transients (and associated time scales) during transition. Testing of the initial inlet and dynamic characterization phases were completed and smooth mode transition was demonstrated. A database focused on a Mach 4 transition speed with limited off-design elements was developed and will serve to guide future TBCC system studies and to validate higher level analyses.

  18. Development of metal catalyst impregnation technology for membrane-based oxygen removal system

    International Nuclear Information System (INIS)

    Kim, Mun Soo; Lee, Doo Ho; Kang, Duk Won

    2005-01-01

    Dissolved oxygen(DO) is a primary cause of PWSCC and its content in reactor coolant system in NPPs has been strictly controlled by various DO removal methods. There are several removal methods of DO, such as vacuum degasification, thermal deaeration, and reductive removal by oxygen scavengers. Although the operation principles of vacuum degasification and thermal deaeration are simple, these methods require a lot of energy for operation and show lower efficiency. And these methods have a few handicaps such as temperature, pH, toxicity, high cost of installation and so on. For the purpose of developing the best method for DO removal from make-up water storage tank, it is necessary to overcome the disadvantages of hydrazine treatment. From this point of view, membrane-based oxygen removal system (MORS) has many advantages than other methods for example, friendly environmental process, versatility of operation conditions with high temperature and low pressure, small space, low cost, etc. Recently de-gassing membrane is widely used in power plant's feed water system for DO removal. De-gassing membrane has some advantages; it removes other dissolved gases such as CO2, N2, as well as O2, and is more economical than Catalytic resin-based Oxygen Removal System. In this study, to obtain better efficiency of MORS, we modified the polypropylene (PP) hollow fiber membrane by plasma treatment and ion beam irradiation supported platinum(Pt), palladium(Pd) as metal catalyst on the surface of the membrane

  19. The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Zhang, R H; Li, C E

    2012-01-01

    In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.

  20. Evaluation of turbine microjet engine operating parameters in conditions conducive to inlet freezing

    Directory of Open Access Journals (Sweden)

    Markowski Jaroslaw

    2017-01-01

    Full Text Available The problem of turbine microjet engine operation is related to flight conditions of unmanned aircraft. These flights are often performed at low altitudes, where, in autumn and winter conditions, the air can be characterized by high humidity and low temperature. Such operating conditions may cause freezing the turbine engine inlet. In particular, this problem may be related to microengines, which most often are not equipped with a de-icing installation. Frosting of the inlet violates the air flow conditions at the engine inlet and may cause unstable operation and even outages, which eventually may lead to a loss of aircraft’s stability and breakdown. Therefore, an attempt was made to evaluate the changes in operational parameters of the turbine microjet engine under conditions leading to the freezing of the inlet. The engine test was performed in stationary conditions and the analysis of the obtained results are presented in this article.

  1. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  2. Discussion on cleaning and maintenance of YA system reverse osmosis membrane

    International Nuclear Information System (INIS)

    Zhu Yidong

    2012-01-01

    According to the overproof of pollution data of YA system reverse osmosis membrane in extension project, the daily maintenance company is using chemical cleaning on reverse osmosis unit to eliminate the pollution blindly, the fixed prescription, fixed dosage and high frequency of the chemical cleaning. The writer analyzed the cause of the membrane pollution and commended several chemical cleaning methods by the long-period study of the system, and also some suggestion, according to the status of operational site, for the daily maintenance. (author)

  3. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    Science.gov (United States)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  4. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi

    2016-02-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  5. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Francis, Lijo; Laleg-Kirati, Taous-Meriem

    2016-01-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  6. Assessing Fan Flutter Stability in Presence of Inlet Distortion Using One-Way and Two-Way Coupled Methods

    Science.gov (United States)

    Herrick, Gregory P.

    2014-01-01

    Concerns regarding noise, propulsive efficiency, and fuel burn are inspiring aircraft designs wherein the propulsive turbomachines are partially (or fully) embedded within the airframe; such designs present serious concerns with regard to aerodynamic and aeromechanic performance of the compression system in response to inlet distortion. Previously, a preliminary design of a forward-swept high-speed fan exhibited flutter concerns in clean-inlet flows, and the present author then studied this fan further in the presence of off-design distorted in-flows. Continuing this research, a three-dimensional, unsteady, Navier-Stokes computational fluid dynamics code is again applied to analyze and corroborate fan performance with clean inlet flow and now with a simplified, sinusoidal distortion of total pressure at the aerodynamic interface plane. This code, already validated in its application to assess aerodynamic damping of vibrating blades at various flow conditions using a one-way coupled energy-exchange approach, is modified to include a two-way coupled timemarching aeroelastic simulation capability. The two coupling methods are compared in their evaluation of flutter stability in the presence of distorted in-flows.

  7. Steady state and transient simulation of anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon

    2018-01-01

    We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.

  8. Innovative cross-flow membrane system for volume reduction of mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Greene, W. [SpinTek Membrane Systems, Huntington Beach, CA (United States)

    1997-10-01

    In this task, SpinTek Membrane Systems, Inc., and the Institute of Gas Technology are completing engineering development leading to a full-scale demonstration of the SpinTek ST-II High Shear Rotary Membrane Filtration System (ST-II) under a Program Research and Development Agreement (PRDA) with the Federal Energy Technology Center-Morgantown. The SpinTek ST-II technology will be scaled-up, and a two-stage ST-II system will be designed, constructed, and operated on both surrogate and actual feed at the Los Alamos National Laboratory (LANL) Liquid Radioactive Waste Treatment Facility (LRWTF). Results from these studies on both surrogate and actual wastewater streams will also be used by LANL personnel to produce a model for determining the applicability and economics of the SpinTek ST-II system to other DOE waste and process streams. The ST-II is a unique, compact cross-flow membrane system having several advantages in performance and cost compared to currently available systems. Staff at LANL have performed pilot-scale testing with the SpinTek technology to evaluate its feasibility for enhanced radionuclide removal from wastewater at its 5- to 8-million-gallon-per-year LRWTF. Recent data have shown the system`s capabilities to remove radionuclides from the waste stream at concentration factors greater than 2000:1, and performance has exceeded both conventional and all other advanced technologies examined.

  9. Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash

    Directory of Open Access Journals (Sweden)

    Anik Keller

    2013-09-01

    Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.

  10. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  11. Spin chain from membrane and the Neumann-Rosochatius integrable system

    International Nuclear Information System (INIS)

    Bozhilov, P.

    2007-01-01

    We find membrane configurations in AdS 4 xS 7 , which correspond to the continuous limit of the SU(2) integrable spin chain, considered as a limit of the SU(3) spin chain, arising in N=4 SYM in four dimensions, dual to strings in AdS 5 xS 5 . We also discuss the relationship with the Neumann-Rosochatius integrable system at the level of Lagrangians, comparing the string and membrane cases

  12. Modeling Interactions between Backbarrier Marshes, Tidal Inlets, Ebb-deltas, and Adjacent Barriers Exposed to Rising Sea Levels

    Science.gov (United States)

    Hanegan, K.; Georgiou, I. Y.; FitzGerald, D.

    2016-02-01

    Along barrier island chains, tidal exchange between the backbarrier and the coastal ocean supports unique saltwater and brackish ecosystems and is responsible for exporting sediment and nutrients to the surrounding coast. Tidal prism, basement controls, and wave and tidal energy dictate the size and number of tidal inlets and the volume of sand sequestered in ebb-tidal deltas. The inlet tidal prism is a function of bay area, tidal range, and secondary controls, including flow inertia, basinal hypsometry, and frictional factors. Sea- level rise (SLR) is threatening coastal environments, causing mainland flooding, changes in sediment supply, and conversion of wetlands and tidal flats to open water. These factors are impacting basinal hypsometry and increasing open water area, resulting in enlarging tidal prisms, increased dimensions of tidal inlets and ebb-tidal deltas, and erosion along adjacent barrier shorelines. Although the effects of SLR on coastal morphology are difficult to study by field observations alone, physics-based numerical models provide a sophisticated means of analyzing coastal processes over decadal time-scales and linking process causation to long term development. Here, we use a numerical model that includes relevant features in the barrier/tidal basin system, linking back-barrier marsh degradation, inlet expansion, and ebb-delta growth to barrier erosion through long-term hydrodynamic and morphology simulations. Sediment exchange and process interactions are investigated using an idealized domain resembling backbarrier basins of mixed energy coasts so that the sensitivity to varying SLR rates, interior marsh loss, sediment supply, and hydrodynamic controls can be more easily analyzed. Model runs explore these processes over geologic time scales, demonstrating the vulnerability of backbarrier systems to projected SLR and marsh loss. Results demonstrate the links between changing basin morphology and shoreface sedimentation patterns that initiate

  13. An advanced online monitoring approach to study the scaling behavior in direct contact membrane distillation

    KAUST Repository

    Lee, Jung Gil

    2017-10-12

    One of the major challenges in membrane distillation (MD) desalination is scaling, mainly CaSO4 and CaCO3. In this study, in order to achieve a better understanding and establish a strategy for controlling scaling, a detailed investigation on the MD scaling was performed by using various analytical methods, especially an in-situ monitoring technique using an optical coherence tomography (OCT) to observe the cross-sectional view on the membrane surface during operation. Different concentrations of CaSO4, CaCO3, as well as NaCl were tested separately and in different mixed feed solutions. Results showed that when CaSO4 alone was employed in the feed solution, the mean permeate flux (MPF) has significantly dropped at lower volume concentration factor (VCF) compared to other feed solutions and this critical point was observed to be influenced by the solubility changes of CaSO4 resulting from the various inlet feed temperatures. Although the inlet feed and permeate flow rates could contribute to the initial MPF value, the VCF, which showed a sharp MPF decline, was not affected. It was clearly observed that the scaling on the membrane surface due to crystal growth in the bulk and the deposition of aggregated crystals on the membrane surface abruptly appeared close to the critical point of VCF by using OCT observation in a real time. On the other hand, NaCl + CaSO4 mixed feed solution resulted in a linear MPF decline as VCF increases and delayed the critical point to higher VCF values. In addition, CaCO3 alone in feed solution did not affect the scaling, however, when CaSO4 was added to CaCO3, the initial MPF decline and VCF met the critical point earlier. In summary, calcium scaling crystal formed at different conditions influenced the filtration dynamics and MD performances.

  14. New piezo driven gas inlet valve for fusion experiments

    International Nuclear Information System (INIS)

    Usselmann, E.; Hemmerich, J.L.; How, J.; Holland, D.; Orchard, J.; Winkel, T.; Schargitz, U.; Pocheim, N.

    1989-01-01

    The gas inlet valves used at the JET experiment are described and their performances are discussed. A new gas-valve development suitable to replace the existing valves at JET and for future use in large fusion experiments is presented. The new valve is equipped with a piezo-electric translator and has a dosing range of 0-800 mbarls -1 for D 2 . The operating mode of the valve is fail-safe closed with a leak-rate of ≤ 10 -9 mbarls -1 . The design, the test results and throughput values in dependence of filling pressure and control voltage are presented and experiences with the prototype valve as a new gas inlet valve for the JET operation are described

  15. A novel membrane inlet mass spectrometer method to measure ¹⁵NH4₄⁺ for isotope-enrichment experiments in aquatic ecosystems.

    Science.gov (United States)

    Yin, Guoyu; Hou, Lijun; Liu, Min; Liu, Zhanfei; Gardner, Wayne S

    2014-08-19

    Nitrogen (N) pollution in aquatic ecosystems has attracted much attention over the past decades, but the dynamics of this bioreactive element are difficult to measure in aquatic oxygen-transition environments. Nitrogen-transformation experiments often require measurement of (15)N-ammonium ((15)NH4(+)) ratios in small-volume (15)N-enriched samples. Published methods to determine N isotope ratios of dissolved ammonium require large samples and/or costly equipment and effort. We present a novel ("OX/MIMS") method to determine N isotope ratios for (15)NH4(+) in experimental waters previously enriched with (15)N compounds. Dissolved reduced (15)N (dominated by (15)NH4(+)) is oxidized with hypobromite iodine to nitrogen gas ((29)N2 and/or (30)N2) and analyzed by membrane inlet mass spectrometry (MIMS) to quantify (15)NH4(+) concentrations. The N isotope ratios, obtained by comparing the (15)NH4(+) to total ammonium (via autoanalyzer) concentrations, are compared to the ratios of prepared standards. The OX/MIMS method requires only small sample volumes of water (ca. 12 mL) or sediment slurries and is rapid, convenient, accurate, and precise (R(2) = 0.9994, p < 0.0001) over a range of salinities and (15)N/(14)N ratios. It can provide data needed to quantify rates of ammonium regeneration, potential ammonium uptake, and dissimilatory nitrate reduction to ammonium (DNRA). Isotope ratio results agreed closely (R = 0.998, P = 0.001) with those determined independently by isotope ratio mass spectrometry for DNRA measurements or by ammonium isotope retention time shift liquid chromatography for water-column N-cycling experiments. Application of OX/MIMS should simplify experimental approaches and improve understanding of N-cycling rates and fate in a variety of freshwater and marine environments.

  16. Design study of fuel circulating system using Pd alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Aizawa, T.; Kasahara, T.; Yamanaka, T.

    1981-01-01

    It is expected that the method of permeating through Pd-alloy membrances is effective for isotope separation and the refining of fuel gas. In this paper, the design study of the Fuel Circulating System (FCS) using Pb-alloy membranes is described. The study is mainly focused on the main vacuum, fuel gas refining, isotope separating, and tritium containment systems. In the fuel gas refining system, impurities are effectively removed by using Pd-alloy membranes. For the isotope separation system, the diffusion method through Pd-alloy membranes was adopted. From the standpoint of the safety and economy, a three-stage tritium containment system was adopted to control tritium release to the environment as low as possible. The principal conclusion drawn from the design study was as follows. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane method is attractive for isotope separation and the refining of fuel gas. For a large amount of tritium inventory, handling and control technologies should be completed by the experimental evaluation and development of the components and materials used for the FCS. A three-stage containment system was adopted to control tritium release to environment as low as possible. Consideration to prevent tritium escape will be necessary for fuel gas refiners and isotope separators. (Kato, T.)

  17. 75 FR 1582 - Endangered and Threatened Species; Designation of Critical Habitat for the Cook Inlet Beluga Whale

    Science.gov (United States)

    2010-01-12

    ... Cook Inlet Beluga Whale AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... designate critical habitat for the endangered Cook Inlet beluga whale, Delphinapterus leucas, under the... the Cook Inlet beluga whale can be found on our Web site at: http://www.fakr.noaa.gov/ FOR FURTHER...

  18. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    Science.gov (United States)

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  19. Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins.

    Directory of Open Access Journals (Sweden)

    Annie Frelet-Barrand

    Full Text Available BACKGROUND: Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a gram-positive lactic bacterium, has been traditionally used in food fermentations. This expression system is also widely used in biotechnology for large-scale production of heterologous proteins. Various expression vectors, based either on constitutive or inducible promoters, are available for this system. While previously used to produce bacterial and eukaryotic membrane proteins, the ability of this system to produce plant membrane proteins was until now not tested. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this work was to test the expression, in Lactococcus lactis, of either peripheral or intrinsic Arabidopsis membrane proteins that could not be produced, or in too low amount, using more classical heterologous expression systems. In an effort to easily transfer genes from Gateway-based Arabidopsis cDNA libraries to the L. lactis expression vector pNZ8148, we first established a cloning strategy compatible with Gateway entry vectors. Interestingly, the six tested Arabidopsis membrane proteins could be produced, in Lactococcus lactis, at levels compatible with further biochemical analyses. We then successfully developed solubilization and purification processes for three of these proteins. Finally, we questioned the functionality of a peripheral and an intrinsic membrane protein, and demonstrated that both proteins were active when produced in this system. CONCLUSIONS/SIGNIFICANCE: Altogether, these data suggest that Lactococcus lactis might be an attractive system for the efficient and functional production of difficult plant membrane proteins.

  20. Tangential inlet supersonic separators: a novel apparatus for gas purification

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yang, Yan

    2016-01-01

    A novel supersonic separator with a tangential inlet is designed to remove the condensable components from gas mixtures. The dynamic parameters of natural gas in the supersonic separation process are numerically calculated using the Reynolds stress turbulence model with the Peng-Robinson real gas...... be generated by the tangential inlet, and it increases to the maximum of 200 m/s at the nozzle throat due to decrease of the nozzle area of the converging part. The tangential velocity can maintain the value of about 160 m/s at the nozzle exit, and correspondingly generates the centrifugal acceleration of 3...

  1. Characteristics Air Flow in Room Chamber Test Refrigerator Household Energy Consumption with Inlet Flow Variation

    Science.gov (United States)

    Susanto, Edy; Idrus Alhamid, M.; Nasruddin; Budihardjo

    2018-03-01

    Room Chamber is the most important in making a good Testing Laboratory. In this study, the 2-D modeling conducted to assess the effect placed the inlet on designing a test chamber room energy consumption of household refrigerators. Where the geometry room chamber is rectangular and approaching the enclosure conditions. Inlet varied over the side parallel to the outlet and compared to the inlet where the bottom is made. The purpose of this study was to determine and define the characteristics of the airflow in the room chamber using CFD simulation. CFD method is used to obtain flow characteristics in detail, in the form of vector flow velocity and temperature distribution inside the chamber room. The result found that the position of the inlet parallel to the outlet causes air flow cannot move freely to the side of the floor, even flow of air moves up toward the outlet. While by making the inlet is below, the air can move freely from the bottom up to the side of the chamber room wall as well as to help uniform flow.

  2. Analysis of DC control in double-inlet GM type pulse tube refrigerators for detectors

    Science.gov (United States)

    Du, B. Y.

    2016-10-01

    Pulse tube refrigerators have demonstrated many advantages with respect to temperature stability, vibration, reliability and lifetime among cryo-coolers for detectors. Double-inlet type pulse tube refrigerators are popular in GM type pulse tube refrigerators. The single double-inlet valve may introduce DC flow in refrigerator, which deteriorates the performance of pulse tube refrigerator. One new type of DC control mode is introduced in this paper. Two parallel-placed needle valves with opposite direction named double-valve configuration, instead of single double-inlet valve, are used in our experiment to reduce the DC flow. With two double-inlet operating, the lowest cold end temperature of 18.1K and a coolant of 1.2W@20K have been obtained. It has proved that this method is useful for controlling DC flow of the pulse tube refrigerators, which is very important to understand the characters of pulse tube refrigerators for detectors.

  3. Evaluation of treated sewage reuse potential and membrane-based water reuse technology for the Bangkok Metropolitan area.

    Science.gov (United States)

    Chiemchaisri, Chart; Chiemchaisri, Wilai; Prasertkulsak, Sirilak; Hamjinda, Nutta Sangnarin; Kootatep, Thammarat; Itonaga, Takanori; Yamamoto, Kazuo

    2015-01-01

    Only 3.4% of total water use in the Bangkok Metropolitan area is reused treated sewage. This study anticipates that further treated-sewage reuse in industrial sectors, commercial buildings and public parks, in addition to present in-plant and street cleaning purposes, would increase total water reuse to about 10%. New water reuse technologies using membrane bioreactor (MBR) and microfiltration (MF) as tertiary treatment were implemented to assess their potential for their application in the Bangkok Metropolitan area. The MBR was applied to the treatment of raw sewage in a central treatment plant of the Bangkok Metropolitan area. The MF membrane was used for polishing the effluent of the treatment plant. The results show the quality of treated water from MBR and tertiary MF treatment could meet stringent water reuse quality standard in terms of biochemical oxygen demand, suspended solids and biological parameters. Constant permeate flux of the membrane was achieved over long-term operation, during which inorganic fouling was observed. This is due to the fact that incoming sewage contains a considerable amount of inorganic constituents contributed from storm water and street inlet in the combined sewerage systems. The total cost of the MBR for sewage treatment and production of reuse water is estimated to be about USD1.10/m3.

  4. Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas

    KAUST Repository

    Khalilpour, Rajab

    2011-08-12

    The modeling and optimal design/operation of gas membranes for postcombustion carbon capture (PCC) is presented. A systematic methodology is presented for analysis of membrane systems considering multicomponent flue gas with CO 2 as target component. Simplifying assumptions is avoided by namely multicomponent flue gas represented by CO 2/N 2 binary mixture or considering the co/countercurrent flow pattern of hollow-fiber membrane system as mixed flow. Optimal regions of flue gas pressures and membrane area were found within which a technoeconomical process system design could be carried out. High selectivity was found to not necessarily have notable impact on PCC membrane performance, rather, a medium selectivity combined with medium or high permeance could be more advantageous. © 2011 American Institute of Chemical Engineers (AIChE).

  5. Effects of inlet/outlet configurations on the electrostatic capture of airborne nanoparticles and viruses

    International Nuclear Information System (INIS)

    Jang, Jaesung; Akin, Demir; Bashir, Rashid

    2008-01-01

    Motivated by capture and detection of airborne biological agents in real time with a cantilever biosensor without introducing the agents into liquids, we present the effects of inlet/outlet configurations of a homemade particle collector on the electrostatic capture of airborne 100 nm diameter nanoparticles under swirling gas flows. This particle collector has three different inlet/outlet configurations: forward inlet/outlet (FO), backward inlet/outlet (BO) and straight inlet/outlet (SO) configurations. We also present the electrostatic capture of Vaccinia viruses using the same particle collector and compare these virus measurements with the nanoparticle cases. The most particles were collected in the FO configuration. The numbers of particles captured in the BO and SO configurations were close within their standard deviations. For all the three configurations tested, the number of particles captured in the center electrode C was much smaller than those captured in the other electrodes at a flow rate of 1.1 l min −1 and an applied potential of 2 kV. Using a commercial CFD code FLUENT, we also simulated the effects of the three inlet/outlet configurations on the particle capture in terms of particle trajectories, velocities and travel times. This simulation was in a good agreement with measurements that the FO configuration is the most favorable to particle capture among the tested configurations at a flow rate of 1.1 l min −1 . The effects of particle diameters on the capture will also be discussed. This collector can be used for real-time monitoring of bioaerosols along with cantilever biosensors

  6. Experimental and numerical investigations of microwave return loss of aircraft inlets with low-pressure plasma

    Science.gov (United States)

    Zhang, Yachun; He, Xiang; Chen, Jianping; Chen, Hongqing; Chen, Li; Zhang, Hongchao; Ni, Xiaowu; Lu, Jian; Shen, Zhonghua

    2018-03-01

    The relationships between return losses of the cylindrical inlet and plasma discharge parameters are investigated experimentally and numerically. The return losses are measured using a high dynamic range measurement system and simulated by COMSOL Multiphysics when the frequency band of the microwaves is in the range 1-4 GHz. The profiles of the plasma density are estimated using Epstein and Bessel functions. Results show that the incident microwaves can be absorbed by plasma efficaciously. The maximal return loss can reach -13.84 dB when the microwave frequency is 2.3 GHz. The increase of applied power implies augmentation of the return loss, which behaves conversely for gas pressure. The experimental and numerical results display reasonable agreement on return loss, suggesting that the use of plasma is effective in the radar cross section reduction of aircraft inlets.

  7. Containment vessel drain system

    Science.gov (United States)

    Harris, Scott G.

    2018-01-30

    A system for draining a containment vessel may include a drain inlet located in a lower portion of the containment vessel. The containment vessel may be at least partially filled with a liquid, and the drain inlet may be located below a surface of the liquid. The system may further comprise an inlet located in an upper portion of the containment vessel. The inlet may be configured to insert pressurized gas into the containment vessel to form a pressurized region above the surface of the liquid, and the pressurized region may operate to apply a surface pressure that forces the liquid into the drain inlet. Additionally, a fluid separation device may be operatively connected to the drain inlet. The fluid separation device may be configured to separate the liquid from the pressurized gas that enters the drain inlet after the surface of the liquid falls below the drain inlet.

  8. Evolution and Impacts of a New Inlet Formed in Fire Island National Park by Superstorm Sandy (Invited)

    Science.gov (United States)

    Flood, R. D.; Flagg, C. N.; Goff, J. A.; Austin, J. A.; Schwab, W. C.; Denny, J. F.; Christensen, B. A.; Browne, C. M.; Saustrup, S.

    2013-12-01

    Superstorm Sandy impacted the New York / New Jersey area on October 29, 2012 and brought a storm surge of 1.5 to 2.5 m and waves with a significant wave height of 9.5 m to the south shore of Long Island, New York. The storm cut three inlets across Fire Island barrier islands. Two of the inlets were closed mechanically, but the third inlet, cut through a wilderness area of the Fire Island National Seashore, remains open and provides a rare opportunity to study the evolution and dynamics of an unmanaged inlet. This new inlet formed where Fire Island is narrow and is near the site of an earlier inlet that closed in 1825. Great South Bay (GSB) is located between Fire Island and the Long Island mainland. The salinity in GSB increased by 5 salinity units following the breach and has remained high. GSB has had chronic water quality issues associated with a high population density that may be moderated by flow related to the new inlet. Water flow through the new inlet is controlled by the difference between offshore tide and GSB tide, but GSB tide does not appear to have been altered by flow through the inlet. This is different from the traditional view of inlet dynamics where a balance is sought between channel cross-sectional area, tidal prism (which together give channel velocity) and longshore sediment transport. At SoMAS we have been monitoring the evolution of the new inlet since its formation. We have conducted overflights at 1 to 3 week intervals to track the changing inlet geometry and the location of flood-tidal and ebb-tidal deltas. We have also done small-boat bathymetric surveys of the channel itself every 3 to 5 weeks to track the shape and cross-sectional area of the channel. The channel was quite small shortly after the breach with a depth of about 2 m. The channel grew fast as it cut into underlying fine-grain sediments, reaching a depth of over 6 m following several late winter storms. The inlet channel initially migrated quickly to the west, but its

  9. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  10. Field-scale electrolysis/ceramic membrane system for the treatment of sewage from decentralized small communities.

    Science.gov (United States)

    Son, Dong-Jin; Kim, Woo-Yeol; Yun, Chan-Young; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2017-07-05

    The electrolysis process adopting copper electrodes and ceramic membrane with pore sizes of 0.1-0.2 μm were consisted to a system for the treatment of sewage from decentralized small communities. The system was operated under an HRT of 0.1 hour, voltage of 24 V, and TMP of 0.05 MPa. The system showed average removals of organics, nitrogen, phosphorus, and solids of up to 80%, 52%, 92%, and 100%, respectively. Removal of organics and nitrogen dramatically increased in proportion to increment of influent loading. Phosphorus and solids were remarkably eliminated by both electro-coagulation and membrane filtration. The residual particulate constituents could also be removed successfully through membrane process. A system composed of electrolysis process with ceramic membrane would be a compact, reliable, and flexible option for the treatment of sewage from decentralized small communities.

  11. The effect of inlet distorted flow on steady and unsteady performance of a centrifugal compressor

    International Nuclear Information System (INIS)

    Park, Jae Hyoung; Kang, Shin Hyoung

    2005-01-01

    Effects of inlet distorted flow on performance, stall and surge are experimentally investigated for a high-speed centrifugal compressor. Tested results for the distorted inlet flow cases are compared with the result of the undistorted one. The performance of compressor is slightly deteriorated due to the inlet distortion. The inlet distortion does not affect the number of stall cell and the propagation velocity. It also does not change stall inception flow rate. However, as the distortion increases, stall starts at the higher flow rate for low speed at the lower flow rate for high speed. For 50,000 rpm stall occurs as the flow rate decreases, however disappears for the smaller flow rate. This is due to the interaction of surge and stall. After the stall and surge interact, the number of stall cell decreases

  12. Two-Dimensional Bifurcated Inlet Variable Cowl Lip Test Completed in 10- by 10-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Hoffman, T. R.

    2000-01-01

    Researchers at the NASA Glenn Research Center at Lewis Field successfully tested a variable cowl lip inlet at simulated takeoff conditions in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) as part of the High-Speed Research Program. The test was a follow-on to the Two-Dimensional Bifurcated (2DB) Inlet/Engine test. At the takeoff condition for a High-Speed Civil Transport aircraft, the inlet must provide adequate airflow to the engine with an acceptable distortion level and high-pressure recovery. The test was conducted to study the effectiveness of installing two rotating lips on the 2DB Inlet cowls to increase mass flow rate and eliminate or reduce boundary layer flow separation near the lips. Hardware was mounted vertically in the test section so that it extended through the tunnel ceiling and that the 2DB Inlet was exposed to the atmosphere above the test section. The tunnel was configured in the aerodynamic mode, and exhausters were used to pump down the tunnel to vacuum levels and to provide a maximum flow rate of approximately 58 lb/sec. The test determined the (1) maximum flow in the 2DB Inlet for each variable cowl lip, (2) distortion level and pressure recovery for each lip configuration, (3) boundary layer conditions near variable lips inside the 2DB Inlet, (4) effects of a wing structure adjacent to the 2DB Inlet, and (5) effects of different 2DB Inlet exit configurations. It also employed flow visualization to generate enough qualitative data on variable lips to optimize the variable lip concept. This test was a collaborative effort between the Boeing Company and Glenn. Extensive inhouse support at Glenn contributed significantly to the progress and accomplishment of this test.

  13. Design of a tubular ceramic membrane for gas separation in a PEMFC system

    Energy Technology Data Exchange (ETDEWEB)

    Kamarudin, S.K.; Daud, W.R.W.; Mohammad, A.W.; Som, A.Md.; Takriff, M.S. [Department of Chemical and Process Engineering, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2004-01-01

    The objective of this study is to introduce a shortcut in the method of design for a tubular ceramic membrane (TCM) for gas separation. Generally, it explains the permeation of the multi component gas using cross flow models in a porous membrane and the surface area of the membrane required. The novel aspect of this method is that the expression for the length of the membrane is simplified to a number unit (NTU) and a height of transfer unit (HTU). The HTU term for porous membranes is characterised by the physical properties of the membrane; the feed flow rate, n{sub F}, membrane thickness, l{sub M}, feed pressure, P{sub F}, K the permeability of gas and the diameter of the membrane, D{sub M}. The integral for NTU of a porous membrane is the solution for the local permeate along the length of the membrane. It is found that, NTU mainly depends on the rejection stream, x{sub R,}, along the membrane and it describes the relative degree of separation. The Proton Electrolyte Membrane Fuel Cell (PEMFC) system is taken as the case study. CO is the main culprit in reducing the performance of the PEMFC and will act as a catalyst poison for the fuel cell anode at a concentration as low as 100 ppm. Thus, the reformate, from primary reforming, contains a significant amount of CO and must be purified. The effect of some important parameters such as temperature, pressure and the thickness of membrane to the degree of separation are presented in this paper. From the results, it can be seen that the system could reduce the CO concentration from 2000 - 500 ppm. Basically the TCM will operate, in series, with a pressure swing adsorber in order to further reduce the concentration of CO to less than 10 ppm before entering the fuel cell stack. However, this paper only focuses on the design of the TCM. Besides this, it is observed that the purity of the hydrogen increased from 72.8 - 96% (at {theta} = 0.5) after the membrane. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  14. Hydrogen selective membrane for the natural gas system. Development of CO{sub 2}-selective biogas membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vestboe, A.P.

    2012-02-15

    The project started as a literature study and technology development project for a hydrogen selective membrane for the natural gas system. The introduction of hydrogen (for example produced from wind turbines by surplus electricity) in the gas system makes it possible to store energy which can be selectively used with high energy conversion in fuel cells directly located at the end users. In order to make this possible, it is necessary to have a separating unit that can selectively remove hydrogen from the gas mixture and deliver it as fuel to the electrical generator (a fuel cell). In the project, several existing technologies were evaluated with regard to the application in view. It was concluded that while other technologies are ripe, they are costly in energy and unsuitable for the relatively low capacity application that are in question close to the end users. Membrane technology was evaluated to be the most suitable, although the technology is still under development in many cases. In the project it was found that metallic membranes in the form of palladium coated stainless discs would answer the needs for the high purity needed. Laboratory development yielded discs that could separate hydrogen from natural gas, however, the flux was low compared to the needs of the application. It was found that at least 2 bar pressure difference of hydrogen would be needed to get a high enough flux. The way to achieve this pressure would necessitate a compressor which would consume an energy amount high enough to invalidate the concept. When concluding on the results and the study it was found that the direction of the project could be changed towards developing CO{sub 2}-selective membranes with the goal of developing membrane technology that could upgrade biogas by removing CO{sub 2}. The laboratory equipment and setup that were developed in the first part of the project could be used directly in this second part of the project. In this second part of the project it was

  15. Aero-Thermo-Structural Analysis of Inlet for Rocket Based Combined Cycle Engines

    Science.gov (United States)

    Shivakumar, K. N.; Challa, Preeti; Sree, Dave; Reddy, Dhanireddy R. (Technical Monitor)

    2000-01-01

    NASA has been developing advanced space transportation concepts and technologies to make access to space less costly. One such concept is the reusable vehicles with short turn-around times. The NASA Glenn Research Center's concept vehicle is the Trailblazer powered by a rocket-based combined cycle (RBCC) engine. Inlet is one of the most important components of the RBCC engine. This paper presents fluid flow, thermal, and structural analysis of the inlet for Mach 6 free stream velocity for fully supersonic and supercritical with backpressure conditions. The results concluded that the fully supersonic condition was the most severe case and the largest stresses occur in the ceramic matrix composite layer of the inlet cowl. The maximum tensile and the compressive stresses were at least 3.8 and 3.4, respectively, times less than the associated material strength.

  16. The mechanism of uncoupling by picrate in Escherichia coli K-12 membrane systems.

    Science.gov (United States)

    Michels, M; Bakker, E P

    1981-06-01

    The mechanism of action of the uncoupler picrate on intact cells and everted membrane vesicles of Escherichia coli K-12 was investigated. Like in mitochondria [Hanstein, W. G. and Hatefi, Y. (1974) Proc. Natl Acad. Sci. USA, 71, 288-292], it was observed that picrate uncoupled energy-linked functions only in everted, but not in intact membrane systems. In the vesicles picrate also decreased the magnitude of the transmembrane proton-motive force at concentrations similar to those at which it caused uncoupling. Experiments with 14C-labelled picrate showed that this compound bound both to deenergized intact cells and everted vesicles. However, upon energization of the membrane, picrate was extruded from the intact cell and taken up to a larger extent by the vesicles. These energy-dependent changes in picrate uptake correlated with the magnitude of the transmembrane electrical potential, delta psi. It is therefore proposed that picrate is a permeant uncoupler, that delta psi is the driving force for picrate movement across biological membranes, and that the uncoupling activity of picrate in everted membrane systems is due to its protonophoric action.

  17. Exchange inlet optimization by genetic algorithm for improved RBCC performance

    Science.gov (United States)

    Chorkawy, G.; Etele, J.

    2017-09-01

    A genetic algorithm based on real parameter representation using a variable selection pressure and variable probability of mutation is used to optimize an annular air breathing rocket inlet called the Exchange Inlet. A rapid and accurate design method which provides estimates for air breathing, mixing, and isentropic flow performance is used as the engine of the optimization routine. Comparison to detailed numerical simulations show that the design method yields desired exit Mach numbers to within approximately 1% over 75% of the annular exit area and predicts entrained air massflows to between 1% and 9% of numerically simulated values depending on the flight condition. Optimum designs are shown to be obtained within approximately 8000 fitness function evaluations in a search space on the order of 106. The method is also shown to be able to identify beneficial values for particular alleles when they exist while showing the ability to handle cases where physical and aphysical designs co-exist at particular values of a subset of alleles within a gene. For an air breathing engine based on a hydrogen fuelled rocket an exchange inlet is designed which yields a predicted air entrainment ratio within 95% of the theoretical maximum.

  18. Characterize the hydraulic behaviour of grate inlet in urban drainage to prevent the urban's flooding

    Science.gov (United States)

    Tellez Alvarez, Jackson David; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2016-04-01

    One of the most important problems that have some cities is the urban floods because of poor drainage design. Therefore the systems the drainage do not have the capacity of capture the flow of discharge generated in a rain event and insert it into the drainage network. Even though the two problems that have caught the main attention are the evaluation of the volumes falling in the river basin because extreme rainfall events often lead to urban pluvial flooding being a hydrologic problem and the hydraulic design of the sewer network being a hydraulic problem to limiting capacity of the drainage system, there is an intermediate step between these two processes that is necessary to solve that is the hydraulic behavior of the grate inlet. We need to collect the runoff produced on the city surface and to introduce it in the sewer network. Normally foundry companies provide complete information about drainage grate structural capacity but provide nothing about their hydraulic capacity. This fact can be seen because at the moment does not exist any official regulation at national or international level in this field. It's obvious that, nowadays, there is a great gap in this field at the legislative level owing to the complexity of this field and the modernity of the urban hydrology as science [1]. In essence, we shows the relevance to know the inlet hydraulic interception capacity because surface drainage requires a satisfactory knowledge on storm frequency, gutter flow and above all inlet capacity. In addition, we development an important achievement is the invention and development of techniques for measurement of field velocities in hydraulics engineering applications. Hence knowledge the technological advances in digital cameras with high resolution and high speed found in the environmental, and the advances in image processing techniques, therefore now is a tremendous potential to obtain of behavior of the water surface flow [2]. A novel technique using particle

  19. Thermodynamic assessment of power requirements and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman

    International Nuclear Information System (INIS)

    Dawoud, B.; Zurigat, Y.H.; Bortmany, J.

    2005-01-01

    Gas-turbine inlet air cooling has been considered for boosting the power output during hot seasons. In this paper, the power requirements of several inlet air cooling techniques for gas-turbine power plants in two locations; namely, Marmul and Fahud, in Oman have been evaluated using typical meteorological year (TMY) data. The considered techniques are evaporative cooling, fogging cooling, absorption cooling using both LiBr-H 2 O and aqua-ammonia, and vapour-compression cooling systems. For evaporative cooling, an 88% approach to the wet-bulb temperature has been considered, compared with a 98% approach for fogging cooling. A design compressor inlet air temperature of 14 deg C has been assigned to LiBr-water chilling systems. For both aqua-ammonia absorption and vapour-compression refrigerating systems, a design compressor inlet air temperature of 8 deg C has been selected to avoid the formation of ice fragments as the air is drawn into the mouth of the compressor. These technologies have been compared with respect to their effectiveness in power boosting of small-size gas-turbine power plants used in two oil fields at Marmul and Fahud in the Sultanate of Oman. Fogging cooling is accompanied with 11.4% more electrical energy in comparison with evaporative cooling in both locations. The LiBr-H 2 O cooling offers 40% and 55% more energy than fogging cooling at Fahud and Marmul, respectively. Applying aqua-ammonia-water and vapour-compression cooling, a further annual energy production enhancement of 39% and 46% is expected in comparison with LiBr-H 2 O cooling at Fahud and Marmul, respectively

  20. Comparison of Four Types of Membrane Bioreactor Systems in Terms of Shear Stress over the Membrane Surface using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby

    2013-01-01

    Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement...... and requires knowledge of the membrane fouling, hydrodynamics and biokinetics. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the two-phase flow in an MBR. Four cases of different MBR configurations are presented in this work, using CFD as a tool to develop...

  1. Long-term evolution of sand waves in the Marsdiep inlet. II: Relation to hydrodynamics

    Science.gov (United States)

    Buijsman, Maarten C.; Ridderinkhof, Herman

    2008-05-01

    A discussion is presented about the mechanisms that govern the spatial and seasonal variability in sand-wave height and migration speed in the 4 km wide Marsdiep tidal inlet, the Netherlands. Since 1998, current velocities and water depths have been recorded with an ADCP that is mounted under the ferry 'Schulpengat'. In this paper, the current measurements were used to explain the sand-wave observations presented in Buijsman and Ridderinkhof [this issue. Long-term evolution of sand waves in the Marsdiep inlet. I: high-resolution observations. Continental Shelf Research, doi: 10.1016/j.csr.2007.10.011]. Across nearly the entire inlet, the sand waves migrate in the flood direction. In the flood-dominated southern part of the inlet, the 'measured' (i.e. based on sand-wave shape and migration speed) and predicted bedload transport agree in direction, magnitude, and trends, whereas in the ebb-dominated northern part the predicted bedload and suspended load transport is opposite to the sand-wave migration. In the southern part, 55% of the bedload transport is due to tidal asymmetries and 45% due to residual currents. In addition to the well-known tidal asymmetries, asymmetries that arise from the interaction of M2 and its overtides with S2 and its compound tides are also important. It is hypothesised that in the northern part of the inlet the advection of suspended sand and lag effects govern the sand-wave migration. The relative importance of suspended load transport also explains why the sand waves have smaller lee-slope angles, are smaller, more rounded, and more three-dimensional in the northern half of the inlet. The sand waves in this part of the inlet feature the largest seasonal variability in height and migration speed. This seasonal variability may be attributed to the tides or a seasonal fluctuation in fall velocity. In both cases sediment transport is enhanced in winter, increasing sand-wave migration and decreasing sand-wave height. The influence of storms

  2. [Effect of solution environments on ceramic membrane microfiltration of model system of Chinese medicines].

    Science.gov (United States)

    Zhang, Lianjun; Lu, Jin; Le, Kang; Fu, Tingming; Guo, Liwei

    2010-07-01

    To investigate the effect of differents solution environments on the ceramic membrane microfiltration of model system of Chinese medicines. Taking binary system of soybean protein-berberine as the research object, flux, transmittance of berberine and traping rate of protein as indexes, different solution environment on membrane process were investigated. When the concentration of soybean protein was under 1 g x L(-1), the membrane flux was minimum with the traping of berberine decreased slightly as the concentration increased. When pH was 4, the flux was maximum with the traping rate of protein was 99%, and the transmittance of berberine reached above 60%. The efficiency of membrane separation can be improved by optimizing the solution environment of water-extraction of chinese medicines. The efficiency of membrane separation is the best when adjust the pH to the isoelectric point of proteins for the proteins as the main pollutant in aqueous solution.

  3. The effect of inclusion of inlets in dual drainage modelling

    Science.gov (United States)

    Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.; Djordjević, Slobodan

    2018-04-01

    In coupled sewer and surface flood modelling approaches, the flow process in gullies is often ignored although the overland flow is drained to sewer network via inlets and gullies. Therefore, the flow entering inlets is transferred to the sewer network immediately, which may lead to a different flood estimation than the reality. In this paper, we compared two modelling approach with and without considering the flow processes in gullies in the coupled sewer and surface modelling. Three historical flood events were adopted for model calibration and validation. The results showed that the inclusion of flow process in gullies can further improve the accuracy of urban flood modelling.

  4. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  5. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the rat...

  6. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    Science.gov (United States)

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  7. 77 FR 6065 - Proposed Information Collection; Comment Request; Cook Inlet Beluga Whale Economic Survey

    Science.gov (United States)

    2012-02-07

    ... Collection; Comment Request; Cook Inlet Beluga Whale Economic Survey AGENCY: National Oceanic and Atmospheric... beluga whales found in the Cook Inlet of Alaska is one of five distinct population segments in United... beluga whale, such as population increases, are primarily the result of the non- consumptive value people...

  8. Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing.

    Science.gov (United States)

    Shaw, Jennifer L A; Monis, Paul; Fabris, Rolando; Ho, Lionel; Braun, Kalan; Drikas, Mary; Cooper, Alan

    2014-12-01

    Biofilm control in drinking water distribution systems (DWDSs) is crucial, as biofilms are known to reduce flow efficiency, impair taste and quality of drinking water and have been implicated in the transmission of harmful pathogens. Microorganisms within biofilm communities are more resistant to disinfection compared to planktonic microorganisms, making them difficult to manage in DWDSs. This study evaluates the impact of four unique drinking water treatments on biofilm community structure using metagenomic DNA sequencing. Four experimental DWDSs were subjected to the following treatments: (1) conventional coagulation, (2) magnetic ion exchange contact (MIEX) plus conventional coagulation, (3) MIEX plus conventional coagulation plus granular activated carbon, and (4) membrane filtration (MF). Bacterial biofilms located inside the pipes of each system were sampled under sterile conditions both (a) immediately after treatment application ('inlet') and (b) at a 1 km distance from the treatment application ('outlet'). Bacterial 16S rRNA gene sequencing revealed that the outlet biofilms were more diverse than those sampled at the inlet for all treatments. The lowest number of unique operational taxonomic units (OTUs) and lowest diversity was observed in the MF inlet. However, the MF system revealed the greatest increase in diversity and OTU count from inlet to outlet. Further, the biofilm communities at the outlet of each system were more similar to one another than to their respective inlet, suggesting that biofilm communities converge towards a common established equilibrium as distance from treatment application increases. Based on the results, MF treatment is most effective at inhibiting biofilm growth, but a highly efficient post-treatment disinfection regime is also critical in order to prevent the high rates of post-treatment regrowth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system

    Science.gov (United States)

    Jöckel, Andreas; Faber, Aline; Kampschulte, Tobias; Korppi, Maria; Rakher, Matthew T.; Treutlein, Philipp

    2015-01-01

    Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to 90 times larger than that of the coolant atom. Here, we use ultracold atoms to sympathetically cool the vibrations of a Si3N4 nanomembrane, the mass of which exceeds that of the atomic ensemble by a factor of 1010. The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance and is enhanced by placing the membrane in an optical cavity. We observe cooling of the membrane vibrations from room temperature to 650 ± 230 mK, exploiting the large atom-membrane cooperativity of our hybrid optomechanical system. With technical improvements, our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state.

  10. Temperature and velocity field of coolant at inlet to WWER-440 core - evaluation of experimental data

    International Nuclear Information System (INIS)

    Jirous, F.; Klik, F.; Janeba, B.; Daliba, J.; Delis, J.

    1989-01-01

    Experimentally determined were coolant temperature and velocity fields at the inlet of the WWER-440 reactor core. The accuracy estimate is presented of temperature measurements and the relation is given for determining the resulting measurement error. An estimate is also made of the accuracy of solution of the system of equations for determining coefficients B kn using the method of the least square fit. Coefficients B kn represent the relative contribution of the mass flow of the k-th fuel assembly from the n-th loop and allow the calculation of coolant temperatures at the inlet of the k-th fuel assembly, when coolant temperatures in loops at reactor inlet are known. A comparison is made of the results of measurements on a hydrodynamic model of a WWER-440 reactor with results of measurements made at unit 4 of the Dukovany nuclear power plant. Full agreement was found for 32 model measurements and 6 reactor measurements. It may be assumed that the results of other model measurements obtained for other operating variants will also apply for an actual reactor. Their applicability may, however, only be confirmed by repeating the experiment on other WWER-440 reactors. (Z.M.). 5 figs., 7 refs

  11. AFSC/REFM: Cook Inlet Beluga Whale Economic Survey 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project was to collect data to understand the publics preferences for protecting the Cook Inlet beluga whale (CIBW), a distinct population...

  12. An experimental study of the effects of bodyside compression on forward swept sidewall compression inlets ingesting a turbulent boundary layer

    Science.gov (United States)

    Rodi, Patrick E.

    1993-01-01

    Forward swept sidewall compression inlets have been tested in the Mach 4 Blowdown Facility at the NASA Langley Research Center to study the effects of bodyside compression surfaces on inlet performance in the presence of an incoming turbulent boundary layer. The measurements include mass flow capture and mean surface pressure distributions obtained during simulated combustion pressure increases downstream of the inlet. The kerosene-lampblack surface tracer technique has been used to obtain patterns of the local wall shear stress direction. Inlet performance is evaluated using starting and unstarting characteristics, mass capture, mean surface pressure distributions and permissible back pressure limits. The results indicate that inlet performance can be improved with selected bodyside compression surfaces placed between the inlet sidewalls.

  13. Dispersion, dissipation and refraction of shock waves in acoustically treated turbofan inlets

    Science.gov (United States)

    Prasad, Dilip; Li, Ding; A. Topol, David

    2015-09-01

    This paper describes a numerical investigation of the effects of the inlet duct liner on the acoustics of a high-bypass ratio turbofan rotor operating at supersonic tip relative flow conditions. The near field of the blade row is then composed of periodic shocks that evolve spatially both because of the varying mean flow and because of the presence of acoustic treatment. The evolution of this shock system is studied using a Computational Fluid Dynamics-based method incorporating a wall impedance boundary condition. The configuration examined is representative of a fan operating near the takeoff condition. The behavior of the acoustic power and the associated waveforms reveal that significant dispersion occurs to the extent that there are no shocks in the perturbation field leaving the entrance plane of the duct. The effect of wave refraction due to the high degree of shear in the mean flow near the entrance plane of the inlet is examined, and numerical experiments are conducted to show that the incorporation of liners in this region can be highly beneficial. The implications of these results for the design of aircraft engine acoustic liners are discussed.

  14. A CFD Study on Inlet Plenum Flow Field of Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Lee, Won Jae; Chang, Jong Hwa

    2005-01-01

    High temperature gas cooled reactor, largely divided into two types of PBR (Pebble Bed Reactor) and PMR (Prismatic Modular Reactor), has becomes great interest of researchers in connection with the hydrogen production. KAERI has started a project to develop the gas cooled reactor for the hydrogen production and has been doing in-depth study for selecting the reactor type between PBR and PMR. As a part of the study, PBMR (Pebble Bed Modular Reactor) was selected as a reference PBR reactor for the CFD analysis and the flow field of its inlet plenum was simulated with computational fluid dynamics program CFX5. Due to asymmetrical arrangement of pipes to the inlet plenum, non-uniform flow distribution has been expected to occur, giving rise to non-uniform power distribution at the core. Flow fields of different arrangement of inlet pipes were also investigated, as one of measures to reduce the non-uniformity

  15. Quantification of tidal inlet morphodynamics using high-resolution MBES and LiDAR

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Fraccascia, Serena

    -bathymetric surveys using high-resolution red and green Light Detection And Ranging (LiDAR). Detailed digital elevation models with a grid cell size of 1 m x 1 m were generated and analysed geomorphometrically. The analyses reveal a main ebb-directed net sand transport in the main channel; however, due...... to the geometry of the main channel, displaying a confluent meander bend, confined areas in the main channel are characterised by an opposite-directed net sand transport. In the inter-tidal areas the main net sand transport is flood-directed. However, also here the analyses reveal the existence of oblique second...... is transported from the inlet channel to the intertidal flat. Therefore, in addition to the typical main sand transport directions with net export in the inlet channel and net import over the adjacent inter-tidal flats, these investigations suggest an exchange and possible recirculation of sand between the inlet...

  16. Portable apparatus for containing and regulating flow of a liquid into a drainage inlet

    International Nuclear Information System (INIS)

    Warren, R.E.

    1991-01-01

    This patent describes a method of using an apparatus suitable for containing a mixture of spilled petroleum liquid and water and regulating the flow of water into a storm drain, having a drainage inlet with a recess area extending about a perimeter of the drainage inlet, while minimizing the flow of the petroleum liquid into the storm drain, the apparatus comprising, flange means, defining a central opening therein, for engaging the recess area of the storm drain, the flange means being substantially the same size and shape as a cover of the storm drain so that when the cover is removed from the storm drain, the method comprising the steps of: positioning the apparatus over a storm drain with the flange means being received and supported by the recess area of the storm drain with the central opening overlying the drainage inlet; allowing the mixture of petroleum liquid and water to collect around the apparatus; controlling the position of the movable hollow member, relative to the flange means, to control the flow of water into the drainage inlet, through the sidewall and central openings, while maintaining the petroleum liquid floating on the water and preventing entry of the petroleum liquid into the at least sidewall opening; and collecting the petroleum liquid after a sufficient quantity of water has been allowed to flow into the drainage inlet

  17. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin

    2016-03-15

    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  18. Effect of flow rate distribution at the inlet on hydrodynamic mixing in narrow rectangular multi-channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Chen Bingde; Wang Xiaojun

    2008-01-01

    Flow and heat transfer in the narrow rectangular multi-channel is widely en- countered in the engineering application, hydrodynamic mixing in the narrow rectangular multi-channel is one of the important concerns. With the help of the Computational Fluid Dynamics code CFX, the effect of flow rate distribution of the main channel at the inlet on hydrodynamic mixing in the narrow rectangular multi-channel is numerical simulated. The results show that the flow rate distributions at the inlet have a great effect on hydrodynamics mixing in multi-channel, the flow rate in the main channel doesn't change with increasing the axial mixing section when the average flow rate at the inlet is set. Hydrodynamic mixing will arise in the mixing section when the different ratio of the flow rate distribution at the inlet is set, and hydrodynamic mixing increases with the difference of the flow rate distribution at the inlet increase. The trend of the flow rate distribution of the main channel is consistent during the whole axial mixing section, and hydrodynamic mixing in former 4 mixing section is obvious. (authors)

  19. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    Science.gov (United States)

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  20. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater.

    Science.gov (United States)

    Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2016-12-01

    The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.

  1. Application of Duflow for studying hydrodynamics and stability of tidal inlets in the Tam Giang - Cau Hai Lagoon

    NARCIS (Netherlands)

    Lam, N.T.; Verhagen, H.J.; Van der Wegen, M.

    2004-01-01

    This paper presents an application of an one-dimensional unsteady numerical model DUFLOW for hydrodynamic simulation of a complex lagoon-inlet system in Vietnam. The difficulties due to the lack of data for model boundary conditions is overcome by using sensitivity analysis approach for the

  2. Characterisation and airborne deployment of a new counterflow virtual impactor inlet

    Directory of Open Access Journals (Sweden)

    T. Shingler

    2012-06-01

    Full Text Available A new counterflow virtual impactor (CVI inlet is introduced with details of its design, laboratory characterisation tests and deployment on an aircraft during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE. The CVI inlet addresses three key issues in previous designs; in particular, the inlet operates with: (i negligible organic contamination; (ii a significant sample flow rate to downstream instruments (∼15 l min−1 that reduces the need for dilution; and (iii a high level of accessibility to the probe interior for cleaning. Wind tunnel experiments characterised the cut size of sampled droplets and the particle size-dependent transmission efficiency in various parts of the probe. For a range of counter-flow rates and air velocities, the measured cut size was between 8.7–13.1 μm. The mean percentage error between cut size measurements and predictions from aerodynamic drag theory is 1.7%. The CVI was deployed on the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS Twin Otter for thirty flights during E-PEACE to study aerosol-cloud-radiation interactions off the central coast of California in July and August 2011. Results are reported to assess the performance of the inlet including comparisons of particle number concentration downstream of the CVI and cloud drop number concentration measured by two independent aircraft probes. Measurements downstream of the CVI are also examined from one representative case flight coordinated with shipboard-emitted smoke that was intercepted in cloud by the Twin Otter.

  3. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  4. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  5. Pollution management system

    DEFF Research Database (Denmark)

    2015-01-01

    A pollution management system comprises an array of one or more inlets and at least one outlet. The one or more inlets are arranged to collect polluted air and supply said polluted air to a polluted air treatment element. The one or more inlets each comprise a respective inlet sensor for measuring...... a level of pollution at the inlet, and the at least one outlet comprises an outlet sensor for measuring a level of pollution at the outlet. The inlet sensors and the outlet sensor are arranged to provide feedback to the polluted air treatment element....

  6. A study on the silica removal in primary system using the membrane process

    International Nuclear Information System (INIS)

    Kim, Bong Jin; Lee, Sang Jin; Yang, Ho Yeon; Kim, Kyung Duk; Jung, Hee Chul; Jo, Hang Rae

    2005-01-01

    Silica in primary system combines with an alkali grammatical particle metal and forms the zeolite layer which is hindering the heat transfer on the surface of the cladding. Zeolite layer becomes the cause of the damage in this way. The problems of the NPP's primary system have been issued steadily by EPRI. Through a series of experiments of the laboratory scale, we confirmed the applicability of NF membrane for silica removal, as silica rejection rate of NF membrane is about 60 ∼ 70% and boron rejection rate is about 10 ∼ 20%. We accomplished a site experiment about four NF membranes manufactured by FilmTec and Osmonics Inc. In experiment using 400L of SFP water, when operation pressure is 10kg f /cm 2 , we confirmed that the silica rejection rate of NF90-2540 manufactured by FilmTec Inc. is about 98%, boron rejection rate is about 43%. The silica rejection rate of NF270-2540 is about 38%, boron rejection rate is about 3.5%. Afterward, through additional experiments, such as long term characteristic experiments, we are going to design a optimum NF membrane system for silica removal

  7. A study on the silica removal in primary system using the membrane process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Jin; Lee, Sang Jin; Yang, Ho Yeon; Kim, Kyung Duk [Korea Hydro and Nuclear Power Co., LTD., Taejeon (Korea, Republic of); Jung, Hee Chul; Jo, Hang Rae [Korea Hydro and Nuclear Power Co., LTD., Uljin (Korea, Republic of)

    2005-06-15

    Silica in primary system combines with an alkali grammatical particle metal and forms the zeolite layer which is hindering the heat transfer on the surface of the cladding. Zeolite layer becomes the cause of the damage in this way. The problems of the NPP's primary system have been issued steadily by EPRI. Through a series of experiments of the laboratory scale, we confirmed the applicability of NF membrane for silica removal, as silica rejection rate of NF membrane is about 60 {approx} 70% and boron rejection rate is about 10 {approx} 20%. We accomplished a site experiment about four NF membranes manufactured by FilmTec and Osmonics Inc. In experiment using 400L of SFP water, when operation pressure is 10kg{sub f}/cm{sup 2}, we confirmed that the silica rejection rate of NF90-2540 manufactured by FilmTec Inc. is about 98%, boron rejection rate is about 43%. The silica rejection rate of NF270-2540 is about 38%, boron rejection rate is about 3.5%. Afterward, through additional experiments, such as long term characteristic experiments, we are going to design a optimum NF membrane system for silica removal.

  8. Isolation of plasma membranes from the nervous system by countercurrent distribution in aqueous polymer two-phase systems.

    Science.gov (United States)

    Schindler, Jens; Nothwang, Hans Gerd

    2009-01-01

    The plasma membrane separates the cell-interior from the cell's environment. To maintain homeostatic conditions and to enable transfer of information, the plasma membrane is equipped with a variety of different proteins such as transporters, channels, and receptors. The kind and number of plasma membrane proteins are a characteristic of each cell type. Owing to their location, plasma membrane proteins also represent a plethora of drug targets. Their importance has entailed many studies aiming at their proteomic identification and characterization. Therefore, protocols are required that enable their purification in high purity and quantity. Here, we report a protocol, based on aqueous polymer two-phase systems, which fulfils these demands. Furthermore, the protocol is time-saving and protects protein structure and function.

  9. Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems.

    Science.gov (United States)

    Harnisch, Falk; Warmbier, Robert; Schneider, Ralf; Schröder, Uwe

    2009-06-01

    An explicit numerical model for the charge balancing ion transfer across monopolar ion exchange membranes under conditions of bioelectrochemical systems is presented. Diffusion and migration equations have been solved according to the Nernst-Planck Equation and the resulting ion concentrations, pH values and the resistance values of the membrane for different conditions were computed. The modeling results underline the principle limitations of the application of ion exchange membranes in biological fuel cells and electrolyzers, caused by the inherent occurrence of a pH-gradient between anode and cathode compartment, and an increased ohmic membrane resistance at decreasing electrolyte concentrations. Finally, the physical and numerical limitations of the model are discussed.

  10. Rocket-Based Combined Cycle Engine Technology Development: Inlet CFD Validation and Application

    Science.gov (United States)

    DeBonis, J. R.; Yungster, S.

    1996-01-01

    A CFD methodology has been developed for inlet analyses of Rocket-Based Combined Cycle (RBCC) Engines. A full Navier-Stokes analysis code, NPARC, was used in conjunction with pre- and post-processing tools to obtain a complete description of the flow field and integrated inlet performance. This methodology was developed and validated using results from a subscale test of the inlet to a RBCC 'Strut-Jet' engine performed in the NASA Lewis 1 x 1 ft. supersonic wind tunnel. Results obtained from this study include analyses at flight Mach numbers of 5 and 6 for super-critical operating conditions. These results showed excellent agreement with experimental data. The analysis tools were also used to obtain pre-test performance and operability predictions for the RBCC demonstrator engine planned for testing in the NASA Lewis Hypersonic Test Facility. This analysis calculated the baseline fuel-off internal force of the engine which is needed to determine the net thrust with fuel on.

  11. CFD code calibration and inlet-fairing effects on a 3D hypersonic powered-simulation model

    Science.gov (United States)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure dam. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing-inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flowfield differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.

  12. The Effect of Inlet Waveforms on Computational Hemodynamics of Patient-Specific Intracranial Aneurysms

    OpenAIRE

    Xiang, J.; Siddiqui, A.H.; Meng, H.

    2014-01-01

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic qu...

  13. Nanodisc-solubilized membrane protein library reflects the membrane proteome

    OpenAIRE

    Marty, Michael T.; Wilcox, Kyle C.; Klein, William L.; Sligar, Stephen G.

    2013-01-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membr...

  14. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.; Johnson, J. R.; Williams, P. J.; Koros, W. J.

    2012-01-01

    research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system

  15. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  16. Nonlinear observer-based Lyapunov boundary control of distributed heat transfer mechanisms for membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi

    2016-09-19

    This paper presents a nonlinear observer-based Lyapunov control for a membrane distillation (MD) process. The control considers the inlet temperatures of the feed and the permeate solutions as inputs, transforming it to boundary control process, and seeks to maintain the temperature difference along the membrane boundaries around a sufficient level to promote water production. MD process is modeled with advection diffusion equation model in two dimensions, where the diffusion and convection heat transfer mechanisms are best described. Model analysis, effective order reduction and parameters physical interpretation, are provided. Moreover, a nonlinear observer has been designed to provide the control with estimates of the temperature evolution at each time instant. In addition, physical constraints are imposed on the control to have an acceptable range of feasible inputs, and consequently, better energy consumption. Numerical simulations for the complete process with real membrane parameter values are provided, in addition to detailed explanations for the role of the controller and the observer. (C) 2016 Elsevier Ltd. All rights reserved.

  17. A hybrid system of a membrane oscillator coupled to ultracold atoms

    Science.gov (United States)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  18. Background-Oriented Schlieren (BOS) for Scramjet Inlet-isolator Investigation

    Science.gov (United States)

    Che Idris, Azam; Rashdan Saad, Mohd; Hing Lo, Kin; Kontis, Konstantinos

    2018-05-01

    Background-oriented Schlieren (BOS) technique is a recently invented non-intrusive flow diagnostic method which has yet to be fully explored in its capabilities. In this paper, BOS technique has been applied for investigating the general flow field characteristics inside a generic scramjet inlet-isolator with Mach 5 flow. The difficulty in finding the delicate balance between measurement sensitivity and measurement area image focusing has been demonstrated. The differences between direct cross-correlation (DCC) and Fast Fourier Transform (FFT) raw data processing algorithm have also been demonstrated. As an exploratory study of BOS capability, this paper found that BOS is simple yet robust enough to be used to visualize complex flow in a scramjet inlet in hypersonic flow. However, in this case its quantitative data can be strongly affected by 3-dimensionality thus obscuring the density value with significant errors.

  19. Performance of a high-work low aspect ration turbine tested with a realistic inlet radial temperature profile

    Science.gov (United States)

    Stabe, R. G.; Whitney, W. J.; Moffitt, T. P.

    1984-01-01

    Experimental results are presented for a 0.767 scale model of the first stage of a two-stage turbine designed for a high by-pass ratio engine. The turbine was tested with both uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The inlet temperature profile was essentially mixed-out in the rotor. There was also substantial underturning of the exit flow at the mean diameter. Both of these effects were attributed to strong secondary flows in the rotor blading. There were no significant differences in the stage performance with either inlet condition when differences in tip clearance were considered. Performance was very close to design intent in both cases.

  20. Integrated Wireless Monitoring and Control System in Reverse Osmosis Membrane Desalination Plants

    Directory of Open Access Journals (Sweden)

    Al Haji Ahmad

    2015-01-01

    Full Text Available The operational processes of the Reverse Osmosis (RO membrane desalination plants require continuous monitoring through the constant attendance of operators to ensure proper productivity and minimize downtime and prevent membrane failure. Therefore, the plant must be equipped with a control system that monitors and controls the operational variables. Monitoring and controlling the affecting parameters are critical to the evaluation of the performance of the desalination plant, which will help the operator find and resolve problems immediately. Therefore, this paper was aimed at developing an RO unit by utilizing a wireless sensor network (WSN system. Hence, an RO pilot plant with a feed capacity of 1.2 m3/h was utilized, commissioned, and tested in Kuwait to assess and verify the performance of the integrated WSN in RO membrane desalination system. The investigated system allowed the operators to remotely monitor the operational process of the RO system. The operational data were smoothly recorded and monitored. Furthermore, the technical problems were immediately determined, which reduced the time and effort in rectifying the technical problems relevant to the RO performance. The manpower requirements of such treatment system were dramatically reduced by about 50%. Based on a comparison between manual and wireless monitoring operational processes, the availability of the integrated RO unit with a wireless monitoring was increased by 10%

  1. Long-Term Ecological Research (LTER) Climate Data with Water Parameters from North Inlet Meteorological Station, North Inlet Estuary, Georgetown, South Carolina: 1982-1996.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — Meteorological data with water parameters were collected on an hourly basis from June 3, 1982 through April 29, 1996 in the North Inlet Estuary, Georgetown County,...

  2. Characterization of Type Three Secretion System Translocator Interactions with Phospholipid Membranes.

    Science.gov (United States)

    Adam, Philip R; Barta, Michael L; Dickenson, Nicholas E

    2017-01-01

    In vitro characterization of type III secretion system (T3SS) translocator proteins has proven challenging due to complex purification schemes and their hydrophobic nature that often requires detergents to provide protein solubility and stability. Here, we provide experimental details for several techniques that overcome these hurdles, allowing for the direct characterization of the Shigella translocator protein IpaB with respect to phospholipid membrane interaction. The techniques specifically discussed in this chapter include membrane interaction/liposome flotation, liposome sensitive fluorescence quenching, and protein-mediated liposome disruption assays. These assays have provided valuable insight into the role of IpaB in T3SS-mediated phospholipid membrane interactions by Shigella and should readily extend to other members of this important class of proteins.

  3. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seonghan; Chang, Rakwoo [Kwangwoon University, Seoul (Korea, Republic of)

    2016-07-15

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L{sub β}' or P{sub β}') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L{sub α}). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  4. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    International Nuclear Information System (INIS)

    Kim, Seonghan; Chang, Rakwoo

    2016-01-01

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L_β' or P_β') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L_α). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  5. An Analysis of Microbial Pollution in the Sinclair-Dyes Inlet Watershed

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; Cullinan, Valerie I.

    2005-09-21

    This assessment of fecal coliform sources and pathways in Sinclair and Dyes Inlets is part of the Project ENVironmental InVESTment (ENVVEST) being conducted by the Navy's Puget Sound Naval Shipyard and Intermediate Maintenance Facility in cooperation with the US Environmental Protection Agency, Washington State Department of Ecology, the Suquamish Tribe, Kitsap County, the City of Bremerton, the City of Port Orchard, and other local stakeholders. The goal of this study was to identify microbial pollution problems within the Sinclair-Dyes Inlet watershed and to provide a comprehensive assessment of fecal coliform (FC) contamination from all identifiable sources in the watershed. This study quantifies levels of contamination and estimated loadings from known sources within the watersheds and describes pollutant transport mechanisms found in the study area. In addition, the effectiveness of pollution prevention and mitigation measures currently in place within the Sinclair-Dyes Inlet watershed are discussed. This comprehensive study relies on historical data collected by several cooperating agencies, in addition to data collected during the study period from spring 2001 through summer 2005. This report is intended to provide the technical information needed to continue current water quality cleanup efforts and to help implement future efforts.

  6. Real-time measurement of plutonium in air by direct-inlet surface ionization mass spectrometry. Status report

    International Nuclear Information System (INIS)

    Stoffels, J.J.

    1980-04-01

    A new technique is being developed for monitoring low-level airborne plutonium on a real-time basis. The technique is based on surface ionization mass spectrometry of airborne particles. It will be capable of measuring plutonium concentrations below the maximum permissible concentration (MPC) level. A complete mass spectrometer was designed and constructed for this purpose. Major components which were developed and made operational for the instrument include an efficient inlet for directly sampling particles in air, a wide dynamic range ion detector and a minicomputer-based ion-burst measurement system. Calibration of the direct-inlet mass spectrometer (DIMS) was initiated to establish the instrument's response to plutonium dioxide as a function of concentration and particle size. This work revealed an important problem - bouncing of particles upon impact with the ionizing filament. Particle bounce results in a significant loss of measurement sensitivity. The feasibility of using an oven ionizer to overcome the particle bounce problem has been demonstrated. A rhenium oven ionizer was designed and constructed for the purpose of trapping particles which enter via the direct inlet. High-speed particles were trapped in the oven yielding a measurement sensitivity comparable to that for particles which are preloaded. Development of the Pu DIMS can now be completed by optimizing the oven design and calibrating the instrument's performance with UO 2 and CeO 2 particles as analogs to PuO 2 particles

  7. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, D.W.; Shedd, A.C. [D.W. Abrams, P.E. and Associates, Atlanta, GA (United States)

    1996-11-01

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building, and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.

  8. Transient response simulation of gas separation membrane module for an atmosphere detritiation system

    International Nuclear Information System (INIS)

    Sugiyama, Takahiko; Tanaka, Masahiro; Munakata, Kenzo; Yamamoto, Ichiro

    2012-01-01

    Transient response of a gas separation membrane module for the atmosphere detritiation system was numerically simulated with a mass transfer model. The module contains thousands of hollow fiber type polyimide membranes. The simulation model took into account permeation of water vapor through the dense layer of the membrane, diffusive transfer through the porous support layer and adsorption/desorption of water vapor into the matrix of the porous layer. The slow responses of the water vapor concentration in the retentate and the permeation rate were well reproduced by the present simulation, and transient changes in a follow fiber membrane were investigated in detail. The inventory and the mean residence time of water vapor at 303 K were estimated for the commercial membrane module (UMS-B2, Ube industries, Ltd.) as 5.7 × 10 −3 mol and 380 s, respectively.

  9. Experimental Investigation of a Hypersonic Inlet with Variable Sidewall for Flow Control

    Science.gov (United States)

    Rolim, T. C.; Lu, F. K.

    The main function of a scramjet inlet is to decelerate and compress the air for subsequent reaction with the fuel inside the combustor and, of course, contribute toward meeting the thrust requirement for the entire mission by providing adequate mass flow. It is desirable that the inlet be lightweight and that its geometry be capable of producing a uniform flow in an appropriate state to permit efficient mixing and subsequent combustion. Engine cycle analysis indicates that high contraction ratios CR are desirable for achieving high overall engine efficiency.

  10. Performance of a high-work low aspect ratio turbine tested with a realistic inlet radial temperature profile

    Science.gov (United States)

    Stabe, R. G.; Whitney, W. J.; Moffitt, T. P.

    1984-01-01

    Experimental results are presented for a 0.767 scale model of the first stage of a two-stage turbine designed for a high by-pass ratio engine. The turbine was tested with both uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The inlet temperature profile was essentially mixed-out in the rotor. There was also substantial underturning of the exit flow at the mean diameter. Both of these effects were attributed to strong secondary flows in the rotor blading. There were no significant differences in the stage performance with either inlet condition when differences in tip clearance were considered. Performance was very close to design intent in both cases. Previously announced in STAR as N84-24589

  11. Optimal design and control of solar driven air gap membrane distillation desalination systems

    International Nuclear Information System (INIS)

    Chen, Yih-Hang; Li, Yu-Wei; Chang, Hsuan

    2012-01-01

    Highlights: ► Air gap membrane distillation unit was used in the desalination plants. ► Aspen Custom Molder was used to simulate each unit of desalination plants. ► Design parameters were investigated to obtain the minimum total annual cost. ► The control structure was proposed to operate desalination plants all day long. -- Abstract: A solar heated membrane distillation desalination system is constructed of solar collectors and membrane distillation devices for increasing pure water productivity. This technically and economically feasible system is designed to use indirect solar heat to drive membrane distillation processes to overcome the unstable supply of solar radiation from sunrise to sunset. The solar heated membrane distillation desalination system in the present study consisted of hot water storage devices, heat exchangers, air gap membrane distillation units, and solar collectors. Aspen Custom Molder (ACM) software was used to model and simulate each unit and establish the cost function of a desalination plant. From Design degree of freedom (DOF) analysis, ten design parameters were investigated to obtain the minimum total annual cost (TAC) with fixed pure water production rate. For a given solar energy density profile of typical summer weather, the minimal TAC per 1 m 3 pure water production can be found at 500 W/m 2 by varying the solar energy intensity. Therefore, we proposed two modes for controlling the optimal design condition of the desalination plant; day and night. In order to widen the operability range of the plant, the sensitivity analysis was used to retrofit the original design point to lower the effluent temperature from the solar collector by increasing the hot water recycled stream. The simulation results show that the pure water production can be maintained at a very stable level whether in sunny or cloudy weather.

  12. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  13. A forced-flow membrane reactor for transfructosylation using ceramic membrane.

    Science.gov (United States)

    Nishizawa, K; Nakajima, M; Nabetani, H

    2000-04-05

    A forced-flow membrane reactor system for transfructosylation was investigated using several ceramic membranes having different pore sizes. beta-Fructofuranosidase from Aspergillus niger ATCC 20611 was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-coupling reagent. Sucrose solution was forced through the ceramic membrane by crossflow filtration while transfructosylation took place. The saccharide composition of the product, which was a mixture of fructooligosaccharides (FOS), was a function of the permeate flux, which was easily controlled by pressure. Using 0.2 micrometer pore size of symmetric ceramic membrane, the volumetric productivity obtained was 3.87 kg m(-3) s(-1), which was 560 times higher than that in a reported batch system, with a short residence time of 11 s. The half-life of the immobilized enzyme in the membrane was estimated to be 35 days by a long-term operation. Copyright 2000 John Wiley & Sons, Inc.

  14. PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment

    Science.gov (United States)

    Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.

    1999-01-01

    This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.

  15. Experimental performance of indirect air–liquid membrane contactors for liquid desiccant cooling systems

    International Nuclear Information System (INIS)

    Das, Rajat Subhra; Jain, Sanjeev

    2013-01-01

    Owing to the stringent indoor air quality (IAQ) requirements and high cost of desiccants, one of the major concerns in liquid desiccant technology has been the carryover, which can be eliminated through indirect contact between desiccant and air. Membrane contactors using microporous semipermeable hydrophobic membranes have a great potential in this regard. This communication investigates the performance of semipermeable membrane based indirect contactors as dehumidifiers in liquid desiccant cooling applications. Experiments on different types of membrane contactors are carried out using lithium chloride (LiCl) solution as desiccant. The membrane contactors consist of alternate channels of air and liquid desiccant flowing in cross-flow direction. Hydrophobic membranes form a liquid tight, vapor permeable porous barrier between hygroscopic solution and moist air, thus eliminating carryover of desiccant droplets. In order to provide maximum contact area for air–desiccant interaction, a wicking material is sandwiched between two membranes in the liquid channel. It is observed that vapor flux upto 1300 g/m 2 h can be achieved in a membrane contactor with polypropylene (PP) membranes, although the dehumidification effectiveness remains low. The effect of key parameters on the transmembrane vapor transport is presented in the paper. - Highlights: • Indirect membrane contactors developed to avoid carryover in liquid desiccant system. • Dehumidification effectiveness and vapor flux reported under varying conditions. • Vapor flux upto 1295 g/m 2 h in polypropylene contactor with high area density. • Dehumidification effectiveness with LiCl solution varies within 23% to 45%

  16. Long-term Morphological Modeling at Coastal Inlets

    Science.gov (United States)

    2015-05-15

    that of Humboldt Bay, CA. The model reproduces reasonably well several geomorphic and hydrodynamic features of the inlet at Humboldt Bay. The...geometries, and model setup (e.g., sediment transport formulas) to investigate the controlling geomorphic parameters and the applicability of the CMS...2015 9 The model reproduces the general geomorphic features of Humboldt Bay. The ebb shoal volume is in the lower range of the estimated amount

  17. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  18. Liver plasma membranes: an effective method to analyze membrane proteome.

    Science.gov (United States)

    Cao, Rui; Liang, Songping

    2012-01-01

    Plasma membrane proteins are critical for the maintenance of biological systems and represent important targets for the treatment of disease. The hydrophobicity and low abundance of plasma membrane proteins make them difficult to analyze. The protocols given here are the efficient isolation/digestion procedures for liver plasma membrane proteomic analysis. Both protocol for the isolation of plasma membranes and protocol for the in-gel digestion of gel-embedded plasma membrane proteins are presented. The later method allows the use of a high detergent concentration to achieve efficient solubilization of hydrophobic plasma membrane proteins while avoiding interference with the subsequent LC-MS/MS analysis.

  19. Neutron scattering to study membrane systems: from lipid vesicles to living cells.

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, Jonathan D. [ORNL; Chatterjee, Sneha [ORNL; Stanley, Christopher B. [ORNL; Qian, Shuo [ORNL; Cheng, Xiaolin [ORNL; Myles, Dean A A [ORNL; Standaert, Robert F. [ORNL; Elkins, James G. [ORNL; Katsaras, John [ORNL

    2017-03-01

    The existence and role of lateral lipid organization in biological membranes has been studied and contested for more than 30 years. Lipid domains, or rafts, are hypothesized as scalable compartments in biological membranes, providing appropriate physical environments to their resident membrane proteins. This implies that lateral lipid organization is associated with a range of biological functions, such as protein co-localization, membrane trafficking, and cell signaling, to name just a few. Neutron scattering techniques have proven to be an excellent tool to investigate these structural features in model lipids, and more recently, in living cells. I will discuss our recent work using neutrons to probe the structure and mechanical properties in model lipid systems and our current efforts in using neutrons to probe the structure and organization of the bilayer in a living cell. These efforts in living cells have used genetic and biochemical strategies to generate a large neutron scattering contrast, making the membrane visible. I will present our results showing in vivo bilayer structure and discuss the outlook for this approach.

  20. Cook Inlet and Kenai Peninsula, Alaska ESI: INDEX (Index Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing the boundaries used in the creation of the Environmental Sensitivity Index (ESI) for Cook Inlet and Kenai...