WorldWideScience

Sample records for membrane glycoproteins

  1. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Directory of Open Access Journals (Sweden)

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  2. Detection of glycoproteins in the Acanthamoeba plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Paatero, G.I.L. (Abo Akademi (Finland)); Gahmberg, C.G. (Univ. of Helsinki (Finland))

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  3. Detection of glycoproteins in the Acanthamoeba plasma membrane

    International Nuclear Information System (INIS)

    Paatero, G.I.L.; Gahmberg, C.G.

    1988-01-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by 125 I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB 3 H 4 and galactose oxidase/NaB 3 H 4 labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M r of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with [ 35 S]methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis

  4. Membrane topology analysis of HIV-1 envelope glycoprotein gp41

    Directory of Open Access Journals (Sweden)

    Xiao Dan

    2010-11-01

    Full Text Available Abstract Background The gp41 subunit of the HIV-1 envelope glycoprotein (Env has been widely regarded as a type I transmembrane protein with a single membrane-spanning domain (MSD. An alternative topology model suggested multiple MSDs. The major discrepancy between the two models is that the cytoplasmic Kennedy sequence in the single MSD model is assigned as the extracellular loop accessible to neutralizing antibodies in the other model. We examined the membrane topology of the gp41 subunit in both prokaryotic and mammalian systems. We attached topological markers to the C-termini of serially truncated gp41. In the prokaryotic system, we utilized a green fluorescent protein (GFP that is only active in the cytoplasm. The tag protein (HaloTag and a membrane-impermeable ligand specific to HaloTag was used in the mammalian system. Results In the absence of membrane fusion, both the prokaryotic and mammalian systems (293FT cells supported the single MSD model. In the presence of membrane fusion in mammalian cells (293CD4 cells, the data obtained seem to support the multiple MSD model. However, the region predicted to be a potential MSD is the highly hydrophilic Kennedy sequence and is least likely to become a MSD based on several algorithms. Further analysis revealed the induction of membrane permeability during membrane fusion, allowing the membrane-impermeable ligand and antibodies to cross the membrane. Therefore, we cannot completely rule out the possible artifacts. Addition of membrane fusion inhibitors or alterations of the MSD sequence decreased the induction of membrane permeability. Conclusions It is likely that a single MSD model for HIV-1 gp41 holds true even in the presence of membrane fusion. The degree of the augmentation of membrane permeability we observed was dependent on the membrane fusion and sequence of the MSD.

  5. Alternative promoter usage of the membrane glycoprotein CD36

    Directory of Open Access Journals (Sweden)

    Whatling Carl

    2006-03-01

    Full Text Available Abstract Background CD36 is a membrane glycoprotein involved in a variety of cellular processes such as lipid transport, immune regulation, hemostasis, adhesion, angiogenesis and atherosclerosis. It is expressed in many tissues and cell types, with a tissue specific expression pattern that is a result of a complex regulation for which the molecular mechanisms are not yet fully understood. There are several alternative mRNA isoforms described for the gene. We have investigated the expression patterns of five alternative first exons of the CD36 gene in several human tissues and cell types, to better understand the molecular details behind its regulation. Results We have identified one novel alternative first exon of the CD36 gene, and confirmed the expression of four previously known alternative first exons of the gene. The alternative transcripts are all expressed in more than one human tissue and their expression patterns vary highly in skeletal muscle, heart, liver, adipose tissue, placenta, spinal cord, cerebrum and monocytes. All alternative first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins. The alternative promoters lack TATA-boxes and CpG islands. The upstream region of exon 1b contains several features common for house keeping gene and monocyte specific gene promoters. Conclusion Tissue-specific expression patterns of the alternative first exons of CD36 suggest that the alternative first exons of the gene are regulated individually and tissue specifically. At the same time, the fact that all first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins may suggest that the alternative first exons are coregulated in this cell type and environmental condition. The molecular mechanisms regulating CD36 thus appear to be unusually complex, which might reflect the multifunctional role of the gene in different tissues and cellular conditions.

  6. Synthesis of peptide-immunogens corresponding to amino acid sequences from human histocompatibility class II membrane glycoproteins.

    Science.gov (United States)

    Chillemi, F; Cappelletti, S; Francescato, P; Chersi, A

    1990-03-01

    Six peptides with amino acid sequences of human histocompatibility Class II membrane glycoproteins were synthesized by conventional solution methods. Five peptides were prepared by stepwise procedures from the carboxyterminus. The sixth was synthesized by fragment condensation (5 + 10 coupling). Antibodies to synthetic peptides were then used to locate exposed and buried regions in the membrane glycoproteins.

  7. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...

  8. Milk fat globule membrane glycoproteins: Valuable ingredients for lactic acid bacteria encapsulation?

    Science.gov (United States)

    Guerin, Justine; Burgain, Jennifer; Gomand, Faustine; Scher, Joël; Gaiani, Claire

    2017-10-04

    The membrane (Milk Fat Globule Membrane - MFGM) surrounding the milk fat globule is becoming increasingly studied for its use in food applications due to proven nutritional and technological properties. This review focuses first on current researches which have been led on the MFGM structure and composition and also on laboratory and industrial purification and isolation methods developed in the last few years. The nutritional, health benefits and techno-functional properties of the MFGM are then discussed. Finally, new techno-functional opportunities of MFGM glycoproteins as a possible ingredient for Lactic Acid Bacteria (LAB) encapsulation are detailed. The ability of MFGM to form liposomes entrapping bioactive compounds has been already demonstrated. One drawback is that liposomes are too small to be used for bacteria encapsulation. For the first time, this review points out the numerous advantages to use MFGM glycoproteins as a protecting, encapsulating matrix for bacteria and especially for LAB.

  9. A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity.

    Science.gov (United States)

    York, Joanne; Nunberg, Jack H

    2018-01-01

    For many viruses that enter their target cells through pH-dependent fusion of the viral and endosomal membranes, cell-cell fusion assays can provide an experimental platform for investigating the structure-function relationships that promote envelope glycoprotein membrane-fusion activity. Typically, these assays employ effector cells expressing the recombinant envelope glycoprotein on the cell surface and target cells engineered to quantitatively report fusion with the effector cell. In the protocol described here, Vero cells are transfected with a plasmid encoding the arenavirus envelope glycoprotein complex GPC and infected with the vTF7-3 vaccinia virus expressing the bacteriophage T7 RNA polymerase. These effector cells are mixed with target cells infected with the vCB21R-lacZ vaccinia virus encoding a β-galactosidase reporter under the control of the T7 promoter. Cell-cell fusion is induced upon exposure to low-pH medium (pH 5.0), and the resultant expression of the β-galactosidase reporter is quantitated using a chemiluminescent substrate. We have utilized this robust microplate cell-cell fusion assay extensively to study arenavirus entry and its inhibition by small-molecule fusion inhibitors.

  10. [Incorporation of glycoproteins of the Aujeszky's disease virus ( Suid herpesvirus 1) into artificial liposome membranes and their interaction with cells].

    Science.gov (United States)

    Vrublevskaia, V V; Vinokurov, M G; Kholodkov, O A; Kornev, A N; Morenkov, O S

    2004-01-01

    The purpose of the case study was to investigate the interplay between liposomes, containing the in-built glycoproteins of the Aujeszky disease virus (ADV, Suid herpesvirus 1) with plasmatic membranes of sensitive cells. The conditions of reconstructing the ADV glycoproteins into artificial-liposome membranes were optimized. The above liposomes (virosomes), 40 x 200 nm, were impermeable to univalent ions, which confirmed the virosome membranes were intact. The gE and gB glycoproteins (90-98% of them) were located, inside the liposome membrane with the outwards orientation of their ecto-domain fragments. Virosomes were binding with cells in the dose-dependent mode. The purified ADV virions, the ADV gB glycoproteins and heparin inhibited such binding process of virosomes with cells, which denoted the specificity of their interaction with cells. An effective internalization of cell-binding virosomes was observed at 37 degrees C. The conclusion is that the ADV glycoproteins, constructed into the liposome membranes, simulate adequately enough the viral receptor structures and that the thus obtained virosomes could be used to investigate the interplay between alpha-herpes viruses and cells.

  11. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...... of the binding of rgp160 to the CD4 receptor on CEM 13 cells, as demonstrated by FACS analyses. These results indicate that conglutinin may inhibit the infection with HIV-1 through its interaction with the viral envelope glycoprotein....

  12. Ebola virus glycoprotein needs an additional trigger, beyond proteolytic priming for membrane fusion.

    Directory of Open Access Journals (Sweden)

    Shridhar Bale

    2011-11-01

    Full Text Available Ebolavirus belongs to the family filoviridae and causes severe hemorrhagic fever in humans with 50-90% lethality. Detailed understanding of how the viruses attach to and enter new host cells is critical to development of medical interventions. The virus displays a trimeric glycoprotein (GP(1,2 on its surface that is solely responsible for membrane attachment, virus internalization and fusion. GP(1,2 is expressed as a single peptide and is cleaved by furin in the host cells to yield two disulphide-linked fragments termed GP1 and GP2 that remain associated in a GP(1,2 trimeric, viral surface spike. After entry into host endosomes, GP(1,2 is enzymatically cleaved by endosomal cathepsins B and L, a necessary step in infection. However, the functional effects of the cleavage on the glycoprotein are unknown.We demonstrate by antibody binding and Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS of glycoproteins from two different ebolaviruses that although enzymatic priming of GP(1,2 is required for fusion, the priming itself does not initiate the required conformational changes in the ectodomain of GP(1,2. Further, ELISA binding data of primed GP(1,2 to conformational antibody KZ52 suggests that the low pH inside the endosomes also does not trigger dissociation of GP1 from GP2 to effect membrane fusion.The results reveal that the ebolavirus GP(1,2 ectodomain remains in the prefusion conformation upon enzymatic cleavage in low pH and removal of the glycan cap. The results also suggest that an additional endosomal trigger is necessary to induce the conformational changes in GP(1,2 and effect fusion. Identification of this trigger will provide further mechanistic insights into ebolavirus infection.

  13. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    Science.gov (United States)

    Aberle, Daniel; Oetter, Kay-Marcus; Meyers, Gregor

    2015-01-01

    Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  14. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    Directory of Open Access Journals (Sweden)

    Daniel Aberle

    Full Text Available Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  15. Structure of the membrane anchor of pestivirus glycoprotein E(rns, a long tilted amphipathic helix.

    Directory of Open Access Journals (Sweden)

    Daniel Aberle

    2014-02-01

    Full Text Available E(rns is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the E(rns membrane contact, processing and secretion.

  16. Structure of the Membrane Anchor of Pestivirus Glycoprotein Erns, a Long Tilted Amphipathic Helix

    Science.gov (United States)

    Aberle, Daniel; Muhle-Goll, Claudia; Bürck, Jochen; Wolf, Moritz; Reißer, Sabine; Luy, Burkhard; Wenzel, Wolfgang; Ulrich, Anne S.; Meyers, Gregor

    2014-01-01

    Erns is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the Erns membrane contact, processing and secretion. PMID:24586172

  17. Structure of the membrane anchor of pestivirus glycoprotein E(rns), a long tilted amphipathic helix.

    Science.gov (United States)

    Aberle, Daniel; Muhle-Goll, Claudia; Bürck, Jochen; Wolf, Moritz; Reißer, Sabine; Luy, Burkhard; Wenzel, Wolfgang; Ulrich, Anne S; Meyers, Gregor

    2014-02-01

    E(rns) is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the E(rns) membrane contact, processing and secretion.

  18. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Directory of Open Access Journals (Sweden)

    Andreas K Brödel

    Full Text Available Internal ribosome entry site (IRES elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR of the Cricket paralysis virus (CrPV genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established

  19. IRES-Mediated Translation of Membrane Proteins and Glycoproteins in Eukaryotic Cell-Free Systems

    Science.gov (United States)

    Brödel, Andreas K.; Sonnabend, Andrei; Roberts, Lisa O.; Stech, Marlitt; Wüstenhagen, Doreen A.; Kubick, Stefan

    2013-01-01

    Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems. PMID

  20. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Science.gov (United States)

    Brödel, Andreas K; Sonnabend, Andrei; Roberts, Lisa O; Stech, Marlitt; Wüstenhagen, Doreen A; Kubick, Stefan

    2013-01-01

    Internal ribosome entry site (IRES) elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems.

  1. Insulin stimulates the tyrosine phosphorylation of a Mr = 160,000 glycoprotein in adipocyte plasma membranes

    International Nuclear Information System (INIS)

    Yu, K.T.; Khalaf, N.; Czech, M.P.

    1986-01-01

    In an attempt to identify putative substrates for the insulin receptor kinase, adipocyte plasma membranes were incubated with [γ- 32 P]ATP in the presence and absence of insulin. Insulin stimulates the tyrosine phosphorylation of its receptor β subunit but does not detectably alter the phosphorylation of other membrane proteins. In contrast, when plasma membranes from insulin-treated adipocytes are phosphorylated, the 32 P-labeling of a Mr=160,000 species (p160) and insulin receptor β subunit are markedly increased when compared to controls. p160 exhibits a rapid response (max. at 1 min) and high sensitivity (ED 50 = 2 x 10 -10 M) to insulin. The stimulatory effect of insulin on the phosphorylation of p160 is rapidly reversed following the addition of anti-insulin serum. Cold chase experiments indicate that insulin promotes the phosphorylation of p160 rather than inhibiting its dephosphorylation. p160 is a glycoprotein as evidenced by its adsorption to immobilized lectins and does not represent the insulin receptor precursor. The action of insulin on p160 tyrosine phosphorylation is mimicked by concanavalin A but not by EGF and other insulin-like agents such as hydrogen peroxide and vanadate. These results suggest that p160 tyrosine phosphorylation is an insulin receptor-mediated event and may participate in signalling by the insulin receptor

  2. Gastrointestinal Hormone Cholecystokinin Increases P-Glycoprotein Membrane Localization and Transport Activity in Caco-2 Cells.

    Science.gov (United States)

    Yano, Kentaro; Shimizu, Saori; Tomono, Takumi; Ogihara, Takuo

    2017-09-01

    It was reported that stimulation of taste receptor type 2 member 38 by a bitter substance, phenylthiocarbamide (PTC), increased P-glycoprotein (P-gp) mRNA level and transport activity via release of the gastrointestinal hormone cholecystokinin-8 (CCK-8) at 9 h. Therefore, we hypothesized that CCK-8 and PTC might also regulate P-gp activity more rapidly via a different mechanism. As a result, we found that the pretreatment of human colon adenocarcinoma (Caco-2) cells with 10-mM PTC significantly decreased the intracellular accumulation of P-gp substrate rhodamine 123 (Rho123) compared with the control after 90-min incubation. Moreover, CCK-8 treatments significantly reduced the accumulation of Rho123 within 30 min, compared with the control. On the other hand, when Caco-2 cells were pretreated with PTC, the efflux ratio of Rho123 was significantly increased compared with control. The efflux ratio of Rho123 in CCK-8 treatment cells was also significantly increased compared with control. Furthermore, CCK-8 increased the phosphorylation of the scaffold proteins ezrin, radixin, and moesin, which regulate translocation of P-gp to the plasma membrane. Therefore, our results indicate that PTC induced release of CCK-8, which in turn induced the phosphorylation of ezrin, radixin, and moesin proteins, leading to upregulation of P-gp transport activity via increased membrane localization of P-gp. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Anti-tumor effects of gene therapy with GALV membrane fusion glycoprotein in lung adenocarcinoma.

    Science.gov (United States)

    Zhu, Bing; Yang, Jian-ru; Fu, Xin-ping; Jiang, Yue-quan

    2014-07-01

    This study examined the efficacy of gene therapy of lung adenocarcinoma using specifically controlled type I herpes simplex virus recombinant vector expressing Gibbon ape leukemia virus membrane fusion glycoprotein gene (GALV.fus). Recombinant HSV-I plasmid carrying target transgene was constructed, and recombinant viral vector was generated in Vero cells using Lipofectamine transfection. Viral vector was introduced into lung adenocarcinoma A549 cells or human fetal fibroblast HFL-I GNHu 5 cells, or inoculated into human lung adenocarcinoma xenografts in nude mice. The anti-tumor and cytotoxic effects of GALV-FMG, the transgene, were examined in these cell and animal models. Expression of GALV-FMG in xenographs achieved 100 % tumorigenicity. Recombinant HSV-I viral vector also exhibited significant tumor cell killing effect in vitro. Relative survival rates of tumor cells treated with GALV-FMG or control vectors were, respectively, 20 and 70 %. GALV.fus has a potent anti-tumor effect against lung cancer both in vitro and in vivo. This anti-tumor potential provides foundation for further studies with this vector.

  4. Artificial Formation and Tuning of Glycoprotein Networks on Live Cell Membranes: A Single-Molecule Tracking Study.

    Science.gov (United States)

    Möckl, Leonhard; Lindhorst, Thisbe K; Bräuchle, Christoph

    2016-03-16

    We present a method to artificially induce network formation of membrane glycoproteins and show the precise tuning of their interconnection on living cells. For this, membrane glycans are first metabolically labeled with azido sugars and then tagged with biotin by copper-free click chemistry. Finally, these biotin-tagged membrane proteins are interconnected with streptavidin (SA) to form an artificial protein network in analogy to a lectin-induced lattice. The degree of network formation can be controlled by the concentration of SA, its valency, and the concentration of biotin on membrane proteins. This was verified by investigation of the spatiotemporal dynamics of the SA-protein networks employing single-molecule tracking. It was also proven that this network formation strongly influences the biologically relevant process of endocytosis as it is known from natural lattices on the cell surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Structure of Herpesvirus Fusion Glycoprotein B-Bilayer Complex Reveals the Protein-Membrane and Lateral Protein-Protein Interaction

    NARCIS (Netherlands)

    Maurer, Ulrike E.; Zeev-Ben-Mordehai, Tzviya; Pandurangan, Arun Prasad; Cairns, Tina M.; Hannah, Brian P.; Whitbeck, J. Charles; Eisenberg, Roselyn J.; Cohen, Gary H.; Topf, Maya; Huiskonen, Juha T.; Gruenewald, Kay

    2013-01-01

    Glycoprotein B (gB) is a key component of the complex herpesvirus fusion machinery. We studied membrane interaction of two gB ectodomain forms and present an electron cryotomography structure of the gB-bilayer complex. The two forms differed in presence or absence of the membrane proximal region

  6. [The preparation and evaluation of the quality control materials for detection of platelet membrane glycoproteins by flow cytometry].

    Science.gov (United States)

    Liu, Y Q; Gong, Y; Qu, C X; You, R; Li, L P; Xing, L S; Wang, J Z

    2017-04-11

    Objective: To prepare the quality control material for detection of platelet membrane glycoproteins by flowcytometry and evaluate the appearance traits, homogeneity and stability of it. Methods: Fresh platelets from the blood group O donors were fixed by the certain concentration of aldehyde solution and then washed by the imidazole buffer. After that, adding certain concentration of lyophilized protection solution into the preparations. The preparations were dispensed to be lyophilized and then were kept refrigerated in 2-8 ℃.According to the protocol of control of lyophilized biological products, the quality indicator for monitoring the prepared process, containing the appearance traits, the residual water, the platelet recovery and the rehydration quality were evaluated. The homogeneity and stability of these preparations were evaluated according to the CNAS-GL03 Guidance on evaluating the homogeneity and stability of samples used for proficiency testing and the ISO Guide 35 Reference material - general and statistical principles for certification . Results: The appearance traits and the rehydration quality of the quality control materials meeted the requirements, with the residual water distributed between 3.96% to 4.04% and the platelet recovery rate ranged from 68% to 72%.The homogeneity evaluation showed that there was no significant difference among the groups( P >0.05). The stability test indicated that the positive rate of platelet membrane glycoproteins CD42b, CD41 and CD62P of the quality control material was -0.14%, -0.14% and 0.74%, respectively, at 16 weeks after storage. There was no linear trend between the percentage of positive platelets with membrane glycoproteins and time( P >0.05). Conclusions: The quality control material for detection of platelet membrane glycoproteins by flow cytometry prepared by us meets the needs of the appearance traits, the residual water, the rehydration quality, the homogeneity and the longtime stability.It is

  7. Acid-induced movements in the glycoprotein shell of an alphavirus turn the spikes into membrane fusion mode

    OpenAIRE

    Haag, Lars; Garoff, Henrik; Xing, Li; Hammar, Lena; Kan, Sin-Tau; Cheng, R.Holland

    2002-01-01

    In the icosahedral (T = 4) Semliki Forest virus, the envelope protomers, i.e. E1–E2 heterodimers, make one-to-one interactions with capsid proteins below the viral lipid bilayer, transverse the membrane and form an external glycoprotein shell with projections. The shell is organized by protomer domains interacting as hexamers and pentamers around shell openings at icosahedral 2- and 5-fold axes, respectively, and the projections by other domains associating as trimers at 3- and quasi 3-fold a...

  8. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function

    Directory of Open Access Journals (Sweden)

    Frances Jane Sharom

    2014-03-01

    Full Text Available Multidrug resistance in cancer is linked to expression of the P-glycoprotein multidrug transporter (Pgp, ABCB1, which exports many structurally diverse compounds from cells. Substrates first partition into the bilayer and then interact with a large flexible binding pocket within the transporter’s transmembrane regions. Pgp has been described as a hydrophobic vacuum cleaner or an outwardly-directed drug/lipid flippase. Recent X-ray crystal structures have shed some light on the nature of the drug-binding pocket and suggested routes by which substrates can enter it from the membrane. Detergents have profound effects on Pgp function, and several appear to be substrates. Biochemical and biophysical studies in vitro, some using purified reconstituted protein, have explored the effects of the membrane environment. They have demonstrated that Pgp is involved in a complex relationship with its lipid environment, which modulates the behaviour of its substrates, as well as various functions of the protein, including ATP hydrolysis, drug binding and drug transport. Membrane lipid composition and fluidity, phospholipid headgroup and acyl chain length all influence Pgp function. Recent studies focusing on thermodynamics and kinetics have revealed some important principles governing Pgp-lipid and substrate-lipid interactions, and how these affect drug binding and transport. In some cells, Pgp is associated with cholesterol-rich microdomains which may modulate its functions. The relationship between Pgp and cholesterol remains an open question; however it clearly affects several aspects of its function in addition to substrate-membrane partitioning. The action of Pgp modulators appears to depend on their membrane permeability, and membrane fluidizers and surfactants reverse drug resistance, likely via an indirect mechanism. A detailed understanding of how the membrane affects Pgp substrates and Pgp’s catalytic cycle may lead to new strategies to combat

  9. Refining the Mechanisms of Heniparvirus-Mediated Membrane Fusion Through Mutagenesis of Hendra virus Envelope Glycoproteins

    Science.gov (United States)

    2007-09-06

    glycoprotein single point mutants…..67 Figure 9: Effects of multiple point mutations on fusion activity of HeV F……….……..69 Figure 10: Effects of multiple ...relapsing encephalitis (28). How or whether this latter manifestation of disease is at all analogous to Subacute Sclerosing Panencephalitis (SSPE), a...total DNA per T-25cm2 flask overnight followed by infection with wild-type vaccinia virus (strain WR) at a multiplicity of infection (MOI) of 10. At

  10. Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein

    International Nuclear Information System (INIS)

    Shang Liang; Hunter, Eric

    2010-01-01

    The membrane-spanning domain (MSD) of human immunodeficiency virus type I (HIV-1) envelope glycoprotein (Env) is critical for its biological activity. Initial studies have defined an almost invariant 'core' structure in the MSD and demonstrated that it is crucial for anchoring Env in the membrane and virus entry. We show here that amino acid substitutions in the MSD 'core' do not influence specific virus-cell attachment, nor CD4 receptor and CXCR4 coreceptor recognition by Env. However, substitutions within the MSD 'core' delayed the kinetics and reduced the efficiency of cell-cell fusion mediated by Env. Although we observed no evidence that membrane fusion mediated by the MSD core mutants was arrested at a hemifusion stage, impaired Env fusogenicity was correlated with minor conformational changes in the V2, C1, and C5 regions in gp120 and the immunodominant loop in gp41. These changes could delay initiation of the conformational changes required in the fusion process.

  11. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    International Nuclear Information System (INIS)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed

  12. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jimin, E-mail: jimin.wang@yale.edu; Li, Yue; Modis, Yorgo, E-mail: yorgo.modis@yale.edu

    2014-04-15

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed.

  13. Extended Synaptotagmin 1 Interacts with Herpes Simplex Virus 1 Glycoprotein M and Negatively Modulates Virus-Induced Membrane Fusion.

    Science.gov (United States)

    El Kasmi, Imane; Khadivjam, Bita; Lackman, Miki; Duron, Johanne; Bonneil, Eric; Thibault, Pierre; Lippé, Roger

    2018-01-01

    Enveloped viruses typically encode their own fusion machinery to enter cells. Herpesviruses are unusual, as they fuse with a number of cellular compartments throughout their life cycles. As uncontrolled fusion of the host membranes should be avoided in these events, tight regulation of the viral fusion machinery is critical. While studying herpes simplex virus 1 (HSV-1) glycoprotein gM, we identified the cellular protein E-Syt1 (extended synaptotagmin 1) as an interaction partner. The interaction took place in both infected and transfected cells, suggesting other viral proteins were not required for the interaction. Most interestingly, E-Syt1 is a member of the synaptotagmin family of membrane fusion regulators. However, the protein is known to promote the tethering of the endoplasmic reticulum (ER) to the plasma membrane. We now show that E-Syt1, along with the related E-Syt3, negatively modulates viral release into the extracellular milieu, cell-to-cell viral spread, and viral entry, all processes that implicate membrane fusion events. Similarly, these E-Syt proteins impacted the formation of virus-induced syncytia. Altogether, these findings hint at the modulation of the viral fusion machinery by the E-Syt family of proteins. IMPORTANCE Viruses typically encode their own fusion apparatus to enable them to enter cells. For many viruses, this means a single fusogenic protein. However, herpesviruses are large entities that express several accessory viral proteins to regulate their fusogenic activity. The present study hints at the additional participation of cellular proteins in this process, suggesting the host can also modulate viral fusion to some extent. Hence E-Syt proteins 1 and 3 seem to negatively modulate the different viral fusion events that take place during the HSV-1 life cycle. This could represent yet another innate immunity response to the virus. Copyright © 2017 American Society for Microbiology.

  14. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Directory of Open Access Journals (Sweden)

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  15. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Science.gov (United States)

    Wang, Jimin; Li, Yue; Modis, Yorgo

    2014-01-01

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. PMID:24725935

  16. Synthesis and localization of two sulphated glycoproteins associated with basement membranes and the extracellular matrix

    DEFF Research Database (Denmark)

    Hogan, B L; Taylor, A; Kurkinen, M

    1982-01-01

    interactions and are not precursors or products of each other. They contain asparagine-linked oligosaccharides, but these are not the exclusive sites of sulphate labeling. Antiserum raised against the Mr 150,000 sgp C of Reichert's membranes has been used in an immunohistochemical analysis of rat skin...

  17. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    Science.gov (United States)

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  18. Glycoprotein on cell surfaces

    International Nuclear Information System (INIS)

    Muramatsu, T.

    1975-01-01

    There are conjugated polysaccharides in cell membranes and outside of animal cells, and they play important role in the control of cell behavior. In this paper, the studies on the glycoprotein on cell surfaces are reported. It was found that the glycoprotein on cell surfaces have both N-glycoside type and O-glycoside type saccharic chains. Therefore it can be concluded that the basic structure of the saccharic chains in the glycoprotein on cell surfaces is similar to that of blood serum and body fluid. The main glycoprotein in the membranes of red blood corpuscles has been studied most in detail, and it also has both types of saccharic chains. The glycoprotein in liver cell membranes was found to have only the saccharic chains of acid type and to be in different pattern from that in endoplasmic reticula and nuclear membranes, which also has the saccharic chains of neutral type. The structure of the saccharic chains of H-2 antigen, i.e. the peculiar glycoprotein on the surfaces of lymph system cells, has been studied, and it is similar to the saccharic chains of glycoprotein in blood serum. The saccharic chain structures of H-2 antigen and TL antigen are different. TL, H-2 (D), Lna and H-2 (K) are the glycoprotein on cell surfaces, and are independent molecules. The analysis of the saccharic chain patterns on cell surfaces was carried out, and it was shown that the acid type saccharic chains were similar to those of ordinary glycoprotein, because the enzyme of pneumococci hydrolyzed most of the acid type saccharic chains. The change of the saccharic chain patterns of glycoprotein on cell surfaces owing to canceration and multiplication is complex matter. (Kako, I.)

  19. Herpes Simplex Virus 1 Glycoprotein M and the Membrane-Associated Protein UL11 Are Required for Virus-Induced Cell Fusion and Efficient Virus Entry

    Science.gov (United States)

    Kim, In-Joong; Chouljenko, Vladimir N.; Walker, Jason D.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) facilitates virus entry into cells and cell-to-cell spread by mediating fusion of the viral envelope with cellular membranes and fusion of adjacent cellular membranes. Although virus strains isolated from herpetic lesions cause limited cell fusion in cell culture, clinical herpetic lesions typically contain large syncytia, underscoring the importance of cell-to-cell fusion in virus spread in infected tissues. Certain mutations in glycoprotein B (gB), gK, UL20, and other viral genes drastically enhance virus-induced cell fusion in vitro and in vivo. Recent work has suggested that gB is the sole fusogenic glycoprotein, regulated by interactions with the viral glycoproteins gD, gH/gL, and gK, membrane protein UL20, and cellular receptors. Recombinant viruses were constructed to abolish either gM or UL11 expression in the presence of strong syncytial mutations in either gB or gK. Virus-induced cell fusion caused by deletion of the carboxyl-terminal 28 amino acids of gB or the dominant syncytial mutation in gK (Ala to Val at amino acid 40) was drastically reduced in the absence of gM. Similarly, syncytial mutations in either gB or gK did not cause cell fusion in the absence of UL11. Neither the gM nor UL11 gene deletion substantially affected gB, gC, gD, gE, and gH glycoprotein synthesis and expression on infected cell surfaces. Two-way immunoprecipitation experiments revealed that the membrane protein UL20, which is found as a protein complex with gK, interacted with gM while gM did not interact with other viral glycoproteins. Viruses produced in the absence of gM or UL11 entered into cells more slowly than their parental wild-type virus strain. Collectively, these results indicate that gM and UL11 are required for efficient membrane fusion events during virus entry and virus spread. PMID:23678175

  20. Development and glycoprotein composition of the perimicrovillar membrane in Triatoma (Meccus) pallidipennis (Hemiptera: Reduviidae).

    Science.gov (United States)

    Gutiérrez-Cabrera, Ana E; Alejandre-Aguilar, Ricardo; Hernández-Martínez, Salvador; Espinoza, Bertha

    2014-11-01

    Hemipterans and thysanopterans (Paneoptera: Condylognatha) differ from other insects by having an intestinal perimicrovillar membrane (PMM) which extends from the base of the microvilli to the intestinal lumen. The development and composition of the PMM in hematophagous Reduviidae depend on factors related to diet. The PMM may also allow the human parasite Trypanosoma cruzi, the etiological agent of human Chagas Disease, to establish and develop in this insect vector. We studied the PMM development in the Mexican vector of Chagas Disease, Triatoma (Meccus) pallidipennis. We describe changes in the midgut epithelial cells of insects in response to starvation, and at different times (10, 15 and 20 days) after bloodfeeding. In starved insects, the midguts showed epithelial cells closely connected to each other but apparently free of PMM with some regions being periodic acid-Schiff (PAS-Schiff) positive. In contrast, the PMM was evident and fully developed in the midgut region of insects 15 days after feeding. After this time, the PMM completely covered the microvilli and reached the midgut lumen. At 15 days following feeding the labeled PAS-Schiff increased in the epithelial apex, suggesting an increase in carbohydrates. Lectins as histochemical reagents show the presence of a variety of glycoconjugates including mannose, glucose, galactosamine, N-acetyl-galactosamine. Also present were N-acetyl-glucosamine and sialic acid which contribute to the successful establishment and replication or T. cruzi in its insect vectors. By means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the formation and structure of the PMM is confirmed at 15 days post feeding. Our results confirmed the importance of the feeding processes in the formation of the PMM and showed the nature of the biochemical composition of the vectors' intestine in this important Mexican vector of Chagas disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Co-expression of foreign proteins tethered to HIV-1 envelope glycoprotein on the cell surface by introducing an intervening second membrane-spanning domain.

    Directory of Open Access Journals (Sweden)

    Hongyun Wang

    Full Text Available The envelope glycoprotein (Env of human immunodeficiency virus type I (HIV-1 mediates membrane fusion. To analyze the mechanism of HIV-1 Env-mediated membrane fusion, it is desirable to determine the expression level of Env on the cell surface. However, the quantification of Env by immunological staining is often hampered by the diversity of HIV-1 Env and limited availability of universal antibodies that recognize different Envs with equal efficiency. To overcome this problem, here we linked a tag protein called HaloTag at the C-terminus of HIV-1 Env. To relocate HaloTag to the cell surface, we introduced a second membrane-spanning domain (MSD between Env and HaloTag. The MSD of transmembrane protease serine 11D, a type II transmembrane protein, successfully relocated HaloTag to the cell surface. The surface level of Env can be estimated indirectly by staining HaloTag with a specific membrane-impermeable fluorescent ligand. This tagging did not compromise the fusogenicity of Env drastically. Furthermore, fusogenicity of Env was preserved even after the labeling with the ligands. We have also found that an additional foreign peptide or protein such as C34 or neutralizing single-chain variable fragment (scFv can be linked to the C-terminus of the HaloTag protein. Using these constructs, we were able to determine the required length of C34 and critical residues of neutralizing scFv for blocking membrane fusion, respectively.

  2. Different Modalities of Intercellular Membrane Exchanges Mediate Cell-to-cell P-glycoprotein Transfers in MCF-7 Breast Cancer Cells*

    Science.gov (United States)

    Pasquier, Jennifer; Galas, Ludovic; Boulangé-Lecomte, Céline; Rioult, Damien; Bultelle, Florence; Magal, Pierre; Webb, Glenn; Le Foll, Frank

    2012-01-01

    Multi-drug resistance (MDR) is a phenomenon by which tumor cells exhibit resistance to a variety of chemically unrelated chemotherapeutic drugs. The classical form of multidrug resistance is connected to overexpression of membrane P-glycoprotein (P-gp), which acts as an energy dependent drug efflux pump. P-glycoprotein expression is known to be controlled by genetic and epigenetic mechanisms. Until now processes of P-gp gene up-regulation and resistant cell selection were considered sufficient to explain the emergence of MDR phenotype within a cell population. Recently, however, “non-genetic” acquisitions of MDR by cell-to-cell P-gp transfers have been pointed out. In the present study we show that intercellular transfers of functional P-gp occur by two different but complementary modalities through donor-recipient cells interactions in the absence of drug selection pressure. P-glycoprotein and drug efflux activity transfers were followed over 7 days by confocal microscopy and flow cytometry in drug-sensitive parental MCF-7 breast cancer cells co-cultured with P-gp overexpressing resistant variants. An early process of remote transfer was established based on the release and binding of P-gp-containing microparticles. Microparticle-mediated transfers were detected after only 4 h of incubation. We also identify an alternative mode of transfer by contact, consisting of cell-to-cell P-gp trafficking by tunneling nanotubes bridging neighboring cells. Our findings supply new mechanistic evidences for the extragenetic emergence of MDR in cancer cells and indicate that new treatment strategies designed to overcome MDR may include inhibition of both microparticles and Tunneling nanotube-mediated intercellular P-gp transfers. PMID:22228759

  3. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    Science.gov (United States)

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  4. Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lee

    2016-03-01

    Full Text Available Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type and short-chain (regular type glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein

  5. Identification of a point mutation in type IIB von Willebrand disease illustrating the regulation of von Willebrand factor affinity for the platelet membrane glycoprotein Ib-IX receptor

    International Nuclear Information System (INIS)

    Ware, J.; Dent, J.A.; Azuma, Hiroyuki; Sugimoto, Mitsuhiko; Kyrle, P.A.; Yoshioka, Akira; Ruggeri, Z.M.

    1991-01-01

    von Willebrand factor (vWF) supports platelet adhesion on thrombogenic surfaces by binding to platelet membrane glycoprotein (GP) Ib in the GP Ib-IX receptor complex. This interaction is physiologically regulated so that it does not occur between circulating vWF and platelets but, rather, only at a site of vascular injury. The abnormal vWF found in type IIB von Willebrand disease, however, has a characteristically increased affinity for GP Ib and binds to circulating platelets. The authors have analyzed the molecular basis of this abnormality by sequence analysis of a type IIB vWF cDNA and have identified a single amino acid change, Trp 550 to Cys 550 , located in the GP IB-binding domain of the molecule comprising residues 449-728. Bacterial expression of recombinant fragments corresponding to this vWF domain yielded molecules that, whether containing a normal Trp 550 or a mutant Cys 550 residue, bound directly to GP Ib in the absence of modulators and with similar affinity. These results identify a region of vWF that, although not thought to be directly involved in binding to GP Ib, may modulate the interaction through conformational changes

  6. Characterization of the M2 autoantigen of central nervous system (CNS) myelin as a glycoproteins(s) also expressed on oligodendrocyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lebar, R.; Lubetzki, C.; Vincent, C.; Lombrail, P.; Boutry, J.M.

    1986-03-01

    Guinea pigs immunized with homologous brain tissue develop an acute experimental allergic encephalomyelitis and their sera contain demyelinating antibodies. These antibodies were used to characterize the target: the unidentified autoantigen M2. Using both the Dot immunobinding technique and autoradiography of immunoprecipitates formed with radiolabelled guinea-pig myelin and analyzed in SDS acrylamide gel electrophoresis, M2 was found to be a component of CNS myelin and not peripheral nervous system (PNS) myelin. In the Dot technique anti-M2 serum did not react with myelin basic protein (BP), proteolipid and galactocerebroside (GC). On electrophoresis, in reducing and non reducing conditions, M2 appeared as two CNS myelin protein bands at the 27,000 and 54,000 molecular weight levels, distinct from the CNS myelin major protein bands of proteolipid protein and BP. Affinity chromatography of CNS myelin on wheat germ agglutinin Sepharose showed that M2 bands were of glycoprotein nature. The same M2 bands were formed with guinea pig antibodies and rat, rabbit or bovine CNS myelin. The same type of anti-M2 antibodies were induced in rabbits immunized with homologous CNS tissue. As a component of myelin, M2 was present in white matter tracts of CNS tissue sections tested by immunofluorescence. Furthermore, M2 was expressed on rat oligodendrocyte membrane in one day and 8 day in vitro cultures.

  7. Binding of alphaherpesvirus glycoprotein H to surface α4β1-integrins activates calcium-signaling pathways and induces phosphatidylserine exposure on the plasma membrane.

    Science.gov (United States)

    Azab, Walid; Gramatica, Andrea; Herrmann, Andreas; Osterrieder, Nikolaus

    2015-10-20

    Intracellular signaling connected to integrin activation is known to induce cytoplasmic Ca(2+) release, which in turn mediates a number of downstream signals. The cellular entry pathways of two closely related alphaherpesviruses, equine herpesviruses 1 and 4 (EHV-1 and EHV-4), are differentially regulated with respect to the requirement of interaction of glycoprotein H (gH) with α4β1-integrins. We show here that binding of EHV-1, but not EHV-4, to target cells resulted in a rapid and significant increase in cytosolic Ca(2+) levels. EHV-1 expressing EHV-4 gH (gH4) in lieu of authentic gH1 failed to induce Ca(2+) release, while EHV-4 with gH1 triggered significant Ca(2+) release. Blocking the interaction between gH1 and α4β1-integrins, inhibiting phospholipase C (PLC) activation, or blocking binding of inositol 1,4,5-triphosphate (IP3) to its receptor on the endoplasmic reticulum (ER) abrogated Ca(2+) release. Interestingly, phosphatidylserine (PS) was exposed on the plasma membrane in response to cytosolic calcium increase after EHV-1 binding through a scramblase-dependent mechanism. Inhibition of both Ca(2+) release from the ER and scramblase activation blocked PS scrambling and redirected virus entry to the endocytic pathway, indicating that PS may play a role in facilitating virus entry directly at the plasma membrane. Herpesviruses are a large family of enveloped viruses that infect a wide range of hosts, causing a variety of diseases. These viruses have developed a number of strategies for successful entry into different cell types. We and others have shown that alphaherpesviruses, including EHV-1 and herpes simplex virus 1 (HSV-1), can route their entry pathway and do so by manipulation of cell signaling cascades to ensure viral genome delivery to nuclei. We show here that the interaction between EHV-1 gH and cellular α4β1-integrins is necessary to induce emptying of ER calcium stores, which induces phosphatidylserine exposure on the plasma membrane

  8. Thiol-reactive drug substrates of human P-glycoprotein label the same sites to activate ATPase activity in membranes or dodecyl maltoside detergent micelles.

    Science.gov (United States)

    Loo, Tip W; Clarke, David M

    2017-07-08

    P-glycoprotein (P-gp, ABCB1) is an ABC drug pump that is clinically important because it is involved in multidrug resistance. Many studies have used purified P-gp in detergent (n-dodecyl-β-D-maltoside; DM) micelles to map the locations of the drug-binding sites. A potential problem is that DM could be a substrate and affect binding of drugs to P-gp. To test whether DM was a substrate of P-gp, we used an assay involving drug-rescue of the immature 150 kDa misprocessed P-gp mutant (L1260A) to show that DM is not substrate. By contrast, the detergents Triton X-100 or NP-35 were substrates because they rescued the L1260A P-gp mutant such that the major product was the mature 170 kDa protein. Cross-linking of mutant A80C/R741C in membranes can only be inhibited by the P-gp substrate tariquidar. We show that cross-linking A80C/R741C mutant was also inhibited by tariquidar in the presence of excess DM. This result suggests that the presence of DM did not affect the tariquidar-binding site. Similarly, the presence of DM did not alter the locations of other drug-binding sites since the thiol reactive forms of the substrates verapamil or rhodamine labeled the same sites in transmembrane segments 5 (I306C for verapamil) and 6 (F343C for rhodamine) whether P-gp was in native membranes or in detergent micelles. These results suggest that the presence of DM does not alter the locations of the P-gp drug-binding sites and that the detergent purified protein is suitable for mapping their locations using biochemical or structural assays. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A novel method for analysis of membrane microdomains: vesicular stomatitis virus glycoprotein microdomains change in size during infection, and those outside of budding sites resemble sites of virus budding

    International Nuclear Information System (INIS)

    Brown, Erica L.; Lyles, Douglas S.

    2003-01-01

    Membrane proteins, including viral envelope glycoproteins, may be organized into areas of locally high concentration, commonly referred to as membrane microdomains. Some viruses bud from detergent-resistant microdomains referred to as lipid rafts. However, vesicular stomatitis virus (VSV) serves as a prototype for viruses that bud from areas of plasma membrane that are not detergent resistant. We developed a new analytical method for immunoelectron microscopy data to determine whether the VSV envelope glycoprotein (G protein) is organized into plasma membrane microdomains. This method was used to quantify the distribution of the G protein in microdomains in areas of plasma membrane that did not contain budding sites. These microdomains were compared to budding virus envelopes to address the question of whether G protein-containing microdomains were formed only at the sites of budding. At early times postinfection, most of the G protein was organized into membrane microdomains outside of virus budding sites that were approximately 100-150 nm, with smaller amounts distributed into larger microdomains. In contrast to early times postinfection, the increased level of G protein in the host plasma membrane at later times postinfection led to distribution of G protein among membrane microdomains of a wider variety of sizes, rather than a higher G protein concentration in the 100- to 150-nm microdomains. VSV budding occurred in G protein-containing microdomains with a range of sizes, some of which were smaller than the virus envelope. These microdomains extended in size to a maximum of 300-400 nm from the tip of the budding virion. The data support a model for virus assembly in which G protein organizes into membrane microdomains that resemble virus envelopes prior to formation of budding sites, and these microdomains serve as the sites of assembly of internal virion components

  10. Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes.

    Science.gov (United States)

    Parker, Benjamin L; Thaysen-Andersen, Morten; Fazakerley, Daniel J; Holliday, Mira; Packer, Nicolle H; James, David E

    2016-01-01

    Insulin resistance (IR) is a complex pathophysiological state that arises from both environmental and genetic perturbations and leads to a variety of diseases, including type-2 diabetes (T2D). Obesity is associated with enhanced adipose tissue inflammation, which may play a role in disease progression. Inflammation modulates protein glycosylation in a variety of cell types, and this has been associated with biological dysregulation. Here, we have examined the effects of an inflammatory insult on protein glycosylation in adipocytes. We performed quantitative N-glycome profiling of membrane proteins derived from mouse 3T3-L1 adipocytes that had been incubated with or without the proinflammatory cytokine TNF-alpha to induce IR. We identified the regulation of specific terminal N-glycan epitopes, including an increase in terminal di-galactose- and a decrease in biantennary alpha-2,3-sialoglycans. The altered N-glycosylation of TNF-alpha-treated adipocytes correlated with the regulation of specific glycosyltransferases, including the up-regulation of B4GalT5 and Ggta1 galactosyltransferases and down-regulation of ST3Gal6 sialyltransferase. Knockdown of B4GalT5 down-regulated the terminal di-galactose N-glycans, confirming the involvement of this enzyme in the TNF-alpha-regulated N-glycome. SILAC-based quantitative glycoproteomics of enriched N-glycopeptides with and without deglycosylation were used to identify the protein and glycosylation sites modified with these regulated N-glycans. The combined proteome and glycoproteome workflow provided a relative quantification of changes in protein abundance versus N-glycosylation occupancy versus site-specific N-glycans on a proteome-wide level. This revealed the modulation of N-glycosylation on specific proteins in IR, including those previously associated with insulin-stimulated GLUT4 trafficking to the plasma membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes*

    Science.gov (United States)

    Parker, Benjamin L.; Thaysen-Andersen, Morten; Fazakerley, Daniel J.; Holliday, Mira; Packer, Nicolle H.; James, David E.

    2016-01-01

    Insulin resistance (IR) is a complex pathophysiological state that arises from both environmental and genetic perturbations and leads to a variety of diseases, including type-2 diabetes (T2D). Obesity is associated with enhanced adipose tissue inflammation, which may play a role in disease progression. Inflammation modulates protein glycosylation in a variety of cell types, and this has been associated with biological dysregulation. Here, we have examined the effects of an inflammatory insult on protein glycosylation in adipocytes. We performed quantitative N-glycome profiling of membrane proteins derived from mouse 3T3-L1 adipocytes that had been incubated with or without the proinflammatory cytokine TNF-alpha to induce IR. We identified the regulation of specific terminal N-glycan epitopes, including an increase in terminal di-galactose- and a decrease in biantennary alpha-2,3-sialoglycans. The altered N-glycosylation of TNF-alpha-treated adipocytes correlated with the regulation of specific glycosyltransferases, including the up-regulation of B4GalT5 and Ggta1 galactosyltransferases and down-regulation of ST3Gal6 sialyltransferase. Knockdown of B4GalT5 down-regulated the terminal di-galactose N-glycans, confirming the involvement of this enzyme in the TNF-alpha-regulated N-glycome. SILAC-based quantitative glycoproteomics of enriched N-glycopeptides with and without deglycosylation were used to identify the protein and glycosylation sites modified with these regulated N-glycans. The combined proteome and glycoproteome workflow provided a relative quantification of changes in protein abundance versus N-glycosylation occupancy versus site-specific N-glycans on a proteome-wide level. This revealed the modulation of N-glycosylation on specific proteins in IR, including those previously associated with insulin-stimulated GLUT4 trafficking to the plasma membrane. PMID:26537798

  12. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong; Kodithuwakku, Nandani Darshika; Fang, Weirong [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Li, Yunman, E-mail: yunmanlicpu@hotmail.com [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Huang, Wenlong [Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009 (China)

    2014-01-15

    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity and multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein

  13. Activities of lectins and their immobilized derivatives in detergent solutions. Implications on the use of lectin affinity chromatography for the purification of membrane glycoproteins.

    Science.gov (United States)

    Lotan, R; Beattie, G; Hubbell, W; Nicolson, G L

    1977-05-03

    The effects of several commonly used detergents on the saccharide-binding activities of lectins were investigated using lectin-mediated agglutination of formalin-fixed erythrocytes and affinity chromatography of glycoproteins on columns of lectins immobilized on polyacrylic hydrazide-Sepharose. In the hemagglutination assays, Ricinus communis I (RCA1) and II (RCAII), concanavalin A (Con A), and the agglutinins from peanut (PNA), soybean (SBA), wheat germ (WGA), and Limulus polyphemus (LPA) were tested with several concentrations of switterionic, cationic, anionic, and nonionic detergents. It was found that increasing detergent concentrations eventually affected hemagglutination titers in both test and control samples, and the highest detergent concentrations not affecting lectin hemagglutinating activities were determined. The effects of detergents on specific binding of [3H]fetuin and asialo[3H]fetuin to and elution from columns of immobilized lectins were less severe when compared with lectins in solution, suggesting that the lectins are stabilized by covalent attachment to agarose beads. Nonionic detergents did not affect the binding efficiency of the immobilized lectins tested at concentrations used for membrane solubilization while cationic and zwitterionic detergents caused significant inhibition of Con A- and SBA-Sepharose activities. In sodium deoxycholate (greater than 1%) only RCAI-Sepharose retained its activity, whereas the activities of the other lectins were reduced dramatically. Low concentrations of sodium dodecyl sulfate (0.05%) inhibited only the activity of immobilized SBA, but at higher concentration (0.1%) and prolonged periods of incubation (16 h, 23 degrees C) most of the lectins were inactivated. These data are compared with previous reports on the use of detergents in lectin affinity chromatography, and the conditions for the optimal use of detergents are detailed.

  14. Phage Display Breast Carcinoma cDNA Libraries: Isolation of Clones Which Specifically Bind to Membrane Glycoproteins, Mucins, and Endothelial Cell Surface

    National Research Council Canada - National Science Library

    Yamamoto, Fumiichiro

    2000-01-01

    .... Using blood- group H-expressing glycoprotein fraction as bait, we observed enrichment of phage clones expressing sequences from galectin-3, a lectin with an affinity with the blood-group substance...

  15. Effects of the I559P gp41 Change on the Conformation and Function of the Human Immunodeficiency Virus (HIV-1) Membrane Envelope Glycoprotein Trimer

    Science.gov (United States)

    Sodroski, Joseph; Finzi, Andrés

    2015-01-01

    The mature human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P) in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env spikes and I559P

  16. Effects of the I559P gp41 change on the conformation and function of the human immunodeficiency virus (HIV-1 membrane envelope glycoprotein trimer.

    Directory of Open Access Journals (Sweden)

    Nirmin Alsahafi

    Full Text Available The mature human immunodeficiency virus (HIV-1 envelope glycoprotein (Env trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env

  17. Herpes Simplex Virus Membrane Proteins gE/gI and US9 Act Cooperatively To Promote Transport of Capsids and Glycoproteins from Neuron Cell Bodies into Initial Axon Segments

    Science.gov (United States)

    Howard, Paul W.; Howard, Tiffani L.

    2013-01-01

    Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE−, gI−, or US9− mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE−/US9− double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons. PMID:23077321

  18. Modulatory Effect of Taurine on 7,12-Dimethylbenz(a)Anthracene-Induced Alterations in Detoxification Enzyme System, Membrane Bound Enzymes, Glycoprotein Profile and Proliferative Cell Nuclear Antigen in Rat Breast Tissue.

    Science.gov (United States)

    Vanitha, Manickam Kalappan; Baskaran, Kuppusamy; Periyasamy, Kuppusamy; Selvaraj, Sundaramoorthy; Ilakkia, Aruldoss; Saravanan, Dhiravidamani; Venkateswari, Ramachandran; Revathi Mani, Balasundaram; Anandakumar, Pandi; Sakthisekaran, Dhanapal

    2016-08-01

    The modulatory effect of taurine on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in rats was studied. DMBA (25 mg/kg body weight) was administered to induce breast cancer in rats. Protein carbonyl levels, activities of membrane bound enzymes (Na(+) /K(+) ATPase, Ca(2+) ATPase, and Mg(2+) ATPase), phase I drug metabolizing enzymes (cytochrome P450, cytochrome b5, NADPH cytochrome c reductase), phase II drug metabolizing enzymes (glutathione-S-transferase and UDP-glucuronyl transferase), glycoprotein levels, and proliferative cell nuclear antigen (PCNA) were studied. DMBA-induced breast tumor bearing rats showed abnormal alterations in the levels of protein carbonyls, activities of membrane bound enzymes, drug metabolizing enzymes, glycoprotein levels, and PCNA protein expression levels. Taurine treatment (100 mg/kg body weight) appreciably counteracted all the above changes induced by DMBA. Histological examination of breast tissue further supported our biochemical findings. The results of the present study clearly demonstrated the chemotherapeutic effect of taurine in DMBA-induced breast cancer. © 2016 Wiley Periodicals, Inc.

  19. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    International Nuclear Information System (INIS)

    Du, Yijun; Pattnaik, Asit K.; Song, Cheng; Yoo, Dongwan; Li, Gang

    2012-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 (ω − 2, where ω is the GPI moiety at E160), P159 (ω − 1), and M162 (ω + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide–anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  20. P-glycoprotein ABCB1: a major player in drug handling by mammals

    NARCIS (Netherlands)

    Borst, Piet; Schinkel, Alfred H.

    2013-01-01

    Mammalian P-glycoproteins are active drug efflux transporters located in the plasma membrane. In the early nineties, we generated knockouts of the three P-glycoprotein genes of mice, the Mdr1a, Mdr1b, and Mdr2 P-glycoproteins, now known as Abcb1a, Abcb1b, and Abcb4, respectively. In the JCI papers

  1. Ammonia transport in the kidney by Rhesus glycoproteins

    Science.gov (United States)

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  2. HIV-1 Envelope Glycoprotein Biosynthesis, Trafficking, and Incorporation

    Science.gov (United States)

    Checkley, Mary Ann; Luttge, Benjamin G.; Freed, Eric O.

    2011-01-01

    The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor, gp160, that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and co-receptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation, and the role of specific membrane microdomains in this process. Here we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions. PMID:21762802

  3. Effects of hepatic ischemia-reperfusion injury on the P-glycoprotein activity at the liver canalicular membrane and blood-brain barrier determined by in vivo administration of rhodamine 123 in rats.

    Science.gov (United States)

    Miah, Mohammad K; Shaik, Imam H; Bickel, Ulrich; Mehvar, Reza

    2014-04-01

    To investigate the effects of normothermic hepatic ischemia-reperfusion (IR) injury on the activity of P-glycoprotein (P-gp) in the liver and at the blood-brain barrier (BBB) of rats using rhodamine 123 (RH-123) as an in vivo marker. Rats were subjected to 90 min of partial ischemia or sham surgery, followed by 12 or 24 h of reperfusion. Following intravenous injection, the concentrations of RH-123 in blood, bile, brain, and liver were used for pharmacokinetic calculations. The protein levels of P-gp and some other transporters in the liver and brain were also determined by Western blot analysis. P-gp protein levels at the liver canalicular membrane were increased by twofold after 24 h of reperfusion. However, the biliary excretion of RH-123 was reduced in these rats by 26%, presumably due to IR-induced reductions in the liver uptake of the marker and hepatic ATP concentrations. At the BBB, a 24% overexpression of P-gp in the 24-h IR animals was associated with a 30% decrease in the apparent brain uptake clearance of RH-123. The pharmacokinetics or brain distribution of RH-123 was not affected by the 12-h IR injury. Hepatic IR injury may alter the peripheral pharmacokinetics and brain distribution of drugs that are transported by P-gp and possibly other transporters.

  4. Specific interaction of CXCR4 with CD4 and CD8α: Functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion

    International Nuclear Information System (INIS)

    Basmaciogullari, Stephane; Pacheco, Beatriz; Bour, Stephan; Sodroski, Joseph

    2006-01-01

    We investigated possible interactions between HIV-1 receptor (CD4) and the main coreceptors CXCR4 and CCR5. We found that CD4 and CXCR4 coexpressed in 293T cells form a complex that can be immunoprecipitated with antibodies directed against the extracellular domain of either protein. Mutagenesis revealed that the CD4/CXCR4 interaction maps to two previously uncharacterized basic motifs in the cytoplasmic domain of CD4. HIV-1 envelope glycoprotein-mediated membrane fusion was found to be independent of the ability of CD4 and CXCR4 to interact, whether fusion was studied in a virus-cell or a cell-cell model. However, this interaction might explain the adaptation of HIV-1 to CXCR4 as an alternative to CCR5. We found that CXCR4 also interacts with the cytoplasmic domain of CD8α in a way that is similar to the CD4/CXCR4 interaction. The CD4/CXCR4 and CD8α/CXCR4 interactions may thus be involved in cellular signaling pathways shared by the CD4 and CD8α molecules

  5. Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses

    International Nuclear Information System (INIS)

    Hu, H.-P.; Hsieh, S.-C.; King, C.-C.; Wang, W.-K.

    2007-01-01

    In this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibited by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more dengue viral sequences available from different outbreaks worldwide, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates

  6. Comparison of the gene encoding, and the predicted amino acid composition of, platelet membrane receptor subunit glycoprotein Ibα in members of the family Felidae.

    Science.gov (United States)

    Boudreaux, Mary K; Christopherson, Pete W; Blair, Cori

    2016-03-01

    There is minimal information regarding platelet receptors in the family Felidae. Comparative studies assist with identifying amino acids critical for protein structure and function. The purpose of the study was to compare the gene encoding, and the predicted amino acid composition of, platelet membrane receptor subunit GPIbα in Felidae family members. Genomic DNA samples isolated from whole blood of 13 domestic cats and 50 big cats representing 8 different species were subjected to PCR using primers designed to flank the coding region of GPIbα in overlapping fashion. PCR products were separated via electrophoresis on agarose gels, and extracted products were submitted for sequencing. DNA sequences were used to predict the length and amino acid composition of the protein. Varying protein lengths were predicted in Felidae family members which were primarily due to polymorphisms in the variable number of tandem repeats region encoding the macroglycopeptide region of GPIbα. Other areas of the gene and predicted amino acid compositions were fairly conserved when compared to human sequences and between Felidae family members. Various polymorphisms within GPIbα, including length variants encoding the macroglycopeptide region, were identified in members of the family Felidae. More studies are needed to determine if a correlation exists between various polymorphisms and predisposition for hemorrhage or thrombosis as suggested in people. © 2016 American Society for Veterinary Clinical Pathology.

  7. Characterization and cloning of fasciclin I and fasciclin II glycoproteins in the grasshopper

    OpenAIRE

    Snow, Peter M.; Zinn, Kai; Harrelson, Allan L.; McAllister, Linda; Schilling, Jim; Bastiani, Michael J.; Makk, George; Goodman, Corey S.

    1988-01-01

    Monoclonal antibodies were previously used to identify two glycoproteins, called fasciclin I and II (70 and 95 kDa, respectively), which are expressed on different subsets of axon fascicles in the grasshopper (Schistocerca americana) embryo. Here the monoclonal antibodies were used to purify these two membrane-associated glycoproteins for further characterization. Fasciclin II appears to be an integral membrane protein, whereas fasciclin I is an extrinsic membrane protein. The amino acid sequ...

  8. HIV-1 envelope glycoprotein

    Science.gov (United States)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  9. Glycoprotein and proteoglycan techniques

    International Nuclear Information System (INIS)

    Beeley, J.G.

    1985-01-01

    The aim of this book is to describe techniques which can be used to answer some of the basic questions about glycosylated proteins. Methods are discussed for isolation, compositional analysis, and for determination of the primary structure of carbohydrate units and the nature of protein-carbohydrate linkages of glycoproteins and proteoglycans. High resolution NMR is considered, as well as radioactive labelling techniques. (Auth.)

  10. Podoplanin - a small glycoprotein with many faces

    OpenAIRE

    Ugorski, Maciej; Dziegiel, Piotr; Suchanski, Jaroslaw

    2016-01-01

    Podoplanin is a small membrane glycoprotein with a large number of O-glycoside chains and therefore it belongs to mucin-type proteins. It can be found on the surface of many types of normal cells originating from various germ layers. It is present primarily on the endothelium of lymphatic vessels, type I pneumocytes and glomerular podocytes. Increased levels of podoplanin or its neo-expression have been found in numerous types of human carcinomas, but it is especially common in squamous cell ...

  11. Prediction of conserved sites and domains in glycoproteins B, C and D of herpes viruses.

    Science.gov (United States)

    Rasheed, Muhammad Asif; Ansari, Abdur Rahman; Ihsan, Awais; Navid, Muhammad Tariq; Ur-Rehman, Shahid; Raza, Sohail

    2018-03-01

    Glycoprotein B (gB), C (gC) and D (gD) of herpes simplex virus are implicated in virus adsorption and penetration. The gB, gC and gD are glycoproteins for different processes of virus binding and attachment to the host cells. Moreover, their expression is necessary and sufficient to induce cell fusion in the absence of other glycoproteins. Egress of herpes simplex virus (HSV) and other herpes viruses from cells involves extensive modification of cellular membranes and sequential envelopment, de-envelopment and re-envelopment steps. Viral glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Hence, we target the 3 important glycoproteins (B, C and D) of eight different herpes viruses of different species. These species include human (HSV1 and 2), bovine (BHV1), equine (EHV1 and 4), chicken (ILT1 and MDV2) and pig (PRV1). By applying different bioinformatics tools, we highlighted the conserved sites in these glycoproteins which might be most significant regarding attachment and infection of the viruses. Moreover the conserved domains in these glycoproteins are also highlighted. From this study, we will able to analyze the role of different viral glycoproteins of different species during herpes virus adsorption and penetration. Moreover, this study will help to construct the antivirals that target the glycoproteins of different herpes viruses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Processing of virus-specific glycoproteins of varicella zoster virus

    Energy Technology Data Exchange (ETDEWEB)

    Namazue, J.; Campo-Vera, H.; Kitamura, K.; Okuno, T.; Yamanishi, K.

    1985-05-01

    Monoclonal antibodies to varicella zoster virus (VZV) glycoproteins were used to study the processing of three glycoproteins with molecular weights of 83K-94K (gp 2), 64K (gp 3), and 55K (gp 5). Immunoprecipitation experiments performed with VZV-infected cells, pulse labeled with (/sup 3/H)glucosamine in the presence of tunicamycin, suggest that O-linked oligosaccharide is present on the glycoprotein of gp 2. Use of the enzyme endo-beta-N-acetylglucosaminidase H revealed that the fully processed form of gp 3 had high-mannose type and that of gp 5 had only complex type of N-linked oligosaccharides. Experiments with monensin suggest that the precursor form (116K) of gp 3 is cleaved during the processing from Golgi apparatus to cell surface membrane. The extension of O-linked oligosaccharide chain and the complex type of N-linked oligosaccharide chains also occurs during this processing.

  13. Processing of virus-specific glycoproteins of varicella zoster virus

    International Nuclear Information System (INIS)

    Namazue, J.; Campo-Vera, H.; Kitamura, K.; Okuno, T.; Yamanishi, K.

    1985-01-01

    Monoclonal antibodies to varicella zoster virus (VZV) glycoproteins were used to study the processing of three glycoproteins with molecular weights of 83K-94K (gp 2), 64K (gp 3), and 55K (gp 5). Immunoprecipitation experiments performed with VZV-infected cells, pulse labeled with [ 3 H]glucosamine in the presence of tunicamycin, suggest that O-linked oligosaccharide is present on the glycoprotein of gp 2. Use of the enzyme endo-beta-N-acetylglucosaminidase H revealed that the fully processed form of gp 3 had high-mannose type and that of gp 5 had only complex type of N-linked oligosaccharides. Experiments with monensin suggest that the precursor form (116K) of gp 3 is cleaved during the processing from Golgi apparatus to cell surface membrane. The extension of O-linked oligosaccharide chain and the complex type of N-linked oligosaccharide chains also occurs during this processing

  14. Generation of H9 T-cells stably expressing a membrane-bound form of the cytoplasmic tail of the Env-glycoprotein: lack of transcomplementation of defective HIV-1 virions encoding C-terminally truncated Env

    OpenAIRE

    Bosch Valerie; Pfeiffer Tanya; Holtkotte Denise

    2006-01-01

    Abstract H9-T-cells do not support the replication of mutant HIV-1 encoding Env protein lacking its long cytoplasmic C-terminal domain (Env-CT). Here we describe the generation of a H9-T-cell population constitutively expressing the HIV-1 Env-CT protein domain anchored in the cellular membrane by it homologous membrane-spanning domain (TMD). We confirmed that the Env-TMD-CT protein was associated with cellular membranes, that its expression did not have any obvious cytotoxic effects on the ce...

  15. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines.

    Science.gov (United States)

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-11-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with those expressed by a nonmalignant set. The average number of spectral counts (proportional to relative protein abundance) and the total number of glycopeptides in the malignant samples were reduced to about two-thirds of the level in the nonmalignant samples. Most glycoproteins were expressed at a different level in the malignant samples, with nearly as many increasing as decreasing. The glycoproteins with reduced expression accounted for a larger change in spectral counts, and hence for the net loss of spectral counts in the malignant lines. Similar results were found when the glycoproteins were studied via identified glycosylation sites only, or through identified sites together with non-glycopeptides. The overall reduction is largely due to the loss of integrins, laminins and other proteins that form or interact with the basement membrane.

  16. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  17. Detergent-Assisted Glycoprotein Capture: A Versatile Tool for In-Depth N-Glycoproteome Analysis.

    Science.gov (United States)

    Chen, Rui; Zou, Hanfa; Figeys, Daniel

    2016-06-03

    Large-scale N-glycoproteome studies have been hindered by poor solubility of hydrophobic membrane proteins and the complexity of proteome samples. Herein, we developed a detergent-assisted glycoprotein capture method to reduce these issues by conducting hydrazide chemistry-based glycoprotein capture in the presence of strong detergents such as sodium dodecyl sulfate and Triton X-100. The strong detergents helped to solubilize hydrophobic membrane proteins and then increased the access of hydrazide groups to oxidized glycoproteins, thus increasing the coverage of the N-glycoproteome. Compared with the conventional glycopeptide capture method, the detergent-assisted glycoprotein capture approach nearly doubled the number of N-glycosylation sites identified from HEK 293T cells with improved specificity. Application of this approach in the larger scale N-glycoproteomics analysis of the HEK 293T cell membrane led to the identification of 2253 unique N-glycosites from 953 proteins. Furthermore, the application of this approach to human serum resulted in the identification of 850 N-glycosylation sites without any immunodepletion or fractionation. Overall, the detergent-assisted glycoprotein capture method simplified the capture process, and it increased the number of sites observed on both hydrophobic membrane proteins and hydrophilic secreted proteins.

  18. The glycoprotein of measles virus

    International Nuclear Information System (INIS)

    Anttonen, O.; Jokinen, M.; Salmi, A.; Vainionpaeae, R.; Gahmberg, C.G.

    1980-01-01

    Measles virus was propagated in VERO cells and purified from the culture supernatants by two successive tartrate-density-gradient centrifugations. Surface carbohydrates were labelled both in vitro and in vivo with 3 H after treatment with galactose oxidase/NaB 3 H 4 or with [ 3 H]glucosamine. The major labelled glycoprotein in measles virions had a mol.wt. of 79000. After labelling with periodate/NaB 3 H 4 , which would result in specific labelling of sialic acid residues, the 79000-mol.wt. glycoprotein was very weakly labelled. This suggested that there is no or a very low amount of sialic acid in the virions. Further analysis of the glycoprotein showed that galactose is the terminal carbohydrate unit in the oligosaccharide, and the molecular weight of the glycopeptide obtained after Pronase digestion is about 3000. The oligosaccharide is attached to the polypeptide through an alkali-stable bond, indicating a N-glycosidic asparagine linkage. (author)

  19. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  20. Mechanism for maturation-related reorganization of flavivirus glycoproteins.

    Science.gov (United States)

    Plevka, Pavel; Battisti, Anthony J; Sheng, Ju; Rossmann, Michael G

    2014-01-01

    Flaviviruses, such as dengue, West Nile, and yellow fever viruses, assemble as fusion-incompetent particles and subsequently undergo a large reorganization of their glycoprotein envelope resulting in formation of mature infectious virions. Here we used a combination of three-dimensional cryo-electron tomography and two-dimensional image analysis to study pleomorphic maturation intermediates of dengue virus 2. Icosahedral symmetries of immature and mature regions within one particle were mismatched relative to each other. Furthermore, the orientation of the two regions relative to each other differed among particles. Therefore, there cannot be a specific pathway determining the maturation of all particles. Instead, the region with mature structure expands when glycoproteins on its boundary acquire suitable orientation and conformation to allow them to become a stable part of the mature region. This type of maturation is possible because the envelope glycoproteins are anchored to the phospholipid bilayer that is a part of flavivirus virions and are thus restricted to movement on the two-dimensional surface of the particle. Therefore, compounds that limit movement of the glycoproteins within the virus membrane might be used as inhibitors of flavivirus maturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Generation of H9 T-cells stably expressing a membrane-bound form of the cytoplasmic tail of the Env-glycoprotein: lack of transcomplementation of defective HIV-1 virions encoding C-terminally truncated Env

    Directory of Open Access Journals (Sweden)

    Bosch Valerie

    2006-05-01

    Full Text Available Abstract H9-T-cells do not support the replication of mutant HIV-1 encoding Env protein lacking its long cytoplasmic C-terminal domain (Env-CT. Here we describe the generation of a H9-T-cell population constitutively expressing the HIV-1 Env-CT protein domain anchored in the cellular membrane by it homologous membrane-spanning domain (TMD. We confirmed that the Env-TMD-CT protein was associated with cellular membranes, that its expression did not have any obvious cytotoxic effects on the cells and that it did not affect wild-type HIV-1 replication. However, as measured in both a single-round assay as well as in spreading infections, replication competence of mutant pNL-Tr712, lacking the Env-CT, was not restored in this H9 T-cell population. This means that the Env-CT per se cannot transcomplement the replication block of HIV-1 virions encoding C-terminally truncated Env proteins and suggests that the Env-CT likely exerts its function only in the context of the complete Env protein.

  2. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  3. Glycoprotein Ib and glycoprotein IX in human platelets are acylated with palmitic acid through thioester linkages

    International Nuclear Information System (INIS)

    Muszbek, L.; Laposata, M.

    1989-01-01

    The glycoprotein (GP) Ib-IX complex is a major component of the platelet membrane which mediates adhesion of platelets to exposed subendothelium. GP Ib is a heterodimer with a large alpha chain (Mr = 135,000-145,000) and small beta chain (Mr = 22,000-27,000) linked by a disulfide bond(s). GP Ib is bound in a noncovalent 1:1 complex with GP IX (Mr = 17,000-22,000). We labeled isolated human platelets with [3H] palmitate or surface-labeled platelet membrane glycoproteins with sodium periodate-[3H]sodium borohydride and immunoprecipitated the GP Ib-IX complex from radiolabeled platelet lysates using a mouse monoclonal antibody (SZ.1) which recognizes the intact complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitates from [3H]palmitate-labeled platelets revealed two radiolabeled bands under reducing conditions at 24 and 19 kDa and two bands under nonreducing conditions at 170 and 19 kDa. As demonstrated by the parallel analysis of immunoprecipitates from periodate-[3H]sodium borohydride-labeled platelets, the [3H]palmitate-labeled bands obtained under reducing conditions corresponded to GP Ib beta and GP IX and the ones obtained under nonreducing conditions to intact GP Ib and GP IX, respectively. Using alkaline methanolysis followed by high pressure liquid chromatography analysis of the methanolysis products, we demonstrated that the radioactivity associated with the GP Ib-IX complex from [3H]palmitate-labeled platelets was, in fact, covalently bound [3H]palmitate in ester linkage to protein. The protein-fatty acid linkage was also disrupted by hydroxylamine at neutral pH. Thus, this study demonstrates that GP Ib beta and GP IX in human platelets are both fatty acid-acylated with palmitate through thioester linkages

  4. P-glycoprotein-deficient mice have proximal tubule dysfunction but are protected against ischemic renal injury

    NARCIS (Netherlands)

    Huls, M.; Kramers, C.; Levtchenko, E.N.; Wilmer, M.J.G.; Dijkman, H.B.P.M.; Kluijtmans, L.A.J.; Hoorn, J.W.A. van der; Russel, F.G.M.; Masereeuw, R.

    2007-01-01

    The multidrug resistance gene 1 product, P-glycoprotein (P-gp), is expressed in several excretory organs, including the apical membrane of proximal tubules. After inducing acute renal failure, P-gp expression is upregulated and this might be a protective function by pumping out toxicants and harmful

  5. Structure of Acidic pH Dengue Virus Showing the Fusogenic Glycoprotein Trimers

    NARCIS (Netherlands)

    Zhang, Xinzheng; Sheng, Ju; Austin, S. Kyle; Hoornweg, Tabitha E.; Smit, Jolanda M.; Kuhn, Richard J.; Diamond, Michael S.; Rossmann, Michael G.

    Flaviviruses undergo large conformational changes during their life cycle. Under acidic pH conditions, the mature virus forms transient fusogenic trimers of E glycoproteins that engage the lipid membrane in host cells to initiate viral fusion and nucleocapsid penetration into the cytoplasm. However,

  6. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections

    NARCIS (Netherlands)

    Xiong, Xiaoli; Tortorici, M Alejandra; Snijder, Joost|info:eu-repo/dai/nl/338018328; Yoshioka, Craig; Walls, Alexandra C; Li, Wentao|info:eu-repo/dai/nl/411296272; McGuire, Andrew T; Rey, Félix A; Bosch, Berend-Jan|info:eu-repo/dai/nl/273306049; Veesler, David

    2017-01-01

    Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle-East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to

  7. Glycoprotein fucosylation is increased in seminal plasma of subfertile men

    Directory of Open Access Journals (Sweden)

    Beata Olejnik

    2015-04-01

    Full Text Available Fucose, the monosaccharide frequent in N- and O-glycans, is a part of Lewis-type antigens that are known to mediate direct sperm binding to the zona pellucida. Such interaction was found to be inhibited in vitroby fucose-containing oligo- and polysaccharides, as well as neoglycoproteins. The objective of this study was to screen seminal plasma proteins of infertile/subfertile men for the content and density of fucosylated glycoepitopes, and compare them to samples of fertile normozoospermic subjects. Seminal proteins were separated in polyacrylamide gel electrophoresis and blotted onto nitrocellulose membrane and probed with fucose-specific Aleuria aurantia lectin (AAL. Twelve electrophoretic bands were selected for quantitative densitometric analysis. It was found that the content, and especially the density of fucosylated glycans, were higher in glycoproteins present in seminal plasma of subfertile men. No profound differences in fucosylation density were found among the groups of normozoospermic, oligozoospermic, asthenozoospermic, and oligoasthenozoospermic subfertile men. According to the antibody probing, AAL-reactive bands can be attributed to male reproductive tract glycoproteins, including prostate-specific antigen, prostatic acid phosphatase, glycodelin and chorionic gonadotropin. Fibronectin, α1 -acid glycoprotein, α1 -antitrypsin, immunoglobulin G and antithrombin III may also contribute to this high fucosylation. It is suggested that the abundant fucosylated glycans in the sperm environment could interfere with the sperm surface and disturb the normal course of the fertilization cascade.

  8. Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation

    Energy Technology Data Exchange (ETDEWEB)

    Piwnica-Worms, D.; Vallabhaneni, V.R. [Washington Univ. Medical School, St. Louis, MO (United States); Kronauge, J.F. [Harvard Medical School, Boston, MA (United States)] [and others

    1995-09-26

    Multidrug resistance (MDR) in mammalian cells and tumors is associated with overexpression of an {approximately}170 integral membrane efflux transporter, the MDR1 P-glycoprotein. Hexakis(2-methoxyisobutyl isonitrile) technetium(I) (Tc-SESTAMIBI), a {gamma}-emitting lipophilic cationic metallopharmaceutical, has recently been shown to be a P-glycoprotein transport substrate. Exploiting the negligible lipid membrane adsorption properties of this organometallic substrate, we studied the transport kinetics, pharmacology, drug binding, and modulation of P-glycoprotein in cell preparations derived from a variety of species and selection strategies, including SW-1573, V79, Alex, and CHO drug-sensitive cells and in 77A, LZ-8, and Alex/A.5 MDR cells. Rapid cell accumulation (T{sub 1/2} {approx} 6 min) of the agent to a steady state was observed which was inversely proportional to immunodetectable levels of P-glycoprotein. Many MDR cytotoxic agents inhibited P-glycoprotein-mediated Tc-SESTAMIBI efflux, thereby enhancing organometallic cation accumulation. 70 refs., 7 figs., 2 tabs.

  9. Isolation of glycoproteins from brown algae.

    OpenAIRE

    Surendraraj, Alagarsamy; Farvin Koduvayur Habeebullah , Sabeena; Jacobsen, Charlotte

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme and Termamyl and the glycoproteins were isolated from these enzyme extracts.

  10. Bactericidal action of a glycoprotein from the body surface mucus of giant African snail.

    Science.gov (United States)

    Otsuka-Fuchino, H; Watanabe, Y; Hirakawa, C; Tamiya, T; Matsumoto, J J; Tsuchiya, T

    1992-04-01

    1. Bactericidal action of a glycoprotein, Achacin, purified from the giant African snail, Achatina fulica Férussac, has been studied. 2. Achacin kills both gram-positive and gram-negative bacteria, but only in their growing states. 3. Achacin does not have any bacteriolytic activity. 4. The strain which has no cell wall is a little more sensitive than the native strain and the cell membrane-damaged strain. 5. Achacin was observed on the cytoplasmic membrane and on the cell wall of treated Escherichia coli by immunoelectron microscopy. 6. Achacin attacks the cytoplasmic membrane of the cell.

  11. Guidelines for cloning, expression, purification and functional characterization of primary HIV-1 envelope glycoproteins.

    Science.gov (United States)

    Benureau, Yann; Colin, Philippe; Staropoli, Isabelle; Gonzalez, Nuria; Garcia-Perez, Javier; Alcami, Jose; Arenzana-Seisdedos, Fernando; Lagane, Bernard

    2016-10-01

    The trimeric HIV-1 envelope (Env) glycoproteins gp120 and gp41 mediate virus entry into target cells by engaging CD4 and the coreceptors CCR5 or CXCR4 at the cell surface and driving membrane fusion. Receptor/gp120 interactions regulate the virus life cycle, HIV infection transmission and pathogenesis. Env is also the target of neutralizing antibodies. Efforts have thus been made to produce soluble HIV-1 glycoproteins to develop vaccines and study the role and mechanisms of HIV/receptor interactions. However, production and purification of Env glycoproteins and their functional assessment has to cope with multiple obstacles. These include difficulties in amplifying and cloning env sequences and setting up receptor binding assays that are suitable for studies on large collections of glycoproteins, flexible enough to adapt to Env and receptor structural heterogeneities, and allow recapitulating the receptor binding properties of virion-associated Env trimers. Here we identify these difficulties and present protocols to produce primary gp120 and determination of their binding properties to receptors. The receptor binding assays confirmed that the produced glycoproteins are competent for binding CD4 and undergo proper CD4-induced conformational changes required for interaction with CCR5. These assays may help elucidate the role of gp120/receptor interactions in the pathophysiology of HIV infection and develop HIV-1 entry inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B

    Energy Technology Data Exchange (ETDEWEB)

    Backovic, Marija [Northwestern Univ., Evanston, IL (United States); Longnecker, Richard [Northwestern Univ., Chicago, IL (United States); Jardetzky, Theodore S [Northwestern Univ., Evanston, IL (United States)

    2009-03-16

    Epstein-Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the structure of gB from Herpes simplex virus 1 (HSV-1) is available. Here, we report the crystal structure of the secreted EBV gB ectodomain, which forms 16-nm long spike-like trimers, structurally homologous to the postfusion trimers of the fusion protein G of vesicular stomatitis virus (VSV). Comparative structural analyses of EBV gB and VSV G, which has been solved in its pre and postfusion states, shed light on gB residues that may be involved in conformational changes and membrane fusion. Also, the EBV gB structure reveals that, despite the high sequence conservation of gB in herpesviruses, the relative orientations of individual domains, the surface charge distributions, and the structural details of EBV gB differ from the HSV-1 protein, indicating regions and residues that may have important roles in virus-specific entry.

  13. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Directory of Open Access Journals (Sweden)

    Kamel El Omari

    2013-01-01

    Full Text Available Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1 at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed.

  14. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Science.gov (United States)

    El Omari, Kamel; Iourin, Oleg; Harlos, Karl; Grimes, Jonathan M.; Stuart, David I.

    2013-01-01

    Summary Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1) at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed. PMID:23273918

  15. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential

  16. Platelet Glycoprotein Ib-IX and Malignancy

    Science.gov (United States)

    2010-09-01

    whether adjunct anti-GP Ib-IX therapy could benefit the breast cancer patient with malignant disease. Body Below we list the 3 Specific Aims from our...Platelet Glycoprotein Ib-IX and Malignancy PRINCIPAL INVESTIGATOR: Jerry Ware, Ph.D...AND SUBTITLE Platelet Glycoprotein Ib-IX and Malignancy 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-1-0576 5c

  17. A novel mechanism of immune evasion mediated by Ebola virus soluble glycoprotein.

    Science.gov (United States)

    Basler, Christopher F

    2013-05-01

    Ebola viruses encode two glycoproteins (GPs): a membrane-associated GP that is present in the viral membrane and mediates viral attachment and entry into host cells; and a secreted, nonstructural glycoprotein (sGP) that is identical to GP over approximately 90% of its length. A recent study by Mohan and colleagues attributes a novel immune evasion mechanism dubbed 'antigenic subversion' to sGP. Using DNA immunization in mice, the authors demonstrate that sGP elicits antibodies that crossreact with GP, but these antibodies are non-neutralizing. Coimmunization with sGP plus GP or sequential immunizations with GP and sGP direct the host antibody response toward non-neutralizing epitopes. Therefore, the production of sGP may prevent effective neutralization of the virus during Ebola virus infection, and may reduce the effectiveness of vaccines that rely upon neutralizing antibody responses.

  18. Glucocorticoid-regulated and constitutive trafficking of proteolytically processed cell surface-associated glycoproteins in wild type and variant rat hepatoma cells

    International Nuclear Information System (INIS)

    Amacher, S.L.; Goodman, L.J.; Bravo, D.A.; Wong, K.Y.; Goldfine, I.D.; Hawley, D.M.; Firestone, G.L.

    1989-01-01

    Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by [125I] insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways

  19. Comparison of western blot analysis and immunocytochemical detection of P-glycoprotein in multidrug resistant cells.

    OpenAIRE

    Friedlander, M L; Bell, D R; Leary, J; Davey, R A

    1989-01-01

    A sensitive immunocytochemical technique was developed to detect a 170,000 dalton cell membrane glycoprotein (P-gp) in cell lines resistant to vincristine and vinblastine with varying degrees of resistance. P-gp was shown very clearly using the C219 monoclonal antibody and immunocytochemical detection with either antialkaline phosphate or peroxidase-antiperoxidase with silver gold intensification. There was good correlation between the results obtained with immunocytochemical detection of P-g...

  20. Altered intracellular pH regulation in cells with high levels of P-glycoprotein expression.

    Science.gov (United States)

    Young, Gregory; Reuss, Luis; Altenberg, Guillermo A

    2011-01-01

    P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na(+)/H(+) exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism.

  1. Cellular and biophysical evidence for interactions between adenosine triphosphate and P-glycoprotein substrates

    DEFF Research Database (Denmark)

    Abraham, E H; Shrivastav, B; Salikhova, A Y

    2001-01-01

    P-glycoprotein is involved with the removal of drugs, most of them cations, from the plasma membrane and cytoplasm. Pgp is also associated with movement of ATP, an anion, from the cytoplasm to the extracellular space. The central question of this study is whether drug and ATP transport associated...... provides a framework for understanding the role of erythrocytes in drug resistance. The erythrocyte consists of a membrane surrounding a millimolar pool of ATP. Mammalian RBCs have no nucleus or DNA drug/toxin targets. From the perspective of drug/ATP complex formation, the RBC serves as an important...

  2. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Rodriguez, P.; Bello, O.; Apitz-Castro, R.

    1987-01-01

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  3. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody

    OpenAIRE

    Kwong, Peter D.; Wyatt, Richard; Robinson, James; Sweet, Raymond W.; Sodroski, Joseph; Hendrickson, Wayne A.

    1998-01-01

    The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gpl20 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 Å resolution of an HIV-1 gp120 core complexed with a two-domain fra...

  4. Peroxynitrous acid induces structural and functional modifications to basement membranes and its key component, laminin

    DEFF Research Database (Denmark)

    Degendorfer, Georg; Chuang, Christine Y.; Hammer, Astrid

    2015-01-01

    Basement membranes (BM) are specialized extracellular matrices underlying endothelial cells in the artery wall. Laminin, the most abundant BM glycoprotein, is a structural and biologically active component. Peroxynitrous acid (ONOOH), a potent oxidizing and nitrating agent, is formed in vivo...

  5. Ubiquitination of exposed glycoproteins by SCFFBXO27 directs damaged lysosomes for autophagy

    Science.gov (United States)

    Yoshida, Yukiko; Yasuda, Sayaka; Fujita, Toshiharu; Hamasaki, Maho; Murakami, Arisa; Kawawaki, Junko; Iwai, Kazuhiro; Saeki, Yasushi; Yoshimori, Tamotsu; Matsuda, Noriyuki; Tanaka, Keiji

    2017-01-01

    Ubiquitination functions as a signal to recruit autophagic machinery to damaged organelles and induce their clearance. Here, we report the characterization of FBXO27, a glycoprotein-specific F-box protein that is part of the SCF (SKP1/CUL1/F-box protein) ubiquitin ligase complex, and demonstrate that SCFFBXO27 ubiquitinates glycoproteins in damaged lysosomes to regulate autophagic machinery recruitment. Unlike F-box proteins in other SCF complexes, FBXO27 is subject to N-myristoylation, which localizes it to membranes, allowing it to accumulate rapidly around damaged lysosomes. We also screened for proteins that are ubiquitinated upon lysosomal damage, and identified two SNARE proteins, VAMP3 and VAMP7, and five lysosomal proteins, LAMP1, LAMP2, GNS, PSAP, and TMEM192. Ubiquitination of all glycoproteins identified in this screen increased upon FBXO27 overexpression. We found that the lysosomal protein LAMP2, which is ubiquitinated preferentially on lysosomal damage, enhances autophagic machinery recruitment to damaged lysosomes. Thus, we propose that SCFFBXO27 ubiquitinates glycoproteins exposed upon lysosomal damage to induce lysophagy. PMID:28743755

  6. Splice variation in the cytoplasmic domains of myelin oligodendrocyte glycoprotein affects its cellular localisation and transport.

    Science.gov (United States)

    Boyle, Louise H; Traherne, James A; Plotnek, Gemma; Ward, Rosemary; Trowsdale, John

    2007-09-01

    Although myelin oligodendrocyte glycoprotein is a candidate autoantigen in multiple sclerosis, its function remains unknown. In humans, mRNA expressed by the myelin oligodendrocyte glycoprotein gene is alternatively spliced resulting in at least nine unique protein isoforms. In this study, we investigated the sub-cellular localisation and membrane trafficking of six isoforms by cloning them into mammalian expression vectors. Confocal microscopy revealed that these protein products are expressed in different cellular compartments. While two full-length isoforms (25.6 and 25.1) are expressed at the cell surface, three alternatively spliced forms (22.7, 21.0 and 20.5) have a more intracellular distribution, localising to the endoplasmic reticulum and/or endosomes. Isoform 16.3, which lacks a transmembrane domain, is secreted. A switch in the sub-cellular localisation of myelin oligodendrocyte glycoprotein may have profound effects on receptor:ligand interactions and consequently the function of the protein. The structural features of the alternative isoforms and their differential, sub-cellular expression patterns could dictate the exposure of major immunogenic determinants within the central nervous system. Our findings highlight myelin oligodendrocyte glycoprotein splicing as a factor that could be critical to the phenotypic expression of multiple sclerosis.

  7. The cholesterol-binding motif of the HIV-1 glycoprotein gp41 regulates lateral sorting and oligomerization.

    Science.gov (United States)

    Schwarzer, Roland; Levental, Ilya; Gramatica, Andrea; Scolari, Silvia; Buschmann, Volker; Veit, Michael; Herrmann, Andreas

    2014-10-01

    Enveloped viruses often use membrane lipid rafts to assemble and bud, augment infection and spread efficiently. However, the molecular bases and functional consequences of the partitioning of viral glycoproteins into microdomains remain intriguing questions in virus biology. Here, we measured Foerster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) to study the role of distinct membrane proximal regions of the human immunodeficiency virus glycoprotein gp41 for lipid raft partitioning in living Chinese hamster ovary cells (CHO-K1). Gp41 was labelled with a fluorescent protein at the exoplasmic face of the membrane, preventing any interference of the fluorophore with the proposed role of the transmembrane and cytoplasmic domains in lateral organization of gp41. Raft localization was deduced from interaction with an established raft marker, a fluorescently tagged glycophosphatidylinositol anchor and the cholesterol recognition amino acid consensus (CRAC) was identified as the crucial lateral sorting determinant in CHO-K1 cells. Interestingly, the raft association of gp41 indicates a substantial cell-to-cell heterogeneity of the plasma membrane microdomains. In complementary fluorescence polarization microscopy, a distinct CRAC requirement was found for the oligomerization of the gp41 variants. Our data provide further insight into the molecular basis and biological implications of the cholesterol dependent lateral sorting of viral glycoproteins for virus assembly at cellular membranes. © 2014 John Wiley & Sons Ltd.

  8. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    DEFF Research Database (Denmark)

    Yang, Zhang; Wang, Shengjun; Halim, Adnan

    2015-01-01

    Production of glycoprotein therapeutics in Chinese hamster ovary (CHO) cells is limited by the cells' generic capacity for N-glycosylation, and production of glycoproteins with desirable homogeneous glycoforms remains a challenge. We conducted a comprehensive knockout screen of glycosyltransferase...

  9. The coronavirus spike protein : mechanisms of membrane fusion and virion incorporation

    NARCIS (Netherlands)

    Bosch, B.J.

    2004-01-01

    The coronavirus spike protein is a membrane-anchored glycoprotein responsible for virus-cell attachment and membrane fusion, prerequisites for a successful virus infection. In this thesis, two aspects are described regarding the molecular biology of the coronavirus spike protein: its membrane fusion

  10. Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Picariello, Gianluca; Ferranti, Pasquale; Mamone, Gianfranco

    2008-01-01

    of glycoconjugates, also including glycoproteins. A number of approaches to describe the complexity of human milk proteome have provided only a partial characterization of restricted classes of N-linked glycoproteins. To achieve this objective, profiling N-linked glycoproteins of human milk was performed...... by Hydrophilic Interaction LC (HILIC) and MS analysis. Glycopeptides were selectively enriched from the protein tryptic digest of human milk samples. Oligosaccharide-free peptides obtained by peptide N-glycosidase F (PNGase F) treatment were characterized by a shotgun MS-based approach, allowing......Breastfeeding is now generally recognized as a critical factor in protecting newborns against infections. An important mechanism responsible for the antibacterial and antiviral effects of breast milk is the prevention of pathogen adhesion to host cell membranes mediated by a number...

  11. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  12. Involvement of Leishmania donovani major surface glycoprotein ...

    Indian Academy of Sciences (India)

    The major surface glycoprotein gp63 of the kinetoplastid protozoal parasite Leishmania is implicated as a ligand mediating uptake of the parasite into, and survival within, the host macrophage. By expressing gp63 antisense RNA from an episomal vector in L. donovani promastigotes, gp63-deficient transfectants were ...

  13. Expression of variable viruses as herpes simplex glycoprotein D and varicella zoster gE glycoprotein using a novel plasmid based expression system in insect cell

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sulaiman

    2017-11-01

    Full Text Available Several prokaryotic and eukaryotic expression systems have been used for in vitro production of viruses’ proteins. However eukaryotic expression system was always the first choice for production of proteins that undergo post-translational modification such as glycosylation. Recombinant baculoviruses have been widely used as safe vectors to express heterologous genes in the culture of insect cells, but the manipulation involved in creating, titrating, and amplifying viral stocks make it time consuming and laborious. Therefore, to facilitate rapid expression in insect cell, a plasmid based expression system was used to express herpes simplex type 1 glycoprotein D (HSV-1 gD and varicella zoster glycoprotein E (VZV gE. Recombinant plasmids were generated, transfected into insect cells (SF9, and both glycoproteins were expressed 48 h post-infection. A protein with approximately molecular weight of 64-kDa and 98-kDa for HSV-1 gD and VZV gE respectively was expressed and confirmed by SDS. Proteins were detected in insect cells cytoplasm and outer membrane by immunofluorescence. The antigenicity and immunoreactivity of each protein were confirmed by immunoblot and ELISA. Results suggest that this system can be an alternative to the traditional baculovirus expression for small scale expression system in insect cells.

  14. Kinetic validation of the models for P-glycoprotein ATP hydrolysis and vanadate-induced trapping. Proposal for additional steps.

    Directory of Open Access Journals (Sweden)

    Miguel Ramón Lugo

    Full Text Available P-Glycoprotein, a member of the ATP-binding cassette (ABC superfamily, is a multidrug transporter responsible for cellular efflux of hundreds of structurally unrelated compounds, including natural products, many clinically used drugs and anti-cancer agents. Expression of P-glycoprotein has been linked to multidrug resistance in human cancers. ABC transporters are driven by ATP hydrolysis at their two cytoplasmic nucleotide-binding domains, which interact to form a closed ATP-bound sandwich dimer. Intimate knowledge of the catalytic cycle of these proteins is clearly essential for understanding their mechanism of action. P-Glycoprotein has been proposed to hydrolyse ATP by an alternating mechanism, for which there is substantial experimental evidence, including inhibition of catalytic activity by trapping of ortho-vanadate at one nucleotide-binding domain, and the observation of an asymmetric occluded state. Despite many studies of P-glycoprotein ATPase activity over the past 20 years, no comprehensive kinetic analysis has yet been carried out, and some puzzling features of its behaviour remain unexplained. In this work, we have built several progressively more complex kinetic models, and then carried out simulations and detailed analysis, to test the validity of the proposed reaction pathway employed by P-glycoprotein for ATP hydrolysis. To establish kinetic parameters for the catalytic cycle, we made use of the large amount of published data on ATP hydrolysis by hamster P-glycoprotein, both purified and in membrane vesicles. The proposed kinetic scheme(s include a high affinity priming reaction for binding of the first ATP molecule, and an independent pathway for ADP binding outside the main catalytic cycle. They can reproduce to varying degrees the observed behavior of the protein's ATPase activity and its inhibition by ortho-vanadate. The results provide new insights into the mode of action of P-glycoprotein, and some hypotheses about the

  15. Understanding the Process of Envelope Glycoprotein Incorporation into Virions in Simian and Feline Immunodeficiency Viruses

    Directory of Open Access Journals (Sweden)

    José L. Affranchino

    2014-01-01

    Full Text Available The lentiviral envelope glycoproteins (Env mediate virus entry by interacting with specific receptors present at the cell surface, thereby determining viral tropism and pathogenesis. Therefore, Env incorporation into the virions formed by assembly of the viral Gag polyprotein at the plasma membrane of the infected cells is a key step in the replication cycle of lentiviruses. Besides being useful models of human immunodeficiency virus (HIV infections in humans and valuable tools for developing AIDS therapies and vaccines, simian and feline immunodeficiency viruses (SIV and FIV, respectively are relevant animal retroviruses; the study of which provides important information on how lentiviral replication strategies have evolved. In this review, we discuss the molecular mechanisms underlying the incorporation of the SIV and FIV Env glycoproteins into viral particles.

  16. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    International Nuclear Information System (INIS)

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-01-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [γ- 32 P]ATP. The same glycoprotein was phosphorylated when [ 32 P]GTP was substituted for [ 32 P]ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein

  17. Multiple Drug Transport Pathways through human P-Glycoprotein(†)

    Science.gov (United States)

    McCormick, James W.; Vogel, Pia D.; Wise, John G.

    2015-01-01

    P-glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11 to 12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methyl-pyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar is presented that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp. PMID:26125482

  18. Comparative Studies of Vertebrate Platelet Glycoprotein 4 (CD36

    Directory of Open Access Journals (Sweden)

    Roger S. Holmes

    2012-09-01

    Full Text Available Platelet glycoprotein 4 (CD36 (or fatty acyl translocase [FAT], or scavenger receptor class B, member 3 [SCARB3] is an essential cell surface and skeletal muscle outer mitochondrial membrane glycoprotein involved in multiple functions in the body. CD36 serves as a ligand receptor of thrombospondin, long chain fatty acids, oxidized low density lipoproteins (LDLs and malaria-infected erythrocytes. CD36 also influences various diseases, including angiogenesis, thrombosis, atherosclerosis, malaria, diabetes, steatosis, dementia and obesity. Genetic deficiency of this protein results in significant changes in fatty acid and oxidized lipid uptake. Comparative CD36 amino acid sequences and structures and CD36 gene locations were examined using data from several vertebrate genome projects. Vertebrate CD36 sequences shared 53–100% identity as compared with 29–32% sequence identities with other CD36-like superfamily members, SCARB1 and SCARB2. At least eight vertebrate CD36 N-glycosylation sites were conserved which are required for membrane integration. Sequence alignments, key amino acid residues and predicted secondary structures were also studied. Three CD36 domains were identified including cytoplasmic, transmembrane and exoplasmic sequences. Conserved sequences included N- and C-terminal transmembrane glycines; and exoplasmic cysteine disulphide residues; TSP-1 and PE binding sites, Thr92 and His242, respectively; 17 conserved proline and 14 glycine residues, which may participate in forming CD36 ‘short loops’; and basic amino acid residues, and may contribute to fatty acid and thrombospondin binding. Vertebrate CD36 genes usually contained 12 coding exons. The human CD36 gene contained transcription factor binding sites (including PPARG and PPARA contributing to a high gene expression level (6.6 times average. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate CD36 gene with vertebrate

  19. Platelet Glycoprotein lb-1X and Malignancy

    Science.gov (United States)

    2010-09-01

    therapy could benefit the breast cancer patient with malignant disease. Body Below we list the 3 Specific Aims from our original submission (blue font...Muller WJ and Pollard JW. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human...08-1-0576 TITLE: Platelet Glycoprotein lb-1X and Malignancy PRINCIPAL INVESTIGATOR: Dr. Jerry Ware

  20. Platelet Glycoprotein lb-1X and Malignancy

    Science.gov (United States)

    2011-09-01

    independent of pregnancy makes this a useful model to study spontaneous metastasis [26]. To complete this aim, we obtained a mouse colony from Dr. Sandra...mice initiates the spontaneous development of a mammary adenocarcinoma by the age of 8- 10 weeks without pregnancy or any other stimuli. To examine if...patient with systemic lupus erythematosus. Am J Hematol 2001; 67:262-67. 20. Arthur JF, Dunkley S and Andrews RK. Platelet glycoprotein VI-related

  1. Characterization of human immunodeficiency virus type 2 envelope glycoproteins: Dimerization of the glycoprotein precursor during processing

    International Nuclear Information System (INIS)

    Rey, M.A.; Krust, B.; Laurent, A.G.; Montagnier, L.; Hovanessian, A.G.

    1989-01-01

    For glycoproteins with apparent molecular weights of 300,000, 140,000, 125,000, and 36,000 (gp300, gp140, gp125, and gp36) were detectable in human immunodeficiency virus type 2 (HIV-2)-infected cells. They have identical isoelectric points, suggesting that gp300 might be a dimeric form of the immature precursor, gp140. The purified gp300 can be dissociated in a slightly acidic buffer to give rise to monomers of 140,000 molecular weight. Such dissociated monomers and the purified gp140 showed identical patterns of polypeptides after partial proteolysis with Staphylococcus aureus V8 protease. Pulse-chase experiments indicated that gp300 is formed after synthesis of gp140 and before the detection of the mature external envelope glycoprotein, gp125. These results were confirmed by using various inhibitors of glycosylation and inhibitors of trimming enzymes. Dimer formation of the envelope glycoprotein precursor was also observed in cells infected with simian immunodeficiency virus (SIV), a virus closely related to HIV-2. On the other hand, the envelope glycoprotein precursor of HIV-1 did not form a dimer during its processing. Therefore, dimer formation seems to be a specific property of HIV-2 and SIV envelope gene expression. Such transient dimerization of the glycoprotein precursor might be required for its efficient transport to the Golgi apparatus and for its processing

  2. Detergent extraction of herpes simplex virus type 1 glycoprotein D by zwitterionic and non-ionic detergents and purification by ion-exchange high-performance liquid chromatography

    NARCIS (Netherlands)

    Welling-Wester, S; Feijlbrief, M; Koedijk, DGAM; Welling, GW

    1998-01-01

    Detergents (surfactants) are the key reagents in the extraction and purification of integral membrane proteins. Zwitterionic and non-ionic detergents were used for the extraction of recombinant glycoprotein D (gD-1) of herpes simplex virus type 1 (HSV-1) from insect cells infected with recombinant

  3. Blood-brain barrier P-glycoprotein function decreases in specific brain regions with aging : A possible role in progressive neurodegeneration

    NARCIS (Netherlands)

    Bartels, Anna L.; Kortekaas, Rudie; Bart, Joost; Willemsen, Antoon T. M.; de Klerk, Onno L.; de Vries, Jeroen J.; van Oostrom, Joost C. H.; Leenders, Klaus L.

    2009-01-01

    Cerebrovascular P-glycoprotein (P-gp) acts at the blood-brain barrier (BBB) as an active cell membrane efflux pump for several endogenous and exogenous compounds. Age-associated decline in P-gp function could facilitate the accumulation of toxic substances in the brain, thus increasing the risk of

  4. Cryo-electron Microscopy Structure of the Native Prototype Foamy Virus Glycoprotein and Virus Architecture.

    Science.gov (United States)

    Effantin, Grégory; Estrozi, Leandro F; Aschman, Nick; Renesto, Patricia; Stanke, Nicole; Lindemann, Dirk; Schoehn, Guy; Weissenhorn, Winfried

    2016-07-01

    Foamy viruses (FV) belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-)electron tomography ultrastructural data on purified prototype FV (PFV) and PFV infected cells. Mature PFV particles have a distinct morphology with a capsid of constant dimension as well as a less ordered shell of density between the capsid and the membrane likely formed by the Gag N-terminal domain and the cytoplasmic part of the Env leader peptide gp18LP. The viral membrane contains trimeric Env glycoproteins partly arranged in interlocked hexagonal assemblies. In situ 3D reconstruction by subtomogram averaging of wild type Env and of a Env gp48TM- gp80SU cleavage site mutant showed a similar spike architecture as well as stabilization of the hexagonal lattice by clear connections between lower densities of neighboring trimers. Cryo-EM was employed to obtain a 9 Å resolution map of the glycoprotein in its pre-fusion state, which revealed extensive trimer interactions by the receptor binding subunit gp80SU at the top of the spike and three central helices derived from the fusion protein subunit gp48TM. The lower part of Env, presumably composed of interlaced parts of gp48TM, gp80SU and gp18LP anchors the spike at the membrane. We propose that the gp48TM density continues into three central transmembrane helices, which interact with three outer transmembrane helices derived from gp18LP. Our ultrastructural data and 9 Å resolution glycoprotein structure provide important new insights into the molecular architecture of PFV and its distinct evolutionary relationship with other members of the Retroviridae.

  5. Dimers of beta 2-glycoprotein I mimic the in vitro effects of beta 2-glycoprotein I-anti-beta 2-glycoprotein I antibody complexes

    NARCIS (Netherlands)

    Lutters, B. C.; Meijers, J. C.; Derksen, R. H.; Arnout, J.; de Groot, P. G.

    2001-01-01

    Anti-beta(2)-glycoprotein I antibodies are thought to cause lupus anticoagulant activity by forming bivalent complexes with beta(2)-glycoprotein I (beta(2)GPI). To test this hypothesis, chimeric fusion proteins were constructed of the dimerization domain (apple 4) of factor XI and beta(2)GPI. Both a

  6. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...

  7. Analgesic effects of glycoproteins from Panax ginseng root in mice.

    Science.gov (United States)

    Wang, Ying; Chen, Yinghong; Xu, Hong; Luo, Haoming; Jiang, Ruizhi

    2013-07-30

    The root of Panax ginseng C.A. Mey has various beneficial pharmacological effects. The present study aimed to evaluate the analgesic activities of glycoproteins from the root of Panax ginseng C.A. Mey in mice. Glycoproteins were isolated and purified from the root of Panax ginseng C.A. Mey. Physicochemical properties and molecular mass were determined by chemical assay and HPLC. Acetic acid-induced writhing and hot-plate tests were employed to study the analgesic effect of glycoproteins and compared with that of aspirin or morphine. The locomotor activity was tested in mice by using actophometer. Four glycoproteins were obtained. The glycoproteins which protein content was the highest (73.04%) displayed dose-dependent analgesic effect. In writhing test, the glycoproteins significantly inhibited writhes (Pginseng C.A. Mey exhibited significant analgesic activities and the proteins were the active site, providing evidence for its pharmacal use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Chemical and Chemoenzymatic Synthesis of Glycoproteins for Deciphering Functions

    Science.gov (United States)

    Wang, Lai-Xi; Amin, Mohammed N.

    2014-01-01

    Summary Glycoproteins are an important class of biomolecules involved in a number of biological recognition processes. However, natural and recombinant glycoproteins are usually produced as mixtures of glycoforms that differ in the structures of the pendent glycans, which are difficult to separate in pure glycoforms. As a result, synthetic homogeneous glycopeptides and glycoproteins have become indispensable probes for detailed structural and functional studies. A number of elegant chemical and biological strategies have been developed for synthetic construction of tailor-made, full-size glycoproteins to address specific biological problems. In this review, we highlight recent advances in chemical and chemoenzymatic synthesis of homogeneous glycoproteins. Selected examples are given to demonstrate the applications of tailor-made, glycan-defined glycoproteins for deciphering glycosylation functions. PMID:24439206

  9. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  10. Microfilament association of ASGP-2, the concanavalin A-binding glycoprotein of the cell-surface sialomucin complex of 13762 rat mammary ascites tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Vanderpuye, L.A.; Carraway, C.A.C.; Carraway, K.L. (Univ. of Miami School of Medicine, FL (USA))

    1988-10-01

    Microfilament-associated proteins and membrane-microfilament interactions are being investigated in microvilli isolated from 13762 rat mammary ascites tumor cells. Phalloidin shift analyses on velocity sedimentation gradients of Triton X-100 extracts of ({sup 3}H)-glucosamine-labeled microvilli identified a 120-kDa cell-surface glycoprotein associated with the microvillar microfilament core. The identification was verified by concanavalin A (Con A) blots of one- and two-dimensional (2D) electrophoresis gels of sedimented microfilament cores. By 2D-electrophoresis and lectin analyses the 120-kDa protein appeared to be a fraction of ASGP-2, the major Con A-binding glycoprotein of the sialomucin complex of the 13762 cells. This identity was confirmed by immunoblot analyses using immunoblot-purified anti-ASGP-2 from anti-membrane serum prepared against microvillar membranes. Proteolysis of the microvilli with subtilisin or trypsin resulted in an increase in the amount of ASGP-2 associated with the microfilament cores. Proteolysis of isolated microvillar membranes, which contain actin but not microfilaments, also increased the association of ASGP-2 with a Triton-insoluble, actin-containing membrane fraction. Since the Triton-insoluble membrane residue is enriched in actin-containing transmembrane complex, which contains a different glycoprotein, the authors suggest that the ASGP-2 is binding indirectly via this complex to the microfilament core in the intact microvilli.

  11. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Hirokazu [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Nakamura, Masatoshi [National Institute of Agrobiological Sciences, Genetic Resources Conservation Research Unit, Genetic Resources Center (Japan); Yokoyama, Jun [Taiyo Nippon Sanso Corporation, Tsukuba Laboratories (Japan); Zhang, Ying; Yamaguchi, Takumi [National Institutes of Natural Sciences, Institute for Molecular Science and Okazaki Institute for Integrative Bioscience (Japan); Kondo, Sachiko [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Kobayashi, Jun [Yamaguchi University, Department of Biological and Environmental Sciences, Faculty of Agriculture (Japan); Kato, Tatsuya; Park, Enoch Y. [Shizuoka University, Laboratory of Biotechnology, Research Institute of Green Science and Technology (Japan); Nakazawa, Shiori [Nagoya University, Sugashima Marine Biological Laboratory, Graduate School of Science (Japan); Hashii, Noritaka; Kawasaki, Nana [National Institute of Health Sciences, Division of Biological Chemistry and Biologicals (Japan); Kato, Koichi, E-mail: kkato@phar.nagoya-cu.ac.jp [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan)

    2015-06-15

    Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing {sup 15}N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a {sup 15}N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.

  12. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    International Nuclear Information System (INIS)

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  13. Crystal structure of Venezuelan hemorrhagic fever virus fusion glycoprotein reveals a class 1 postfusion architecture with extensive glycosylation.

    Science.gov (United States)

    Parsy, Marie-Laure; Harlos, Karl; Huiskonen, Juha T; Bowden, Thomas A

    2013-12-01

    Guanarito virus (GTOV) is an emergent and deadly pathogen. We present the crystal structure of the glycosylated GTOV fusion glycoprotein to 4.1-Å resolution in the postfusion conformation. Our structure reveals a classical six-helix bundle and presents direct verification that New World arenaviruses exhibit class I viral membrane fusion machinery. The structure provides visualization of an N-linked glycocalyx coat, and consideration of glycan dynamics reveals extensive coverage of the underlying protein surface, following virus-host membrane fusion.

  14. Extracellular Matrix Glycoprotein-Derived Synthetic Peptides Differentially Modulate Glioma and Sarcoma Cell Migration.

    Science.gov (United States)

    Brösicke, Nicole; Sallouh, Muhammad; Prior, Lisa-Marie; Job, Albert; Weberskirch, Ralf; Faissner, Andreas

    2015-07-01

    Glycoproteins of the extracellular matrix (ECM) regulate proliferation, migration, and differentiation in numerous cell lineages. ECM functions are initiated by small peptide sequences embedded in large constituents that are recognized by specific cellular receptors. In this study, we have investigated the biological effects of peptides derived from collagen type IV and tenascin-C compared to the well-known RGD peptide originally discovered in fibronectin. The influence of glycoproteins and corresponding peptides on the migration of the glioma cell lines U-251-MG and U-373-MG and the sarcoma line S-117 was studied. When the cell lines were tested in a modified Boyden chamber assay on filters coated with the ECM glycoproteins, glioma cells showed a strong migration response on tenascin-C and the basal lamina constituent collagen IV, in contrast to S-117 cells. In order to identify relevant stimulatory motifs, peptides derived from fibronectin (6NHX-GRGDSF), tenascin-C (TN-C, VSWRAPTA), and collagen type IV (MNYYSNS) were compared, either applied in solution in combination with ECM glycoprotein substrates, in solution in the presence of untreated membranes, or coated on the filters of the Boyden chambers. Using this strategy, we could identify the novel tenascin-C-derived peptide motif VSWRAPTA as a migration stimulus for glioma cells. Furthermore, while kin peptides generally blocked the effects of the respective homologous ECM proteins, unexpected effects were observed in heterologous situations. There, in several cases, addition of soluble peptides strongly boosted the response to the coated ECM proteins. We propose that peptides may synergize or antagonize each other by stimulating different signaling pathways.

  15. Synthesis of Structures Related to Antifreeze Glycoproteins

    OpenAIRE

    Fyrner, Timmy

    2005-01-01

    In this thesis, synthesis of structures related to antifreeze glycoproteins (AFGPs) are presented. Synthetic routes to a protected carbohydrate derivative, 2,3,4,6-tetra-O-benzyl-β-galactopyranosyl-(1→3)-2-deoxy-2-azido-4,6-di-O-benzyl-β-D-thio-1-galactopyranoside, and a tBu-Ala-Thr-Ala-Fmoc tripeptide, are described. These compounds are meant to be used in the assembly of AFGPs and analogues thereof. A Gal-GlcN disaccharide was synthesized via glycosylation between the donor, bromo-2-O-benzo...

  16. Glycoprotein component of plant cell walls

    International Nuclear Information System (INIS)

    Cooper, J.B.; Chen, J.A.; Varner, J.E.

    1984-01-01

    The primary wall surrounding most dicotyledonous plant cells contains a hydroxyproline-rich glycoprotein (HRGP) component named extensin. A small group of glycopeptides solubilized from isolated cell walls by proteolysis contained a repeated pentapeptide glycosylated by tri- and tetraarabinosides linked to hydroxyproline and, by galactose, linked to serine. Recently, two complementary approaches to this problem have provided results which greatly increase the understanding of wall extensin. In this paper the authors describe what is known about the structure of soluble extensin secreted into the walls of the carrot root cells

  17. Cellulose microfibril deposition: coordinated activity at the plant plasma membrane

    NARCIS (Netherlands)

    Lindeboom, J.J.; Mulder, B.; Vos, J.W.; Ketelaar, M.J.; Emons, A.M.C.

    2008-01-01

    Plant cell wall production is a membrane-bound process. Cell walls are composed of cellulose microfibrils, embedded inside a matrix of other polysaccharides and glycoproteins. The cell wall matrix is extruded into the existing cell wall by exocytosis. This same process also inserts the cellulose

  18. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  19. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various

  20. Splice variation in the cytoplasmic domains of myelin oligodendrocyte glycoprotein affects its cellular localisation and transport1

    Science.gov (United States)

    Boyle, Louise H; Traherne, James A; Plotnek, Gemma; Ward, Rosemary; Trowsdale, John

    2007-01-01

    Although myelin oligodendrocyte glycoprotein is a candidate autoantigen in multiple sclerosis, its function remains unknown. In humans, mRNA expressed by the myelin oligodendrocyte glycoprotein gene is alternatively spliced resulting in at least nine unique protein isoforms. In this study, we investigated the sub-cellular localisation and membrane trafficking of six isoforms by cloning them into mammalian expression vectors. Confocal microscopy revealed that these protein products are expressed in different cellular compartments. While two full-length isoforms (25.6 and 25.1) are expressed at the cell surface, three alternatively spliced forms (22.7, 21.0 and 20.5) have a more intracellular distribution, localising to the endoplasmic reticulum and/or endosomes. Isoform 16.3, which lacks a transmembrane domain, is secreted. A switch in the sub-cellular localisation of myelin oligodendrocyte glycoprotein may have profound effects on receptor:ligand interactions and consequently the function of the protein. The structural features of the alternative isoforms and their differential, sub-cellular expression patterns could dictate the exposure of major immunogenic determinants within the central nervous system. Our findings highlight myelin oligodendrocyte glycoprotein splicing as a factor that could be critical to the phenotypic expression of multiple sclerosis. PMID:17573820

  1. A sheep hydatid cyst glycoprotein as receptors for three toxic lectins, as well as Abrus precatorius and Ricinus communis agglutinins.

    Science.gov (United States)

    Wu, A M; Song, S C; Wu, J H; Pfüller, U; Chow, L P; Lin, J Y

    1995-01-18

    The binding properties of a glycoprotein with blood group P1 specificity isolated from sheep hydatid cyst fluid with Gal and GalNAc specific lectins was investigated by quantitative precipitin and precipitin inhibition assays. The glycoprotein completely precipitated Ricinus communis agglutinin (RCA1), Abrus precatorius agglutinin (APA) and Mistletoe toxic lectin-I (ML-I). Only 1.0 microgram of P1 glycoprotein was required to precipitate 50% of 5.1 micrograms ML-I nitrogen. It also reacted well with abrin-a and ricin, precipitating over 73% of the lectin nitrogen added, but poorly or weakly with Dolichos biflorus (DBL), Vicia villosa (VVL, a mixture of A4, A2B2 and B4), VVL-B4, Arachis hypogaea (PNA), Maclura pomifera (MPL), Bauchinia purpurea alba (BPL) and Wistaria floribunda (WFL) lectins. When an inhibition assay in the range of 5.1 micrograms N to 5.9 micrograms N of lectins (ML-I, abrin-a; ricin, RCA1, and APA, and 10 micrograms P1 active glycoprotein interaction was performed; from 76 to 100% of the precipitations were inhibited by 0.44 and 0.52 mumol of Gal alpha 1-->4Gal and Gal beta 1-->4GlcNAc, respectively, but not or insignificantly with 1.72 mumol of GlcNAc. The Gal alpha 1-->4Gal disaccharide found in this P1 active glycoprotein is a frequently occurring sequence of many glycosphingolipids located at the surface of mammalian cell membranes, especially human erythrocytes and intestinal cells for ligand binding and microbial toxin attachment. The present finding suggests that the Gal alpha 1-->4Gal beta 1-->4GlcNAc sequence in this P1 active glycoprotein is one of the best glycoprotein receptors for three toxic lectins (ricin, abrin-a, and ML-I) as well as for APA, and RCA1, and the result of inhibition assay implies that these lectins are recognizing part or all of the Gal alpha 1-->4Gal beta 1-->4GlcNAc sequence in the P1 active glycoprotein.

  2. Diffusion of myelin oligodendrocyte glycoprotein in living OLN-93 cells investigated by raster-scanning image correlation spectroscopy (RICS).

    Science.gov (United States)

    Gielen, Ellen; Smisdom, Nick; De Clercq, Ben; Vandeven, Martin; Gijsbers, Rik; Debyser, Zeger; Rigo, Jean-Michel; Hofkens, Johan; Engelborghs, Yves; Ameloot, Marcel

    2008-09-01

    Many membrane proteins and lipids are partially confined in substructures ranging from tens of nanometers to micrometers in size. Evidence for heterogeneities in the membrane of oligodendrocytes, i.e. the myelin-producing cells of the central nervous system, is almost exclusively based on detergent methods. However, as application of detergents can alter the membrane phase behaviour, it is important to investigate membrane heterogeneities in living cells. Here, we report on the first investigations of the diffusion behavior of the myelin-specific protein MOG (myelin oligodendrocyte glycoprotein) in OLN-93 as studied by the recently developed RICS (raster-scanning image correlation spectroscopy) technique. We implemented RICS on a standard confocal laser-scanning microscope with one-photon excitation and analog detection. Measurements on FITC-dextran were used to evaluate the performance of the system and the data analysis procedure.

  3. A kinetic description of antifreeze glycoprotein activity.

    Science.gov (United States)

    Burcham, T S; Osuga, D T; Yeh, Y; Feeney, R E

    1986-05-15

    The antifreeze glycoproteins (AFGP) of polar fish have the ability to depress the freezing temperature of water approximately 500 times the amount expected based on the number of AFGP molecules in solution; yet AFGP solutions have a purely colligative melting point depression. The difference of solution melting and freezing temperatures is the antifreeze activity of AFGP. One characteristic of AFGP activity that requires further examination is the effect of concentration on antifreeze activity, especially whether the activity saturates at high concentrations or the measured activity increases ad infinitum. This study first surveys the activity of the various antifreeze components from both Pagothenia borchgrevinki and the Arg-containing antifreeze glycoprotein from Eleginus gracilis (EgAF). It was found that all AFGP components examined have a plateau in activity at high concentration, but the actual value of the plateau activity differs between the different length AFGP components and between AFGP and EgAF. While the low molecular weight components of both AFGP and EgAF lose activity at deep supercooling, at high concentration activity is restored. The activity data is then shown to fit a reversible kinetic model of AFGP activity, and the coefficients obtained are used to compare the activity differences between AFGP components and between AFGP and EgAF. The model is also shown to describe the activity of the antifreeze protein of the fish Pseudopleuronectes americanus and the thermal hysteresis protein of the insect, Tenebrio molitor.

  4. Annotating Human P-Glycoprotein Bioassay Data.

    Science.gov (United States)

    Zdrazil, Barbara; Pinto, Marta; Vasanthanathan, Poongavanam; Williams, Antony J; Balderud, Linda Zander; Engkvist, Ola; Chichester, Christine; Hersey, Anne; Overington, John P; Ecker, Gerhard F

    2012-08-01

    Huge amounts of small compound bioactivity data have been entering the public domain as a consequence of open innovation initiatives. It is now the time to carefully analyse existing bioassay data and give it a systematic structure. Our study aims to annotate prominent in vitro assays used for the determination of bioactivities of human P-glycoprotein inhibitors and substrates as they are represented in the ChEMBL and TP-search open source databases. Furthermore, the ability of data, determined in different assays, to be combined with each other is explored. As a result of this study, it is suggested that for inhibitors of human P-glycoprotein it is possible to combine data coming from the same assay type, if the cell lines used are also identical and the fluorescent or radiolabeled substrate have overlapping binding sites. In addition, it demonstrates that there is a need for larger chemical diverse datasets that have been measured in a panel of different assays. This would certainly alleviate the search for other inter-correlations between bioactivity data yielded by different assay setups.

  5. Bioinformatics Analysis of Envelope Glycoprotein E epitopes of ...

    African Journals Online (AJOL)

    The E glycoprotein of dengue virus is responsible for the viral binding to the receptor. The crystal structure of envelope glycoprotein has already been determined. However, where the well-defined Bcell and T-cell epitopes are located is still a question. Because of the large variations among the four dengue genotypes, it is ...

  6. Providing a molecular mechanism for P-glycoprotein; why would I bother?

    Science.gov (United States)

    Callaghan, Richard

    2015-10-01

    It is almost 40 years since the drug efflux pump P-glycoprotein (permeability glycoprotein or P-gp) was shown to confer multi-drug resistance in cancer cells. This protein has been one of the most extensively investigated transport proteins due to its intriguing mechanism and its affect in oncology. P-gp is known to interact with over 300 compounds and the ability to achieve this has not yet been revealed. Following the binding of substrate and nucleotide, a complex series of conformational changes in the membrane and cytosolic domains translocates substrate across the membrane. Despite over 30 years of biochemical investigation, the availability of structural data and a plethora of chemical tools to modulate its function, the molecular mechanism remains a mystery. In addition, overcoming its activity in resistant cancer cells has not been achieved in the clinic, thereby garnering some degree of pessimism in the field. This review highlights the progress that has been achieved in understanding this complex protein and the value of undertaking molecular studies. © 2015 Authors; published by Portland Press Limited.

  7. Development of oligoclonal nanobodies for targeting the tumor-associated glycoprotein 72 antigen

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali

    2013-01-01

    The tumor-associated glycoprotein 72 (TAG-72) is a membrane mucin whose over-expression is correlated with advanced tumor stage and increased invasion and metastasis. In this study, we identified a panel of four nanobodies, single variable domains of dromedary heavy-chain antibodies that specific......The tumor-associated glycoprotein 72 (TAG-72) is a membrane mucin whose over-expression is correlated with advanced tumor stage and increased invasion and metastasis. In this study, we identified a panel of four nanobodies, single variable domains of dromedary heavy-chain antibodies...... that specifically recognize the TAG-72 antigen. All selected nanobodies were shown to selectively bind to this cancer-related molecule with low-nanomolar affinities and do not cross-react with other antigens, such as MUC1 or HER2. Furthermore, they can detect TAG-72 in concentrations as low as 5 U/ml which...... nanobody recognizes a distinct epitope on the TAG-72 antigen that is different from the one recognized by the mouse anti-TAG-72 antibody, CC49. Considering their high specificity, reduced immunogenicity and multi-targeting behavior, these oligoclonal nanobodies represent a promising tool to target TAG-72...

  8. Dystrobrevin increases dystrophin's binding to the dystrophin-glycoprotein complex and provides protection during cardiac stress.

    Science.gov (United States)

    Strakova, Jana; Dean, Jon D; Sharpe, Katharine M; Meyers, Tatyana A; Odom, Guy L; Townsend, DeWayne

    2014-11-01

    Duchenne muscular dystrophy is a fatal progressive disease of both cardiac and skeletal muscle resulting from the mutations in the DMD gene and loss of the protein dystrophin. Alpha-dystrobrevin (α-DB) tightly associates with dystrophin but the significance of this interaction within cardiac myocytes is poorly understood. In the current study, the functional role of α-DB in cardiomyocytes and its implications for dystrophin function are examined. Cardiac stress testing demonstrated significant heart disease in α-DB null (adbn(-/-)) mice, which displayed mortality and lesion sizes that were equivalent to those seen in dystrophin-deficient mdx mice. Despite normal expression and subcellular localization of dystrophin in the adbn(-/-) heart, there is a significant decrease in the strength of dystrophin's interaction with the membrane-bound dystrophin-associated glycoprotein complex (DGC). A similar weakening of the dystrophin-membrane interface was observed in mice lacking the sarcoglycan complex. Cardiomyocytes from adbn(-/-) mice were smaller and responded less to adrenergic receptor induced hypertrophy. The basal decrease in size could not be attributed to aberrant Akt activation. In addition, the organization of the microtubule network was significantly altered in adbn(-/-) cardiac myocytes, while the total expression of tubulin was unchanged in adbn(-/-) hearts. These studies demonstrate that α-DB is a multifunctional protein that increases dystrophin's binding to the dystrophin-glycoprotein complex, and is critical for the full functionality of dystrophin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1973-01-01

    Progress in Surface and Membrane Science, Volume 7 covers the developments in the study of surface and membrane science. The book discusses the theoretical and experimental aspects of the van der Waals forces; the electric double layer on the semiconductor-electrolyte interface; and the long-range and short-range order in adsorbed films. The text also describes the hydrodynamical theory of surface shear viscosity; the structure and properties of monolayers of synthetic polypeptides at the air-water interface; and the structure and molecular dynamics of water. The role of glycoproteins in cell

  10. Membrane compartmentalization of melanosomal gp75.

    Science.gov (United States)

    Giacomini, P; Fraioli, R; Cuomo, M; Natali, P G

    1992-03-01

    A melanosomal integral membrane glycoprotein of 75 kD (gp75) has been previously identified as the human homologue of the product specified by the murine brown locus. We presently report that this molecule may be susceptible to limited proteolysis and extrinsic radioiodination in intact, live cells. Consequently, it is suggested that its cellular location might include the plasma membrane and/or a cellular compartment easily accessible to proteases and to chemically catalyzed vectorial iodination. This is of interest in view of the potential applicative value of gp75 as a target for the radioimmunoscintography of melanoma lesions.

  11. An improved radioimmunoassay for urinary Tamm-Horsfall glycoprotein

    International Nuclear Information System (INIS)

    Dawnay, A.B. St. J.; Thornley, C.; Cattell, W.R.

    1982-01-01

    A rapid specific radioimmunoassay has been used to measure Tamm-Horsfall glycoprotein (TH glycoprotein) in urine, and the method described. The apparent concentration increased with increasing dilution of urine in water, reaching a plateau at 1 in 20. This increase was greater the higher the osmolality and TH glycoprotein concentration and the lower the pH of the original sample. The apparent concentration of TH glycoprotein in neat or diluted urine was not affected by freezing or by storage at 4 0 C or room temperature for at least 2 days. A physiological range for the urinary excretion rate was established as 22-56 mg/24h, (considerably higher than the amount present in serum) based on samples from 29 individuals with normal renal function, as defined by their creatinine clearance. There was no significant correlation between serum concentrations of TH glycoprotein and its urinary excretion rate, nor between urinary excretion rate and creatinine clearance. (author)

  12. Henipavirus Mediated Membrane Fusion, Virus Entry and Targeted Therapeutics

    Directory of Open Access Journals (Sweden)

    Dimitar B. Nikolov

    2012-02-01

    Full Text Available The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G and class I fusion (F envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins.

  13. Characterization of a human glycoprotein with a potential role in sperm-egg fusion: cDNA cloning, immunohistochemical localization, and chromosomal assignment of the gene (AEGL1)

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masaru; Fujimoto, Seiichiro; Takano, Hiroko [Hokkaido Univ. School of Medicine, Sapporo (Japan)] [and others

    1996-03-05

    Acidic epididymal glycoprotein (AEG), thus far identified only in rodents, is one of the sperm surface proteins involved in the fusion of the sperm and egg plasma membranes. In the present study, we describe the isolation and characterization of cDNA encoding a human glycoprotein related to AEG. Although this protein, designated ARP (AEG-related protein), is not the ortholog of rodent AEG, it resembles AEG in that it is an epididymal secretory glycoprotein that binds to the postacrosomal region of the sperm head. The fact that no AEG mRNA can be detected in the human epididymis suggests that ARP might be the functional counterpart of rodent AEG. The gene encoding ARP (AEGL1) was mapped by fluorescence in situ hybridization to 6p21.1-p21.2. This result indicates that AEGL1 and the mouse gene for AEG are located in the chromosomal segments with conserved syntenies. 43 refs., 6 figs.

  14. Pumping of drugs by P-glycoprotein

    DEFF Research Database (Denmark)

    Litman, Thomas; Skovsgaard, Torben; Stein, Wilfred D

    2003-01-01

    The apparent inhibition constant, Kapp, for the blockade of P-glycoprotein (P-gp) by four drugs, verapamil, cyclosporin A, XR9576 (tariquidar), and vinblastine, was measured by studying their ability to inhibit daunorubicin and calcein-AM efflux from four strains of Ehrlich cells with different...... levels of drug resistance and P-gp content. For daunorubicin as a transport substrate, Kapp was independent of [P-gp] for verapamil but increased strictly linearly with [P-gp] for vinblastine, cyclosporin A, and XR9576. A theoretical analysis of the kinetics of drug pumping and its reversal shows...... but rather, in serial, i.e., a drug that is pumped from the cytoplasmic phase has to pass the preemptive route upon leaving the cell. Our results are consistent with the Sauna-Ambudkar two-step model for pumping by P-gp. We suggest that the vinblastine/cyclosporin A/XR9576-binding site accepts daunorubicin...

  15. Raman optical activity of proteins and glycoproteins

    International Nuclear Information System (INIS)

    Smyth, E.

    2000-03-01

    Raman optical activity (ROA), measured in this project as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarised incident laser light, offers the potential to provide more information about the structure of biological molecules in aqueous solution than conventional spectroscopic techniques. Chapter one contains a general discussion of the relative merits of different spectroscopic techniques for structure determination of biomolecules, as well as a brief introduction to ROA. In Chapter two a theoretical analysis of ROA is developed, which extends the discussion in chapter one. The spectrometer setup and sample preparation is then discussed in chapter three. Instrument and sample conditions are monitored to ensure that the best results are obtained. As with any experimental project problems occur, which may result in a degradation of the spectra obtained. The cause of these problems was explored and remedied whenever possible. Chapter four introduces a brief account of protein, glycoprotein and carbohydrate structure and function, with a particular emphasis on the structure of proteins. In the remaining chapters experimental ROA results on proteins and glycoproteins, with some carbohydrate samples, from a wide range of sources are examined. For example, in chapter five some β-sheet proteins are examined. Structural features in these proteins are examined in the extended amide III region of their ROA spectra, revealing that ROA is sensitive to the rigidity or flexibility inherent in proteins. Chapter six concentrates on a group of proteins (usually glycoproteins) known as the serine proteinase inhibitors (serpins). Medically, the serpins are one of the most important groups of proteins of current interest, with wide-ranging implications in conditions such as Down's syndrome, Alzheimer's disease, and emphysema with associated cirrhosis of the liver. With favourable samples and conditions ROA may offer the

  16. Membranous nephropathy

    Science.gov (United States)

    ... check for hepatitis B, hepatitis C, and syphilis Complement levels Cryoglobulin test Treatment The goal of treatment ... not as helpful for people with membranous nephropathy. Medicines used treat membranous nephropathy include: Angiotensin-converting enzyme ( ...

  17. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    International Nuclear Information System (INIS)

    Mische, Claudia C.; Yuan Wen; Strack, Bettina; Craig, Stewart; Farzan, Michael; Sodroski, Joseph

    2005-01-01

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate

  18. Thyroid Hormone and P-Glycoprotein in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Paul J. Davis

    2015-01-01

    Full Text Available P-glycoprotein (P-gp; multidrug resistance pump 1, MDR1; ABCB1 is a plasma membrane efflux pump that when activated in cancer cells exports chemotherapeutic agents. Transcription of the P-gp gene (MDR1 and activity of the P-gp protein are known to be affected by thyroid hormone. A cell surface receptor for thyroid hormone on integrin αvβ3 also binds tetraiodothyroacetic acid (tetrac, a derivative of L-thyroxine (T4 that blocks nongenomic actions of T4 and of 3,5,3′-triiodo-L-thyronine (T3 at αvβ3. Covalently bound to a nanoparticle, tetrac as nanotetrac acts at the integrin to increase intracellular residence time of chemotherapeutic agents such as doxorubicin and etoposide that are substrates of P-gp. This action chemosensitizes cancer cells. In this review, we examine possible molecular mechanisms for the inhibitory effect of nanotetrac on P-gp activity. Mechanisms for consideration include cancer cell acidification via action of tetrac/nanotetrac on the Na+/H+ exchanger (NHE1 and hormone analogue effects on calmodulin-dependent processes and on interactions of P-gp with epidermal growth factor (EGF and osteopontin (OPN, apparently via αvβ3. Intracellular acidification and decreased H+ efflux induced by tetrac/nanotetrac via NHE1 is the most attractive explanation for the actions on P-gp and consequent increase in cancer cell retention of chemotherapeutic agent-ligands of MDR1 protein.

  19. Myelin Oligodendrocyte Glycoprotein: Deciphering a Target in Inflammatory Demyelinating Diseases

    Directory of Open Access Journals (Sweden)

    Patrick Peschl

    2017-05-01

    Full Text Available Myelin oligodendrocyte glycoprotein (MOG, a member of the immunoglobulin (Ig superfamily, is a myelin protein solely expressed at the outermost surface of myelin sheaths and oligodendrocyte membranes. This makes MOG a potential target of cellular and humoral immune responses in inflammatory demyelinating diseases. Due to its late postnatal developmental expression, MOG is an important marker for oligodendrocyte maturation. Discovered about 30 years ago, it is one of the best-studied autoantigens for experimental autoimmune models for multiple sclerosis (MS. Human studies, however, have yielded controversial results on the role of MOG, especially MOG antibodies (Abs, as a biomarker in MS. But with improved detection methods using different expression systems to detect Abs in patients’ samples, this is meanwhile no longer the case. Using cell-based assays with recombinant full-length, conformationally intact MOG, several recent studies have revealed that MOG Abs can be found in a subset of predominantly pediatric patients with acute disseminated encephalomyelitis (ADEM, aquaporin-4 (AQP4 seronegative neuromyelitis optica spectrum disorders (NMOSD, monophasic or recurrent isolated optic neuritis (ON, or transverse myelitis, in atypical MS and in N-methyl-d-aspartate receptor-encephalitis with overlapping demyelinating syndromes. Whereas MOG Abs are only transiently observed in monophasic diseases such as ADEM and their decline is associated with a favorable outcome, they are persistent in multiphasic ADEM, NMOSD, recurrent ON, or myelitis. Due to distinct clinical features within these diseases it is controversially disputed to classify MOG Ab-positive cases as a new disease entity. Neuropathologically, the presence of MOG Abs is characterized by MS-typical demyelination and oligodendrocyte pathology associated with Abs and complement. However, it remains unclear whether MOG Abs are a mere inflammatory bystander effect or truly pathogenetic

  20. Molecular insight into conformational transmission of human P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shan-Yan [Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Liu, Fu-Feng, E-mail: fufengliu@tju.edu.cn, E-mail: ysun@tju.edu.cn; Dong, Xiao-Yan; Sun, Yan, E-mail: fufengliu@tju.edu.cn, E-mail: ysun@tju.edu.cn [Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2013-12-14

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  1. Regulation of glycoprotein synthesis in yeast by mating pheromones

    International Nuclear Information System (INIS)

    Tanner, W.

    1984-01-01

    In Saccharomyces cerevisiae, glycosylated proteins amount to less than 2% of the cell protein. Two intensively studied examples of yeast glycoproteins are the external cell wall - associated invertase and the vacuolar carboxypeptidase Y. Recently, it was shown that the mating pheromone, alpha factor, specifically and strongly inhibits the synthesis of N-glycosylated proteins in haploid a cells, whereas O-glycosylated proteins are not affected. In this paper, the pathways of glycoprotein biosynthesis are summarized briefly, and evidence is presented that mating pheomones have a regulatory function in glycoprotein synthesis

  2. 21 CFR 866.5430 - Beta-2-glycoprotein I immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Beta-2-glycoprotein I immunological test system....5430 Beta-2-glycoprotein I immunological test system. (a) Identification. A beta-2-glycoprotein I... the beta-2-glycoprotein I (a serum protein) in serum and other body fluids. Measurement of beta-2...

  3. 21 CFR 866.5440 - Beta-2-glycoprotein III immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Beta-2-glycoprotein III immunological test system....5440 Beta-2-glycoprotein III immunological test system. (a) Identification. A beta-2-glycoprotein III... the beta-2-glycoprotein III (a serum protein) in serum and other body fluids. Measurement of beta-2...

  4. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  5. Mass spectrometry-based proteomics of fungal wall glycoproteins

    NARCIS (Netherlands)

    Yin, Q.Y.; de Groot, P.W.J.; de Koster, C.G.; Klis, F.M.

    2008-01-01

    The manifold functions of fungal wall glycoproteins include maintenance of cell wall integrity, homotypic and heterotypic adhesion, biofilm formation, acquisition of iron and sterols, protein degradation and coping with oxidative stress. Transcriptome studies indicate that the expression levels of

  6. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines

    OpenAIRE

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-01-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with th...

  7. Serological diagnosis and prognosis of severe acute pancreatitis by analysis of serum glycoprotein 2.

    Science.gov (United States)

    Roggenbuck, Dirk; Goihl, Alexander; Hanack, Katja; Holzlöhner, Pamela; Hentschel, Christian; Veiczi, Miklos; Schierack, Peter; Reinhold, Dirk; Schulz, Hans-Ulrich

    2017-05-01

    Glycoprotein 2 (GP2), the pancreatic major zymogen granule membrane glycoprotein, was reported to be elevated in acute pancreatitis in animal models. Enzyme-linked immunosorbent assays (ELISAs) were developed to evaluate human glycoprotein 2 isoform alpha (GP2a) and total GP2 (GP2t) as specific markers for acute pancreatitis in sera of 153 patients with acute pancreatitis, 26 with chronic pancreatitis, 125 with pancreatic neoplasms, 324 with non-pancreatic neoplasms, 109 patients with liver/biliary disease, 67 with gastrointestinal disease, and 101 healthy subjects. GP2a and GP2t levels were correlated with procalcitonin and C-reactive protein in 152 and 146 follow-up samples of acute pancreatitis patients, respectively. The GP2a ELISA revealed a significantly higher assay accuracy in contrast to the GP2t assay (sensitivity ≤3 disease days: 91.7%, specificity: 96.7%, positive likelihood ratio [LR+]: 24.6, LR-: 0.09). GP2a and GP2t levels as well as prevalences were significantly elevated in early acute pancreatitis (≤3 disease days) compared to all control cohorts (ppancreatitis at admission compared with mild cases (ppancreatitis with lethal outcome was 7.8 on admission (p=0.0222). GP2a and GP2t levels were significantly correlated with procalcitonin [Spearman's rank coefficient of correlation (ρ)=0.21, 0.26; p=0.0110, 0.0012; respectively] and C-reactive protein (ρ=0.37, 0.40; ppancreatitis and analysis of GP2a can aid in the differential diagnosis of acute upper abdominal pain and prognosis of severe acute pancreatitis.

  8. Enzymatic sulfation of mucus glycoprotein in gastric mucosa

    International Nuclear Information System (INIS)

    Liau, Y.H.; Carter, S.R.; Gwozdzinski, K.; Nadziejko, C.; Slomiany, A.; Slomiany, B.L.

    1986-01-01

    Among the posttranslational modifications that mucus glycoprotein undergo prior to secretion into the gastric lumen is the process of sulfation of the carbohydrate chains. These sulfate groups impart strongly negative charge to nucus glycoprotein and are thought to play a major role in the maintenance of gastric mucosal integrity. The authors report here the presence and some properties of an enzyme involved in the sulfation of gastric mucus glycoprotein. The sulfotransferase activity which catalyzes the transfer of sulfate ester group from PAPS to mucus glycoprotein was located in the detergent extracts of the microsomal fraction of rat gastric mucosa. Optimum enzymatic activity for sulfation of gastric mucin was obtained using 0.5% Triton X-100 and 25mM NaF at a pH of 6.8. ATP, ADP, MgCl 2 and MnCl 2 at concentrations examined were inhibitory. Under optimal conditions, the rate of sulfate incorporation was proportional to the microsomal enzyme protein concentration up to 50μg and remained constant with time of incubation for at least 1h. The apparent Km value of the enzyme for gastric mucus glycoprotein was 8.3 x 10 -6 M. The 35 S-labeled product of the enzyme reaction cochromatographed on Bio-Gel A-50 with gastric mucin, and gave on CsCl equilibrium density gradient centrifugation a band at the density of 1.48 in which the 35 S label coincided with the glycoprotein

  9. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.

    1980-01-01

    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  10. Antifreeze glycoprotein agents: structural requirements for activity.

    Science.gov (United States)

    Carvajal-Rondanelli, Patricio A; Marshall, Sergio H; Guzman, Fanny

    2011-11-01

    Antifreeze glycoproteins (AFGPs) are considered to be the most efficient means to reduce ice damage to cell tissues since they are able to inhibit growth and crystallization of ice. The key element of antifreeze proteins is to act in a non-colligative manner which allows them to function at concentrations 300-500 times lowers than other dissolved solutes. During the past decade, AFGPs have demonstrated tremendous potential for many pharmaceutical and food applications. Presently, the only route to obtain AFGPs involves the time consuming and expensive process of isolation and purification from deep-sea polar fishes. Unfortunately, it is not amenable to mass production and commercial applications. The lack of understanding of the mechanism through which the AFGPs inhibit ice growth has also hampered the realization of industrial and biotechnological applications. Here we report the structural motifs that are essential for antifreeze activity of AFGPs, and propose a unified mechanism based on both recent studies of short alanine peptides and structure activity relationship of synthesized AFGPs. Copyright © 2011 Society of Chemical Industry.

  11. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  12. An effect of glycoprotein IIb/IIIa inhibitors on the kinetics of red blood cells aggregation.

    Science.gov (United States)

    Sokolova, Irina A; Muravyov, Alexei V; Khokhlova, Maria D; Rikova, Sofya Yu; Lyubin, Evgeny V; Gafarova, Marina A; Skryabina, Maria N; Fedyanin, Angrey A; Kryukova, Darya V; Shahnazarov, Alexander A

    2014-01-01

    The reversible aggregation of red blood cells (RBCs) continues to be of the basic science and clinical interest. Recently it has been reported about a specific binding between fibrinogen and unknown erythrocyte glycoprotein receptors. The aim of this study was to investigate whether the red blood cell aggregation (RBCA) include the cell-cell interaction using the membrane receptors that bind such ligands as fibrinogen or fibronectin. To test this hypothesis the RBCs were incubated with monafram - the drug of the monoclonal antibodies against glycoprotein (GP) IIb/IIIa, with the GPIIb-IIIa receptor antagonist tirofiban, epifibatide and with the fibrinogen inhibiting peptide. It has been found that the RBC incubation with monafram resulted in a marked RBCA decrease mainly in persons with high level of aggregation. Another research session has shown that RBC incubation with fibronectin was accompanied by a significant RBCA rise. The monafram addition to red cell incubation medium resulted in a significant RBCA lowering. The cell incubation with tirofiban and epifibatide issued in RBCA decrease. The similar results were obtained when RBCs were incubated with the fibrinogen inhibiting peptide. Although monafram, tirofiban, eptifibatide and the fibrinogen inhibiting peptide were related to fibrinogen function they didn't inhibit RBCA completely. Therefore, under moderate and low red blood cell aggregation the cell binding is probably related to nonspecific mode. It seems evident that the specific and nonspecific modes of red blood cell aggregate formation could co-exist. Additional theoretical and experimental investigations in this area are needed.

  13. Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, L.O.; Pyle, S.W.; Nara, P.L.; Bess, J.W. Jr.; Gonda, M.A.; Kelliher, J.C.; Gilden, R.V.; Robey, W.G.; Bolognesi, D.P.; Gallo, R.C.

    1987-12-01

    The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4/sup +/ and T8/sup +/ cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4/sup +/ cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo.

  14. Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins

    Science.gov (United States)

    Jo, Sunhwan; Song, Kevin C.; Desaire, Heather; MacKerell, Alexander D.; Im, Wonpil

    2011-01-01

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics. PMID:21815173

  15. Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine

    International Nuclear Information System (INIS)

    Arthur, L.O.; Pyle, S.W.; Nara, P.L.

    1987-01-01

    The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4 + and T8 + cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4 + cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo

  16. Anterograde glycoprotein-dependent transport of newly generated rabies virus in dorsal root ganglion neurons.

    Science.gov (United States)

    Bauer, Anja; Nolden, Tobias; Schröter, Josephine; Römer-Oberdörfer, Angela; Gluska, Shani; Perlson, Eran; Finke, Stefan

    2014-12-01

    Rabies virus (RABV) spread is widely accepted to occur only by retrograde axonal transport. However, examples of anterograde RABV spread in peripheral neurons such as dorsal root ganglion (DRG) neurons indicated a possible bidirectional transport by an uncharacterized mechanism. Here, we analyzed the axonal transport of fluorescence-labeled RABV in DRG neurons by live-cell microscopy. Both entry-related retrograde transport of RABV after infection at axon endings and postreplicative transport of newly formed virus were visualized in compartmentalized DRG neuron cultures. Whereas entry-related transport at 1.5 μm/s occurred only retrogradely, after 2 days of infection, multiple particles were observed in axons moving in both the anterograde and retrograde directions. The dynamics of postreplicative retrograde transport (1.6 μm/s) were similar to those of entry-related retrograde transport. In contrast, anterograde particle transport at 3.4 μm/s was faster, indicating active particle transport. Interestingly, RABV missing the glycoproteins did not move anterogradely within the axon. Thus, anterograde RABV particle transport depended on the RABV glycoprotein. Moreover, colocalization of green fluorescent protein (GFP)-labeled ribonucleoproteins (RNPs) and glycoprotein in distal axonal regions as well as cotransport of labeled RNPs with membrane-anchored mCherry reporter confirmed that either complete enveloped virus particles or vesicle associated RNPs were transported. Our data show that anterograde RABV movement in peripheral DRG neurons occurs by active motor protein-dependent transport. We propose two models for postreplicative long-distance transport in peripheral neurons: either transport of complete virus particles or cotransport of RNPs and G-containing vesicles through axons to release virus at distal sites of infected DRG neurons. Rabies virus retrograde axonal transport by dynein motors supports virus spread over long distances and lethal infection of

  17. Inhibition of Ebola virus glycoprotein-mediated cytotoxicity by targeting its transmembrane domain and cholesterol.

    Science.gov (United States)

    Hacke, Moritz; Björkholm, Patrik; Hellwig, Andrea; Himmels, Patricia; Ruiz de Almodóvar, Carmen; Brügger, Britta; Wieland, Felix; Ernst, Andreas M

    2015-07-09

    The high pathogenicity of the Ebola virus reflects multiple concurrent processes on infection. Among other important determinants, Ebola fusogenic glycoprotein (GP) has been associated with the detachment of infected cells and eventually leads to vascular leakage and haemorrhagic fever. Here we report that the membrane-anchored GP is sufficient to induce the detachment of adherent cells. The results show that the detachment induced through either full-length GP1,2 or the subunit GP2 depends on cholesterol and the structure of the transmembrane domain. These data reveal a novel molecular mechanism in which GP regulates Ebola virus assembly and suggest that cholesterol-reducing agents could be useful as therapeutics to counteract GP-mediated cell detachment.

  18. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    International Nuclear Information System (INIS)

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.; Wendell, Steven K.; Ozuer, Ali; Kapacee, Zoher; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.

    2007-01-01

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry and gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection

  19. Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai; Rajashankar, Kanagalaghatta R.; Chan, Yee-Peng; Himanen, Juha P.; Broder, Christopher C.; Nikolov, Dimitar B. (USUHS); (Cornell); (MSKCC)

    2008-07-28

    Nipah virus (NiV) and Hendra virus are the type species of the highly pathogenic paramyxovirus genus Henipavirus, which can cause severe respiratory disease and fatal encephalitis infections in humans, with case fatality rates approaching 75%. NiV contains two envelope glycoproteins, the receptor-binding G glycoprotein (NiV-G) that facilitates attachment to host cells and the fusion (F) glycoprotein that mediates membrane merger. The henipavirus G glycoproteins lack both hemagglutinating and neuraminidase activities and, instead, engage the highly conserved ephrin-B2 and ephrin-B3 cell surface proteins as their entry receptors. Here, we report the crystal structures of the NiV-G both in its receptor-unbound state and in complex with ephrin-B3, providing, to our knowledge, the first view of a paramyxovirus attachment complex in which a cellular protein is used as the virus receptor. Complex formation generates an extensive protein-protein interface around a protruding ephrin loop, which is inserted in the central cavity of the NiV-G {beta}-propeller. Analysis of the structural data reveals the molecular basis for the highly specific interactions of the henipavirus G glycoproteins with only two members (ephrin-B2 and ephrin-B3) of the very large ephrin family and suggests how they mediate in a unique fashion both cell attachment and the initiation of membrane fusion during the virus infection processes. The structures further suggest that the NiV-G/ephrin interactions can be effectively targeted to disrupt viral entry and provide the foundation for structure-based antiviral drug design.

  20. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Chouljenko, Vladimir N.; Iyer, Arun; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2007-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of 3 H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion

  1. Secretome analysis to elucidate metalloprotease-dependent ectodomain shedding of glycoproteins during neuronal differentiation.

    Science.gov (United States)

    Tsumagari, Kazuya; Shirakabe, Kyoko; Ogura, Mayu; Sato, Fuminori; Ishihama, Yasushi; Sehara-Fujisawa, Atsuko

    2017-02-01

    Many membrane proteins are subjected to limited proteolyses at their juxtamembrane regions, processes referred to as ectodomain shedding. Shedding ectodomains of membrane-bound ligands results in activation of downstream signaling pathways, whereas shedding those of cell adhesion molecules causes loss of cell-cell contacts. Secreted proteomics (secretomics) using high-resolution mass spectrometry would be strong tools for both comprehensive identification and quantitative measurement of membrane proteins that undergo ectodomain shedding. In this study, to elucidate the ectodomain shedding events that occur during neuronal differentiation, we establish a strategy for quantitative secretomics of glycoproteins released from differentiating neuroblastoma cells into culture medium with or without GM6001, a broad-spectrum metalloprotease inhibitor. Considering that most of transmembrane and secreted proteins are N-glycosylated, we include a process of N-glycosylated peptides enrichment as well as isotope tagging in our secretomics workflow. Our results show that differentiating N1E-115 neurons secrete numerous glycosylated polypeptides in metalloprotease-dependent manners. They are derived from cell adhesion molecules such as NCAM1, CADM1, L1CAM, various transporters and receptor proteins. These results show the landscape of ectodomain shedding and other secretory events in differentiating neurons and/or during axon elongation, which should help elucidate the mechanism of neurogenesis and the pathogenesis of neurological disorders. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  2. Studies on N-linked glycoprotein synthesis in differentiating muscle cells

    International Nuclear Information System (INIS)

    Miller, K.R.

    1986-01-01

    All N-linked glycoproteins share a common pathway with respect to the acquisition of their oligosaccharide chains. Isolated membranes from undifferentiated (UND) and differentiated (DIF) C 2 cells, which have the capability of differentiating from mononucleated myoblasts to contracting myotubes, were utilized to examine dolichol-linked oligosaccharide synthesis. A characterization of the glycosyltransferases involved in the early stages of lipid-linked oligosaccaride synthesis revealed that while UND cells demonstrated a greater ability to synthesize Dol-PP-GN/sub (1-2), Dol-P-Man, and Dol-P-Glc than did DIF cells, the presence of exogenous Dol-P plus detergent either reversed or equalized product formation. The ability to synthesize the larger dolichol-oligosaccharides was demonstrated both in whole cells and in isolated membranes from UND and DIF cells. Pulse-chase experiments, using [ 3 H]-glucosamine to metabolically label the N-acetylglucosamine residues demonstrated the precursor-product relationship between the dolichol-oligosaccharide intermediates in whole cell studies. DIF cells appear to be more efficient than UND cells for extending the smaller oligosaccharide intermediates to the tetradecasaccharide which would be transferred to protein. Membranes isolated from cells metabolically labeled with [ 3 H]-mannose were subject to pronase digestion, and the resulting glycopeptide analyzed by serial lectin affinity chromatography

  3. P-glycoprotein activity and biological response

    International Nuclear Information System (INIS)

    Vaalburg, W.; Hendrikse, N.H.; Elsinga, P.H.; Bart, J.; Waarde, A. van

    2005-01-01

    P-glycoprotein (P-gp) is a transmembrane drug efflux pump encoded by the MDR-1 gene in humans. Most likely P-gp protects organs against endogenous and exogenous toxins by extruding toxic compounds such as chemotherapeutics and other drugs. Many drugs are substrates for P-gp. Since P-gp is also expressed in the blood-brain barrier, P-gp substrates reach lower concentrations in the brain than in P-gp-negative tissues. Failure of response to chemotherapy of malignancies can be due to intrinsic or acquired drug resistance. Many tumors are multidrug resistant (MDR); resistant to several structurally unrelated chemotherapeutic agents. Several mechanisms are involved in MDR of which P-gp is studied most extensively. P-gp extrudes drugs out of tumor cells resulting in decreased intracellular drug concentrations, leading to the MDR phenotype. Furthermore, the MDR-1 gene exhibits several single nucleotide polymorphisms, some of which result in different transport capabilities. P-gp functionality and the effect of P-gp modulation on the pharmacokinetics of novel and established drugs can be studied in vivo by positron emission tomography (PET) using carbon-11 and fluorine-18-labeled P-gp substrates and modulators. PET may demonstrate the consequences of genetic differences on tissue pharmacokinetics. Inhibitors such as calcium-channel blockers (verapamil), cyclosporin A, ONT-093, and XR9576 can modulate the P-gp functionality. With PET the effect of P-gp modulation on the bioavailability of drugs can be investigated in humans in vivo. PET also allows the measurement of the efficacy of newly developed P-gp modulators

  4. Physical Properties of the Glycoprotein Mucin

    Science.gov (United States)

    Matthews, Garrett; Davis, William; Superfine, Richard; Boucher, Richard

    2003-03-01

    Epithelial cell surfaces are covered by a protective gel known as mucus. The physiological function of this gel depends on its rheological properties, and these properties are largely derived from the secreted glycoprotein mucin. The genetic disease Cystic Fibrosis (CF) is characterized by the adhesion of thick, viscous mucus on these tissues. In the lungs, this results in the interruption of mucus transport thus compromising the first line of defense against pathogens in these tissues. In order to restore the flow of tracheobronchial mucus out of the body, knowledge of the molecular and physical properties of mucin and mucin solutions would be greatly beneficial. The present model for these molecules is that of a long linear strand consisting of highly glycosylated regions linked by cystein-rich globular regions. It is thought that the globular regions may interact either through intermolecular disulfide bonds or through hydrophobic interactions. It has also been speculated that the glycosylated regions may have lectin-like interactions. In the present work, single mucin molecules were imaged at high resolution using atomic force microscopy (AFM). Phase mode imaging was used to map the interactions between functionalized AFM tips and the molecular topography. Additionally, using force-distance curves with the AFM, the adhesion between mucin bound tips and cell surface glycocalyx and glycocalyx-like model surfaces, was measured. And, finally, the viscoelastic properties of mucin solutions were measured using the recently developed technique, single particle tracking microrheology. A model is being developed that will incorporate the properties of mucins beginning at the single molecule and ending with the bulk viscoelastic properties.

  5. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  6. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  7. Functional Interplay Between Murine Leukemia Virus Glycogag, Serinc5, and Surface Glycoprotein Governs Virus Entry, with Opposite Effects on Gammaretroviral and Ebolavirus Glycoproteins

    Directory of Open Access Journals (Sweden)

    Yadvinder S. Ahi

    2016-11-01

    Full Text Available Gammaretroviruses, such as murine leukemia viruses (MLVs, encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called “glycogag” (glycosylated Gag. MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes.

  8. Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions.

    Science.gov (United States)

    Shukla, Suneet; Abel, Biebele; Chufan, Eduardo E; Ambudkar, Suresh V

    2017-04-28

    P-glycoprotein (P-gp) is a multidrug transporter that uses energy from ATP hydrolysis to export many structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs from cells. Several structural studies on purified P-gp have been reported, but only limited and sometimes conflicting information is available on ligand interactions with the isolated transporter in a dodecyl-maltoside detergent environment. In this report we compared the biochemical properties of P-gp in native membranes, detergent micelles, and when reconstituted in artificial membranes. We found that the modulators zosuquidar, tariquidar, and elacridar stimulated the ATPase activity of purified human or mouse P-gp in a detergent micelle environment. In contrast, these drugs inhibited ATPase activity in native membranes or in proteoliposomes, with IC 50 values in the 10-40 nm range. Similarly, a 30-150-fold decrease in the apparent affinity for verapamil and cyclic peptide inhibitor QZ59-SSS was observed in detergent micelles compared with native or artificial membranes. Together, these findings demonstrate that the high-affinity site is inaccessible because of either a conformational change or binding of detergent at the binding site in a detergent micelle environment. The ligands bind to a low-affinity site, resulting in altered modulation of P-gp ATPase activity. We, therefore, recommend studying structural and functional aspects of ligand interactions with purified P-gp and other ATP-binding cassette transporters that transport amphipathic or hydrophobic substrates in a detergent-free native or artificial membrane environment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Britta Stordal

    Full Text Available The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A, MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy.

  10. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters.

    Science.gov (United States)

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-06-29

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  11. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang

    2015-06-01

    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  12. Glycoconjugates of the tectorial membrane.

    Science.gov (United States)

    Khalkhali-Ellis, Z; Hemming, F W; Steel, K P

    1987-01-01

    The type and quantity of carbohydrate present in the tectorial membrane (TM) was analysed using gas-liquid chromatography and lectin staining of TM protein subunits previously separated by electrophoresis. A relatively large amount of carbohydrate was found, and glucose, N-acetylglucosamine, N-acetylgalactosamine, galactose, mannose and N-acetylneuraminic acid were detected. The presence of mannose and the reaction of many of the protein bands with lectins suggest that at least part of the carbohydrate present is in the form of glycoprotein. The reaction of the main protein band with the lectins RCA1 and ConA is consistent with the suggestion [Thalmann et al. (1985) J. Acoust. Soc. Am. Suppl. 1, Vol. 78, S66] that this band is similar to collagen type II. The failure to detect any uronic acid in these experiments indicates that the more common proteoglycans are probably not a major component of the TM (although keratan sulphate might be present).

  13. Structure-Based Design of Head-Only Fusion Glycoprotein Immunogens for Respiratory Syncytial Virus.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Boyington

    Full Text Available Respiratory syncytial virus (RSV is a significant cause of severe respiratory illness worldwide, particularly in infants, young children, and the elderly. Although no licensed vaccine is currently available, an engineered version of the metastable RSV fusion (F surface glycoprotein-stabilized in the pre-fusion (pre-F conformation by "DS-Cav1" mutations-elicits high titer RSV-neutralizing responses. Moreover, pre-F-specific antibodies, often against the neutralization-sensitive antigenic site Ø in the membrane-distal head region of trimeric F glycoprotein, comprise a substantial portion of the human response to natural RSV infection. To focus the vaccine-elicited response to antigenic site Ø, we designed a series of RSV F immunogens that comprised the membrane-distal head of the F glycoprotein in its pre-F conformation. These "head-only" immunogens formed monomers, dimers, and trimers. Antigenic analysis revealed that a majority of the 70 engineered head-only immunogens displayed reactivity to site Ø-targeting antibodies, which was similar to that of the parent RSV F DS-Cav1 trimers, often with increased thermostability. We evaluated four of these head-only immunogens in detail, probing their recognition by antibodies, their physical stability, structure, and immunogenicity. When tested in naïve mice, a head-only trimer, half the size of the parent RSV F trimer, induced RSV titers, which were statistically comparable to those induced by DS-Cav1. When used to boost DS-Cav1-primed mice, two head-only RSV F immunogens, a dimer and a trimer, boosted RSV-neutralizing titers to levels that were comparable to those boosted by DS-Cav1, although with higher site Ø-directed responses. Our results provide proof-of-concept for the ability of the smaller head-only RSV F immunogens to focus the vaccine-elicited response to antigenic site Ø. Decent primary immunogenicity, enhanced physical stability, potential ease of manufacture, and potent

  14. Feline immunodeficiency virus envelope glycoproteins antagonize tetherin through a distinctive mechanism that requires virion incorporation.

    Science.gov (United States)

    Morrison, James H; Guevara, Rebekah B; Marcano, Adriana C; Saenz, Dyana T; Fadel, Hind J; Rogstad, Daniel K; Poeschla, Eric M

    2014-03-01

    BST2/tetherin inhibits the release of enveloped viruses from cells. Primate lentiviruses have evolved specific antagonists (Vpu, Nef, and Env). Here we characterized tetherin proteins of species representing both branches of the order Carnivora. Comparison of tiger and cat (Feliformia) to dog and ferret (Caniformia) genes demonstrated that the tiger and cat share a start codon mutation that truncated most of the tetherin cytoplasmic tail early in the Feliformia lineage (19 of 27 amino acids, including the dual tyrosine motif). Alpha interferon (IFN-α) induced tetherin and blocked feline immunodeficiency virus (FIV) replication in lymphoid and nonlymphoid feline cells. Budding of bald FIV and HIV particles was blocked by carnivore tetherins. However, infectious FIV particles were resistant, and spreading FIV replication was uninhibited. Antagonism mapped to the envelope glycoprotein (Env), which rescued FIV from carnivore tetherin restriction when expressed in trans but, in contrast to known antagonists, did not rescue noncognate particles. Also unlike the primate lentiviral antagonists, but similar to the Ebola virus glycoprotein, FIV Env did not reduce intracellular or cell surface tetherin levels. Furthermore, FIV-enveloped FIV particles actually required tetherin for optimal release from cells. The results show that FIV Envs mediate a distinctive tetherin evasion. Well adapted to a phylogenetically ancient tetherin tail truncation in the Felidae, it requires functional virion incorporation of Env, and it shields the budding particle without downregulating plasma membrane tetherin. Moreover, FIV has evolved dependence on this protein: particles containing FIV Env need tetherin for optimal release from the cell, while Env(-) particles do not. HIV-1 antagonizes the restriction factor tetherin with the accessory protein Vpu, while HIV-2 and the filovirus Ebola use their envelope (Env) glycoproteins for this purpose. It turns out that the FIV tetherin antagonist is

  15. Co-translational processing of glycoprotein 3 from equine arteritis virus: N-glycosylation adjacent to the signal peptide prevents cleavage.

    Science.gov (United States)

    Matczuk, Anna Karolina; Kunec, Dusan; Veit, Michael

    2013-12-06

    Signal peptide cleavage and N-glycosylation of proteins are co-translational processes, but little is known about their interplay if they compete for adjacent sites. Here we report two unique findings for processing of glycoprotein 3 of equine arteritis virus. Glycoprotein 3 (Gp3) contains an N-terminal signal peptide, which is not removed, although bioinformatics predicts cleavage with high probability. There is an overlapping sequon, NNTT, adjacent to the signal peptide that we show to be glycosylated at both asparagines. Exchanging the overlapping sequon and blocking glycosylation allows signal peptide cleavage, indicating that carbohydrate attachment inhibits processing of a potentially cleavable signal peptide. Bioinformatics analyses suggest that a similar processing scheme may exist for some cellular proteins. Membrane fractionation and secretion experiments revealed that the signal peptide of Gp3 does not act as a membrane anchor, indicating that it is completely translocated into the lumen of the endoplasmic reticulum. Membrane attachment is caused by the hydrophobic C terminus of Gp3, which, however, does not span the membrane but rather attaches the protein peripherally to endoplasmic reticulum membranes.

  16. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  17. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development......The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  18. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    International Nuclear Information System (INIS)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D.

    1989-01-01

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the α-glucosidase amyloglucosidase (50% inhibition at 5.8 μM), but it did not inhibit β-glucosidase, α- or β-mannosidase, or α- or β-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc 3 Man 7-9 (GlcNAc) 2 -oligosaccharides

  19. Binding of Transmissible Gastroenteritis Coronavirus to Brush Border Membrane Sialoglycoproteins

    OpenAIRE

    Schwegmann-Wessels, Christel; Zimmer, Gert; Schröder, Bernd; Breves, Gerhard; Herrler, Georg

    2003-01-01

    Transmissible gastroenteritis coronavirus (TGEV) is a porcine pathogen causing enteric infections that are lethal for suckling piglets. The enterotropism of TGEV is connected with the sialic acid binding activity of the viral surface protein S. Here we show that, among porcine intestinal brush border membrane proteins, TGEV recognizes a mucin-type glycoprotein designated MGP in a sialic acid-dependent fashion. Virus binding assays with cryosections of the small intestine from a suckling pigle...

  20. Herpes simplex virus glycoproteins gB and gD function in a redundant fashion to promote secondary envelopment.

    Science.gov (United States)

    Johnson, David C; Wisner, Todd W; Wright, Catherine C

    2011-05-01

    Egress of herpes simplex virus (HSV) and other herpesviruses from cells involves extensive modification of cellular membranes and sequential envelopment and deenvelopment steps. HSV glycoproteins are important in these processes, and frequently two or more glycoproteins can largely suffice in any step. Capsids in the nucleus undergo primary envelopment at the inner nuclear membrane (INM), and then enveloped virus particles undergo deenvelopment by fusing with the outer nuclear membrane (ONM). Capsids delivered into the cytoplasm then undergo secondary envelopment, involving trans-Golgi network (TGN) membranes. The deenvelopment step involves HSV glycoproteins gB and gH/gL acting in a redundant fashion. This fusion has features common to the fusion that occurs between the virion envelope and cellular membranes when HSV enters cells, a process requiring gB, gD, and gH/gL. Whether HSV gD also participates (in a redundant fashion with gB or gH/gL) in deenvelopment has not been characterized. Secondary envelopment in the cytoplasm is known to involve HSV gD and gE/gI, also acting in a redundant fashion. Whether gB might also contribute to secondary envelopment, collaborating with gD and gE/gI, is also not clear. To address these questions, we constructed an HSV double mutant lacking gB and gD. The HSV gB(-)/gD(-) mutant exhibited no substantial defects in nuclear egress. In contrast, secondary envelopment was markedly reduced, and there were numerous unenveloped capsids that accumulated in the cytoplasm, as well as increased numbers of partially enveloped capsids and morphologically aberrant enveloped particles with thicker, oblong tegument layers. These defects were different from those observed with HSV gD(-)/gE(-)/gI(-) mutants, which accumulated capsids in large, aggregated masses in the cytoplasm. Our results suggest that HSV gB functions in secondary envelopment, apparently acting downstream of gE/gI.

  1. Expression of bovine herpesvirus 1 glycoproteins gI and gIII in transfected murine cells

    International Nuclear Information System (INIS)

    Fitzpatrick, D.R.; Zamb, T.; Parker, M.D.; van Drunen Littel-van den Hurk, S.; Babiuk, L.A.; Lawman, M.J.P.

    1988-01-01

    Genes encoding two of the major glycoproteins of bovine herpesvirus 1 (BHV-1), gI and gIII, were cloned into the eucaryotic expression vectors pRSVcat and pSV2neo and transfected into murine LMTK - cells, and cloned cell lines were established. The relative amounts of gI or gIII expressed from the two vectors were similar. Expression of gI was cell associated and localized predominantly in the perinuclear region, but nuclear and plasma membrane staining was also observed. Expression of gI was additionally associated with cell fusion and the formation of polykaryons and giant cells. Expression of gIII was localized predominantly in the nuclear and plasma membranes. Radioimmunoprecipitation in the presence or absence of tunicamycin revealed that the recombinant glycoproteins were proteolytically processed and glycosylated and had molecular weights similar to those of the forms of gI and gIII expressed in BHV-1 infected bovine cells. However, both recombinant glycoproteins were glycosylated to a lesser extent than were the forms found in BHV-1 infected bovine cells. For gI, a deficiency in N-linked glycosylated of the amino-terminal half of the protein was identified; for gIII, a deficiency in O-linked glycosylation was implicated. The reactivity pattern of a panel of gI- and gIII-specific monoclonal antibodies, including six which recognize conformation-dependent epitopes, was found to be unaffected by the glycosylation differences and was identical for transfected of BHV-1-infected murine cells. Use of the transfected cells as targets in immune-mediated cytotoxicity assays demonstrated the functional recognition of recombinant gI and gIII by murine antibody and cytotoxic T lymphocytes

  2. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    this antigen is a good candidate for development as a vaccine to prevent or control P. carinii infection. We have cloned and sequenced seven related but unique genes encoding the major surface glycoprotein of rat P. carinii. Partial amino acid sequencing confirmed the identity of these genes. Based on Southern...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  3. A Functional Henipavirus Envelope Glycoprotein Pseudotyped Lentivirus Assay System

    Directory of Open Access Journals (Sweden)

    Broder Christopher C

    2010-11-01

    Full Text Available Abstract Background Hendra virus (HeV and Nipah virus (NiV are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4 containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP gene encoding human immunodeficiency virus type-1 (HIV-1 genome in conjunction with the HeV and NiV fusion (F and attachment (G glycoproteins. Results Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2 peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F

  4. Intestinal mucus and juice glycoproteins have a liquid crystalline structure

    International Nuclear Information System (INIS)

    Denisova, E.A.; Lazarev, P.I.; Vazina, A.A.; Zheleznaya, L.A.

    1985-01-01

    X-ray diffraction patterns have been obtained from the following components of canine gastrointestinal tract: (1) native small intestine mucus layer; (2) the precipitate of the flocks formed in the duodenal juice with decreasing pH; (3) concentrated solutions of glycoproteins isolated from the duodenal juice. The X-ray patterns consist of a large number of sharp reflections of spacings between about 100 and 4 A. Some reflections are common for all components studied. All the patterns are interpreted as arising from the glycoprotein molecules ordered into a liquid crystalline structure. (author)

  5. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development...... of novel approaches to the control of this pathogen....

  6. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding.

    Science.gov (United States)

    Rosenberg, Mark F; Kamis, Alhaji Bukar; Callaghan, Richard; Higgins, Christopher F; Ford, Robert C

    2003-03-07

    P-glycoprotein is an ATP-binding cassette transporter that is associated with multidrug resistance and the failure of chemotherapy in human patients. We have previously shown, based on two-dimensional projection maps, that P-glycoprotein undergoes conformational changes upon binding of nucleotide to the intracellular nucleotide binding domains. Here we present the three-dimensional structures of P-glycoprotein in the presence and absence of nucleotide, at a resolution limit of approximately 2 nm, determined by electron crystallography of negatively stained crystals. The data reveal a major reorganization of the transmembrane domains throughout the entire depth of the membrane upon binding of nucleotide. In the absence of nucleotide, the two transmembrane domains form a single barrel 5-6 nm in diameter and about 5 nm deep with a central pore that is open to the extracellular surface and spans much of the membrane depth. Upon binding nucleotide, the transmembrane domains reorganize into three compact domains that are each 2-3 nm in diameter and 5-6 nm deep. This reorganization opens the central pore along its length in a manner that could allow access of hydrophobic drugs (transport substrates) directly from the lipid bilayer to the central pore of the transporter.

  7. Cereal n-glycoproteins enrichment by lectin affinity monolithic chromatography

    Czech Academy of Sciences Publication Activity Database

    Flodrová, Dana; Bobálová, Janette; Laštovičková, Markéta

    2016-01-01

    Roč. 44, č. 2 (2016), s. 286-297 ISSN 0133-3720 R&D Projects: GA ČR(CZ) GPP503/12/P395 Institutional support: RVO:68081715 Keywords : barley * wheat * glycoprotein * mass spectrometry * lectin chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.496, year: 2016

  8. Humanizing recombinant glycoproteins from Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Hansen, Anders Holmgaard; Amann, Thomas; Kol, Stefan

    hamster ovary (CHO) cells are making a very heterogeneous mixture of NGlycans. We speculate that the CHO pattern of N-Glycans would affect half-life and/or efficacy of the glycoprotein in the bloodstream making it unsuitable for human intravenous use, whereas our humanized version would be identical...

  9. Molecular cloning of S1 glycoprotein gene of infectious bronchitis ...

    African Journals Online (AJOL)

    In vitro protein expression is an important method of obtaining large amounts of viral proteins to investigate their biological properties. The S1 glycoprotein of infectious bronchitis virus, due to its effective immune-dominant role is an appropriate candidate for production of recombinant vaccine against infectious bronchitis ...

  10. Separation and identification of carp pituitary proteins and glycoproteins

    Czech Academy of Sciences Publication Activity Database

    Ryšlavá, H.; Janatová, M.; Čalounová, G.; Selicharová, Irena; Barthová, J.; Barth, Tomislav

    2005-01-01

    Roč. 50, č. 9 (2005), 430-437 ISSN 1212-1819 R&D Projects: GA MZe(CZ) QF3028 Institutional research plan: CEZ:AV0Z4055905 Keywords : carp hormones * glycoproteins * oligosaccharide chains Subject RIV: CE - Biochemistry Impact factor: 0.254, year: 2005

  11. QUANTITATIVE MASS SPECTROMETRIC ANALYSIS OF GLYCOPROTEINS COMBINED WITH ENRICHMENT METHODS

    Science.gov (United States)

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spec Rev 34:148–165, 2015. PMID:24889823

  12. Cancer Biomarker Discovery: Lectin-Based Strategies Targeting Glycoproteins

    Directory of Open Access Journals (Sweden)

    David Clark

    2012-01-01

    Full Text Available Biomarker discovery can identify molecular markers in various cancers that can be used for detection, screening, diagnosis, and monitoring of disease progression. Lectin-affinity is a technique that can be used for the enrichment of glycoproteins from a complex sample, facilitating the discovery of novel cancer biomarkers associated with a disease state.

  13. Increasing nerve agent treatment efficacy by P-glycoprotein inhibition

    NARCIS (Netherlands)

    Joosen, M.J.A.; Vester, S.M.; Hamelink, J.; Klaassen, S.D.; Berg, R.M. van den

    2016-01-01

    One of the shortcomings of current treatment of nerve agent poisoning is that not all drugs effectively penetrate the blood-brain barrier (BBB), whereas most nerve agents easily do. P-glycoprotein (Pgp) efflux transporters at the BBB may contribute to this aspect. It was previously shown that Pgp

  14. Glycoprotein Ibalpha signalling in platelet apoptosis and clearance

    NARCIS (Netherlands)

    van der Wal, E.

    2010-01-01

    Storage of platelets at low temperature reduces bacterial growth and might better preserve the haemostatic function of platelets than current procedures. Incubation at 0C is known to expose ?-N-acetyl-D-glucosamine-residues on glycoprotein (GP)Ibalpha inducing receptor-clustering and platelet

  15. Glycoprotein Ibα clustering in platelet storage and function

    NARCIS (Netherlands)

    Gitz, E.

    2013-01-01

    Platelets are anucleated, discoid-shaped cells that play an essential role in the formation of a hemostatic plug to prevent blood loss from injured vessels. Initial platelet arrest at the damaged arterial vessel wall is mediated through the interaction between the platelet receptor glycoprotein (GP)

  16. Do N-glycoproteins have preference for specific sequons?

    DEFF Research Database (Denmark)

    Rao, Shyama Prasad; Wollenweber, Bernd

    2010-01-01

    (hemagglutinin of influenza A H3N2 and glycoprotein120 of HIV-1) are indeed preferred sequon types, which may provide a selective advantage. Accordingly, although there seems to be some preference for sequons, this preference may not be unique to N-glycosylation....

  17. Extra-oviductal expression of oviductal glycoprotein 1 in mouse ...

    Indian Academy of Sciences (India)

    J. Biosci. 42(1), March 2017, 69–80 * Indian Academy of Sciences. 69. DOI: 10.1007/s12038-016-9657-2. Keywords. Epididymis; ovary; oviductal glycoprotein 1; testis. Supplementary materials pertaining to this article are available on the Journal of Biosciences Website. Published online: 11 January 2017 ...

  18. Direct chemical modification and voltammetric detection of glycans in glycoproteins

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2014-01-01

    Roč. 48, NOV2014 (2014), s. 52-55 ISSN 1388-2481 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081707 Keywords : Glycoproteins * Chemical modification * Os(VI)L complexes Subject RIV: BO - Biophysics Impact factor: 4.847, year: 2014

  19. Glycoprotein B cleavage is important for murid herpesvirus 4 to infect myeloid cells.

    Science.gov (United States)

    Glauser, Daniel L; Milho, Ricardo; Frederico, Bruno; May, Janet S; Kratz, Anne-Sophie; Gillet, Laurent; Stevenson, Philip G

    2013-10-01

    Glycoprotein B (gB) is a conserved herpesvirus virion component implicated in membrane fusion. As with many-but not all-herpesviruses, the gB of murid herpesvirus 4 (MuHV-4) is cleaved into disulfide-linked subunits, apparently by furin. Preventing gB cleavage for some herpesviruses causes minor infection deficits in vitro, but what the cleavage contributes to host colonization has been unclear. To address this, we mutated the furin cleavage site (R-R-K-R) of the MuHV-4 gB. Abolishing gB cleavage did not affect its expression levels, glycosylation, or antigenic conformation. In vitro, mutant viruses entered fibroblasts and epithelial cells normally but had a significant entry deficit in myeloid cells such as macrophages and bone marrow-derived dendritic cells. The deficit in myeloid cells was not due to reduced virion binding or endocytosis, suggesting that gB cleavage promotes infection at a postendocytic entry step, presumably viral membrane fusion. In vivo, viruses lacking gB cleavage showed reduced lytic spread in the lungs. Alveolar epithelial cell infection was normal, but alveolar macrophage infection was significantly reduced. Normal long-term latency in lymphoid tissue was established nonetheless.

  20. Crystal Structure of West Nile Virus Envelope Glycoprotein Reveals Viral Surface Epitopes

    Energy Technology Data Exchange (ETDEWEB)

    Kanai,R.; Kar, K.; Anthony, K.; Gould, L.; Ledizet, M.; Fikrig, E.; Marasco, W.; Koski, R.; Modis, Y.

    2006-01-01

    West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.

  1. Variation in human platelet glycoprotein VI content modulates glycoprotein VI-specific prothrombinase activity.

    Science.gov (United States)

    Furihata, K; Clemetson, K J; Deguchi, H; Kunicki, T J

    2001-11-01

    - Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen that figures prominently in signal transduction. An addition to binding to type I and III collagens, GPVI is also bound specifically by collagen-related peptide and convulxin (CVX), a snake venom protein. We developed a quantitative assay of platelet GPVI in which biotin-conjugated CVX binds selectively to GPVI in separated total platelet proteins by a ligand blot procedure. Using this approach, we have documented a 5-fold range in platelet GPVI content among 23 normal healthy subjects. In addition, we have determined that CVX-induced or collagen-related peptide-induced prothrombinase activity is directly proportional to the platelet content of GPVI. A statistically significant correlation was observed at 2 CVX concentrations: 14.7 ng/mL (R(2)=0.854 and P<0.001, n=11) and 22 ng/mL (R(2)=0.776 and P<0.001, n=12). In previous studies, we established a similar range of expression of the integrin collagen receptor alpha(2)beta(1) on platelets of normal subjects. Among 15 donors, there is a direct correlation between platelet alpha(2)beta(1) density and GPVI content (R(2)=0.475 and P=0.004). In view of the well-documented association of GPVI with platelet procoagulant activity, this study suggests that the variation in GPVI content is a potential risk factor that may predispose individuals to hemorrhagic or thromboembolic disorders.

  2. Platelet receptor expression and shedding: glycoprotein Ib-IX-V and glycoprotein VI.

    Science.gov (United States)

    Gardiner, Elizabeth E; Andrews, Robert K

    2014-04-01

    Quantity, quality, and lifespan are 3 important factors in the physiology, pathology, and transfusion of human blood platelets. The aim of this review is to discuss the proteolytic regulation of key platelet-specific receptors, glycoprotein(GP)Ib and GPVI, involved in the function of platelets in hemostasis and thrombosis, and nonimmune or immune thrombocytopenia. The scope of the review encompasses the basic science of platelet receptor shedding, practical aspects related to laboratory analysis of platelet receptor expression/shedding, and clinical implications of using the proteolytic fragments as platelet-specific biomarkers in vivo in terms of platelet function and clearance. These topics can be relevant to platelet transfusion regarding both changes in platelet receptor expression occurring ex vivo during platelet storage and/or clinical use of platelets for transfusion. In this regard, quantitative analysis of platelet receptor profiles on blood samples from individuals could ultimately enable stratification of bleeding risk, discrimination between causes of thrombocytopenia due to impaired production vs enhanced clearance, and monitoring of response to treatment prior to change in platelet count. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A variant surface glycoprotein of Trypanosoma brucei is synthesized with a hydrophobic carboxy-terminal extension from purified glycoprotein.

    NARCIS (Netherlands)

    J.C. Boothroyd; G.A.M. Cross; J.H.J. Hoeijmakers (Jan); P. Borst (Piet)

    1980-01-01

    textabstractSequential expression of variant surface glycoproteins (VSGs) enables the parasitic protozoan Trypanosoma brucei to evade the immune response of its mammalian hosts. Studies of several VSGs, which have been isolated as soluble molecules following disruption of cells in the absence of

  4. C-terminus glycans with critical functional role in the maturation of secretory glycoproteins.

    Directory of Open Access Journals (Sweden)

    Daniela Cioaca

    Full Text Available The N-glycans of membrane glycoproteins are mainly exposed to the extracellular space. Human tyrosinase is a transmembrane glycoprotein with six or seven bulky N-glycans exposed towards the lumen of subcellular organelles. The central active site region of human tyrosinase is modeled here within less than 2.5 Å accuracy starting from Streptomyces castaneoglobisporus tyrosinase. The model accounts for the last five C-terminus glycosylation sites of which four are occupied and indicates that these cluster in two pairs--one in close vicinity to the active site and the other on the opposite side. We have analyzed and compared the roles of all tyrosinase N-glycans during tyrosinase processing with a special focus on the proximal to the active site N-glycans, s6:N337 and s7:N371, versus s3:N161 and s4:N230 which decorate the opposite side of the domain. To this end, we have constructed mutants of human tyrosinase in which its seven N-glycosylation sites were deleted. Ablation of the s6:N337 and s7:N371 sites arrests the post-translational productive folding process resulting in terminally misfolded mutants subjected to degradation through the mannosidase driven ERAD pathway. In contrast, single mutants of the other five N-glycans located either opposite to the active site or into the N-terminus Cys1 extension of tyrosinase are temperature-sensitive mutants and recover enzymatic activity at the permissive temperature of 31°C. Sites s3 and s4 display selective calreticulin binding properties. The C-terminus sites s7 and s6 are critical for the endoplasmic reticulum retention and intracellular disposal. Results herein suggest that individual N-glycan location is critical for the stability, regional folding control and secretion of human tyrosinase and explains some tyrosinase gene missense mutations associated with oculocutaneous albinism type I.

  5. Gefarnate stimulates mucin-like glycoprotein secretion in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models

    Directory of Open Access Journals (Sweden)

    Dota A

    2013-01-01

    Full Text Available Atsuyoshi Dota, Yuko Takaoka-Shichijo, Masatsugu NakamuraOphthalmic Research and Development Center, Santen Pharmaceutical Co, Ltd, Ikoma-shi, Nara, JapanPurpose: The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models.Methods: Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model.Results: Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score.Conclusion: These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye.Keywords: gefarnate, fluorescein staining, rose bengal permeability, rabbit, cat, dry eye

  6. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  7. Nonsense mutation in the glycoprotein Ibα coding sequence associated with Bernard-Soulier syndrome

    International Nuclear Information System (INIS)

    Ware, J.; Russell, S.R.; Vicente, V.; Scharf, R.E.; Tomer, A.; McMillian, R.; Ruggeri, Z.M.

    1990-01-01

    Three distinct gene products, the α and β chains of glycoprotein (GP) Ib and GP IX, constitute the platelet membrane GP Ib-IX complex, a receptor for von Willebrand factor and thrombin involved in platelet adhesion and aggregation. Defective function of the GP Ib-IX complex is the hallmark of a rare congenital bleeding disorder of still undefined pathogenesis, the Bernard-Soulier syndrome. The authors have analyzed the molecular basis of the disease in one patient in whom immunoblotting of solubilized platelets demonstrated absence of normal GP Ibα but presence of a smaller immunoreactive species. The truncated polypeptide was also present, along with normal protein, in platelets from the patient's mother and two of his four children. Genetic characterization identified a nucleotide transition changing the Trp-343 codon (TGG) to a nonsense codon (TGA). Such a mutation explains the origin of the smaller GP Ibα, which by lacking half of the sequence on the carboxyl-terminal side, including the transmembrane domain, cannot be properly inserted in the platelet membrane. Both normal and mutant codons were found in the patient, suggesting that he is a compound heterozygote with a still unidentified defect in the other GP Ibα allele. Nonsense mutation and truncated GP Ibα polypeptide were found to cosegregate in four individuals through three generations and were associated with either Bernard-Soulier syndrome or carrier state phenotype. The molecular abnormality demonstrated in this family provides evidence that defective synthesis of GP Ibα alters the membrane expression of the GP Ib-IX complex and may be responsible for Bernard-Soulier syndrome

  8. Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition.

    OpenAIRE

    Gelsomino, G; Gazzano, E

    2013-01-01

    Background The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the respo...

  9. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein

    Science.gov (United States)

    Hoashi, Toshihiko; Sato, Shinichi; Yamaguchi, Yuji; Passeron, Thierry; Tamaki, Kunihiko; Hearing, Vincent J.

    2010-01-01

    Melanosomes are organelles specialized for the production of melanin pigment and are specifically produced by melanocytic cells. More than 150 pigmentation-related genes have been identified, including glycoprotein nonmetastatic melanoma protein b (GPNMB). A recent proteomics analysis revealed that GPNMB is localized in melanosomes, and GPNMB is a membrane-bound glycoprotein that shows high homology with a well-known melanosomal structural protein, Pmel17/gp100. In this study, we show that GPNMB is expressed in melanocytes of normal human skin, as well as in human melanoma cells. GPNMB is heavily glycosylated and is enriched in mature (stage III and IV) melanosomes in contrast to MART-1 and Pmel17, which are abundant in early (stage I and II) melanosomes. MART-1 and Pmel17 play critical roles in the maturation of early melanosomes; thus, we speculate that GPNMB might be important in the functions of late melanosomes, possibly their transport and/or transfer to keratinocytes. We also demonstrate that a secreted form of GPNMB is released by ectodomain shedding from the largely Golgi-modified form of GPNMB and that the PKC and Ca2+ intracellular signaling pathways regulate that shedding. We conclude that GPNMB is a melanosomal protein that is released by proteolytic ectodomain shedding and might be a useful and specific histological marker of melanocytic cells.—Hoashi, T., Sato, S., Yamaguchi, Y., Passeron, T., Tamaki, K., Hearing, V. J. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. PMID:20056711

  10. Ice growth in supercooled solutions of antifreeze glycoprotein.

    Science.gov (United States)

    Harrison, K; Hallett, J; Burcham, T S; Feeney, R E; Kerr, W L; Yeh, Y

    Inhibition of ice growth in supercooled solution by certain proteins is vital to the survival of many living organisms. Some fish, native to both subzero northern and southern waters, have special proteins or glycoproteins in their blood serum that inhibit ice formation. Whereas these proteins have only a very small effect on the melting temperature of ice, the temperature of these fish can fall to nearly 1 K below the melting point before ice crystals grow. This phenomenon is called freezing hysteresis, in contrast to the normal colligative effect of solutes that depresses the equilibrium temperature, around which small changes lead to crystal growth or melting depending on sign. Some insects also exhibit a serum freezing hysteresis. We report the effects of different degrees of supercooling on the habit and rates of growth of ice crystals from solutions of these antifreeze glycoproteins (AFGPs). We find that the crystallization rate is up to five times greater than that in pure water.

  11. TROPHOBLASTIC β1 – GLYCOPROTEIN SYNTHESIS IN SEROPOSITIVE PREGNANT WOMEN

    Directory of Open Access Journals (Sweden)

    R. N. Bogdanovich

    2005-01-01

    Full Text Available Abstract. The level of trophoblastic β1 – glycoprotein (SP–1 was determined in the blood sera of 200 healthy pregnant women and 184 women with threatened abortions in term till 20 weeks of pregnancy. In group of women experiencing recurrent abortions in 38 % cases antibodies to chorionic gonadotropin, in 39,5 % cases antibodies to phospholipids, in 25,5 % – antibodies to tireoglobulin were revealed in significant amounts. In 20,65 % lupus anticoagulant was found. The majority of women in this group had changes in homeostasis. The presence of autoantibodies during pregnancy is the unfavourable factor in the development of placental insufficiency. This is proved by the decreased secretion of trophoblastic β1 – glycoprotein – a marker of the fetal part of placenta. (Med. Immunol., 2005, vol.7, № 1, pp. 85588

  12. Comparison of glycoprotein expression between ovarian and colon adenocarcinomas

    DEFF Research Database (Denmark)

    Multhaupt, H A; Arenas-Elliott, C P; Warhol, M J

    1999-01-01

    , carcinoembryonic antigen, and cytokeratins 7 and 20 to detect tumor-associated glycoproteins and keratin proteins in ovarian and colonic carcinomas. RESULTS: CA125, carcinoembryonic antigen, and cytokeratins 7 and 20 can distinguish between colonic and serous or endometrioid adenocarcinomas of the ovary in both...... primary and metastatic lesions. Mucinous ovarian adenocarcinomas differed in that they express carcinoembryonic antigen and cytokeratins 7 and 20 and weakly express CA125. The other glycoprotein antigens were equally expressed by ovarian and colonic adenocarcinomas and therefore were of no use...... in distinguishing between these 2 entities. CONCLUSION: A panel of monoclonal antibodies against cytokeratins 7 and 20 antigens, CA125, and carcinoembryonic antigen is useful in differentiating serous and endometrioid adenocarcinomas of the ovary from colonic adenocarcinomas. Mucinous ovarian adenocarcinomas cannot...

  13. Functional Hierarchy of Herpes Simplex Virus 1 Viral Glycoproteins in Cytoplasmic Virion Envelopment and Egress

    Science.gov (United States)

    Chouljenko, Dmitry V.; Kim, In-Joong; Chouljenko, Vladimir N.; Subramanian, Ramesh; Walker, Jason D.

    2012-01-01

    Herpes simplex virus 1 (HSV-1) viral glycoproteins gD (carboxyl terminus), gE, gK, and gM, the membrane protein UL20, and membrane-associated protein UL11 play important roles in cytoplasmic virion envelopment and egress from infected cells. We showed previously that a recombinant virus carrying a deletion of the carboxyl-terminal 29 amino acids of gD (gDΔct) and the entire gE gene (ΔgE) did not exhibit substantial defects in cytoplasmic virion envelopment and egress (H. C. Lee et al., J. Virol. 83:6115–6124, 2009). The recombinant virus ΔgM2, engineered not to express gM, produced a 3- to 4-fold decrease in viral titers and a 50% reduction in average plaque sizes in comparison to the HSV-1(F) parental virus. The recombinant virus containing all three mutations, gDΔct-ΔgM2-ΔgE, replicated approximately 1 log unit less efficiently than the HSV-1(F) parental virus and produced viral plaques which were on average one-third the size of those of HSV-1(F). The recombinant virus ΔUL11-ΔgM2, engineered not to express either UL11 or gM, replicated more than 1 log unit less efficiently and produced significantly smaller plaques than UL11-null or gM-null viruses alone, in agreement with the results of Leege et al. (T. Leege et al., J. Virol. 83:896-907, 2009). Analyses of particle-to-PFU ratios, relative plaque size, and kinetics of virus growth and ultrastructural visualization of glycoprotein-deficient mutant and wild-type virions indicate that gDΔct, gE, and gM function in a cooperative but not redundant manner in infectious virion morphogenesis. Overall, comparisons of single, double, and triple mutant viruses generated in the same HSV-1(F) genetic background indicated that lack of either UL20 or gK expression caused the most severe defects in cytoplasmic envelopment, egress, and infectious virus production, followed by the double deletion of UL11 and gM. PMID:22318149

  14. Tumor specific glycoproteins and method for detecting tumorigenic cancers

    International Nuclear Information System (INIS)

    Davidson, E.A.; Bolmer, S.D.

    1981-01-01

    The detection of tumour specific glycoproteins (TSGP) in human sera often indicates the presence of a malignant tumour in a patient. The distinguishing characteristics of TSGP isolated from the blood sera of cancer patients are described in detail together with methods of TSGP isolation and purification. Details are also given of radioimmunoassay techniques capable of detecting very low levels of serum TSGP with high specificity. (U.K.)

  15. Mucus glycoprotein secretion by tracheal explants: effects of pollutants

    International Nuclear Information System (INIS)

    Last, J.A.; Kaizu, T.

    1980-01-01

    Tracheal slices incubated with radioactive precursors in tissue culture medium secrete labeled mucus glycoproteins into the culture medium. We have used an in vivtro approach, a combined method utilizing exposure to pneumotoxins in vivo coupled with quantitation of mucus secretion rates in vitro, to study the effects of inhaled pollutants on mucus biosynthesis by rat airways. In addition, we have purified the mucus glycoproteins secreted by rat tracheal explants in order to determine putative structural changes that might by the basis for the observed augmented secretion rates after exposure of rats to H2SO4 aerosols in combination with high ambient levels of ozone. After digestion with papain, mucus glycoproteins secreted by tracheal explants may be separated into five fractions by ion-exchange chromatography, with recovery in high yield, on columns of DEAE-cellulose. Each of these five fractions, one neutral and four acidic, migrates as a single unique spot upon cellulose acetate electrophoresis at pH values of 8.6 and 1.2. The neutral fraction, which is labeled with [3H] glucosamine, does not contain radioactivity when Na2 35SO4 is used as the precursor. Acidic fractions I to IV are all labeled with either 3H-glucosamine or Na2 35SO4 as precursor. Acidic fraction II contains sialic acid as the terminal sugar on its oligosaccharide side chains, based upon its chromatographic behavior on columns of wheat-germ agglutinin-Agarose. Treatment of this fraction with neuraminidase shifts its elution position in the gradient to a lower salt concentration, coincident with acidic fraction I. After removal of terminal sialic acid residues with either neuraminidase or low pH treatment, the resultant terminal sugar on the oligosaccharide side chains is fucose. These results are identical with those observed with mucus glycoproteins secreted by cultured human tracheal explants and purified by these same techniques

  16. Extracellular Glycoproteins in Embryogenic Culture of Pumpkin (Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    Hana Čipčić Paljetak

    2011-01-01

    Full Text Available The extracellular proteins in three distinctly induced embryogenic lines of pumpkin (Cucurbita pepo L. cultivated in four MS media modified regarding the nitrogen composition or auxin presence/absence have been analyzed. Extracellular glycoproteins containing α-D-mannose were specifically detected by the lectine concavalin A. During the cultivation of embryogenic tissue in the medium supplemented with reduced nitrogen, the embryos were mostly arrested at preglobular and globular developmental stages, which coincide with the absence of protein secretion. Secreted glycoproteins of 76, 68, 37 and 34 kDa were detected only if any of the three lines were cultivated in the medium that stimulates embryo development, irrespectively of the addition of 2,4-dichlorophenoxyacetic acid or tunicamycin. The glycoprotein of 64 kDa was detected in all lines cultivated in hormone-free MS medium with conventional nitrogen sources and it appears to be associated with embryo maturation. Tunicamycin treatment did not influence embryogenesis, although it specifically affected glycosylation of proteins in the investigated lines. Our results show that besides auxin, the source of nitrate is of great importance for proper protein glycosylation, excretion and developmental transition of pumpkin somatic embryos.

  17. Comparison of glycoprotein expression between ovarian and colon adenocarcinomas.

    Science.gov (United States)

    Multhaupt, H A; Arenas-Elliott, C P; Warhol, M J

    1999-10-01

    Tumor-associated antigens may be expressed as surface glycoproteins. These molecules undergo qualitative and quantitative modifications during cell differentiation and malignant transformation. During malignant transformation, incomplete glycosylation is common, and certain glycosylation pathways are preferred. These antigens might help distinguish between ovarian and colonic adenocarcinomas in the primary and metastatic lesions. Different cytokeratins have been proposed as relatively organ-specific antigens. We used monoclonal antibodies against T1, Tn, sialosyl-Tn, B72.3, CA125, carcinoembryonic antigen, and cytokeratins 7 and 20 to detect tumor-associated glycoproteins and keratin proteins in ovarian and colonic carcinomas. CA125, carcinoembryonic antigen, and cytokeratins 7 and 20 can distinguish between colonic and serous or endometrioid adenocarcinomas of the ovary in both primary and metastatic lesions. Mucinous ovarian adenocarcinomas differed in that they express carcinoembryonic antigen and cytokeratins 7 and 20 and weakly express CA125. The other glycoprotein antigens were equally expressed by ovarian and colonic adenocarcinomas and therefore were of no use in distinguishing between these 2 entities. A panel of monoclonal antibodies against cytokeratins 7 and 20 antigens, CA125, and carcinoembryonic antigen is useful in differentiating serous and endometrioid adenocarcinomas of the ovary from colonic adenocarcinomas. Mucinous ovarian adenocarcinomas cannot be distinguished from colonic adenocarcinomas using immunohistochemistry.

  18. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    Energy Technology Data Exchange (ETDEWEB)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. (Univ. of Texas Health Science Center, San Antonio (USA))

    1989-03-07

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the {alpha}-glucosidase amyloglucosidase (50% inhibition at 5.8 {mu}M), but it did not inhibit {beta}-glucosidase, {alpha}- or {beta}-mannosidase, or {alpha}- or {beta}-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc{sub 3}Man{sub 7-9}(GlcNAc){sub 2}-oligosaccharides.

  19. Simultaneous Pathoproteomic Evaluation of the Dystrophin-Glycoprotein Complex and Secondary Changes in the mdx-4cv Mouse Model of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Sandra Murphy

    2015-06-01

    Full Text Available In skeletal muscle, the dystrophin-glycoprotein complex forms a membrane-associated assembly of relatively low abundance, making its detailed proteomic characterization in normal versus dystrophic tissues technically challenging. To overcome this analytical problem, we have enriched the muscle membrane fraction by a minimal differential centrifugation step followed by the comprehensive label-free mass spectrometric analysis of microsomal membrane preparations. This organelle proteomic approach successfully identified dystrophin and its binding partners in normal versus dystrophic hind limb muscles. The introduction of a simple pre-fractionation step enabled the simultaneous proteomic comparison of the reduction in the dystrophin-glycoprotein complex and secondary changes in the mdx-4cv mouse model of dystrophinopathy in a single analytical run. The proteomic screening of the microsomal fraction from dystrophic hind limb muscle identified the full-length dystrophin isoform Dp427 as the most drastically reduced protein in dystrophinopathy, demonstrating the remarkable analytical power of comparative muscle proteomics. Secondary pathoproteomic expression patterns were established for 281 proteins, including dystrophin-associated proteins and components involved in metabolism, signalling, contraction, ion-regulation, protein folding, the extracellular matrix and the cytoskeleton. Key findings were verified by immunoblotting. Increased levels of the sarcolemmal Na+/K+-ATPase in dystrophic leg muscles were also confirmed by immunofluorescence microscopy. Thus, the reduction of sample complexity in organelle-focused proteomics can be advantageous for the profiling of supramolecular protein complexes in highly intricate systems, such as skeletal muscle tissue.

  20. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    Science.gov (United States)

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  1. Sequence characteristics of a gene in equine herpesvirus 1 homologous to glycoprotein H of herpes simplex virus.

    Science.gov (United States)

    Robertson, G R; Scott, N A; Miller, J M; Sabine, M; Zheng, M; Bell, C W; Whalley, J M

    1991-01-01

    A gene in equine herpesvirus 1 (EHV-1, equine abortion virus) homologous to the glycoprotein H gene of herpes simplex virus (HSV) was identified and characterised by its nucleotide and derived amino acid sequence. The EHV-1 gH gene is located at 0.47-0.49 map units and contains an open reading frame capable of specifying a polypeptide of 848 amino acids, including N- and C-terminal hydrophobic domains consistent with signal and membrane anchor regions respectively, and 11 potential sites for N-glycosylation. Alignment of the amino acid sequence with those published for HSV gH, varicella zoster virus gpIII, Epstein Barr virus gp85 and human cytomegalovirus p86 shows similarity of the EHV gene with the 2 other alpha-herpesviruses over most of the polypeptide, but only the C-terminal half could be aligned for all 5 viruses. The identical positioning of 6 cysteine residues and a number of highly conserved amino acid motifs supports a common evolutionary origin of this gene and is consistent with its role as an essential glycoprotein of the herpesvirus family. An origin of replication is predicted to occur at approximately 300 nucleotides downstream of the EHV-1 gH coding region, on the basis of similarity to other herpesvirus origins.

  2. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Science.gov (United States)

    Xu, Kai; Rockx, Barry; Xie, Yihu; DeBuysscher, Blair L; Fusco, Deborah L; Zhu, Zhongyu; Chan, Yee-Peng; Xu, Yan; Luu, Truong; Cer, Regina Z; Feldmann, Heinz; Mokashi, Vishwesh; Dimitrov, Dimiter S; Bishop-Lilly, Kimberly A; Broder, Christopher C; Nikolov, Dimitar B

    2013-01-01

    The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  3. Non-p-glycoprotein-mediated multidrug resistance in detransformed rat cells selected for resistance to methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Weber, J M; Sircar, S; Horvath, J; Dion, P

    1989-11-01

    Three independent variants (G2, G4, G5), resistant to methylglyoxal bis(guanylhydrazone), an anticancer drug, have been isolated by single step selection from an adenovirus-transformed rat brain cell line (1). These variants display selective cross-resistance to several natural product drugs of dissimilar structure and action. Multidrug resistance has recently been shown to be caused by overexpression of the membrane-associated p-glycoprotein, most often caused by amplification of the mdr gene. Several types of experiments were conducted to determine whether the observed drug resistance in our cell lines could be due to changes at the mdr locus. The following results were obtained: (a) the mdr locus was not amplified; (b) transcription of the mdr gene and p-glycoprotein synthesis were not increased; (c) multidrug resistance cell lines, which carry an amplified mdr locus, were not cross-resistant to methylglyoxal bis(guanylhydrazone); (d) verapamil did not reverse the resistance of G cells or mdr cells to methylglyoxal bis(guanylhydrazone), nor that of G cells to vincristine; and (e) methylglyoxal bis(guanylhydrazone) resistance was recessive and depended on a block to drug uptake, as opposed to mdr cells which are dominant and express increased drug efflux. The results obtained suggest that the drug resistance in the G2, G4, and G5 cells was atypical and may be due to a mechanism distinct from that mediated by the mdr locus.

  4. Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (γ penetrene

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2009-09-01

    Full Text Available Abstract Background Borna disease virus (BDV is the type member of the Bornaviridae, a family of viruses that induce often fatal neurological diseases in horses, sheep and other animals, and have been proposed to have roles in certain psychiatric diseases of humans. The BDV glycoprotein (G is an extensively glycosylated protein that migrates with an apparent molecular mass of 84,000 to 94,000 kilodaltons (kDa. BDV G is post-translationally cleaved by the cellular subtilisin-like protease furin into two subunits, a 41 kDa amino terminal protein GP1 and a 43 kDa carboxyl terminal protein GP2. Results Class III viral fusion proteins (VFP encoded by members of the Rhabdoviridae, Herpesviridae and Baculoviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Proteomics computational analyses suggest that the structural/functional motifs that characterize class III VFP are located collinearly in BDV G. Structural models were established for BDV G based on the post-fusion structure of a prototypic class III VFP, vesicular stomatitis virus glycoprotein (VSV G. Conclusion These results suggest that G encoded by members of the Bornavirdae are class III VFPs (gamma-penetrenes.

  5. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available The henipaviruses, represented by Hendra (HeV and Nipah (NiV viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4 was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.

  6. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody.

    Science.gov (United States)

    Kwong, P D; Wyatt, R; Robinson, J; Sweet, R W; Sodroski, J; Hendrickson, W A

    1998-06-18

    The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gp120 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 A resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene.

  7. The complexity of roles of P-glycoprotein in refractory epilepsy: Pharmacoresistance, epileptogenesis, SUDEP and relapsing marker after surgical treatment

    Directory of Open Access Journals (Sweden)

    Alberto Lazarowski

    2015-07-01

    Full Text Available As described initially from clinical and experimental studies, P-glycoprotein (P-gp plays a central role in the pharmacoresistance of epilepsy, acting by efflux of AEDs mainly at blood brain barrier (BBB level. However, repetitive seizures can produce both brain and heart P-gp overexpression. Because P-gp activity induces membrane depolarization, its neuronal expression could be acting in the intrinsic mechanism of epileptogenesis, and its heart expression, can be a high risk factor of death, after severe-continuo convulsive stresses as in  fatal status epilepticus or in SUDEP. Additionally, because P-gp is also a stem cell marker, we suggests that its constitutive overexpression in dysplastic neurons from brain epileptogenic areas observed in patients with refractory epilepsies, should be addressed as a risk factor of seizures relapse after surgical treatment. Here we discuss these concepts, based on our own clinical and experimental experiences, and reviewing the current literature on these subjects.

  8. A synthetic peptide corresponding to the carboxy terminus of human immunodeficiency virus type 1 transmembrane glycoprotein induces alterations in the ionic permeability of Xenopus laevis oocytes.

    Science.gov (United States)

    Comardelle, A M; Norris, C H; Plymale, D R; Gatti, P J; Choi, B; Fermin, C D; Haislip, A M; Tencza, S B; Mietzner, T A; Montelaro, R C; Garry, R F

    1997-11-20

    The carboxy-terminal 29 amino acids of the human immunodeficiency virus type 1 transmembrane glycoprotein (HIV-1 TM) are referred to as lentivirus lytic peptide 1 (LLP-1). Synthetic peptides corresponding to LLP-1 have been shown to induce cytolysis and to alter the permeability of cultured cells to various small molecules. To address the mechanisms by which LLP-1 induces cytolysis and membrane permeability changes, various concentrations of LLP-1 were incubated with Xenopus laevis oocytes, and two-electrode, voltage-clamp recording measurements were performed. LLP-1 at concentrations of 75 nM and above induced dramatic alterations in the resting membrane potential and ionic permeability of Xenopus oocytes. These concentrations of LLP-1 appeared to induce a major disruption of plasma membrane electrophysiological integrity. In contrast, concentrations of LLP-1 of 20-50 nM induced changes in membrane ionic permeability that mimic changes induced by compounds, such as the bee venom peptide melittin, that are known to form channel-like structures in biological membranes at sublytic concentrations. An analog of LLP-1 with greatly reduced cytolytic activity failed to alter the electrophysiological properties of Xenopus oocytes. Thus, by altering plasma membrane ionic permeability, the carboxy terminus of TM may contribute to cytolysis of HIV-1-infected CD4+ cells.

  9. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Sainz, I.J. [Plum Island Animal Disease Center, ARS, USDA (United States); Largo, E. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Gladue, D.P.; Fletcher, P. [Plum Island Animal Disease Center, ARS, USDA (United States); O’Donnell, V. [Plum Island Animal Disease Center, ARS, USDA (United States); Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Holinka, L.G. [Plum Island Animal Disease Center, ARS, USDA (United States); Carey, L.B. [Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), E-08003 Barcelona (Spain); Lu, X. [Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Nieva, J.L. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Borca, M.V., E-mail: manuel.borca@ars.usda.gov [Plum Island Animal Disease Center, ARS, USDA (United States)

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  10. The short mRNA isoform of the immunoglobulin superfamily, member 1 gene encodes an intracellular glycoprotein.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Mutations in the immunoglobulin superfamily, member 1 gene (IGSF1/Igsf1 cause an X-linked form of central hypothyroidism. The canonical form of IGSF1 is a transmembrane glycoprotein with 12 immunoglobulin (Ig loops. The protein is co-translationally cleaved into two sub-domains. The carboxyl-terminal domain (CTD, which contains the last 7 Ig loops, is trafficked to the plasma membrane. Most pathogenic mutations in IGSF1 map to the portion of the gene encoding the CTD. IGSF1/Igsf1 encodes a variety of transcripts. A little studied, but abundant splice variant encodes a truncated form of the protein, predicted to contain the first 2 Ig loops of the full-length IGSF1. The protein (hereafter referred to as IGSF1 isoform 2 or IGSF1-2 is likely retained in most individuals with IGSF1 mutations. Here, we characterized basic biochemical properties of the protein as a foray into understanding its potential function. IGSF1-2, like the IGSF1-CTD, is a glycoprotein. In both mouse and rat, the protein is N-glycosylated at a single asparagine residue in the first Ig loop. Contrary to earlier predictions, neither the murine nor rat IGSF1-2 is secreted from heterologous or homologous cells. In addition, neither protein associates with the plasma membrane. Rather, IGSF1-2 appears to be retained in the endoplasmic reticulum. Whether the protein plays intracellular functions or is trafficked through the secretory pathway under certain physiologic or pathophysiologic conditions has yet to be determined.

  11. Inhibitory Effects of Daiokanzoto (Da-Huang-Gan-Cao-Tang on P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Yuka Watanabe

    2012-01-01

    Full Text Available We have studied the effects of various Kampo medicines on P-glycoprotein (P-gp, a drug transporter, in vitro. The present study focused on Daiokanzoto (Da-Huang-Gan-Cao-Tang, which shows the most potent inhibitory effects on P-gp among the 50 Kampo medicines studied, and investigated the P-gp inhibitory effects of Daiokanzoto herbal ingredients (rhubarb and licorice root and their components by an ATPase assay using human P-gp membrane. Both rhubarb and licorice root significantly inhibited ATPase activity, and the effects of rhubarb were more potent than those of licorice root. The content of rhubarb in Daiokanzoto is double that in licorice root, and the inhibition patterns of Daiokanzoto and rhubarb involve both competitive and noncompetitive inhibition, suggesting that the inhibitory effects of Daiokanzoto are mainly due to rhubarb. Concerning the components of rhubarb, concentration-dependent inhibitory effects were observed for (−-catechin gallate, (−-epicatechin gallate, and (−-epigallocatechin gallate. In conclusion, rhubarb may cause changes in the drug dispositions of P-gp substrates through the inhibition of P-gp. It appears that attention should be given to the interactions between these drugs and Kampo medicines containing rhubarb as an herbal ingredient.

  12. The role of glycoprotein 130 family of cytokines in fetal rat lung development.

    Directory of Open Access Journals (Sweden)

    Cristina Nogueira-Silva

    Full Text Available The glycoprotein 130 (gp130 dependent family of cytokines comprises interleukin-6 (IL-6, IL-11, leukemia inhibitory factor (LIF, cardiotrophin-like cytokine (CLC, ciliary neurotrophic factor (CNTF, cardiotrophin-1 (CT-1 and oncostatin M (OSM. These cytokines share the membrane gp130 as a common signal transducer. Recently, it was demonstrated that IL-6 promotes, whereas LIF inhibits fetal lung branching. Thus, in this study, the effects on fetal lung morphogenesis of the other classical members of the gp130-type cytokines (IL-11, CLC, CNTF, CT-1 and OSM were investigated. We also provide the first description of these cytokines and their common gp130 receptor protein expression patterns during rat lung development. Fetal rat lung explants were cultured in vitro with increasing concentrations of IL-11, CLC, CNTF, CT-1 and OSM. Treated lung explants were morphometrically analyzed and assessed for MAPK, PI3K/AKT and STAT3 signaling modifications. IL-11, which similarly to IL-6 acts through a gp130 homodimer receptor, significantly stimulated lung growth via p38 phosphorylation. On the other hand, CLC, CNTF, CT-1 and OSM, whose receptors are gp130 heterodimers, inhibited lung growth acting in different signal-transducing pathways. Thus, the present study demonstrated that although cytokines of the gp130 family share a common signal transducer, there are specific biological activities for each cytokine on lung development. Indeed, cytokine signaling through gp130 homodimers stimulate, whereas cytokine signaling through gp130 heterodimers inhibit lung branching.

  13. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays.

    Science.gov (United States)

    Gozalpour, Elnaz; Wilmer, Martijn J; Bilos, Albert; Masereeuw, Rosalinde; Russel, Frans G M; Koenderink, Jan B

    2016-04-01

    Digitalis-like compounds (DLCs), the ancient medication of heart failure and Na,K-ATPase inhibitors, are characterized by their toxicity. Drug-drug interactions (DDIs) at absorption and excretion levels play a key role in their toxicity, hence, knowledge about the transporters involved might prevent these unwanted interactions. In the present study, the transport of fourteen DLCs with human P-glycoprotein (P-gp; ABCB1) was studied using a liquid chromatography-mass spectrometry (LC-MS) quantification method. DLC transport by P-gp overexpressing Madin-Darby canine kidney (MDCK) and immortalized human renal cells (ciPTEC) was compared to vesicular DLC transport. Previously, we identified convallatoxin as a substrate using membrane vesicles overexpressing P-gp; however, we could not measure transport of other DLCs in this assay (Gozalpour et al., 2014a). Here, we showed that lipophilic digitoxin, digoxigenin, strophanthidin and proscillaridin A are P-gp substrates in cellular accumulation assays, whereas the less lipophilic convallatoxin was not. P-gp function in the cellular accumulation assays depends on the entrance of lipophilic compounds by passive diffusion, whereas the vesicular transport assay is more appropriate for hydrophilic substrates. In conclusion, we identified digitoxin, digoxigenin, strophanthidin and proscillaridin A as P-gp substrates using cellular accumulation assays and recognized lipophilicity as an important factor in selecting a suitable transport assay. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Global rescue of defects in HIV-1 envelope glycoprotein incorporation: implications for matrix structure.

    Directory of Open Access Journals (Sweden)

    Philip R Tedbury

    Full Text Available The matrix (MA domain of HIV-1 Gag plays key roles in membrane targeting of Gag, and envelope (Env glycoprotein incorporation into virions. Although a trimeric MA structure has been available since 1996, evidence for functional MA trimers has been elusive. The mechanism of HIV-1 Env recruitment into virions likewise remains unclear. Here, we identify a point mutation in MA that rescues the Env incorporation defects imposed by an extensive panel of MA and Env mutations. Mapping the mutations onto the putative MA trimer reveals that the incorporation-defective mutations cluster at the tips of the trimer, around the perimeter of a putative gap in the MA lattice into which the cytoplasmic tail of gp41 could insert. By contrast, the rescue mutation is located at the trimer interface, suggesting that it may confer rescue of Env incorporation via modification of MA trimer interactions, a hypothesis consistent with additional mutational analysis. These data strongly support the existence of MA trimers in the immature Gag lattice and demonstrate that rescue of Env incorporation defects is mediated by modified interactions at the MA trimer interface. The data support the hypothesis that mutations in MA that block Env incorporation do so by imposing a steric clash with the gp41 cytoplasmic tail, rather than by disrupting a specific MA-gp41 interaction. The importance of the trimer interface in rescuing Env incorporation suggests that the trimeric arrangement of MA may be a critical factor in permitting incorporation of Env into the Gag lattice.

  15. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner.

    Directory of Open Access Journals (Sweden)

    Asuka Nanbo

    2010-09-01

    Full Text Available Ebolavirus (EBOV is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs, both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX 5, a marker of macropinocytosis-specific endosomes (macropinosomes. Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.

  16. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner.

    Science.gov (United States)

    Nanbo, Asuka; Imai, Masaki; Watanabe, Shinji; Noda, Takeshi; Takahashi, Kei; Neumann, Gabriele; Halfmann, Peter; Kawaoka, Yoshihiro

    2010-09-23

    Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.

  17. Monoclonal antibodies directed to E1 glycoprotein of rubella virus

    International Nuclear Information System (INIS)

    Umino, Y.; Sato, A.; Katow, S.; Matsuno, T.; Sugiura, A.

    1985-01-01

    We have prepared four monoclonal antibodies to rubella virus E1 glycoprotein. Three nonoverlapping antigenic sites were delineated on E1 protein by competitive binding assays. Antibodies binding to one site were characterized by high hemagglutination inhibition (HI) titer but poor neutralizing activity. The addition of antiglobulin conferred neutralizing activity. Antibodies directed to two other antigenic sites had modest hemolysis inhibition but little or no HI and neutralizing activities. The addition of antiglobulin markedly augmented HI activity but had little effect on neutralizing activity. Epitopes defined by three antibodies were conserved among four rubella virus strains examined. (Author)

  18. Structure of the transmembrane domain of HIV-1 envelope glycoprotein.

    Science.gov (United States)

    Chen, Bing; Chou, James J

    2017-04-01

    HIV-1 envelope spike (Env) is a heavily glycosylated, type I membrane protein that mediates fusion of viral and cell membranes to initiate infection. It is also a primary target of neutralizing antibodies and thus an important candidate for vaccine development. We have recently reported a nuclear magnetic resonance structure of the transmembrane (TM) domain of HIV-1 Env reconstituted in a membrane-like environment. Taking HIV-1 as an example, we discuss here how a TM domain can anchor, stabilize, and modulate a viral envelope spike and how its high-resolution structure can contribute to understanding viral membrane fusion and to immunogen design. © 2016 Federation of European Biochemical Societies.

  19. Characterization of Vesicular Stomatitis Virus Pseudotypes Bearing Essential Entry Glycoproteins gB, gD, gH, and gL of Herpes Simplex Virus 1.

    Science.gov (United States)

    Rogalin, Henry B; Heldwein, Ekaterina E

    2016-11-15

    Herpes simplex viruses (HSVs) are unusual in that unlike most enveloped viruses, they require at least four entry glycoproteins, gB, gD, gH, and gL, for entry into target cells in addition to a cellular receptor for gD. The dissection of the herpes simplex virus 1 (HSV-1) entry mechanism is complicated by the presence of more than a dozen proteins on the viral envelope. To investigate HSV-1 entry requirements in a simplified system, we generated vesicular stomatitis virus (VSV) virions pseudotyped with HSV-1 essential entry glycoproteins gB, gD, gH, and gL but lacking the native VSV fusogen G. These virions, referred to here as VSVΔG-BHLD virions, infected a cell line expressing a gD receptor, demonstrating for the first time that the four essential entry glycoproteins of HSV-1 are not only required but also sufficient for cell entry. To our knowledge, this is the first time the VSV pseudotyping system has been successfully extended beyond two proteins. Entry of pseudotyped virions required a gD receptor and was inhibited by HSV-1 specific anti-gB or anti-gH/gL neutralizing antibodies, which suggests that membrane fusion during the entry of the pseudotyped virions shares common requirements with the membrane fusion involved in HSV-1 entry and HSV-1-mediated syncytium formation. The HSV pseudotyping system established in this study presents a novel tool for systematic exploration of the HSV entry and membrane fusion mechanisms. Herpes simplex viruses (HSVs) are human pathogens that can cause cold sores, genital herpes, and blindness. No vaccines or preventatives are available. HSV entry into cells-a prerequisite for a successful infection-is a complex process that involves multiple viral and host proteins and occurs by different routes. Detailed mechanistic knowledge of the HSV entry is important for understanding its pathogenesis and would benefit antiviral and vaccine development, yet the presence of more than a dozen proteins on the viral envelope complicates

  20. Allergy-related cytokines (IL-4 and TNF-α) are induced by Di(2-ethylhexyl) phthalate and attenuated by plant-originated glycoprotein (75 kDa) in HMC-1 cells.

    Science.gov (United States)

    Lee, Jin; Oh, Phil-Sun; Lim, Kye-Taek

    2011-08-01

    Phthalate esters as plasticizers have been widespread in the environment and may be associated with development of allergic diseases such as asthma and atopic dermatitis. In this study, we demonstrated that the CTB glycoprotein attenuates allergic reactions caused by di(2-ethylhexyl) phthalate (DEHP) in human mast cells (HMC-1). This experiment evaluated degranulation of histamine and β-hexosaminidase as well as activities of protein kinase C (PKC), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), activator protein (AP)-1 and interleukin (IL)-4 and tumor necrosis factor (TNF)-α using immunoblotting and reverse transcription-polymerase chain reaction (RT-PCR). Our results revealed that the CTB glycoprotein in the presence of DEHP inhibits degranulation of mast cell, translocation of PKC from cytosol to membrane, and phosphorylation of SAPK/JNK in HMC -1 cells. We also found that the CTB glycoprotein (100 μg mL(-1) ) has suppressive effects on transcriptional activation of AP-1, and on the expression of IL-4 and TNF-α in DEHP-treated HMC-1 cells. We suggest that the CTB glycoprotein inhibits degranulation of mast cells and expressions of cytokines in HMC-1 cells. Copyright © 2010 Wiley Periodicals, Inc.

  1. Expression of TNF-alpha and IL-6 in HMC-1 cells treated with bisphenol A is attenuated by plant-originating glycoprotein (75 kDa) by blocking p38 MAPK.

    Science.gov (United States)

    Lee, Jin; Lim, Kye-Taek

    2010-07-01

    Bisphenol A (BPA) is known as an estrogen-mimic environmental hormone which has the ability to indirectly stimulate the production of allergic inflammation-related cytokines. Cudrania tricuspidata Bureau (CTB) has been used in Korean folk medicine for a long time. In order to determine the inhibitory effect of a glycoprotein (CTB glycoprotein, 75 kDa) isolated from CTB fruits on the activities of allergic inflammation-related cytokines (TNF-alpha and IL-6) caused by BPA, we evaluated the activities of protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor (NF)-kappaB, and inflammation-related cytokine (TNF-alpha and IL-6) in the BPA-induced HMC-1 cells using immunoblot analysis and RT-PCR. The results obtained from this study revealed that CTB glycoprotein (100 microg/ml) inhibits the translocation of PKC from cytosol to the membrane, the phosphorylation of p38 MAPK, the activation of NF-kappaB, and the expression levels of TNF-alpha and IL-6. Taken together, the results in this study suggest that CTB glycoprotein inhibits the expression of allergic inflammation-related cytokines (TNF-alpha and IL-6) by blocking NF-kappaB and p38 kinase in BPA-induced HMC-1 cells.

  2. CXCR4 mediated chemotaxis is regulated by 5T4 oncofetal glycoprotein in mouse embryonic cells.

    Directory of Open Access Journals (Sweden)

    Thomas D Southgate

    2010-04-01

    Full Text Available 5T4 oncofetal molecules are highly expressed during development and upregulated in cancer while showing only low levels in some adult tissues. Upregulation of 5T4 expression is a marker of loss of pluripotency in the early differentiation of embryonic stem (ES cells and forms an integrated component of an epithelial-mesenchymal transition, a process important during embryonic development and metastatic spread of epithelial tumors. Investigation of the transcriptional changes in early ES differentiation showed upregulation of CXCL12 and down-regulation of a cell surface protease, CD26, which cleaves this chemokine. CXCL12 binds to the widely expressed CXCR4 and regulates key aspects of development, stem cell motility and tumour metastasis to tissues with high levels of CXCL12. We show that the 5T4 glycoprotein is required for optimal functional cell surface expression of the chemokine receptor CXCR4 and CXCL12 mediated chemotaxis in differentiating murine embryonic stem cells and embryo fibroblasts (MEF. Cell surface expression of 5T4 and CXCR4 molecules is co-localized in differentiating ES cells and MEF. By contrast, differentiating ES and MEF derived from 5T4 knockout (KO mice show only intracellular CXCR4 expression but infection with adenovirus encoding mouse 5T4 restores CXCL12 chemotaxis and surface co-localization with 5T4 molecules. A series of chimeric constructs with interchanged domains of 5T4 and the glycoprotein CD44 were used to map the 5T4 sequences relevant for CXCR4 membrane expression and function in 5T4KO MEF. These data identified the 5T4 transmembrane domain as sufficient and necessary to enable CXCR4 cell surface expression and chemotaxis. Furthermore, some monoclonal antibodies against m5T4 can inhibit CXCL12 chemotaxis of differentiating ES cells and MEF which is not mediated by simple antigenic modulation. Collectively, these data support a molecular interaction of 5T4 and CXCR4 occurring at the cell surface which

  3. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones.

    Science.gov (United States)

    Baumrind, N L; Parkinson, D; Wayne, D B; Heuser, J E; Pearlman, A L

    1992-08-01

    To identify cell-surface molecules that mediate interactions between neurons and their environment during neural development, we used monoclonal antibody techniques to define a developmentally regulated antigen in the central nervous system of the mouse. The antibody we produced (2A1) immunolabels cells throughout the central nervous system; we analyzed its distribution in the developing cerebral cortex, where it is expressed on cells very soon after they complete mitosis and leave the periventricular proliferative zone. Expression continues into adult life. The antibody also labels the epithelium of the choroid plexus and the renal proximal tubules, but does not label neurons of the peripheral nervous system in the dorsal root ganglia. In dissociated cell culture of embryonic cerebral cortex, 2A1 labels the surface of neurons but not glia. Immunolabeling of neurons in tissue culture is particularly prominent on the edge of growth cones, including filopodia and the leading edge of lamellipodia, when observed with either immunofluorescence or freeze-etch immunoelectron microscopy. Immunopurification with 2A1 of a CHAPS-extracted membrane preparation from brains of neonatal mice produces a broad (32-36 kD) electrophoretic band and a less prominent 70 kD band that are sensitive to N-glycosidase but not endoglycosidase H. Thus the 2A1 antibody recognizes a developmentally regulated, neuronal cell surface glycoprotein (or glycoproteins) with complex N-linked oligosaccharide side chains. We have termed the glycoprotein antigen EMA because of its prominence on the edge membrane of growth cones. EMA is similar to the M6 antigen (Lagenaur et al: J. Neurobiol. 23:71-88, 1992) in apparent molecular weight, distribution in tissue sections, and immunoreactivity on Western blots, suggesting that the two antigens are similar or identical. Expression of EMA is a very early manifestation of neuronal differentiation; its distribution on growth cones suggests a role in mediating the

  4. Internalization and Axonal Transport of the HIV Glycoprotein gp120

    Science.gov (United States)

    Berth, Sarah; Caicedo, Hector Hugo; Sarma, Tulika; Morfini, Gerardo

    2015-01-01

    The HIV glycoprotein gp120, a neurotoxic HIV glycoprotein that is overproduced and shed by HIV-infected macrophages, is associated with neurological complications of HIV such as distal sensory polyneuropathy, but interactions of gp120 in the peripheral nervous system remain to be characterized. Here, we demonstrate internalization of extracellular gp120 in a manner partially independent of binding to its coreceptor CXCR4 by F11 neuroblastoma cells and cultured dorsal root ganglion neurons. Immunocytochemical and pharmacological experiments indicate that gp120 does not undergo trafficking through the endolysosomal pathway. Instead, gp120 is mainly internalized through lipid rafts in a cholesterol-dependent manner, with a minor fraction being internalized by fluid phase pinocytosis. Experiments using compartmentalized microfluidic chambers further indicate that, after internalization, endocytosed gp120 selectively undergoes retrograde but not anterograde axonal transport from axons to neuronal cell bodies. Collectively, these studies illuminate mechanisms of gp120 internalization and axonal transport in peripheral nervous system neurons, providing a novel framework for mechanisms for gp120 neurotoxicity. PMID:25636314

  5. Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications.

    Science.gov (United States)

    Osinubi, M O V; Wu, X; Franka, R; Niezgoda, M; Nok, A J; Ogunkoya, A B; Rupprecht, C E

    2009-11-27

    Enhancing DNA vaccine effectiveness remains a challenge, especially if the desired goal is immunization efficacy after a single dose. The glycoprotein gene from the rabies virus Evelyn-Rokitnicki-Abelseth (ERA) strain was modified by mutation at amino acid residue 333 from arginine to glutamine. The modified and original unmodified glycoprotein genes were cloned separately and developed as DNA vaccines for immunization in mice. The intramuscular (IM) route using a single dose (100 microg) of a modified DNA vaccine showed virus neutralizing antibody induction by d30, and 80% of the mice survived a challenge in which 100% of unvaccinated controls succumbed. Similar results were obtained using a single dose (10 microg) by the intradermal (ID) route with one-tenth amount of the DNA administered. Administration of single dose of DNA vaccine with unmodified G did not result in the production of detectable levels of virus neutralizing antibody by d30. The results of the IM and the ID routes of administration were statistically significant (Prabies virus strain may be an ideal candidate for DNA vaccine efficacy enhancement.

  6. Glycoprotein NMB: an Emerging Role in Neurodegenerative Disease.

    Science.gov (United States)

    Budge, Kevin M; Neal, Matthew L; Richardson, Jason R; Safadi, Fayez F

    2017-08-30

    Neurodegeneration is characterized by severe neuronal loss leading to the cognitive and physical impairments that define various neurodegenerative diseases. Neuroinflammation is one hallmark of neurodegenerative diseases and can ultimately contribute to disease progression. Increased inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1 β), and tumor necrosis factor-α (TNF-α) are associated with Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Unfortunately, current therapeutic options lack ability to stop or effectively slow progression of these diseases and are primarily aimed at alleviating symptoms. Thus, it is crucial to discover novel treatment candidates for neurodegenerative diseases. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type-I transmembrane glycoprotein first identified in a melanoma cell line. GPNMB augments bone mineral deposition by stimulating osteoblast differentiation. Aside from its anabolic function in the bone, emerging evidence suggests that GPNMB has anti-inflammatory and reparative functions. GPNMB has also been demonstrated to be neuroprotective in an animal model of ALS, cerebral ischemia, and other disease models. Given these discoveries, GPNMB should be investigated as a potential therapeutic option for multiple neurodegenerative diseases.

  7. In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein

    NARCIS (Netherlands)

    Pichler, Andrea; Zelcer, Noam; Prior, Julie L.; Kuil, Annemieke J.; Piwnica-Worms, David

    2005-01-01

    Multidrug resistance (MDR) remains a major obstacle to successful chemotherapeutic treatment of cancer and can be caused by overexpression of P-glycoprotein, the MDR1 gene product. To further validate a knockdown approach for circumventing MDR, we developed a P-glycoprotein inhibition strategy using

  8. Glycoproteins of mouse vaginal epithelium: differential expression related to estrous cyclicity

    DEFF Research Database (Denmark)

    Horvat, B; Multhaupt, H A; Damjanov, I

    1993-01-01

    We used lectin overlay blotting and SDS-PAGE to analyze the estrous cycle-specific expression of mouse vaginal epithelial glycoproteins. Seven lectins chosen for their differential carbohydrate-binding specificity revealed 15 glycoproteins that showed cycle-related expression. Each lectin had...

  9. Production and glyco-engineering of immunomodulatory helminth glycoproteins in plants

    NARCIS (Netherlands)

    Wilbers, Ruud H. P.; Westerhof, Lotte B.; van Noort, Kim; Obieglo, Katja; Driessen, Nicole N.; Everts, Bart; Gringhuis, Sonja I.; Schramm, Gabriele; Goverse, Aska; Smant, Geert; Bakker, Jaap; Smits, Hermelijn H.; Yazdanbakhsh, Maria; Schots, Arjen; Hokke, Cornelis H.

    2017-01-01

    Helminth parasites control host-immune responses by secreting immunomodulatory glycoproteins. Clinical trials and mouse model studies have demonstrated the potential of helminth-derived glycoproteins for the treatment of immune-related diseases, like allergies and autoimmune diseases. Studies are

  10. Identification of sugar residues involved in the binding of TGEV to porcine brush border membranes.

    Science.gov (United States)

    Schwegmann-Wessels, Christel; Herrler, Georg

    2008-01-01

    Coronaviruses most often infect the respiratory or intestinal tract. Transmissible gastroenteritis virus (TGEV), a group 1 coronavirus, infects the porcine small intestine. Piglets up to the age of 3 weeks die from diarrhea caused by the viral gastroenteritis unless they are protected by antibodies. In addition to the cellular receptor, porcine aminopeptidase N, the TGEV spike protein binds to sialic acid residues. We have shown that the sialic acid binding activity mediates the binding of TGEV to a mucin-like glycoprotein present in porcine brush border membranes. This was shown by performing a virus overlay binding assay with proteins obtained from brush border membranes by lectin precipitation. Because of the reactivity with specific lectins we assume that the recognized glycoprotein has the characteristics of a mucin.

  11. Interaction of human erythrocyte MN glycoprotein with rabbit IgG immunoglobulins.

    Science.gov (United States)

    Białkowska, H; Morawiecki, A

    1978-01-01

    The interaction of rabbit non-specific IgG and human erythrocyte glycoprotein was investigated using the solvent perturbation difference spectroscopy method. This interaction manifested itself by decreasing accessibility of chromophores to perturbants. Masking of the chromophores was abolished by low detergent concentrations and by changes of native IgG structure by 3 M urea. The sialic acid residues of the glycoprotein were necessary for this effect but probably not due to simple electrostatic interactions. It seems that the IgG-glycoprotein interaction requires intact both--the IgG molecule structure and the structure of the glycoprotein micelle. Interaction of this kind was not observed between glycoprotein and some other proteins as bovine serum albumin, alpha-chymotrypsynogen and human IgA.

  12. Paramyxovirus membrane fusion: Lessons from the F and HN atomic structures

    International Nuclear Information System (INIS)

    Lamb, Robert A.; Paterson, Reay G.; Jardetzky, Theodore S.

    2006-01-01

    Paramyxoviruses enter cells by fusion of their lipid envelope with the target cell plasma membrane. Fusion of the viral membrane with the plasma membrane allows entry of the viral genome into the cytoplasm. For paramyxoviruses, membrane fusion occurs at neutral pH, but the trigger mechanism that controls the viral entry machinery such that it occurs at the right time and in the right place remains to be elucidated. Two viral glycoproteins are key to the infection process-an attachment protein that varies among different paramyxoviruses and the fusion (F) protein, which is found in all paramyxoviruses. For many of the paramyxoviruses (parainfluenza viruses 1-5, mumps virus, Newcastle disease virus and others), the attachment protein is the hemagglutinin/neuraminidase (HN) protein. In the last 5 years, atomic structures of paramyxovirus F and HN proteins have been reported. The knowledge gained from these structures towards understanding the mechanism of viral membrane fusion is described

  13. SNARE motif: A common motif used by pathogens to manipulate membrane fusion

    Science.gov (United States)

    Wesolowski, Jordan

    2010-01-01

    To penetrate host cells through their membranes, pathogens use a variety of molecular components in which the presence of heptad repeat motifs seems to be a prevailing element. Heptad repeats are characterized by a pattern of seven, generally hydrophobic, residues. In order to initiate membrane fusion, viruses use glycoproteins-containing heptad repeats. These proteins are structurally and functionally similar to the SNARE proteins known to be involved in eukaryotic membrane fusion. SNAREs also display a heptad repeat motif called the “SNARE motif”. As bacterial genomes are being sequenced, microorganisms also appear to be carrying membrane proteins resembling eukaryotic SNAREs. This category of SNARE-like proteins might share similar functions and could be used by microorganisms to either promote or block membrane fusion. Such a recurrence across pathogenic organisms suggests that this architectural motif was evolutionarily selected because it most effectively ensures the survival of pathogens within the eukaryotic environment. PMID:21178463

  14. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    Biological membranes are essential and complex structures in every living cell consisting of a fluid lipid bilayer sheet and membrane proteins. Its significance makes biological membranes not only interesting for medical research, but also has made it a target for toxins in the course of evolution....... Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... mechanisms of membrane compounds, including compounds associated with membranes, are still unknown due to the challenges that arise when probing the hydrophobic nature of the membrane's interior. For integral membrane proteins that span through the entire membrane, the amphiphilic environment is essential...

  15. Glucose Modulation Induces Lysosome Formation and Increases Lysosomotropic Drug Sequestration via the P-Glycoprotein Drug Transporter.

    Science.gov (United States)

    Seebacher, Nicole A; Lane, Darius J R; Jansson, Patric J; Richardson, Des R

    2016-02-19

    Pgp is functional on the plasma membrane and lysosomal membrane. Lysosomal-Pgp can pump substrates into the organelle, thereby trapping certain chemotherapeutics (e.g. doxorubicin; DOX). This mechanism serves as a "safe house" to protect cells against cytotoxic drugs. Interestingly, in contrast to DOX, lysosomal sequestration of the novel anti-tumor agent and P-glycoprotein (Pgp) substrate, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), induces lysosomal membrane permeabilization. This mechanism of lysosomal-Pgp utilization enhances cytotoxicity to multidrug-resistant cells. Consequently, Dp44mT has greater anti-tumor activity in drug-resistant relative to non-Pgp-expressing tumors. Interestingly, stressors in the tumor microenvironment trigger endocytosis for cell signaling to assist cell survival. Hence, this investigation examined how glucose variation-induced stress regulated early endosome and lysosome formation via endocytosis of the plasma membrane. Furthermore, the impact of glucose variation-induced stress on resistance to DOX was compared with Dp44mT and its structurally related analogue, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). These studies showed that glucose variation-induced stress-stimulated formation of early endosomes and lysosomes. In fact, through the process of fluid-phase endocytosis, Pgp was redistributed from the plasma membrane to the lysosomal membrane via early endosome formation. This lysosomal-Pgp actively transported the Pgp substrate, DOX, into the lysosome where it became trapped as a result of protonation at pH 5. Due to increased lysosomal DOX trapping, Pgp-expressing cells became more resistant to DOX. In contrast, cytotoxicity of Dp44mT and DpC was potentiated due to more lysosomes containing functional Pgp under glucose-induced stress. These thiosemicarbazones increased lysosomal membrane permeabilization and cell death. This mechanism has critical implications for drug-targeting in

  16. Glucose Modulation Induces Lysosome Formation and Increases Lysosomotropic Drug Sequestration via the P-Glycoprotein Drug Transporter*

    Science.gov (United States)

    Seebacher, Nicole A.; Lane, Darius J. R.; Jansson, Patric J.; Richardson, Des R.

    2016-01-01

    Pgp is functional on the plasma membrane and lysosomal membrane. Lysosomal-Pgp can pump substrates into the organelle, thereby trapping certain chemotherapeutics (e.g. doxorubicin; DOX). This mechanism serves as a “safe house” to protect cells against cytotoxic drugs. Interestingly, in contrast to DOX, lysosomal sequestration of the novel anti-tumor agent and P-glycoprotein (Pgp) substrate, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), induces lysosomal membrane permeabilization. This mechanism of lysosomal-Pgp utilization enhances cytotoxicity to multidrug-resistant cells. Consequently, Dp44mT has greater anti-tumor activity in drug-resistant relative to non-Pgp-expressing tumors. Interestingly, stressors in the tumor microenvironment trigger endocytosis for cell signaling to assist cell survival. Hence, this investigation examined how glucose variation-induced stress regulated early endosome and lysosome formation via endocytosis of the plasma membrane. Furthermore, the impact of glucose variation-induced stress on resistance to DOX was compared with Dp44mT and its structurally related analogue, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). These studies showed that glucose variation-induced stress-stimulated formation of early endosomes and lysosomes. In fact, through the process of fluid-phase endocytosis, Pgp was redistributed from the plasma membrane to the lysosomal membrane via early endosome formation. This lysosomal-Pgp actively transported the Pgp substrate, DOX, into the lysosome where it became trapped as a result of protonation at pH 5. Due to increased lysosomal DOX trapping, Pgp-expressing cells became more resistant to DOX. In contrast, cytotoxicity of Dp44mT and DpC was potentiated due to more lysosomes containing functional Pgp under glucose-induced stress. These thiosemicarbazones increased lysosomal membrane permeabilization and cell death. This mechanism has critical implications for drug-targeting in

  17. Mechanisms of multidrug resistance in HL60 cells. Analysis of resistance associated membrane proteins and levels of mdr gene expression.

    Science.gov (United States)

    McGrath, T; Latoud, C; Arnold, S T; Safa, A R; Felsted, R L; Center, M S

    1989-10-15

    HL60 cells isolated for resistance to Adriamycin do not contain P-glycoprotein, as determined with immunological probes. These cells, however, are multidrug resistant and defective in the cellular accumulation of drug. In view of these findings, we have examined in greater detail certain properties of the HL60/Adr cells and have compared these properties to an HL60 drug-resistant isolate (HL60/Vinc) which contains high levels of P-glycoprotein. The results of these studies demonstrated that verapamil induces a major increase in cellular drug accumulation in both HL60/Adr and HL60/Vinc isolates. An 125I-labeled photoaffinity analog of verapamil labeled P-glycoprotein contained in membranes of HL60/Vinc cells. In contrast, this agent did not label any protein selectively associated with drug resistance in membranes of the HL60/Adr isolate. The photoactive dihydropyridine calcium channel blocker [3H]azidopine and [125I]NASV, a photoaffinity analog of vinblastine, labelled P-glycoprotein in membranes from HL60/Vinc cells, whereas in experiments with the HL60/Adr isolate there was no detectable labeling of a drug resistance associated membrane protein. Additional studies have been carried out to analyze membrane proteins of HL60/Adr cells labeled with the photoaffinity agent 8-azido-alpha-[32P]ATP (AzATP32). The results demonstrate that this agent labeled a resistance associated membrane protein of 190 kilodaltons (P190). P190 is essentially absent in membranes of drug-sensitive cells. Labeling of P190 with AzATP32 in membranes of resistant cells was blocked completely when incubations were carried out in the presence of excess unlabeled ATP. Additional studies were carried out to analyze mdr gene amplification and expression in sensitive and resistant cells. Experiments carried out with human 5',mdr1 (1.1 kb) and mdr3 (1.0 kb) cDNAs demonstrate that both of these sequences were highly amplified in the HL60/Vinc isolate. Only the mrd1 gene sequence however, was

  18. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  19. The nectin-1α transmembrane domain, but not the cytoplasmic tail, influences cell fusion induced by HSV-1 glycoproteins

    International Nuclear Information System (INIS)

    Subramanian, Ravi P.; Dunn, Jennifer E.; Geraghty, Robert J.

    2005-01-01

    Nectin-1 is a receptor for herpes simplex virus (HSV), a member of the immunoglobulin superfamily, and a cellular adhesion molecule. To study domains of nectin-1α involved in cell fusion, we measured the ability of nectin-1α/nectin-2α chimeras, nectin-1α/CD4 chimeras, and transmembrane domain and cytoplasmic tail mutants of nectin-1α to promote cell fusion induced by HSV-1 glycoproteins. Our results demonstrate that only chimeras and mutants containing the entire V-like domain and a link to the plasma membrane conferred cell-fusion activity. The transmembrane domain and cytoplasmic tail of nectin-1 were not required for any viral receptor or cell adhesion function tested. Cellular cytoplasmic factors that bind to the nectin-1α cytoplasmic tail, therefore, did not influence virus entry or cell fusion. Interestingly, the efficiency of cell fusion was reduced when membrane-spanning domains of nectin-1α and gD were replaced by glycosylphosphatidylinositol tethers, indicating that transmembrane domains may play a modulatory role in the gD/nectin-1α interaction in fusion

  20. The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia.

    Science.gov (United States)

    Connors, Nathan C; Adams, Marvin E; Froehner, Stanley C; Kofuji, Paulo

    2004-07-02

    One of the major physiological roles of potassium channels in glial cells is to promote "potassium spatial buffering" in the central nervous system, a process necessary to maintain an optimal potassium concentration in the extracellular environment. This process requires the precise distribution of potassium channels accumulated at high density in discrete subdomains of glial cell membranes. To obtain a better understanding of how glial cells selectively target potassium channels to discrete membrane subdomains, we addressed the question of whether the glial inwardly rectifying potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex (DGC). Immunoprecipitation experiments revealed that Kir4.1 is associated with the DGC in mouse brain and cultured cortical astrocytes. In vitro immunoprecipitation and pull-down assays demonstrated that Kir4.1 can bind directly to alpha-syntrophin, requiring the presence of the last three amino acids of the channel (SNV), a consensus PDZ domain-binding motif. Furthermore, Kir4.1 failed to associate with the DGC in brains from alpha-syntrophin knockout mice. These results suggest that Kir4.1 is localized in glial cells by its association with the DGC through a PDZ domain-mediated interaction with alpha-syntrophin and suggest an important role for the DGC in central nervous system physiology.

  1. Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein

    International Nuclear Information System (INIS)

    York, Joanne; Nunberg, Jack H.

    2007-01-01

    The arenavirus envelope glycoprotein (GP-C) retains a cleaved and stable signal peptide (SSP) as an essential subunit of the mature complex. This 58-amino-acid residue peptide serves as a signal sequence and is additionally required to enable transit of the assembled GP-C complex to the Golgi, and for pH-dependent membrane fusion activity. We have investigated the C-terminal region of the Junin virus SSP to study the role of the cellular signal peptidase (SPase) in generating SSP. Site-directed mutagenesis at the cleavage site (positions - 1 and - 3) reveals a pattern of side-chain preferences consistent with those of SPase. Although position - 2 is degenerate for SPase cleavage, this residue in the arenavirus SSP is invariably a cysteine. In the Junin virus, this cysteine is not involved in disulfide bonding. We show that replacement with alanine or serine is tolerated for SPase cleavage but prevents the mutant SSP from associating with GP-C and enabling transport to the cell surface. Conversely, an arginine mutation at position - 1 that prevents SPase cleavage is fully compatible with GP-C-mediated membrane fusion activity when the mutant SSP is provided in trans. These results point to distinct roles of SSP sequences in SPase cleavage and GP-C biogenesis. Further studies of the unique structural organization of the GP-C complex will be important in identifying novel opportunities for antiviral intervention against arenaviral hemorrhagic disease

  2. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D

    International Nuclear Information System (INIS)

    Stiles, Katie M.; Milne, Richard S.B.; Cohen, Gary H.; Eisenberg, Roselyn J.; Krummenacher, Claude

    2008-01-01

    During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated. Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry

  3. A sensitive and specific lateral flow assay for rapid detection of antibodies against glycoprotein B of Aujeszky's disease virus.

    Science.gov (United States)

    Vrublevskaya, Veronika V; Afanasyev, Vladimir N; Grinevich, Andrey A; Skarga, Yuri Y; Gladyshev, Pavel P; Ibragimova, Sagila A; Krylsky, Dmitry V; Dezhurov, Sergey V; Morenkov, Oleg S

    2017-11-01

    A direct double antibody lateral flow assay (DDA-gB-LFA) for the detection of antibodies against the glycoprotein B (gB) of Aujeszky's disease virus (ADV) in swine sera was developed. A native ADV gB was used for the preparation of a conjugate with colloidal gold particles and the immobilization on the strip membrane. The gB purified from ADV virions by immunoaffinity chromatography retained its native epitope structure after adsorption on the nitrocellulose membrane and the surface of colloidal gold particles. The diagnostic specificity and sensitivity of the DDA-gB-LFA were evaluated using 236 field swine sera. The diagnostic specificity and sensitivity of the DDA-gB-LFA compared to a commercially available gB-based ELISA were 98.0% and 98.6%, respectively, when determined with the use of the reader-detection mode, and 98.0% and 93.5%, respectively, when determined using visual detection. The DDA-gB-LFA provides a rapid, sensitive, and specific determination of ADV gB-directed antibodies in sera and can be used for the detection of ADV-exposed swine. Copyright © 2017. Published by Elsevier B.V.

  4. Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard; Jardetzky, Theodore S.; (NWU); (Stanford-MED)

    2009-05-26

    Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLA complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.

  5. The NS1 Glycoprotein Can Generate Dramatic Antibody-Enhanced Dengue Viral Replication in Normal Out-Bred Mice Resulting in Lethal Multi-Organ Disease

    Science.gov (United States)

    Falconar, Andrew K. I.; Martinez, Fernando

    2011-01-01

    Antibody-enhanced replication (AER) of dengue type-2 virus (DENV-2) strains and production of antibody-enhanced disease (AED) was tested in out-bred mice. Polyclonal antibodies (PAbs) generated against the nonstructural-1 (NS1) glycoprotein candidate vaccine of the New Guinea-C (NG-C) or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E) glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS), displayed by diffuse alveolar damage (DAD) resulting from i) dramatic interstitial alveolar septa-thickening with mononuclear cells, ii) some hyperplasia of alveolar type-II pneumocytes, iii) copious intra-alveolar protein secretion, iv) some hyaline membrane-covered alveolar walls, and v) DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human “severe dengue” cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines, particularly against DENV strains that contain multiple mutations or genetic recombination within or between their

  6. The NS1 glycoprotein can generate dramatic antibody-enhanced dengue viral replication in normal out-bred mice resulting in lethal multi-organ disease.

    Directory of Open Access Journals (Sweden)

    Andrew K I Falconar

    Full Text Available Antibody-enhanced replication (AER of dengue type-2 virus (DENV-2 strains and production of antibody-enhanced disease (AED was tested in out-bred mice. Polyclonal antibodies (PAbs generated against the nonstructural-1 (NS1 glycoprotein candidate vaccine of the New Guinea-C (NG-C or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD₅₀ of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS, displayed by diffuse alveolar damage (DAD resulting from i dramatic interstitial alveolar septa-thickening with mononuclear cells, ii some hyperplasia of alveolar type-II pneumocytes, iii copious intra-alveolar protein secretion, iv some hyaline membrane-covered alveolar walls, and v DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human "severe dengue" cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines

  7. Hepatitis C Virus E2 Envelope Glycoprotein Core Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Leopold; Giang, Erick; Nieusma, Travis; Kadam, Rameshwar U.; Cogburn, Kristin E.; Hua, Yuanzi; Dai, Xiaoping; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Law, Mansun

    2014-08-26

    Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.

  8. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    Science.gov (United States)

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  9. Immunoglobulin-E reactivity to wine glycoproteins in heavy drinkers

    DEFF Research Database (Denmark)

    Gonzalez-Quintela, Arturo; Gomez-Rial, Jose; Valcarcel, Catalina

    2011-01-01

    and biological significance of IgE antibodies to N-glycans from wine glycoproteins in heavy drinkers. A structured questionnaire, skin prick tests, serum IgE levels, IgE-immunoblotting to wine extracts, and basophil activation tests were used to characterize 20 heavy drinkers and 10 control subjects. Eleven...... heavy drinkers (55%) showed IgE binding to proteins in wine extracts. The proteins were identified by mass spectrometry as grape-derived vacuolar invertase and thaumatin-like protein. Immunoblot reactivity was closely associated with the presence of IgE to CCDs and was inhibited by preincubation...... with a glycoconjugate containing bromelain-type N-glycans. The same conjugate, CCD-bearing allergens, and wine extracts activated basophils in patients with high-titer CCD-specific IgE but not in healthy controls. There was no relationship between immunoblot reactivity and consumption of any specific type of wine...

  10. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    International Nuclear Information System (INIS)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å

  11. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I. [Joint Institute for Nuclear Research (Russian Federation); Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  12. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Science.gov (United States)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  13. Insights into the trimeric HIV-1 envelope glycoprotein structure.

    Science.gov (United States)

    Ward, Andrew B; Wilson, Ian A

    2015-02-01

    The HIV-1 envelope glycoprotein (Env) trimer is responsible for receptor recognition and viral fusion with CD4(+) T cells, and is the sole target for neutralizing antibodies. Thus, understanding its molecular architecture is of significant interest. However, the Env trimer has proved to be a challenging target for 3D structure determination. Recent electron microscopy (EM) and X-ray structures have at last enabled us to decipher the structural complexity and unique features of the Env trimer, and how it is recognized by an ever-expanding arsenal of potent broadly neutralizing antibodies. We describe our current knowledge of the Env trimer structure in the context of exciting recent developments in the identification and characterization of HIV broadly neutralizing antibodies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Crystal Structure of the Human Cytomegalovirus Glycoprotein B.

    Directory of Open Access Journals (Sweden)

    Heidi G Burke

    2015-10-01

    Full Text Available Human cytomegalovirus (HCMV, a dsDNA, enveloped virus, is a ubiquitous pathogen that establishes lifelong latent infections and caused disease in persons with compromised immune systems, e.g., organ transplant recipients or AIDS patients. HCMV is also a leading cause of congenital viral infections in newborns. Entry of HCMV into cells requires the conserved glycoprotein B (gB, thought to function as a fusogen and reported to bind signaling receptors. gB also elicits a strong immune response in humans and induces the production of neutralizing antibodies although most anti-gB Abs are non-neutralizing. Here, we report the crystal structure of the HCMV gB ectodomain determined to 3.6-Å resolution, which is the first atomic-level structure of any betaherpesvirus glycoprotein. The structure of HCMV gB resembles the postfusion structures of HSV-1 and EBV homologs, establishing it as a new member of the class III viral fusogens. Despite structural similarities, each gB has a unique domain arrangement, demonstrating structural plasticity of gB that may accommodate virus-specific functional requirements. The structure illustrates how extensive glycosylation of the gB ectodomain influences antibody recognition. Antigenic sites that elicit neutralizing antibodies are more heavily glycosylated than those that elicit non-neutralizing antibodies, which suggest that HCMV gB uses glycans to shield neutralizing epitopes while exposing non-neutralizing epitopes. This glycosylation pattern may have evolved to direct the immune response towards generation of non-neutralizing antibodies thus helping HCMV to avoid clearance. HCMV gB structure provides a starting point for elucidation of its antigenic and immunogenic properties and aid in the design of recombinant vaccines and monoclonal antibody therapies.

  15. In silico-based vaccine design against Ebola virus glycoprotein

    Directory of Open Access Journals (Sweden)

    Dash R

    2017-03-01

    Full Text Available Raju Dash,1 Rasel Das,2 Md Junaid,3 Md Forhad Chowdhury Akash,4 Ashekul Islam,5 SM Zahid Hosen1 1Molecular Modeling and Drug Design Laboratory (MMDDL, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR, Chittagong, Bangladesh; 2Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur, Malaysia; 3Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; 4Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh; 5Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh Abstract: Ebola virus (EBOV is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154–162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV. Keywords: Ebola virus, epitope, glycoprotein, vaccine design

  16. Haloferax volcanii archaeosortase is required for motility, mating, and C-terminal processing of the S-layer glycoprotein: Haloferax volcanii archeosortase

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Halim, Mohd Farid [University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA; Pfeiffer, Friedhelm [Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, 82152, Martinsried, Germany; Zou, James [University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA; Frisch, Andrew [University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA; Haft, Daniel [J. Craig Venter Institute, Rockville, MD, 20850, USA; Wu, Si [Environmental Molecular Sciences Laboratory, Richland, WA, USA; Tolić, Nikola [Environmental Molecular Sciences Laboratory, Richland, WA, USA; Brewer, Heather [Environmental Molecular Sciences Laboratory, Richland, WA, USA; Payne, Samuel H. [Division of Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA; Paša-Tolić, Ljiljana [Environmental Molecular Sciences Laboratory, Richland, WA, USA; Pohlschroder, Mechthild [University of Pennsylvania, Department of Biology, Philadelphia, PA, 19104, USA

    2013-05-28

    Cell surfaces are decorated by a variety of proteins that facilitate interactions with their environments and support cell stability.These secreted proteins are anchored to the cell by mechanisms that are diverse, and, in archaea, poorly understood. Recently published in silico data suggest that in some species a subset of secreted euryarchaeal proteins, which includes the S-­layer glycoprotein, is processed and covalently linked tot he cell membrane by enzymes referred to as archaeosortases. In silico work led to the proposal that an independent, sortase-like system for proteolysis-coupled carboxy-terminal lipid modification exists in bacteria (exosortase) and archaea (archaeosortase). Here, we provide the first in vivo characterization of an archaeosortase in the haloarchaeal model organism Haloferax volcanii. Deletion of the artA gene (HVO_0915) resulted in multiple biological phenotypes: (a) poor growth, especially under low-salt conditions, (b) alterations in cell shape and the S-layer, (c) impaired motility, suppressors of which still exhibit poor growth, and (d) impaired conjugation. We studied one of the ArtA substrates, the S-layer glycoprotein, using detailed proteomic analysis. While the carboxy-terminal region of S-layer glycoproteins, consisting of a threonine-rich O-glycosylated region followed by a hydrophobic transmembrane helix, has been notoriously resistant to any proteomic peptide identification, we were able to identify two overlapping peptides from the transmembrane domain present in the ΔartA strain but not in the wild-type strain. This clearly shows that ArtA is involved in carboxy-terminal posttranslational processing of the S-layer glycoprotein. As it is known from previous studies that a lipid is covalently attached to the carboxy-terminal region of the S-layer glycoprotein, our data strongly support the conclusion that archaeosortase functions analogously to sortase, mediating proteolysis-coupled, covalent cell surface attachment.

  17. Polymeric Membrane Reactors

    OpenAIRE

    José M. Sousa; Luís M. Madeira; João C. Santos; Adélio Mendes

    2008-01-01

    The aim of this chapter is the study of membrane reactors with polymeric membranes, particularly catalytic polymeric membranes. After an introduction where the main advantages and disadvantages of the use of polymeric membranes are summarised, a review of the main areas where they have been applied, integrated in chemical reactors, is presented. This excludes the field of bio-membranes processes, which is analysed in a specific chapter of this book. Particular attention is then given to model...

  18. Factors affecting recombinant Western equine encephalitis virus glycoprotein production in the baculovirus system.

    Science.gov (United States)

    Toth, Ann M; Geisler, Christoph; Aumiller, Jared J; Jarvis, Donald L

    2011-12-01

    In an effort to produce processed, soluble Western equine encephalitis virus (WEEV) glycoproteins for subunit therapeutic vaccine studies, we isolated twelve recombinant baculoviruses designed to express four different WEEV glycoprotein constructs under the transcriptional control of three temporally distinct baculovirus promoters. The WEEV glycoprotein constructs encoded full-length E1, the E1 ectodomain, an E26KE1 polyprotein precursor, and an artificial, secretable E2E1 chimera. The three different promoters induced gene expression during the immediate early (ie1), late (p6.9), and very late (polh) phases of baculovirus infection. Protein expression studies showed that the nature of the WEEV construct and the timing of expression both influenced the quantity and quality of recombinant glycoprotein produced. The full-length E1 product was insoluble, irrespective of the timing of expression. Each of the other three constructs yielded soluble products and, in these cases, the timing of expression was important, as higher protein processing efficiencies were generally obtained at earlier times of infection. However, immediate early expression did not yield detectable levels of every WEEV product, and expression during the late (p6.9) or very late (polh) phases of infection provided equal or higher amounts of processed, soluble product. Thus, while earlier foreign gene expression can provide higher recombinant glycoprotein processing efficiencies in the baculovirus system, in the case of the WEEV glycoproteins, earlier expression did not provide larger amounts of high quality, soluble recombinant glycoprotein product. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Expression of the glycoprotein of viral haemorrhagic septicaemia virus (VHSV) on the surface of the fish cell line RTG-P1 induces type 1 interferon expression in neighbouring cells

    DEFF Research Database (Denmark)

    Acosta, F.; Collet, B.; Lorenzen, Niels

    2006-01-01

    In the present study using a luciferase/Mx promoter reporter system, it was shown that the rainbow trout gonad cell line (RTG-P1), a fibroblastic cell line, produces IFN when transfected with a plasmid encoding the glycoprotein of VHSV but not with plasmid vector alone. Only a small percentage...... of the cells expressed the G protein on the surface membrane as indicated by immunostaining of transfected cells. When transfection was performed in the presence of monoclonal antibodies (Mab) to the glycoprotein, the production of interferon mRNA transcripts was reduced by over 50%. This indicates...... that the surface expression of G protein was the major mechanism of interferon induction and that most of the interferon was being expressed by cells neighbouring the transfected cells. Crown...

  20. Functional Role of N-Linked Glycosylation in Pseudorabies Virus Glycoprotein gH.

    Science.gov (United States)

    Vallbracht, Melina; Rehwaldt, Sascha; Klupp, Barbara G; Mettenleiter, Thomas C; Fuchs, Walter

    2018-05-01

    Many viral envelope proteins are modified by asparagine (N)-linked glycosylation, which can influence their structure, physicochemical properties, intracellular transport, and function. Here, we systematically analyzed the functional relevance of N-linked glycans in the alphaherpesvirus pseudorabies virus (PrV) glycoprotein H (gH), which is an essential component of the conserved core herpesvirus fusion machinery. Upon gD-mediated receptor binding, the heterodimeric complex of gH and gL activates gB to mediate fusion of the viral envelope with the host cell membrane for viral entry. gH contains five potential N-linked glycosylation sites at positions 77, 162, 542, 604, and 627, which were inactivated by conservative mutations (asparagine to glutamine) singly or in combination. The mutated proteins were tested for correct expression and fusion activity. Additionally, the mutated gH genes were inserted into the PrV genome for analysis of function during virus infection. Our results demonstrate that all five sites are glycosylated. Inactivation of the PrV-specific N77 or the conserved N627 resulted in significantly reduced in vitro fusion activity, delayed penetration kinetics, and smaller virus plaques. Moreover, substitution of N627 greatly affected transport of gH in transfected cells, resulting in endoplasmic reticulum (ER) retention and reduced surface expression. In contrast, mutation of N604, which is conserved in the Varicellovirus genus, resulted in enhanced in vitro fusion activity and viral cell-to-cell spread. These results demonstrate a role of the N-glycans in proper localization and function of PrV gH. However, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. IMPORTANCE Herpesvirus infection requires fusion of the viral envelope with cellular membranes, which involves the conserved fusion machinery consisting of gB and the heterodimeric gH/gL complex. The bona fide

  1. Prediction of promiscuous p-glycoprotein inhibition using a novel machine learning scheme.

    Directory of Open Access Journals (Sweden)

    Max K Leong

    Full Text Available BACKGROUND: P-glycoprotein (P-gp is an ATP-dependent membrane transporter that plays a pivotal role in eliminating xenobiotics by active extrusion of xenobiotics from the cell. Multidrug resistance (MDR is highly associated with the over-expression of P-gp by cells, resulting in increased efflux of chemotherapeutical agents and reduction of intracellular drug accumulation. It is of clinical importance to develop a P-gp inhibition predictive model in the process of drug discovery and development. METHODOLOGY/PRINCIPAL FINDINGS: An in silico model was derived to predict the inhibition of P-gp using the newly invented pharmacophore ensemble/support vector machine (PhE/SVM scheme based on the data compiled from the literature. The predictions by the PhE/SVM model were found to be in good agreement with the observed values for those structurally diverse molecules in the training set (n = 31, r(2 = 0.89, q(2 = 0.86, RMSE = 0.40, s = 0.28, the test set (n = 88, r(2 = 0.87, RMSE = 0.39, s = 0.25 and the outlier set (n = 11, r(2 = 0.96, RMSE = 0.10, s = 0.05. The generated PhE/SVM model also showed high accuracy when subjected to those validation criteria generally adopted to gauge the predictivity of a theoretical model. CONCLUSIONS/SIGNIFICANCE: This accurate, fast and robust PhE/SVM model that can take into account the promiscuous nature of P-gp can be applied to predict the P-gp inhibition of structurally diverse compounds that otherwise cannot be done by any other methods in a high-throughput fashion to facilitate drug discovery and development by designing drug candidates with better metabolism profile.

  2. Glucose modulation induces reactive oxygen species and increases P-glycoprotein-mediated multidrug resistance to chemotherapeutics

    Science.gov (United States)

    Seebacher, N A; Richardson, D R; Jansson, P J

    2015-01-01

    Background and Purpose Cancer cells develop resistance to stress induced by chemotherapy. In tumours, a considerable glucose gradient exists, resulting in stress. Notably, hypoxia-inducible factor-1 (HIF-1) is a redox-sensitive transcription factor that regulates P-glycoprotein (Pgp), a crucial drug-efflux transporter involved in multidrug resistance (MDR). Here, we investigated how glucose levels regulate Pgp-mediated drug transport and resistance. Experimental Approach Human tumour cells (KB31, KBV1, A549 and DMS-53) were incubated under glucose starvation to hyperglycaemic conditions. Flow cytometry assessed reactive oxygen species (ROS) generation and Pgp activity. HIF-1α, NF-κB and Pgp expression were assessed by reverse transcriptase-PCR and Western blotting. Fluorescence microscopy examined p65 distribution and a luciferase-reporter assay assessed HIF-1 promoter-binding activity. The effect of glucose-induced stress on Pgp-mediated drug resistance was examined after incubating cells with the chemotherapeutic and Pgp substrate, doxorubicin (DOX), and performing MTT assays validated by viable cell counts. Key Results Changes in glucose levels markedly enhanced cellular ROS and conferred Pgp-mediated drug resistance. Low and high glucose levels increased (i) ROS generation via NADPH oxidase 4 and mitochondrial membrane destabilization; (ii) HIF-1 activity; (iii) nuclear translocation of the NF-κB p65 subunit; and (iv) HIF-1α mRNA and protein levels. Increased HIF-1α could also be due to decreased prolyl hydroxylase protein under these conditions. The HIF-1α target, Pgp, was up-regulated at low and high glucose levels, which led to lower cellular accumulation of Pgp substrate, rhodamine123, and greater resistance to DOX. Conclusions and Implications As tumour cells become glucose-deprived or exposed to high glucose levels, this increases stress, leading to a more aggressive MDR phenotype via up-regulation of Pgp. PMID:25586174

  3. The phosphodiesterase-5 inhibitor vardenafil is a potent inhibitor of ABCB1/P-glycoprotein transporter.

    Directory of Open Access Journals (Sweden)

    Pei-Rong Ding

    Full Text Available One of the major causes of chemotherapy failure in cancer treatment is multidrug resistance (MDR which is mediated by the ABCB1/P-glycoprotein. Previously, through the use of an extensive screening process, we found that vardenafil, a phosphodiesterase 5 (PDE-5 inhibitor significantly reverses MDR in ABCB1 overexpressing cancer cells, and its efficacy was greater than that of tadalafil, another PDE-5 inhibitor. The present study was designed to determine the reversal mechanisms of vardenafil and tadalafil on ABC transporters-mediated MDR. Vardenafil or tadalafil alone, at concentrations up to 20 µM, had no significant toxic effects on any of the cell lines used in this study, regardless of their membrane transporter status. However, vardenafil when used in combination with anticancer substrates of ABCB1, significantly potentiated their cytotoxicity in ABCB1 overexpressing cells in a concentration-dependent manner, and this effect was greater than that of tadalafil. The sensitivity of the parenteral cell lines to cytotoxic anticancer drugs was not significantly altered by vardenafil. The differential effects of vardenafil and tadalafil appear to be specific for the ABCB1 transporter as both vardenafil and tadalafil had no significant effect on the reversal of drug resistance conferred by ABCC1 (MRP1 and ABCG2 (BCRP transporters. Vardenafil significantly increased the intracellular accumulation of [(3H]-paclitaxel in the ABCB1 overexpressing KB-C2 cells. In addition, vardenafil significantly stimulated the ATPase activity of ABCB1 and inhibited the photolabeling of ABCB1 with [(125I]-IAAP. Furthermore, Western blot analysis indicated the incubation of cells with either vardenafil or tadalafil for 72 h did not alter ABCB1 protein expression. Overall, our results suggest that vardenafil reverses ABCB1-mediated MDR by directly blocking the drug efflux function of ABCB1.

  4. Varicella-Zoster Virus glycoprotein expression differentially induces the unfolded protein response in infected cells.

    Directory of Open Access Journals (Sweden)

    John Earl Carpenter

    2014-07-01

    Full Text Available Varicella-zoster virus (VZV is a human herpesvirus that spreads to children as varicella or chicken pox. The virus then establishes latency in the nervous system and re-emerges, typically decades later, as zoster or shingles. We have reported previously that VZV induces autophagy in infected cells as well as exhibiting evidence of the Unfolded Protein Response (UPR: XBP1 splicing, a greatly expanded Endoplasmic Reticulum (ER and CHOP expression. Herein we report the results of a UPR specific PCR array that measures the levels of mRNA of 84 different components of the UPR in VZV infected cells as compared to tunicamycin treated cells as a positive control and uninfected, untreated cells as a negative control. Tunicamycin is a mixture of chemicals that inhibits N-linked glycosylation in the ER with resultant protein misfolding and the UPR. We found that VZV differentially induces the UPR when compared to tunicamycin treatment. For example, tunicamycin treatment moderately increased (8 fold roughly half of the array elements while downregulating only three (one ERAD and two FOLD components. VZV infection on the other hand upregulated 33 components including a little described stress sensor CREB-H (64 fold as well as ER membrane components INSIG and gp78, which modulate cholesterol synthesis while downregulating over 20 components mostly associated with ERAD and FOLD. We hypothesize that this expression pattern is associated with an expanding ER with downregulation of active degradation by ERAD and apoptosis as the cell attempts to handle abundant viral glycoprotein synthesis.

  5. P-glycoprotein: a focus on characterizing variability in cardiovascular pharmacotherapeutics.

    Science.gov (United States)

    Al-Khazaali, Ali; Arora, Rohit

    2014-01-01

    According to the report of Agency for Healthcare Research and Quality in 2008, drug-related adverse outcomes exceed 2.7 million events per year. Therefore, it is requisite to understand the etiologies of those unpleasant outcomes. Polypharmacy especially in the elderly is considered one of the major sources of drug-related side effects. The drug-related membrane transporters play an indispensable role in the pharmacokinetics, safety, and efficacy of the drugs. P-glycoprotein, also known as P-gp, is considered one of the core drug transporters in vivo. Since its discovery in 1976, P-gp gained a tremendous attention of researchers and clinicians. The core objective of this review is to highlight the clinical correlation between the P-gp and a number of cardiovascular drugs and to address the drug-drug interaction in case of using those cardiovascular drugs with P-gp-related drugs whether substrates, inhibitors, or inducers. Bearing in mind that P-gp is found in liver and intestine, as well as cytochrome P450, a strong association between the 2 systems is expected. Yet, plenty of the drugs that can behave as substrates to P-gp can act as substrates to CYP450 too. Consequently, probable drug-drug interaction can occur between drugs that work on both systems. In other words, whenever these classes of medications prescribed together cautious monitoring of drug's level and eventually dose adjustment might be necessary to avoid drug-drug interactions, failure of therapy, or drug toxicity; especially with the use of drugs that possess narrow therapeutic index like digoxin.

  6. P-glycoprotein in helminths: function and perspectives for anthelmintic treatment and reversal of resistance.

    Science.gov (United States)

    Kerboeuf, Dominique; Blackhall, William; Kaminsky, Ronald; von Samson-Himmelstjerna, Georg

    2003-09-01

    Infestation with parasitic helminths is a common problem in human populations of third world countries and is ubiquitous in livestock and other domestic animals. The cell-membrane efflux pump, P-glycoprotein (Pgp), appears to contribute to anthelmintic resistance. Pgp have been identified from both phyla of parasitic helminths, Platyhelmintha and Nematoda, and alterations in expression levels and allele frequencies of Pgp in anthelmintic-resistant populations have been observed in nematodes. Localisation of Pgp has been studied in the free-living nematode Caenorhabditis elegans and in the sheep parasite Haemonchus contortus using specific monoclonal antibodies or lectins. Reversing agents used in human studies, such as the calcium-channel blocker verapamil (VPL), appear to have similar effects in helminths as they do in human cancer cells: the efficacy of drug treatment is increased in drug-resistant parasites when reversing agents are co-administered with the anthelmintic. The functional role of the Pgp glycosylation was also studied using a lectin specific for the alpha-mannosyl residues and showed that resistance can be associated with a decreased affinity of the lectin for Pgp sites and that up to 50% reversion in the resistance to benzimidazoles (BZ) can be obtained using this lectin. Furthermore, the current knowledge on the role of Pgp in molecular mechanisms of drug resistance in the parasitic protozoan genus Trypanosoma is discussed. In some Trypanosoma species it was shown that drug resistance was associated with reduced uptake and in other ones with increased efflux. Several trypanosome Pgp-coding sequences have been described. In contrast to earlier data, most recent observations, based on experimentally overexpressed Pgp in Trypanosoma brucei, indicate a possible involvement in the mechanism of drug resistance in this parasite.

  7. P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface.

    Science.gov (United States)

    Loo, Tip W; Clarke, David M

    2016-04-01

    P-glycoprotein (P-gp) is an ABC (ATP-Binding Cassette) drug pump. A common feature of ABC proteins is that they are organized into two wings. Each wing contains a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates and ATP bind at the interface between the TMDs and NBDs, respectively. Drug transport involves ATP-dependent conformational changes between inward- (open, NBDs far apart) and outward-facing (closed, NBDs close together) conformations. P-gps crystallized in the presence of detergent show an open structure. Human P-gp is inactive in detergent but basal ATPase activity is restored upon addition of lipids. The lipids might cause closure of the wings to bring the NBDs close together to allow ATP hydrolysis. We show however, that cross-linking the wings together did not activate ATPase activity when lipids were absent suggesting that lipids may induce other structural changes required for ATPase activity. We then tested the effect of lipids on disulfide cross-linking of mutants at the first transmission interface between intracellular loop 4 (TMD2) and NBD1. Mutants L443C/S909C and L443C/R905C but not G471C/S909C and V472C/S909C were cross-linked with oxidant when in membranes. The mutants were then purified and cross-linked with or without lipids. Mutants G471C/S909C and V472C/S909C cross-linked only in the absence of lipids whereas mutants L443C/S909C and L443C/R905C were cross-linked only in the presence of lipids. The results suggest that lipids activate a switch at the first transmission interface and that the structure of P-gp is different in detergents and lipids. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. HSV and glycoprotein J inhibit caspase activation and apoptosis induced by granzyme B or Fas.

    Science.gov (United States)

    Jerome, K R; Chen, Z; Lang, R; Torres, M R; Hofmeister, J; Smith, S; Fox, R; Froelich, C J; Corey, L

    2001-10-01

    HSV-1 inhibits apoptosis of infected cells, presumably to ensure that the infected cell survives long enough to allow completion of viral replication. Because cytotoxic lymphocytes kill their targets via the induction of apoptosis, protection from apoptosis could constitute a mechanism of immune evasion for HSV. Several HSV genes are involved in the inhibition of apoptosis, including Us5, which encodes glycoprotein J (gJ). Viruses deleted for Us5 showed defects in inhibition of caspase activation after Fas ligation or UV irradiation. Transfected cells expressing the Us5 gene product gJ were protected from Fas- or UV-induced apoptosis, as measured by morphology, caspase activation, membrane permeability changes, or mitochondrial transmembrane potential. In contrast, caspase 3 activation in mitochondria-free cell lysates by granzyme (gr)B was inhibited equivalently by Us5 deletion and rescue viruses, suggesting that gJ is not required for HSV to inhibition this process. However, mitochondria-free lysates from transfected cells expressing Us5/gJ were protected from grB-induced caspase activation, suggesting that Us5/gJ is sufficient to inhibit this process. Transfected cells expressing Us5/gJ were also protected from death induced by incubation with purified grB and perforin. These findings suggest that HSV has a comprehensive set of immune evasion functions that antagonize both Fas ligand- and grB-mediated pathways of CTL-induced apoptosis. The understanding of HSV effects on killing by CTL effector mechanisms may shed light on the incomplete control of HSV infections by the immune system and may allow more rational approaches to the development of immune modulatory treatments for HSV infection.

  9. THE ROLE OF P-GLYCOPROTEIN IN RATIONAL PHARMACOTHERAPY IN CARDIOLOGY

    Directory of Open Access Journals (Sweden)

    A. V. Shulkin

    2015-09-01

    Full Text Available On the basis of the analysis of published data the role of P-glycoprotein, carrier protein, in rational pharmacotherapy in cardiology was shown on the example of its substrates – digoxin, antiplatelet agents and anticoagulants. Determination of C3435T polymorphism of multidrug resistance gene (MDR1, encoding P-glycoprotein, in pharmacotherapy with digoxin, antiplatelet drugs (clopidogrel tikagrelol, prasugrel and anticoagulants (dabigatran etexilate, rivaroxaban, edoxaban is not feasible in routine practice. Drug in- teractions have clinical implications for the efficacy and safety of pharmacotherapy in coadministration of these drugs with P-glycoprotein substrates, inducers and inhibitors.

  10. THE ROLE OF P-GLYCOPROTEIN IN RATIONAL PHARMACOTHERAPY IN CARDIOLOGY

    Directory of Open Access Journals (Sweden)

    A. V. Shulkin

    2013-01-01

    Full Text Available On the basis of the analysis of published data the role of P-glycoprotein, carrier protein, in rational pharmacotherapy in cardiology was shown on the example of its substrates – digoxin, antiplatelet agents and anticoagulants. Determination of C3435T polymorphism of multidrug resistance gene (MDR1, encoding P-glycoprotein, in pharmacotherapy with digoxin, antiplatelet drugs (clopidogrel tikagrelol, prasugrel and anticoagulants (dabigatran etexilate, rivaroxaban, edoxaban is not feasible in routine practice. Drug in- teractions have clinical implications for the efficacy and safety of pharmacotherapy in coadministration of these drugs with P-glycoprotein substrates, inducers and inhibitors.

  11. Release of cell coat glycoproteins from the human blood lymphocytes after UV irradiation (254 nm)

    Energy Technology Data Exchange (ETDEWEB)

    Artsishevskaya, R.A.; Mironova, A.P.; Samojlova, K.A. (AN SSSR, Leningrad. Inst. Tsitologii)

    1984-01-01

    Irradiation of the human peripheric blood lymphocytes by UV rays (254 nm) in nonlethal doses is accompanied by the decrease (8-13%) of sorption by them of man's life time of alcyane blue dya which selectively is bound by glycoproteins, glycolipides and acid mucopolysaccharides of cellular surface. As simultaneously the yield from substance cells by some properties similar to glycoproteins is intensified by 9-15%, an assumption is made that from the surface of UV-irradiated lymphocites glycoproteins are disorbed. This effect is discussed in connection with possible primary mechanisms of medical-sanitation effect of UV irradiation.

  12. N-glycosylation proteomic characterization and cross-species comparison of milk fat globule membrane proteins from mammals.

    Science.gov (United States)

    Yang, Yongxin; Zheng, Nan; Wang, Weiyu; Zhao, Xiaowei; Zhang, Yangdong; Han, Rongwei; Ma, Lu; Zhao, Shengguo; Li, Songli; Guo, Tongjun; Zang, Changjiang; Wang, Jiaqi

    2016-11-01

    Glycosylation of proteins has been implicated in various biological functions and has received much attention; however, glycoprotein components and inter-species complexity have not yet been elucidated fully in milk proteins. N-linked glycosylation sites and glycoproteins in milk fat globule membrane (MFGM) fractions were investigated by combining N-glycosylated peptides enrichment and high-accuracy Q Exactive identification, to map the N-glycoproteome profiles in Holstein and Jersey cows, buffaloes, yaks, goats, camels, horses, and humans. A total of 399 N-glycoproteins with 677 glycosylation sites were identified in the MFGM fractions of the studied mammals. Most glycosylation sites in humans were classified as known and those in the other studied mammals as unknown, according to Swiss-Prot annotations. Functionally, most of the identified glycoproteins were associated with the 'response to stimulus' GO category. N-glycosylated protein components of MFGM fractions from Holstein and Jersey cows, buffaloes, yaks, and goats were more similar to each other compared with those of camels, horses and human. The findings increased the number of known N-glycosylation sites in the milk from dairy animal species, revealed the complexity of the MFGM glycoproteome, and provided useful information to further explore the mechanism of MFGM glycoproteins biosynthesis among the studied mammals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Sheet Membrane Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  14. Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method.

    Science.gov (United States)

    Kamoda, Satoru; Nakanishi, Yasuharu; Kinoshita, Mitsuhiro; Ishikawa, Rika; Kakehi, Kazuaki

    2006-02-17

    Capillary electrophoresis (CE) is an effective tool to analyze carbohydrate mixture derived from glycoproteins with high resolution. However, CE has a disadvantage that a few nanoliters of a sample solution are injected to a narrow capillary. Therefore, we have to prepare a sample solution of high concentration for CE analysis. In the present study, we applied head column field-amplified sample stacking method to the analysis of N-linked oligosaccharides derived from glycoprotein separated by two-dimensional gel electrophoresis. Model studies demonstrated that we achieved 60-360 times concentration effect on the analysis of carbohydrate chains labeled with 3-aminobenzoic acid (3-AA). The method was applied to the analysis of N-linked oligosaccharides from glycoproteins separated and detected on PAGE gel. Heterogeneity of alpha1-acid glycoprotein (AGP), i.e. glycoforms, was examined by 2D-PAGE and N-linked oligosaccharides were released by in-gel digestion with PNGase F. The released oligosaccharides were derivatized with 3-AA and analyzed by CE. The results showed that glycoforms having lower pI values contained a larger amount of tetra- and tri-antennary oligosaccharides. In contrast, glycoforms having higher pI values contained bi-antennary oligosaccharides abundantly. The result clearly indicated that the spot of a glycoprotein glycoform detected by Coomassie brilliant blue staining on 2D-PAGE gel is sufficient for quantitative profiling of oligosaccharides.

  15. P-glycoprotein recognition of substrates and circumvention through rational drug design.

    Science.gov (United States)

    Raub, Thomas J

    2006-01-01

    It is now well recognized that membrane efflux transporters, especially P-glycoprotein (P-gp; ABCB1), play a role in determining the absorption, distribution, metabolism, excretion, and toxicology behaviors of some drugs and molecules in development. An investment in screening structure-activity relationship (SAR) is warranted in early discovery when exposure and/or target activity in an in vivo efficacy model is not achieved and P-gp efflux is identified as a rate-limiting factor. However, the amount of investment in SAR must be placed into perspective by assessing the risks associated with the intended therapeutic target, the potency and margin of safety of the compound, the intended patient population(s), and the market competition. The task of rationally designing a chemistry strategy for circumventing a limiting P-gp interaction can be daunting. The necessity of retaining biological potency and metabolic stability places restrictions on what can be done, and the factors for P-gp recognition of substrates are complicated and poorly understood. The parameters within the assays that affect overall pump efficiency or net efflux, such as passive diffusion, membrane partitioning, and molecular interaction between pump and substrate, should be understood when interpreting data sets associated with chemistry around a scaffold. No single, functional group alone is often the cause, but one group can accentuate the recognition points existing within a scaffold. This can be likened to a rheostat, rather than an on/off switch, where addition or removal of a key group can increase or decrease the pumping efficiency. The most practical approach to de-emphasize the limiting effects of P-gp on a particular scaffold is to increase passive diffusion. Efflux pumping efficiency may be overcome when passive diffusion is fast enough. Eliminating, or substituting with fewer, groups that solvate in water, or decreasing their hydrogen bonding capacity, and adding halogen groups can

  16. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation.

    Science.gov (United States)

    Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul

    2018-03-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes

  17. Platelet adhesion enhances the glycoprotein VI-dependent procoagulant response: Involvement of p38 MAP kinase and calpain.

    Science.gov (United States)

    Siljander, P; Farndale, R W; Feijge, M A; Comfurius, P; Kos, S; Bevers, E M; Heemskerk, J W

    2001-04-01

    In the final stages of activation, platelets express coagulation-promoting activity by 2 simultaneous processes: exposure of aminophospholipids, eg, phosphatidylserine (PS), at the platelet surface, and formation of membrane blebs, which may be shed as microvesicles. Contact with collagen triggers both processes via platelet glycoprotein VI (GPVI). Here, we studied the capacity of 2 GPVI ligands, collagen-related peptide (CRP) and the snake venom protein convulxin (CVX), to elicit the procoagulant platelet response. In platelets in suspension, either ligand induced full aggregation and high Ca(2+) signals but little microvesiculation or PS exposure. However, most of the platelets adhering to immobilized CRP or CVX had exposed PS and formed membrane blebs after a prolonged increase in cytosolic [Ca(2+)](i). Platelets adhering to fibrinogen responded similarly but only when exposed to soluble CRP or CVX. By scanning electron microscopic analysis, the bleb-forming platelets were detected as either round, spongelike structures with associated microparticles or as arrays of vesicular cell fragments. The phosphorylation of p38 mitogen-activated protein kinase (MAPK) elicited by CRP and CVX was enhanced in fibrinogen-adherent platelets compared with that in platelets in suspension. The p38 inhibitor SB203580 and the calpain protease inhibitor calpeptin reduced only the procoagulant bleb formation, having no effect on PS exposure. Inhibition of p38 also downregulated calpain activity. We conclude that the procoagulant response evoked by GPVI stimulation is potentiated by platelet adhesion. The sequential activation of p38 MAPK and calpain appears to regulate procoagulant membrane blebbing but not PS exposure.

  18. Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection.

    Science.gov (United States)

    Oliver, Stefan L; Yang, Edward; Arvin, Ann M

    2017-01-01

    The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. The highly infectious, human-restricted pathogen varicella-zoster virus (VZV) causes chickenpox and shingles. Postherpetic

  19. Fbs1 protects the malfolded glycoproteins from the attack of peptide:N-glycanase

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshiki; Hirao, Takeshi; Sakata, Eri; Kamiya, Yukiko; Kurimoto, Eiji; Yoshida, Yukiko; Suzuki, Tadashi; Tanaka, Keiji; Kato, Koichi

    2007-01-01

    Fbs1 is a cytosolic lectin putatively operating as a chaperone as well as a substrate-recognition subunit of the SCF Fbs1 ubiquitin ligase complex. To provide structural and functional basis of preferential binding of Fbs1 to unfolded glycoproteins, we herein characterize the interaction of Fbs1 with a heptapeptide carrying Man 3 GlcNAc 2 by nuclear magnetic resonance (NMR) spectroscopy and other biochemical methods. Inspection of the NMR data obtained by use of the isotopically labeled glycopeptide indicated that Fbs1 interacts with sugar-peptide junctions, which are shielded in native glycoprotein, in many cases, but become accessible to Fbs1 in unfolded glycoproteins. Furthermore, Fbs1 was shown to inhibit deglycosylation of denatured ribonuclease B by a cytosolic peptide:N-glycanase (PNGase). On the basis of these data, we suggest that Fbs1 captures malfolded glycoproteins, protecting them from the attack of PNGase, during the chaperoning or ubiquitinating operation in the cytosol

  20. Presynaptic neurones may contribute a unique glycoprotein to the extracellular matrix at the synapse

    Science.gov (United States)

    Caroni, Pico; Carlson, Steven S.; Schweitzer, Erik; Kelly, Regis B.

    1985-04-01

    As the extracellular matrix at the original site of a neuromuscular junction seems to play a major part in the specificity of synaptic regeneration1-5, considerable attention has been paid to unique molecules localized to this region6-11. Here we describe an extracellular matrix glycoprotein of the elasmobranch electric organ that is localized near the nerve endings. By immunological criteria, it is synthesized in the cell bodies, transported down the axons and is related to a glycoprotein in the synaptic vesicles of the neurones that innervate the electric organ. It is apparently specific for these neurones, as it cannot be detected elsewhere in the nervous system of the fish. Therefore, neurones seem to contribute unique extracellular matrix glycoproteins to the synaptic region. Synaptic vesicles could be involved in transporting these glycoproteins to or from the nerve terminal surface.

  1. Association study of the platelet collagen receptor glycoprotein VI gene with rheumatoid arthritis

    NARCIS (Netherlands)

    Michou, L.; Cornelis, F.; Baron, M.; Bombardieri, S.; Balsa, A.; Westhovens, R.; Barrera, P.; Alves, H.; Radstake, T.R.D.J.; Migliorini, P.; Bardin, T.; Petit-Teixeira, E.; Boilard, E.

    2013-01-01

    OBJECTIVES: Beyond their role in haemostasis, platelets can actively contribute to immunity. The activation of the platelet collagen receptor glycoprotein VI (GPVI) promotes the release of small extracellular vesicles called microparticles. These microparticles are found in the joint bathing fluid

  2. A Method for Determining the Content of Glycoproteins in Biological Samples

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2016-11-01

    Full Text Available The glycoprotein purified from the mycelium extract of Tremella fuciformis was marked with iodine through the iodine substitution reaction. The content of iodine, which is indicative of the amount of the marked tremella glycoprotein (ITG, was detected with Inductively coupled plasma mass spectrometry (ICP-MS. The method was found to be stable, sensitive, and accurate at detecting the content of iodine-substituted glycoprotein, and was used in the quantitative analysis of biological samples, including blood and organs. Different biological samples were collected from rats after oral administration of ITG, and were tested for iodine content by ICP-MS to calculate the amount of ITG in the samples. The results suggested that ICP-MS is a sensitive, stable, and accurate method for detection of iodinated glycoproteins in blood and organs.

  3. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    Science.gov (United States)

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Immunoinformatic Analysis of Crimean Congo Hemorrhagic Fever Virus Glycoproteins and Epitope Prediction for Synthetic Peptide Vaccine.

    Science.gov (United States)

    Tipu, Hamid Nawaz

    2016-02-01

    To determine the Crimean Congo Hemorrhagic Fever (CCHF) virus M segement glycoprotein's immunoinformatic parameters, and identify Human Leukocyte Antigen (HLA) class I binders as candidates for synthetic peptide vaccines. Cross-sectional study. Combined Military Hospital, Khuzdar Cantt, in May 2015. Data acquisition, antigenicity prediction, secondary and tertiary structure prediction, residue analysis were done using immunoinformatics tools. HLAclass I binders in glycoprotein's sequence were identified at nanomer length using NetMHC 3.4 and mapped onto tertiary structure. Docking was done for strongest binder against its corresponding allele with CABS-dock. HLAA*0101, 0201, 0301, 2402, 2601 and B*0702, 0801, 2705, 3901, 4001, 5801, 1501 were analyzed against two glycoprotein components of the virus. Atotal of 35 nanomers from GP1, and 3 from GP2 were identified. HLAB*0702 bound maximum number of peptides (6), while HLAB*4001 showed strongest binding affinity. HLAspecific glycoproteins epitope prediction can help identify synthetic peptide vaccine candidates.

  5. Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene B; Halim, Adnan; Joshi, Hiren Jitendra

    2013-01-01

    The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin-glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O-Man glycos......The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin-glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O...

  6. Feline tetherin is characterized by a short N-terminal region and is counteracted by the feline immunodeficiency virus envelope glycoprotein.

    Science.gov (United States)

    Celestino, Michele; Calistri, Arianna; Del Vecchio, Claudia; Salata, Cristiano; Chiuppesi, Flavia; Pistello, Mauro; Borsetti, Alessandra; Palù, Giorgio; Parolin, Cristina

    2012-06-01

    Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.

  7. Defining the Antigenic Structure of the Henipavirus Attachment (G) Glycoprotein: Implications for the Fusion Mechanism

    Science.gov (United States)

    2009-01-01

    ENSCO) event limited available foodstuffs and roosting habitat for the bats (30). Ultimately, the bats began foraging for food at orchards often...the medium was replaced once prior to screening colony supernatant by ELISA with sG glycoprotein antigen. To ensure clonal cultures, colonies were...immunized with sGNiV glycoprotein. Identification of neutralizing mAbs To identify fusion inhibitory mAbs, supernatant harvested from each clonal

  8. The quality control of glycoprotein folding in the endoplasmic reticulum, a trip from trypanosomes to mammals

    Directory of Open Access Journals (Sweden)

    A.J. Parodi

    1998-05-01

    Full Text Available The present review deals with the stages of synthesis and processing of asparagine-linked oligosaccharides occurring in the lumen of the endoplasmic reticulum and their relationship to the acquisition by glycoproteins of their proper tertiary structures. Special emphasis is placed on reactions taking place in trypanosomatid protozoa since their study has allowed the detection of the transient glucosylation of glycoproteins catalyzed by UDP-Glc:glycoprotein glucosyltransferase and glucosidase II. The former enzyme has the unique property of covalently tagging improperly folded conformations by catalyzing the formation of protein-linked Glc1Man7GlcNAc2, Glc1Man8GlcNac2 and Glc1Man9GlcNAc2 from the unglucosylated proteins. Glucosyltransferase is a soluble protein of the endoplasmic reticulum that recognizes protein domains exposed in denatured but not in native conformations (probably hydrophobic amino acids and the innermost N-acetylglucosamine unit that is hidden from macromolecular probes in most native glycoproteins. In vivo, the glucose units are removed by glucosidase II. The influence of oligosaccharides in glycoprotein folding is reviewed as well as the participation of endoplasmic reticulum chaperones (calnexin and calreticulin that recognize monoglucosylated species in the same process. A model for the quality control of glycoprotein folding in the endoplasmic reticulum, i.e., the mechanism by which cells recognize the tertiary structure of glycoproteins and only allow transit to the Golgi apparatus of properly folded species, is discussed. The main elements of this control are calnexin and calreticulin as retaining components, the UDP-Glc:glycoprotein glucosyltransferase as a sensor of tertiary structures and glucosidase II as the releasing agent.

  9. Rabies virus (RV) glycoprotein expression levels are not critical for pathogenicity of RV.

    Science.gov (United States)

    Wirblich, Christoph; Schnell, Matthias J

    2011-01-01

    Previous comparisons of different rabies virus (RV) strains suggested an inverse relationship between pathogenicity and the amount of glycoprotein produced in infected cells. In order to provide more insight into this relationship, we pursued an experimental approach that allowed us to alter the glycoprotein expression level without altering the glycoprotein sequence, thereby eliminating the contribution of amino acid changes to differences in viral virulence. To this end, we constructed an infectious clone of the highly pathogenic rabies virus strain CVS-N2c and replaced its cognate glycoprotein gene with synthetic versions in which silent mutations were introduced to replace wild-type codons with the most or least frequently used synonymous codons. A recombinant N2c variant containing the fully codon-optimized G gene and three variants carrying a partially codon-deoptimized G gene were recovered on mouse neuroblastoma cells and shown to express 2- to 3-fold more and less glycoprotein, respectively, than wild-type N2c. Pathogenicity studies in mice revealed the WT-N2c virus to be the most pathogenic strain. Variants containing partially codon-deoptimized glycoprotein genes or the codon-optimized gene were less pathogenic than WT-N2c but still caused significant mortality. We conclude that the expression level of the glycoprotein gene does have an impact on pathogenicity but is not a dominant factor that determines pathogenicity. Thus, strategies such as changes in codon usage that aim solely at altering the expression level of the glycoprotein gene do not suffice to render a pathogenic rabies virus apathogenic and are not a viable and safe approach for attenuation of a pathogenic strain.

  10. Proteolytic Processing of the Human Immunodeficiency Virus Envelope Glycoprotein Precursor Decreases Conformational Flexibility

    OpenAIRE

    Haim, Hillel; Salas, Ignacio; Sodroski, Joseph

    2013-01-01

    The mature envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) virions is derived by proteolytic cleavage of a trimeric gp160 glycoprotein precursor. Remarkably, proteolytic processing of the HIV-1 Env precursor results in changes in Env antigenicity that resemble those associated with glutaraldehyde fixation. Apparently, proteolytic processing of the HIV-1 Env precursor decreases conformational flexibility of the Env trimeric complex, differentiall...

  11. Isolation and partial chemical characterization of a 64,000-dalton glycoprotein of human cytomegalovirus

    International Nuclear Information System (INIS)

    Clark, B.R.; Zaia, J.A.; Balce-Directo, L.; Ting, Y.P.

    1984-01-01

    A guanidinium chloride extract of [ 3 H]glucosamine- and [ 35 S]methionine-labeled virions plus dense bodies of human cytomegalovirus (Towne) was separated by reverse-phase high-pressure liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the eluate revealed the major peak to be a glycoprotein with a relative mass of 64,000. This glycoprotein (HCMVgp64) was characterized by amino acid analysis and a high-pressure liquid chromatographic map of its tryptic peptides

  12. Synthetic Biological Membrane (SBM)

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate goal of the Synthetic Biological Membrane project is to develop a new type of membrane that will enable the wastewater treatment system required on...

  13. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  14. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  15. Premature rupture of membranes

    Science.gov (United States)

    ... gov/ency/patientinstructions/000512.htm Premature rupture of membranes To use the sharing features on this page, ... water that surrounds your baby in the womb. Membranes or layers of tissue hold in this fluid. ...

  16. Transmembrane Signalling: Membrane messengers

    Science.gov (United States)

    Cockroft, Scott L.

    2017-05-01

    Life has evolved elaborate means of communicating essential chemical information across cell membranes. Inspired by biology, two new artificial mechanisms have now been developed that use synthetic messenger molecules to relay chemical signals into or across lipid membranes.

  17. The sweet spot for biologics: recent advances in characterization of biotherapeutic glycoproteins.

    Science.gov (United States)

    O'Flaherty, Róisín; Trbojević-Akmačić, Irena; Greville, Gordon; Rudd, Pauline M; Lauc, Gordan

    2018-01-01

    Glycosylation is recognized as a Critical Quality Attribute for therapeutic glycoproteins such as monoclonal antibodies, fusion proteins and therapeutic replacement enzymes. Hence, efficient and quantitative glycan analysis techniques have been increasingly important for their discovery, development and quality control. The aim of this review is to highlight relevant and recent advances in analytical technologies for characterization of biotherapeutic glycoproteins. Areas covered: The review gives an overview of the glycosylation trends of biotherapeutics approved in 2016 and 2017 by FDA. It describes current and novel analytical technologies for characterization of therapeutic glycoproteins and is explored in the context of released glycan, glycopeptide or intact glycoprotein analysis. Ultra performance liquid chromatography, mass spectrometry and capillary electrophoresis technologies are explored in this context. Expert commentary: There is a need for the biopharmaceutical industry to incorporate novel state of the art analytical technologies into existing and new therapeutic glycoprotein workflows for safer and more efficient biotherapeutics and for the improvement of future biotherapeutic design. Additionally, at present, there is no 'gold-standard' approach to address all the regulatory requirements and as such this will involve the use of orthogonal glycoanalytical technologies with a view to gain diagnostic information about the therapeutic glycoprotein.

  18. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.

    Directory of Open Access Journals (Sweden)

    Sofie Ignoul

    and ClC-7 when cotransfected in COS-1 cells. CONCLUSIONS: We conclude that human ClC-6 is an endosomal glycoprotein that partitions in detergent resistant lipid domains. The differential sorting of endogenous (late endosomal versus overexpressed (early and recycling endosomal ClC-6 is reminiscent of that of other late endosomal/lysosomal membrane proteins (e.g. LIMP II, and is consistent with a rate-limiting sorting step for ClC-6 between early endosomes and its final destination in late endosomes.

  19. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Science.gov (United States)

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  20. Idiopathic epiretinal membrane

    NARCIS (Netherlands)

    Bu, Shao-Chong; Kuijer, Roelof; Li, Xiao-Rong; Hooymans, Johanna M M; Los, Leonoor I

    2014-01-01

    Background: Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. Methods: Analysis of the current literature

  1. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  2. Membrane contactor applications

    NARCIS (Netherlands)

    Klaassen, R.; Feron, P.H.M.; Jansen, A.

    2008-01-01

    In a membrane contactor the membrane separation is completely integrated with an extraction or absorption operation in order to exploit the benefits of both technologies fully. Membrane contactor applications that have been developed can be found in both water and gas treatment. Several recently

  3. On "spinning" membrane models

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Townsend, P.K.

    1988-01-01

    Several alternative actions for a bosonic membrane have recently been proposed. We show that a linearly realized locally world-volume-supersymmetric (spinning membrane) extension of any of these actions implies an analogous extension of the standard Dirac membrane action. We further show that a

  4. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  5. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  6. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    membrane include ABC transporters, vacuolar (V-type) H+ pumps, and P-type pumps. These pumps all utilize ATP as a fuel for energizing pumping. This review focuses on the physiological roles of plasma membrane P-type pumps, as they represent the major ATP hydrolytic activity in this membrane....

  7. Four glycoproteins are expressed in the cat zona pellucida.

    Science.gov (United States)

    Stetson, I; Avilés, M; Moros, C; García-Vázquez, F A; Gimeno, L; Torrecillas, A; Aliaga, C; Bernardo-Pisa, M V; Ballesta, J; Izquierdo-Rico, M J

    2015-04-15

    The mammalian oocyte is surrounded by a matrix called the zona pellucida (ZP). This envelope participates in processes such as acrosome reaction induction, sperm binding and may be involved in speciation. In cat (Felis catus), this matrix is composed of at least three glycoproteins called ZP2, ZP3, and ZP4. However, recent studies have pointed to the presence of a fourth protein in several mammals (rat, human, hamster or rabbit), meaning that a reevaluation of cat ZP is needed. For this reason, the objective of this research was to analyze the protein composition of cat ZP by means of proteomic analysis. Using ZP from ovaries and oocytes, several peptides corresponding to four proteins were detected, yielding a coverage of 33.17%, 71.50%, 50.23%, and 49.64% for ZP1, ZP2, ZP3, and ZP4, respectively. Moreover, the expression of four genes was confirmed by molecular analysis. Using total RNA isolated from cat ovaries, the complementary deoxyribonucleic acids encoding cat ZP were partially amplified by reverse-transcribed polymerase chain reaction. Furthermore, ZP1 was totally amplified for the first time in this species. As far as we are aware, this is the first study that confirms the presence of four proteins in cat ZP. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Antifreeze Glycoproteins Alter the Molecular Scale Surface Morphology of Ice

    Science.gov (United States)

    Zepeda, Salvador; Orme, Christine A.; Qiu, Roger; Yeh, Yin

    2003-03-01

    Trematomas borchgrevinki live in the harsh super-cooled waters of the Antarctic. Critical to their survival are antifreeze glycoproteins (AFGPs) that further suppress the freezing temperature of their blood serum in addition to the colligative action of salts found in the ocean. These proteins also modify ice crystal growth habits as well as inhibit recrystallization in polycrystalline ice. To date many other types of antifreeze proteins have been identified in cold weather insects, plants, and other fish, but the exact mechanism is not entirely understood. The mechanism is non-colligative since only a few mg/ml are required for ice crystal growth inhibition and a non-equilibrium melting/freezing point hysteresis is observed. Atomic force microscopy (AFM) can yield a wealth of surface information that can reveal molecular scale information of biomineralization processes. We use AFM to directly probe the surface of ice crystals grown from the vapor in the pure phase and in the presence of growth inhibitors/modifiers, AFGPs. Results show that the AFGPs heavily pin the surface of ice.

  9. Glycoproteins and Glycosylation Site Assignments in Cereal seed Proteomes

    DEFF Research Database (Denmark)

    Dedvisitsakul, Plaipol

    The study of plant proteomes is important to further the understanding of biological processes and enhance the agronomical and nutritional value of crops and food products. To gain deeper understanding on the proteome level, it is important to characterize posttranslational modifications. Glycosy......The study of plant proteomes is important to further the understanding of biological processes and enhance the agronomical and nutritional value of crops and food products. To gain deeper understanding on the proteome level, it is important to characterize posttranslational modifications...... by supplementing cotton wool with ZIC-HILIC in a microcolumn (called ZIC-cotton). This approach reduced co-enrichment of non-glycosylated peptides and allowed glycoppeptide identification from large protein mixtures. It was applied for glycoprotein identification and glycosylation site assignment in wheat albumin...... and barley aleurone layer proteins. By sitespecific glycosylation labeling and LC-MS/MS analysis, 76 different glycosylation sites within 65 wheat albumin proteins were identified using a combination of ZIC-cotton and cotton wool. In addition, ZIC-cotton has been also applied to proteins produced from barley...

  10. Expression of glycoprotein VI in vascular endothelial cells.

    Science.gov (United States)

    Sun, Bing; Tao, Lian; Lin, Shihua; Calingasan, Noel Y; Li, Jess; Tandon, Narendra N; Yoshitake, Masuhiro; Kambayashi, Jun-ichi

    2003-06-01

    Glycoprotein (GP) VI, a collagen receptor, plays a important role in collagen-mediated platelet aggregation and adhesion. To date, GPVI expression has been found only in platelets and megakaryocytes. In the present studies, we have demonstrated that GPVI was also expressed in cultured human umbilical vein endothelial cells (HUVEC) at both transcript and protein levels. Using a GPVI-specific probe, a approximately 6-kb band was detected in HUVEC as well as in platelets and megakaryoblastic cell lines by Northern blotting. Using polyclonal antibodies raised against platelet GPVI peptides, the same size band (57 kDa) was labeled with convulxin (CVX) after immuo-precipitation in both HUVEC and platelet lysates. In addition, a approximately 70-kDa band was also labeled in HUVEC. Surface expression of GPVI in HUVEC was confirmed by flow cytometry with GPVI-specific IgG or by direct labeling with FITC-conjugated CVX. Since HUVEC lack FcRgamma chain that forms complex with GPVI in platelets for signaling process, the function of GPVI in vascular endothelial cells remains to be determined.

  11. Urine Glycoprotein Profile Reveals Novel Markers for Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Anuradha Vivekanandan-Giri

    2011-01-01

    Full Text Available Chronic kidney disease (CKD is a significant public health problem, and progression to end-stage renal disease leads to dramatic increases in morbidity and mortality. The mechanisms underlying progression of disease are poorly defined, and current noninvasive markers incompletely correlate with disease progression. Therefore, there is a great need for discovering novel markers for CKD. We utilized a glycoproteomic profiling approach to test the hypothesis that the urinary glycoproteome profile from subjects with CKD would be distinct from healthy controls. N-linked glycoproteins were isolated and enriched from the urine of healthy controls and subjects with CKD. This strategy identified several differentially expressed proteins in CKD, including a diverse array of proteins with endopeptidase inhibitor activity, protein binding functions, and acute-phase/immune-stress response activity supporting the proposal that inflammation may play a central role in CKD. Additionally, several of these proteins have been previously linked to kidney disease implicating a mechanistic role in disease pathogenesis. Collectively, our observations suggest that the human urinary glycoproteome may serve as a discovery source for novel mechanism-based biomarkers of CKD.

  12. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation.

    Science.gov (United States)

    Morikawa, Yuka; Heallen, Todd; Leach, John; Xiao, Yang; Martin, James F

    2017-07-13

    The regenerative capacity of the adult mammalian heart is limited, because of the reduced ability of cardiomyocytes to progress through mitosis. Endogenous cardiomyocytes have regenerative capacity at birth but this capacity is lost postnatally, with subsequent organ growth occurring through cardiomyocyte hypertrophy. The Hippo pathway, a conserved kinase cascade, inhibits cardiomyocyte proliferation in the developing heart to control heart size and prevents regeneration in the adult heart. The dystrophin-glycoprotein complex (DGC), a multicomponent transmembrane complex linking the actin cytoskeleton to extracellular matrix, is essential for cardiomyocyte homeostasis. DGC deficiency in humans results in muscular dystrophy, including the lethal Duchenne muscular dystrophy. Here we show that the DGC component dystroglycan 1 (Dag1) directly binds to the Hippo pathway effector Yap to inhibit cardiomyocyte proliferation in mice. The Yap-Dag1 interaction was enhanced by Hippo-induced Yap phosphorylation, revealing a connection between Hippo pathway function and the DGC. After injury, Hippo-deficient postnatal mouse hearts maintained organ size control by repairing the defect with correct dimensions, whereas postnatal hearts deficient in both Hippo and the DGC showed cardiomyocyte overproliferation at the injury site. In the hearts of mature Mdx mice (which have a point mutation in Dmd)-a model of Duchenne muscular dystrophy-Hippo deficiency protected against overload-induced heart failure.

  13. Dystrophin contains multiple independent membrane-binding domains.

    Science.gov (United States)

    Zhao, Junling; Kodippili, Kasun; Yue, Yongping; Hakim, Chady H; Wasala, Lakmini; Pan, Xiufang; Zhang, Keqing; Yang, Nora N; Duan, Dongsheng; Lai, Yi

    2016-09-01

    Dystrophin is a large sub-sarcolemmal protein. Its absence leads to Duchenne muscular dystrophy (DMD). Binding to the sarcolemma is essential for dystrophin to protect muscle from contraction-induced injury. It has long been thought that membrane binding of dystrophin depends on its cysteine-rich (CR) domain. Here, we provide in vivo evidence suggesting that dystrophin contains three additional membrane-binding domains including spectrin-like repeats (R)1-3, R10-12 and C-terminus (CT). To systematically study dystrophin membrane binding, we split full-length dystrophin into ten fragments and examined subcellular localizations of each fragment by adeno-associated virus-mediated gene transfer. In skeletal muscle, R1-3, CR domain and CT were exclusively localized at the sarcolemma. R10-12 showed both cytosolic and sarcolemmal localization. Importantly, the CR-independent membrane binding was conserved in murine and canine muscles. A critical function of the CR-mediated membrane interaction is the assembly of the dystrophin-associated glycoprotein complex (DGC). While R1-3 and R10-12 did not restore the DGC, surprisingly, CT alone was sufficient to establish the DGC at the sarcolemma. Additional studies suggest that R1-3 and CT also bind to the sarcolemma in the heart, though relatively weak. Taken together, our study provides the first conclusive in vivo evidence that dystrophin contains multiple independent membrane-binding domains. These structurally and functionally distinctive membrane-binding domains provide a molecular framework for dystrophin to function as a shock absorber and signaling hub. Our results not only shed critical light on dystrophin biology and DMD pathogenesis, but also provide a foundation for rationally engineering minimized dystrophins for DMD gene therapy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Inhibiting the Ins and Outs of HIV replication:Cell-intrinsic antiretroviral restrictions at the plasma membrane

    OpenAIRE

    Foster, Toshana L.; Pickering, Suzanne; Neil, Stuart J.D.

    2018-01-01

    Like all viruses, human immunodeficiency viruses (HIVs) and their primate lentivirus relatives must enter cells in order to replicate and, once produced, new virions need to exit to spread to new targets. These processes require the virus to cross the plasma membrane of the cell twice: once via fusion mediated by the envelope glycoprotein to deliver the viral core into the cytosol; and secondly by ESCRT-mediated scission of budding virions during release. This physical barrier thus presents a...

  15. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  16. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

  17. 3,3′,4,4′,5-Pentachlorobiphenyl Inhibits Drug Efflux Through P-Glycoprotein in KB-3 Cells Expressing Mutant Human P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujise

    2004-01-01

    Full Text Available The effects on the drug efflux of 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126, the most toxic of all coplanar polychlorinated biphenyls (Co-PCBs, were examined in KB-3 cells expressing human wild-type and mutant P-glycoprotein in which the 61st amino acid was substituted for serine or phenylalanine (KB3-Phe61. In the cells expressing P-glycoproteins, accumulations of vinblastine and colchicine decreased form 85% to 92% and from 62% to 91%, respectively, and the drug tolerances for these chemicals were increased. In KB3-Phe61, the decreases in drug accumulation were inhibited by adding PCB-126 in a way similar to that with cyclosporine A: by adding 1 μM PCB-126, the accumulations of vinblastine and colchicine increased up to 3.3- and 2.3-fold, respectively. It is suggested that PCB-126 decreased the drug efflux by inhibiting the P-glycoprotein in KB3-Phe61. Since there were various P-glycoproteins and many congeners of Co-PCBs, this inhibition has to be considered a new cause of the toxic effects of Co-PCBs.

  18. Chemical Synthesis of Glycoproteins with the Specific Installation of Gradient-Enriched15N-Labeled Amino Acids for Getting Insights into Glycoprotein Behavior.

    Science.gov (United States)

    Minh Hien, Nguyen; Izumi, Masayuki; Sato, Hajime; Okamoto, Ryo; Kajihara, Yasuhiro

    2017-05-11

    Elucidating the effects of oligosaccharides on glycoprotein properties, such as local conformational changes, stability, and dynamics, has still been challenging. In this paper, a novel partial 15 N-labeling method for the amide backbone of a synthetic glycoprotein is proposed. Using solid-phase peptide synthesis (SPPS) and native chemical ligation (NCL), thirteen 15 N-labeled amino acids were inserted at specific positions of the protein backbone, while intentionally varying the enrichment of 15 N atoms. This idea discriminated even the same type of amino acid based on the intensities of 1 H- 15 N HSQC signals, combined with classic homonuclear TOCSY and NOESY methods, thus allowing for understanding the dynamics of the local conformation of a synthetic homogeneous glycoprotein. Results suggested that the attachment of an oligosaccharide of either a bi-antennary complex-type or a high-mannose-type did not disturb protein conformation. However, T 1 values suggested that the oligosaccharide influenced dynamics at the local conformation. Temperature-varied circular dichroism (CD) spectra and T 1 values clearly indicated that oligosaccharides appeared to inhibit protein fluctuation or, in other words, stabilize protein structure. This insight into oligosaccharide behavior suggests some further effects on binding affinity between a glycoprotein and its receptor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  20. The Role of the Hendra Virus and Nipah Virus Attachment Glycoproteins in Receptor Binding and Antibody Neutralization

    Science.gov (United States)

    2014-01-31

    glycoproteins, such as HIV gp140 and Rabies glycoprotein, its ability to form trimers but not tetramers makes it ineffective for correct oligomerization of...Oldstone MB. 2000. V and C proteins of measles virus function as virulence factors in vivo. Virology 267:80-9.   216 148. Playford EG, McCall B...2005. Stable trimerization of recombinant rabies virus glycoprotein ectodomain is required for interaction with the p75NTR receptor. J Gen Virol 86

  1. Nanoparticle mediated P-glycoprotein silencing for improved drug delivery across the blood-brain barrier: a siRNA-chitosan approach.

    Directory of Open Access Journals (Sweden)

    Jostein Malmo

    Full Text Available The blood-brain barrier (BBB, composed of tightly organized endothelial cells, limits the availability of drugs to therapeutic targets in the central nervous system. The barrier is maintained by membrane bound efflux pumps efficiently transporting specific xenobiotics back into the blood. The efflux pump P-glycoprotein (P-gp, expressed at high levels in brain endothelial cells, has several drug substrates. Consequently, siRNA mediated silencing of the P-gp gene is one possible strategy how to improve the delivery of drugs to the brain. Herein, we investigated the potential of siRNA-chitosan nanoparticles in silencing P-gp in a BBB model. We show that the transfection of rat brain endothelial cells mediated effective knockdown of P-gp with subsequent decrease in P-gp substrate efflux. This resulted in increased cellular delivery and efficacy of the model drug doxorubicin.

  2. Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy

    Science.gov (United States)

    Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay

    2002-02-01

    Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.

  3. Supported ionic liquid membrane in membrane reactor

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-01-01

    Membrane reactor is a device that integrates membrane based separation and (catalytic) chemical reaction vessel in a single device. Ionic liquids, considered to be a relatively recent magical chemical due to their unique properties, have a large variety of applications in all areas of chemical industries. Moreover, the ionic liquid can be used as membrane separation layer and/or catalytically active site. This paper will review utilization of ionic liquid in membrane reactor related applications especially Fischer-Tropsch, hydrogenation, and dehydrogenation reaction. This paper also reviews about the capability of ionic liquid in equilibrium reaction that produces CO2 product so that the reaction will move towards the product. Water gas shift reaction in ammonia production also direct Dimethyl Ether (DME) synthesis that produces CO2 product will be discussed. Based on a review of numerous articles on supported ionic liquid membrane (SILM) indicate that ionic liquids have the potential to support the process of chemical reaction and separation in a membrane reactor.

  4. Overview of P-glycoprotein inhibitors: a rational outlook

    Directory of Open Access Journals (Sweden)

    Kale Mohana Raghava Srivalli

    2012-09-01

    Full Text Available P-glycoprotein (P-gp, a transmembrane permeability glycoprotein, is a member of ATP binding cassette (ABC super family that functions specifically as a carrier mediated primary active efflux transporter. It is widely distributed throughout the body and has a diverse range of substrates. Several vital therapeutic agents are substrates to P-gp and their bioavailability is lowered or a resistance is induced because of the protein efflux. Hence P-gp inhibitors were explored for overcoming multidrug resistance and poor bioavailability problems of the therapeutic P-gp substrates. The sensitivity of drug moieties to P-gp and vice versa can be established by various experimental models in silico, in vitro and in vivo. Ever since the discovery of P-gp, the research plethora identified several chemical structures as P-gp inhibitors. The aim of this review was to emphasize on the discovery and development of newer, inert, non-toxic, and more efficient, specifically targeting P-gp inhibitors, like those among the natural herb extracts, pharmaceutical excipients and formulations, and other rational drug moieties. The applications of cellular and molecular biology knowledge, in silico designed structural databases, molecular modeling studies and quantitative structure-activity relationship (QSAR analyses in the development of novel rational P-gp inhibitors have also been mentioned.Glicoproteína-p (P-gp, uma glicoproteína de transmembrana permeável, é um membro da superfamília (ABC de cassete de gene de ligação de ATP que funciona especificamente como um carreador mediado pelo transportador de efluxo ativo primário. É amplamente distribuído por todo o corpo e apresenta uma gama diversificada de substratos. Diversos agentes terapêuticos vitais são substratos para P-gp e sua biodisponibilidade é reduzida ou a resistência é induzida devido ao efluxo de proteínas. Portanto, os inibidores da P-gp foram explorados para a superação da resistência a

  5. A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: Implications for small molecule compound-mediated neuroprotection.

    Directory of Open Access Journals (Sweden)

    Takuya Kanno

    Full Text Available Therapeutic agents to the central nervous system (CNS need to be efficiently delivered to the target site of action at appropriate therapeutic levels. However, a limited number of effective drugs for the treatment of neurological diseases has been developed thus far. Further, the pharmacological mechanisms by which such therapeutic agents can protect neurons from cell death have not been fully understood. We have previously reported the novel small-molecule compound, 2-[mesityl(methylamino]-N-[4-(pyridin-2-yl-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316, as a unique neuroprotectant against oxidative injury and a highly promising remedy for the treatment of amyotrophic lateral sclerosis (ALS. One of the remarkable characteristics of WN1316 is that its efficacious doses in ALS mouse models are much less than those against oxidative injury in cultured human neuronal cells. It is also noted that the WN1316 cytoprotective activity observed in cultured cells is totally dependent upon the addition of fetal bovine serum in culture medium. These findings led us to postulate some serum factors being tightly linked to the WN1316 efficacy. In this study, we sieved through fetal bovine serum proteins and identified two N-linked glycoproteins, alpha-2-HS-glycoprotein (AHSG and hemopexin (HPX, requisites to exert the WN1316 cytoprotective activity against oxidative injury in neuronal cells in vitro. Notably, the removal of glycan chains from these molecules did not affect the WN1316 cytoprotective activity. Thus, two glycoproteins, AHSG and HPX, represent a pivotal glycoprotein of the cytoprotective activity for WN1316, showing a concrete evidence for the novel glycan-independent function of serum glycoproteins in neuroprotective drug efficacy.

  6. Convulxin binds to native, human glycoprotein Ib alpha.

    Science.gov (United States)

    Kanaji, Sachiko; Kanaji, Taisuke; Furihata, Kenichi; Kato, Kazunobu; Ware, Jerry L; Kunicki, Thomas J

    2003-10-10

    Convulxin (CVX), a C-type snake protein from Crotalus durissus terrificus venom, is the quintessential agonist for studies of the collagen receptor, glycoprotein VI (GPVI) and its role in platelet adhesion to collagens. In this study, CVX, purified from venom, behaves as expected, i.e. it binds to platelet GPVI and recombinant human GPVI, induces platelet aggregation and platelet prothrombinase activity, and binds uniquely to GPVI in ligand blots of SDS-denatured proteins. Nonetheless, we find that CVX has a dual specificity for both GPVI and native but not denatured human GPIb alpha. First, CVX binds to human GPIb alpha expressed on the surface of CHO cells. Second, CVX binds weakly to murine platelet GPIb alpha but more strongly to human platelet GPIb alpha, as evidenced by comparative binding to wild-type, GPVI(-/-), FcR gamma (-/-), and human GPIb transgenic mice. Third, the binding of CVX to human GPIb alpha is inhibited by soluble, recombinant human GPVI. Fourth, CVX binding to GPIb alpha is disrupted by phenylalanine substitutions at GPIb alpha tyrosine-276, tyrosine-278, and tyrosine-279, which also disrupts von Willebrand factor and alpha-thrombin binding to GPIb alpha. Fifth, CVX binding to GPIb alpha on Chinese hamster ovary cell transfectants is inhibited by function-blocking murine monoclonal anti-GPIb alpha antibodies. Lastly, CVX fails to bind to denatured GPIb alpha in detergent extracts of platelets. Three separate preparations of CVX (two purified by the authors; one obtained commercially) produced equivalent results. These results indicate that CVX exhibits dual specificity for both native GPIb alpha and GPVI. Furthermore, the binding site on GPIb alpha for CVX may be close to that for von Willebrand factor. Therefore, a contribution of GPIb alpha to CVX-induced platelet responses needs to be carefully re-evaluated.

  7. Pituitary glycoprotein hormone a-subunit secretion by cirrhotic patients

    Directory of Open Access Journals (Sweden)

    Oliveira M.C.

    1999-01-01

    Full Text Available Secretion of the a-subunit of pituitary glycoprotein hormones usually follows the secretion of intact gonadotropins and is increased in gonadal failure and decreased in isolated gonadotropin deficiency. The aim of the present study was to determine the levels of the a-subunit in the serum of patients with cirrhosis of the liver and to compare the results obtained for eugonadal cirrhotic patients with those obtained for cirrhotic patients with hypogonadotropic hypogonadism. Forty-seven of 63 patients with cirrhosis (74.6% presented hypogonadism (which was central in 45 cases and primary in 2, 7 were eugonadal, and 9 women were in normal menopause. The serum a-subunit was measured by the fluorimetric method using monoclonal antibodies. Cross-reactivity with LH, TSH, FSH and hCG was 6.5, 1.2, 4.3 and 1.1%, respectively, with an intra-assay coefficient of variation (CV of less than 5% and an interassay CV of 5%, and sensitivity limit of 4 ng/l. The serum a-subunit concentration ranged from 36 to 6253 ng/l, with a median of 273 ng/l. The median was 251 ng/l for patients with central hypogonadism and 198 ng/l for eugonadal patients. The correlation between the a-subunit and basal LH levels was significant both in the total sample (r = 0.48, P<0.01 and in the cirrhotic patients with central hypogonadism (r = 0.33, P = 0.02. Among men with central hypogonadism there was a negative correlation between a-subunit levels and total testosterone levels (r = 0.54, P<0.01 as well as free testosterone levels (r = -0.53, P<0.01. In conclusion, although the a-subunit levels are correlated with LH levels, at present they cannot be used as markers for hypogonadism in patients with cirrhosis of the liver.

  8. Zinc alpha-2 glycoprotein is overproduced in Cushing's syndrome.

    Science.gov (United States)

    Escoté, Xavier; Aranda, Gloria B; Mora, Mireia; Casals, Gregori; Enseñat, Joaquim; Vidal, Oscar; Esteban, Yaiza; Halperin, Irene; Hanzu, Felicia A

    2017-01-01

    Cushing syndrome (CS), an endogenous hypercortisolemic condition with increased cardiometabolic morbidity, leads to development of abdominal obesity, insulin resistance, diabetes and proatherogenic dyslipidemia. Zinc alpha-2 glycoprotein (ZAG) is a recently characterized lipolytic adipokine implicated in regulation of adipose tissue metabolism and fat distribution. In vitro and animal studies suggest that glucocorticoids interact with ZAG secretion and action. To assess the relationship between ZAG and glucocorticoids in a human model of hypercortisolism, circulating ZAG levels were tested in patients with CS and its counterpart controls. An observational, cross-sectional study on 39 women, 13 with active CS and 26 controls matched by age and body mass index. Plasma ZAG levels (μg/ml) were measured by ELISA and correlated with hypercortisolism, metabolic, and phenotypic parameters. Plasma ZAG levels were significantly higher in patients with CS compared to controls (64.3±16.6 vs. 44.0±16.1, p=0.002). In a univariate analysis, ZAG levels positively correlated to 24-h urinary free cortisol (p=0.001), body mass index (p=0.02), non-esterified fatty acids (p=0.05), glucose (p=0.003), LDL-C (p=0.028), and type 2 diabetes mellitus (p=0.016), and were inversely related to total adiponectin levels (p=0.035). In a multivariate analysis, after adjusting for CS, ZAG levels only correlated with body mass index (p=0.012), type 2 diabetes mellitus (p=0.004), and glucose (p<0.001). This study provides initial evidence that plasma ZAG levels are higher in patients with CS as compared to controls. The close relationship of ZAG with metabolic and phenotypic changes in CS suggests that ZAG may play a significant role in adipose tissue changes in hypercortisolism. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Alterations of intestinal glycoprotein hydrolases in congenital diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, S.M.

    1989-01-01

    The diabetic BioBreed (BB{sub d}) rat was used for the study of the molecular structure of intestinal brush border sucrase-{alpha}-dextrinase (SD) and aminooligopeptidase (AOP) in diabetes mellitus. The specific catalytic activity of S-D and AOP in the BB{sub d} rat is normal. However, solid-phase radioimmunoassay revealed loss of some antigenic determinants in the BB{sub d} rat. S-D and AOP migrated abnormally on 6% SDS-gel electrophoresis in the BB{sub d} rat. S was larger (+5 kDa), D was either smaller (-5 kDa) or unaltered, and AOP was smaller (-5 kDa) in the BB{sub d} than in the normal Wistar. The structural abnormalities were independent of hyperglycemia or ketoacidosis and restored to normal by daily insulin treatment (NPH, 3-4 units/rat) for two to three weeks. Newly-synthesized brush border hydrolases were examined after 6 hours of intraperitoneal injection of ({sup 35}S) methionine (2 mCi) and found to be altered, suggesting that structural abnormality appeared acutely during intracellular synthesis rather than being due to slow extracellular modifications such as non-enzymatic glycosylation. Deglycosylation of brush border proteins by trifluoromethanesulfonic acid resulted in an apoprotein with normal electrophoretic migration in BB{sub d}, indicating that the alteration was due to the carbohydrates component of the glycoprotein. Pulse-chase studies with ({sup 35}S) methionine were consistent with normal protein an co-translational and initial N-linked carbohydrate assembly in association with the endoplasmic reticulum in BB{sub d}. However, the post-translational maturation of N-linked and addition of 0-linked carbohydrate chains in Golgi were prolonged, and produced a larger single-chain precursor of S-D in BB{sub d} than normal.

  10. Alterations of intestinal glycoprotein hydrolases in congenital diabetes

    International Nuclear Information System (INIS)

    Najjar, S.M.

    1989-01-01

    The diabetic BioBreed (BB d ) rat was used for the study of the molecular structure of intestinal brush border sucrase-α-dextrinase (SD) and aminooligopeptidase (AOP) in diabetes mellitus. The specific catalytic activity of S-D and AOP in the BB d rat is normal. However, solid-phase radioimmunoassay revealed loss of some antigenic determinants in the BB d rat. S-D and AOP migrated abnormally on 6% SDS-gel electrophoresis in the BB d rat. S was larger (+5 kDa), D was either smaller (-5 kDa) or unaltered, and AOP was smaller (-5 kDa) in the BB d than in the normal Wistar. The structural abnormalities were independent of hyperglycemia or ketoacidosis and restored to normal by daily insulin treatment (NPH, 3-4 units/rat) for two to three weeks. Newly-synthesized brush border hydrolases were examined after 6 hours of intraperitoneal injection of [ 35 S] methionine (2 mCi) and found to be altered, suggesting that structural abnormality appeared acutely during intracellular synthesis rather than being due to slow extracellular modifications such as non-enzymatic glycosylation. Deglycosylation of brush border proteins by trifluoromethanesulfonic acid resulted in an apoprotein with normal electrophoretic migration in BB d , indicating that the alteration was due to the carbohydrates component of the glycoprotein. Pulse-chase studies with [ 35 S] methionine were consistent with normal protein an co-translational and initial N-linked carbohydrate assembly in association with the endoplasmic reticulum in BB d . However, the post-translational maturation of N-linked and addition of 0-linked carbohydrate chains in Golgi were prolonged, and produced a larger single-chain precursor of S-D in BB d than normal

  11. Increasing nerve agent treatment efficacy by P-glycoprotein inhibition.

    Science.gov (United States)

    Joosen, Marloes J A; Vester, Stefanie M; Hamelink, Jouk; Klaassen, Steven D; van den Berg, Roland M

    2016-11-25

    One of the shortcomings of current treatment of nerve agent poisoning is that not all drugs effectively penetrate the blood-brain barrier (BBB), whereas most nerve agents easily do. P-glycoprotein (Pgp) efflux transporters at the BBB may contribute to this aspect. It was previously shown that Pgp inhibition by tariquidar enhanced the efficacy of nerve agent treatment when administered as a pretreatment. In the present study soman-induced seizures were also substantially prevented when the animals were intravenously treated with tariquidar post-poisoning, in addition to HI-6 and atropine. In these animals, approximately twice as much AChE activity was present in their brain as compared to control rats. The finding that tariquidar did not affect distribution of soman to the brain indicates that the potentiating effects were a result of interactions of Pgp inhibition with drug distribution. In line with this, atropine appeared to be a substrate for Pgp in in vitro studies in a MDR1/MDCK cell model. This indicates that tariquidar might induce brain region specific effects on atropine distribution, which could contribute to the therapeutic efficacy increase found. Furthermore, the therapeutic enhancement by tariquidar was compared to that of the less specific and less potent Pgp inhibitor cyclosporine A. This compound appeared to induce a protective effect similar to tariquidar. In conclusion, treatment with a Pgp inhibitor resulted in enhanced therapeutic efficacy of HI-6 and atropine in a soman-induced seizure model in the rat. The mechanism underlying these effects should be further investigated. To that end, the potentiating effect of nerve agent treatment should be addressed against a broader range of nerve agents, for oximes and atropine separately, and for those at lower doses. In particular when efficacy against more nerve agents is shown, a Pgp inhibitor such as tariquidar might be a valid addition to nerve agent antidotes. Copyright © 2016 Elsevier Ireland

  12. Effect of expression of P-glycoprotein on technetium-99m methoxyisobutylisonitrile single photon emission computed tomography of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Yasushi; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-08-01

    The expression of P-glycoprotein was investigated imunohistochemically in 26 brain tumor tissues and compared with the findings of technetium-99m methoxyisobutylisonitrile single photon emission computed tomography ({sup 99m}Tc-MIBI SPECT) to clarify the effect of P-glycoprotein on the diagnostic accuracy. P-glycoprotein labeling index of both tumor cells and vascular endothelial cells showed no clear relationship with the findings of {sup 99m}Tc-MIBI SPECT imaging. Expression of P-glycoprotein has no effect on the diagnostic accuracy of {sup 99m}Tc-MIBI SPECT. (author)

  13. Spatial localization of the Ebola virus glycoprotein mucin-like domain determined by cryo-electron tomography.

    Science.gov (United States)

    Tran, Erin E H; Simmons, James A; Bartesaghi, Alberto; Shoemaker, Charles J; Nelson, Elizabeth; White, Judith M; Subramaniam, Sriram

    2014-09-01

    The Ebola virus glycoprotein mucin-like domain (MLD) is implicated in Ebola virus cell entry and immune evasion. Using cryo-electron tomography of Ebola virus-like particles, we determined a three-dimensional structure for the full-length glycoprotein in a near-native state and compared it to that of a glycoprotein lacking the MLD. Our results, which show that the MLD is located at the apex and the sides of each glycoprotein monomer, provide a structural template for analysis of MLD function. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. An Alphavirus E2 Membrane-Proximal Domain Promotes Envelope Protein Lateral Interactions and Virus Budding

    Directory of Open Access Journals (Sweden)

    Emily A. Byrd

    2017-11-01

    Full Text Available Alphaviruses are members of a group of small enveloped RNA viruses that includes important human pathogens such as Chikungunya virus and the equine encephalitis viruses. The virus membrane is covered by a lattice composed of 80 spikes, each a trimer of heterodimers of the E2 and E1 transmembrane proteins. During virus endocytic entry, the E1 glycoprotein mediates the low-pH-dependent fusion of the virus membrane with the endosome membrane, thus initiating virus infection. While much is known about E1 structural rearrangements during membrane fusion, it is unclear how the E1/E2 dimer dissociates, a step required for the fusion reaction. A recent Alphavirus cryo-electron microscopy reconstruction revealed a previously unidentified D subdomain in the E2 ectodomain, close to the virus membrane. A loop within this region, here referred to as the D-loop, contains two highly conserved histidines, H348 and H352, which were hypothesized to play a role in dimer dissociation. We generated Semliki Forest virus mutants containing the single and double alanine substitutions H348A, H352A, and H348/352A. The three D-loop mutations caused a reduction in virus growth ranging from 1.6 to 2 log but did not significantly affect structural protein biosynthesis or transport, dimer stability, virus fusion, or specific infectivity. Instead, growth reduction was due to inhibition of a late stage of virus assembly at the plasma membrane. The virus particles that are produced show reduced thermostability compared to the wild type. We propose the E2 D-loop as a key region in establishing the E1-E2 contacts that drive glycoprotein lattice formation and promote Alphavirus budding from the plasma membrane.

  15. Analyzing conformational dynamics of single P-glycoprotein transporters by Förster resonance energy transfer using hidden Markov models.

    Science.gov (United States)

    Zarrabi, Nawid; Ernst, Stefan; Verhalen, Brandy; Wilkens, Stephan; Börsch, Michael

    2014-03-15

    Single-molecule Förster resonance energy (smFRET) transfer has become a powerful tool for observing conformational dynamics of biological macromolecules. Analyzing smFRET time trajectories allows to identify the state transitions occuring on reaction pathways of molecular machines. Previously, we have developed a smFRET approach to monitor movements of the two nucleotide binding domains (NBDs) of P-glycoprotein (Pgp) during ATP hydrolysis driven drug transport in solution. One limitation of this initial work was that single-molecule photon bursts were analyzed by visual inspection with manual assignment of individual FRET levels. Here a fully automated analysis of Pgp smFRET data using hidden Markov models (HMM) for transitions up to 9 conformational states is applied. We propose new estimators for HMMs to integrate the information of fluctuating intensities in confocal smFRET measurements of freely diffusing lipid bilayer bound membrane proteins in solution. HMM analysis strongly supports that under conditions of steady state turnover, conformational states with short NBD distances and short dwell times are more populated compared to conditions without nucleotide or transport substrate present. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Argaw, Takele; Wilson, Carolyn A., E-mail: carolyn.wilson@fda.hhs.gov

    2015-01-15

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor.

  17. Age-related dystrophin-glycoprotein complex structure and function in the rat extensor digitorum longus and soleus muscle.

    Science.gov (United States)

    Rice, Kevin M; Preston, Deborah L; Neff, David; Norton, Michael; Blough, Eric R

    2006-11-01

    This study tested the hypothesis that age-related changes in the dystrophin-glycoprotein complex (DGC) may precede age-associated alterations in muscle morphology and function. Compared to those in adult (6 month) rats, extensor digitorum longus (EDL) and soleus muscle mass was decreased in old (30 month) and very old (36 month) Fischer 344/NNiaHSD x Brown Norway/BiNia rats. The amount of dystrophin, beta-dystroglycan, and alpha-sarcoglycan increased with aging in the EDL and decreased with aging in the soleus. alpha-Dystroglycan levels were increased with aging in both muscles and displayed evidence of altered glycosylation. Immunostaining for the presence of antibody infiltration and dystrophin following increased muscle stretch suggested that the aging in the soleus was characterized by diminished membrane integrity. Together, these data suggest that aging is associated with alterations in EDL and soleus DGC protein content and localization. These results may implicate the DGC as playing a role in age-associated skeletal muscle remodeling.

  18. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats.

    Directory of Open Access Journals (Sweden)

    Gale Smith

    Full Text Available Respiratory Syncytial Virus (RSV is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.

  19. Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

    International Nuclear Information System (INIS)

    Argaw, Takele; Wilson, Carolyn A.

    2015-01-01

    Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription. - Highlights: • Env cleavage signal impacts infectivity of gammaretroviruses. • Non-infectious mutants have hyper-glycosylated envelope that bind target cells. • Non-infectious mutants have defects in the formation of the double-stranded DNA. • Env cleavage motif has functions beyond cleavage of the env precursor

  20. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  1. Functional stability of unliganded envelope glycoprotein spikes among isolates of human immunodeficiency virus type 1 (HIV-1.

    Directory of Open Access Journals (Sweden)

    Nitish Agrawal

    Full Text Available The HIV-1 envelope glycoprotein (Env spike is challenging to study at the molecular level, due in part to its genetic variability, structural heterogeneity and lability. However, the extent of lability in Env function, particularly for primary isolates across clades, has not been explored. Here, we probe stability of function for variant Envs of a range of isolates from chronic and acute infection, and from clades A, B and C, all on a constant virus backbone. Stability is elucidated in terms of the sensitivity of isolate infectivity to destabilizing conditions. A heat-gradient assay was used to determine T(90 values, the temperature at which HIV-1 infectivity is decreased by 90% in 1 h, which ranged between ∼40 to 49°C (n = 34. For select Envs (n = 10, the half-lives of infectivity decay at 37°C were also determined and these correlated significantly with the T(90 (p = 0.029, though two 'outliers' were identified. Specificity in functional Env stability was also evident. For example, Env variant HIV-1(ADA was found to be labile to heat, 37°C decay, and guanidinium hydrochloride but not to urea or extremes of pH, when compared to its thermostable counterpart, HIV-1(JR-CSF. Blue native PAGE analyses revealed that Env-dependent viral inactivation preceded complete dissociation of Env trimers. The viral membrane and membrane-proximal external region (MPER of gp41 were also shown to be important for maintaining trimer stability at physiological temperature. Overall, our results indicate that primary HIV-1 Envs can have diverse sensitivities to functional inactivation in vitro, including at physiological temperature, and suggest that parameters of functional Env stability may be helpful in the study and optimization of native Env mimetics and vaccines.

  2. Bioactivity of proteins isolated from Lactobacillus plantarum L67 treated with Zanthoxylum piperitum DC glycoprotein.

    Science.gov (United States)

    Song, S; Oh, S; Lim, K-T

    2015-06-01

    Lactobacilli in the human gastrointestinal tract have beneficial effects on the health of their host. To enhance these effects, the bioactivity of lactobacilli can be fortified through exogenous dietary or pharmacological agents, such as glycoproteins. To elucidate the inductive effect of Zanthoxylum piperitum DC (ZPDC) glycoprotein on Lactobacillus plantarum L67, we evaluated the radical-scavenging activity, anti-oxidative enzymes (SOD, GPx and CAT), growth rate, ATPase activity and β-galactosidase activity of this strain. When Lact. plantarum L67 was treated with ZPDC glycoprotein at different concentrations, the intensities of a few SDS-PAGE bands were slightly changed. The amount of a 23 kDa protein was increased upon treatment with increasing concentrations of ZPDC glycoprotein. The results of this study indicate that the radical-scavenging activity for O2(-) and OH¯, but not for the DPPH radical, increased in a concentration-dependent manner after treatment with ZPDC glycoprotein. The activation of anti-oxidative enzymes (SOD, GPx and CAT), growth rate and β-galactosidase activity also increased in a concentration-dependent manner in response to ZPDC glycoprotein treatment, whereas ATPase activity was decreased. In summary, ZPDC glycoprotein stimulated an increase in the bioactivity of Lact. plantarum L67. Significance and impact of the study: This study demonstrated that Lactobacillus plantarum L67 possesses anti-oxidative activity. This strain of lactic bacteria has been known to have various probiotic uses, such as yogurt starters and dietary additional supplements. We found, through this experiment, that the protein has a strong anti-oxidative character, and the activity can be enhanced by treatment with Zanthoxylum piperitum DC (ZPDC) glycoprotein. This study may be application of Lact. plantarum L67 treated by ZPDC glycoprotein in yogurt fermentation. It could be one of the avenues of minimizing yogurt postacidification during storage. In addition

  3. Scintigraphic imaging of P-glycoprotein expression with a radiolabelled antibody

    International Nuclear Information System (INIS)

    Eerd, Julliette E.M. van; Geus-Oei, Lioe-Fee de; Oyen, Wim J.G.; Corstens, Frans H.M.; Boerman, Otto C.

    2006-01-01

    P-glycoprotein (P-gp) is a membrane efflux pump protein that is involved in multidrug resistance (MDR). Tumour cells with high P-gp expression show poor response to cancer treatment with several chemotherapeutics. In vivo targeting and visualisation of P-gp expression would allow MDR to be evaluated non-invasively prior to treatment. The aim of this study was to investigate the feasibility of visualising P-gp expression in tumours using a monoclonal anti-P-gp antibody, 15D3. Nude BALB/c mice with subcutaneously growing human uterine sarcoma cell tumours with either high (MES-SA/D x 5 1977) or low (MES-SA 1976) P-gp expression were used. When tumours were 0.2-0.4 g, mice received 131 I-15D3 or 111 In-DTPA-15D3 monoclonal anti-P-gp antibody intravenously. Images were acquired up to 3 days p.i. and radioactivity concentration in various tissues was determined after euthanisation of the animals. The images demonstrated that radioactivity accumulated to a higher concentration in high P-gp expressing tumours than in the low P-gp expressing MES-SA 1976 tumour. Furthermore, visualisation of the P-gp expressing tumours was superior with 111 In-DTPA-15D3 than with 131 I-15D3. After injection of 111 In-DTPA-15D3, the high P-gp expressing MES-SA/D x 5 1977 tumours were clearly visualised at 3 days p.i. The biodistribution data indicated that radioactivity concentration in the high P-gp expressing tumours was higher than in the tumours with low P-gp expression (20.78±1.42 %ID/g for MES-SA/Dx5 1977 tumours and 8.39±3.78 %ID/g for MES-SA 1976 tumours for 111 In-DTPA-15D3). The 111 In-labelled monoclonal anti-P-gp antibody clearly visualised P-gp expression in a human uterine sarcoma tumour in nude mice. (orig.)

  4. The expression and serological reactivity of recombinant canine herpesvirus 1 glycoprotein D

    Directory of Open Access Journals (Sweden)

    MarkéŽta Vaňkov‡á

    2016-01-01

    Full Text Available The aim of this work was to express recombinant glycoprotein D of canine herpesvirus 1 in bacterial cells and to evaluate its diagnostic sensitivity and specificity when compared to traditional serological methods. The gene fragment coding glycoprotein D of canine herpesvirus 1 was amplified by polymerase chain reaction, cloned into plasmid vector and expressed in Escherichia coli cells. Recombinant protein was then purified and used as an antigen in immunoblot for a detection of canine herpesvirus 1 specific antibodies. Antibody testing was performed on the panel of 100 canine sera by immunoblot with recombinant glycoprotein D as antigen and compared with indirect immunofluorescence assay. Serum samples were collected from 83 dogs with no history of canine herpesvirus 1 or reproductive disorders, and from 17 dogs from breeding kennels with a history of canine herpesvirus 1 related reproductive disorders. Sensitivity of glycoprotein D based immunoblot was 89.2% and specificity was 93%. Kappa value was calculated to be 0.8 between immunoblot and indirect immunofluorescence assay. Antibodies against canine herpesvirus 1 infection were detected in 33% of samples by immunoblot assay. Our study confirms that recombinant glycoprotein D expressed in bacterial cells could be used as a suitable and sensitive antigen for immunological tests and that herpesvirus infection seems to be common among the canine population in the Czech Republic.

  5. Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance

    Directory of Open Access Journals (Sweden)

    Mahsa Mohseni

    2016-03-01

    Results: Combination treatment of the cells with docetaxel and vinblastine decreased the IC50 values for docetaxel from (30±3.1 to (15±2.6 nM and for vinblastine from (30±5.9 to (5±5.6 nM (P≤0.05.               P-glycoprotein mRNA expression level showed a significant up-regulation in the cells incubated with each drug alone (P≤0.001. Incubation of the cells with combined concentrations of both agents neutralized P-glycoprotein overexpression (P≤0.05. Adding verapamil, a P-glycoprotein inhibitor caused a further increase in the percentage of apoptotic cells when the cells were treated with both agents.  Conclusion:Our results suggest that combination therapy along with P-glycoprotein inhibition can be considered as a novel approach to improve the efficacy of chemotherapeutics in cancer patients with high P-glycoprotein expression.

  6. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  7. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  8. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  9. Polyarylether composition and membrane

    Science.gov (United States)

    Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  10. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  11. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  12. Blocking Antibody Access to Neutralizing Domains on Glycoproteins Involved in Entry as a Novel Mechanism of Immune Evasion by Herpes Simplex Virus Type 1 Glycoproteins C and E▿

    Science.gov (United States)

    Hook, Lauren M.; Huang, Jialing; Jiang, Ming; Hodinka, Richard; Friedman, Harvey M.

    2008-01-01

    Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) blocks complement activation, and glycoprotein E (gE) interferes with IgG Fc-mediated activities. While evaluating gC- and gE-mediated immune evasion in human immunodeficiency virus (HIV)-HSV-1-coinfected subjects, we noted that antibody alone was more effective at neutralizing a strain with mutations in gC and gE (gC/gE) than a wild-type (WT) virus. This result was unexpected since gC and gE are postulated to interfere with complement-mediated neutralization. We used pooled human immunoglobulin G (IgG) from HIV-negative donors to confirm the results and evaluated mechanisms of the enhanced antibody neutralization. We demonstrated that differences in antibody neutralization cannot be attributed to the concentrations of HSV-1 glycoproteins on the two viruses or to the absence of an IgG Fc receptor on the gC/gE mutant virus or to enhanced neutralization of the mutant virus by antibodies that target only gB, gD, or gH/gL, which are the glycoproteins involved in virus entry. Since sera from HIV-infected subjects and pooled human IgG contain antibodies against multiple glycoproteins, we determined whether differences in neutralization become apparent when antibodies to gB, gD, or gH/gL are used in combination. Neutralization of the gC/gE mutant was greatly increased compared that of WT virus when any two of the antibodies against gB, gD, or gH/gL were used in combination. These results suggest that gC and gE on WT virus provide a shield against neutralizing antibodies that interfere with gB-gD, gB-gH/gL, or gD-gH/gL interactions and that one function of virus neutralization is to prevent interactions between these glycoproteins. PMID:18480440

  13. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics.

    Science.gov (United States)

    Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing

    2017-11-29

    Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.

  14. Characterization of Intact Neo-Glycoproteins by Hydrophilic Interaction Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Alice Pedrali

    2014-06-01

    Full Text Available In this study, an HPLC HILIC-UV method was developed for the analysis of intact neo-glycoproteins. During method development the experimental conditions evaluated involved different HILIC columns (TSKgel Amide-80 and ZIC-pHILIC, and water-acetonitrile mixtures containing various types of acids and salts. The final selected method was based on a TSKgel Amide-80 column and a mobile phase composed of acetonitrile and water both containing 10 mM HClO4. The influence of temperature and sample preparation on the chromatographic performances of the HILIC method was also investigated. The method was applied to the separation of neo-glycoproteins prepared starting from the model protein RNase A by chemical conjugation of different glycans. Using the method here reported it was possible to monitor by UV detection the glycosylation reaction and assess the distribution of neo-glycoprotein isoforms without laborious sample workup prior to analysis.

  15. Contribution of the attachment G glycoprotein to pathogenicity and immunogenicity of avian metapneumovirus subgroup C.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Kim, Shin-Hee; Samal, Siba K

    2010-03-01

    Avian metapneumovirus (AMPV) causes an upper respiratory tract infection in turkeys leading to serious economic losses to the turkey industry. The G glycoprotein of AMPV is known to be associated with viral attachment and pathogenesis. In this study, we determined the role of the G glycoprotein in the pathogenicity and immunogenicity of AMPV strain Colorado (AMPV/CO). Recombinant AMPV/CO lacking the G protein (rAMPV/CO-deltaG) was generated using a reverse-genetics system. The recovered rAMPV/CO-deltaG replicated slightly better than did wild-type AMPV in Vero cells. However, deletion of the G gene in AMPV resulted in attenuation of the virus in turkeys. The mutant virus induced less-severe clinical signs and a weaker immune response in turkeys than did the wild-type AMPV. Our results suggest that the G glycoprotein is an important determinant for the pathogenicity and immunogenicity of AMPV.

  16. Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies

    Directory of Open Access Journals (Sweden)

    Laura Evgin

    2016-01-01

    Full Text Available The systemic delivery of therapeutic viruses, such as oncolytic viruses or vaccines, is limited by the generation of neutralizing antibodies. While pseudotyping of rhabdoviruses with the lymphocytic choriomeningitis virus glycoprotein has previously allowed for multiple rounds of delivery in mice, this strategy has not translated to other animal models. For the first time, we provide experimental evidence that antibodies generated against the lymphocytic choriomeningitis virus glycoprotein mediate robust complement-dependent viral neutralization via activation of the classical pathway. We show that this phenotype can be capitalized upon to deliver maraba virus pseudotyped with the lymphocytic choriomeningitis virus glycoprotein in a Fischer rat model in the face of neutralizing antibody through the use of complement modulators. This finding changes the understanding of the humoral immune response to arenaviruses, and also describes methodology to deliver viral vectors to their therapeutic sites of action without the interference of neutralizing antibody.

  17. Efficient transduction of neurons using Ross River glycoprotein-pseudotyped lentiviral vectors

    DEFF Research Database (Denmark)

    Jakobsson, J; Nielsen, T Tolstrup; Staflin, K

    2006-01-01

    Lentiviral vectors are promising tools for CNS gene transfer since they efficiently transduce the cells of the nervous system in vivo. In this study, we have investigated the transduction efficiency of lentiviral vectors pseudotyped with Ross River virus glycoprotein (RRV-G) (RRV-G-pseudotyped le......Lentiviral vectors are promising tools for CNS gene transfer since they efficiently transduce the cells of the nervous system in vivo. In this study, we have investigated the transduction efficiency of lentiviral vectors pseudotyped with Ross River virus glycoprotein (RRV-G) (RRV...... and human glial fibrillary acidic protein, we demonstrated cell-specific transgene expression in the desired cell type. Ross River virus glycoprotein-pseudotyped lentiviral vectors also transduced human neural progenitor cells in vitro, showing that receptors for the RRV-G are present on human neural cells....

  18. Quantitative changes of main components of erythrocyte membranes which define architectonics of cells under pttg gene knockout

    Directory of Open Access Journals (Sweden)

    О. P. Kanyuka

    2014-04-01

    Full Text Available A pttg gene knockout affects the functional state of erythron in mice which could be associated with structural changes in the structure of erythrocyte membranes. The pttg gene knockout causes a significant modification of fatty acids composition of erythrocyte membrane lipids by reducing the content of palmitic acid and increasing of polyunsaturated fatty acids amount by 18%. Analyzing the erythrocyte surface architectonics of mice under pttg gene knockout, it was found that on the background of reduction of the functionally complete biconcave discs population one could observe an increase of the number of transformed cells at different degeneration stages. Researches have shown that in mice with a pttg gene knockout compared with a control group of animals cytoskeletal protein – β-spectrin was reduced by 17.03%. However, there is a reduction of membrane protein band 3 by 33.04%, simultaneously the content of anion transport protein band 4.5 increases by 35.2% and protein band 4.2 by 32.1%. The lectin blot analysis has helped to reveal changes in the structure of the carbohydrate determinants of ery­throcyte membrane glycoproteins under conditions of directed pttg gene inactivation, accompanied by changes in the type of communication, which joins the terminal residue in carbohydrate determinant of glycoproteins. Thus, a significant redistribution of protein and fatty acids contents in erythrocyte membranes that manifested in the increase of the deformed shape of red blood cells is observed under pttg gene knockout.

  19. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    Science.gov (United States)

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  20. Primary cilia utilize glycoprotein-dependent adhesion mechanisms to stabilize long-lasting cilia-cilia contacts

    Directory of Open Access Journals (Sweden)

    Ott Carolyn

    2012-04-01

    Full Text Available Abstract Background The central tenet of cilia function is sensing and transmitting information. The capacity to directly contact extracellular surfaces would empower primary cilia to probe the environment for information about the nature and location of nearby surfaces. It has been well established that flagella and other motile cilia perform diverse cellular functions through adhesion. We hypothesized that mammalian primary cilia also interact with the extracellular environment through direct physical contact. Methods We identified cilia in rod photoreceptors and cholangiocytes in fixed mouse tissues and examined the structures that these cilia contact in vivo. We then utilized an MDCK cell culture model to characterize the nature of the contacts we observed. Results In retina and liver tissue, we observed that cilia from nearby cells touch one another. Using MDCK cells, we found compelling evidence that these contacts are stable adhesions that form bridges between two cells, or networks between many cells. We examined the nature and duration of the cilia-cilia contacts and discovered primary cilia movements that facilitate cilia-cilia encounters. Stable adhesions form as the area of contact expands from a single point to a stretch of tightly bound, adjacent cilia membranes. The cilia-cilia contacts persisted for hours and were resistant to several harsh treatments such as proteases and DTT. Unlike many other cell adhesion mechanisms, calcium was not required for the formation or maintenance of cilia adhesion. However, swainsonine, which blocks maturation of N-linked glycoproteins, reduced contact formation. We propose that cellular control of adhesion maintenance is active because cilia adhesion did not prevent cell division; rather, contacts dissolved during mitosis as cilia were resorbed. Conclusions The demonstration that mammalian primary cilia formed prolonged, direct, physical contacts supports a novel paradigm: that mammalian primary

  1. Sphingolipid signaling reduces basal P-glycoprotein activity in renal proximal tubule.

    Science.gov (United States)

    Miller, David S

    2014-03-01

    P-glycoprotein is an ATP-driven xenobiotic export pump that is highly expressed in barrier and excretory tissues, where it greatly influences drug pharmacokinetics. Recent studies in the blood-brain and spinal cord barriers identified a sphingolipid-based signaling pathway that regulates basal activity of P-glycoprotein. Here we use an established comparative renal model that permits direct measurement of P-glycoprotein activity to determine whether such signaling occurs in another tissue, killifish renal proximal tubule. Isolated killifish tubules exposed to 0.01-1.0 μM sphingosine-1-phosphate (S1P) exhibited a profound decrease in P-glycoprotein transport activity, measured as specific accumulation of a fluorescent cyclosporine A derivative in the tubule lumen. Loss of activity had a rapid onset and was fully reversible when the S1P was removed. Transport mediated by multidrug resistance-associated protein 2 (Mrp2) or a teleost fish organic anion transporter (Oat) was not affected. S1P effects were blocked by a specific S1P receptor 1 (S1PR1) antagonist and mimicked by a S1PR agonist. Sphingosine also reduced P-glycoprotein transport activity and those effects were blocked by an inhibitor of sphingosine kinase and by the S1PR1 antagonist. These results for a comparative renal model suggest that sphingolipid signaling to P-glycoprotein is not just restricted to the blood-brain and blood-spinal cord barriers, but occurs in other excretory and barrier tissues.

  2. Dopamine stimulates snail albumen gland glycoprotein secretion through the activation of a D1-like receptor.

    Science.gov (United States)

    Mukai, S T; Kiehn, L; Saleuddin, A S M

    2004-06-01

    The catecholamine dopamine is present in both the central nervous system and in the peripheral tissues of molluscs, where it is involved in regulating reproduction. Application of exogenous dopamine to the isolated albumen gland of the freshwater pulmonate snail Helisoma duryi (Wetherby) induces the secretion (release) of perivitelline fluid. The major protein component of the perivitelline fluid of Helisoma duryi is a native 288 kDa glycoprotein that is secreted around individual eggs and serves as an important source of nutrients for the developing embryos. The secretion of glycoprotein by the albumen gland is a highly regulated event that must be coordinated with the arrival of the fertilized ovum at the carrefour (the region where the eggs receive albumen gland secretory products). In order to elucidate the intracellular signalling pathway(s) mediating dopamine-induced glycoprotein secretion, albumen gland cAMP production and glycoprotein secretion were measured in the presence/absence of selected dopamine receptor agonists and antagonists. Dopamine D1-selective agonists dihydrexidine, 6,7-ADTN and SKF81297 stimulated cAMP production and glycoprotein secretion from isolated albumen glands whereas D1-selective antagonists SCH23390 and SKF83566 suppressed dopamine-stimulated cAMP production. Dopamine D2-selective agonists and antagonists generally had no effect on cAMP production or protein secretion. Based on the effects of these compounds, a pharmacological profile was obtained that strongly suggests the presence of a dopamine D1-like receptor in the albumen gland of Helisoma duryi. In addition, secretion of albumen gland glycoprotein was not inhibited by protein kinase A inhibitors, suggesting that dopamine-stimulated protein secretion might occur through a protein kinase A-independent pathway.

  3. Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins.

    Directory of Open Access Journals (Sweden)

    Vinca Icard

    Full Text Available The density of circulating hepatitis C virus (HCV particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB positive and triglyceride rich lipoproteins (TRL likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1-E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.

  4. A peptide derived from the rotavirus outer capsid protein VP7 permeabilizes artificial membranes.

    Science.gov (United States)

    Elaid, Sarah; Libersou, Sonia; Ouldali, Malika; Morellet, Nelly; Desbat, Bernard; Alves, Isabel D; Lepault, Jean; Bouaziz, Serge

    2014-08-01

    Biological membranes represent a physical barrier that most viruses have to cross for replication. While enveloped viruses cross membranes through a well-characterized membrane fusion mechanism, non-enveloped viruses, such as rotaviruses, require the destabilization of the host cell membrane by processes that are still poorly understood. We have identified, in the C-terminal region of the rotavirus glycoprotein VP7, a peptide that was predicted to contain a membrane domain and to fold into an amphipathic α-helix. Its structure was confirmed by circular dichroism in media mimicking the hydrophobic environment of the membrane at both acidic and neutral pHs. The helical folding of the peptide was corroborated by ATR-FTIR spectroscopy, which suggested a transmembrane orientation of the peptide. The interaction of this peptide with artificial membranes and its affinity were assessed by plasmon waveguide resonance. We have found that the peptide was able to insert into membranes and permeabilize them while the native protein VP7 did not. Finally, NMR studies revealed that in a hydrophobic environment, this helix has amphipathic properties characteristic of membrane-perforating peptides. Surprisingly, its structure varies from that of its counterpart in the structure of the native protein VP7, as was determined by X-ray. All together, our results show that a peptide released from VP7 is capable of changing its conformation and destabilizing artificial membranes. Such peptides could play an important role by facilitating membrane crossing by non-enveloped viruses during cell infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Blood-group-Ii-active gangliosides of human erythrocyte membranes

    International Nuclear Information System (INIS)

    Feizi, T.; Childs, R.A.; Hakomori, S.-I.; Powell, M.E.

    1978-01-01

    More than ten new types of gangliosides, in addition to haematoside and sialosylparagloboside, were isolated from human erythrocyte membranes. These were separated by successive chromatographies on DAEA-Sephadex, on porous silica-gel columns and on thin-layer silica gel as acetylated compounds. Highly potent blood-group-Ii and moderate blood-group-H activities were demonstrated in some of the ganglioside fractions. The gangliosides incorporated into chlolesterol/phosphatidylcholine liposomes stoicheiometrically inhibited binding of anti-(blood-group-I and i) antibodies to a radioiodinated blood-group-Ii-active glycoprotein. The fraction with the highest blood-group-I activity, I(g) fraction, behaved like sialosyl-deca- to dodeca-glycosylceramides on t.l.c. Certain blood-group-I and most of the i-determinants were in partially or completely cryptic form and could be unmasked by sialidase treatment. Thus the I and i antigens, which are known to occur on internal structures of blood-group-ABH-active glycoproteins in secretions, also occur in the interior of the carbohydrate chains of erythrocyte gangliosides. (author)

  6. HIV gp41 fusion peptide increases membrane ordering in a cholesterol-dependent fashion.

    Science.gov (United States)

    Lai, Alex L; Freed, Jack H

    2014-01-07

    Fusion between viral envelopes and host cell membranes, which is mediated by special glycoproteins anchored on the viral membrane, is required for HIV viral entry and infection. The HIV gp41 fusion peptide (FP), which initiates membrane fusion, adopts either an α-helical or β-sheeted structure depending on the cholesterol concentration. We used phosphocholine spin labels on the lipid headgroup and different positions on the acyl chain to detect its perturbation on lipid bilayers containing different cholesterol concentrations by electron-spin resonance. Our findings were as follows. 1), gp41 FP affects the lipid order in the same manner as previously shown for influenza hemagglutinin FP, i.e., it has a cooperative effect versus the peptide/lipid ratio, supporting our hypothesis that membrane ordering is a common prerequisite for viral membrane fusion. 2), gp41 FP induces membrane ordering in all lipid compositions studied, whereas a nonfusion mutant FP perturbs lipid order to a significantly smaller extent. 3), In high-cholesterol-containing lipid bilayers, where gp41 FP is in the β-aggregation conformation, its effect on the lipid ordering reaches deeper into the bilayer. The different extent to which the two conformers perturb is correlated with their fusogenicity. The possible role of the two conformers in membrane fusion is discussed. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    International Nuclear Information System (INIS)

    Moaddel, Ruin; Wainer, Irving W.

    2006-01-01

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K d values) and non-linear chromatography can be used to assess the association (k on ) and dissociation (k off ) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein

  8. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    Energy Technology Data Exchange (ETDEWEB)

    Moaddel, Ruin [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States); Wainer, Irving W. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States)]. E-mail: Wainerir@grc.nia.nih.gov

    2006-03-30

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K {sub d} values) and non-linear chromatography can be used to assess the association (k {sub on}) and dissociation (k {sub off}) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.

  9. Glycoproteins E and I facilitate neuron-to-neuron spread of herpes simplex virus.

    OpenAIRE

    Dingwell, K S; Doering, L C; Johnson, D C

    1995-01-01

    Two herpes simplex virus (HSV) glycoproteins E and I (gE and gI) form a heterooligomer which acts as an Fc receptor and also facilitates cell-to-cell spread of virus in epithelial tissues and between certain cultured cells. By contrast, gE-gI is not required for infection of cells by extracellular virus. HSV glycoproteins gD and gJ are encoded by neighboring genes, and gD is required for both virus entry into cells and cell-to-cell spread, whereas gJ has not been shown to influence these proc...

  10. Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry

    DEFF Research Database (Denmark)

    Calvano, Cosima D; Zambonin, Carlo G; Jensen, Ole Nørregaard

    2008-01-01

    identified using a mixture of three immobilized lectins for consecutive glycoprotein enrichment and glycopeptide enrichment. The combination of lectin affinity enrichment of glycoproteins and subsequent HILIC enrichment of tryptic glycopeptides identified 81 N-glycosylation sites in 44 proteins. A total...... of 63 glycosylation sites in 38 proteins were identified by both methods, demonstrating distinct differences and complementarity. Serial application of custom-made microcolumns of mixed, immobilized lectins proved efficient for recovery and analysis of glycopeptides from serum samples of breast cancer...... patients and healthy individuals to assess glycosylation site frequencies....

  11. High P-glycoprotein-mediated export observed in patients with a history of idiopathic thrombocytopenic purpura.

    Science.gov (United States)

    Levy, Adam S; Cunningham-Rundles, Susanna; Mazza, BethAnne; Simm, Maciej; Gorlick, Richard; Bussel, James

    2002-09-01

    Studies have suggested that high P-glycoprotein expression in lymphocytes from patients with autoimmune disorders may affect disease outcome. Idiopathic thrombocytopenic purpura (ITP) and Evans' syndrome are widely thought to be autoimmune processes, however, the precise mechanisms remain unknown. Peripheral blood mononuclear cells from patients with refractory or recurrent ITP or Evans' syndrome were studied using the rhodamine 123 flow cytometric assay to investigate functional export levels. Lymphocytes from ITP and Evans' syndrome patients showed a significantly decreased ability to retain rhodamine, suggesting increased export protein function. Reverse transcription polymerase chain reaction distinguished P-glycoprotein as the likely export protein.

  12. Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria

    Science.gov (United States)

    Karav, Sercan; Le Parc, Annabelle; Leite Nobrega de Moura Bell, Juliana Maria; Frese, Steven A.; Kirmiz, Nina; Block, David E.; Barile, Daniela

    2016-01-01

    ABSTRACT Milk, in addition to nourishing the neonate, provides a range of complex glycans whose construction ensures a specific enrichment of key members of the gut microbiota in the nursing infant, a consortium known as the milk-oriented microbiome. Milk glycoproteins are thought to function similarly, as specific growth substrates for bifidobacteria common to the breast-fed infant gut. Recently, a cell wall-associated endo-β-N-acetylglucosaminidase (EndoBI-1) found in various infant-borne bifidobacteria was shown to remove a range of intact N-linked glycans. We hypothesized that these released oligosaccharide structures can serve as a sole source for the selective growth of bifidobacteria. We demonstrated that EndoBI-1 released N-glycans from concentrated bovine colostrum at the pilot scale. EndoBI-1-released N-glycans supported the rapid growth of Bifidobacterium longum subsp. infantis (B. infantis), a species that grows well on human milk oligosaccharides, but did not support growth of Bifidobacterium animalis subsp. lactis (B. lactis), a species which does not. Conversely, B. infantis ATCC 15697 did not grow on the deglycosylated milk protein fraction, clearly demonstrating that the glycan portion of milk glycoproteins provided the key substrate for growth. Mass spectrometry-based profiling revealed that B. infantis consumed 73% of neutral and 92% of sialylated N-glycans, while B. lactis degraded only 11% of neutral and virtually no (milk serve as selective substrates for the enrichment of infant-associated bifidobacteria capable of carrying out the initial deglycosylation. Moreover, released N-glycans were better growth substrates than the intact milk glycoproteins, suggesting that EndoBI-1 cleavage is a key initial step in consumption of glycoproteins. Finally, the variety of N-glycans released from bovine milk glycoproteins suggests that they may serve as novel prebiotic substrates with selective properties similar to those of human milk oligosaccharides

  13. Hypolipidemic effect and antioxidant activity of glycoprotein isolated from Ulmus davidiana Nakai in Triton WR-1339-treated mouse.

    Science.gov (United States)

    Ko, Jeong-Hyeon; Lee, Sei-Jung; Lim, Kye-Taek

    2007-01-01

    The glycoprotein isolated from Ulmus davidiana Nakai (UDN) (UDN glycoprotein) has a molecular weight of 116 kDa and consists of 78.65% carbohydrate content and 21.35% protein content. In the present study, we investigated the hypolipidemic effect of UDN glycoprotein on Triton WR-1339-induced mice. With pretreatment with UDN glycoprotein, the triacylglycerol (TAG), total cholesterol and low density lipoprotein-cholesterol (LDL-C) concentrations were significantly reduced, whereas high density lipoprotein-cholesterol (HDL-C) concentration was increased in the plasma of Triton WR-1339-induced mice. With respect to antioxidative activity, UDN glycoprotein significantly decreased the level of thiobarbituric acid reactive substances (TBARS) and improved activities of catalase and glutathione peroxidase (GPx), without an apparent change of superoxide dismutase (SOD) activity. Also UDN glycoprotein significantly increased nitric oxide (NO) production in Triton WR-1339-induced mice. These results indicate that UDN glycoprotein has a hypolipidemic effect, possesses antioxidant activity and has an ability to stimulate NO production. Thus, we speculate that UDN glycoprotein is an example of natural compound that lowers plasma lipid level together with having an antioxidant function in Triton WR-1339-induced mice.

  14. Appearance and cellular distribution of lectin-like receptors for alpha 1-acid glycoprotein in the developing rat testis

    DEFF Research Database (Denmark)

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S

    1996-01-01

    A histochemical avidin-biotin technique with three different alpha 1-acid glycoprotein glycoforms showed pronounced alterations in the cellular localization of two alpha 1-acid glycoprotein lectin-like receptors during cell differentiation in the developing rat testis. The binding of alpha 1-acid...

  15. P-glycoprotein interaction with risperidone and 9-OH-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments

    DEFF Research Database (Denmark)

    Ejsing, Thomas B.; Pedersen, Anne D.; Linnet, Kristian

    2005-01-01

    P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice......P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice...

  16. Podocyte expression of membrane transporters involved in puromycin aminonucleoside-mediated injury.

    Directory of Open Access Journals (Sweden)

    Cristina Zennaro

    Full Text Available Several complex mechanisms contribute to the maintenance of the intricate ramified morphology of glomerular podocytes and to interactions with neighboring cells and the underlying basement membrane. Recently, components of small molecule transporter families have been found in the podocyte membrane, but expression and function of membrane transporters in podocytes is largely unexplored. To investigate this complex field of investigation, we used two molecules which are known substrates of membrane transporters, namely Penicillin G and Puromycin Aminonucleoside (PA. We observed that Penicillin G pre-administration prevented both in vitro and in vivo podocyte damage caused by PA, suggesting the engagement of the same membrane transporters by the two molecules. Indeed, we found that podocytes express a series of transporters which are known to be used by Penicillin G, such as members of the Organic Anion Transporter Polypeptides (OATP/Oatp family of influx transporters, and P-glycoprotein, a member of the MultiDrug Resistance (MDR efflux transporter family. Expression of OATP/Oatp transporters was modified by PA treatment. Similarly, in vitro PA treatment increased mRNA and protein expression of P-glycoprotein, as well as its activity, confirming the engagement of the molecule upon PA administration. In summary, we have characterized some of the small molecule transporters present at the podocyte membrane, focusing on those used by PA to enter and exit the cell. Further investigation will be needed to understand precisely the role of these transporter families in maintaining podocyte homeostasis and in the pathogenesis of podocyte injury.

  17. Enantioseparation with liquid membranes

    NARCIS (Netherlands)

    Gössi, Angelo; Riedl, Wolfgang; Schuur, Boelo

    Chiral resolution of racemic products is a challenging and important task in the pharmaceutical, agrochemical, flavor, polymer and fragrances industries. One of the options for these challenging separations is to use liquid membranes. Although liquid membranes have been known for almost four decades

  18. Porous ceramic membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined

  19. Polymide gas separation membranes

    Science.gov (United States)

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  20. Membrane module assembly

    Science.gov (United States)

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  1. BACTERIAL OUTER MEMBRANE VESICLES AND VACCINE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Reinaldo eAcevedo

    2014-03-01

    Full Text Available Vaccines based on outer membrane vesicles (OMV were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of self meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA, serogroup W (dOMVW and serogroup X (dOMVX were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC, Bordetella pertussis (dOMVBP, Mycobacterium smegmatis (dOMVSM and BCG (dOMVBCG. The immunogenicity of the OMV have been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice have shown their protective potential. dOMVB has been evaluated with non-self neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates.

  2. Elastic membranes in confinement.

    Science.gov (United States)

    Bostwick, J B; Miksis, M J; Davis, S H

    2016-07-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. © 2016 The Author(s).

  3. Membrane projection lithography

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  4. Membrane technology and applications

    International Nuclear Information System (INIS)

    Khalil, F.H.

    1997-01-01

    The main purpose of this dissertation is to prepare and characterize some synthetic membranes obtained by radiation-induced graft copolymerization of and A Am unitary and binary system onto nylon-6 films. The optimum conditions at which the grafting process proceeded homogeneously were determined. Some selected properties of the prepared membranes were studied. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), x-ray diffraction (XRD), mechanical properties and U.V./vis, instruments and techniques were used to characterize the prepared membranes. The use of such membranes for the decontamination of radioactive waste and some heavy metal ions as water pollutants were investigated. These grafted membranes showed good cation exchange properties and may be of practical interest in waste water treatment whether this water was radioactive or not. 4 tabs., 68 figs., 146 refs

  5. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis.

    Science.gov (United States)

    Breiteneder-Geleff, S.; Matsui, K.; Soleiman, A.; Meraner, P.; Poczewski, H.; Kalt, R.; Schaffner, G.; Kerjaschki, D.

    1997-01-01

    Puromycin aminonucleoside nephrosis (PAN), a rat model of human minimal change nephropathy, is characterized by extensive flattening of glomerular epithelial cell (podocyte) foot processes and by severe proteinuria. For comparison of expression of glomerular membrane proteins of normal and PAN rats, a membrane protein fraction of isolated rat glomeruli was prepared and monoclonal antibodies were raised against it. An IgG-secreting clone designated LF3 was selected that specifically immunolabeled podocytes of normal but not of PAN rats. The antigen of LF3 IgG was identified as a 43-kd glycoprotein. Molecular cloning of its cDNA was performed in a delta gt11 expression library prepared from mRNA of isolated rat glomeruli. The predicted amino acid sequence indicated a 166-amino-acid integral membrane protein with a single membrane-spanning domain, two potential phosphorylation sites in its short cytoplasmic tail, and six potential O-glycosylation sites in the large ectodomain. High amino acid sequence identities were found to membrane glycoproteins of rat lung and bone and mouse thymus epithelial cells as well as to a phorbol-ester-induced protein in a mouse osteoblast cell line and to a canine influenza C virus receptor. In PAN, expression of this 43-kd protein was selectively reduced to < 30%, as determined by quantitative immunogold electron microscopy, immunoblotting, and Northern blotting. These data provide evidence that transcription of the 43-kd transmembrane podocyte glycoprotein is specifically down-regulated in PAN. To indicate that this protein could be associated with transformation of arborized foot processes to flat feet (Latin, pes planus) we have called it podoplanin. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 10 Figure 12 Figure 13 Figure 14 Figure 15 PMID:9327748

  6. A Novel Method for Detection of Glycoproteins on Sodium Dodecyl Sulphate Polyacrylamide Gel Using Radio-Iodinated Tyrosine

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Draz, Hossam M.; Dole, Anita

    2009-01-01

    A (Con A) were used as a glycosylated and a non-glycosylated model proteins, respectively. The proteins were separated in SDS- PAGE and oligosaccharides on the glycoprotein were oxidised using periodic acid to produce aldehydes than 125I-tyroine was conjugated to aldehyde groups without using reducing...... agent like Sodium Metabisulfite. The radio-iodinated glycoprotein on gel was scanned using a Multi-Photon Detection (MPD) scanner. The elechtrophoretic analysis of ovalbumin and Con A were performed and stained with Coomassie brilliant blue to identify total proteins, while MPD detection...... of glycoproteins using 125I-tyrosine selectively detected ovalbumin. Present results showed that MPD enhanced glycoprotein detection method can be used as a sensitive tool for the detection of glycoproteins on polyacrylamide gel...

  7. Chemoenzymatic site-specific labeling of influenza glycoproteins as a tool to observe virus budding in real time.

    Directory of Open Access Journals (Sweden)

    Maximilian Wei-Lin Popp

    Full Text Available The influenza virus uses the hemagglutinin (HA and neuraminidase (NA glycoproteins to interact with and infect host cells. While biochemical and microscopic methods allow examination of the early steps in flu infection, the genesis of progeny virions has been more difficult to follow, mainly because of difficulties inherent in fluorescent labeling of flu proteins in a manner compatible with live cell imaging. We here apply sortagging as a chemoenzymatic approach to label genetically modified but infectious flu and track the flu glycoproteins during the course of infection. This method cleanly distinguishes influenza glycoproteins from host glycoproteins and so can be used to assess the behavior of HA or NA biochemically and to observe the flu glycoproteins directly by live cell imaging.

  8. Diffusion of sphingomyelin and myelin oligodendrocyte glycoprotein in the membrane of OLN-93 oligodendroglial cells studied by fluorescence correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Gielen, E.; Vercammen, J.; Sýkora, Jan; Humpolíčková, Jana; van de Ven, M.; Benda, Aleš; Hellings, N.; Hof, Martin; Engelborghs, Y.; Steels, P.; Ameloot, M.

    2005-01-01

    Roč. 328, č. 12 (2005), s. 1057-1064 ISSN 1631-0691 Institutional research plan: CEZ:AV0Z40400503 Keywords : OLN-93 * FCS * MOG * sphingomyelin Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.199, year: 2005

  9. Effects of cadmium exposure on expression and activity of P-glycoprotein in eastern oysters, Crassostrea virginica Gmelin

    International Nuclear Information System (INIS)

    Ivanina, Anna V.; Sokolova, Inna M.

    2008-01-01

    Heavy metal pollution is a worldwide problem, and cadmium (Cd) is one of the most noxious pollutants in aquatic environments. We studied P-glycoprotein (P-gp) expression and function in control and Cd exposed (50 μg L -1 Cd, 30-40 days) oysters Crassostrea virginica as a possible mechanism of cell protection against Cd. Our data show that P-gp is expressed on cell membrane and in mitochondria of oyster gills and hepatopancreas. Inhibitor studies with verapamil, cyclosporine A and JS-2190 suggest that in the gills, mitochondrial P-gp pumps substrates from cytosol into the mitochondria, while cell membrane P-gp pumps substrates from cytosol out of the cell. Cd exposure resulted in a 2-2.5-fold increase in P-gp protein expression in cell membranes and a 3.5-7-fold increase in transport activity measured as the inhibitor-sensitive rhodamine B extrusion rate. In contrast, p-gp mRNA levels were similar in control and Cd-exposed oysters. No difference in P-gp protein expression was observed between mitochondria of control and Cd-exposed oysters but the apparent transport activity was higher in mitochondria from Cd-exposed oysters. Overall, a stronger increase in substrate transport activity in Cd-exposed oysters compared to a relatively weaker change in P-gp protein levels suggests that P-gp activity is post-translationally regulated. Our data show that direct determination of P-gp transport activity may be the best measure of the xenobiotic-resistant phenotype, whereas p-gp mRNA levels are not a good marker due to the likely involvement of multiple post-transcriptional regulatory steps. Cd exposure resulted in a significantly elevated rate of oxygen consumption of isolated oyster gills by 46%. Specific inhibitors of ATPase function of P-gp (cyclosporine A and JS-2190) had no significant effect on tissue oxygen consumption indicating that P-gp contribution to energy budget is negligible and supporting indirect estimates based on the ATP stoichiometry of substrate

  10. Expression of peanut agglutinin-binding mucin-type glycoprotein in human esophageal squamous cell carcinoma as a marker

    Directory of Open Access Journals (Sweden)

    Balakrishnan Ramathilakam

    2003-11-01

    Full Text Available Abstract Background The TF (Thomson – Friedenreich blood group antigen behaves as an onco-foetal carcinoma-associated antigen, showing increased expression in malignancies and its detection and quantification can be used in serologic diagnosis mainly in adenocarcinomas. This study was undertaken to analyze the sera and tissue level detectable mucin-type glycoprotein (TF-antigen by Peanut agglutinin (PNA and its diagnostic index in serum as well tissues of human esophageal squamous cell carcinoma as marker. Results We examined 100 patients for serological analysis by Enzyme Linked Lectin Assay (ELISA and demonstrated a sensitivity of 87.5%, specificity of 90% and a positive predictive value of 95%. The immuno-histochemical localization of TF antigen by Fluorescence Antigen Technique (FAT in 25 specimens of normal esophageal squamous epithelium specimens and 92 specimens with different grades of, allowed a quicker and more precise identification of its increased expression and this did not correlate with gender and tumor size. There was a positive correlation between membrane bound TF antigen expression with different histological progression, from well differentiated to poorly differentiated, determined by PNA binding. Specimens showed morphological changes and a pronounced increase in PNA binding in Golgi apparatus, secretory granules of the cytosol of well differentiated and an increased cell membrane labeling in moderately and poorly differentiated, when compared with ESCC and normal tissues. Conclusion The authors propose that the expression of TF-antigen in human may play an important role during tumorigenesis establishing it as a chemically well-defined carcinoma-associated antigen. Identification of the circulating TF-antigen as a reactive form and as a cryptic form in the healthy individuals, using PNA-ELLA and Immunohistochemical analysis of TF antigen by FAT is positively correlated with the different histological grades as a simple

  11. The role of cholesterol and sphingolipids in chemokine receptor function and HIV-1 envelope glycoprotein-mediated fusion

    Directory of Open Access Journals (Sweden)

    Puri Anu

    2006-12-01

    Full Text Available Abstract Background HIV-1 entry into cells is a multifaceted process involving target cell CD4 and the chemokine receptors, CXCR4 or CCR5. The lipid composition of the host cell plays a significant role in the HIV fusion process as it orchestrates the appropriate disposition of CD4 and co-receptors required for HIV-1 envelope glycoprotein (Env-mediated fusion. The cell membrane is primarily composed of sphingolipids and cholesterol. The effects of lipid modulation on CD4 disposition in the membrane and their role in HIV-1 entry have extensively been studied. To focus on the role of lipid composition on chemokine receptor function, we have by-passed the CD4 requirement for HIV-1 Env-mediated fusion by using a CD4-independent strain of HIV-1 Env. Results Cell fusion mediated by a CD4-independent strain of HIV-1 Env was monitored by observing dye transfer between Env-expressing cells and NIH3T3 cells bearing CXCR4 or CCR5 in the presence or absence of CD4. Chemokine receptor signaling was assessed by monitoring changes in intracellular [Ca2+] mobilization induced by CCR5 or CXCR4 ligand. To modulate target membrane cholesterol or sphingolipids we used Methyl-β-cyclodextrin (MβCD or 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP, respectively. Treatment of the target cells with these agents did not change the levels of CD4 or CXCR4, but reduced levels of CCR5 on the cell surface. Chemokine receptor signalling was inhibited by cholesterol removal but not by treatment with PPMP. HIV-1 Env mediated fusion was inhibited by >50% by cholesterol removal. Overall, PPMP treatment appeared to slow down the rates of CD4-independent HIV-1 Env-mediated Fusion. However, in the case of CXCR4-dependent fusion, the differences between untreated and PPMP-treated cells did not appear to be significant. Conclusion Although modulation of cholesterol and sphingolipids has similar effects on CD4 -dependent HIV-1 Env-mediated fusion, sphingolipid modulation

  12. Classical Galactosemia: Insight into Molecular Pathomechanisms by Differential Membrane Proteomics of Fibroblasts under Galactose Stress.

    Science.gov (United States)

    Staubach, Simon; Müller, Stefan; Pekmez, Murat; Hanisch, Franz-Georg

    2017-02-03

    Classical galactosemia, a hereditary metabolic disease caused by the deficiency of galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712), results in an impaired galactose metabolism and serious long-term developmental affection of the CNS and ovaries, potentially related in part to endogenous galactose-induced protein dysglycosylation. In search for galactose-induced changes in membrane raft proteomes of GALT-deficient cells, we performed differential analyses of lipid rafts from patient-derived (Q) and sex- and age-matched control fibroblasts (H) in the presence or absence of the stressor. Label-based proteomics revealed of the total 454 (female) or 678 (male) proteins a proportion of ∼12% in at least one of four relevant ratios as fold-changed. GALT(-) cell-specific effects in the absence of stressor revealed cell-model-dependent affection of biological processes related to protein targeting to the plasma membrane (female) or to cellular migration (male). However, a series of common galactose-induced effects were observed, among them the strongly increased ER-stress marker GRP78 and calreticulin involved in N-glycoprotein quality control. The membrane-anchored N-glycoprotein receptor CD109 was concertedly decreased under galactose-stress together with cadherin-13, GLIPR1, glypican-1, and semaphorin-7A. A series of proteins showed opposite fold-changes in the two cell models, whereas others fluctuated in only one of the two models.

  13. Mammalian Otolin: a multimeric glycoprotein specific to the inner ear that interacts with otoconial matrix protein Otoconin-90 and Cerebellin-1.

    Directory of Open Access Journals (Sweden)

    Michael R Deans

    2010-09-01

    Full Text Available The mammalian otoconial membrane is a dense extracellular matrix containing bio-mineralized otoconia. This structure provides the mechanical stimulus necessary for hair cells of the vestibular maculae to respond to linear accelerations and gravity. In teleosts, Otolin is required for the proper anchoring of otolith crystals to the sensory maculae. Otoconia detachment and subsequent entrapment in the semicircular canals can result in benign paroxysmal positional vertigo (BPPV, a common form of vertigo for which the molecular basis is unknown. Several cDNAs encoding protein components of the mammalian otoconia and otoconial membrane have recently been identified, and mutations in these genes result in abnormal otoconia formation and balance deficits.Here we describe the cloning and characterization of mammalian Otolin, a protein constituent of otoconia and the otoconial membrane. Otolin is a secreted glycoprotein of ∼70 kDa, with a C-terminal globular domain that is homologous to the immune complement C1q, and contains extensive posttranslational modifications including hydroxylated prolines and glycosylated lysines. Like all C1q/TNF family members, Otolin multimerizes into higher order oligomeric complexes. The expression of otolin mRNA is restricted to the inner ear, and immunohistochemical analysis identified Otolin protein in support cells of the vestibular maculae and semi-circular canal cristae. Additionally, Otolin forms protein complexes with Cerebellin-1 and Otoconin-90, two protein constituents of the otoconia, when expressed in vitro. Otolin was also found in subsets of support cells and non-sensory cells of the cochlea, suggesting that Otolin is also a component of the tectorial membrane.Given the importance of Otolin in lower organisms, the molecular cloning and biochemical characterization of the mammalian Otolin protein may lead to a better understanding of otoconial development and vestibular dysfunction.

  14. Glycoproteins of bovine epididymal spermatozoa--a cytochemical study.

    Science.gov (United States)

    Sinowatz, F; Friess, A E; Wrobel, K H

    1984-01-01

    Modifications in bull sperm plasmamembrane during epididymal passage were investigated by the use of four different lectins: Concanavalin A (Con A); Ricinus communis I (RCA1); Wheat germ agglutinin (WGA); Ulex europaeus agglutinin I (UEA1). During sperm passage from caput to cauda epididymidis agglutination by RCA1 and WGA distinctly increased. Similar but somewhat less pronounced difference in the agglutinability was found for Con A. No agglutination was observed with UEA1. Ultrastructural examination of Con A binding sites on sperm plasma membrane with a Con A-horseradish peroxidase-gold technique (Con A-HRP-G) revealed a significant increase in the number of gold granules on the sperm tails during the epididymal passage of spermatozoa. No change in WGA-binding sites was observed between caput and cauda spermatozoa using a WGA-peroxidase method.

  15. Comparison of in vitro assays in selecting radiotracers for in vivo P-glycoprotein PET imaging

    NARCIS (Netherlands)

    Raaphorst, R.M.; Savolainen, H.; Cantore, M.; Steeg, E. van de; Waarde, A. van; Colabufo, N.A.; Elsinga, P.H.; Lammertsma, A.A.; Windhorst, A.D.; Luurtsema, G.

    2017-01-01

    Positron emission tomography (PET) imaging of P-glycoprotein (P-gp) in the blood-brain barrier can be important in neurological diseases where P-gp is affected, such as Alzheimer’s disease. Radiotracers used in the imaging studies are present at very small, nanomolar, concentration, whereas in vitro

  16. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein

    NARCIS (Netherlands)

    Konings, WN; Poelarends, GJ

    2002-01-01

    Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural

  17. What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure?

    NARCIS (Netherlands)

    Alexander, Marina R.; Ringe, Rajesh; Sanders, Rogier W.; Voss, James E.; Moore, John P.; Klasse, Per Johan

    2015-01-01

    When HIV-1 vaccine candidates that include soluble envelope glycoproteins (Env) are tested in humans and other species, the resulting antibody responses to Env are sifted for correlates of protection or risk. One frequently used assay measures the reduction in antibody binding to Env antigens by an

  18. The combination of simple MALDI matrices for the improvement of intact glycoproteins and glycans analysis

    Czech Academy of Sciences Publication Activity Database

    Laštovičková, Markéta; Chmelík, Josef; Bobálová, Janette

    2009-01-01

    Roč. 281, 1-2 (2009), s. 82-88 ISSN 1387-3806 R&D Projects: GA AV ČR IAA600040701; GA MŠk 1M0570 Institutional research plan: CEZ:AV0Z40310501 Keywords : glycoproteins * binary matrices * MALDI-TOF MS Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.117, year: 2009

  19. Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation

    NARCIS (Netherlands)

    Ringe, Rajesh P.; Sanders, Rogier W.; Yasmeen, Anila; Kim, Helen J.; Lee, Jeong Hyun; Cupo, Albert; Korzun, Jacob; Derking, Ronald; van Montfort, Thijs; Julien, Jean-Philippe; Wilson, Ian A.; Klasse, Per Johan; Ward, Andrew B.; Moore, John P.

    2013-01-01

    We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp) 140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120-gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a

  20. Glycoproteins 66 and 69 kDa of pollen tube wall: properties and distribution in angiosperms

    Czech Academy of Sciences Publication Activity Database

    Fidlerová, A.; Smýkal, P.; Tupý, Jaroslav; Čapková, Věra

    2001-01-01

    Roč. 158, - (2001), s. 1367-1374 ISSN 0176-1617 R&D Projects: GA ČR GA304/00/1622 Institutional research plan: CEZ:AV0Z5038910 Keywords : angiosperms * cell wall * glycoproteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.018, year: 2001

  1. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species

    DEFF Research Database (Denmark)

    Udby, Lene; Johnsen, Anders H; Borregaard, Niels

    2010-01-01

    CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular...

  2. Structural analysis of the carbohydrate chains of glycoproteins by 500-MHz 1H-NMR spectroscopy

    International Nuclear Information System (INIS)

    Mutsaers, J.H.G.M.

    1986-01-01

    This thesis deals with the structural analysis by 500-MHz 1 H-NMR spectroscopy of carbohydrate chains obtained from glycoproteins. In the chapters 1 to 6 the structural analysis of N-glycosidically linked carbohydrate chains is described. The chapters 7 to 10 describe the structural analysis of O-glycosidically linked carbohydrate chains. 381 refs.; 44 figs.; 24 tabs.; 7 schemes

  3. A high boronate avidity monolithic capillary for the selective enrichment of trace glycoproteins.

    Science.gov (United States)

    Li, Daojin; Li, Yang; Li, Xinglin; Bie, Zijun; Pan, Xianghua; Zhang, Qian; Liu, Zhen

    2015-03-06

    Boronate affinity materials, as effective sample enrichment sorbents for glycoproteomic analysis, have attracted increasing attention in recent years. However, most of boronate affinity materials suffer from an apparent limitation, limited binding strength. As a result, extraction of glycoproteins of trace concentration is rather difficult or impossible. In this study, we present a high boronate avidity monolithic capillary. Branched polyethyleneimine (PEI) was used as a scaffold to amplify the number of boronic acid moieties. While 2,4-difluoro-3-formyl-phenylboronic acid (DFFPBA), which exhibited ultrahigh affinity toward cis-diol-containing compounds, was employed as an affinity ligand. Due to the PEI-assisted synergistic multivalent binding, the monolithic column exhibited high boronate avidity toward glycoproteins, with binding constants of 10(-6)-10(-7)M. Such binding strength was the highest among already reported boronic acid-functionalized materials that can be used for glycoproteomic analysis. Besides, the boronate avidity monolithic column exhibited one additional beneficial feature, lowered binding pH (≥6.5). These features greatly favored the selective enrichment of trace glycoproteins from real samples. The feasibility for practical applications was demonstrated with the selective enrichment of trace glycoproteins in human saliva. As compared with other boronate avidity/affinity materials, the boronate avidity monolithic capillary exhibited the best performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. St. John's Wort constituents modulate P-glycoprotein transport activity at the blood-brain barrier.

    NARCIS (Netherlands)

    Ott, M.; Huls, M.; Cornelius, M.G.; Fricker, G.

    2010-01-01

    PURPOSE: The purpose of this study was to investigate the short-term signaling effects of St. John's Wort (SJW) extract and selected SJW constituents on the blood-brain barrier transporter P-glycoprotein and to describe the role of PKC in the signaling. METHODS: Cultured porcine brain capillary

  5. N-glycan maturation mutants in Lotus japonicus for basic and applied glycoprotein research

    DEFF Research Database (Denmark)

    Pedersen, Carina T; Loke, Ian; Lorentzen, Andrea

    2017-01-01

    Studies of protein N-glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of on...

  6. Characterization of the Outer Domain of the gp120 Glycoprotein from Human Immunodeficiency Virus Type 1

    Science.gov (United States)

    Yang, Xinzhen; Tomov, Vesko; Kurteva, Svetla; Wang, Liping; Ren, Xinping; Gorny, Miroslaw K.; Zolla-Pazner, Susan; Sodroski, Joseph

    2004-01-01

    The core of the gp120 glycoprotein from human immunodeficiency virus type 1 (HIV-1) is comprised of three major structural domains: the outer domain, the inner domain, and the bridging sheet. The outer domain is exposed on the HIV-1 envelope glycoprotein trimer and contains binding surfaces for neutralizing antibodies such as 2G12, immunoglobulin G1b12, and anti-V3 antibodies. We expressed the outer domain of HIV-1YU2 gp120 as an independent protein, termed OD1. OD1 efficiently bound 2G12 and a large number of anti-V3 antibodies, indicating its structural integrity. Immunochemical studies with OD1 indicated that antibody responses against the outer domain of the HIV-1 gp120 envelope glycoprotein are rare in HIV-1-infected human sera that potently neutralize the virus. Surprisingly, such outer-domain-directed antibody responses are commonly elicited by immunization with recombinant monomeric gp120. Immunization with soluble, stabilized HIV-1 envelope glycoprotein trimers elicited antibody responses that more closely resembled those in the sera of HIV-1-infected individuals. These results underscore the qualitatively different humoral immune responses elicited during natural infection and after gp120 vaccination and help to explain the failure of gp120 as an effective vaccine. PMID:15542649

  7. Histidine-rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease

    NARCIS (Netherlands)

    Bartneck, M.; Fech, V.; Ehling, J.; Govaere, O.; Warzecha, K.T.; Hittatiya, K.; Vucur, M.; Gautheron, J.; Luedde, T.; Trautwein, C.; Lammers, Twan Gerardus Gertudis Maria; Roskams, T.; Jahnen-Dechent, W.; Tacke, F.

    2016-01-01

    Pathogen- and injury-related danger signals as well as cytokines released by immune cells influence the functional differentiation of macrophages in chronic inflammation. Recently, the liver-derived plasma protein, histidine-rich glycoprotein (HRG), was demonstrated, in mouse tumor models, to

  8. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei

    NARCIS (Netherlands)

    Zomerdijk, J. C.; Ouellette, M.; ten Asbroek, A. L.; Kieft, R.; Bommer, A. M.; Clayton, C. E.; Borst, P.

    1990-01-01

    The variant-specific surface glycoprotein (VSG) gene 221 of Trypanosoma brucei is transcribed as part of a 60 kb expression site (ES). We have identified the promoter controlling this multigene transcription unit by the use of 221 chromosome-enriched DNA libraries and VSG gene 221 expression site

  9. Targeting HIV-1 Envelope Glycoprotein Trimers to B Cells by Using APRIL Improves Antibody Responses

    NARCIS (Netherlands)

    Melchers, Mark; Bontjer, Ilja; Tong, Tommy; Chung, Nancy P. Y.; Klasse, Per Johan; Eggink, Dirk; Montefiori, David C.; Gentile, Maurizio; Cerutti, Andrea; Olson, William C.; Berkhout, Ben; Binley, James M.; Moore, John P.; Sanders, Rogier W.

    2012-01-01

    An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these

  10. The bacteria binding glycoprotein salivary agglutinin (SAG/gp340) activates complement via the lectin pathway

    NARCIS (Netherlands)

    Leito, Jelani T. D.; Ligtenberg, Antoon J. M.; van Houdt, Michel; van den Berg, Timo K.; Wouters, Diana

    2011-01-01

    Salivary agglutinin (SAG), also known as gp-340 and Deleted in Malignant Brain Tumours 1, is a glycoprotein that is present in tears, lung fluid and mucosal surfaces along the gastrointestinal tract. It is encoded by the Deleted in Malignant Brain Tumours 1 gene, a member of the Scavenger Receptor

  11. Chemical de-O-glycosylation of glycoproteins for applications in LC-based proteomics.

    Science.gov (United States)

    Hanisch, Franz-Georg

    2011-01-01

    This paper describes a cyclic on-column procedure for the sequential degradation of complex O-glycans on proteins by periodate oxidation of sugars and cleavage of oxidation products by elimination. Glycoproteins are immobilized to alkali-stable, reversed-phase Poros 20 beads, desialylated by treatment with dilute trifluoroacetic acid, and de-O-glycosylated by two degradation cycles before the eluted apoproteins are digested with trypsin for analysis by liquid chromatography electrospray ionization-mass spectrometry. Even complex glycan moieties are removed under mild conditions with only minimal effects on structural integrity of the peptide core by fragmentation, dehydration, or racemization of lysine and arginine residues. The protocol is also applicable on gel-immobilized glycoproteins after 1D or 2D gel electrophoresis. Conversion of O-glycoproteins into their corresponding apoproteins results in facilitated accessibility of tryptic cleavage sites, increases the numbers of peptide fragments, and accordingly enhances protein coverage and identification rates within the subproteome of mucin-type O-glycoproteins. The protocol is suitable for automatization, but due to partial elution from the Poros 20 columns it is not recommended for applications on the glycopeptide level.

  12. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    Science.gov (United States)

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  13. Modification-specific proteomic analysis of glycoproteins in human body fluids by mass spectrometry

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Hägglund, Per; Jensen, Ole Nørregaard

    2007-01-01

    -glycosylated proteins in body fluids and other complex samples. An approach for identification of N-glycosylated proteins and mapping of their glycosylation sites is described. In this approach, glycoproteins are initially selectively purified by lectin chromatography. Following tryptic digestion, glycopeptides...

  14. Patient-derived monoclonal antibodies directed towards beta2 glycoprotein-1 display lupus anticoagulant activity

    NARCIS (Netherlands)

    Dienava-Verdoold, I.; Boon-Spijker, M. G.; de Groot, P. G.; Brinkman, H. J. M.; Voorberg, J.; Mertens, K.; Derksen, R. H. W. M.; de Laat, B.

    2011-01-01

    Patients with antiphospholipid syndrome (APS) display a heterogeneous population of antibodies with beta(2) glycoprotein-1 (β(2)GP1) as the major antigen. We isolated and characterized human mAbs directed against β(2)GP1 from the immune repertoire of APS patients. Variable heavy chain repertoires

  15. Plasma Krebs von den Lungen glycoprotein, lung injury, and noninvasive ventilation in Duchenne muscular dystrophy.

    Science.gov (United States)

    Hamada, Satoshi; Ishikawa, Yuka; Aoyagi, Tomoyuki; Ishikawa, Yukitoshi; Minami, Ryoji; Bach, John R

    2012-10-01

    There have been few reports of ventilator-induced lung injury associated with noninvasive ventilation (NIV), but many with invasive mechanical ventilation. The purpose of this study was to detect subclinical NIV-associated lung injury by monitoring Krebs von den Lungen glycoprotein plasma levels. Forty-one Duchenne muscular dystrophy patients were divided into three categories: group 1, asymptomatic and not using ventilators; group 2, NIV use less than 24 hrs/day at full ventilatory support settings; and group 3, continuous NIV dependence. Plasma Krebs von den Lungen glycoprotein level was measured by electrochemical luminescent immunoassay using Krebs von den Lungen glycoprotein antibodies. One-way analysis of variance, followed by the Tukey-Kramer test, was used as appropriate to compare intergroup differences. Extent of ventilator dependence correlated with age (P Krebs von den Lungen glycoprotein levels were not significantly different. NIV used at volumes and pressures of full (invasive) ventilatory support may not induce the alveolar septal barrier injury commonly seen with invasive mechanical ventilation.

  16. Eosinophil derived neurotoxin (EDN) levels in commercial human urinary preparations of glycoprotein hormones

    NARCIS (Netherlands)

    Kauffman, HF; Hovenga, H; de Bruijn, HWA; Beintema, JJ

    Eosinophil derived neurotoxin (EDN) is a ubiquitous human ribonuclease, occurring not only in eosinophils, but also in many tissues and body fluids. It may be a contaminant of commercial human urinary preparations of chorionic gonadotropin (hCG) and other glycoprotein hormones. Here we describe the

  17. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin

    DEFF Research Database (Denmark)

    Larsen, U L; Hyldahl Olesen, L; Nyvold, Charlotte Guldborg

    2007-01-01

    P-glycoprotein (Pgp) plays a part in the intestinal uptake of xenobiotics and has been associated with susceptibility to ulcerative colitis. The aim of this study was to examine Pgp activity in relation to age, gender, medical treatment (rifampicin or ketoconazole) and the multidrug resistance (MDR...

  18. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen

    DEFF Research Database (Denmark)

    Nieswandt, B; Brakebusch, C; Bergmeier, W

    2001-01-01

    subsequent interactions with the activating platelet collagen receptor, glycoprotein VI (GPVI). Here we show that Cre/loxP-mediated loss of beta1 integrin on platelets has no significant effect on the bleeding time in mice. Aggregation of beta1-null platelets to native fibrillar collagen is delayed...

  19. Expression and structural-functional alterations of α-1-acid glycoprotein at the pathological state

    Directory of Open Access Journals (Sweden)

    Kulinich A. O.

    2010-07-01

    Full Text Available The review analyzes up-to-date knowledge on structure and biological functions of α-acid glycoprotein. The special attention is given to alterations of fucosylation, sialylation and branching of orosomucoid at the acute, chronic inflammation and oncotransformations.

  20. Blood-Brain Barrier P-Glycoprotein Function in Neurodegenerative Disease

    NARCIS (Netherlands)

    Bartels, A. L.

    Protection of the brain is strengthened by active transport and ABC transporters. P-glycoprotein (P-gp) at the blood-brain barrier (BBB) functions as an active efflux pump by extruding a substrate from the brain, which is important for maintaining loco-regional homeostasis in the brain and

  1. Structure of three acidic O-linked carbohydrate chains of porcine zona pellucida glycoproteins

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Hokke, C.H.; Damm, J.B.L.; Kamerling, J.P.

    1993-01-01

    Structural analysis by ID and 2D 1H NMR spectroscopy of three acidic O-linked oligosaccharide alditols, released from porcine zona pellucida glycoproteins by alkaline borohydride treatment, afforded the following structures: Gal beta l-4(6SO4-)GlcNAc beta l-3Gal beta l-4GlcNAc beta 1-3Gal beta

  2. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  3. Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); E.J. Tijhaar (Edwin); R.C. Huisman (Robin); W. Huisman (Willem); A. de Ronde; I.H. Darby; M.J. Francis; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractCats were immunized three times with different recombinant feline immunodeficiency virus (FIV) candidate vaccines. Recombinant vaccinia virus (rVV)-expressed envelope glycoprotein with (vGR657) or without (vGR657 x 15) the cleavage site and an FIV envelope bacterial fusion protein

  4. Improved method for silver staining of glycoproteins in thin sodium dodecyl sulfate polyacrylamide gels

    DEFF Research Database (Denmark)

    Møller, H J; Poulsen, J H

    1995-01-01

    A method for detection of glycoproteins in thin sodium dodecyl sulfate polyacrylamide gels was developed by a combination of (i) initial periodic acid oxidation/Alcian blue staining and (ii) subsequent staining with silver nitrate. The procedure allowed detection of as little as 1.6 ng of alpha 1...

  5. Interactions between P-glycoprotein substrates and other cationic drugs at the hepatic excretory level

    NARCIS (Netherlands)

    Smit, JW; Duin, E; Steen, H; Roggeveld, J; Meijer, DKF

    1 In the present study it was tested whether known P-glycoprotein (P-gp) substrates/MDR reversal agents interact with small (type 1) and bulky (type 2) cationic drugs at the level of biliary excretion in the rat isolated perfused liver model (IPRL). The studies were performed with model compounds

  6. Molecular characterization and baculovirus expression of the glycoprotein B of a seal herpesvirus (phocid herpesvirus-1).

    NARCIS (Netherlands)

    T.C. Harder (Timm); A.D.M.E. Osterhaus (Albert)

    1997-01-01

    textabstractA glycoprotein B (gB) gene homologue was identified in a 5.4-kb BamHl genomic fragment of the phocid herpesvirus type-1 (PhHV-1) which represents a widespread and important pathogen of pinnipeds. Sequence analysis revealed a gB-specific open-reading frame comprising 881 amino acids.

  7. Screening for the P-Glycoprotein Inhibitory Pump Activity of Plant ...

    African Journals Online (AJOL)

    6G as the fluorescent probe and reserpine, a known inhibitor of P-glycoprotein pump, was used as a reference drug. The results revealed that out of the 45 plant extracts tested, 3 .... line and it was first obtained from the pleural effkion of a female cancer patient. MCF-7 resistant (MCF-7R) cells may be obtained by incubating ...

  8. Cytomegalovirus glycoprotein B genotyping in ocular fluids and blood of AIDS patients with cytomegalovirus retinitis

    NARCIS (Netherlands)

    Peek, R.; Verbraak, F.; Bruinenberg, M.; van der Lelij, A.; van den Horn, G.; Kijlstra, A.

    1998-01-01

    To determine the frequency of cytomegalovirus glycoprotein B (gB) genotypes in clinical samples of ocular fluids of patients with acquired immune deficiency syndrome (AIDS) who have cytomegalovirus retinitis and to compare these with the cytomegalovirus gB genotype in paired peripheral blood

  9. Variations in Spike Glycoprotein Gene of MERS-CoV, South Korea, 2015.

    Science.gov (United States)

    Kim, Dae-Won; Kim, You-Jin; Park, Sung Han; Yun, Mi-Ran; Yang, Jeong-Sun; Kang, Hae Ji; Han, Young Woo; Lee, Han Saem; Kim, Heui Man; Kim, Hak; Kim, A-Reum; Heo, Deok Rim; Kim, Su Jin; Jeon, Jun Ho; Park, Deokbum; Kim, Joo Ae; Cheong, Hyang-Min; Nam, Jeong-Gu; Kim, Kisoon; Kim, Sung Soon

    2016-01-01

    An outbreak of nosocomial infections with Middle East respiratory syndrome coronavirus occurred in South Korea in May 2015. Spike glycoprotein genes of virus strains from South Korea were closely related to those of strains from Riyadh, Saudi Arabia. However, virus strains from South Korea showed strain-specific variations.

  10. Immunoinformatic Analysis of Crimean Congo Hemorrhagic Fever Virus Glycoproteins and Epitope Prediction for Synthetic Peptide Vaccine

    International Nuclear Information System (INIS)

    Tipu, H. N.

    2016-01-01

    Objective: To determine the Crimean Congo Hemorrhagic Fever (CCHF) virus M segement glycoprotein's immunoinformatic parameters, and identify Human Leukocyte Antigen (HLA) class I binders as candidates for synthetic peptide vaccines. Study Design: Cross-sectional study. Place and Duration of Study: Combined Military Hospital, Khuzdar Cantt, in May 2015. Methodology: Data acquisition, antigenicity prediction, secondary and tertiary structure prediction, residue analysis were done using immunoinformatics tools. HLA class I binders in glycoprotein's sequence were identified at nanomer length using NetMHC 3.4 and mapped onto tertiary structure. Docking was done for strongest binder against its corresponding allele with CABS-dock. Results: HLA A*0101, 0201, 0301, 2402, 2601 and B*0702, 0801, 2705, 3901, 4001, 5801, 1501 were analyzed against two glycoprotein components of the virus. A total of 35 nanomers from GP1, and 3 from GP2 were identified. HLA B*0702 bound maximum number of peptides (6), while HLA B*4001 showed strongest binding affinity. Conclusion: HLA specific glycoproteins epitope prediction can help identify synthetic peptide vaccine candidates. (author)

  11. Virulence determinants within the E2 glycoprotein of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Johnston, Camille Melissa; Fahnøe, Ulrik; Lohse, Louise

    Classical Swine Fever is a highly contagious disease of pigs caused by Classical Swine Fever Virus (CSFV), a member of the pestivirus genus within the family Flaviviridae. The E2 glycoprotein of CSFV has been shown to be an important factor for the virulence of the virus. In a recent study, we have...

  12. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway.

    Science.gov (United States)

    Gardner, Thomas J; Tortorella, Domenico

    2016-09-01

    The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Enhanced CD4+ cellular apoptosis by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with progressive HIV-1 infection

    International Nuclear Information System (INIS)

    Wade, Jessica; Sterjovski, Jasminka; Gray, Lachlan; Roche, Michael; Chiavaroli, Lisa; Ellett, Anne; Jakobsen, Martin R.; Cowley, Daniel; Fonseca Pereira, Candida da; Saksena, Nitin; Wang, Bin; Purcell, Damian F.J.; Karlsson, Ingrid; Fenyoe, Eva-Maria; Churchill, Melissa; Gorry, Paul R.

    2010-01-01

    CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) strains cause CD4+ T-cell loss in most infected individuals, but mechanisms underlying cytopathicity of R5 viruses are poorly understood. We investigated mechanisms contributing to R5 envelope glycoprotein (Env)-mediated cellular apoptosis by constructing a panel of retroviral vectors engineered to co-express GFP and R5 Envs derived from two HIV-1-infected subjects spanning asymptomatic (Early, E-R5 Envs) to late stages of infection (Late, L-R5 Envs). The L-R5 Envs induced significantly more cellular apoptosis than E-R5 Envs, but only in Env-expressing (GFP-positive) cells, and only in cells where CD4 and CCR5 levels were limiting. Studies with fusion-defective Env mutants showed induction of apoptosis required membrane-fusing events. Our results provide evidence for an intracellular mechanism of R5 Env-induced apoptosis of CD4+ cells that requires membrane fusion. Furthermore, they contribute to a better understanding of mechanisms involved in CD4+ T-cell loss in subjects experiencing progressive R5 HIV-1 infection.

  14. PERSISTENT PUPILLARY MEMBRANE OR ACCESSORY IRIS MEMBRANE?.

    Science.gov (United States)

    Gavriş, Monica; Horge, Ioan; Avram, Elena; Belicioiu, Roxana; Olteanu, Ioana Alexandra; Kedves, Hanga

    2015-01-01

    Frequently, in literature and curent practice, accessory iris membrane (AIM) and persistant pupillary membrane (PPM) are confused. Both AIM and PPM are congenital iris anomalies in which fine or thick iris strands arrise form the collarette and obscure the pupil. AIM, which is also called iris duplication, closely resembles the normal iris tissue in color and thickness and presents a virtual second pseudopupil aperture in the centre while PPM even in its extreme forms presents as a translucent or opaque membranous structure that extends across the pupil and has no pseudopupil. Mydriatiscs, laser treatment or surgery is used to clear the visual axis and optimize visual development. Surgical intervention is reserved for large, dense AIMs and PPMs. Our patient, a 29 year old male, has come with bilateral dense AIM, bilateral compound hyperopic astigmatism, BCVA OD = 0.6, BCVA OS = 0.4, IOP OU = 17 mmHg. To improve the visual acuity of the patient we decided to do a bilateral membranectomy, restoring in this way transparency of the visual axis. After surgery, the visual acuity improved to BCVA OD= 0.8, BCVA OS=0.8.

  15. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation.

    Science.gov (United States)

    Ghaderi, Darius; Zhang, Mai; Hurtado-Ziola, Nancy; Varki, Ajit

    2012-01-01

    One of the fastest growing fields in the pharmaceutical industry is the market for therapeutic glycoproteins. Today, these molecules play a major role in the treatment of various diseases, and include several protein classes, i.e., clotting factors, hormones, cytokines, antisera, enzymes, enzyme inhibitors, Ig-Fc-Fusion proteins, and monoclonal antibodies. Optimal glycosylation is critical for therapeutic glycoproteins, as glycans can influence their yield, immunogenicity and efficacy, which impact the costs and success of such treatments. While several mammalian cell expression systems currently used can produce therapeutic glycoproteins that are mostly decorated with human-like glycans, they can differ from human glycans by presenting two structures at the terminal and therefore most exposed position. First, natural human N-glycans are lacking the terminal Gal 1-3Gal (alpha-Gal) modification; and second, they do not contain the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc). All humans spontaneously express antibodies against both of these glycan structures, risking increased immunogenicity of biotherapeutics carrying such non-human glycan epitopes. However, in striking contrast to the alpha-Gal epitope, exogenous Neu5Gc can be metabolically incorporated into human cells and presented on expressed glycoproteins in several possible epitopes. Recent work has demonstrated that this non-human sialic acid is found in widely varying amounts on biotherapeutic glycoproteins approved for treatment of various medical conditions. Neu5Gc on glycans of these medical agents likely originates from the production process involving the non-human mammalian cell lines and/or the addition of animal-derived tissue culture supplements. Further studies are needed to fully understand the impact of Neu5Gc in biotherapeutic agents. Similar concerns apply to human cells prepared for allo- or auto-transplantation, that have been grown in animal-derived tissue culture supplements.

  16. Fuel cell membrane humidification

    Science.gov (United States)

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  17. Extracorporeal membrane oxygenation

    Science.gov (United States)

    Extracorporeal membrane oxygenation (ECMO) is a treatment that uses a pump to circulate blood through an artificial lung back into the bloodstream of a very ill baby. This system provides heart-lung bypass support ...

  18. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  19. Glycoprotein isolated from Ulmus davidiana NAKAI protects against carbon tetrachloride-induced liver injury in the mouse.

    Science.gov (United States)

    Ko, Jeong-Hyeon; Lim, Kye-Taek

    2006-07-01

    Ulmus davidiana NAKAI (UDN) has traditionally been used for healing of inflammatory diseases. This study was carried out to investigate the hepatoprotective effect of the glycoprotein isolated from UDN in carbon tetrachloride (CCl4)-induced liver injury. We evaluated the activities of alanine aminotransferase (ALT), lactate dehydrogenase (LDH), thiobarbituric acid-reactive substances (TBARS), and antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)] activities in CCl4-treated mice. When mice were treated with CCl4 in the absence of UDN glycoprotein, the activities of ALT, LDH, and TBARS were increased, while the antioxidant enzymes activities were decreased. However, when the mice were treated with CCl4 in the presence of UDN glycoprotein, the activities of ALT, LDH, and TBARS were significantly reduced and SOD, CAT, and GPx activities were remarkably increased. In addition, UDN glycoprotein increased the nitric oxide production and decreased the nuclear factor-kappa B and activator protein-1 activation in CCl4-treated mice. We also investigated the protective effects of UDN glycoprotein in glucose/glucose oxidase (G/GO)-induced cytotoxicity in primary cultured mouse hepatocytes. UDN glycoprotein markedly inhibited the cell death induced by G/GO. These results suggest that UDN glycoprotein protects against CCl4-induced liver injury in the mouse.

  20. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  2. Determination of apical membrane polarity in mammary epithelial cell cultures: The role of cell-cell, cell-substratum, and membrane-cytoskeleton interactions

    Energy Technology Data Exchange (ETDEWEB)

    Parry, G.; Beck, J.C.; Moss, L.; Bartley, J. (Lawrence Berkeley Lab., CA (United States)); Ojakian, G.K. (State Univ. of New York, Brooklyn (United States))

    1990-06-01

    The membrane glycoprotein, PAS-O, is a major differentiation antigen on mammary epithelial cells and is located exclusively in the apical domain of the plasma membrane. The authors have used 734B cultured human mammary carcinoma cells as a model system to study the role of tight junctions, cell-substratum contacts, and submembranous cytoskeletal elements in restricting PAS-O to the apical membrane. Immunofluorescence and immunoelectronmicroscopy experiments demonstrated that while tight junctions demarcate PAS-O distribution in confluent cultures, apical polarity could be established at low culture densities when cells could not form tight junctions with neighboring cells. They suggest, then, that interactions between vitronectin and its receptor, are responsible for establishment of membrane domains in the absence of tight junctions. The role of cytoskeletal elements in restricting PAS-O distribution was examined by treating cultures with cytochalasin D, colchicine, or acrylamide. Cytochalasin D led to a redistribution of PAS0O while colchicine and acrylamide did not. They hypothesize that PAS-O is restricted to the apical membrane by interactions with a microfilament network and that the cytoskeletal organization is dependent upon cell-cell and cell-substratum interactions.

  3. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  4. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  5. Evaluation of memory enhancing clinically available standardized extract of Bacopa monniera on P-glycoprotein and cytochrome P450 3A in Sprague-Dawley rats.

    Directory of Open Access Journals (Sweden)

    Rajbir Singh

    Full Text Available Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold and digoxin (1.3 and 1.2 fold, respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp.

  6. Glycoprotein isolated from Ulmus davidiana Nakai regulates expression of iNOS and COX-2 in vivo and in vitro.

    Science.gov (United States)

    Lee, Sei-Jung; Lim, Kye-Taek

    2007-06-01

    This study was carried out to investigate the anti-inflammatory potential of a 116-kDa glycoprotein isolated from Ulmus davidiana Nakai (UDN glycoprotein, 116 kDa) in lipopolysaccaride (LPS)-treated RAW 264.7 cells and dextran sodium sulfate (DSS)-treated A/J mouse. In LPS (1 microg/ml)-stimulated RAW 264.7 cells, we found that UDN glycoprotein has dose-dependent blocking effects of reactive oxygen species (ROS) and inducible nitric oxide (NO) production. In addition, the results obtained from electrophoretic mobility shift assay (EMSA) and western blot analysis showed that UDN glycoprotein dose-dependently inhibits DNA binding activity of nuclear factor-kappa B (NF-kappaB), and activities of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and manganese-superoxide dismutases (Mn-SOD) in LPS-stimulated RAW 264.7 cells. Similar results after treatment with UDN glycoprotein were also brought in the DSS-stimulated A/J mouse colitis. The increased disease activity index (DAI) and the shortened large intestine in DSS (5%)-treated A/J mouse were normalized by treatment with UDN glycoprotein [40 mg/kg body weight (BW)]. These intestinal protective activities of UDN glycoprotein are caused by blockage of plasmic thiobarbituric acid reactive substances (TBARS) formation, nitric oxide (NO) production, and lactate dehydrogenase (LDH) release, accompanying the inhibition of colonic inflammatory signal mediators (NF-kappaB, iNOS, and COX-2). These results in this study were presumably come from anti-oxidative effect of UDN glycoprotein in either LPS-stimulated RAW 264.7 cells or DSS-stimulated A/J mouse colitis. Therefore, we speculate that UDN glycoprotein has anti-inflammatory potential at the early inflammation stage.

  7. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  8. cAMP promotes the synthesis in early G1 of gp115, a yeast glycoprotein containing glycosyl-phosphatidylinositol.

    Science.gov (United States)

    Grandori, R; Popolo, L; Vai, M; Alberghina, L

    1990-08-25

    The glycoprotein gp115 (Mr = 115,000, pI 4.8-5) is localized in the plasma membrane of Saccharomyces cerevisiae cells and maximally expressed during G1 phase. To gain insight on the mechanism regulating its synthesis, we have examined various conditions of cell proliferation arrest. We used pulse-labeling experiments with [35S]methionine and two-dimensional gel electrophoresis analysis, which allow the detection of the well characterized 100-kDa precursor of gp115 (p100). In the cAMP-requiring mutant cyr1, p100 synthesis is active during exponential growth, shut off by cAMP removal, and induced when growth is restored by cAMP readdition. The inhibition of p100 synthesis also occurs in TS1 mutant cells (ras1ras2-ts1) shifted from 24 to 37 degrees C. During nitrogen starvation of rca1 cells, a mutant permeable to cAMP, p100 synthesis is also inhibited. cAMP complements the effect of ammonium deprivation, promoting p100 synthesis, even when added to cells which have already entered G0. Experiments with the bcy1 and cyr1bcy1 mutants have indicated the involvement of the cAMP-dependent protein kinases in the control of p100 synthesis. Moreover, the synthesis of p100 was unaffected in A364A cells, terminally arrested at START B by alpha-factor. These results indicate that the switch operating on p100 synthesis is localized in early G1 (START A) and is one of the multiple events controlled by the cAMP pathway.

  9. Effect of multimer size and a natural dimorphism on the binding of convulxin to platelet glycoprotein (GP)VI.

    Science.gov (United States)

    Kato, K; Furihata, K; Cheli, Y; Radis-Baptista, G; Kunicki, T J

    2006-05-01

    Convulxin (CVX), a C-type lectin from the venom of Crotalus durissus terrificus, is a potent activator of human platelets, binding predominantly to glycoprotein (GP)VI. Native CVX is an octamer composed of four alphabeta-heterodimers [(alphabeta)(4)]. Two different native sequences have been reported, one bearing lysine (K), the other glutamic acid (E), at beta chain residue 89, but the physiological relevance of this difference is unknown. We used the Drosophila S2 system to express recombinant CVX (rCVX) heterodimers (alphabeta) and site-directed mutagenesis to evaluate the influence of multimer size and the substitution betaK89E on CVX function. By flow cytometry, native CVX and both recombinant forms bind to human platelets in whole blood. By surface plasmon resonance (BIAcore, Piscataway, NJ, USA), the calculated equilibrium dissociation constants (K(D)) were: rCVX alphabeta89K, 11.3 x 10(-8) m; rCVX alphabeta89E, 9 x 10(-8) m; and native CVX, 2.8 x 10(-8) m. Thus, the affinities of the two rCVX forms for human, recombinant GPVI are essentially the same, but the relative affinity of native CVX is about 3-fold higher. The minimum concentration of native CVX that induces maximal human platelet aggregation (70 pm) is roughly 400-fold lower than that of either rCVX (29 nm). These results are consistent with the hypothesis that the ability of the native CVX octamer to cluster mobile GPVI molecules within the platelet membrane may be the single most important factor that contributes to the efficiency with which CVX is able to induce platelet activation.

  10. Effects of sertraline and fluoxetine on p-glycoprotein at barrier sites: in vivo and in vitro approaches.

    Directory of Open Access Journals (Sweden)

    Amita Kapoor

    Full Text Available Retention of substances from systemic circulation in the brain and testes are limited due to high levels of P-glycoprotein (P-gp in the luminal membranes of brain and testes capillary endothelial cells. From a clinical perspective, P-gp rapidly extrudes lipophilic therapeutic agents, which then fail to reach efficacious levels. Recent studies have demonstrated that acute administration of selective serotonin reuptake inhibitors (SSRI can affect P-gp function, in vitro and in vivo. However, little is known concerning the time-course of these effects or the effects of different SSRI in vivo.The P-gp substrate, tritiated digoxin ([(3H] digoxin, was co-administered with fluoxetine or sertraline to determine if either compound increased drug accumulation within the brains and testes of mice due to inhibition of P-gp activity. We undertook parallel studies in endothelial cells derived from brain microvessels to determine the dose-response and time-course of effects.In vitro, sertraline resulted in rapid and potent inhibition of P-gp function in brain endothelial cells, as determined by cellular calcein accumulation. In vivo, a biphasic effect was demonstrated. Brain accumulation of [(3H] digoxin was increased 5 minutes after treatment with sertraline, but by 60 minutes after sertraline treatment, brain accumulation of digoxin was reduced compared to control. By 240 minutes after sertraline treatment brain digoxin accumulation was elevated compared to control. A similar pattern of results was obtained in the testes. There was no significant effect of fluoxetine on P-gp function, in vitro or in vivo.Acute sertraline administration can modulate P-gp activity in the blood-brain barrier and blood-testes barrier. This clearly has implications for the ability of therapeutic agents that are P-gp substrates, to enter the brain when co-administered with SSRI.

  11. Acute Effects of Viral Exposure on P-Glycoprotein Function in the Mouse Fetal Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Enrrico Bloise

    2017-02-01

    Full Text Available Background/Aims: Viral infection during pregnancy is known to affect the fetal brain. The toll-like receptor (TLR-3 is a pattern recognition receptor activated by viruses known to elicit adverse fetal neurological outcomes. The P-glycoprotein (P-gp efflux transporter protects the developing fetus by limiting the transfer of substrates across both the placenta and the fetal blood-brain barrier (BBB. As such, inhibition of P-gp at these blood-barrier sites may result in increased exposure of the developing fetus to environmental toxins and xenobiotics present in the maternal circulation. We hypothesized that viral exposure during pregnancy would impair P-gp function in the placenta and in the developing BBB. Here we investigated whether the TLR-3 ligand, polyinosinic:polycytidylic acid (PolyI:C, increased accumulation of one P-gp substrate in the fetus and in the developing fetal brain. Methods: Pregnant C57BL/6 mice (GD15.5 were injected (i.p. with PolyI:C (5 mg/kg or 10 mg/kg or vehicle (saline. [3H]digoxin (P-gp substrate was injected (i.v. 3 or 23h post-treatment and animals were euthanized 1h later. Maternal plasma, ‘fetal-units’ (fetal membranes, amniotic fluid and whole fetus, and fetal brains were collected. Results: PolyI:C exposure (4h significantly elevated maternal plasma IL-6 (P<0.001 and increased [3H]digoxin accumulation in the fetal brain (P<0.05. In contrast, 24h after PolyI:C exposure, no effect on IL-6 or fetal brain accumulation of P-gp substrate was observed. Conclusion: Viral infection modeled by PolyI:C causes acute increases in fetal brain accumulation of P-gp substrates and by doing so, may increase fetal brain exposure to xenobiotics and environmental toxins present in the maternal circulation.

  12. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships

    Directory of Open Access Journals (Sweden)

    Di Pietro A.

    1999-01-01

    Full Text Available Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp, a plasma membrane ATP-binding cassette (ABC transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR. In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.

  13. A multigene family encodes the human cytomegalovirus glycoprotein complex gcII (gp47-52 complex)

    International Nuclear Information System (INIS)

    Gretch, D.R.; Stinski, M.F.; Kari, B.; Gehrz, R.C.

    1988-01-01

    The HXLF (HindIII-X left reading frame) gene family is a group of five genes that share one or two regions of homology and are arranged in tandem within the short unique component of the human cytomegalovirus genome. These genes were cloned into an SP6 expression vector in both the sense and antisense orientations. An abundant 1.62-kilobase (kb) bicistronic mRNA, predicted to originate from HXLF1 and HXLF2, was detected in the cytoplasm of infected human fibroblast cells by Northern (RNA) blot analysis. Less abundant RNAs of 1.0 and 0.8 kb, predicted to originate from the HXLF5 and HXLF2 genes, respectively, were also detected. Monocistronic, bicistronic, and polycistronic RNAs synthesized in vitro by using SP6 polymerase were translated in rabbit reticulocyte lysates with or without canine pancreatic microsomal membranes. The HXLF1 or the HXLF1 and HXLF2 translation products were detected when the above mRNAs were used. The HXLF3, HXLF4, and HXLF5 gene products were not detected by in vitro translation of the SP6-derived polycistronic mRNA. The amino acid composition of gp47-52 purified from virion envelopes has the highest similarity to the predicted amino acid composition of the HXLF1 plus HXLF2 open reading frames, but it is more similar to HXLF2 than to HXLF1. The Northern blot results imply that gp47-52 is synthesized predominantly from the abundant 1.62-kb bicistronic mRNA encoded by the HXLF1 and HXLF2 genes. However, the glycoprotein could also be synthesized by the monocistronic 0.8-kb mRNA encoded by the HXLF2 gene as well as by the mRNAs predicted from the other HXLF genes

  14. Influence of P-glycoprotein modulation on plasma concentrations and pharmacokinetics of orally administered prednisolone in dogs.

    Science.gov (United States)

    Van der Heyden, Sara; Croubels, Siska; Gadeyne, Caroline; Ducatelle, Richard; Daminet, Sylvie; Murua Escobar, Hugo; Sterenczak, Katharina; Polis, Ingeborgh; Schauvliege, Stijn; Hesta, Myriam; Chiers, Koen

    2012-06-01

    To evaluate the impact of modulation of the membrane-bound efflux pump P-glycoprotein (P-gp) on plasma concentrations of orally administered prednisolone in dogs. 7 healthy adult Beagles. Each dog received 3 treatments (control [no treatment], rifampicin [100 mg/d, PO, for 21 days, as an inducer of P-gp], and ketoconazole [100 mg/d, PO, for 21 days, as an inhibitor of P-gp]). A single dose of prednisolone (1 mg/kg, PO) was administered on day 8 of each treatment period. There was a 7-day washout period between subsequent treatments. Plasma concentrations of prednisolone were determined by use of a validated liquid chromatography-tandem mass spectrometry method. Duodenum and colon biopsy specimens were obtained endoscopically from anesthetized dogs and assessed for P-gp protein labeling via immunohistochemical analysis and mRNA quantification via real-time PCR assay. Total fecal collection was performed for evaluation of effects of P-gp modulation on digestion of nutrients. Rifampicin treatment upregulated duodenal P-gp in dogs and significantly reduced the area under the plasma concentration-time curve of prednisolone. Ketoconazole typically downregulated expression of duodenal P-gp, with a subsequent increase in the area under the plasma concentration-time curve of prednisolone. There was a noticeable interindividual difference in response. Digestion of nutrients was not affected. Modulation of P-gp expression influenced plasma concentrations of prednisolone after oral administration in dogs. Thus, treatment response to prednisolone may be influenced by coadministration of P-gp-modulating medications or feed ingredients.

  15. Membrane Structure Studies by Means of Small-Angle Neutron Scattering (SANS)

    International Nuclear Information System (INIS)

    Knott, R. B.

    2008-01-01

    The basic model for membrane structure--a lipid bilayer with imbedded proteins--was formulated 35 years ago, however the detailed structure is still under active investigation using a variety of physical, chemical and computational techniques. Every biologically active cell is encapsulated by a plasma membrane with most cells also equipped with an extensive intracellular membrane system. The plasma membrane is an important boundary between the cytoplasm of the cell and the external environment, and selectively isolates the cell from that environment. Passive diffusion and/or active transport mechanisms are provided for water, ions, substrates etc. which are vital for cell metabolism and viability. Membranes also facilitate excretion of substances either as useful cellular products or as waste. Despite their complexity and diverse function, plasma membranes from quite different cells have surprisingly similar compositions. A typical membrane structure consists of a phospholipid bilayer with a number of proteins scattered throughout, along with carbohydrates (glycoproteins), glycolipids and sterols. The plasma membranes of most eukaryotic cells contain approximately equal weights of lipid and protein, which corresponds to about 100 lipid molecules per protein molecule. Clearly, lipids are a major constituent and the study of their structure and function in isolation provides valuable insight into the more complex intact multicomponent membrane. The membrane bound protein is the other major constituent and is a very active area of research for a number of reasons including the fact that over 60% of modern drugs act on their receptor sites. The interaction between the protein and the supporting lipid bilayer is clearly of major importance. Neutron scattering is a powerful technique for exploring the structure of membranes, either as reconstituted membranes formed from well characterised lipids, or as intact membranes isolated from selected biological systems. A brief

  16. Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion

    Science.gov (United States)

    Gui, Long; Ebner, Jamie L.; Mileant, Alexander; Williams, James A.

    2016-01-01

    ABSTRACT Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While

  17. Activation and Inactivation of Primary Human Immunodeficiency Virus Envelope Glycoprotein Trimers by CD4-Mimetic Compounds

    Science.gov (United States)

    Madani, Navid; Princiotto, Amy M.; Zhao, Connie; Jahanbakhshsefidi, Fatemeh; Mertens, Max; Herschhorn, Alon; Melillo, Bruno; Smith, Amos B.

    2016-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the viral envelope glycoproteins (Env), a trimer of three gp120 exterior glycoproteins, and three gp41 transmembrane glycoproteins. The metastable Env is triggered to undergo entry-related conformational changes when gp120 binds sequentially to the receptors, CD4 and CCR5, on the target cell. Small-molecule CD4-mimetic compounds (CD4mc) bind gp120 and act as competitive inhibitors of gp120-CD4 engagement. Some CD4mc have been shown to trigger Env prematurely, initially activating Env function, followed by rapid and irreversible inactivation. Here, we study CD4mc with a wide range of anti-HIV-1 potencies and demonstrate that all tested CD4mc are capable of activating as well as inactivating Env function. Biphasic dose-response curves indicated that the occupancy of the protomers in the Env trimer governs viral activation versus inactivation. One CD4mc bound per Env trimer activated HIV-1 infection. Envs with two CD4mc bound were activated for infection of CD4-negative, CCR5-positive cells, but the infection of CD4-positive, CCR5-positive cells was inhibited. Virus was inactivated when all three Env protomers were occupied by the CD4mc, and gp120 shedding from the Env trimer was increased in the presence of some CD4mc. Env reactivity and the on rates of CD4mc binding to the Env trimer were found to be important determinants of the potency of activation and entry inhibition. Cross-sensitization of Env protomers that do not bind the CD4mc to neutralization by an anti-V3 antibody was not evident. These insights into the mechanism of antiviral activity of CD4mc should assist efforts to optimize their potency and utility. IMPORTANCE The trimeric envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) mediate virus entry into host cells. Binding to the host cell receptors, CD4 and CCR5, triggers changes in the conformation of the HIV-1 envelope glycoprotein trimer important

  18. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  19. Rhodocytin (aggretin) activates platelets lacking alpha(2)beta(1) integrin, glycoprotein VI, and the ligand-binding domain of glycoprotein Ibalpha

    DEFF Research Database (Denmark)

    Bergmeier, W; Bouvard, D; Eble, J A

    2001-01-01

    Although alpha(2)beta(1) integrin (glycoprotein Ia/IIa) has been established as a platelet collagen receptor, its role in collagen-induced platelet activation has been controversial. Recently, it has been demonstrated that rhodocytin (also termed aggretin), a snake venom toxin purified from...... the venom of Calloselasma rhodostoma, induces platelet activation that can be blocked by monoclonal antibodies against alpha(2)beta(1) integrin. This finding suggested that clustering of alpha(2)beta(1) integrin by rhodocytin is sufficient to induce platelet activation and led to the hypothesis...

  20. P-glycoprotein epitope mapping. II. The murine monoclonal antibody MM6.15 to human multidrug-resistant cells binds with three distinct loops in the MDR1-P-glycoprotein extracellular domain.

    Science.gov (United States)

    Cianfriglia, M; Romagnoli, G; Tombesi, M; Poloni, F; Falasca, G; Di Modugno, F; Castagna, M; Chersi, A

    1995-03-29

    A new murine monoclonal antibody (MAb), MM6.15, to human MDR1 P-glycoprotein was found to be reactive in ELISA with synthetic peptides selected from the predicted sequences of the first, fourth and sixth extracellular loop of MDR1-P-glycoprotein. In order to precisely define the MM6.15-binding site, a peptide library of overlapping 5- to 9-mer residues covering the entire sixth extracellular loop of both human and rodent class-1 P-glycoproteins was synthesized on polyethylene pins and tested for MAb binding. The results of this ELISA demonstrated that the MAb MM6.15 reacts only with human synthetic peptides and that the critical component of the MAb recognition is made up of the amino-acid sequence LVAHKL (residues 963-968 of the MDR1-P-glycoprotein) with histidine (H), lysine (K) and possibly leucine (L), key residues of this immunogenic domain.