WorldWideScience

Sample records for membrane electrodes formulated

  1. Tetracaine – selective electrodes with polymer membranes and their application in pharmaceutical formulation control

    Directory of Open Access Journals (Sweden)

    Ahmed Khudhair Hassan

    2017-02-01

    Full Text Available The construction and electrochemical response characteristics of poly(vinyl chloride (PVC membrane electrodes for tetracaine hydrochloride (TCH are described. The sensing membranes incorporating ion-association complexes of tetracaine cation with phosphotungstic acid (PTA or phosphomolybdic acid (PMA or Sodium tetraphenyl borate (NaTPB as electroactive materials and di-n-butyl phthalate (DBPH or tri-n-butyl phosphate (TBP as a plasticizer in PVC matrixes were evaluated. The results obtained show the electrodes based on PTA or PMA as electroactive compounds and DBPH as plasticizer with a fast, stable and near-Nernstian response over a wide concentration range (1 × 10−5–5 × 10−2 M, with cationic slopes of 55.02 and 52.05 mV decade−1 over a pH range of (2.5–6.5. The electrodes show good discrimination of tetracaine from several inorganic cations and sugars. The electrodes were successfully applied for the determination of tetracaine in pharmaceutical formulations.

  2. All-Solid-State, PVC Membrane, and Carbon Paste Ion-Selective Electrodes for Determination of Donepezil Hydrochloride in Pharmaceutical Formulation.

    Science.gov (United States)

    Khamees, Nesreen; Mohamed, Tagreed Abdel-Fattah; Derar, Abeer Rashad; Aziz, Azza

    2017-09-01

    All-solid-state, polyvinyl chloride (PVC) membrane, and carbon paste potentiometric ion-selective electrodes (ISEs) were proposed for the determination of donepezil hydrochloride (DON) in the drug substance and a pharmaceutical formulation. The potentiometric response toward DON was based on the existence of donepezil-tetraphenyl borate (DON-TPB) in a PVC membrane or a carbon paste in the presence of dioctylphthalate. In contrast, the solid-state electrode was prepared by direct incorporation of DON-TPB into a commercial nail varnish without external additives. The electrodes exhibited Nernstian slopes of 55.0, 57.0, and 53.0 mV/decade over the concentration ranges of 1 × 10-5 to 1 × 10-3, 1 × 10-4 to 10-2, and 1 × 10-4 to 5 × 10-3 for the solid-state, PVC membrane, and carbon paste electrodes, respectively. The response of the electrodes is independent of pH in the range of 2-≤8. The electrodes showed good selectivity for DON with respect to a number of inorganic cations and amino acids. The electrodes were used for the determination of DON in pure solution and in pharmaceutical tablets with high accuracy (±2%) and precision (RSD ≤2%). The solid-state electrode is simple, economical, and rapid when compared to the PVC membrane and carbon paste electrodes.

  3. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  4. Cyanex based uranyl sensitive polymeric membrane electrodes.

    Science.gov (United States)

    Badr, Ibrahim H A; Zidan, W I; Akl, Z F

    2014-01-01

    Novel uranyl selective polymeric membrane electrodes were prepared using three different low-cost and commercially available Cyanex extractants namely, bis(2,4,4-trimethylpentyl) phosphinic acid [L1], bis(2,4,4-trimethylpentyl) monothiophosphinic acid [L2] and bis(2,4,4-trimethylpentyl) dithiophosphinic acid [L3]. Optimization and performance characteristics of the developed Cyanex based polymer membrane electrodes were determined. The influence of membrane composition (e.g., amount and type of ionic sites, as well as type of plasticizer) on potentiometric responses of the prepared membrane electrodes was studied. Optimized Cyanex-based membrane electrodes exhibited Nernstian responses for UO₂(2+) ion over wide concentration ranges with fast response times. The optimized membrane electrodes based on L1, L2 and L3 exhibited Nernstian responses towards uranyl ion with slopes of 29.4, 28.0 and 29.3 mV decade(-1), respectively. The optimized membrane electrodes based on L1-L3 showed detection limits of 8.3 × 10(-5), 3.0 × 10(-5) and 3.3 × 10(-6) mol L(-1), respectively. The selectivity studies showed that the optimized membrane electrodes exhibited high selectivity towards UO₂(2+) ion over large number of other cations. Membrane electrodes based on L3 exhibited superior potentiometric response characteristics compared to those based on L1 and L2 (e.g., widest linear range and lowest detection limit). The analytical utility of uranyl membrane electrodes formulated with Cyanex extractant L3 was demonstrated by the analysis of uranyl ion in different real samples for nuclear safeguards verification purposes. The results obtained using direct potentiometry and flow-injection methods were compared with those measured using the standard UV-visible and inductively coupled plasma spectroscopic methods. © 2013 Published by Elsevier B.V.

  5. Comparative Study of PVC-Free All-Solid-State, PVC Membrane, and Carbon Paste Ion-Selective Electrodes for the Determination of Dapoxetine Hydrochloride in Pharmaceutical Formulation.

    Science.gov (United States)

    Aziz, Azza; Khamees, Nesrin; Mohamed, Tagreed Abdel-Fattah; Derar, Abeer Rashad

    2016-11-01

    The potentiometric response characteristics and analytical applications of a poly(vinyl chloride) (PVC)-free all-solid-state ion-selective electrode for dapoxetine hydrochloride (DAP) are examined. The Nernstian response of the electrode was evaluated by comparison with PVC-based liquid membrane and carbon paste electrodes. The PVC-free electrode is prepared by direct incorporation of dapoxetine-tetraphenyl borate (DAP-TPB) as a sensing element into a commercial nail varnish containing cellulose acetate propionate. The composite was applied onto a 3 mm diameter graphite disk electrode. The electrode exhibited a Nernstian slope of 56.0 mV/decade in the concentration range of 1 × 10-4 to 1 × 10-2 mol/L with an LOD of 2 × 10-5 mol/L. The electrode is independent of pH in the range of 2 to 6 and showed good selectivity for DAP with respect to a large number of inorganic cations and amino acids. Comparable Nernstian slope, sensitivity, pH range, and selectivity pattern were obtained with a PVC membrane and a carbon paste incorporating DAP-TPB as a sensing element and dioctylphthalate as a solvent mediator. The electrodes were used for the determination of DAP in pure solution and in tablets without extraction with high accuracy and precision (RSD ≤ 2%). The nail varnish solid-state electrode is simple, economical, and rapid when compared with PVC membrane and carbon paste electrodes.

  6. Nanofiber membrane-electrode-assembly and method of fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2018-01-23

    In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.

  7. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    2013-09-20

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

  8. Fabrication and Characterisation of Membrane-Based Gold Electrodes

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Kwasny, Dorota; Dimaki, Maria

    2015-01-01

    This work presents a versatile, membrane based electrochemical sensor with thin film electrodes fabricated through Ebeam evaporation directly on porous materials (membranes). Here, the fabrication of the electrodes is described along with possible methods for integration in fluidic systems...

  9. Methods of making membrane electrode assemblies

    Science.gov (United States)

    Kim, Yu Seung; Lee, Kwan -Soo; Rockward, Tommy Q. T.

    2015-07-28

    Method of making a membrane electrode assembly comprising: providing a membrane comprising a perfluorinated sulfonic acid; providing a first transfer substrate; applying to a surface of the first transfer substrate a first ink, said first ink comprising an ionomer and a catalyst; applying to the first ink a suitable non-aqueous swelling agent; forming an assembly comprising: the membrane; and the first transfer substrate, wherein the surface of the first transfer substrate comprising the first ink and the non-aqueous swelling agent is disposed upon one surface of the membrane; and heating the assembly at a temperature of 150.degree. C. or less and at a pressure of from about 250 kPa to about 3000 kPa or less for a time suitable to allow substantially complete transfer of the first ink and the second ink to the membrane; and cooling the assembly to room temperature and removing the first transfer substrate and the second transfer substrate.

  10. Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same

    DEFF Research Database (Denmark)

    2016-01-01

    of fibers. The fibers may further include particles of a catalyst. The fiber mat may be used to form an electrode or a membrane. In a further aspect, a fuel cell membrane-electrode-assembly has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode...... electrode. Each of the anode electrode, the cathode electrode and the membrane may be formed with a fiber mat....

  11. Cleaning UF membranes with simple and formulated solutions

    NARCIS (Netherlands)

    Levitsky, I.; Duek, A.; Naim, R.; Arkhangelsky, E.; Gitis, V.

    2012-01-01

    The ultrafiltration membranes fouled by proteins are typically cleaned by consecutive soaking in alkali, surfactant and oxidizing solutions. We combined all three chemicals into a formulated cleaning agent and examined its efficiency to restore the water flux without damaging the membrane or

  12. Ion-Selective Electrode for the Determination of Iron(III in Vitamin Formulations

    Directory of Open Access Journals (Sweden)

    Teixeira Marcos Fernando de S.

    1998-01-01

    Full Text Available A coated graphite-epoxy ion-selective electrode for iron(III, based on the ion-pair formed between [Fe(citrate2]3- and the tricaprylylmethylammonium cation (Aliquat 336 in a poly(vinylchloride (PVC matrix has been constructed. A thin membrane film of this ion-pair, dibutylphthalate (DBPh in PVC was deposited directly onto a Perspex® tube, which contained a graphite-epoxy conductor substrate. The coating solution was prepared by dissolving 30% (w/w of PVC in 10 mL of tetrahydrofuran following addition of 65% (w/w DBPh and 5% (w/w of the ionic pair. The effect of pH, citrate concentration and some cations on the electrode response has been investigated. The E(mV vs. log [Fe(citrate2]3- electrode response was linear for iron(III concentration from 1.0 x 10-3 mol/L to 1.0 x 10-1 mol/L in 1.0 mol/L citrate medium, with a slope of 19.3 ± 0.5 mV/decade and a useful lifetime of at least six months (more than 800 determinations for each polymeric membrane used. The detection limit was 7.5 x 10-4 mol/L and the relative standard deviation was less than 3% for a solution containing 5.0 x 10-3 mol/L of iron(III (n = 10. The application of this electrode for iron(III determination in samples of vitamin formulations is described. The results obtained with this procedure are in close agreement with those obtained using AA spectrophotometry (r = 0.9999.

  13. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara

    2011-01-01

    A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...... porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion–Pt(IV)TPPCl2 complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good...

  14. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    Energy Technology Data Exchange (ETDEWEB)

    Saefurohman, Asep, E-mail: saefurohman.asep78@Gmail.com; Buchari,, E-mail: saefurohman.asep78@Gmail.com; Noviandri, Indra, E-mail: saefurohman.asep78@Gmail.com [Department of Chemistry, Bandung Institute of Technology (Indonesia); Syoni [Department of Metallurgy Engineering, Bandung Institute of Technology (Indonesia)

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.

  15. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  16. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S

    1997-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  17. Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Kwon, Kyungjung; Park, Jung Ock; Yoo, Duck Young; Yi, Jung S.

    2009-01-01

    The ionomer content in electrode is one of the most important parameters for the high performance of fuel cells. The high temperature PEMFC based on phosphoric acid (PA)-doped polymer membrane with unhumidified reactant gases has a difficulty in controlling the liquid state PA ionomer content in electrode. To evaluate the PA content in electrode, the three techniques of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and acid-base titration (ABT) are carried out in situ or ex situ. The properties of membrane electrode assembly (MEA) such as electrochemical surface area (ESA), ohmic resistance, charge transfer resistance, double layer capacitance and the amount of PA in MEA components (anode, cathode and membrane) are extracted by each technique. Ex situ CV with the usage of dry gases has a limitation in assessing the reliable ESA of unhumidified PEMFC. While in situ EIS presents some informative values of resistance and capacitance for understanding the PA distribution in MEA, its sensitivity to the PA content in MEA components needs to be higher for detecting a subtle change in PA distribution. Ex situ ABT supplies a clear PA distribution in MEA at room temperature but does not seem to reflect the operating state well at high temperatures. However, it can be used as a detection tool for the loss of the initial acid content in membrane during a long-term MEA durability study.

  18. Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyungjung [Fuel Cell Group, Energy Lab, SAIT, Samsung Electronics Co., Ltd., San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-712 (Korea, Republic of)], E-mail: kfromberk@gmail.com; Park, Jung Ock; Yoo, Duck Young; Yi, Jung S. [Fuel Cell Group, Energy Lab, SAIT, Samsung Electronics Co., Ltd., San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-712 (Korea, Republic of)

    2009-11-01

    The ionomer content in electrode is one of the most important parameters for the high performance of fuel cells. The high temperature PEMFC based on phosphoric acid (PA)-doped polymer membrane with unhumidified reactant gases has a difficulty in controlling the liquid state PA ionomer content in electrode. To evaluate the PA content in electrode, the three techniques of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and acid-base titration (ABT) are carried out in situ or ex situ. The properties of membrane electrode assembly (MEA) such as electrochemical surface area (ESA), ohmic resistance, charge transfer resistance, double layer capacitance and the amount of PA in MEA components (anode, cathode and membrane) are extracted by each technique. Ex situ CV with the usage of dry gases has a limitation in assessing the reliable ESA of unhumidified PEMFC. While in situ EIS presents some informative values of resistance and capacitance for understanding the PA distribution in MEA, its sensitivity to the PA content in MEA components needs to be higher for detecting a subtle change in PA distribution. Ex situ ABT supplies a clear PA distribution in MEA at room temperature but does not seem to reflect the operating state well at high temperatures. However, it can be used as a detection tool for the loss of the initial acid content in membrane during a long-term MEA durability study.

  19. Optimized electrode coverage of membrane actuators based on epitaxial PZT thin films

    International Nuclear Information System (INIS)

    Nguyen, M D; Dekkers, M; Blank, D H A; Rijnders, G; Nazeer, H

    2013-01-01

    This research presents an optimization of piezoelectric membrane actuators by maximizing the actuator displacement. Membrane actuators based on epitaxial Pb(Zr,Ti)O 3 thin films grown on all-oxide electrodes and buffer layers using silicon technology were fabricated. Electrode coverage was found to be an important factor in the actuation displacement of the piezoelectric membranes. The optimum electrode coverage for maximum displacement was theoretically determined to be 39%, which is in good agreement with the experimental results. Dependences of membrane displacement and optimum electrode coverage on membrane diameter and PZT-film/Si-device-layer thickness ratio have also been investigated. (paper)

  20. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  1. Potentiometric polymeric membrane electrodes for mercury detection using calixarene ionophores.

    Science.gov (United States)

    Tyagi, Sonika; Agarwal, Himanshu; Ikram, Saiqa

    2010-01-01

    It is here established that potentiometric polymeric membrane electrodes based on electrically neutral ionophores are a useful analytical tool for the detection of heavy metal ions from environmental and industrial waste water. PVC based membrane containing p-tert-butyl-calix[4]arenethioether derivative as active material along with sodiumtetraphenylborate (NaTPB) as solvent mediator and dibutylphthalate as a plasticizer in the ratio 45:9:460:310 (w/w%) (I:NaTPB:DBP:PVC) exhibits good properties with a Nernstian response of 29.50+/-1.0 mV per decade of activity and a working concentration range of 7.2 x 10(-8)-1.0 x 10(-1) M. The electrode gave more stable potential readings when used around pH 2.5-6.8 and exhibits fast response time of 14 s. The sensors were found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of acetone, methanol or ethanol and could be used over a period of 7-9 months. Excellent selectivity for Hg(2+) ions is indicated by match potential method and fixed interference method. The sensors could be used successfully in the estimation of mercury in different sample.

  2. Development of a membrane electrode assembly process for proton exchange membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Baldo, Wilians Roberto

    2003-01-01

    In this work, a Membrane Electrode Assembly (MEA) producing process was developed, involving simple steps, aiming cost reduction and good reproducibility for Proton Exchange Membrane Fuel Cell (PEMFC) commercial applications. The electrodes were produced by spraying ink into both sides of the polymeric membrane, building the catalytic layers, followed by hot pressing of Gas Diffusion Layers (GDL), forming the MEA. This new producing method was called 'Spray and hot pressing hybrid method'. Concerning that all the parameters of spray and hot pressing methods are interdependent, a statistical procedure were used in order to study the mutual variables influences and to optimize the method. This study was earned out in two distinct steps: the first one, where seven variables were considered for the analysis and the second one, where only the variables that interfered in the process performance in the first step were considered for analysis. The results showed that the developed process was adequate, including only simple steps, reaching MEA's performance of 651 m A cm -2 at a potential of 600 mV for catalysts loading of 0,4 mg cm -2 Pt at the anode and 0,6 mg cm -2 Pt at the cathode. This result is compared to available commercial MEA's, with the same fuel cell operations conditions. (author)

  3. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    DEFF Research Database (Denmark)

    Chiriaev, Serguei; Dam Madsen, Nis; Rubahn, Horst-Günter

    2017-01-01

    electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM). A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its....... In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles. Keywords: proton exchange membrane fuel cells (PEMFCs); Helium Ion Microscopy (HIM...

  4. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  5. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells

    Science.gov (United States)

    Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.

  6. Contribution to the study of fluoride dosing by using a membrane selective electrode

    International Nuclear Information System (INIS)

    Rivas, Jean de

    1972-01-01

    As the method of dosing fluoride ions by precipitation with lead fluorochloride is not very satisfying, the author reports the study of a new process for the dosing of the fluorine ion by using a selective electrode. After some generalities on selective electrodes (principle, types, operation principle) and some recalls and definitions (Galvani and Volta potential, stability constants of complexes, principles of diffusion in solids), the author reports the study of the diffusion potential in glass membranes, the study of the membrane potential, and the study of the ion exchange equilibrium. He presents methods of calculation of selectivity coefficients of membrane electrodes, and the reports experiments performed in laboratory

  7. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash; Schieda, Mauricio; Shahi, Vinod Kumar; Nunes, Suzana Pereira

    2011-01-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  8. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash

    2011-02-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  9. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide

    International Nuclear Information System (INIS)

    Hori, Y.; Ito, H.; Okano, K.; Nagasu, K.; Sato, S.

    2003-01-01

    Silver-coated ion exchange membrane electrodes (solid polymer electrolyte, SPE) were prepared by electroless deposition of silver onto ion exchange membranes. The SPE electrodes were used for carbon dioxide (CO 2 ) reduction with 0.2 M K 2 SO 4 as the electrolyte with a platinum plate (Pt) for the counterelectrode. In an SPE electrode system prepared from a cation exchange membrane (CEM), the surface of the SPE was partly ruptured during CO 2 reduction, and the reaction was rapidly suppressed. SPE electrodes made of an anion exchange membrane (SPE/AEM) sustained reduction of CO 2 to CO for more than 2 h, whereas, the electrode potential shifted negatively during the electrolysis. The reaction is controlled by the diffusion of CO 2 through the metal layer of the SPE electrode at high current density. Ultrasonic radiation, applied to the preparation of SPE/AEM, was effective to improve the electrode properties, enhancing the electrolysis current of CO 2 reduction. Observation by a scanning electron microscope (SEM) showed that the electrode metal layer became more porous by the ultrasonic radiation treatment. The partial current density of CO 2 reduction by SPE/AEM amounted to 60 mA cm -2 , i.e. three times the upper limit of the conventional electrolysis by a plate electrode. Application of SPE device may contribute to an advancement of CO 2 fixation at ambient temperature and pressure

  10. Membrane electrodes for the determination of pyridostigmine bromide.

    Science.gov (United States)

    El-Kosasy, Amira M; Salem, Maissa Y; El-Bardicy, Mohamed G; Abd El-Rahman, Mohamed K

    2009-01-01

    Two pyridostigmine bromide (PB) selective electrodes were investigated with 2-nitrophenyl octyl ether as a plasticizer in a polymeric matrix of carboxylated polyvinyl chloride (PVC-COOH), based on the interaction between the drug solution and the dissociated COOH groups in the PVC-COOH. One of the sensors was fabricated by using PVC-COOH only as anionic site without incorporation of an ionophore (sensor 1). The second sensor was constructed by using 2-hydroxy propyl beta-cyclodextrin as an ionophore (sensor 2). Linear responses of PB within a concentration range of 10(-3)-10(-2) and 10(-5)-10(-2) M, with slopes of 51.9 +/- 0.31 and 56.7 +/- 0.40 mV/decade over pH range of 5-10 were obtained using sensors 2 and 1, respectively. The proposed method displayed useful analytical characteristics for determination of PB in tablets with average recoveries of 100.22 +/- 0.62, and 100.15 +/- 0.72, and in plasma with average recoveries of 99.14 +/- 1.19 and 99.79 +/- 0.72, for sensors 2 and 1, respectively. The utility of 2-hydroxy propyl beta-cyclodextrin as an ionophore has a significant influence on increasing both membrane sensitivity and selectivity of sensor 2 in comparison with sensor 1. The methods were also used to determine the intact drug in the presence of its degradate, and thus could be used as stability-indicating methods. The results obtained by the proposed procedures were statistically analyzed and compared with those obtained by the U.S. Pharmacopeia method. No significant difference for either accuracy or precision was observed.

  11. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  12. Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Steenberg, Thomas

    2014-01-01

    A new electrode concept was proved with no polymeric binder in the catalyst layer for acid-doped polybenzimidazole (PBI) membrane fuel cells. It shows that a stable interface between the membrane and the catalyst layer can be retained when a proton conducting acid phase is established. The absenc...

  13. Micropatterned Carbon-on-Quartz Electrode Chips for Photocurrent Generation from Thylakoid Membranes

    DEFF Research Database (Denmark)

    Bunea, Ada-Ioana; Heiskanen, Arto R.; Pankratova, Galina

    2018-01-01

    Harvesting the energy generated by photosynthetic organisms through light-dependent reactions is a significant step towards a sustainable future energy supply. Thylakoid membranes are the site of photosynthesis, and thus particularly suited for developing photo-bioelectrochemical cells. Novel ele......]+/2+) are used for evaluating photocurrent generation from thylakoid membranes with different electrode geometries. Current densities up to 71 µA cm-2 are measured upon illumination through the transparent electrode chip with solar simulated irradiance (1000 W m-2)....... electrode materials and geometries could potentially improve the efficiency of energy harvesting using thylakoid membranes. For commercial applications, electrodes with large surface areas are needed. Photolithographic patterning of a photoresist, followed by pyrolysis, is a flexible and fast approach...

  14. The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study.

    Science.gov (United States)

    Ng, Shiow-Fern; Rouse, Jennifer J; Sanderson, Francis D; Eccleston, Gillian M

    2012-03-01

    Synthetic membranes are composed of thin sheets of polymeric macromolecules that can control the passage of components through them. Generally, synthetic membranes used in drug diffusion studies have one of two functions: skin simulation or quality control. Synthetic membranes for skin simulation, such as the silicone-based membranes polydimethylsiloxane and Carbosil, are generally hydrophobic and rate limiting, imitating the stratum corneum. In contrast, synthetic membranes for quality control, such as cellulose esters and polysulfone, are required to act as a support rather than a barrier. These synthetic membranes also often contain pores; hence, they are called porous membranes. The significance of Franz diffusion studies and synthetic membranes in quality control studies involves an understanding of the fundamentals of synthetic membranes. This article provides a general overview of synthetic membranes, including a brief background of the history and the common applications of synthetic membranes. This review then explores the types of synthetic membranes, the transport mechanisms across them, and their relevance in choosing a synthetic membrane in Franz diffusion cell studies for formulation assessment purposes.

  15. Development and fabrication of membrane electrode assembly for PEM fuel cell

    International Nuclear Information System (INIS)

    Anjum, M.A.R.; Arshad, M.; Hussain, S.; Saeed, M.M.

    2011-01-01

    The 10 cm x 10 cm active area membrane electrode assembly (MEA) has been fabricated by adopting two routes, i.e., catalyst-coated membrane (CCM) and catalyst-coated support (CCS). In CCM method, the catalyst is directly applied on the Nafion membrane while in CCS method, catalyst is applied on support (GDL). The catalyst layer was prepared by nano-sized platinum on carbon particle, the ionomer material of the membrane and a solvent that allows the catalyst to behave like ink. The catalyst slurry was applied on the membrane, hot-pressed the sandwich of GDL and catalyst-coated Nafion membrane to form a single unit which behaves as electrodes. The primary tests regarding the efficiency of indigenously-fabricated MEAs have been carried out successfully. The performance of MEA with respect to continuous operation for long hours from the standpoint of proper functioning was also checked. A maximum power of 13 watt was obtained. (author)

  16. Influence of nonionic surfactants on the potentiometric response of hydrogen ion-selective polymeric membrane electrodes.

    Science.gov (United States)

    Espadas-Torre, C; Bakker, E; Barker, S; Meyerhoff, M E

    1996-05-01

    The influence of poly(ethylene oxide)-based nonionic surfactants (i.e., Triton X-100 and Brij 35) in the sample phase on the response properties of hydrogen ion-selective polymeric membrane electrodes containing mobile (lipophilic amines) or covalently bound (aminated-poly-(vinyl chloride)) hydrogen ion carriers is reported. In the presence of these nonionic surfactants, membrane electrode response toward interfering cation activity (e.g., Na+) in the sample phase is increased substantially and the pH measuring range shortened. The degree of cation interference for pH measurements is shown to correlate with the basicity of the hydrogen ion carrier doped within the membrane phase. The observed deterioration in selectivity arises from the partitioning of the surfactant into the membrane and concomitant extraction of metal cations by the surfactants in the organic phase. The effect of nonionic surfactants on pH electrodes prepared with aminated-PVC membranes is shown to be more complex, with additional large shifts in EMF values apparently arising from multidentate interactions between the surfactant molecules and the polymeric amine in the membrane, leading to a change in the apparent pKa values for the amine sites. The effects induced by nonionic surfactants on the EMF response function of hydrogen ion-selective polymeric membrane electrodes are modeled, and experimental results are shown to correlate well with theoretical predictions.

  17. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes

    International Nuclear Information System (INIS)

    Gupta, V.K.; Singh, A.K.; Gupta, Barkha

    2007-01-01

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S 1 ) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S 2 ) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S 1 ) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 x 10 -8 to 1.0 x 10 -1 M Cd 2+ with limit of detection 5.0 x 10 -8 M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants

  18. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)]. E-mail: vinodfcy@iitr.ernet.in; Singh, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India); Gupta, Barkha [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2007-02-05

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S{sub 1}) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S{sub 2}) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S{sub 1}) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 x 10{sup -8} to 1.0 x 10{sup -1} M Cd{sup 2+} with limit of detection 5.0 x 10{sup -8} M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  19. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes.

    Science.gov (United States)

    Gómez-Marín, Ana M; Hernández-Ortíz, Juan P

    2014-09-24

    A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott-Schottky or Gouy-Chapman-Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction

    Science.gov (United States)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Zheng, Gengfeng

    2015-08-01

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g-1, with excellent capacitance retention (>90%) at 10 A g-1 for over 10 000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm-2 at 1.65 V vs. the RHE.A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific

  1. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Gómez-Marín, Ana M.; Hernández-Ortíz, Juan P.

    2014-01-01

    Highlights: • Discretized model for an interface of covered electrodes. • Two limiting behaviors are capture: double-layer and conductive interfaces. • Additional phenomena are included easily: acid/base equilibrium, ion mobility. • The model provides explanations to observed phenomena that is vaguely explained in the literature. • Implications on electrodes in fuel cells are given and it opens avenues to understand and design such systems. - Abstract: A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott–Schottky or Gouy–Chapman–Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments

  2. Iodide selective membrane electrodes based on a Molybdenum-Salen as a neutral carrier

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei-Motlagh, Masoud [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Taher, Mohammad Ali, E-mail: ma_taher@yahoo.com [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ahmadi, Kyoumars [AJA University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sheikhshoaie, Iran [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2011-12-01

    A new polymeric membrane electrode (PME) and a coated platinum disk electrode (CPtE) based on Schiff base complex of Mo(VI) as a suitable carrier for I{sup -} ion were described. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrodes. The electrodes exhibited a Nernstian slope of 63.0 {+-} 0.5 (CPtE) and 60.3 {+-} 0.4 (PME) mV decade{sup -1} in I{sup -} ion over a wide concentration range from 7.9 x 10{sup -7} to 1.0 x 10{sup -1} M for CPtE and 9.1 x 10{sup -6} to 1.0 x 10{sup -1} M I{sup -} for PME. The potentiometric response of the electrodes was independent of the pH of the test solution in the pH range 2.0-8.5 with a fast response time (< 10 s). The process of transfer of iodide across the membrane interface was investigated by use of the AC impedance technique. The proposed sensors were successfully applied to direct determination of iodide in samples containing interfering anions, waste water and as indicator electrodes in precipitation titrations. Highlights: {yields} We study new selective membrane electrodes for iodide ions. {yields} To the best of our knowledge this is the first coated platinum disk electrode of I{sup -}. {yields} The sensors have a wide concentration range with a fast response time. {yields} Efforts have been made to improve the selectivity with the use of CPtE.

  3. Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Gab; Kim, Chang Soo; Peck, Dong Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of)

    1998-03-15

    In order to develop a kW-class polymer electrolyte membrane fuel cell (PEMFC), several electrodes have been fabricated by different catalyst layer preparation procedures and evaluated based on the cell performance. Conventional carbon paper and carbon cloth electrodes were fabricated using a ptfe-bonded Pt/C electrol catalyst by coating and rolling methods. Thin-film catalyst/ionomer composite layers were also formed on the membrane by direct coating and transfer printing techniques. The performance evaluation with catalyst layer preparation methods was carried out using a large or small electrode single cell. Conventional and thin film membrane and electrode assemblies (MEAs) with small electrode area showed a performance of 350 and 650 mA/cm{sup 2} at 0.6 V, respectively. The performance of direct coated thin film catalyst layer with 300 cm{sup 2} MEAs was higher than those of the conventional and transfer printing technique MEAs. The influence of some characteristic parameters of the thin film electrode on electrochemical performance was examined. Various other aspects of overall operation of PEMFC stacks were also discussed. (orig.)

  4. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  5. Final Report - High Performance, Durable, Low Cost Membrane Electrode Assemblies for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Andrew [3M Company, Maplewood, MN (United States)

    2017-05-31

    The primary project objective was development of improved polymer electrolyte membrane fuel cell (PEMFC) membrane electrode assemblies (MEAs) which address the key DOE barriers of performance, durability and cost. Additional project objectives were to address commercialization barriers specific to MEAs comprising 3M nanostructured thin film (NSTF) electrodes, including a larger-than-acceptable sensitivity to operating conditions, an unexplained loss of rated power capability with operating time, and slow break-in conditioning. Significant progress was made against each of these barriers, and most DOE 2020 targets were met or substantially approached.

  6. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction.

    Science.gov (United States)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Zheng, Gengfeng

    2015-09-14

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g(-1), with excellent capacitance retention (>90%) at 10 A g(-1) for over 10,000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm(-2) at 1.65 V vs. the RHE.

  7. Electrochemical oxidation of amoxicillin in its pharmaceutical formulation at boron doped diamond (BDD electrode

    Directory of Open Access Journals (Sweden)

    Corneil Quand-Meme Gnamba

    2015-08-01

    Full Text Available In this work, voltammetric andelectrolysis experiments have been carried out on a conductive boron dopeddiamond (BDD electrode in solution containing amoxicillin in itspharmaceutical formulation. The physical characterization of the BDD surface byscanning electron microscopy (SEM reveals a polycrystalline structure withgrain sizes ranging between 0.3 and 0.6 µm. With Raman spectroscopy, BDDsurface is composed of diamons (Csp3 type carbon (Csp3and graphitic type carbon (Csp2. The electrochemical characterization of the BDD electrode in sulfuric acid electrolyte showed a wide potential window worthing 2.74 V. The oxidation of Amoxicillin showed an irreversible anodic wave on the voltammogram in the domain of water stability indicating a direct oxidation of amoxicillin at BDD surface. The treatment of Amoxicillin in the synthetic wastewaters under various constant current densities 20, 50, 100, 135 mA cm-2 on BDD showed that Amoxicillin is highly reducedunder 100 mA cm-2 reaching 92% of the Chemical Oxygen Demand (CODremoval after 5 h of electrolysis. Investigation performed in perchloric acidas supporting electrolyte led to 87% of COD removal after 5 h of electrolysis.Mineralization of amoxicillin occurs on BDD and the chemical oxygen demandremoval was higher in sulfuric acid than in perchloric acid owing to theinvolvement of the in-situ formed persulfate and perchlorate  to the degradation process mainly in the bulkof the solution. The instantaneous current efficiency (ICE presents anexponential decay indicating that the process was limited by diffusion. Thespecific energy consumed after 5h of the amoxicillin electrolysis was 0.096 kWh COD-1and 0.035 kWh COD-1 in sulfuric acid and in perchloric acidrespectively.

  8. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    Directory of Open Access Journals (Sweden)

    Serguei Chiriaev

    2017-12-01

    Full Text Available Characterization of composite materials with microscopy techniques is an essential route to understanding their properties and degradation mechanisms, though the observation with a suitable type of microscopy is not always possible. In this work, we present proton exchange membrane fuel cell electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM. A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its advantages in surface imaging, which is paramount in studies of the interface morphology of ionomer covered or absorbed catalyst structures in a combination with electrochemical characterization and accelerated stress test. The electrode porosity was found to depend on the ionomer content. The stressed electrodes demonstrated higher porosity in comparison to the unstressed ones on the condition of no external mechanical pressure. Moreover, formation of additional small grains was observed for the electrodes with the low ionomer content, indicating Pt redeposition through Ostwald ripening. Polymer nanofiber structures were found in the crack regions of the catalyst layer, which appear due to the internal stress originated from the solvent evaporation. These fibers have fairly uniform diameters of a few tens of nanometers, and their density increases with the increasing ionomer content in the electrodes. In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles.

  9. An efficient formulation for linear and geometric non-linear membrane elements

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaiee-Pajand

    Full Text Available Utilizing the straingradient notation process and the free formulation, an efficient way of constructing membrane elements will be proposed. This strategy can be utilized for linear and geometric non-linear problems. In the suggested formulation, the optimization constraints of insensitivity to distortion, rotational invariance and not having parasitic shear error are employed. In addition, the equilibrium equations will be established based on some constraints among the strain states. The authors' technique can easily separate the rigid body motions, and those belong to deformational motions. In this article, a novel triangular element, named SST10, is formulated. This element will be used in several plane problems having irregular mesh and complicated geometry with linear and geometrically nonlinear behavior. The numerical outcomes clearly demonstrate the efficiency of the new formulation.

  10. Lanthanum(IlI) PVC membrane electrodes based on 1,3,5-trithiacyclohexane.

    Science.gov (United States)

    Shamsipur, Mojtaba; Yousefi, Mohammad; Hosseini, Morteza; Ganjali, Mohammad Reza

    2002-11-01

    Novel plasticized polymeric membrane (PPME) and membrane-coated graphite (MCGE) electrodes based on 1,3,5-trithiacyclohexane for highly selective determination of La3+ ion have been developed. The electrodes exhibit Nernstian responses over very wide concentration ranges (8.0 x 10(-6)-5.0 x 10(-2) M for PPME and 4.0 x 10(-8)-1.0 x 10(-2) M for MCGE). The limit of detections were 5.0 x 10(-6) and 2.0 x 10(-8) M for PPME and MCGE, respectively. The electrodes possess a fast response time of approximately 10 s and can be used for at least 6 months without observing any deviation. The proposed electrodes revealed excellent selectivities for La3+ over a wide variety of alkali, alkaline earth, transition, and heavy metal ions and could be used in a pH range of 5.0-8.0. The practical utility of the electrodes has been demonstrated by their use as indicator electrodes in the potentiometric titration of La3+ ions with EDTA and in determination of F- in some mouthwash preparations.

  11. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Zhang, Li; Amirkhiz, Babak Shalchi; Tan, Xuehai; Xu, Zhanwei; Wang, Huanlei; Olsen, Brian C.; Holt, Chris M.B.; Mitlin, David [Chemical and Materials Engineering, University of Alberta, Edmonton, AB (Canada); National Institute for Nanotechnology (NINT), NRC, Edmonton, AB (Canada)

    2012-04-15

    Supercapacitor electrode materials are synthesized by carbonizing a common livestock biowaste in the form of chicken eggshell membranes. The carbonized eggshell membrane (CESM) is a three-dimensional macroporous carbon film composed of interwoven connected carbon fibers containing around 10 wt% oxygen and 8 wt% nitrogen. Despite a relatively low surface area of 221 m{sup 2} g{sup -1}, exceptional specific capacitances of 297 F g{sup -1} and 284 F g{sup -1} are achieved in basic and acidic electrolytes, respectively, in a 3-electrode system. Furthermore, the electrodes demonstrate excellent cycling stability: only 3% capacitance fading is observed after 10 000 cycles at a current density of 4 A g{sup -1}. These very attractive electrochemical properties are discussed in the context of the unique structure and chemistry of the material. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Behaviour of polycrystalline fluoride-selective membrane electrode in aqueous-organic media

    International Nuclear Information System (INIS)

    Manakova, L.I.; Bausova, N.V.; Moiseev, V.E.; Bamburov, V.G.; Sivoplyas, A.P.

    1978-01-01

    The behaviour of polycrystalline fluoride membrane electrode (RFME) in aqueous-organic media has been studied when the content of the organic component (methanol, ethanol, acetone, dioxane) has been changed from 20 to 80 mass%. Since LaF 3 is the base of the membrane, its solubility has been studied depending on the organic component content in the solution. It has been established that LaF 3 solubility decreases with increasing content of of the organic component. This explains the effect of the composition of an aqueous-organic solvent on the electrode sensitivity. The electrode sensitivity rises with increasing content of the organic component in an aqueous-organic solvent. A greater decrease of LaF 3 solubility in aqueous-organic solvents as compared with that of LaCl 3 , La(NO 3 ) 3 , and La 2 (SO 4 ) 3 causes a higher selectivity of RFME with respect to the anions under study

  13. Crown bridged thiacalix[4]arenes as cesium-selective ionophores in solvent polymeric membrane electrodes

    International Nuclear Information System (INIS)

    Bereczki, Robert; Csokai, Viktor; Gruen, Alajos; Bitter, Istvan; Toth, Klara

    2006-01-01

    Novel 1,3-alternate thiacalix[4]mono- and biscrown-6 ethers were studied as ionophores in poly(vinyl chloride) membrane electrodes. Their selectivity behavior was characterized with respect to large number of cations, including potential interferents in environmental samples, and the membrane composition was optimized for cesium ion response. Among the ionophores, 1,3-alternate thiacalix[4]mono(crown-6) ether showed, especially high selectivity for cesium over other alkali-metal ions. Transition and heavy metal ions did not interfere seriously with the electrode response, which indicates that the bridging sulfur atoms do not take part in the ion recognition process. The potentiometric cesium responses of all electrodes involved in this study were found close to Nernstian and the detection limits were lower than 10 -7 M. The Cs + /Na + selectivity of the different ionophore-based sensors and the solvent extraction ability of the ligands were interpreted based on the respective constants of complex formation

  14. Carbon film resistor electrode for amperometric determination of acetaminophen in pharmaceutical formulations.

    Science.gov (United States)

    Felix, Fabiana S; Brett, Christopher M A; Angnes, Lúcio

    2007-04-11

    Flow injection analysis (FIA) with amperometric detection was employed for acetaminophen quantification in pharmaceutical formulations using a carbon film resistor electrode. This sensor exhibited sharp and reproducible current peaks for acetaminophen without chemical modification of its surface. A wide linear working range (8.0x10(-7) to 5.0x10(-4) mol L(-1)) in phosphate buffer solution as well as high sensitivity (0.143 A mol(-1) L cm(-2)) and low submicromolar detection limit (1.36x10(-7) mol L(-1)) were achieved. The repeatability (R.S.D. for 10 successive injections of 5.0x10(-6) and 5.0x10(-5) mol L(-1) acetaminophen solutions) was 3.1 and 1.3%, respectively, without any memory effect between injections. The new procedure was applied to the analyses of commercial pharmaceutical products and the results were in good agreement with those obtained utilizing a spectrophotometric method. Consequently, this amperometric method has been shown to be very suitable for quality control analyses and other applications with similar requirements.

  15. Electrochemistry of raloxifene on glassy carbon electrode and its determination in pharmaceutical formulations and human plasma.

    Science.gov (United States)

    Bagheri, Akbar; Hosseini, Hadi

    2012-12-01

    The electrochemical behavior of raloxifene (RLX) on the surface of a glassy carbon electrode (GCE) has been studied by cyclic voltammetry (CV). The CV studies were performed in various supporting electrolytes, wide range of potential scan rates, and pHs. The results showed an adsorption-controlled and quasi-reversible process for the electrochemical reaction of RLX, and a probable redox mechanism was suggested. Under the optimum conditions, differential pulse voltammetry (DPV) was applied for quantitative determination of the RLX in pharmaceutical formulations. The DPV measurements showed that the anodic peak current of the RLX was linear to its concentration in the range of 0.2-50.0μM with a detection limit of 0.0750μM, relative standard deviation (RSD %) below 3.0%, and a good sensitivity. The proposed method was successfully applied for determination of the RLX in pharmaceutical and human plasma samples with a good selectivity and suitable recovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. DNA hybridization on membrane-modified carbon electrodes

    Czech Academy of Sciences Publication Activity Database

    Kouřilová, Alena; Babkina, S. S.; Cahová, Kateřina; Havran, Luděk; Jelen, František; Paleček, Emil; Fojta, Miroslav

    2005-01-01

    Roč. 38, - (2005), s. 2493-2507 ISSN 0003-2719 R&D Projects: GA MPO(CZ) 1H-PK/42; GA AV ČR(CZ) IAA4004402; GA AV ČR(CZ) IBS5004355 Institutional research plan: CEZ:AV0Z50040507 Keywords : DNA hybridization * electrochemical DNA sensor * nitrocellulose membrane Subject RIV: BO - Biophysics Impact factor: 1.036, year: 2005

  17. New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores

    International Nuclear Information System (INIS)

    Khamjumphol, Utisawadee; Watchasit, Sarayut; Suksai, Chomchai; Janrungroatsakul, Wanwisa; Boonchiangma, Suthasinee; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2011-01-01

    Highlights: → New four ionophores having tripodal amine (TPA) unit on anthracene and calixarene. → Synthesis and characterization data were reported. → Incorporated to the plasticized PVC membranes to prepare Cd-ISEs. → Two TPA units on calixarene showed the best selectivity toward Cd 2+ . → Applied for sensing Cd 2+ from the oxidation of CdS QDs solution. - Abstract: Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd 2+ was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd 2+ . The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg -1 ) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4 ± 0.6 mV decade -1 of activity for Cd 2+ ions and a working concentration range of 1.6 x 10 -6 -1.0 x 10 -2 M. The sensor has a fast response time of 10 s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed as a probe for determining Cd 2+ from the oxidation of CdS QDs

  18. New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores

    Energy Technology Data Exchange (ETDEWEB)

    Khamjumphol, Utisawadee [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Watchasit, Sarayut [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Suksai, Chomchai [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131 (Thailand); Janrungroatsakul, Wanwisa [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Boonchiangma, Suthasinee [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Tuntulani, Thawatchai [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Ngeontae, Wittaya, E-mail: wittayange@kku.ac.th [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2011-10-17

    Highlights: {yields} New four ionophores having tripodal amine (TPA) unit on anthracene and calixarene. {yields} Synthesis and characterization data were reported. {yields} Incorporated to the plasticized PVC membranes to prepare Cd-ISEs. {yields} Two TPA units on calixarene showed the best selectivity toward Cd{sup 2+}. {yields} Applied for sensing Cd{sup 2+} from the oxidation of CdS QDs solution. - Abstract: Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd{sup 2+} was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd{sup 2+}. The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg{sup -1}) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4 {+-} 0.6 mV decade{sup -1} of activity for Cd{sup 2+} ions and a working concentration range of 1.6 x 10{sup -6}-1.0 x 10{sup -2} M. The sensor has a fast response time of 10 s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed

  19. Lanthanide metal complex-based membrane electrodes for sensing of biological amino alcohols

    International Nuclear Information System (INIS)

    Mahajan, Rakesh Kumar; Kaur, Ravneet; Shinoda, Satoshi; Tsukube, Hiroshi

    2008-01-01

    Electrodes selective for amino alcohols were prepared by incorporating lanthanide tris(β-diketonates) in PVC membranes, which formed 1:1 highly coordinated complexes with amino alcohols. Several electrodes gave near-Nernstian slopes for 2-amino-3-methyl-1-butanol in the linear concentration range of 1.0 x 10 -1 to 1.0 x 10 -3 M, while the low detection limits of these electrodes were order of ∼10 -4 M. Although the observed response profiles were significantly dependent on the natures of the targeted amino alcohols, the electrodes exhibited stable potentiometric signals in the pH range of 6-12 in short time period of 20 s. The related monoalcohol, diol, and zwitterionic amino acid substrates gave no response, indicating that the present type of lanthanide tris(β-diketonates) were applicable in potentiometric sensing of amino alcohols

  20. Iodide selective membrane electrodes based on a Molybdenum-Salen as a neutral carrier

    International Nuclear Information System (INIS)

    Ghanei-Motlagh, Masoud; Taher, Mohammad Ali; Ahmadi, Kyoumars; Sheikhshoaie, Iran

    2011-01-01

    A new polymeric membrane electrode (PME) and a coated platinum disk electrode (CPtE) based on Schiff base complex of Mo(VI) as a suitable carrier for I - ion were described. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrodes. The electrodes exhibited a Nernstian slope of 63.0 ± 0.5 (CPtE) and 60.3 ± 0.4 (PME) mV decade -1 in I - ion over a wide concentration range from 7.9 x 10 -7 to 1.0 x 10 -1 M for CPtE and 9.1 x 10 -6 to 1.0 x 10 -1 M I - for PME. The potentiometric response of the electrodes was independent of the pH of the test solution in the pH range 2.0-8.5 with a fast response time ( - . → The sensors have a wide concentration range with a fast response time. → Efforts have been made to improve the selectivity with the use of CPtE.

  1. Improvement of interface property for membrane electrode assembly in fuel cell

    International Nuclear Information System (INIS)

    Fujii, K.; Sato, Y.; Kakigi, T.; Matsuura, A.; Mitani, N.; Muto, F.; Li Jingye; Miura, T.; Oshima, A.; Washio, M.

    2006-01-01

    Membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFC) is consisted of proton exchange membrane (PEM), binder and Pt/C electrodes. In our previous work, partial-fluorinated sulfonic acid membranes were synthesized for PEMs using pre-EB grafting method. In the fuel cell (FC) operation, the dispersion of per-fluorinated sulfonic acid such as Nafion (DuPont de Nemours LTD.) was used for binder material. So, it is found that the trouble on conditions at three phase interface would occur at high temperature FC operation due to the differences of thermal properties. Thus, the control of interface property is important. In this study, in order to improve the interface properties, proton exchange membrane was synthesized from poly (tetrafluoroethylene-co-perfluoroalkylvinylether) (PFA), and then the obtained sulfonated PFA (s-PFA) was applied for binder material. PFA membranes were grafted in liquid styrene after EB irradiation under nitrogen atmosphere, and then sulfonated by chlorosulfonic acid solutions. The s-PFA membranes were milled to the powder in the mortar, and the average diameter was about 13 μm. S-PFA / Nafion blend dispersion was prepared by s-PFA mixed with Nafion dispersion with various ratios. MEAs were fabricated by using obtained binders, s-PFA membranes and Pt / C electrodes, followed by hot pressing at 110 degree C and at 8 MPa during 3 min. The properties of MEAs were measured by electrochemical analyses. In consequence, ion conductivities in MEA using obtained binders were about 1.3 times higher than those using Nafion dispersion. And, both power densities at 500 mA/cm 2 and maximum power densities were 1.1 times higher than those of Nafion dispersion. These are due to the improvement of the proton transfer at interface. (authors)

  2. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer

    International Nuclear Information System (INIS)

    Park, Eun Rang; Chung, Yeon Joon; Hwang, Sun Woo

    2012-01-01

    New conducting polymers containing heterocyclic rings with carbazole, ethylene dioxythiophene (EDOT) and benzobisthiazole were synthesized and the characterized by using organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industrial fields owing to their wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room-temperature vulcanizing (RTV)-type silicone rubber (SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based ion-selective membranes (ISMs) (2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted their application. Herein, we demonstrate a new method to reduce the membrane resistance via addition of a new conducting polymer into the SR-based ISMs.

  3. Synthesis of modified polymer inclusion membranes for photo-electrodeposition of cadmium using polarized electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yahia Cherif, Asma [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Arous, Omar, E-mail: omararous@yahoo.fr [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Center of Research in Physical and Chemical Analysis CRAPC, BP 248 Algiers, RP 16004, Algiers (Algeria); Amara, Mourad [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Omeiri, Said [Center of Research in Physical and Chemical Analysis CRAPC, BP 248 Algiers, RP 16004, Algiers (Algeria); Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Kerdjoudj, Hacene [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Trari, Mohamed [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Homogeneous PIM membranes containing water soluble polymers have been obtained under new experimental conditions. Black-Right-Pointing-Pointer Photoelectrodeposition of 'Cd' has been carried out using WO{sub 3} and CuFeO{sub 2} as electrode. Black-Right-Pointing-Pointer Using both photo-polarized electrodes enhances transference of cadmium compared to one. Black-Right-Pointing-Pointer Membrane with poly-phosphoric acid (PPA) give a rise of transferred amount of Cd. - Abstract: In this work, we have developed a novel class of polymeric inclusion membranes (PIMs) for the cations separation. The membrane is made up of cellulose triacetate modified by poly-electrolytes (poly-phosphoric acid, polyvinyl pyrolidone, polyacrylic acid, polyvinyl alcohol and poly-anetholsulfonic acid) using 2-hydroxy-5-dodecylbenzaldehyde incorporated into the polymer as carrier and tris ethyl hexyl phosphate or glycerine as plasticizers. Different PIMs are synthesized and characterized by the Fourier transform infrared, X-ray diffraction, thermal analysis and scanning electron microscopy. The influence of the membrane nature is studied using supports with different physical characteristics (porosity, thickness, hydrophobia). As application, the transport of Cd{sup 2+} using PIMs coupled with photo-electrodes is investigated. The photo-catalytic results indicate that the combined system p-CuFeO{sub 2}/membrane/n-WO{sub 3} enhances considerably the electrons transfer toward the delafossite CuFeO{sub 2}. The position of the conduction band of CuFeO{sub 2} is looked to be the key issue for the photo electrochemical Cd{sup 2+} reduction.

  4. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: Micro-structure effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Fuel Cell Dynamics and Diagnostics Laboratory, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Research and Development Division, Hyundai Motor Company, Yongin 446-912 (Korea); Mench, M.M. [Fuel Cell Dynamics and Diagnostics Laboratory, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2007-11-22

    The objective of this work is to investigate physical damage of polymer electrolyte fuel cell (PEFC) materials subjected to freeze/thaw cycling. Effects of membrane electrode assembly micro-structures (catalyst layer cracking, membrane thickness, and membrane reinforcement) and diffusion media with micro-porous layers were analyzed by comparing scanning electron microscopy images of freeze/thaw cycled samples (-40 C/70 C) with those of virgin material and thermal cycled samples without freezing (5 C/70 C). Ex situ testing performed in this study has revealed a strong direction for the material choices in the PEFC and confirmed the previous computational model in the literature [S. He, M.M. Mench, J. Electrochem. Soc., 153 (2006) A1724-A1731; S. He, S.H. Kim, M.M. Mench, J. Electrochem. Soc., in press]. Specifically, the membrane electrode assemblies were found to be a source of water that can damage the catalyst layers under freeze/thaw conditions. Damage was found to occur almost exclusively under the channel, and not under the land (the graphite that touches the diffusion media). Conceptually, the best material to mitigate freeze-damage is a crack free virgin catalyst layer on a reinforced membrane that is as thin as possible, protected by a stiff diffusion media. (author)

  5. High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode.

    Science.gov (United States)

    Kim, Sang Moon; Ahn, Chi-Yeong; Cho, Yong-Hun; Kim, Sungjun; Hwang, Wonchan; Jang, Segeun; Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo

    2016-05-23

    We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.

  6. Liquid membrane ion-selective electrodes for potentiometric dosage of coper and nickel

    Directory of Open Access Journals (Sweden)

    MARIA PLENICEANY

    2005-02-01

    Full Text Available This paper presents experimental and theoretical data regarding the preparation and characterization of three liquid-membrane electrodes, which have not been mentioned in the specialized literature so far. The active substances, the solutions of which in nitrobenzene formed the membranes on a graphite rod, are simple complex combinations of Cu(II and Ni(II ions with an organic ligand belonging to the Schiff base class: N-[2-thienylmethilidene]-2-aminoethanol (TNAHE. The Cu2+ -selective and Ni2+ -selective electrodes were used to determine the copper and nickel ions in aqueous solutions, both by direct potentiometry and by potentiometric titration with EDTA. They were also used for the determination of Cu2+ and Ni2+ ions in industrial waters by direct potentiometry.

  7. Microscopy studies on pronton exchange membrane fuel cell electrodes with different ionomer contents

    DEFF Research Database (Denmark)

    Ma, Shuang; Solterbeck, Claus Henning; Odgaard, Madeleine

    2009-01-01

    of the electrode was well displayed in the topography and phase images. The particle and pore size (Z) distributions showed the most frequent values at 30-40 nm and 20-30 nm, respectively. The particle size corresponds to the size of the carbon support for the platinum catalyst. Catalyst agglomeration was observed......Proton Exchange Membrane (PEM) fuel cell electrodes with different ionomer contents were studied with various microscopic techniques. The morphology and surface potential were examined by Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM), respectively. The particulate nature...... in high ionomer content electrodes. The surface potential images showed distinct difference to the topography images. The overall grain size was seen to increase, the pore volume to decrease, the surface roughness to decrease, and the surface potential variation to increase with the increase of ionomer...

  8. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes

    International Nuclear Information System (INIS)

    Fanjul-Bolado, Pablo; Lamas-Ardisana, Pedro Jose; Hernandez-Santos, David; Costa-Garcia, Agustin

    2009-01-01

    Acetaminophenol or paracetamol is one of the most commonly used analgesics in pharmaceutical formulations. Acetaminophen is electroactive and voltammetric mechanistic studies for the electrode processes of the acetaminophenol/N-acetyl-p-quinoneimine redox system are presented. Carbon nanotubes modified screen-printed electrodes with enhanced electron transfer properties are used for the study of the electrochemical-chemical oxidation mechanism of paracetamol at pH 2.0. Quantitative analysis of paracetamol by using its oxidation process (in a Britton-Robinson buffer solution pH 10.0) at +0.20 V (vs. an Ag pseudoreference electrode) on an untreated screen-printed carbon electrode (SPCE) was carried out. Thus, a cyclic voltammetric based reproducible determination of acetaminophen (R.S.D., 2.2%) in the range 2.5 x 10 -6 M to 1 x 10 -3 M, was obtained. However, when SPCEs are used as amperometric detectors coupled to a flow injection analysis (FIA) system, the detection limit achieved for paracetamol was 1 x 10 -7 M, one order of magnitude lower than that obtained by voltammetric analysis. The repeatability of the amperometric detection with the same SPCE is 2% for 15 successive injections of 10 -5 M acetaminophen and do not present any memory effect. Finally, the applicability of using screen-printed carbon electrodes for the electrochemical detection of paracetamol (i.e. for quality control analysis) was demonstrated by using two commercial pharmaceutical products.

  9. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo [DropSens, S.L., Edificio Severo Ochoa, Campus El Cristo, 33006 Oviedo, Asturias (Spain); Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo, Asturias (Spain); Hernandez-Santos, David [DropSens, S.L., Edificio Severo Ochoa, Campus El Cristo, 33006 Oviedo, Asturias (Spain); Costa-Garcia, Agustin, E-mail: costa@fq.uniovi.es [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo, Asturias (Spain)

    2009-04-13

    Acetaminophenol or paracetamol is one of the most commonly used analgesics in pharmaceutical formulations. Acetaminophen is electroactive and voltammetric mechanistic studies for the electrode processes of the acetaminophenol/N-acetyl-p-quinoneimine redox system are presented. Carbon nanotubes modified screen-printed electrodes with enhanced electron transfer properties are used for the study of the electrochemical-chemical oxidation mechanism of paracetamol at pH 2.0. Quantitative analysis of paracetamol by using its oxidation process (in a Britton-Robinson buffer solution pH 10.0) at +0.20 V (vs. an Ag pseudoreference electrode) on an untreated screen-printed carbon electrode (SPCE) was carried out. Thus, a cyclic voltammetric based reproducible determination of acetaminophen (R.S.D., 2.2%) in the range 2.5 x 10{sup -6} M to 1 x 10{sup -3} M, was obtained. However, when SPCEs are used as amperometric detectors coupled to a flow injection analysis (FIA) system, the detection limit achieved for paracetamol was 1 x 10{sup -7} M, one order of magnitude lower than that obtained by voltammetric analysis. The repeatability of the amperometric detection with the same SPCE is 2% for 15 successive injections of 10{sup -5} M acetaminophen and do not present any memory effect. Finally, the applicability of using screen-printed carbon electrodes for the electrochemical detection of paracetamol (i.e. for quality control analysis) was demonstrated by using two commercial pharmaceutical products.

  10. Modelling porous active layer electrodes of proton exchange membrane fuel cells; Modelisation des couches actives d'electrodes volumiques de piles a combustible a membrane echangeuse de protons

    Energy Technology Data Exchange (ETDEWEB)

    Bultel, Yann

    1997-07-01

    This work focusses on the modeling of mass, charge and heat transfer in the active layers of the volume electrodes of proton exchange membrane fuel cells (PEMFC). A first part describes the structure of fuel cells and the physico-chemical processes taking place at the electrodes. An analysis of the classical models encountered in the literature shows that they all assume that the electro-catalysts is uniformly distributed in a plane or in volume. In a second part, the modeling of mass and charge transport phenomena has been carried out with a numerical calculation software which uses the finite-elements method and which allows to take into consideration the discrete distribution of the catalyst in nano-particulates. The simulations show the limitations of the catalyst use because of the diffusion and ionic ohmic drop both at the electrolyte and particulates scale. In order to improve the modeling of PEMFC fuel cells, the classical models have been modified to consider these local contributions. They require only simple numerical methods, like the finite-differences one. When applied to the oxygen reduction at the cathode or to the hydrogen oxidation at the anode, these models allow to determine the kinetics parameters (exchange current densities and slopes of the Tafel lines) after correction of the active layer diffusion. A modeling of the heat transfers at the active layers scale is proposed. The model takes into account the convective heat transfers between the solid phases and the gas, the electro-osmosis water transfer, and the generation of heat by joule effect and by the electrochemical reactions. Finally, the last chapter presents a study of the reaction mechanisms in the case of porous electrodes using the impedances method. Numerical and analytical models have been developed to calculate the electrode impedances and are applied to the study of oxygen reduction and hydrogen oxidation. (J.S.)

  11. Cerium(III-Selective Membrane Electrode Based on Dibenzo-24-crown-8 as a Neutral Carrier

    Directory of Open Access Journals (Sweden)

    Susheel K. Mittal

    2010-01-01

    Full Text Available Cerium(III-selective membrane electrodes have been prepared using dibenzo-24-crown-8 (DB24C8 as an electroactive material. A membrane having a composition: DB24C8 (4.5%, plasticizer (NPOE, 62.5% and PVC (33% gives the best performance. It works well over a wide Ce(III ion-concentration range of 1x10-5 M to 1x10-1 M with a Nernstian slope of 19.0 mV/decade and a detection limit of 3x10-5 M. It has a fast response time of 20 seconds and has an average lifetime of four months. The internal solution concentration does not have a significant effect on the response of the electrode except for a change in intercept of the calibration curves. The working pH range for Ce(III solutions (1x10-2 M and 1x10-3 M is 3.5-8.0. The proposed sensor shows a good selectivity for cerium(III with respect to alkali, alkaline earth, some transition and rare earth metal ions that are normally present along with cerium in its ores. The proposed sensor was investigated in partially non-aqueous media using acetone, methanol and DMSO mixtures with water. The electrode was further used as an indicator electrode for the potentiometric titration of Ce(III solution against oxalic acid solution.

  12. Electrode-analytical properties of polyvinylchloride membranes based on triple metal-polymeric complexes

    Directory of Open Access Journals (Sweden)

    Katerina V. Matorina

    2015-10-01

    Full Text Available The influence of the nature of the electrode-active substances (EAS, the composition of the external and internal solutions on the formation of the analytical signal of polyvinylchloride (PVC membranes based on associates and triple metal-polymeric complexes (TMPC was established. Dehumidification of synthesized membranes increases with the content of polyvinylpyrrolidone (PVP. The value of the swelling degree is more than two times greater for membranes, which contain as EAS TMPC, relative to membranes based on associates. The value of water absorption of membranes is determined by the nature of EAS. They formed a series of increasing of the swelling degree such as associate < background membrane < TMPC. Swelling of the background membrane is explained by the physical sorption of water molecules on the surface of plasticized membrane. Hydration of PVP macromolecules varies with the introduction of metal ions, macromolecules unit undergoes a conformational transition. PVP macromolecules form tunnels or cavities where complex particles distributed and additional water accumulated through the second coordination layer. Constructed sensors based on TMPC have slope of electrode function equal to 25 mV/pC. Linear dependence of potential on the polymer concentration is observed in the range of 5–7 pC units. Sensors based on associates have slope of the electrode function of 20–25 mV/pC that can be varied depending on the nature of the EAS. Working range is 4–8 pC. Response time of sensor is less than 1 min. The optimal time for conditioning of the synthesized PVC membrane is 24 hours. Potentiometric sensors have been developed for the determination of residual amounts of low molecular PVP which is a food additive E 1201 commonly used for thickening, stabilizing and clarifying of food products. The content of PVP was determined in real objects (apple juice, beer, red wine and cognac with using the polyvinylpyrrolidone sensors (Sr < 0.08. The

  13. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes.

    Science.gov (United States)

    Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok

    2013-05-01

    The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.

  14. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  15. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes

    International Nuclear Information System (INIS)

    Bokoch, Michael P.; Devadoss, Anando; Palencsar, Mariela S.; Burgess, James D.

    2004-01-01

    Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 μM. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 μM for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented

  16. High Performance Platinum Group Metal Free Membrane Electrode Assemblies through Control of Interfacial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton Energy Systems, Wallingford, CT (United States); Capuano, Christopher [Proton Energy Systems, Wallingford, CT (United States); Atanassov, Plamen [Univ. of New Mexico, Albuquerque, NM (United States); Mukerjee, Sanjeev [Northeastern Univ., Boston, MA (United States); Hickner, Michael [Pennsylvania State Univ., University Park, PA (United States)

    2017-11-29

    The quantitative goal of this project was to produce a high-performance anion exchange membrane water electrolyzer (AEM-WE) completely free of platinum group metals (PGMs), which could operate for at least 500 hours with less than 50 microV/hour degradation, at 500 mA/cm2. To achieve this goal, work focused on the optimization of electrocatalyst conductivity, with dispersion and utilization in the membrane electrode assembly (MEA) improved through refinement of deposition techniques. Critical factors were also explored with significant work undertaken by Northeastern University to further understand catalyst-membrane-ionomer interfaces and how they differ from liquid electrolyte. Water management and optimal cell operational parameters were established through the design, fabrication, and test of a new test station at Proton specific for AEM evaluation. Additionally, AEM material stability and robustness at high potentials and gas evolution conditions were advanced at Penn State.

  17. Development of a membrane electrode assembly production process for proton exchange membrane fuel cell (PEMFC) by sieve printing

    International Nuclear Information System (INIS)

    Bonifacio, Rafael Nogueira

    2010-01-01

    Energy is a resource that presents historical trend of growth in demand. Projections indicate that future energy needs will require a massive use of hydrogen as fuel. The use of systems based on the use of proton exchange membrane fuel cell (PEMFC) has features that allow its application for stationary applications, automotive and portable power generation. The use of hydrogen as fuel for PEMFC has the advantage low pollutants' emission, when compared to fossil fuels. For the reactions in a PEMFC is necessary to build membrane electrode assembly (MEA). And the production of MEAs and its materials are relevant to the final cost of kW of power generated by systems of fuel cell. This represent currently a technological and financial barriers to large-scale application of this technology. In this work a process of MEAs fabrication were developed that showed high reproducibility, rapidity and low cost by sieve printing. The process of sieve printing and the ink composition as a precursor to the catalyst layer were developed, which allow the preparation of electrodes for MEAs fabrication with the implementation of the exact catalyst loading, 0.6 milligrams of platinum per square centimeters (mgPt.cm -2 ) suitable for cathodes and 0.4 mgPt.cm -2 for anode in only one application step per electrode. The ink was developed, produced, characterized and used with similar characteristics to ink of sieve printing build for other applications. The MEAs produced had a performance of up to 712 mA.cm -2 by 600 mV to 25 cm 2 MEA area. The MEA cost production for MEAs of 247.86 cm 2 , that can generate 1 kilowatt of energy was estimated to US$ 7,744.14 including cost of equipment, materials and labor. (author)

  18. Development of a pH sensing membrane electrode based on a new calix[4]arene derivative.

    Science.gov (United States)

    Kormalı Ertürün, H Elif; Demirel Özel, Ayça; Sayın, Serkan; Yılmaz, Mustafa; Kılıç, Esma

    2015-01-01

    A new pH sensing poly(vinyl chloride) (PVC) membrane electrode was developed by using recently synthesized 5,17-bis(4-benzylpiperidine-1-yl)methyl-25,26,27,28-tetrahydroxy calix[4]arene as an ionophore. The effects of membrane composition, inner filling solution and conditioning solution on the potential response of the proposed pH sensing membrane electrode were investigated. An optimum membrane composition of 3% ionophore, 67% o-nitrophenyl octyl ether (o-NPOE) as plasticizer, 30% PVC was found. The electrode exhibited a near-Nernstian slope of 58.7±1.1 mV pH(-1) in the pH range 1.9-12.7 at 20±1 °C. It showed good selectivity for H(+) ions in the presence of some cations and anions and a longer lifetime of at least 12 months when compared with the other PVC membrane pH electrodes reported in the literature. Having a wide working pH range, it was not only applied as a potentiometric indicator electrode in various acid-base titrations, but also successfully employed in different real samples. It has good reproducibility and repeatability with a response time of 6-7s. Compared to traditional glass pH electrode, it exhibited excellent potentiometric response after being used in fluoride-containing media. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Polymer membrane electrodes for sensitive potentiometric determination of beta-blockers.

    Science.gov (United States)

    Wassil, Anwar A; Farag, Abd El-Ftaah Bastawy; Moukdad, Fatma A

    2007-01-01

    The construction of PVC matrix-type beta-blockers (sotalol, carvedilol, and betaxolol) ion selective electrodes and their use for direct potentiometry of their respective species are described. The proposed sensors are based on the complex ion associates of beta-blockers with tungstophosphate (TP) and Ammonium Reineckate (Rein) ionophoris in poly vinyl chloride membrane (PVC) with Dioctylphthalate (DOP) plasticizer. The four electrodes (Beta-TP), (Sota-TP), (Carve-TP), and (Cave-Rein) show stable potential response with near Nernstian slope of 50.8, 33.7, 32.35, and 33 mv per decade, range of concentration 10-2-10-7 M beta-blockers. Selectivity coefficients data obtained for 11 different organic and inorganic ions are presented. The electrodes have fast response time (30 and 40 s) and were used over wide range of pH 4.5-8.5. Validation of the method according to the quality assurance standers shows suitability of proposed sensors for use in the quality control assessment of these drugs. The results obtained for the determination of beta-blockers with the proposed electrodes show average recoveries of 100.78% and a mean standard deviation of +/-1.2. The nominal are obtained. The data agree well with those obtained by standard methods.

  20. Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors.

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Snaith, Henry J; Grant, Patrick S

    2016-08-17

    This paper investigates the effect of adding a 450 nm layer based on porous TiO2 at the interface between a 4.5 μm carbon/TiO2 nanoparticle-based electrode and a polymer electrolyte membrane as a route to improve energy storage performance in solid-state supercapacitors. Electrochemical characterization showed that adding the interface layer reduced charge transfer resistance, promoted more efficient ion transfer across the interface, and significantly improved charge/discharge dynamics in a solid-state supercapacitor, resulting in an increased areal capacitance from 45.3 to 111.1 mF cm(-2) per electrode at 0.4 mA cm(-2).

  1. Enantioanalysis of S-deprenyl using enantioselective, potentiometric membrane electrodes based on C60 derivatives

    International Nuclear Information System (INIS)

    Stefan-van Staden, Raluca-Ioana

    2010-01-01

    Enantioselective, potentiometric membrane electrodes based on (1,2-methanofullerene C 60 )-61-carboxylic acid, diethyl (1,2-methanofullerene C 60 )-61-61-dicarboxylate and tert-butyl (1,2-methanofullerene C 60 )-61-carboxylic acid were proposed for the enantioanalysis of S-deprenyl in pharmaceutical compounds. Molecular modeling calculations were performed to prove the reliability of the proposed electrodes. The different characteristics involved in this analysis were explained, namely (i) the stability of each molecule using total energy, hardness and dipole moment, and (ii) the explanation of the mechanism of interaction using intermolecular forces (moderate hydrogen bond interactions), atomic charges and electrostatic potential. Electronic structures as well as molecular interaction have been investigated using Hartree-Fock theory, 3-21G(*) basis set. Stability and feasibility of all the generated structures were supported by their respective energy minima and fundamental frequencies.

  2. Metalophthalocyanine complexes as ion-carriers in membrane-selective electrodes for detection of thiosalicylic acid

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Souri, Ali

    2004-01-01

    The potentiometric response properties of several PVC-based membrane electrodes using phthalocyanine complexes of aluminum (AlPc), nickel (NiPc) and copper (CuPc) as anion carriers, toward thiosalicylic acid (TSA) were investigated. The influences of lipophilic ionic additives (cationic and anionic) and the pH of the buffered solutions were used for the interpretation of the mechanism of the potentiometric response of sensors. The sensitivity, linear range, detection limit, and potentiometric selectivity of the membrane sensors show a considerable dependence on the nature of central metal of the ionophore. The membrane electrodes based on AlPc demonstrate sub-Nernstian responses toward TSA over the range of 0.01 to 1x10 -5 M. In the case of NiPc and CuPc as ionophores and in the presence of trioctylmethyl ammonium (TOMA + ) as a cationic additive, a Nernstian response could be established in a range of 4 orders of magnitudes of TSA concentration (0.01 to 1x10 -6 M). The results of potentiometric investigations revealed that from thermodynamic point of view, the axial coordination of thiosalicylate with the central metal of NiPc and CuPc is more efficient with respect to AlPc. This preference in response to TSA was discussed on the basis of the softness nature of NiPc and CuPc and more affinity for coordination with the thiolate group of thiosalicylate as a soft anion. These potentiometric sensors manifest prominent advantages of high selectivity for TSA over the various inorganic and organic anions, fast response times and micromolar detection limits and can be used over a wide pH range of 4.0-8.0. The prepared electrodes based on NiPc and CuPc were successfully applied in the potentiometric titration of sub-milimolar quantities of Hg 2+ in aqueous solutions and very good recovery results were obtained in these measurements. The results of complexometric studies between Hg 2+ and TSA using electrodes based on NiPc and CuPc as indicator electrodes were compared with

  3. Analytical Formulation of the Electric Field Induced by Electrode Arrays: Towards Automated Dielectrophoretic Cell Sorting

    Directory of Open Access Journals (Sweden)

    Vladimir Gauthier

    2017-08-01

    Full Text Available Dielectrophoresis is defined as the motion of an electrically polarisable particle in a non-uniform electric field. Current dielectrophoretic devices enabling sorting of cells are mostly controlled in open-loop applying a predefined voltage on micro-electrodes. Closed-loop control of these devices would enable to get advanced functionalities and also more robust behavior. Currently, the numerical models of dielectrophoretic force are too complex to be used in real-time closed-loop control. The aim of this paper is to propose a new type of models usable in this framework. We propose an analytical model of the electric field based on Fourier series to compute the dielectrophoretic force produced by parallel electrode arrays. Indeed, this method provides an analytical expression of the electric potential which decouples the geometrical factors (parameter of our system, the voltages applied on electrodes (input of our system, and the position of the cells (output of our system. Considering the Newton laws on each cell, it enables to generate easily a dynamic model of the cell positions (output function of the voltages on electrodes (input. This dynamic model of our system is required to design the future closed-loop control law. The predicted dielectrophoretic forces are compared to a numerical simulation based on finite element model using COMSOL software. The model presented in this paper enables to compute the dielectrophoretic force applied to a cell by an electrode array in a few tenths of milliseconds. This model could be consequently used in future works for closed-loop control of dielectrophoretic devices.

  4. Electrochemically pretreated zeolite-modified carbon-paste electrodes for determination of linuron in an agricultural formulation and water

    International Nuclear Information System (INIS)

    Siara, L.R.; Lima, F. de; Cardoso, C.A.L.; Arruda, G.J.

    2015-01-01

    Highlights: • Cyclic voltammetry, square-wave voltammetry, electrochemical impedance spectroscopic, and scanning electron microscopy were employed. • Kinetic parameters (n, α, k s , and Γ) were calculated. • High sensitivity was observed in the linear concentration range. • Excellent recovery rates were achieved for tap water samples. • The method proved applicable to the determination of linuron in the presence of potential organic and inorganic interferents, none of which affected the results. - Abstract: A simple and inexpensive, yet highly sensitive electrochemical method for quantifying linuron in tap and distilled water and in agricultural formulations was developed using electrochemically pretreated zeolite-modified carbon-paste electrodes (ZMCPEs). Compared with untreated ZMCPEs, the electrochemically pretreated electrodes showed significantly enhanced peak currents for linuron oxidation. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to examine the structure of the zeolite-modified and unmodified carbon-paste electrodes (CPEs). ZMCPEs were electrochemically characterized using cyclic voltammetry, chronocoulometry, square-wave voltammetry, and electrochemical impedance spectroscopy. A mechanism for linuron oxidation on ZMCPE surfaces was proposed. The electrochemical variables taken into account were electrode area, number of transferred electrons, electron transfer coefficient, electrode reaction standard rate constant, surface coverage, and capacitance of the electric double layer. Zeolite was found to have a strong influence on these variables. The electrochemical procedure applied to linuron was developed using electrochemically pretreated ZMCPEs under optimal conditions. Linuron oxidation currents exhibited linear concentration in the 87.36 to 625.72 nmol L −1 range, with a limit of detection of 22.57 nmol L −1 . The proposed electrochemical method was employed to quantify linuron in tap and distilled

  5. Potentiometric Determination of Ketotifen Fumarate in Pharmaceutical Preparations and Urine Using Carbon Paste and PVC Membrane Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Eman Y. Z. Frag

    2011-01-01

    Full Text Available This study compares between unmodified carbon paste (CPE; the paste has no ion pair and polyvinyl chloride (PVC membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF, where sodium tetraphenylborate (NaTPB was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10−7 to 10−2 mol L−1. The electrodes show Nernstian slope value of 52.51±0.20 and 51.51±0.25 mV decade−1 for CPE and PVC membrane electrodes at 30∘C, respectively. The potential is nearly stable over the pH range 3.0–6.0 and 2.0–7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets, and biological fluid (urine. The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97±0.53 and 98.62±0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method.

  6. Potentiometric determination of ketotifen fumarate in pharmaceutical preparations and urine using carbon paste and PVC membrane selective electrodes.

    Science.gov (United States)

    Frag, Eman Y Z; Mohamed, Gehad G; Khalil, Mohamed M; Hwehy, Mohammad M A

    2011-01-01

    This study compares between unmodified carbon paste (CPE; the paste has no ion pair) and polyvinyl chloride (PVC) membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF), where sodium tetraphenylborate (NaTPB) was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10(-7) to 10(-2) mol L(-1). The electrodes show Nernstian slope value of 52.51 ± 0.20 and 51.51 ± 0.25 mV decade(-1) for CPE and PVC membrane electrodes at 30°C, respectively. The potential is nearly stable over the pH range 3.0-6.0 and 2.0-7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets), and biological fluid (urine). The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97 ± 0.53 and 98.62 ± 0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method.

  7. Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness

    Directory of Open Access Journals (Sweden)

    Viljar Palmre

    2014-04-01

    Full Text Available In this study, we attempt to improve the electromechanical performance of ionic polymer–metal composites (IPMCs by developing high surface area Pd-Pt electrodes and tailoring the ionomer membrane thickness. With proper electroless plating techniques, a high dispersion of palladium particles is achieved deep in the ionomer membrane, thereby increasing notably the interfacial surface area of electrodes. The membrane thickness is increased using 0.5 and 1 mm thick ionomer films. For comparison, IPMCs with the same ionomer membranes, but conventional Pt electrodes, are also prepared and studied. The electromechanical, mechanoelectrical, electrochemical and mechanical properties of different IPMCs are characterized and discussed. Scanning electron microscopy-energy dispersive X-ray (SEM-EDS is used to investigate the distribution of deposited electrode metals in the cross section of Pd-Pt IPMCs. Our experiments demonstrate that IPMCs assembled with millimeter thick ionomer membranes and newly developed Pd-Pt electrodes are superior in mechanoelectrical transduction, and show significantly higher blocking force compared to conventional type of IPMCs. The blocking forces of more than 0.3 N were measured at 4V DC input, exceeding the force output of typical Nafion® 117-based Pt IPMCs more than two orders of magnitude. The newly designed Pd-Pt IPMCs can be useful in more demanding applications, e.g., in biomimetic underwater robotics, where high stress and drag forces are encountered.

  8. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung

    2016-01-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high......-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries...

  9. Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 (India); Kannan, A.M. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2009-09-05

    A membrane electrode assembly (MEA) was designed by incorporating an interlayer between the catalyst layer and the gas diffusion layer (GDL) to improve the low relative humidity (RH) performance of proton exchange membrane fuel cells (PEMFCs). On the top of the micro-porous layer of the GDL, a thin layer of doped polyaniline (PANI) was deposited to retain moisture content in order to maintain the electrolyte moist, especially when the fuel cell is working at lower RH conditions, which is typical for automotive applications. The surface morphology and wetting angle characteristics of the GDLs coated with doped PANI samples were examined using FESEM and Goniometer, respectively. The surface modified GDLs fabricated into MEAs were evaluated in single cell PEMFC between 50 and 100% RH conditions using H{sub 2} and O{sub 2} as reactants at ambient pressure. It was observed that the MEA with camphor sulfonic acid doped PANI interlayer showed an excellent fuel cell performance at all RH conditions including that at 50% at 80 C using H{sub 2} and O{sub 2}. (author)

  10. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Choe, Seunghoe; Yoo, Sung Jong; Kim, Jin Young; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Lee, So Young; Sung, Yung-Eun; Park, Hyun S.; Jang, Jong Hyun

    2017-04-01

    To improve the cell performance for alkaline anion exchange membrane water electrolysis (AEMWE), the effects of the amount of polytetrafluoroethylene (PTFE) non-ionomeric binder in the anode and the hot-pressing conditions during the fabrication of the membrane electrode assemblies (MEAs) on cell performances are studied. The electrochemical impedance data indicates that hot-pressing at 50 °C for 1 min during MEA construction can reduce the polarization resistance of AEMWE by ∼12%, and increase the initial water electrolysis current density at 1.8 V (from 195 to 243 mA cm-2). The electrochemical polarization and impedance results also suggest that the AEMWE performance is significantly affected by the content of PTFE binder in the anode electrode, and the optimal content is found to be 9 wt% between 5 and 20 wt%. The AEMWE device fabricated with the optimized parameters exhibits good water splitting performance (299 mA cm-2 at 1.8 V) without noticeable degradation in voltage cycling operations.

  11. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  12. Use of marker ion and cationic surfactant plastic membrane electrode for potentiometric titration of cationic polyelectrolytes.

    Science.gov (United States)

    Masadome, Takashi; Imato, Toshihiko

    2003-07-04

    A plasticized poly (vinyl chloride) (PVC) membrane electrode sensitive to stearyltrimethylammonium (STA) ion is applied to the determination of cationic polyelectrolytes such as poly (diallyldimethylammonium chloride) (Cat-floc) by potentiometric titration, using a potassium poly (vinyl sulfate) (PVSK) solution as a titrant. The end-point of the titration is detected as the potential change of the plasticized PVC membrane electrode caused by decrease in the concentration of STA ion added to the sample solution as a marker ion due to the ion association reaction between the STA ion and PVSK. The effects of the concentration of STA ion, coexisting electrolytes in the sample solution and pH of the sample on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of cationic polyelectrolyte and the end-point volume of the titrant exists in the concentration range from 2x10(-5) to 4x10(-4) N for Cat-floc, glycol chitosan, and methylglycol chitosan.

  13. Label-free and substrate-free potentiometric aptasensing using polycation-sensitive membrane electrodes.

    Science.gov (United States)

    Ding, Jiawang; Chen, Yan; Wang, Xuewei; Qin, Wei

    2012-02-21

    A potentiometric label-free and substrate-free (LFSF) aptasensing strategy which eliminates the labeling, separation, and immobilization steps is described in this paper. An aptamer binds specifically to a target molecule via reaction incubation, which could induce a change in the aptamer conformation from a random coil-like configuration to a rigid folded structure. Such a target binding-induced aptamer conformational change effectively prevents the aptamer from electrostatically interacting with the protamine binding domain. This could either shift the response curve for the potentiometric titration of the aptamer with protamine as monitored by a conventional polycation-sensitive membrane electrode or change the current-dependent potential detected by a protamine-conditioned polycation-sensitive electrode with the pulsed current-driven ion fluxes of protamine across the polymeric membrane. Using adenosine triphosphate (ATP) as a model analyte, the proposed concept offers potentiometric detection of ATP down to the submicromolar concentration range and has been applied to the determination of ATP in HeLa cells. In contrast to the current LFSF aptasensors based on optical detection, the proposed strategy allows the LFSF biosensing of aptamer/target binding events in a homogeneous solution via electrochemical transduction. It is anticipated that the proposed strategy will lay a foundation for development of potentiometric sensors for LFSF aptasensing of a variety of analytes where target binding-induced conformational changes such as the formation of folded structures and the opening of DNA hairpin loops are involved.

  14. Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Yu, Chunmei; Wang, Li; Zhu, Zhenkun; Bao, Ning; Gu, Haiying

    2014-01-01

    We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (k s ) of Hb in RBCs is 0.42 s −1 , and <1.13 s −1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode. (author)

  15. Poly(vinyl chloride) membrane alkali metal ion-selective electrodes based on crystalline synthetic zeolite of the Faujasite type

    International Nuclear Information System (INIS)

    Aghai, H.; Giahi, M.; Arvand Barmehi, M.

    2002-01-01

    Potentiometric electrodes based on the incorporation of zeolite particle in to poly (vinyl chloride) (pvc) membranes are described. The electrodes characteristics are evaluated regarding the response towards alkali ions. Pvc membranes plasticised with dibutyl phthalate and without lipophilic additives (co-exchanger) were used throughout this study. The electrode exhibits a Nernst ion response over the alkali metal cations concentration a range of 1.0x10 - 4 - 1.0 x 10 1 M with a slop of 57.0 ± 0.9 mV per decade of concentration a working ph range (3.0- 9.0) and a fast response time (≤15 c). The selective coefficients for cesium ion as test species with respect to alkaline earth, ammonium and some heavy metal ions were determined. Zeolite-PVC electrodes were applied to the determination of ionic surfactant

  16. A four-diode full-wave ionic current rectifier based on bipolar membranes: overcoming the limit of electrode capacity.

    Science.gov (United States)

    Gabrielsson, Erik O; Janson, Per; Tybrandt, Klas; Simon, Daniel T; Berggren, Magnus

    2014-08-13

    Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of more efficient and cheaper MEA's for PEM fuel cells; Membrane-electrode-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yde Andersen, S. (IRD Fuel Cell A/S, Svendborg (Denmark)); Nilsson, M.S. (Danish Power System Aps, Charlottenlund (Denmark)); Siu, A.; Plackett, D. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Dansk Polymer Center, Roskilde (Denmark)); Li, Q. (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark))

    2008-06-15

    The project covered 5 main areas: 1) polymer and membranes; 2) electrocatalysts; 3) gas diffusion electrodes; 4) MEAs; and 5) evaluation techniques. For the polymers, by purification of monomers and optimizing parameters, high molecular weight polybenzimidazoles have been synthesized in batches of 50 g with good reproducibility. Based on the polymer, two types of new membranes have been prepared. One is the cross-linked (covalently and acid-base) PBI blend membranes. The blend membranes were systematically characterized and show excellent properties such as very high acid doping levels, conductivity, mechanical strength and durability. The other type is composite membranes based on PBI and nanoclay. Using the modified nanoclay, good dispersion and transparent composite membranes have been achieved. For catalyst preparation, the carbon supports have been modified with thermal treatment. Improved corrosion resistance was achieved with little sacrificing of the catalytic activity. High Pt loading catalysts were prepared, based on which high performance gas diffusion electrodes were fabricated. The performance target of both cathode and anode was achieved, as evaluated by the PTFE half cell tests. New gas diffusion layer (GDL) materials have been developed and tested in different MEA configurations. Significant performance improvement has been achieved with also potential to reduce the cost. Techniques for applying micro porous layers and catalyst layers have been optimized, including tape casting, spraying, and catalyst-coated membrane (CCM). Using the developed membranes and gas diffusion electrodes, membrane-electrode assemblies (MEAs) were fabricated for both single cell and stack tests. Selection of sealing materials and design of integrated gaskets have been made for both low and high temperature MEAs. Parameters for hot-pressing such as temperature, pressure and duration were systematically studied. 44 MEAs with an active area of 256 cm{sup 2} have been prepared

  18. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    Science.gov (United States)

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  19. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier

    International Nuclear Information System (INIS)

    Singh, A.K.; Jain, A.K.; Mehtab, Sameena

    2007-01-01

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2 x 10 -7 to 1.0 x 10 -2 M (detection limit 5.5 x 10 -8 M) with a Nernstian slope of 19.7 mV decade -1 of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb 3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples

  20. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier.

    Science.gov (United States)

    Singh, A K; Jain, A K; Mehtab, Sameena

    2007-08-06

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2x10(-7) to 1.0x10(-2) M (detection limit 5.5x10(-8) M) with a Nernstian slope of 19.7 mV decade(-1) of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.

  1. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)], E-mail: akscyfcy@iitr.ernet.in; Jain, A.K.; Mehtab, Sameena [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2007-08-10

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2 x 10{sup -7} to 1.0 x 10{sup -2} M (detection limit 5.5 x 10{sup -8} M) with a Nernstian slope of 19.7 mV decade{sup -1} of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb{sup 3+} ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.

  2. Importance of Electrode Hot-Pressing Conditions for the Catalyst Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Larsen, Mikkel Juul

    2015-01-01

    The catalyst performance in a proton exchange membrane fuel cell (PEMFC) depends on not only the choice of materials, but also on the electrode structure and in particular on the interface between the components. In this work, we demonstrate that the hot-pressing conditions used during electrode...... lamination have a great influence on the catalyst properties of a low-temperature PEMFC, especially on its durability. Lamination pressure, temperature and duration were systematically studied in relation to the electrochemical surface area, platinum dissolution, platinum particle size and electrode surface...

  3. Potentiometric determination of moxifloxacin in some pharmaceutical formulation using PVC membrane sensors.

    Science.gov (United States)

    Hefnawy, Mohammed M; Homoda, Atef M; Abounassif, Mohammed A; Alanazi, Amer M; Al-Majed, Abdulrahaman; Mostafa, Gamal A

    2014-01-01

    The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 × 10(-2) - 4.0 × 10(-6), 1 × 10(-2) - 5.0 × 10(-6), 1 × 10(-2) - 5.0 × 10(-6) M), with detection limits of 3 × 10(-6), 4 × 10(-6) and 4.0 × 10(-6) M for sensor 1, 2 and 3, respectively over a pH range of 6.0 - 9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 μg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6% and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2 and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.

  4. Optimization of polymeric triiodide membrane electrode based on clozapine-triiodide ion-pair using experimental design.

    Science.gov (United States)

    Farhadi, Khalil; Bahram, Morteza; Shokatynia, Donya; Salehiyan, Floria

    2008-07-15

    Central composite design (CCD) and response surface methodology (RSM) were developed as experimental strategies for modeling and optimization of the influence of some variables on the performance of a new PVC membrane triiodide ion-selective electrode. This triiodide sensor is based on triiodide-clozapine ion-pair complexation. PVC, plasticizers, ion-pair amounts and pH were investigated as four variables to build a model to achieve the best Nernstian slope (59.9 mV) as response. The electrode is prepared by incorporating the ion-exchanger in PVC matrix plasticized with 2-nitrophenyl octal ether, which is directly coated on the surface of a graphite electrode. The influence of foreign ions on the electrode performance was also investigated. The optimized membranes demonstrate Nernstian response for triiodide ions over a wide linear range from 5.0 x 10(-6) to 1.0 x 10(-2)mol L(-1) with a limit of detection 2.0 x 10(-6) mol L(-1) at 25 degrees C. The electrodes could be used over a wide pH range 4-8, and have the advantages of easy to prepare, good selectivity and fast response time, long lifetime (over 3 months) and small interferences from hydrogen ion. The proposed electrode was successfully used as indicator electrode in potentiometric titration of triiodide ions and ascorbic acid.

  5. The Effect of Scala Tympani Morphology on Basilar Membrane Contact With a Straight Electrode Array: A Human Temporal Bone Study.

    Science.gov (United States)

    Verberne, Juul; Risi, Frank; Campbell, Luke; Chambers, Scott; O'Leary, Stephen

    2017-01-01

    Scala tympani morphology influences the insertion dynamics and intra-scalar position of straight electrode arrays. Hearing preservation is the goal of cochlear implantation with current thin straight electrode arrays. These hug the lateral wall, facilitating full, atraumatic insertions. However, most studies still report some postoperative hearing loss. This study explores the influence of scala tympani morphology on array position relative to the basilar membrane and its possible contribution to postoperative hearing loss. Twenty-six fresh-frozen human temporal bones implanted with a straight electrode array were three-dimensionally reconstructed from micro-photographic histological sections. Insertion depth and the proximity between the array and basilar membrane were recorded. Lateral wall shape was quantified as a curvature ratio. Insertion depths ranged from 233 to 470 degrees. The mean first point of contact between the array and basilar membrane was 185 degrees; arrays tended to remain in contact with the membrane after first contacting it. Eighty-nine and 93% of arrays that reached the upper basal (>240-360 degrees) and second (>360-720 degrees) turns respectively contacted the basilar membrane in these regions. Scalar wall curvature ratio decreased significantly (the wall became steeper) from the basal to second turns. This shift correlated with a reduced distance between the array and basilar membrane. Scala tympani morphology influences the insertion dynamics and intra-scalar position of a straight electrode array. In addition to gross trauma of cochlear structures, contact between the array and basilar membrane and how this impacts membrane function should be considered in hearing preservation cases.

  6. Improving the Response of Copper(II) Selective PVC Membrane Electrode by Modification of N2S2 Donor Ligand.

    Science.gov (United States)

    Brinić, Slobodan; Buzuk, Marijo; Generalić, Eni; Bralić, Marija

    2010-06-01

    S,S'-bis(2-aminophenyl)ethanebis(thioate), (APhET), is reported as N2S2 ligand which form chelate with copper of high stability as compared to the other metals. Two modification of APhET, simpler 1,2-di-(o-aminophenylthio)ethane (DAPhTE), and the complex one 1,2-di-(o-salicylaldiminophenylthio)ethane (SAPhTE), were examined as the active material for copper(II) ion selective PVC membrane electrodes, and observed results are correlated. The obtained results with DAPhTE based electrodes show that only coordination abilities of ligand are insufficient for preparing the efficient membrane material. On the other hand, the results that are achieved with electrodes based on SAPhTE actuate interaction of ligand with polymer membrane matrix and necessity of ionophore immobilization in membrane. Optimized SAPhTE based membrane electrode has a linear range down to 10-6 mol L-1, with slope of 27.0 mV per decade, very rapid response time (under 5 seconds) and detection limit of 5.1 × 10-7 mol L-1. Such electrode is suitable for determination of copper(II) in analytical measurements by direct potentiometry and in potentiometric titrations, within pH between 2 and 7. The electrode is selective for copper(II) ions over a large number of metal ions, with the exception on Hg2+ ion when is present in concentrations above 2 × 10-5 mol L-1.

  7. Computation of potentials from current electrodes in cylindrically stratified media: A stable, rescaled semi-analytical formulation

    Science.gov (United States)

    Moon, Haksu; Teixeira, Fernando L.; Donderici, Burkay

    2015-01-01

    We present an efficient and robust semi-analytical formulation to compute the electric potential due to arbitrary-located point electrodes in three-dimensional cylindrically stratified media, where the radial thickness and the medium resistivity of each cylindrical layer can vary by many orders of magnitude. A basic roadblock for robust potential computations in such scenarios is the poor scaling of modified-Bessel functions used for computation of the semi-analytical solution, for extreme arguments and/or orders. To accommodate this, we construct a set of rescaled versions of modified-Bessel functions, which avoids underflows and overflows in finite precision arithmetic, and minimizes round-off errors. In addition, several extrapolation methods are applied and compared to expedite the numerical evaluation of the (otherwise slowly convergent) associated Sommerfeld-type integrals. The proposed algorithm is verified in a number of scenarios relevant to geophysical exploration, but the general formulation presented is also applicable to other problems governed by Poisson equation such as Newtonian gravity, heat flow, and potential flow in fluid mechanics, involving cylindrically stratified environments.

  8. Final report: Seven-layer membrane electrode assembly - an innovative approach to PEM fuel cell design

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, A.

    2005-07-01

    Costs of materials and fabrication, rather than appropriateness of technology, are the major barriers to the sales of fuel cells. With the objective of reducing costs, potential alternative component materials for (a) the fluid flow plate (FFP) and (b) the gas diffusion layers were investigated. The concept of a 7-layer membrane electrode assembly (MEA), in which components are bonded into a unitised module, was also studied. The advantages of the bonded cell, and the flow field design, are expounded. Low-cost carbon particle composites were developed for the FFPs. The modular 7-layer MEA has an order of magnitude saving over current materials. Overall, the study has led to a greater volumetric power output, lower costs and greater reliability. The work was carried out by Morgan Group Technology Limited and funded by the DTI.

  9. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    Science.gov (United States)

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation.

    Science.gov (United States)

    Jewell, Eifion; Philip, Bruce; Greenwood, Peter

    2016-06-27

    Printed carbon graphite materials are the primary common component in the majority of screen printed sensors. Screen printing allows a scalable manufacturing solution, accelerating the means by which novel sensing materials can make the transition from laboratory material to commercial product. A common bottleneck in any thick film printing process is the controlled drying of the carbon paste material. A study has been undertaken which examines the interaction between material solvent, printed film conductivity and process consistency. The study illustrates that it is possible to reduce the solvent boiling point to significantly increase process productivity while maintaining process consistency. The lower boiling point solvent also has a beneficial effect on the conductivity of the film, reducing the sheet resistance. It is proposed that this is a result of greater film stressing increasing charge percolation through greater inter particle contact. Simulations of material performance and drying illustrate that a multi layered printing provides a more time efficient manufacturing method. The findings have implications for the volume manufacturing of the carbon sensor electrodes but also have implications for other applications where conductive carbon is used, such as electrical circuits and photovoltaic devices.

  11. Characterization on glow-discharge-treated cellulose acetate membrane surfaces for single-layer enzyme electrode studies

    Czech Academy of Sciences Publication Activity Database

    Biederman, H.; Boyaci, I. H.; Bílková, P.; Slavinská, D.; Mutlu, S.; Zemek, Josef; Trchová, M.; Klimovič, J.; Mutlu, M.

    2001-01-01

    Roč. 81, - (2001), s. 1341-1352 ISSN 0021-8995 Institutional research plan: CEZ:AV0Z1010914 Keywords : cellulose acetate membrane * plasma polymerization * surface treatment * enzyme electrodes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.992, year: 2001

  12. Effect of the Phase Volume Ratio on the Potential of a Liquid-Membrane Ion-Selective Electrode

    Czech Academy of Sciences Publication Activity Database

    Samec, Zdeněk; Girault, H. H.

    2004-01-01

    Roč. 76, č. 14 (2004), s. 4150-4155 ISSN 0003-2700 R&D Projects: GA MŠk ME 502 Institutional research plan: CEZ:AV0Z4040901 Keywords : liquit-membrane * ion-selective electrode * two.phase liquid system Subject RIV: CG - Electrochemistry Impact factor: 5.450, year: 2004

  13. Impedance Analysis of the Conditioning of PBI–Based Electrode Membrane Assemblies for High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Vang, Jakob Rabjerg; Andreasen, Søren Juhl

    2013-01-01

    This work analyses the conditioning of single fuel cell assemblies based on different membrane electrode assembly (MEA) types, produced by different methods. The analysis was done by means of electrochemical impedance spectroscopy, and the changes in the fitted resistances of the all the tested...

  14. Stuides on a Pb2+-selective electrode with a macrocyclic liquid membrane. Potentiometric determination of Pb2+ ions

    Directory of Open Access Journals (Sweden)

    MARIAN ISVORANU

    2006-12-01

    Full Text Available This paper presents experimental and theoretical data regarding the design, characterization and analytical applications of a non-expensive, liquid-membrane ion-selective electrode for Pb2+ ions. The membrane is a solution of the active complex formed by Pb2+ ions with dibenzo-18-crown-6-ionophore (DB-[18]-C-6 extracted in propylene carbonate (PC. The sucessful application of the developed electrode for the determination of Pb2+ ions in aqueos solution samples by direct potentiometry and potentiometric titration is presented. For the presented analytical results, there are insignificant systematic errors between the direct potentiometric method with the developed ion-selective electrode and atomic absorption spectrometry.

  15. Microscopic characterizations of membrane electrode assemblies prepared under different hot-pressing conditions

    International Nuclear Information System (INIS)

    Liang, Z.X.; Zhao, T.S.; Xu, C.; Xu, J.B.

    2007-01-01

    The durability of the membrane electrode assembly (MEA) for direct methanol fuel cells (DMFCs) is one of the most critical issues to be addressed before widespread commercialization of the DMFC technology. In this work, we investigated the effect of the hot-pressing duration on the performance and durability of the MEA prepared by hot-pressing technique. It was found that the 60-min hot pressing at 135 deg. C under the pressure of 4.0 MPa yielded a significantly improved MEA durability than did the 3-min hot pressing (a typical duration in practice) under the same condition, but no substantial difference was found in the cell performance of the MEAs prepared with the two different hot-pressing durations. The reason why the hot-pressing duration had no significant effect on cell performance is explained based on X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) characterizations of the changes in the physiochemical properties of MEAs and their constituent components, including the anode, cathode and Nafion membrane, before and after hot pressing with different durations

  16. Functionalized Nanoporous Track Etched {beta}-PVDF Membrane Electrodes for Lead (II) Determination by Square Wave Anodic Stripping Voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Bessbousse, H [Laboratoire des Solides Irradies, CEA-CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Nadhakumar, I [School of Chemistry, University of Southampton, University Road, Southampton S017 1BJ (United Kingdom); Decker, M; Clochard, M -C; Wade, T L [Laboratoire des Solides Irradies, CEA-CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Barsbay, M [Hacettepe University, Department of Chemistry, Polymer Chemistry Division, 06800 Beytepe Ankara (Turkey)

    2012-09-15

    Track etched functionalized nanoporous {beta}-PVDF membrane electrodes, or functionalized membrane electrodes (FME), are thin-layer cells made from poly(acrylic acid) (PAA) functionalized nanoporous {beta}-poly(vinylidene fluoride) ({beta}-PVDF) membranes with thin Au films sputtered on each side as electrodes. The Au film is thin enough that the pores of the membranes are not completely covered. The PAA functionalization is specifically localised in the walls of the nanoporous {beta}-PVDF membrane by grafting. The PAA is a cation exchange polymer that adsorbs metal ions, such as Pb{sup 2+}, from aqueous solutions concentrating the ions into the membrane. After a time the FME is transferred to an electrochemical cell for analysis. A negative potential is applied to the Au film of the FME for a set time to reduce the adsorbed ions onto the Au film working electrode. The other metalized side of the FME functions as a counter electrode. Finally, square-wave anodic stripping voltammetry (SW-ASV) is performed on the FME to determine the metal ion concentrations in the original solution. The calibration curve of charge versus log concentration has a Temkin isotherm form. The FME membranes are 9 {mu}m thick and have 40 nm diameter pores with a density of 10{sup 10} pores/cm{sup 2}. This high pore density provides a large capacity for ion adsorption. Au ingress in the pores during sputtering forms a random array of nanoelectrodes. Like surface modified electrodes for adsorptive stripping voltammetry, the pre-concentration step for the FME is performed at open circuit. The zero current intercept of the calibration for Pb{sup 2+} is 0.13 ppb ({mu}g/L) and a detection limit of 0.050 ppb based on 3S/N from blank measurements. Voltammetry (CV) and chronoapmerometry (CA) were used to characterize the system. The apparent diffusion coefficient (D) for Pb{sup 2+} in the PAA functionalized pores was determined to be 2.44 x 10{sup -7} cm{sup 2}/s and the partition coefficient (p

  17. Membrane/mediator-free rechargeable enzymatic biofuel cell utilizing graphene/single-wall carbon nanotube cogel electrodes.

    Science.gov (United States)

    Campbell, Alan S; Jeong, Yeon Joo; Geier, Steven M; Koepsel, Richard R; Russell, Alan J; Islam, Mohammad F

    2015-02-25

    Enzymatic biofuel cells (EBFCs) utilize enzymes to convert chemical energy present in renewable biofuels into electrical energy and have shown much promise in the continuous powering of implantable devices. Currently, however, EBFCs are greatly limited in terms of power and operational stability with a majority of reported improvements requiring the inclusion of potentially toxic and unstable electron transfer mediators or multicompartment systems separated by a semipermeable membrane resulting in complicated setups. We report on the development of a simple, membrane/mediator-free EBFC utilizing novel electrodes of graphene and single-wall carbon nanotube cogel. These cogel electrodes had large surface area (∼ 800 m(2) g(-1)) that enabled high enzyme loading, large porosity for unhindered glucose transport and moderate electrical conductivity (∼ 0.2 S cm(-1)) for efficient charge collection. Glucose oxidase and bilirubin oxidase were physically adsorbed onto these electrodes to form anodes and cathodes, respectively, and the EBFC produced power densities up to 0.19 mW cm(-2) that correlated to 0.65 mW mL(-1) or 140 mW g(-1) of GOX with an open circuit voltage of 0.61 V. Further, the electrodes were rejuvenated by a simple wash and reloading procedure. We postulate these porous and ultrahigh surface area electrodes will be useful for biosensing applications, and will allow reuse of EBFCs.

  18. Potentiometric determination of trypsin using a polymeric membrane polycation-sensitive electrode based on current-controlled reagent delivery.

    Science.gov (United States)

    Chen, Yan; Ding, Jiawang; Qin, Wei

    2012-12-01

    A potentiometric biosensor for the determination of trypsin is described based on current-controlled reagent delivery. A polymeric membrane protamine-sensitive electrode with dinonylnaphthalene sulfonate as cation exchanger is used for in situ generation of protamine. Diffusion of protamine across the polymeric membrane can be controlled precisely by applying an external current. The hydrolysis catalyzed with trypsin in sample solution decreases the concentration of free protamine released at the sample-membrane interface and facilitates the stripping of protamine out of the membrane surface via the ion-exchange process with sodium ions from the sample solution, thus decreasing the membrane potential, by which the protease can be sensed potentiometrically. The influences of anodic current amplitude, current pulse duration and protamine concentration in the inner filling solution on the membrane potential response have been studied. Under optimum conditions, the proposed protamine-sensitive electrode is useful for continuous and reversible detection of trypsin over the concentration range of 0.5-5UmL(-1) with a detection limit of 0.3UmL(-1). The proposed detection strategy provides a rapid and reagentless way for the detection of protease activities and offers great potential in the homogeneous immunoassays using proteases as labels. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle

    International Nuclear Information System (INIS)

    Singh, Ashok K.; Singh, Prerna

    2010-01-01

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L 1 ) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate- 1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L 2 ) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L 2 :PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L 2 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3 x 10 -8 mol L -1 for PME and 7.7 x 10 -9 mol L -1 for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples.

  20. Cyclic voltammetric investigations of microstructured and platinum-covered glassy carbon electrodes in contact with a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G G; Veziridis, Z; Staub, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Freimuth, H [Inst. fuer Mikrotechnik Mainz IMM, Mainz (Germany)

    1997-06-01

    Model gas diffusion electrodes were prepared by microstructuring glassy carbon surfaces with high aspect ratios and subsequent deposition of platinum. These electrodes were characterized by hydrogen under-potential deposition (H-upd) in contact with a polymer electrolyte membrane employing cyclic voltametry. H-upd was found on platinum areas not in direct contact to the solid electrolyte, as long as a continuous platinum-path existed. A carbon surface between platinum acts as barrier for H-upd. (author) 4 figs., 5 refs.

  1. Construction and performance characteristics of polymeric membrane electrode and coated graphite electrode for the selective determination of Fe³⁺ ion.

    Science.gov (United States)

    Bandi, Koteswara Rao; Singh, Ashok K; Upadhyay, Anjali

    2014-03-01

    Novel Fe(3+) ion-selective polymeric membrane electrodes (PMEs) were prepared using three different ionophores N-(4-(dimethylamino)benzylidene)thiazol-2-amine [L1], 5-((3-methylthiophene-2yl) methyleneamino)-1,3,4-thiadiazole-2-thiol [L2] and N-((3-methylthiophene-2yl)methylene)thiazol-2-amine [L3] and their potentiometric characteristics were discussed. Effect of various plasticizers and anion excluders was also studied in detail and improved performance was observed. The best performance was obtained for the membrane electrode having a composition of L2:PVC:o-NPOE:NaTPB as 3:38.5:56:2.5 (w/w; mg). A coated graphite electrode (CGE) was also prepared with the same composition and compared. CGE is found to perform better as it shows a wider working concentration range of 8.3×10(-8)-1.0×10(-1)molL(-1), a lower detection limit of 2.3×10(-8)molL(-1), and a near Nernstian slope of 19.5 ± 0.4 mVdecade(-1) of activity with a response time of 10s. The CGE shows a shelf life of 6 weeks and in view of high selectivity, it can be used to quantify Fe(3+) ion in water, soil, vegetable and medicinal plants. It can also be used as an indicator electrode in potentiometric titration of EDTA with Fe(3+) ion. Copyright © 2013. Published by Elsevier B.V.

  2. Tris(2-ethylhexyl)phosphine oxide as an effective solvent mediator for constructing a serotonin-selective membrane electrode

    International Nuclear Information System (INIS)

    Ueda, Keisuke; Yonemoto, Rei; Komagoe, Keiko; Masuda, Kazufumi; Hanioka, Nobumitsu; Narimatsu, Shizuo; Katsu, Takashi

    2006-01-01

    A series of solvent mediators containing a phosphoryl (P=O) group, such as tris(2-ethylhexyl)phosphate, bis(2-ethylhexyl) 2-ethylhexylphosphonate, 2-ethylhexyl bis(2-ethylhexyl)phosphinate, and tris(2-ethylhexyl)phosphine oxide, were used to construct serotonin-selective membrane electrodes. We found that replacing the alkoxy groups attached to phosphorus atoms in P=O groups with alkyl groups strengthened the response of the electrode to serotonin, suppressing remarkably interference from inorganic cations, such as Na + . Thus, an electrode combining tris(2-ethylhexyl)phosphine oxide with an ion-exchanger, sodium tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate, gave a detection limit of 9 x 10 -6 M with a slope of 55.2 mV per concentration decade in physiological saline containing 150 mM NaCl and 10 mM NaH 2 PO 4 /Na 2 HPO 4 (pH 7.4). This is the best detection limit of any serotonin-selective electrode developed to date. The selectivity of this electrode for serotonin was over 10 3 times that for inorganic cations, such as Na + and K + , and lipophilic quaternary ammonium ions, such as acetylcholine and (C 2 H 5 ) 4 N + . Using the electrode, we measured the amount of serotonin released from platelets and found that the results agreed well with those obtained by a conventional fluorimetric assay of serotonin

  3. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications through the Fundamental Understanding of Membrane and MEA Degradation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Randal L. [DuPont

    2013-10-31

    The Project focused on mitigation of degradation processes on membrane electrode assemblies. The approach was to develop a model to improve understanding of the mechanisms, and to use it to focus mitigation strategies. The detailed effects of various accelerated stress tests (ASTs) were evaluated to determine the best subset to use in model development. A combination of ASTs developed by the Fuel Cell Commercialization Conference of Japan and the Fuel Cell Tech Team were selected for use. The ASTs were compared by measuring effects on performance, running in-situ diagnostics, and performing microscopic analyses of the membrane electrode assemblies after the stress tests were complete. Nissan ran FCCJ AST protocols and performed in situ and ex-situ electrochemical testing. DuPont ran FCTT and USFCC AST protocols, performed scanning and transmission electron microscopy and ran in-situ electrochemical tests. Other ex-situ testing was performed by IIT, along with much of the data analysis and model development. These tests were then modified to generate time-dependent data of the degradation mechanisms. Three different catalyst types and four membrane variants were then used to generate data for a theoretically-based degradation model. An important part of the approach was to use commercially available materials in the electrodes and membranes made in scalable semiworks processes rather than lab-based materials. This constraint ensured all materials would be practicable for full-scale testing. The initial model for the electrode layer was tested for internal consistency and agreement with the data. A Java-based computer application was developed to analyze the time-dependent AST data using polarization curves with four different cathode gas feeds and generate model parameters. Data showed very good reproducibility and good consistency as cathode catalyst loadings were varied. At the point of termination of the project, a basic electrode model was in hand with several

  4. Optimization of a new polymeric chromium (III) membrane electrode based on methyl violet by using experimental design.

    Science.gov (United States)

    Kazemi, Sayed Yahya; Hamidi, Akram sadat; Asanjarani, Neda; Zolgharnein, Javad

    2010-06-15

    Plackett-Burman and Box-Behnken designs were applied as experimental design strategies to screen and optimize the influence of membrane ingredients on the electrode performance. A new poly(vinyl chloride) membrane sensor for Cr(III) based on methyl violet as an ionophore was planned. The major variables to find a model for achieving the best Nernstian slope as response were: PVC, plasticizers, methyl violet, KpClTPB, pH, conditioning time and internal solution concentration. Plackett-Burman design was used to screen the main factors and Box-Behnken response surface was led to find a model for optimizing the response. The optimized membrane electrode shows a Nernstian slope for chromium (III) ions over a wide linear range from 1.99x10(-6) to 3.16x10(-2)molL(-1) and a slope of 19.5+/-0.1mVdecade(-1) of activity. It would be successfully applied in the pH range from 3.5 to 6.5 with detection limit of 1.77x10(-6)molL(-1) (0.092mgL(-1)). The response time of the sensor is about 8s and the membrane can be used for more than 6 weeks without any deviation. The relative standard deviations (R.S.D.) for six replicate the measurements of 1.0x10(-4) and 1.0x10(-3)molL(-1) of Cr(III) were 3.2 and 3%, respectively. The electrode revealed comparatively good selectivity with respect to many cations including alkali earth, transition and heavy metal ions. The electrode was successfully used as an indicator in the potentiometric titration of Cr(III) with EDTA and was also applied to the direct determination chromium (III) content of spiked water and soil samples.

  5. Manufacturing and characterisation of electrode membrane assemblies for low temperature fuel cells; Herstellung und Charakterisierung von Membran-Elektroden-Einheiten fuer Niedertemperatur Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kaz, Till

    2008-08-22

    The high cost for a Polymer electrolyte Fuel Cell (PEFC) System is still a barrier for commercial breakthrough, which cannot be compensated by the advantages of being pollution free, or nearly noiseless. The most effective way of saving costs is to reduce expensive materials, because the material costs only for the Membrane Electrode Assemblies (MEAs) is more than 70% of the total costs of a PEFC Stack. Within the MEA a main part of the costs is due to the catalyst. It is one of the main goals to decrease the catalyst loading by simultaneously increasing the performance or keeping it at least constant. Because in most electrodes only 20-50% of the catalyst in the electrodes is used, enlarging the electrochemical active area is one of the key problems of the PEFC. For being electrochemical active, the catalyst must be reachable for the gases, he must have a good ionic conductivity to the membrane and he must be attached to the Gas Diffusion Layer (GDL) by electron conductivity. In literature often an inferior ionic contact of the catalyst to the membrane is responsible for the low catalyst utilization. In the first part of the work, model electrodes with different kinds of catalysts and different amounts of electrolyte in the electrodes were investigated to explore the interrelationship between platinum and electrolyte content. Three different catalysts, unsupported Pt- black, 60 wt.% Pt carbon-supported and 20 wt.% Pt carbon-supported with an addition of Nafion powder of 0%, 20%, 40%, 60 wt.%, and 80 wt.% were used. The electrodes were prepared by spraying the electrode material with the DLR dry spray technique directly onto the membrane and then rolling them while hot. Because material solutions were not used, the structure of the electrodes are determinable and predictable. Numerous different in- and ex-situ characterization methods like impedance spectroscopy, U-i characteristic, cyclic voltammetry, proton conductivity measurements, half-cell measurements and

  6. Study of the ion-channel behavior on glassy carbon electrode supported bilayer lipid membranes stimulated by perchlorate anion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiquan; Shi, Jun; Huang, Weimin, E-mail: huangwm@jlu.edu.cn

    2015-10-01

    In this paper, a kind of didodecyldimethylammonium bromide (DDAB) layer membranes was supported on a glassy carbon electrode (GCE). We studied the ion channel behavior of the supported bilayer lipid membrane by scanning electrochemical microscopy (SCEM) in tris(2,2′-bipyridine) ruthenium(II) solution. Perchlorate anion was used as a presence of stimulus and ruthenium(II) complex cations as the probing ions for the measurement of SECM, the lipid membrane channel was opened and exhibited the behavior of distinct SECM positive feedback curve. The channel was in a closed state in the absence of perchlorate anions while reflected the behavior of SECM negative feedback curve. The rates of electron transfer reaction in the lipid membranes surface were detected and it was dependant on the potential of SECM. - Highlights: • The rates of electron transfer reaction in the lipid membranes surface were detected. • Dynamic investigations of ion-channel behavior of supported bilayer lipid membranes by scanning electrochemical microscopy • A novel way to explore the interaction between molecules and supported bilayer lipid membranes.

  7. Manufacturing of Low Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Colin [W. L. Gore & Associates Inc., Newark, DE (United States)

    2017-05-23

    Over the past 20 years significant progress in membrane-electrode assembly (MEA) technology development for polymer electrolyte fuel cells (PEMFCs) has resulted in the PEMFC technology approaching a commercial reality for transportation applications. However, there remain two primary technical challenges to be addressed in the MEA. First and foremost is meeting the automotive cost targets: Producing a fuel cell stack cost competitive with today’s internal combustion engine. In addition to the material cost, MEA (and other components) and stack assembly production methods must be amenable for use in low cost, high speed, automotive assembly line. One impediment to this latter goal is that stack components must currently go through a long and tedious conditioning procedure before they produce optimal power. This so-called “break-in” can take many hours, and can involve quite complex voltage, temperature and/or pressure steps. These break-in procedures must be simplified and the time required reduced if fuel cells are to become a viable automotive engine. The second challenge is to achieve the durability targets in real-world automotive duty cycle operations. Significant improvements in cost, break-in time, and durability for the key component of fuel cell stacks, MEAs were achieved in this project. Advanced modeling was used to guide design of the new MEA to maximize performance and durability. A new, innovative process and manufacturing approach utilizing direct in-line coating using scalable, cost-competitive, continuous high volume 3-layer rolled-good manufacturing processes was developed and validated by single cell and short stack testing. In addition, the direct coating methods employed were shown to reduce the cost for sacrificial films. Furthermore, Gore has demonstrated a 10 µm reinforced membrane that is used in the new low-cost process and can meet automotive power density and durability targets. Across a wide range of operating conditions, the

  8. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle.

    Science.gov (United States)

    Singh, Ashok K; Singh, Prerna

    2010-08-24

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L(1)) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L(2)) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L(2):PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L(2) was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3x10(-8) mol L(-1) for PME and 7.7x10(-9) mol L(-1) for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples. 2010 Elsevier B.V. All rights reserved.

  9. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok K., E-mail: akscyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India); Singh, Prerna [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India)

    2010-08-24

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L{sub 1}) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate- 1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L{sub 2}) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L{sub 2}:PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L{sub 2} was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3 x 10{sup -8} mol L{sup -1} for PME and 7.7 x 10{sup -9} mol L{sup -1} for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples.

  10. A highly sensitive PVC membrane iodide electrode based on complexes of mercury(II) as neutral carrier.

    Science.gov (United States)

    Chai, Y-Q; Yuan, R; Xu, L; Xu, W-J; Dai, J-Y; Jiang, F

    2004-09-01

    A novel solvent polymeric membrane electrode based on bis(1,3,4-thiadiazole) complexes of Hg(II) is described which has excellent selectivity and sensitivity toward iodide ion. The electrode, containing 1,4-bis(5-methyl-1,3,4-thiadiazole-2-yl-thio)butanemercury(II) [Hg(II)BMTB(NO3)4], has a Nernstian potentiometric response from 2.0 x 10(-8) to 2.0 x 10(-2) mol L(-1) with a detection limit of 8.0 x 10(-9) mol L(-1) and a slope of -59.0+/-0.5 mV/decade in 0.01 mol L(-1) phosphate buffer solution (pH 3.0, 20 degrees C). The selectivity sequence observed is iodide>bromide>thiocyanate>nitrite>nitrate>chloride>perchlorate>acetate>sulfate. The selectivity behavior is discussed in terms of the UV-Vis spectrum, and the process of transfer of iodide across the membrane interface is investigated by use of the AC impedance technique. The electrode was successfully applied to the determination of iodide in Jialing River and Spring in Jinyun Mountains, with satisfactory results.

  11. X-ray Photoelectron Spectroscopy Investigation on Electrochemical Degradation of Proton Exchange Membrane Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Skou, Eivind Morten

    2015-01-01

    X-ray photoelectron spectroscopy studies were systematically carried out on the electrodes before and after the electrochemical stress tests in an aqueous electrolyte at 20 °C and 70 °C. The electrodes have different ionomer structures (no ionomer, only ionomer, physically mixed ionomer and hot p...

  12. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    Science.gov (United States)

    Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.

    2012-07-24

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  13. Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell.

    Science.gov (United States)

    Yoshida, Kenta; Xudong, Zhang; Bright, Alexander N; Saitoh, Koh; Tanaka, Nobuo

    2013-02-15

    Spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied to study the catalytic activity of platinum/amorphous carbon electrode catalysts in proton-exchange-membrane fuel cells (PEMFCs). These electrode catalysts were characterized in different atmospheres, such as hydrogen and air, and a conventional high vacuum of 10(-5) Pa. A high-speed charge coupled device camera was used to capture real-time movies to dynamically study the diffusion and reconstruction of nanoparticles with an information transfer down to 0.1 nm, a time resolution below 0.2 s and an acceleration voltage of 300 kV. With such high spatial and time resolution, AC-ETEM permits the visualization of surface-atom behaviour that dominates the coalescence and surface-reconstruction processes of the nanoparticles. To contribute to the development of robust PEMFC platinum/amorphous carbon electrode catalysts, the change in the specific surface area of platinum particles was evaluated in hydrogen and air atmospheres. The deactivation of such catalysts during cycle operation is a serious problem that must be resolved for the practical use of PEMFCs in real vehicles. In this paper, the mechanism for the deactivation of platinum/amorphous carbon electrode catalysts is discussed using the decay rate of the specific surface area of platinum particles, measured first in a vacuum and then in hydrogen and air atmospheres for comparison.

  14. Gas diffusion electrode based on electrospun Pani/CNF nanofibers hybrid for proton exchange membrane fuel cells (PEMFC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Hezarjaribi, M.; Jahanshahi, M., E-mail: mjahan@nit.ac.ir; Rahimpour, A.; Yaldagard, M.

    2014-03-01

    A novel hybrid system has been investigated based on polyaniline/carbon nanofiber (Pani/CNF) electrospun nanofibers for modification of gas diffusion electrode (GDE) in proton exchange membrane fuel cells (PEMFC). Pani/CNF hybrid nanofibers were synthesized directly on carbon paper by electrospinning method. For preparation of catalyst ink, 20 wt.% Pt/C electrocatalyst with a platinum loading of 0.4 mg cm{sup −2} was prepared by polyol technique. SEM studies applied for morphological study of the modified GDE with hybrid nanofibers. This technique indicated that the electrospun nanofibers had a diameter of roughly 100 nm. XRD patterns also showed that the average size of Pt nanoparticles was about 2 nm. Subsequently, comparison of the hybrid electrode electrochemical behavior and 20 wt.% Pt/C commercial one was studied by cyclic voltammetry experiment. The electrochemical data indicated that the hybrid electrode exhibited higher current density (about 15 mA cm{sup −2}) and ESA (160 m{sup 2} gr{sup −1}) than commercial Pt/C with amount of about 10 mA cm{sup −2} and 114 m{sup 2} gr{sup −1}, respectively. The results herein demonstrate that Pani/CNF nanofibers can be used as a good alternative electrode material for PEMFCs.

  15. Fabrication of copper-selective PVC membrane electrode based on newly synthesized copper complex of Schiff base as carrier

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2016-09-01

    Full Text Available The newly synthesized copper(II complex of Schiff base p-hydroxyacetophenone semicarbazone was explored as neutral ionophore for the fabrication of poly(vinylchloride (PVC based membrane electrode selective to Cu(II ions. The electrode shows a Nernstian slope of 29.8 ± 0.3 mV/decade with improved linear range of 1.8 × 10−7 to 1.0 × 10−1 M, comparatively lower detection limit 5.7 × 10−8 M between pH range of 2.0–8.0, giving a relatively fast response within 5s and can be used for at least 16 weeks without any divergence in potential. The selectivity coefficient was calculated using the fixed interference method (FIM. The electrode can also be used in partially non-aqueous media having up to 25% (v/v methanol, ethanol or acetone content with no significant change in the value of slope or working concentration range. It was successfully applied for the direct determination of copper content in water and tea samples with satisfactory results. The electrode has been used in the potentiometric titration of Cu2+ with EDTA.

  16. Determining the platinum loading and distribution of industrial scale polymer electrolyte membrane fuel cell electrodes using low energy X-ray imaging

    DEFF Research Database (Denmark)

    Holst, T.; Vassiliev, Anton; Kerr, R.

    2014-01-01

    Low energy X-ray imaging (E <25 keV) is herein demonstrated to be a rapid, effective and non-destructive tool for the quantitative determination of the platinum loading and distribution over the entire geometric area of gas diffusion electrodes for polymer electrolyte membrane fuel cells. A linea...... of electrodes fabricated using an industrial spraying process. This technique proves to be an attractive option for the electrode performance study, the process optimization and quality control of electrode fabrication on an industrial scale....

  17. Reduction of methanol crossover by thin cracked metal barriers at the interface between membrane and electrode in direct methanol fuel cells

    Science.gov (United States)

    Kim, Sungjun; Jang, Segeun; Kim, Sang Moon; Ahn, Chi-Yeong; Hwang, Wonchan; Cho, Yong-Hun; Sung, Yung-Eun; Choi, Mansoo

    2017-09-01

    This work reports the successful reduction in methanol crossover by creating a thin cracked metal barrier at the interface between a Nafion® membrane and an electrode in direct methanol fuel cells (DMFCs). The cracks are generated by simple mechanical stretching of a metal deposited Nafion® membrane as a result of the elastic mismatch between the two attached surfaces. The cracked metal barriers with varying strains (∼0.5 and ∼1.0) are investigated and successfully incorporated into the DMFC. Remarkably, the membrane electrode assembly with the thin metal crack exhibits comparable ohmic resistance as well as reduction of methanol crossover, which enhanced the device performance.

  18. Application of membrane LaF3 electrode in the determination of stability constants of Uranyl Fluoride complex in solution

    International Nuclear Information System (INIS)

    Muzakky; Iswani GS; Mintolo

    1996-01-01

    A membrane electrode LaF 3 has been applied in the determination of uranyl fluoride complex stability constant in solution. The determination is based on the detection of free F ion in solution as a result of hydrolysis reaction (process) of uranyl ions into the uranyl hydroxide form at low pH. The experiment results showed that there was no effect of ammonium carbonate 2 M titran, flow rate on the electrode response. The F release is optimum at pH 1. The free F ion in solution is calculated from the standard curve at pH 1, after the fluoride concentration at the same pH has been corrected. Using the plot of average number of ligand binding (n) versus minus log of free ligand (-log F) the value of β1 = 4.4, β2 = 7.48, β3=9.73, and β4 = 11.67

  19. The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes

    International Nuclear Information System (INIS)

    Kjelstrup, S.; Vie, P.J.S.; Akyalcin, L.; Zefaniya, P.; Pharoah, J.G.; Burheim, O.S.

    2013-01-01

    Highlights: • The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements. • When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with hydrogen electrodes. • At Soret equilibrium for water in the fuel cell, most of the entropy of the fuel cell reaction is generated at the anode. -- Abstract: We report that the Seebeck coefficient of a Nafion membrane cell with hydrogen electrodes saturated with water vapour, at 1 bar hydrogen pressure and 340 K, is equal to 670 ± 50 μV/K, meaning that the entropy change of the anode reaction at reversible conditions (67 J/(K mol)) corresponds to a reversible heat release of 22 kJ/mol. The transported entropy of protons across the membrane at Soret equilibrium was estimated from this value to 1 ± 5 J/(K mol). The results were supported by the expected variation in the Seebeck coefficient with the hydrogen pressure. We report also the temperature difference of the electrodes, when passing electric current through the cell, and find that the anode is heated (a Peltier heat effect), giving qualitative support to the result for the Seebeck coefficient. The Seebeck and Peltier effects are related by non-equilibrium thermodynamics theory, and the Peltier heat of the cathode in the fuel cell is calculated for steady state conditions to 6 ± 2 kJ/mol at 340 K. The division of the reversible heat release between the anode and the cathode, can be expected to vary with the current density, as the magnitude of the current density can have a big impact on water transport and water concentration profile

  20. High-performance membrane electrode assembly with multi-functional Pt/SnO2eSiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions

    CSIR Research Space (South Africa)

    Hou, S

    2016-06-01

    Full Text Available A novel self-humidifying membrane electrode assembly (MEA) with homemade multifunctional Pt/SnO(sub2)-SiO(sub2)/C as the anode was developed to improve the performance of a proton exchange membrane fuel cell under low humidity. The MEAs' performance...

  1. Electrophysiological performance of a bipolar membrane-coated titanium nitride electrode: a randomized comparison of steroid and nonsteroid lead designs.

    Science.gov (United States)

    Wiegand, U K; Zhdanov, A; Stammwitz, E; Crozier, I; Claessens, R J; Meier, J; Bos, R J; Bode, F; Potratz, J

    1999-06-01

    The aim of this multicenter study was to investigate the performance of a new cardiac pacemaker lead with a titanium nitride cathode coated with a copolymer membrane. In particular, the electrophysiological effect of steroid dissolved in this ion-exchange membrane was evaluated by randomized comparison. Ninety-five patients were randomized either to the 1450 T (n = 51) or the 1451 T ventricular lead (n = 45) and received telemeteral VVI(R) pacemakers with identical diagnostic features. Both leads were bipolar, were passively affixed, and had a porous titanium nitride tip with a surface area of 3.5 mm2. The only difference between the two electrodes was 13 micrograms of dexamethasone added to the 1450 Ts membrane coating. Voltage thresholds (VTH) at pulse durations of 0.25, 0.37, and 0.5 ms, lead impedance, and sensing thresholds were measured at discharge, 2 weeks, 1 month, 3 months, and 6 months after implantation. Mean amplitude and the slew rate from three telemetered intracardiac electrograms, chronaxie-rheobase product, and minimum energy consumption were calculated. After a 6-month follow-up, mean voltage thresholds of 0.65 +/- 0.20 V and 0.63 +/- 0.34 were achieved for the 1450 T lead and 1451 T lead, respectively. As a result, a VTH < 1.0 V was obtained in all patients with 1450 T electrodes and in 97.7% of patients with 1451 T leads after 6 months follow-up. In both electrodes, stable VTH was reached 2 weeks after implantation, and no transient rise in threshold was observed. No differences were observed between the steroid and the nonsteroid group in respect to VTH, chronaxie-rheobase product, minimum energy consumption, and potential amplitude and slew rate. In conclusion, safe and efficient pacing at low pulse amplitudes were achieved with both leads. The tip design, independently of the steroid additive, prevented any energy-consuming increases in the voltage threshold.

  2. Optimization of fuel cell membrane electrode assemblies for transition metal ion-chelating ordered mesoporous carbon cathode catalysts

    Directory of Open Access Journals (Sweden)

    Johanna K. Dombrovskis

    2014-12-01

    Full Text Available Transition metal ion-chelating ordered mesoporous carbon (TM-OMC materials were recently shown to be efficient polymer electrolyte membrane fuel cell (PEMFC catalysts. The structure and properties of these catalysts are largely different from conventional catalyst materials, thus rendering membrane electrode assembly (MEA preparation parameters developed for conventional catalysts not useful for applications of TM-OMC catalysts. This necessitates development of a methodology to incorporate TM-OMC catalysts in the MEA. Here, an efficient method for MEA preparation using TM-OMC catalyst materials for PEMFC is developed including effects of catalyst/ionomer loading and catalyst/ionomer-mixing and application procedures. An optimized protocol for MEA preparation using TM-OMC catalysts is described.

  3. Model-Based Control of a Continuous Coating Line for Proton Exchange Membrane Fuel Cell Electrode Assembly

    Directory of Open Access Journals (Sweden)

    Vikram Devaraj

    2015-01-01

    Full Text Available The most expensive component of a fuel cell is the membrane electrode assembly (MEA, which consists of an ionomer membrane coated with catalyst material. Best-performing MEAs are currently fabricated by depositing and drying liquid catalyst ink on the membrane; however, this process is limited to individual preparation by hand due to the membrane’s rapid water absorption that leads to shape deformation and coating defects. A continuous coating line can reduce the cost and time needed to fabricate the MEA, incentivizing the commercialization and widespread adoption of fuel cells. A pilot-scale membrane coating line was designed for such a task and is described in this paper. Accurate process control is necessary to prevent manufacturing defects from occurring in the coating line. A linear-quadratic-Gaussian (LQG controller was developed based on a physics-based model of the coating process to optimally control the temperature and humidity of the drying zones. The process controller was implemented in the pilot-scale coating line proving effective in preventing defects.

  4. Construction of Tb3+ PVC-MembraneElectrode Based on N,N’-Bis(pyrrolylmethylene-2-aminobenzylamine

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2011-01-01

    Full Text Available In this work, we report as new Tb3+-PVC membrane sensor based on N,N’-bis(pyrrolylmethylene- 2-aminobenzylamine (PMA as a suitable ion carrier. Poly vinylchloride (PVC-based membrane composed of PMA with oleic acid (OA as anionic additives and acetophenone (AP as plasticizing solvent mediators. The Tb3+ sensor exhibits a Nernstian slope of 19.7±0.4 mV per decade over the concentration range of 1.0×10-5 to 1.0×10-2 M and a detection limit of 4.6×10-6 M of Tb3+ ions. The potentiometric response of the sensor is independent of the solution pH in the range of 2.9–8.1. It has a very short response time, in the whole concentration range (∼5 s. The recommended sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, some transition and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Tb(III ions with EDTA. The electrode was also employed for the determination of the fluoride ion in two mouth wash preparations and the determination of Tb3+ ions concentration in mixtures of three different ions.

  5. Determination of Cd2+ in aqueous solution using polyindole-Ce(IV) vanadophosphate conductive nanocomposite ion-selective membrane electrode

    Science.gov (United States)

    Khan, Asif Ali; Quasim Khan, Mohd; Hussain, Rizwan

    2017-09-01

    In the present study an organic-inorganic nanocomposite ion exchanger Polyindole-Ce(IV) vanadophosphate (PIn-CVP) was synthesized via sol-gel process showing excellent ion exchange capacity (IEC‒1.90 meqg-1). The material was characterized by SEM, TEM, XRD, FTIR, and TGA. A heterogeneous ion exchange membrane of PIn-CVP (IEC‒0.90 meqg-1) was also prepared by solution casting method. PIn-CVP shows high electrical conductivity (5.5  ×  10-2 S cm-1) and it is stable up to 120 °C under ambient conditions. Cd2+ selective membrane electrode was fabricated and its linear working range (3.98  ×  10-7 M to 1.0  ×  10-1 M), response time (25 s), Nerstian slope 25.00 mV dec-1 and working pH range (4-7) were calculated. It was employed as an indicator electrode in the potentiometric titration of Cd2+.

  6. Oxygen reduction activities compared in rotating-disk electrode and proton exchange membrane fuel cells for highly active Fe-N-C catalysts

    International Nuclear Information System (INIS)

    Jaouen, F.; Goellner, V.; Lefèvre, M.; Herranz, J.; Proietti, E.; Dodelet, J.P.

    2013-01-01

    In the past three years, two novel synthesis methods for non-precious metal catalysts resulting in a breakthrough of their activity and performance at the cathode of the proton-exchange membrane fuel cell (PEMFC) have been reported by the group of Prof. Dodelet. While the activity of these novel Fe-based catalysts for the oxygen reduction reaction is very high in PEMFC, our preliminary activity measurements with the rotating disk electrode (RDE) technique on one of them showed an activity being a factor 30–100 lower than the one measured in PEMFC at 80 °C. The present work explains to a large extent this huge difference. Two Fe-N-C catalysts synthesized via our novel approaches and one Fe-N-C catalyst synthesized via our classical approach were investigated in RDE and PEMFC. In both systems, the effect of the ink formulation (Nafion-to-catalyst ratio) was investigated. Optimization of the RDE ink formulation explains a factor between 5 and 10 in the two-decade gap mentioned above. Then, the effect of temperature in the RDE system was investigated. An increase from 20 to 80 °C was found to result in a theoretical maximum twofold increase in activity. However, in practice, decreased O 2 solubility with increased temperature cancels this effect. After taking into account these two parameters, a difference in ORR activity between RDE and PEMFC of ca a factor five still remained for one of the two novel Fe-N-C catalysts investigated here. The lower initial activity measured in RDE for this catalyst is shown to be due to the fast adsorption of anions (HSO 4 − ) from the liquid H 2 SO 4 electrolyte on protonated nitrogen atoms (NH + ) found on its surface. The phenomenon of anion adsorption and associated decreased ORR activity also applies to the other novel Fe-N-C catalyst, but is slower and does not immediately occur in RDE.

  7. Performance of Pd on activated carbon as hydrogen electrode with respect to hydrogen yield in a single cell proton exchange membrane (PEM) water electrolyser

    Energy Technology Data Exchange (ETDEWEB)

    Naga Mahesh, K.; Sarada Prasad, J.; Venkateswer Rao, M.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500085 (A.P.) (India); Yerramilli, Anjaneyulu [TLGVRC, JSU Box 18739, Jackson State University, Jackson, MS 32917 - 0939 (United States); Raghunathan Rao, P. [Fuel cell section, Heavy Water Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)

    2009-08-15

    Palladium (Pd) on activated carbon is used as electrocatalyst coated on Nafion 115 membrane as Hydrogen electrode and RuO{sub 2} is coated on other side of membrane used as oxygen electrode. 5 wt% and 10 wt% Pd on activated carbon is prepared as membrane electrode assembly (MEA) and investigated the performance of the same using inhouse prepared 10 cm{sup 2} single cell. The performance of the single cell assembly and the hydrogen yield are reported during electrolysis operation at temperatures 27 C, 45 C and 65 C at 0.1, 0.2, 0.3, 0.4, 0.5 A/cm{sup 2} current densities with respect to voltages. (author)

  8. Formulation of an inhibitor radiopharmaceutical of prostatic antigen of 177Lu-Glu-Nh-CO-Nh-Lys membrane

    International Nuclear Information System (INIS)

    Ortega S, D.

    2015-01-01

    The prostate specific membrane antigen (PSMA) is a zinc metalloenzyme that is expressed on the cell membrane and highly expressed in prostate cancer. Recently, it has been demonstrated that the peptide sequence Glu-Nh-CO-Nh-Lys inhibit PSMA activity through an electrostatic interaction with the Zn. Several theragnostic radiopharmaceuticals with base in 177 Lu have been developed for radiotherapy of specific molecular targets because gamma and beta emissions of the radionuclide (β = 0.498 MeV and γ= 0.133 MeV). However, there is currently no label a formulation for preparing a radiopharmaceutical of 177 Lu-Glu-Nh-CO-Nh-Lys useful treatment of prostate cancer. The aim of this research was to optimize and document the process of production of the radiopharmaceutical 177 Lu-Glu-Nh-CO-Nh-Lys for sanitary registration application before the Comision Federal para la Proteccion contra Riesgos Sanitarios (COFEPRIS). The optimization of the production process was assessed a factorial design of three variables with mixed levels (3 x 3 x 2) where the dependent variable is the radiochemical purity, the analytical method was validated by UV-Vis spectrophotometry. Next, process validation was carried out by labeling 3 lots of the optimized formulation of the radiopharmaceutical (5.55 GBq (2.16 μg) of 177 LuCl 3 , 90 mg peptide PSMA, 50 mg ascorbic acid and 150 μL of acetate buffer 1 M ph 5), long-term stability was performed by high resolution liquid chromatography) to determine its useful shelf life. 3 validation batches were prepared under protocols of Good Manufacturing Practice (GMP) in the Production Plant of Radiopharmaceuticals of the Instituto Nacional de Investigaciones Nucleares (ININ), meet specifications preset by obtaining a sterile and free development of bacterial endotoxin yields of labeled 100% and which retains its quality characteristics radiochemical purity greater than 90% for at least 15 days. (Author)

  9. High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Shao, Zongping; Ran, Ran; Chen, Zhihao; Zeng, Pingying; Gu, Hongxia; Jin, Wanqin; Xu, Nanping [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Nanjing 210009, JiangSu (China)

    2007-06-30

    A double-layer composite electrode based on Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} + Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (BSCF + SDC) and BSCF + SDC + Ag was investigated to be a promising cathode and also anode for the electrochemical oxygen generator based on samaria doped ceria electrolyte. The Ag particles in the second layer were not only the current collector but also the improver for the oxygen adsorption at the electrode. a.c. impedance results indicated that the electrode polarization resistance, as low as 0.0058 {omega} cm{sup 2} was reached at 800 C under air. In oxygen generator cell performance test, the electrode resistance dropped to half of the value at zero current density under an applied current density of 2.34 A cm{sup -2} at 700 C, and on the same conditions the oxygen generator cell was continual working for more than 900 min with a Faradic efficiency of {proportional_to}100%. (author)

  10. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment

    International Nuclear Information System (INIS)

    Ferreira, Rui B.; Falcão, D.S.; Oliveira, V.B.; Pinto, A.M.F.R.

    2017-01-01

    Highlights: • EIS is employed to investigate the MEA design of a PEM fuel cell. • Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied. • MPL increases cell output at low to medium currents but reduces it at high currents. • Better results are obtained when employing a thinner Nafion membrane. • GDL hydrophobic treatment improves the cell performance. - Abstract: In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.

  11. A Cadmium Ion-selective Membrane Electrode Based on Strong Acidic Organic-inorganic Composite Cation-exchanger: Polyaniline Ce(IV Molybdate

    Directory of Open Access Journals (Sweden)

    Syed Ashfaq NABI

    2008-05-01

    Full Text Available A cadmium ion-selective composite cation-exchanger polyaniline Ce(IV molybdate was used as electroactive component for the construction of a ion-selective membrane electrode. The membrane electrode showed a Nerstian response for Cd(II ions over a wide concentration range 5 × 10-6 – 1 × 10-1 with a sub-Nerstian slope of 27 mV per decade change in concentration of cadmium ions. The limit of detection was also ascertained to be 5 × 10-6 M. It has a fast response time 15 s and can be very well utilized for more than three months with out any appreciable divergence in potentials. The optimum pH for the smooth functioning of this electrode was found to be in the Ph range of 2.5 – 7.5. The electrode also showed better selectivity for Cd(II ions over many other interfering ions. The practical utility of membrane electrode was demonstrated by using as indicator electrode for the potentiometric titration of Cd(II with EDTA and determination of cadmium content in drain water.

  12. Development and Application of a Sample Holder for In Situ Gaseous TEM Studies of Membrane Electrode Assemblies for Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Kamino, Takeo; Yaguchi, Toshie; Shimizu, Takahiro

    2017-10-01

    Polymer electrolyte fuel cells hold great potential for stationary and mobile applications due to high power density and low operating temperature. However, the structural changes during electrochemical reactions are not well understood. In this article, we detail the development of the sample holder equipped with gas injectors and electric conductors and its application to a membrane electrode assembly of a polymer electrolyte fuel cell. Hydrogen and oxygen gases were simultaneously sprayed on the surfaces of the anode and cathode catalysts of the membrane electrode assembly sample, respectively, and observation of the structural changes in the catalysts were simultaneously carried out along with measurement of the generated voltages.

  13. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  14. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    Science.gov (United States)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  15. Development of Polybenzimidazole-Based High-Temperature Membrane and Electrode Assemblies for Stationary and Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, John A.

    2008-09-03

    The program began on August 1, 2003 and ended on July 31, 2007. The goal of the project was to optimize a high-temperature polybenzimidazole (PBI) membrane to meet the performance, durability, and cost targets required for stationary fuel cell applications. These targets were identified in the Fuel Cell section (3.4) of DOE’s Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. A membrane that operates at high temperatures is important to the fuel cell industry because it is insensitive to carbon monoxide (a poison to low-temperature fuel cells), and does not require complex water management strategies. Together, these two benefits greatly simplify the fuel cell system. As a result, the high-temperature fuel cell system realizes a cost benefit as the number of components is reduced by nearly 30%. There is also an inherent reliability benefit as components such as humidifiers and pumps for water management are unnecessary. Furthermore, combined heat and power (CHP) systems may be the best solution for a commercial, grid-connected, stationary product that must offer a cost benefit to the end user. For a low-temperature system, the quality of the heat supplied is insufficient to meet consumer needs and comfort requirements, so peak heaters or supplemental boilers are required. The higher operating temperature of PBI technology allows the fuel cell to meet the heat and comfort demand without the additional equipment. Plug Power, working with the Rensselaer Polytechnic Institute (RPI) Polymer Science Laboratory, made significant advances in optimizing the PBI membrane material for operation at temperatures greater than 160oC with a lifetime of 40,000 hours. Supporting hardware such as flow field plates and a novel sealing concept were explored to yield the lower-cost stack assembly and corresponding manufacturing process. Additional work was conducted on acid loss, flow field design and cathode electrode

  16. Voltammetric behavior of amfepramone (diethylpropion) at the hanging mercury drop electrode and its analytical determination in pharmaceutical formulations

    OpenAIRE

    Carvalho, Leandro M. de; Nascimento, Paulo C. do; Bohrer, Denise; Correia, Daniele; Bairros, André V. de; Pomblum, Valdeci J.; Pomblum, Solange G.

    2007-01-01

    This paper describes a systematic study of the voltammetric behavior of amfepramone at the hanging mercury drop electrode (HMDE) by cyclic (CV) and alternating current (AC) voltammetric methods. The studies showed the adsorptive behavior of amfepramone at the HMDE and were performed in H2SO4 0.1 mol L-1 (pH 1.0) and Ringer buffer (pH 11.0) as supporting electrolytes. The linear range for the amfepramone determination by differential pulse voltammetry (DPV) was 0.05 to 2.0 mg L-1 (r = 0.998) i...

  17. Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode.

    Science.gov (United States)

    Ding, Jiawang; Qin, Wei

    2013-09-15

    A simple, general and label-free potentiometric method to measure nuclease activities and oxidative DNA damage in a homogeneous solution using a polycation-sensitive membrane electrode is reported. Protamine, a linear polyionic species, is used as an indicator to report the cleavage of DNA by nucleases such as restriction and nonspecific nucleases, and the damage of DNA induced by hydroxyl radicals. Measurements can be done with a titration mode or a direct detection mode. For the potentiometric titration mode, the enzymatic cleavage dramatically affects the electrostatical interaction between DNA and protamine and thus shifts the response curve for the potentiometric titration of the DNA with protamine. Under the optimized conditions, the enzyme activities can be sensed potentiometrically with detection limits of 2.7×10(-4)U/µL for S1 nuclease, and of 3.9×10(-4)U/µL for DNase I. For the direct detection mode, a biocomplex between protamine and DNA is used as a substrate. The nuclease of interest cleaves the DNA from the protamine/DNA complex into smaller fragments, so that free protamine is generated and can be detected potentiometrically via the polycation-sensitive membrane electrode. Using a direct measurement, the nuclease activities could be rapidly detected with detection limits of 3.2×10(-4)U/µL for S1 nuclease, and of 4.5×10(-4)U/µL for DNase I. Moreover, the proposed potentiometric assays demonstrate the potential applications in the detection of hydroxyl radicals. It is anticipated that the present potentiometric strategy will provide a promising platform for high-throughput screening of nucleases, reactive oxygen species and the drugs with potential inhibition abilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Study and development of membrane electrode assemblies for Proton Exchange Membrane Fuel Cell (PEMFC) with palladium based catalysts

    International Nuclear Information System (INIS)

    Bonifacio, Rafael Nogueira

    2013-01-01

    PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm 2 single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm -2 , showing power densities up to 550 mW.cm -2 and power of 2.2 kW net per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary application

  19. The effect of water uptake gradient in membrane electrode assembly on fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H., E-mail: hajime.phy@gmail.co [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Shiraki, F.; Oshima, Y.; Tatsumi, T.; Yoshikawa, T.; Sasaki, T. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan); Oshima, A. [Institute for Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Washio, M. [Research Institute for Science Engineering, Waseda University, 103, R.J.Shillman Hall, 3-14-9, Okubo, Shinjuku, Tokyo 169-0072 (Japan)

    2011-02-15

    Novel proton exchange membranes (PEMs) with functionally gradient ionic sites were fabricated utilizing low energy electron beam (EB) irradiations. The low energy electron beam irradiation to polymer membranes possessed the property of gradient energy deposition in the membrane thickness direction. In the process of EB grafting of styrene onto base films, selective ranges of the gradient energy deposition were used. Micro FT-IR spectra showed that the simulated energy deposition of EB irradiation to base polymer membranes in the thickness direction corresponded to the amount of styrene grafted onto EB-irradiated films. After sulfonation, a functionally gradient ionic site PEM (gradient-PEM) was prepared, corresponding to EB depth-dose profile. The functionally gradients of ionic sites in the gradient-PEM and flat-PEM were evaluated with XPS and SEM-EDX. The results of XPS and SEM-EDX suggest that the prepared gradient-PEM had a gradient sulfonated acid groups. In addition, the polarization performance of MEA based on gradient-PEM was improved in high current density. It was thought that water uptake gradient could have a function to prevent flooding in the MEA during FC operation. Thus, the functionally gradient-PEMs could be a promising solution to manage the water behavior in MEA.

  20. Reformate tolerant electrocatalysts in solid polymer fuel cell membrane electrode assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, S J; Gunner, A G; Thompsett, D; Hards, G A

    1998-12-31

    The aim of the project was to evaluate a series of platinum group metal catalysts which had previously been identified from a wide range of areas related to carbon monoxide (CO) activation, and to demonstrate superior intrinsic reformate tolerance to current platinum/ruthenium technology as anode catalysts for Proton Exchange Membrane Fuel Cells (PEMFC). (author)

  1. Micro-Membrane Electrode Assembly Design to Precisely Measure the in Situ Activity of Oxygen Reduction Reaction Electrocatalysts for PEMFC.

    Science.gov (United States)

    Long, Zhi; Li, Yankai; Deng, Guangrong; Liu, Changpeng; Ge, Junjie; Ma, Shuhua; Xing, Wei

    2017-06-20

    An in situ micro-MEA technique, which could precisely measure the performance of ORR electrocatalyst using Nafion as electrolyte, was designed and compared with regular thin-film rotating-disk electrode (TFRDE) (0.1 M HClO 4 ) and normal in situ membrane electrode assembly (MEA) tests. Compared to the traditional TFRDE method, the micro-MEA technique makes the acquisition of catalysts' behavior at low potential values easily achieved without being limited by the solubility of O 2 in water. At the same time, it successfully mimics the structure of regular MEAs and obtains similar results to a regular MEA, thus providing a new technique to simply measure the electrode activity without being bothered by complicated fabrication of regular MEA. In order to further understand the importance of in situ measurement, Fe-N-C as a typical oxygen reduction reaction (ORR) free-Pt catalyst was evaluated by TFRDE and micro-MEA. The results show that the half wave potential of Fe-N-C only shifted negatively by -135 mV in comparison with state-of-the-art Pt/C catalysts from TFRDE tests. However, the active site density, mass transfer of O 2 , and the proton transfer conductivity are found to strongly influence the catalyst activity in the micro-MEA, thereby resulting in a much lower limiting current density than Pt/C (8.7 times lower). Hence, it is suggested that the micro-MEA is better in evaluating the in situ ORR performance, where the catalysts are characterized more thoroughly in terms of intrinsic activity, active site density, proton transfer, and mass transfer properties.

  2. Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells

    Science.gov (United States)

    Gyenge, E. L.

    The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damköhler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack.

  3. Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, E.L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2216 Main Mall, Vancouver, BC (Canada V6T 1Z4)

    2005-12-01

    The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damkohler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack. (author)

  4. Application of membrane-selective electrodes for the determination of Tiemonium methylsulphate

    Directory of Open Access Journals (Sweden)

    Lobna A. Hussein

    2017-06-01

    Full Text Available Three ion selective electrodes were developed for the quantification of Tiemonium methylsulphate (TIM. Two of these sensors involve the construction of water insoluble ion-association complexes; namely sensor1 TIM-phosphotungstate (TIM-PT and sensor 2 TIM-Reinecke (TIM-R. Molecular recognition elements have extensive applications in electrochemical sensors with a significant potential for future development thus a third electrode utilizing molecularly imprinted polymer was constructed; sensor 3 TIM-MIP. The proposed sensors showed fast, stable Nernstian responses of 56.4, 56.1and 57.5 mV/decade for sensors 1, 2 and 3, respectively, across a relatively wide TIM concentration range (1 × 10−4 to 1 × 10−2 mol L−1 for sensors 1 and 2 and 1 × 10–5 to 1 × 10–2 mol L−1 for sensor 3 in the pH range of 2–7. Sensor 1 and sensor 2 can be used for five weeks while sensor 3 for 65 days without a significant change in sensitivity. The suggested method was used to determine TIM in dosage forms. No measurable difference was obtained when the result statistically compared with respect to accuracy and precision with reported HPLC method.

  5. Construction and evaluation of As(V) selective electrodes based on iron oxyhydroxide embedded in silica gel membrane

    International Nuclear Information System (INIS)

    Rodriguez, J.A.; Barrado, E.; Vega, M.; Prieto, F.; Lima, J.L.F.C.

    2005-01-01

    Two As(V) selective electrodes (with and without inner reference solution) have been developed using selective membranes based on iron oxyhydroxide embedded on silica gel mixed with ultrapure graphite at a 2/98 (w/w) ratio. The active component of the membrane was synthesised by means of the sol-gel technique and characterized by X-ray and FTIR spectroscopy. This compound shows a great affinity towards As(V) ions adsorbing 408 mg g -1 . Using 1 mol l -1 phosphate buffer (at a 1/1, v/v ratio) to adjust the pH and the ionic strength to 7 and 0.5 mol l -1 , respectively, the calibration curve is linear from 1.0 x 10 -1 to 1.0 x 10 -6 mol l -1 As(V), with a practical detection limit of 4 x 10 -7 mol l -1 (0.03 mg l -1 ) and a slope close to 30 mV decade -1 . The effect of potentially interfering ions was investigated. The accuracy and precision of the procedure have been tested on arsenic-free drinking water samples spiked with known amounts of arsenic and on groundwater samples containing high levels of arsenic. Total arsenic in these samples was determined after oxidation of As(III) with iodine at pH 7. The results of total As were comparable to those generated by ET-AAS

  6. Voltammetric Determination of Meloxicam in Pharmaceutical Formulation and Human Serum at Glassy Carbon Electrode Modified by Cysteic Acid Formed by Electrochemical Oxidation of L-cysteine

    Directory of Open Access Journals (Sweden)

    Xiao Ya Hu

    2005-09-01

    Full Text Available The improvement of electrochemical detection of meloxicam is presented bymodification of a glassy carbon electrode with anionic layer of cysteic acid providingelectrostatic accumulation of the analyte onto the electrode surface. The modificationformed by electrochemical oxidation of L-cysteine was performed by cycling potential incysteine solution. The anodic peak current obtained at 1.088 V (vs. Ag/AgCl byvoltammetry was linearly dependent on the meloxicam concentration in the range of 4.3 ×10-8 ~ 8.5 × 10-6 M in the B-R buffer solution (0.04 M, pH 1.86 with a correlationcoefficient of 0.999. The detection limit (S/N = 3 is 1.5 × 10-9 M. The low-cost modifiedelectrode shows good sensitivity, selectivity and stability and has been applied to thedetermination of meloxicam in pharmaceutical formulation and spiked serum withsatisfactory results. The electrochemical reaction mechanism of meloxicam was discussed.

  7. Localised electrochemical impedance measurements of a polymer electrolyte fuel cell using a reference electrode array to give cathode-specific measurements and examine membrane hydration dynamics

    Science.gov (United States)

    Engebretsen, Erik; Hinds, Gareth; Meyer, Quentin; Mason, Tom; Brightman, Edward; Castanheira, Luis; Shearing, Paul R.; Brett, Daniel J. L.

    2018-04-01

    Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after ∼250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.

  8. Differential pulse voltammetric determination of salbutamol sulfate in syrup pharmaceutical formulation using poly(4-amino-3-hydroxynaphthalene sulfonic acid modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Meareg Amare

    2017-10-01

    Full Text Available A new method for determination of salbutamol sulfate has been developed using poly(4-amino-3-hydroxynaphthalene sulfonic acid/GCE. Cyclic voltammetric investigation of the electrochemical behavior of salbutamol sulfate at the polymer modified glassy carbon unveiled electrocatalytic activity of the modifier towards irreversible oxidation of salbutamol sulfate. Dependence of peak current predominantly on scan rate than on square root of scan rate, and peak potential shift with pH demonstrated that oxidation of salbutamol sulfate at the polymer modified electrode follows adsorption reaction kinetics with proton participation.Under optimized solution and differential pulse voltammetric parameters, the oxidative peak current showed linear dependence on salbutamol sulfate concentration in the range 0.2 to 8 μM with method detection limit (3s/m and determination coefficient (R2 of 6.8 × 10−8 M and 0.99786, respectively. Low method detection limit, relatively wide linear range, and recovery results of spiked standard salbutamol sulfate in syrup samples in the range 96.7–98.9% validated the method for determination of salbutamol sulfate in pharmaceutical formulations.Differential pulse voltammetric analysis of salbutamol sulfate syrup formulation for its salbutamol sulfate content revealed 98.8 to 99.3% of the labeled value confirming the applicability of the developed method for determination of salbutamol sulfate in real samples. Keywords: Electrochemistry, Analytical chemistry

  9. Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes.

    Science.gov (United States)

    Hu, Chengguo; Bai, Xiaoyun; Wang, Yingkai; Jin, Wei; Zhang, Xuan; Hu, Shengshui

    2012-04-17

    A simple approach to the mass production of nanoporous gold electrode arrays on cellulose membranes for electrochemical sensing of oxygen using ionic liquid (IL) electrolytes was established. The approach, combining the inkjet printing of gold nanoparticle (GNP) patterns with the self-catalytic growth of these patterns into conducting layers, can fabricate hundreds of self-designed gold arrays on cellulose membranes within several hours using an inexpensive inkjet printer. The resulting paper-based gold electrode arrays (PGEAs) had several unique properties as thin-film sensor platforms, including good conductivity, excellent flexibility, high integration, and low cost. The porous nature of PGEAs also allowed the addition of electrolytes from the back cellulose membrane side and controllably produced large three-phase electrolyte/electrode/gas interfaces at the front electrode side. A novel paper-based solid-state electrochemical oxygen (O(2)) sensor was therefore developed using an IL electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The sensor looked like a piece of paper but possessed high sensitivity for O(2) in a linear range from 0.054 to 0.177 v/v %, along with a low detection limit of 0.0075% and a short response time of less than 10 s, foreseeing its promising applications in developing cost-effective and environment-friendly paper-based electrochemical gas sensors.

  10. Optimized coupling of a submerged membrane electro-bioreactor with pre-anaerobic reactors containing anode electrodes for wastewater treatment and fouling reduction

    Directory of Open Access Journals (Sweden)

    Nader Taghipour

    2017-09-01

    Full Text Available In this paper, the performance of a submerged membrane electro-bioreactor with pre-anaerobic reactors containing anode electrodes (SMEBR+ was compared with that of a membrane bioreactor (MBR in municipal wastewater treatment. The new design idea of the SMEBR+ was based on applications of direct current (DC on the anode and cathode electrodes. The pilot study was divided into 2 stages and operated for 48 days. In Stage I, the MBR was continuously operated for 24 days without the application of electrodes. In Stage II, the SMEBR+ was continuously operated for 24 days, while aluminum electrodes and an intermittent DC were working with an operational mode of 2 min ON/4 min OFF at a constant voltage of 1.4 V. The results indicated that membrane fouling was reduced by nearly 22.02% in the SMEBR+ compared to the MBR. The results also showed that the SMEBR+ increased the quality of effluent to the extent that high removals of NH3+-N, PO43−-P, and chemical oxygen demand (COD were 98%, 76%, and 90%, respectively. This system, in comparison with those proposed in other studies, showed a suitable improvement in biological treatments, considering the high removal of NH3+-N. Therefore, SMEBR+ can be considered as a promising treatment alternative to the conventional MBR.

  11. Effect of assembly error of bipolar plate on the contact pressure distribution and stress failure of membrane electrode assembly in proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong' an; Peng, Linfa; Lai, Xinmin [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-07-01

    In practice, the assembly error of the bipolar plate (BPP) in a PEM fuel cell stack is unavoidable based on the current assembly process. However its effect on the performance of the PEM fuel cell stack is not reported yet. In this study, a methodology based on FEA model, ''least squares-support vector machine (LS-SVM)'' simulation and statistical analysis is developed to investigate the effect of the assembly error of the BPP on the pressure distribution and stress failure of membrane electrode assembly (MEA). At first, a parameterized FEA model of a metallic BPP/MEA assembly is established. Then, the LS-SVM simulation process is conducted based on the FEA model, and datasets for the pressure distribution and Von Mises stress of MEA are obtained, respectively for each assembly error. At last, the effect of the assembly error is obtained by applying the statistical analysis to the LS-SVM results. A regression equation between the stress failure and the assembly error is also built, and the allowed maximum assembly error is calculated based on the equation. The methodology in this study is beneficial to understand the mechanism of the assembly error and can be applied to guide the assembly process for the PEM fuel cell stack. (author)

  12. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cell Stacks

    Science.gov (United States)

    Valdez, Thomas I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    Dissolution of ruthenium was observed in the 80-cell stack. Duration testing was performed in single cell MEAs to determine the pathway of cell degradation. EDAX analysis on each of the single cell MEAs has shown that the Johnson Matthey commercial catalyst is stable in DMFC operation for 250 hours, no ruthenium dissolution was observed. Changes in the hydrophobicity of the cathode backing papers was minimum. Electrode polarization analysis revealed that the MEA performance loss is attributed to changes in the cathode catalyst layer. Ruthenium migration does not seem to occur during cell operation but can occur when methanol is absent from the anode compartment, the cathode compartment has access to air, and the cells in the stack are electrically connected to a load (Shunt Currents). The open-to-air cathode stack design allowed for: a) The MEAs to have continual access to oxygen; and b) The stack to sustain shunt currents. Ruthenium dissolution in a DMFC stack can be prevented by: a) Developing an internally manifolded stacks that seal reactant compartments when not in operation; b) Bringing the cell voltages to zero quickly when not in operation; and c) Limiting the total number of cells to 25 in an effort to limit shunt currents.

  13. Ultrathin Graphene Membranes as Flexible Electrodes for Electrochemical Double Layer Capacitors

    Science.gov (United States)

    Talapatra, Saikat; Kar, Swastik; Shah, Rakesh; Ghosh, Sujoy; An, Xiaohong; Simmons, Trevor; Washington, Morris; Nayak, Saroj

    2010-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using graphene based ultra thin membranes. These EDLC's show far superior performance compared to other carbon nanomaterials based EDLC's devices. We found that the graphene based devices possess specific capacitance values as high as 120 F/g, with impressive power densities (˜105 kW/kg) and energy densities (˜9.2 Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. Our ultracapacitors reflect a significant improvement over previously reported graphene-based ultracapacitors and are substantially better than those obtained with carbon nanotubes.

  14. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues.

    Science.gov (United States)

    Nicolson, Garth L; Ash, Michael E

    2017-09-01

    Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights

  15. Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly

    International Nuclear Information System (INIS)

    Kim, Joon-Hee; Yang, Min-Jee; Park, Jun-Young

    2014-01-01

    Highlights: • Faradaic efficiency and water transfer coefficient (WTC) of DMFC MEAs are calculated based on mass balance measurements. • Faradaic efficiency of the HC-based MEAs is generally improved over the Nafion-based MEAs. • Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of -2. • Low WTC of the HC-based MEAs indicates the back-diffusion of water from the cathode to the anode. • Performance of HC-based MEAs is improved as the fuel stoichiometry increases, maintaining high Faradaic efficiency. - Abstract: In order to improve the energy efficiency (fuel efficiency and electrical power) of direct methanol fuel cells (DMFCs), the hydrocarbon (HC) membrane-based membrane electrode assemblies (MEAs) are investigated under various operating conditions. The MEAs are then compared with the conventional Nafion-based MEA in terms of their efficiency and performance. The Faradaic efficiency and water transfer coefficient (WTC) are calculated based on mass balance measurements. The Faradaic efficiency of the HC-based MEAs is improved over the Nafion-based MEAs since methanol crossover decreased. The performance of HC-based MEAs shows strong dependency on the anode stoichiometry at high current densities probably because of the limited mass transport of fuel, which is not observed for the Nafion-based MEAs. The Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of −2, indicating the back-diffusion of water from the cathode to the anode. This may have limited mass transport by interrupting proton conduction at high current densities. The performance of HC-based MEAs at high current densities is improved as the fuel stoichiometry increases; High Faradaic efficiency is maintained by decreasing the cathode stoichiometry

  16. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    Science.gov (United States)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  17. Flow Injection Potentiometric Determination of Cd2+ Ions Using a Coated Graphite Plasticized PVC-Membrane Electrode Based on 1, 3-Bis(2-cyanobenzene)triazene.

    Science.gov (United States)

    Shamsipur, Mojtaba; Sahari, Shokat; Payehghadr, Mahmood; Alizadeh, Kamal

    2011-09-01

    1, 3-Bis(2-cyanobenzene)triazene, L, was used as a suitable ionophore for the fabrication of a new PVC-based polymeric membrane coated graphite electrode for selective sensing of Cd2+ ion. The electrode exhibited a selective linear Nernstian response to Cd2+ ion at an optimal pH range of 6-9 with a limit of detection of 8.0 × 10-6 M and a fast response time of about 2 s. The electrode was used as a proper detection system in flow-injection potentiometry of cadmium ion and resulted in well defined peaks for cadmium ions with stable baseline, excellent reproducibility and high sampling rates of over 100 injections per hour. It showed good stability, reproducibility and fast response time. The practical utility of the proposed system has also been reported.

  18. Determination of cobalt ions at nano-level based on newly synthesized pendant armed macrocycle by polymeric membrane and coated graphite electrode.

    Science.gov (United States)

    Singh, Ashok K; Singh, Prerna; Bhattacharjee, G

    2009-12-15

    Poly(vinylchloride) (PVC) based membranes of macrocycles 2,3,4:9,10,11-dipyridine-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L(1)) and 2,3,4:9,10,11-dipyridine-1,5,8,12-tetramethylacrylate-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L(2)) with NaTPB and KTpClPB as anion excluders and dibutylphthalate (DBP), benzyl acetate (BA), dioctylphthalate (DOP), o-nitrophenyloctyl ether (o-NPOE) and tri-n-butylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as Co(2+) selective electrodes. The best performance was observed with the membranes having the composition L(2):PVC:TBP:NaTPB in the ratio of 6:39:53:2 (w/w; mg). The performance of the membrane based on L(2) was compared with polymeric membrane electrode (PME) and coated graphite electrode (CGE). The PME exhibits detection limit of 4.7x10(-8)M with a Nernstian slope of 29.7 mV decade(-1) of activity between pH 2.5 and 8.5 whereas CGE exhibits the detection limit of 6.8x10(-9)M with a Nernstian slope of 29.5 mV decade(-1) of activity between pH 2.0 and 9.0. The response time for PME and CGE was found to be 11 and 8s, respectively. The CGE has been found to work satisfactorily in partially non-aqueous media up to 35% (v/v) content of methanol, ethanol and 25% (v/v) content of acetonitrile and could be used for a period of 4 months. The CGE was successfully applied for the determination of Co(2+) in real and pharmaceutical samples and as an indicator electrode in potentiometric titration of cobalt ion.

  19. Stripping analysis of nanomolar perchlorate in drinking water with a voltammetric ion-selective electrode based on thin-layer liquid membrane.

    Science.gov (United States)

    Kim, Yushin; Amemiya, Shigeru

    2008-08-01

    A highly sensitive analytical method is required for the assessment of nanomolar perchlorate contamination in drinking water as an emerging environmental problem. We developed the novel approach based on a voltammetric ion-selective electrode to enable the electrochemical detection of "redox-inactive" perchlorate at a nanomolar level without its electrolysis. The perchlorate-selective electrode is based on the submicrometer-thick plasticized poly(vinyl chloride) membrane spin-coated on the poly(3-octylthiophene)-modified gold electrode. The liquid membrane serves as the first thin-layer cell for ion-transfer stripping voltammetry to give low detection limits of 0.2-0.5 nM perchlorate in deionized water, commercial bottled water, and tap water under a rotating electrode configuration. The detection limits are not only much lower than the action limit (approximately 246 nM) set by the U.S. Environmental Protection Agency but also are comparable to the detection limits of the most sensitive analytical methods for detecting perchlorate, that is, ion chromatography coupled with a suppressed conductivity detector (0.55 nM) or electrospray ionization mass spectrometry (0.20-0.25 nM). The mass transfer of perchlorate in the thin-layer liquid membrane and aqueous sample as well as its transfer at the interface between the two phases were studied experimentally and theoretically to achieve the low detection limits. The advantages of ion-transfer stripping voltammetry with a thin-layer liquid membrane against traditional ion-selective potentiometry are demonstrated in terms of a detection limit, a response time, and selectivity.

  20. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell [Journal of Physics. Conference Series (Online), v. 795(1)

    International Nuclear Information System (INIS)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC. (paper)

  1. Comparison of The Performance of Proton Exchange Membrane Fuel Cell (PEMFC Electrodes with Different Carbon Powder Content and Methods of Manufacture

    Directory of Open Access Journals (Sweden)

    Dedi Rohendi

    2016-11-01

    Full Text Available Carbon powder in the gas diffusion layer (GDL contained in the membrane electrode assembly (MEA has an important role in the flow of electrons and reactant gas. Meanwhile, the method of making the electrode is one of the many studies conducted to determine the most appropriate method to use. Comparative study of the performance of proton exchange membrane fuel cell (PEMFC electrodes with different carbon powder content (vulcan XC-72 in the GDL and methods of manufacture of the electrode between casting and spraying method has been carried out. The spraying method consists of one layer and three layer of catalyst layer (CL. The content of carbon powder in the GDL as much as 3 mg cm-2 has a better performance compared to 1.5 mg cm-2 with an increase of 177.78% current density at 0.6 V. Meanwhile, the manufacture of CL with three-layer spraying method has better performance compared with one-layer spraying and casting method.

  2. A polymeric membrane ion selective electrode based on organic-inorganic composite ion exchanger for the determination of thorium(IV)

    International Nuclear Information System (INIS)

    Chandra, Sulekh; Agarwal, Himanshu; Chandan Kumar, Singh; Sindhu, Susheel Kumar; Pankaj Kumar

    2005-01-01

    A poly(vinyl chloride) membrane electrode based on organic- inorganic composite ion exchanger, tin(IV) tungstoselenate-pyridine, has been prepared and tested for the selective determination of thorium(IV) ions. The PVC membrane electrode comprising 16% composite ion exchanger as the electroactive phase, 50% o-dioctyl phthalate as plasticizer, 4% tetraphenyl borate as anionic excluder and 30% poly(vinylchloride) displays a linear response to thorium(IV) ions over a wide concentration range of 1.0 x 10 -1 -8.0 x 10 -6 M with a Nernstain slope of 14.2 mV/ decade. The electrode shows a very short response time (∼15 s) and may be used in the pH range 2.5-9.0. The selectivity coefficient for alkali, alkaline earth and transition is smaller than 4.0 x 10 -4 . The sensor has been successfully used as an indicator electrode in the potentiometric titration of Th 4+ with EDTA as well as also for the determination of Th 4+ in the binary mixtures. (author)

  3. A polymeric liquid membrane electrode responsive to 3,3',5,5'-tetramethylbenzidine oxidation for sensitive peroxidase/peroxidase mimetic-based potentiometric biosensing.

    Science.gov (United States)

    Wang, Xuewei; Yang, Yangang; Li, Long; Sun, Mingshuang; Yin, Haogen; Qin, Wei

    2014-05-06

    The oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) has great utility in bioanalysis such as peroxidase/peroxidase mimetic-based biosensing. In this paper, the behaviors of TMB oxidation intermediates/products in liquid/liquid biphasic systems have been investigated for the first time. The free radical, charge transfer complex, and diimine species generated by TMB oxidation are all positively charged under acidic and near-neutral conditions. Electron paramagnetic resonance and visible absorbance spectroscopy data demonstrate that these cationic species can be effectively transferred from an aqueous phase into a water-immiscible liquid phase functionalized by an appropriate cation exchanger. Accordingly, sensitive potential responses of TMB oxidation have been obtained on a cation exchanger-doped polymeric liquid membrane electrode under mildly acidic and near-neutral conditions. By using the membrane electrode responsive to TMB oxidations, two sensitive potentiometric biosensing schemes including the peroxidase-labeled sandwich immunoassay and G-quadruplex DNAzyme-based DNA hybridization assay have been developed. The obtained detection limits for the target antigen and DNA are 0.02 ng/mL and 0.1 nM, respectively. Coupled with other advantages such as low cost, high reliability, and ease of miniaturization and integration, the proposed polymeric liquid membrane electrode holds great promise as a facile and efficient transducer for TMB oxidation and related biosensing applications.

  4. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhi Qun; Lim, San Hua; Poh, Chee Kok; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tang, Zhe; Chua, Daniel [Department of Materials Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Xia, Zetao [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Luo, Zhiqiang; Shen, Zexiang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Shen, Pei Kang [State Key Laboratory of Optoelectronic Materials and Technologies, and Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Yuan Ping [Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2011-11-15

    A simple method was developed to prepare ultra-low Pt loading membrane electrode assembly (MEA) using vertically aligned carbon nanotubes (VACNTs) as highly ordered catalyst support for PEM fuel cells application. In the method, VACNTs were directly grown on the cheap household aluminum foil by plasma enhanced chemical vapor deposition (PECVD), using Fe/Co bimetallic catalyst. By depositing a Pt thin layer on VACNTs/Al and subsequent hot pressing, Pt/VACNTs can be 100% transferred from Al foil onto polymer electrolyte membrane for the fabrication of MEA. The whole transfer process does not need any chemical removal and destroy membrane. The PEM fuel cell with the MEA fabricated using this method showed an excellent performance with ultra-low Pt loading down to 35 {mu}g cm{sup -2} which was comparable to that of the commercial Pt catalyst on carbon powder with 400 {mu}g cm{sup -2}. To the best of our knowledge, for the first time, we identified that it is possible to substantially reduce the Pt loading one order by application of order-structured electrode based on VACNTs as Pt catalysts support, compared with the traditional random electrode at a comparable performance through experimental and mathematical methods. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Preparation and electrocatalytic activity of platinum nano-particles in electrodes of proton exchange membrane fuel cell; Preparation et activite electrocatalytique des nano-particules de platine dans les electrodes de piles a combustible a membrane echangeuse de protons

    Energy Technology Data Exchange (ETDEWEB)

    Antoine, Olivier

    1998-07-01

    This work treats of the basic study of the reactions taking place on platinum nano-particles inside the active layers of proton exchange membrane fuel cells (PEMFC): oxygen reduction and hydrogen oxidation, and of the applied study of a method for the in-situ preparation of these particles. The study of oxygen reduction completes the previous works by confirming the effect of the particles size on the reaction kinetics (optimum of mass activity towards 3 nm of diameter), by considering the effect of the temperature and of the substrate, and also by the study of H{sub 2}O{sub 2} production at the disc-ring electrode and the reaction mechanism using impedance spectroscopy measurements: like with massive platinum in acid environment, the Damjanovic mechanism is retained for the platinum nano-particles. Hydrogen oxidation is much faster and limited by gas diffusion, and thus is more difficult to study. This work required the use of sophisticated correction programs and of an original geometry (very thin active layer: L < 1 {mu}m) to show a clear effect of the particle size on the kinetics: the catalytic activity increases with the smallest particles. This study has also tried to precise the poorly known reaction mechanism: the Heyrovsky-Volmer mechanism has been retained but it needs to be confirmed. The optimization of the catalyst used requires 3 nm particles for a maximum oxygen reduction mass activity and mass percentages Pt/(Pt+C)30% in order to minimize the thickness of the active layer and the diffusion limitations. An original in-situ electrochemical method respecting these conditions has been developed. Starting from carbon impregnated with platinum salts, it allows the deposition of catalyst nano-particles on the carbon in Nafion. (J.S.)

  6. Potentiometric flow injection system for determination of reductants using a polymeric membrane permanganate ion-selective electrode based on current-controlled reagent delivery.

    Science.gov (United States)

    Song, Wenjing; Ding, Jiawang; Liang, Rongning; Qin, Wei

    2011-10-17

    A polymeric membrane permanganate-selective electrode has been developed as a current-controlled reagent release system for potentiometric detection of reductants in flow injection analysis. By applying an external current, diffusion of permanganate ions across the polymeric membrane can be controlled precisely. The permanganate ions released at the sample-membrane interface from the inner filling solution of the electrode are consumed by reaction with a reductant in the sample solution thus changing the measured membrane potential, by which the reductant can be sensed potentiometrically. Ascorbate, dopamine and norepinephrine have been employed as the model reductants. Under the optimized conditions, the potential peak heights are proportional to the reductant concentrations in the ranges of 1.0×10(-5) to 2.5×10(-7)M for ascorbate, of 1.0×10(-5) to 5.0×10(-7)M for dopamine, and of 1.0×10(-5) to 5.0×10(-7)M for norepinephrine, respectively with the corresponding detection limits of 7.8×10(-8), 1.0×10(-7) and 1.0×10(-7)M. The proposed system has been successfully applied to the determination of reductants in pharmaceutical preparations and vegetables, and the results agree well with those of iodimetric analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb(II) ion-selective electrode

    DEFF Research Database (Denmark)

    Joon, Narender Kumar; He, Ning; Wagner, Michal

    2017-01-01

    In this work, the influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb2+-selective electrode (Pb2+-ISE) was studied. The effects of bovine serum albumin (BSA) adsorption at the surface of the ion-selective membrane combined...... ions studied (Cu2+, Cd2+). Conditioning of the Pb2+-ISE in 0.01 mol dm–3 PBS resulted in a super-Nernstian response which was related to fixation/extraction of Pb2+ in the ion-selective membrane via precipitation of Pb3(PO4)2 by PO43– anions present in PBS. By conditioning of the Pb2+-ISE in 0.01 mol...

  8. Synthesis of nano-sized arsenic-imprinted polymer and its use as As3+ selective ionophore in a potentiometric membrane electrode: Part 1

    International Nuclear Information System (INIS)

    Alizadeh, Taher; Rashedi, Mariyam

    2014-01-01

    Highlights: • The first arsenic cation-selective membrane electrode was introduced. • A novel procedure was introduced for the preparation of As-imprinted polymer. • It was found that arsenic is recognized by the IIP as As 3+ species. • Nernstian response of 20.4 mV decade −1 and DL of 0.5 μM was obtained. - Abstract: In this study, a new strategy was proposed for the preparation of As (III)-imprinted polymer by using arsenic (methacrylate) 3 as template. Precipitation polymerization was utilized to synthesize nano-sized As (III)-imprinted polymer. Methacrylic acid and ethylene glycol dimethacrylate were used as the functional monomer and cross-linking agent, respectively. In order to assembly functional monomers around As (III) ion, sodium arsenite and methacrylic acid were heated in the presence of hydroquinone, leading to arsenic (methacrylate) 3 . The nano-sized As (III) selective polymer was characterized by FT-IR and scanning electron microscopy techniques (SEM). It was demonstrated that arsenic was recognized as As 3+ by the selective cavities of the synthesized IIP. Based on the prepared polymer, the first arsenic cation selective membrane electrode was introduced. Membrane electrode was constructed by dispersion of As (III)-imprinted polymer nanoparticles in poly(vinyl chloride), plasticized with di-nonylphthalate. The IIP-modified electrode exhibited a Nernstian response (20.4 ± 0.5 mV decade −1 ) to arsenic ion over a wide concentration range (7.0 × 10 −7 to 1.0 × 10 −1 mol L −1 ) with a lower detection limit of 5.0 × 10 −7 mol L −1 . Unlike this, the non-imprinted polymer (NIP)-based membrane electrode was not sensitive to arsenic in aqueous solution. The selectivity of the developed sensor to As (III) was shown to be satisfactory. The sensor was used for arsenic determination in some real samples

  9. Synthesis of nano-sized arsenic-imprinted polymer and its use as As{sup 3+} selective ionophore in a potentiometric membrane electrode: Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Taher, E-mail: Alizadeh@uma.ac.ir; Rashedi, Mariyam

    2014-09-16

    Highlights: • The first arsenic cation-selective membrane electrode was introduced. • A novel procedure was introduced for the preparation of As-imprinted polymer. • It was found that arsenic is recognized by the IIP as As{sup 3+} species. • Nernstian response of 20.4 mV decade{sup −1} and DL of 0.5 μM was obtained. - Abstract: In this study, a new strategy was proposed for the preparation of As (III)-imprinted polymer by using arsenic (methacrylate){sub 3} as template. Precipitation polymerization was utilized to synthesize nano-sized As (III)-imprinted polymer. Methacrylic acid and ethylene glycol dimethacrylate were used as the functional monomer and cross-linking agent, respectively. In order to assembly functional monomers around As (III) ion, sodium arsenite and methacrylic acid were heated in the presence of hydroquinone, leading to arsenic (methacrylate){sub 3}. The nano-sized As (III) selective polymer was characterized by FT-IR and scanning electron microscopy techniques (SEM). It was demonstrated that arsenic was recognized as As{sup 3+} by the selective cavities of the synthesized IIP. Based on the prepared polymer, the first arsenic cation selective membrane electrode was introduced. Membrane electrode was constructed by dispersion of As (III)-imprinted polymer nanoparticles in poly(vinyl chloride), plasticized with di-nonylphthalate. The IIP-modified electrode exhibited a Nernstian response (20.4 ± 0.5 mV decade{sup −1}) to arsenic ion over a wide concentration range (7.0 × 10{sup −7} to 1.0 × 10{sup −1} mol L{sup −1}) with a lower detection limit of 5.0 × 10{sup −7} mol L{sup −1}. Unlike this, the non-imprinted polymer (NIP)-based membrane electrode was not sensitive to arsenic in aqueous solution. The selectivity of the developed sensor to As (III) was shown to be satisfactory. The sensor was used for arsenic determination in some real samples.

  10. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  11. Fabrication of a nanosize-Pt-embedded membrane electrode assembly to enhance the utilization of Pt in proton exchange membrane fuel cells.

    Science.gov (United States)

    Choe, Junseok; Kim, Doyoung; Shim, Jinyong; Lee, Inhae; Tak, Yongsug

    2011-08-01

    A procedure to locate the Pt nanostructure inside the hydrophilic channel of a Nafion membrane was developed in order to enhance Pt utilization in PEMFCs. Nanosize Pt-embedded MEA was constructed by Cu electroless plating and subsequent Pt electrodeposition inside the hydrophilic channels of the Nafion membrane. The metallic Pt nanostructure fabricated inside the membrane was employed as an oxygen reduction catalyst for a PEMFC and facilitated effective use of the hydrophilic channels inside the membrane. Compared to the conventional MEA, a Pt-embedded MEA with only 68% Pt loading showed better PEMFC performance.

  12. Proton conductance at elevated temperature:Formulation and investigation of poly(4-styrenesulfonic acid / 4-aminobenzylamine / phosphoric acid membranes

    Directory of Open Access Journals (Sweden)

    Jalal eJalili

    2014-07-01

    Full Text Available 4-aminobenzylamine and phosphoric acid were blended in various proportions with poly (4-styrenesulfonic acid to form a new group of membranes exhibiting proton conductance under water-free conditions. The 4-aminobenzylamine molecule, possessing an aniline-like and benzylamine-like functional group, can interact both with the phosphoric acid and the poly(4-styrenesulfonic acid via nucleophilic interaction, thereby allowing proton jumping in the structure. Physico-chemical and thermal characteristics of the prepared solid membranes were investigated by IR spectroscopy and thermo-gravimetric analysis, respectively. Electrochemical impedance spectroscopy was employed to investigate their proton-conductance properties. Transparent composite membranes were prepared. However, the membranes are opaque for relatively high content of phosphoric acid. These membranes are thermally stable up to 300°C. The proton conductivity increases with temperature and also with content of phosphoric acid. Values as high as 1.8×10–3 S cm–1 were measured at 190°C in fully anhydrous condition.

  13. PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids.

    Science.gov (United States)

    Abdel-Haleem, Fatehy M; Saad, Mohamed; Barhoum, Ahmed; Bechelany, Mikhael; Rizk, Mahmoud S

    2018-08-01

    We report on highly-sensitive ion-selective electrodes (ISEs) for potentiometric determining of galantamine hydrobromide (GB) in physiological fluids. Galantamine hydrobromide (GB) was selected for this study due to its previous medical importance for treating Alzheimer's disease. Three different types of ISEs were investigated: PVC membrane electrode (PVCE), carbon-paste electrode (CPE), and coated-wire electrode (CWE). In the construction of these electrodes, galantaminium-reineckate (GR) ion-pair was used as a sensing species for GB in solutions. The modified carbon-paste electrode (MCPE) was prepared using graphene oxide (MCPE-GO) and sodium tetrakis (trifluoromethyl) phenyl borate (MCPE-STFPB) as ion-exchanger. The potentiometric modified CPEs (MCPE-GO and MCPE-STFPB) show an improved performance in term of Nernstian slope, selectivity, response time, and response stability compared to the unmodified CPE. The prepared electrodes PVCE, CWE, CPE, MCPE-GO and MCPE-STFPB show Nernstian slopes of 59.9, 59.5, 58.1, 58.3 and 57.0 mV/conc. decade, and detection limits of 5.0 × 10 -6 , 6.3 × 10 -6 , 8.0 × 10 -6 , 6.0 × 10 -6 and 8.0 × 10 -6  mol L -1 , respectively. The prepared ISEs also show high selectivity against cations (i.e. Na + , K + , NH 4 + , Ca 2+ , Al 3+ , Fe 3+ ), amino acids (i.e. glycine, L-alanine alanine), and sugars (i.e. fructose, glucose, maltose, lactose). The prepared ISEs are applicable for determining GB in spiked serums, urines, and pharmaceutical preparations, using a standard addition and a direct potentiometric method. The fast response time (<10 s), long lifetime (1-5 weeks), reversibility and stability of the measured signals facilitate the application of these sensors for routine analysis of the real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A fast response hafnium selective polymeric membrane electrode based on N,N'-bis(α-methyl-salicylidene)-dipropylenetriamine as a neutral carrier

    International Nuclear Information System (INIS)

    Rezaei, B.; Meghdadi, S.; Zarandi, R. Fazel

    2008-01-01

    In this study a new hafnium selective sensor was fabricated from polyvinylchloride (PVC) matrix membrane containing neutral carrier N,N'-bis(α-methyl-salicylidene)-dipropylenetriamine (Mesaldpt) as a new ionophore, sodium tetraphenyl borate (NaTPB) as anionic discriminator and dioctyl phthalate (DOP) as plasticizing solvent mediator in tetrahydrofuran solvent. The electrode exhibits Nernstian response for Hf 4+ (Hafnium(IV)) over a wide concentration range (2.0 x 10 -7 to 1.0 x 10 -1 M) with the determination coefficient of 0.9966 and slope of 15.1 ± 0.1 mV decades -1 . The limit of detection is 1.9 x 10 -7 M. The electrode has a fast response time of 18 s and a working pH range of 4-8. The proposed membrane shows excellent discriminating ability towards Hf 4+ ion with regard to several alkali, alkaline earth transition and heavy metal ions. It can be used over a period of 1.5 months with good reproducibility. It is successfully applied for direct determination of Hf 4+ in solutions by standard addition method for real sample analysis

  15. A fast response hafnium selective polymeric membrane electrode based on N,N'-bis({alpha}-methyl-salicylidene)-dipropylenetriamine as a neutral carrier

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, B. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: rezaei@cc.iut.ac.ir; Meghdadi, S.; Zarandi, R. Fazel [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2008-08-30

    In this study a new hafnium selective sensor was fabricated from polyvinylchloride (PVC) matrix membrane containing neutral carrier N,N'-bis({alpha}-methyl-salicylidene)-dipropylenetriamine (Mesaldpt) as a new ionophore, sodium tetraphenyl borate (NaTPB) as anionic discriminator and dioctyl phthalate (DOP) as plasticizing solvent mediator in tetrahydrofuran solvent. The electrode exhibits Nernstian response for Hf{sup 4+} (Hafnium(IV)) over a wide concentration range (2.0 x 10{sup -7} to 1.0 x 10{sup -1} M) with the determination coefficient of 0.9966 and slope of 15.1 {+-} 0.1 mV decades{sup -1}. The limit of detection is 1.9 x 10{sup -7} M. The electrode has a fast response time of 18 s and a working pH range of 4-8. The proposed membrane shows excellent discriminating ability towards Hf{sup 4+} ion with regard to several alkali, alkaline earth transition and heavy metal ions. It can be used over a period of 1.5 months with good reproducibility. It is successfully applied for direct determination of Hf{sup 4+} in solutions by standard addition method for real sample analysis.

  16. Manual and Flow-Injection Detection/Quantification of Polyquaterniums via Fully Reversible Polyion-Sensitive Polymeric Membrane-Based Ion-Selective Electrodes.

    Science.gov (United States)

    Ferguson, Stephen A; Meyerhoff, Mark E

    2017-10-27

    The detection of four different polyquaterniums (PQs) using a fully reversible potentiometric polyion sensor in three different detection modes is described. The polyion sensing "pulstrodes" serve as the detector for direct dose-response experiments, beaker titrations, and in a flow-injection analysis (FIA) system. Direct polycation response toward PQ-2, PQ-6, PQ-10, and poly(2-methacryloxyethyltrimethylammonium) chloride (PMETAC) yields characteristic information about each PQ species (e.g., relative charge densities, etc.) via syringe pump addition of each PQ species to a background electrolyte solution. Quantitative titrations are performed using a syringe pump to deliver heparin as the polyanion titrant to quantify all four PQs at μg/mL levels. Both the direct and indirect methods incorporate the use of a three-electrode system including counter, double junction reference, and working electrodes. The working electrode possesses a plasticized poly(vinyl chloride) (PVC) membrane containing the neutral lipophilic salt of dinonylnaphthalenesulfonate (DNNS - ) tridodecylmethylammonium (TDMA + ). Further, the titration method is shown to be useful to quantify PQ-6 levels in recreational swimming pool water collected in Ann Arbor, MI. Finally, a FIA system equipped with a pulstrode detector is used to demonstrate the ability to potentially quantify PQ levels via a more streamlined and semiautomated testing platform.

  17. Magnetic field effects on electric behavior of [Fe(CN6]3− at bare and membrane-coated electrodes

    Directory of Open Access Journals (Sweden)

    Govindachetty Saravanan, Katsuhiko Fujio and Sumio Ozeki

    2008-01-01

    Full Text Available The cyclic voltammetric behavior of [Fe(CN6]3− was investigated under homogeneous magnetic fields perpendicular to the electrode surface in order to determine the effects of magnetic fields on the distribution of an Fe2+/Fe3+ redox couple. The cathodic current was enhanced much more than the anodic current by a homogeneous magnetic field, suggesting that the concentration gradient of paramagnetic [Fe(CN6]3− and diamagnetic [Fe(CN6]4− formed at an electrode surface may also contribute to the asymmetric current. The apparent diffusion coefficient of the redox couple increased by over 30% in both cathodic and anodic processes upon applying a magnetic field. For a gold electrode coated with dioctadecyldimethylammonium, the application of a magnetic field perpendicular to the surface increased the peak-to-peak separation, and enhanced the asymmetric current. It is inferred that the application of a magnetic field promotes the electron-tunneling process by tilting chain molecules in the barrier membrane.

  18. Stability of a Cu0.7Co2.3O4 electrode during the oxygen evolution reaction for alkaline anion-exchange membrane water electrolysis

    Science.gov (United States)

    Kang, Kyoung Eun; Kim, Chi Ho; Lee, Myung Sup; Jung, Chang Wook; Kim, Yang Do; Lee, Jae Ho

    2018-01-01

    The electrode materials for oxygen evolution, especially non-platinum group metal oxides, have attracted increasing attention. Among the spinel-type transition metal oxides, Cu0.7Co2.3O4 powders were evaluated as a potential replacement for expensive dimensionally stabilized anode materials. Cu0.7Co2.3O4 powder for use as an electrode material for oxygen evolution in an alkaline anion-exchange membrane water electrolyzer was prepared using a thermal decomposition method. The Cu0.7Co2.3O4 powders heat-treated at 250 °C exhibited the same X-ray diffraction patterns without any secondary phases as the Co3O4 spinel structure did. The Cu0.7Co2.3O4 powders heat-treated at 250 °C for 30 minutes showed the smallest mean particle size of approximately 376 nm with the powders having a homogeneous shape and size distribution. The fine powders with a relatively homogeneous size distribution showed a higher current density during the oxygen evolution reaction. The lifetime of the Cu0.7Co2.3O4 electrode was relatively long at a low current density, but was quickly shortened due to physical detachment of the Cu0.7Co2.3O4 powders as the current density was increased. This study showed that the efficiency and the stability of Cu0.7Co2.3O4 powders during the oxygen evolution reaction were related directly to the active electrode area.

  19. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater

    KAUST Repository

    Hays, Sarah

    2011-10-01

    Graphite fiber brush electrodes provide high surface areas for exoelectrogenic bacteria in microbial fuel cells (MFCs), but the cylindrical brush format limits more compact reactor designs. To enable MFC designs with closer electrode spacing, brush anodes were pressed up against a separator (placed between the electrodes) to reduce the volume occupied by the brush. Higher maximum voltages were produced using domestic wastewater (COD = 390 ± 89 mg L-1) with brush anodes (360 ± 63 mV, 1000 Ω) than woven carbon mesh anodes (200 ± 81 mV) with one or two separators. Maximum power densities were similar for brush anode reactors with one or two separators after 30 days (220 ± 1.2 and 240 ± 22 mW m-2), but with one separator the brush anode MFC power decreased to 130 ± 55 mW m-2 after 114 days. Power densities in MFCs with mesh anodes were very low (<45 mW m-2). Brush anodes MFCs had higher COD removals (80 ± 3%) than carbon mesh MFCs (58 ± 7%), but similar Coulombic efficiencies (8.6 ± 2.9% brush; 7.8 ± 7.1% mesh). These results show that compact (hemispherical) brush anodes can produce higher power and more effective domestic wastewater treatment than flat mesh anodes in MFCs. © 2011 Elsevier B.V. All rights reserved.

  20. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Akihiro [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Ryuhei, E-mail: nakamura@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hashimoto, Kazuhito, E-mail: hashimoto@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); ERATO/JST, HASHIMOTO Light Energy Conversion Project (Japan)

    2011-06-30

    Graphical abstract: . Display Omitted Highlights: > Monolayer biofilm of Shewanella cells was prepared on an ITO electrode. > Extracellular electron transfer (EET) process was examined with series of mutants. > Direct ET was confirmed with outer-membrane-bound OmcA-MtrCAB complex. > The EET process was not prominently influenced by capsular polysaccharide. - Abstract: The direct electron-transfer (DET) property of Shewanella bacteria has not been resolved in detail due to the complexity of in vivo electrochemistry in whole-cell systems. Here, we report the in vivo assignment of the redox signal indicative of the DET property in biofilms of Shewanella oneidensis MR-1 by cyclic voltammetry (CV) with a series of mutants and a chemical marking technique. The CV measurements of monolayer biofilms formed by deletion mutants of c-type cytochromes ({Delta}mtrA, {Delta}mtrB, {Delta}mtrC/{Delta}omcA, and {Delta}cymA), and pilin ({Delta}pilD), capsular polysaccharide ({Delta}SO3177) and menaquinone ({Delta}menD) biosynthetic proteins demonstrated that the electrochemical redox signal with a midpoint potential at 50 mV (vs. SHE) was due to an outer-membrane-bound OmcA-MtrCAB protein complex of decaheme cytochromes, and did not involve either inner-membrane-bound CymA protein or secreted menaquinone. Using the specific binding affinity of nitric monoxide for the heme groups of c-type cytochromes, we further confirmed this conclusion. The heterogeneous standard rate constant for the DET process was estimated to be 300 {+-} 10 s{sup -1}, which was two orders of magnitude higher than that previously reported for the electron shuttling process via riboflavin. Experiments using a mutant unable to produce capsular polysaccharide ({Delta}SO3177) revealed that the DET property of the OmcA-MtrCAB complex was not influenced by insulating and hydrophilic extracellular polysaccharide. Accordingly, under physiological conditions, S. oneidensis MR-1 utilizes a high density of outer-membrane

  1. Elimination of voltage reversal in multiple membrane electrode assembly installed microbial fuel cells (mMEA-MFCs) stacking system by resistor control.

    Science.gov (United States)

    Kim, Bongkyu; Chang, In Seop

    2018-08-01

    Voltage reversal (VR) in series connection of multiple membrane electrode assembly installed microbial fuel cells (mMEA-MFC) is eliminated by manipulating the resistor control. Discharge test results collected from two mMEA-MFCs initially operated (designated as P1 and P2) confirm that the performance of P2 exceeds that of P1. Thus, driving P1 and P2 as serially stacked MFCs generate the VR in P1. Controlling the inserted resistor adjust the current production of P2 to maintain balance with P1, and the VR in P1 is eliminated in the operation of stacking mode. Thus, manipulating the internal resistance provide an applicable approach to suppress VR in the stacking of mMEA-MFCs system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Gas-Phase Mass-Transfer Resistances at Polymeric Electrolyte Membrane Fuel Cells Electrodes: Theoretical Analysis on the Effectiveness of Interdigitated and Serpentine Flow Arrangements

    Directory of Open Access Journals (Sweden)

    Elisabetta Arato

    2016-03-01

    Full Text Available Mass transfer phenomena in polymeric electrolyte membrane fuel cells (PEMFC electrodes has already been analyzed in terms of the interactions between diffusive and forced flows. It was demonstrated that the whole phenomenon could be summarized by expressing the Sherwood number as a function of the Peclet number. The dependence of Sherwood number on Peclet one Sh(Pe function, which was initially deduced by determining three different flow regimes, has now been given a more accurate description. A comparison between the approximate and the accurate results for a reference condition of diluted reactant and limit current has shown that the former are useful for rapid, preliminary calculations. However, a more precise and reliable estimation of the Sherwood number is worth attention, as it provides a detailed description of the electrochemical kinetics and allows a reliable comparison of the various geometrical arrangements used for the distribution of the reactants.

  3. Optimum concentration gradient of the electrocatalyst, Nafion® and poly(tetrafluoroethylene) in a membrane-electrode-assembly for enhanced performance of direct methanol fuel cells.

    Science.gov (United States)

    Liu, Jing Hua; Jeon, Min Ku; Lee, Ki Rak; Woo, Seong Ihl

    2010-12-14

    A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.

  4. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke; Li, Yifan; Yu, Shule; Cullen, David A.; Retterer, Scott T.; Toops, Todd J.; Bender, Guido; Pivovar, Bryan S.; Green, Johney B.; Zhang, Feng-Yuan

    2018-05-01

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layers at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.

  5. Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments

    KAUST Repository

    Wang, Hong

    2017-03-31

    Self-supported electrocatalysts being generated and employed directly as electrodes for energy conversion has been intensively pursued in the fields of materials chemistry and energy. Herein, we report a synthetic strategy to prepare freestanding hierarchically structured, nitrogen-doped nanoporous graphitic carbon membranes functionalized with Janus-type Co/CoP nanocrystals (termed as HNDCM-Co/CoP), which were successfully applied as a highly efficient, binder-free electrode in the hydrogen evolution reaction (HER). Benefited from multiple structural merits, such as a high degree of graphitization, three-dimensionally interconnected micro/meso/macropores, uniform nitrogen doping, well-dispersed Co/CoP nanocrystals, as well as the confinement effect of the thin carbon layer on the nanocrystals, HNDCM-Co/CoP exhibited superior electrocatalytic activity and long-term operation stability for HER under both acidic and alkaline conditions. As a proof-of-concept of practical usage, a 5.6 cm × 4 cm × 60 μm macroscopic piece of HNDCM-Co/CoP was prepared in our laboratory. Driven by a solar cell, electroreduction of water in alkaline conditions (pH 14) was performed, and H was produced at a rate of 16 mL/min, demonstrating its potential as real-life energy conversion systems.

  6. Preparation and application of a carbon paste electrode modified with multi-walled carbon nanotubes and boron-embedded molecularly imprinted composite membranes.

    Science.gov (United States)

    Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Deng, Chunyan; Liao, Lifu; Deng, Jian; Lin, Ying-Wu

    2018-06-01

    An innovative electrochemical sensor was fabricated for the sensitive and selective determination of tinidazole (TNZ), based on a carbon paste electrode (CPE) modified with multi-walled carbon nanotubes (MWCNTs) and boron-embedded molecularly imprinted composite membranes (B-MICMs). Density functional theory (DFT) calculations were carried out to investigate the utility of template-monomer interactions to screen appropriate monomers for the rational design of B-MICMs. The distinct synergic effect of MWCNTs and B-MICMs was evidenced by the positive shift of the reduction peak potential of TNZ at B-MICMs/MWCNTs modified CPE (B-MICMs/MWCNTs/CPE) by about 200 mV, and the 12-fold amplification of the peak current, compared with a bare carbon paste electrode (CPE). Moreover, the coordinate interactions between trisubstituted boron atoms embedded in B-MICMs matrix and nitrogen atoms of TNZ endow the sensor with advanced affinity and specific directionality. Thereafter, a highly sensitive electrochemical analytical method for TNZ was established by different pulse voltammetry (DPV) at B-MICMs/MWCNTs/CPE with a lower detection limit (1.25 × 10 -12  mol L -1 ) (S/N = 3). The practical application of the sensor was demonstrated by determining TNZ in pharmaceutical and biological samples with good precision (RSD 1.36% to 3.85%) and acceptable recoveries (82.40%-104.0%). Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Production of membrane-electrode assemblies to be used in high temperature solid oxide fuel cells; Producao de conjugados eletrolito-eletrodos para pilhas a combustivel de oxido solido de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos, Pedro R.; Silva, Gilmar Clemente; Miranda, Paulo Emilio V. de [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais. Lab. de Hidrogenio], e-mail: vlobos@labh2.coppe.ufrj.br

    2004-07-01

    This article describes the production and characterization of membrane-electrode assemblies to be used in high temperature solid oxide fuel cells. The single cells produced were characterized using scanning electron microscopy and X ray diffractometry, seeking the morphological characterization of the complete device and to verify the stability of the materials used with respect to the processing conditions. (author)

  8. Square-wave voltammetric determination of rutin in pharmaceutical formulations using a carbon composite electrode modified with copper (II phosphate immobilized in polyester resin

    Directory of Open Access Journals (Sweden)

    Kellen Heloizy Garcia Freitas

    2012-12-01

    Full Text Available A carbon composite electrode modified with copper (II phosphate immobilized in a polyester resin (Cu3(PO42-Poly for the determination of rutin in pharmaceutical samples by square-wave voltammetry is described herein. The modified electrode allows the determination of rutin at a potential (0.20 V vs. Ag/AgCl (3.0 mol L-1 KCl lower than that observed at an unmodified electrode. The peak current was found to be linear to the rutin concentration in the range from 9.9 × 10-8 to 2.5 × 10-6 mol L-1, with a detection limit of 1.2×10-8 mol L-1. The response of the electrode was stable, with no variation in baseline levels within several hours of continuous operation. The surface morphology of the modified electrode was characterized by scanning electron microscopy (SEM and energy dispersive X-ray (EDX system. The results obtained are precise and accurate. In addition, these results are in agreement with those obtained by the chromatographic method at a 95% confidence level.Descreve-se um eletrodo de carbono modificado com fosfato de cobre (II imobilizado em uma resina de poliéster (Cu3(PO42-Poly para a determinação de rutina em amostras farmacêuticas por voltametria de onda quadrada. O eletrodo modificado permite a determinação de rutina em potencial (0.20 V vs Ag / AgCl (3,0 mol L-1 KCl menor que o observado em um eletrodo não modificado. Verificou-se que a corrente de pico foi linear com a concentração de rutina na faixa de 9,9 × 10-8 a 2,5 × 10-6 mol L-1, com um limite de detecção de 1,2 × 10-8 mol L¹. A resposta do eletrodo foi estável, sem variação significativa dentro de várias horas de operação contínua. A morfologia da superfície do eletrodo modificado foi caracterizada por microscopia eletrônica de varredura (MEV e pelo sistema de energia dispersiva de raios-X (EDX. Os resultados obtidos foram precisos e exatos. Ademais, estes resultados estão de acordo com aqueles obtidos pelo método cromatográfico a um nível de

  9. Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery.

    Science.gov (United States)

    Fernando, Lawrence P; Lewis, Jamal S; Evans, Brian C; Duvall, Craig L; Keselowsky, Benjamin G

    2018-04-01

    Poly(lactic-co-glycolic acid) (PLGA) is widely used as a vehicle for delivery of pharmaceutically relevant payloads. PLGA is readily fabricated as a nano- or microparticle (MP) matrix to load both hydrophobic and hydrophilic small molecular drugs as well as biomacromolecules such as nucleic acids and proteins. However, targeting such payloads to the cell cytosol is often limited by MP entrapment and degradation within acidic endolysosomes. Poly(propylacrylic acid) (PPAA) is a polyelectrolyte polymer with the membrane disruptive capability triggered at low pH. PPAA has been previously formulated in various carrier configurations to enable cytosolic payload delivery, but requires sophisticated carrier design. Taking advantage of PPAA functionality, we have incorporated PPAA into PLGA MPs as a simple polymer mixture to enhance cytosolic delivery of PLGA-encapsulated payloads. Rhodamine loaded PLGA and PPAA/PLGA blend MPs were prepared by a modified nanoprecipitation method. Incorporation of PPAA into PLGA MPs had little to no effect on the size, shape, or loading efficiency, and evidenced no toxicity in Chinese hamster ovary epithelial cells. Notably, incorporation of PPAA into PLGA MPs enabled pH-dependent membrane disruption in a hemolysis assay, and a three-fold increased endosomal escape and cytosolic delivery in dendritic cells after 2 h of MP uptake. These results demonstrate that a simple PLGA/PPAA polymer blend is readily fabricated into composite MPs, enabling cytosolic delivery of an encapsulated payload. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1022-1033, 2018. © 2017 Wiley Periodicals, Inc.

  10. Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Lebæk, Jesper; Nielsen, Lars Pleth

    2010-01-01

    m thick layer of TFTCs on 75 mu m thick Kapton foil. The Kapton foil was treated with in situ argon plasma etching to improve the adhesion between TFTCs and the Kapton substrate. The TFTCs were covered with a 7 mu m liquid Kapton layer using spin coating technique to protect them from environmental......This paper presents Type-T thin film thermocouples (TFTCs) fabricated on Kapton (polyimide) substrate for measuring the internal temperature of PBI(polybenzimidazole)-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Magnetron sputtering technique was employed to deposit a 2 mu...... degradation. This Kapton foil with deposited TFTCs was used as sealing inside a PBI (polybenzimidazole)-based single cell test rig, which enabled measurements of in situ temperature variations of the working fuel cell MEA. The performance of the TFTCs was promising with minimal interference to the operation...

  11. A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Molaeimanesh, Gholam Reza; Akbari, Mohammad Hadi [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2015-03-15

    A pore-scale model based on the lattice Boltzmann method (LBM) is proposed for the cathode electrode of a PEM fuel cell with heterogeneous and anisotropic porous gas diffusion layer (GDL) and interdigitated flow field. An active approach is implemented to model multi-component transport in GDL, which leads to enhanced accuracy, especially at higher activation over-potentials. The core of the paper is the implementation of an electrochemical reaction with an active approach in a multi-component lattice Boltzmann model for the first time. After model validation, the capability of the presented model is demonstrated through a parametric study. Effects of activation over-potential, pressure differential between inlet and outlet gas channels, land width to channel width ratio, and channel width are investigated. The results show the significant influence of GDL microstructure on the oxygen distribution and current density profile.

  12. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  13. Rapid and sensitive electrochemical determination of codeine in pharmaceutical formulations and human urine using a boron-doped diamond film electrode

    International Nuclear Information System (INIS)

    Švorc, Ľubomír; Sochr, Jozef; Svítková, Jana; Rievaj, Miroslav; Bustin, Dušan

    2013-01-01

    Highlights: ► Novel electrochemical sensor for the determination of codeine is presented. ► Codeine provided a single oxidation peak at +1.0 V vs. Ag/AgCl in BRBS at pH 7. ► Detection limit of 0.08 μM was achieved without electrode surface modification. ► Benefits of method: rapidity, low cost, low elaborateness and high repeatability. ► Possibility for drug quality control and drug analysis of biological samples. - Abstract: An unmodified boron-doped diamond film electrode was used for the first time as a sensitive and selective electrochemical sensor for the determination of codeine by the use of differential pulse voltammetry. Codeine provided a single well-defined oxidation peak at +1.0 V vs. Ag/AgCl in Britton-Robinson buffer solution at pH 7.0. Using the optimal differential pulse voltammetric conditions (modulation amplitude of 50 mV, modulation time of 40 ms and scan rate of 50 mV s −1 ), the detection limit of 0.08 μM, the linear response of peak current on codeine concentration in the range from 0.1 to 60 μM (R 2 = 0.998, n = 6) and relative standard deviation of 0.9% at 10 μM concentration level (n = 10) were achieved without any electrode surface modification. The influence of potential interfering agents on the current response was also studied and the results indicated that the proposed method was sufficiently selective. The method was successfully applied in the determination of codeine in real samples including pharmaceutical tablets and human urine with results similar to those declared by manufacturer and obtained by reference high-performance liquid chromatography method, respectively. The typical benefits of the method may be summarized as: rapidity (20 determinations per hour), sensitivity and selectivity, low cost and elaborateness, simplicity, wide linear concentration range, low detection limit and excellent repeatability. It might also represent the competitive alternative to the existing analytical methods in monitoring of

  14. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  15. High Antifouling Property of Ion-Selective Membrane: toward In Vivo Monitoring of pH Change in Live Brain of Rats with Membrane-Coated Carbon Fiber Electrodes.

    Science.gov (United States)

    Hao, Jie; Xiao, Tongfang; Wu, Fei; Yu, Ping; Mao, Lanqun

    2016-11-15

    In vivo monitoring of pH in live brain remains very essential to understanding acid-base chemistry in various physiological processes. This study demonstrates a potentiometric method for in vivo monitoring of pH in the central nervous system with carbon fiber-based proton-selective electrodes (CF-H + ISEs) with high antifouling property. The CF-H + ISEs are prepared by formation of a H + -selective membrane (H + ISM) with polyvinyl chloride polymeric matrixes containing plasticizer bis(2-ethylhexyl)sebacate, H + ionophore tridodecylamine, and ion exchanger potassium tetrakis(4-chlorophenyl)borate onto carbon fiber electrodes (CFEs). Both in vitro and in vivo studies demonstrate that the H + ISM exhibits strong antifouling property against proteins, which enables the CF-H + ISEs to well maintain the sensitivity and reversibility for pH sensing after in vivo measurements. Moreover, the CF-H + ISEs exhibit a good response to pH changes within a narrow physiological pH range from 6.0 to 8.0 in quick response time with high reversibility and selectivity against species endogenously existing in the central nervous system. The applicability of the CF-H + ISEs is illustrated by real-time monitoring of pH changes during acid-base disturbances, in which the brain acidosis is induced by CO 2 inhalation and brain alkalosis is induced by bicarbonate injections. The results demonstrate that brain pH value rapidly decreases in the amygdaloid nucleus by ca. 0.14 ± 0.01 (n = 5) when the rats breath in pure CO 2 gas, while increases in the cortex by about 0.77 ± 0.12 (n = 3) following intraperitoneal injection of 5 mmol/kg NaHCO 3 . This study demonstrates a new potentiometric method for in vivo measurement of pH change in the live brain of rats with high reliability.

  16. Optimization of synthesis of the nickel-cobalt oxide based anode electrocatalyst and of the related membrane-electrode assembly for alkaline water electrolysis

    Science.gov (United States)

    Chanda, Debabrata; Hnát, Jaromir; Bystron, Tomas; Paidar, Martin; Bouzek, Karel

    2017-04-01

    In this work, the Ni-Co spinel oxides are synthesized via different methods and using different calcination temperatures. Properties of the prepared materials are compared. The best route is selected and used to prepare a Ni1+xCo2-xO4 (-1 ≤ x ≤ 1) series of materials in order to investigate their catalytic activity towards the oxygen evolution reaction (OER). The results show that hydroxide preparation yields NiCo2O4 oxide with the highest activity. 325 °C is identified as the optimum calcination temperature. Subsequently, the catalysts are tested in an electrolysis cell. To prepare an anode catalyst layer based on NiCo2O4 catalyst on top of a nickel foam substrate for membrane electrode assembly (MEA) construction, following polymer binders are used: anion-selective quaternized polyphenylene oxide (qPPO), inert polytetrafluoroethylene (PTFE®), and cation-selective Nafion®. qPPO ionomer containing MEA exhibited highest OER activity. The current density obtained using a MEA containing qPPO binder attains a value of 135 mA cm-2 at a cell voltage of 1.85 V. After 7 h chronopotentiometric experiment at a constant current density of 225 mA cm-2, the MEA employing PTFE® binder shows higher stability than the other binders in alkaline water electrolysis at 50 °C. Under similar conditions, stability of the PTFE®-binding MEA is examined for 135 h.

  17. A membrane electrode assembled photoelectrochemical cell with a solar-responsive cadmium sulfide-zinc sulfide-titanium dioxide/mesoporous silica photoanode

    Science.gov (United States)

    Chen, Ming; Chen, Rong; Zhu, Xun; Liao, Qiang; An, Liang; Ye, Dingding; Zhou, Yuan; He, Xuefeng; Zhang, Wei

    2017-12-01

    In this work, a membrane electrode assembled photoelectrochemical cell (PEC) is developed for the electricity generation by degrading the organic compounds. The photocatalyst is prepared by the incorporation of mesoporous silica SBA-15 into TiO2 and the photosensitization of CdS-ZnS to enhance the photoanode performance, while the cathode employs the air-breathing mode to enhance the oxygen transport. The experimental results show that the developed PEC exhibits good photoresponse to the illumination and the appropriate SBA-15 mass ratio in the photoanode enables the enhancement of the performance. It is also shown that the developed PEC yields better performance in the alkaline environment than that in the neutral environment. Increasing the KOH concentration can improve the cell performance. There exist optimal liquid flow rate and organics concentration leading to the best performance. Besides, it is found that increasing the light intensity can generate more electron-hole pairs and thus enhance the cell performance. These results are helpful for optimizing the design.

  18. Equivalent complex conductivities representing the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by external-electrode method

    Science.gov (United States)

    Sekine, Katsuhisa

    2017-12-01

    In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.

  19. Fabrication of novel coated pyrolytic graphite electrodes for the selective nano-level monitoring of Cd²⁺ ions in biological and environmental samples using polymeric membrane of newly synthesized macrocycle.

    Science.gov (United States)

    Sahani, Manoj Kumar; Singh, A K; Jain, A K; Upadhyay, Anjali; Kumar, Amit; Singh, Udai P; Narang, Shikha

    2015-02-20

    Novel 5-amino-1,3,4-thiadiazole-2-thiol unit based macrocyclic ionophore 5,11,17-trithia-1,3,7,9,13,15,19,20,21-nonaazatetracyclo[14.2.1.1(4,7).1(10,13)]henicosa-4(20),10(21),16(19)-triene-6,12,18-trithione (M1), was synthesized and characterized. Preliminary studies on M1 have showed that it has more the affinity toward Cd(2+) ion. Thus, the macrocyclic ionophore (M1) was used as electroactive material in the fabrication of PVC-membrane electrodes such as polymeric membrane electrode (PME), coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) were prepared and its performance characteristic were compared with. The electroanalytical studies performed on PME, CGE and CPGE revealed that CPGE having membrane composition M1:PVC:1-CN:NaTPB in the ratio of 7:37:54:2 exhibits the best potentiometric characteristics in terms of detection limit of 7.58×10(-9) mol L(-1), Nernstian slope of 29.6 mV decade(-1) of activity. The sensor was found to be independent of pH in the range 2.5-8.5. The sensor showed a fast response time of 10s and could be used over a period of 4 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for monitoring of the Cd(2+) ion in real samples and also used as an indicator electrode in the potentiometric titration of Cd(2+) ion with EDTA. Copyright © 2014. Published by Elsevier B.V.

  20. Synthesis and characterization of poly-o-anisidine Sn(IV tungstate: A new and novel ‘organic–inorganic’ nano-composite material and its electro-analytical applications as Hg(II ion-selective membrane electrode

    Directory of Open Access Journals (Sweden)

    Asif A. Khan

    2012-07-01

    Full Text Available An organic–inorganic nano-composite poly-o-anisidine Sn(IV tungstate was chemically synthesized by sol–gel mixing of the incorporation of organic polymer o-anisidine into the matrices of inorganic ppt of Sn(IV tungstate in different mixing volume ratios. This composite material has been characterized using various analytical techniques like XRD (X-ray diffraction, FTIR (Fourier transform infrared, SEM (Scanning electron microscopy, TEM (Transmission electron microscopy and simultaneous TGA (Thermogravimetric analysis studies. On the basis of distribution studies, the material was found to be highly selective for Hg(II. Using this nano-composite cation exchanger as electro-active material, a new heterogeneous precipitate based on ion-sensitive membrane electrode was developed for the determination of Hg(II ions in solutions. The membrane electrode was mechanically stable, with a quick response time, and can be operated within a wide pH range. The electrode was also found to be satisfactory in electrometric titrations.

  1. Development of a ceramic membrane from a lithian spinel, Li1+xMyMn2-yO4 (M=trivalent or tetravalent cations) for a Li ion-selective electrode

    Science.gov (United States)

    Yoon, H.; Venugopal, N.; Rim, T.; Yang, B.; Chung, K.; Ko, T.

    2010-12-01

    Recently a few lithium containing ceramics are reported as promising cathodes for application in lithium batteries. Among them, a spinel-type lithium manganate (LM) exhibits an exceptionally high ion selectivity at room temperature. Thus, LM could have a great potential as an ion selective membrane material for screening interfering ions from lithium ion for the determination of lithium ion in salt solution. In this study, we developed an ion-selective electrode based on LM as a membrane material and investigated its lithium ion selectivity by varying the content of M in composition. A sol-gel process was successfully applied for preparing LM films without resorting to calcination at a high temperature. The LM thin film-type membranes exhibit a high selectivity for Li ion over other cations, a wide operation detection range of 10-5 ~ 10-2 M, and a fast response time less than 60 s. Furthermore, our result demonstrates a linear potentiometric response over a wide range of lithium concentration, which is compared to that of a lithium ion-selective electrode based on an ionophore. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).

  2. Electrochemical DNA biosensor for the detection of Trichoderma harzianum based on a gold electrode modified with a composite membrane made from an ionic liquid, ZnO nanoparticles and chitosan, and by using acridine orange as a redox indicator

    International Nuclear Information System (INIS)

    Siddiquee, S.; Yusof, N.A.; Salleh, A.B.; Tan, S.G.; Bakar, F.A.

    2011-01-01

    An electrochemical DNA biosensor was developed that is based on a gold electrode modified with a nanocomposite membrane made from an ionic liquid, ZnO nanoparticles and chitosan. A single-stranded DNA probe was immobilized on this electrode. Acridine orange was used as the hybridization probe for monitoring the hybridization of the target DNA. The biosensor was capable of detecting target DNA in the concentration range from 1.0 x 10 -14 to 1.8 x 10 -4 mol L -1 , with a detection limit of 1.0 x 10 -15 mol L -1 . The approach towards constructing a DNA biosensor allows studies on the hybridization even with crude DNA fragments and also to analyze sample obtained from real samples. The results show that the DNA biosensor has the potential for sensitive detection of a specific sequence of the Trichoderma harzianum gene and provides a quick, sensitive and convenient method for the study of microorganisms. (author)

  3. New electrodes for hydrogen/oxygen solid polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Mosdale, R [CEA Centre d` Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Stevens, P [CEA Centre d` Etudes de Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique

    1993-12-31

    A new method of preparation of Electrode/Membrane/Electrode (EME) assemblies for Proton Exchange Membrane Fuel Cells (PEMFC) has been developed. The electrodes are deposited directly onto a Nafion electrolyte membrane from a mixture of platinized carbon, Nafion solution, and PTFE by using a spray technique. By this technique, porous electrodes are obtained with an optimized gas/electrolyte/catalyst interface, and electrode/membrane interface.

  4. Desenvolvimento de conjunto membrana-eletrodos para célula a combustível de metanol direto passiva Development of membrane electrode assembly for passive direct methanol fuel cell

    Directory of Open Access Journals (Sweden)

    Eli Carlos Lisboa Ferreira

    2010-01-01

    Full Text Available Direct methanol fuel cells (DMFCs without external pumps or other ancillary devices for fuel and oxidant supply are known as passive DMFCs and are potential candidates to replace lithium-ion batteries in powering portable electronic devices. This paper presents the results obtained from a membrane electrode assembly (MEA specifically designed for passive DMFCs. Appropriated electrocatalysts were prepared and the effect of their loadings was investigated. Two types of gas diffusion layers (GDL were also tested. The influence of the methanol concentration was analyzed in each case. The best MEA performance presented a maximum power density of 11.94 mW cm-2.

  5. Influence of Nafion film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Ohma, Atsushi; Fushinobu, Kazuyoshi; Okazaki, Ken

    2010-01-01

    The influence of Nafion film on ORR kinetics and H 2 O 2 formation on a Pt electrode was investigated using RRDE in 0.1 M HClO 4 . It was found that the Nafion-coated Pt system showed lower apparent ORR activity and more H 2 O 2 production than the bare Pt electrode system. From the temperature sensitivity, it was revealed that the apparent activation energies of ORR in the Nafion-coated Pt system were lower than the bare Pt electrode system, and the H 2 O 2 formation was suppressed with the increase of the temperature. In order to analyze the results furthermore, other systems (0.1/1.0 M, HClO 4 /CF 3 SO 3 H) with the bare Pt electrodes were also examined as references. It was exhibited that the ORR kinetic current, the H 2 O 2 formation, and the apparent activation energies of 1.0 M CF 3 SO 3 H system were close to those of the Nafion-coated Pt system. We concluded that the orientation of anion species of Nafion and CF 3 SO 3 H to the Pt surface via water molecules, as well as a fluorocarbon polymer network of Nafion, might block O 2 adsorption, resulting in the smaller effective surface area of the Pt electrode for ORR, the smaller ORR kinetic current, and the more H 2 O 2 production.

  6. Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte

    International Nuclear Information System (INIS)

    Peng, Shengjie; Li, Linlin; Tan, Huiteng; Srinivasan, Madhavi; Mhaisalkar, Subodh G.; Ramakrishna, Seeram; Yan, Qingyu

    2013-01-01

    Composite films of platinum and polyaniline (Pt/PANI) with different Pt loadings are prepared by chemical reduction and then a spin-coating process on fluorine-doped tin oxide (FTO) substrates. The obtained Pt/PANI transparent counter electrodes are applied in quasi-solid dye-sensitized solar cells (QDSCs) from front and rear light illuminations, using electrospun poly(vinylidenefluoride-co-hexafluoropropylene)/TiO 2 (PVDF-HFP/TiO 2 ) as the electrolyte. The analytical results show that the 1.8-nm sized Pt nanoparticles are distributed uniformly in the Pt/PANI film when the Pt loading is 1.5 μg cm −2 . Electrocatalytic activity of the Pt/PANI electrode with 1.5 μg cm −2 Pt loading for the I 3 − /I − redox reaction is higher than the conventional sputtered Pt electrode. Furthermore, the mean optical transmittance of the Pt/PANI electrodes is above 60% in the wavelength of 400–800 nm. The optimal QDSC composed of Pt/PANI with 1.5 μg cm −2 Pt loading exhibits power conversion efficiencies of 6.34% and 3.85%, when measured using an AM1.5G solar simulator at 100 mW cm −2 under front and rear light illuminations. The efficiencies are both higher than those of the QDSCs employing the conventional sputtered Pt counter electrode with 8.3 μg cm −2 Pt loading. Moreover, the QDSC exhibits superior long-term stability. These promising results make the potential application of Pt/PANI films as cost-effective, transparent counter electrodes

  7. Ion-selective electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhelson, Konstantin N. [St. Petersburg State Univ. (Russian Federation). Ion-Selective Electrode Laboratory

    2013-06-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing ISEs are outlined, and the transfer of methods into routine analysis is considered.

  8. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  9. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes

    Science.gov (United States)

    de Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H.

    2018-07-01

    We present high-cycle aging tests of dielectric elastomer actuators (DEAs) based on silicone elastomers, reporting on the time-evolution of actuation strain and of electrode resistance over millions of cycles. We compare several types of carbon-based electrodes, and for the first time show how the choice of electrode has a dramatic influence on DEA aging. An expanding circle DEA configuration is used, consisting of a commercial silicone membrane with the following electrodes: commercial carbon grease applied manually, solvent-diluted carbon grease applied by stamping (pad printing), loose carbon black powder applied manually, carbon black powder suspension applied by inkjet-printing, and conductive silicone-carbon composite applied by stamping. The silicone-based DEAs with manually applied carbon grease electrodes show the shortest lifetime of less than 105 cycles at 5% strain, while the inkjet-printed carbon powder and the stamped silicone-carbon composite make for the most reliable devices, with lifetimes greater than 107 cycles at 5% strain. These results are valid for the specific dielectric and electrode configurations that were tested: using other dielectrics or electrode formulations would lead to different lifetimes and failure modes. We find that aging (as seen in the change in resistance and in actuation strain versus cycle number) is independent of the actuation frequency from 10 Hz to 200 Hz, and depends on the total accumulated time the DEA spends in an actuated state.

  10. Formulation of an inhibitor radiopharmaceutical of prostatic antigen of {sup 177}Lu-Glu-Nh-CO-Nh-Lys membrane; Formulacion de un radiofarmaco inhibidor del antigeno prostatico de membrana {sup 177}Lu-Glu-NH-CO-NH-Lys

    Energy Technology Data Exchange (ETDEWEB)

    Ortega S, D.

    2015-07-01

    The prostate specific membrane antigen (PSMA) is a zinc metalloenzyme that is expressed on the cell membrane and highly expressed in prostate cancer. Recently, it has been demonstrated that the peptide sequence Glu-Nh-CO-Nh-Lys inhibit PSMA activity through an electrostatic interaction with the Zn. Several theragnostic radiopharmaceuticals with base in {sup 177}Lu have been developed for radiotherapy of specific molecular targets because gamma and beta emissions of the radionuclide (β = 0.498 MeV and γ= 0.133 MeV). However, there is currently no label a formulation for preparing a radiopharmaceutical of {sup 177}Lu-Glu-Nh-CO-Nh-Lys useful treatment of prostate cancer. The aim of this research was to optimize and document the process of production of the radiopharmaceutical {sup 177}Lu-Glu-Nh-CO-Nh-Lys for sanitary registration application before the Comision Federal para la Proteccion contra Riesgos Sanitarios (COFEPRIS). The optimization of the production process was assessed a factorial design of three variables with mixed levels (3 x 3 x 2) where the dependent variable is the radiochemical purity, the analytical method was validated by UV-Vis spectrophotometry. Next, process validation was carried out by labeling 3 lots of the optimized formulation of the radiopharmaceutical (5.55 GBq (2.16 μg) of {sup 177}LuCl{sub 3}, 90 mg peptide PSMA, 50 mg ascorbic acid and 150 μL of acetate buffer 1 M ph 5), long-term stability was performed by high resolution liquid chromatography) to determine its useful shelf life. 3 validation batches were prepared under protocols of Good Manufacturing Practice (GMP) in the Production Plant of Radiopharmaceuticals of the Instituto Nacional de Investigaciones Nucleares (ININ), meet specifications preset by obtaining a sterile and free development of bacterial endotoxin yields of labeled 100% and which retains its quality characteristics radiochemical purity greater than 90% for at least 15 days. (Author)

  11. Membrane capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Wal, van der A.

    2010-01-01

    Membrane capacitive deionization (MCDI) is an ion-removal process based on applying an electrical potential difference across an aqueous solution which flows in between oppositely placed porous electrodes, in front of which ion-exchange membranes are positioned. Due to the applied potential, ions

  12. From shell to membrane theory

    International Nuclear Information System (INIS)

    Destuynder, P.

    1981-02-01

    A new formulation of the membrane theory is presented in this paper. The assumptions which allow the Budiansky-Sanders' model or the membrane theory to be deduced from the three-dimensional case are pointed out [fr

  13. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  14. Development of a membrane electrode as assembly production process for proton exchange membrane fuel cell (PEMFC) by sieve printing; Desenvolvimento de processo de producao de conjuntos eletrodo-membrana-eletrodo para celulas a combustivel baseadas no uso de membrana polimerica conditora de protons (PEMFC) por impressa a tela

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, Rafael Nogueira

    2010-07-01

    Energy is a resource that presents historical trend of growth in demand. Projections indicate that future energy needs will require a massive use of hydrogen as fuel. The use of systems based on the use of proton exchange membrane fuel cell (PEMFC) has features that allow its application for stationary applications, automotive and portable power generation. The use of hydrogen as fuel for PEMFC has the advantage low pollutants' emission, when compared to fossil fuels. For the reactions in a PEMFC is necessary to build membrane electrode assembly (MEA). And the production of MEAs and its materials are relevant to the final cost of k W of power generated by systems of fuel cell. This represent currently a technological and financial barriers to large-scale application of this technology. In this work a process of MEAs fabrication were developed that showed high reproducibility, rapidity and low cost by sieve printing. The process of sieve printing and the ink composition as a precursor to the catalyst layer were developed, which allow the preparation of electrodes for MEAs fabrication with the implementation of the exact catalyst loading, 0.6 milligrams of platinum per square centimeters (mgPt.cm{sup -2}) suitable for cathodes and 0.4 mgPt.cm{sup -2} for anode in only one application step per electrode. The ink was developed, produced, characterized and used with similar characteristics to ink of sieve printing build for other applications. The MEAs produced had a performance of up to 712 m A.cm{sup -2} by 600 mV to 25 cm{sup 2} MEA area. The MEA cost production for MEAs of 247.86 cm{sup 2}, that can generate 1 kilowatt of energy was estimated to US$ 7,744.14 including cost of equipment, materials and labor. (author)

  15. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ......Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  16. Modification of porosity in the catalyst layer of membrane electrode assemblies using pore-forming agents; Modificacion de la porosidad en la capa catalitica de ensambles membrana-electrodo empleando agentes formadores de poros

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Reyes, Brenda [UNAM. Facultad de Quimica, Mexico D.F. (Mexico); Barbosa P., Romeli [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico); Cano Castillo, Ulises; Albarran, Lorena [Instituto de Investigaciones Electricas Cuernavaca, Morelos (Mexico)

    2009-09-15

    Membrane electrode assemblies (MEA) are the most important part of PEM fuel cells since their interface results in the electrochemical reactions that make the generation of electricity possible. The MEA is composed of a proton exchange membrane, both sides of which are impregnated with a catalyst layer, normally of carbon-supported platinum. Depending on the technique used for its fabrication (atomization, serigraphy, brush methods, chemical reduction, etc.), the properties of the MEA can be different in terms of porosity, distribution of the catalyst, thickness and structure of the catalyst layer, and the quality of the union between the catalyst layer and the membrane, etc. Currently, the porosity of the electrodes is generated by isopropanol evaporation (solvent used in the dye) during the fabrication process conducted in the Instituto de Investigaciones Electricas (IIE). This document presents the results obtained from adding a porous agent to the catalytic dye base composition used in the fabrication of MEA at the IIE. [Spanish] Los Ensambles Membrana-Electrodo (MEA's) son la parte mas importante en las celdas de combustibles tipo PEM, ya que en su interfaz se llevan a cabo las reacciones electroquimicas que hacen posible la generacion de electricidad. El MEA esta compuesto de una membrana de intercambio protonico a la cual se le impregna en ambos lados una capa catalitica normalmente de platino soportado en carbon. Dependiendo de la tecnica empleada en su fabricacion (atomizado, serigrafia, brocha, reduccion quimica, etc.), las propiedades del MEA pueden ser diferentes en cuanto a porosidad, distribucion del catalizador, grosor y estructura de la capa catalitica, asi como la calidad de la union entre la capa catalizadora y la membrana, etc. Actualmente, la porosidad de los electrodos es generada por la evaporacion del isopropanol (solvente utilizado en la tinta) durante el proceso de fabricacion que se realiza en el Instituto de Investigaciones

  17. Hamiltonian formulation of the supermembrane

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Sezgin, E.; Tanii, Y.

    1987-06-01

    The Hamiltonian formulation of the supermembrane theory in eleven dimensions is given. The covariant split of the first and second class constraints is exhibited, and their Dirac brackets are computed. Gauge conditions are imposed in such a way that the reparametrizations of the membrane with divergence free 2-vectors are unfixed. (author). 10 refs

  18. Liquid electrode

    Science.gov (United States)

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  19. Axionic membranes

    International Nuclear Information System (INIS)

    Aurilia, A.; Spallucci, E.

    1992-01-01

    A metal ring removed from a soap-water solution encloses a film of soap which can be mathematically described as a minimal surface having the ring as its only boundary. This is known to everybody. In this letter we suggest a relativistic extension of the above fluidodynamic system where the soap film is replaced by a Kalb-Ramand gauge potential B μν (x) and the ring by a closed string. The interaction between the B μν field and the string current excites a new configuration of the system consisting of a relativistic membrane bounded by the string. We call such a classical solution of the equation of motion an axionic membrane. As a dynamical system, the axionic membrane admits a Hamilton-Jacobi formulation which is an extension of the HJ theory of electromagnetic strings. (orig.)

  20. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  1. Activated carbon from orange peels as supercapacitor electrode and catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell

    Directory of Open Access Journals (Sweden)

    M. Dhelipan

    2017-05-01

    Full Text Available Activated carbon is synthesized using orange peel as precursor through chemical activation using H3PO4 and its ability as electrocatalyst support for ORR reaction is examined. The prepared material was subjected to various structural, compositional, morphological and electrochemical studies. For ORR activity, the platinum loaded on activated carbon (Pt/OP-AC was investigated by cyclic voltammograms (CVs recorded in N2 and O2 saturated 0.1 M aqueous HClO4. For supercapacitor performance, three electrode systems was tested in aqueous H2SO4 for feasibility determination and showed electrochemical double layer capacitance (EDLC behaviour which is expected for activated carbon like materials. Electrochemical surface area (ECSA of the activated carbon from orange peel is measured using CV. The physical properties of the prepared carbon are studied using SEM (scanning electron microscope, XRD (X-ray diffraction, Fourier transform infrared (FT-IR spectroscopy and Raman spectroscopy. The AC derived from orange peels delivered a high specific capacitance of 275 F g−1 at 10 mV s-1 scan rate. Hence, this study suggested that orange peels may be considered not only as a potential alternative source for synthesizing carbon supported catalyst for fuel cell application but also highlight the production of low-cost carbon for further applications like supercapacitors.

  2. A survey of reference electrodes for high temperature waters

    International Nuclear Information System (INIS)

    Molander, A.; Eriksson, Sture; Pein, K.

    2000-11-01

    In nuclear power plants, corrosion potential measurements are used to follow the conditions for different corrosion types in reactor systems, particularly IGSCC in BWRs. The goal of this work has been to give a survey of reference electrodes for high temperature water, both those that are used for nuclear environments and those that are judged to possible future development. The reference electrodes that are used today in nuclear power plants for corrosion potential measurements are of three types. Silver chloride electrodes, membrane electrodes and platinum electrodes (hydrogen electrodes). The principals for their function is described as well as the conversion of measured potentials to the SHE scale (Standard Hydrogen Electrode). Silver chloride electrodes consist of an inner reference system of silver chloride in equilibrium with a chloride solution. The silver chloride electrode is the most common reference electrode and can be used in several different systems. Platinum electrodes are usually more robust and are particularly suitable to use in BWR environment to follow the hydrogen dosage, but have limitations at low and no hydrogen dosage. Ceramic membrane electrodes can be with different types of internal reference system. They were originally developed for pH measurements in high temperature water. If pH is constant, the membrane electrode can be used as reference electrode. A survey of ceramic reference electrodes for high temperature water is given. A ceramic membrane of the type used works as an oxygen conductor, so the potential and pH in surrounding medium is in equilibrium with the internal reference system. A survey of the lately development of electrodes is presented in order to explain why the different types of electrodes are developed as well as to give a background to the possibilities and limitations with the different electrodes. Possibilities of future development of electrodes are also given. For measurements at low or no hydrogen dosage

  3. Study of the Nafion quantity effect in membrane and electrodes assemblies (MEAs) of 50 cm{sup 2} used in type proton exchange membrane (PEM) fuel cell operating with H{sub 2}/Air; Estudo do efeito da quantidade de Nafion em MEAs de 50 cm{sup 2} utilizadas em celula a combustivel tipo PEM operando com H{sub 2}/ar

    Energy Technology Data Exchange (ETDEWEB)

    Profeti, Demetrius; Colmati, Flavio; Carlindo, Adao A.J.; Paganin, Valdecir A.; Gonzalez, Ernesto R.; Ticianelli, Edson A. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: dprofeti@iqsc.usp.br

    2008-07-01

    The performance of a proton exchange membrane fuel cell (PEMFC) was investigated with the aim at characterizing the effects of the Nafion. content on the scale-up of the electrodes from 5 to 50 cm{sup 2}. It is observed that a diminution of the single cell performance occurred when the electrode area is increased from 5 to 50 cm{sup 2}. The tests carried out with different Nafion. contents, and fuel cell and humidifiers at the same temperature (T{sub cell}=T{sub H2}=T{sub air}=70 deg C) showed a slightly decrease of the fuel cell performance compared to the tests performed at different temperatures (T{sub cell}=70 deg C, T{sub H2}=85 deg C, T{sub air}=75 deg C). In the study of the variation on the Nafion. contents, the higher performance up to a current density of 0.8 A cm-2 is obtained with the 35.5 wt.% Nafion.. On the other hand, at higher current densities values, the performance of the fuel cells is very similar for the 31.0, 35.5 and 39.4 wt.% Nafion contents. (author)

  4. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  5. Low Energy Desalination Using Battery Electrode Deionization

    KAUST Repository

    Kim, Taeyoung

    2017-09-21

    New electrochemical technologies that use capacitive or battery electrodes are being developed to minimize energy requirements for desalinating brackish waters. When a pair of electrodes is charged in capacitive deionization (CDI) systems, cations bind to the cathode and anions bind to the anode, but high applied voltages (>1.2 V) result in parasitic reactions and irreversible electrode oxidation. In the battery electrode deionization (BDI) system developed here, two identical copper hexacyanoferrate (CuHCF) battery electrodes were used that release and bind cations, with anion separation occurring via an anion exchange membrane. The system used an applied voltage of 0.6 V, which avoided parasitic reactions, achieved high electrode desalination capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes between CuHCF electrodes (up to three anion and two cation exchange membranes) reduced energy consumption to only 0.02 kWh/m3 (approximately an order of magnitude lower than values reported for CDI), for an influent desalination similar to CDI (25 mM decreased to 17 mM). These results show that BDI could be effective as a very low energy method for brackish water desalination.

  6. A study for the research trends of membranes for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Sener, T.

    2004-01-01

    'Full text:' A single PEM fuel cell is comprised of a membrane electrode assembly, two bipolar plates and two fields. Membrane electrode assembly is the basic component of PEM fuel cell due to its cost and function, and it consists a membrane sandwiched between two electrocatalyst layers/electrodes and two gas diffusion layers. Increasing the PEM fuel cell operation temperature from 80 o C to 150-200 o C will prevent electrocatalysts CO poisoning and increase the fuel cell performance. Therefore, membranes must have chemical and mechanical resistance and must keep enough water at high temperatures. The aim of membrane studies through fuel cell commercialization is to produce a less expensive thin membrane with high operation temperature, chemical and mechanical resistance and water adsorption capacity. Within this frame, alternative membrane materials, membrane electrode assembly manufacture and evaluation methods are being studied. In this paper, recent studies are reviewed to give a conclusion for research trends. (author)

  7. A fast response cadmium-selective polymeric membrane electrode based on N,N'-(4-methyl-1,2-phenylene)diquinoline-2-carboxamide as a new neutral carrier.

    Science.gov (United States)

    Rezaei, B; Meghdadi, S; Zarandi, R Fazel

    2008-05-01

    A new polyvinylchloride membrane sensor for Cd(2+) ions based on N,N'-(4-methyl-1,2-phenylene)diquinoline-2-carboxamide (Mebqb) as a new and excellent neutral ionophore has been prepared. The sensor shows a Nernestian response for cadmium ions over a wide concentration range (1.0 x 10(-6) to 1.0 x 10(-1) M) with the determination coefficient of 0.9964 and slope of 29.9 +/- 0.5 mV decade(-1). The limit of detection is 8 x 10(-7) M. It has a fast response time of 3-8s and can be used for at least 8 weeks without any divergence in potential. The electrode can be used in the pH range from 4.0 to 9.0. The proposed sensor shows a very good discriminating ability towards Cd(2+) ion in comparison to some alkali, alkaline earth, transition and heavy metal ions. It was successfully applied for the direct determination of Cd(2+) in standard and real sample solutions.

  8. A fast response cadmium-selective polymeric membrane electrode based on N,N'-(4-methyl-1,2-phenylene)diquinoline-2-carboxamide as a new neutral carrier

    International Nuclear Information System (INIS)

    Rezaei, B.; Meghdadi, S.; Zarandi, R. Fazel

    2008-01-01

    A new polyvinylchloride membrane sensor for Cd 2+ ions based on N,N'-(4-methyl-1,2-phenylene)diquinoline-2-carboxamide (Mebqb) as a new and excellent neutral ionophore has been prepared. The sensor shows a Nernestian response for cadmium ions over a wide concentration range (1.0 x 10 -6 to 1.0 x 10 -1 M) with the determination coefficient of 0.9964 and slope of 29.9 ± 0.5 mV decade -1 . The limit of detection is 8 x 10 -7 M. It has a fast response time of 3-8 s and can be used for at least 8 weeks without any divergence in potential. The electrode can be used in the pH range from 4.0 to 9.0. The proposed sensor shows a very good discriminating ability towards Cd 2+ ion in comparison to some alkali, alkaline earth, transition and heavy metal ions. It was successfully applied for the direct determination of Cd 2+ in standard and real sample solutions

  9. A fast response cadmium-selective polymeric membrane electrode based on N,N'-(4-methyl-1,2-phenylene)diquinoline-2-carboxamide as a new neutral carrier

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, B. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-84111 (Iran, Islamic Republic of)], E-mail: rezaei@cc.iut.ac.ir; Meghdadi, S.; Zarandi, R. Fazel [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-84111 (Iran, Islamic Republic of)

    2008-05-01

    A new polyvinylchloride membrane sensor for Cd{sup 2+} ions based on N,N'-(4-methyl-1,2-phenylene)diquinoline-2-carboxamide (Mebqb) as a new and excellent neutral ionophore has been prepared. The sensor shows a Nernestian response for cadmium ions over a wide concentration range (1.0 x 10{sup -6} to 1.0 x 10{sup -1} M) with the determination coefficient of 0.9964 and slope of 29.9 {+-} 0.5 mV decade{sup -1}. The limit of detection is 8 x 10{sup -7} M. It has a fast response time of 3-8 s and can be used for at least 8 weeks without any divergence in potential. The electrode can be used in the pH range from 4.0 to 9.0. The proposed sensor shows a very good discriminating ability towards Cd{sup 2+} ion in comparison to some alkali, alkaline earth, transition and heavy metal ions. It was successfully applied for the direct determination of Cd{sup 2+}in standard and real sample solutions.

  10. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  11. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  12. Perovskite electrodes and method of making the same

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.

    2005-09-20

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  13. Detecting Levels of Polyquaternium-10 (PQ-10) via Potentiometric Titration with Dextran Sulphate and Monitoring the Equivalence Point with a Polymeric Membrane-Based Polyion Sensor

    OpenAIRE

    Ferguson, Stephen A.; Wang, Xuewei; Meyerhoff, Mark E.

    2016-01-01

    Polymeric quaternary ammonium salts (polyquaterniums) have found increasing use in industrial and cosmetic applications in recent years. More specifically, polyquaternium-10 (PQ-10) is routinely used in cosmetic applications as a conditioner in personal care product formulations. Herein, we demonstrate the use of potentiometric polyion-sensitive polymeric membrane-based electrodes to quantify PQ-10 levels. Mixtures containing both PQ-10 and sodium lauryl sulfate (SLS) are used as model sample...

  14. Electrode Processes in Porous Electrodes.

    Science.gov (United States)

    1985-11-26

    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  15. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  16. Polyacrylate microspheres composite for all-solid-state reference electrodes.

    Science.gov (United States)

    Kisiel, Anna; Donten, Mikołaj; Mieczkowski, Józef; Rius-Ruiz, F Xavier; Maksymiuk, Krzysztof; Michalska, Agata

    2010-09-01

    A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane.

  17. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  18. Analysis for impedance electrochemistry 'on-line' of membrane/electrode assemble (MEA) of protons exchange membrane fuel cells (PEMFC); Analise por impedancia eletroquimica 'on-line' de conjuntos eletrodos/membrana (MEA) de celulas a combustivel a membrana polimetrica (PEMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio Rodolfo dos

    2007-07-01

    This work reports results of studies and characterization on membrane electrode assemblies (MEAs) for proton exchange membrane fuel cell (PEMFC). Some cell operation conditions and different processes of MEA production were investigated. The electrochemical impedance spectroscopy technique (EIS) (in situ - 0 to 16 A) was used 'on-line' as a tool for diagnosis, concerning the cell performance. The EIS measurements were carried out with a FC350 Fuel Cell EIS System (GAMRY), coupled to a PC4 potentiostat/galvanostat and connected to the electronic load (TDI) for 'on-line' EIS experiments (100 mHz - 10 kHz, dU = 5 mV). MEAs with 25 cm{sup 2} surface area, using PtM/C 20% (M Ru, Sn or Ni) electrocatalysts were manufactured using the alcohol reduction process (ARP). The catalytic ink was applied directly into the carbon cloth (GDL) and pressed in the Nafion membrane (105). MEAs using Pt/C and Pt Ru/C 20% from E-TEK electrocatalysts were manufactured by comparison. All the cathodes were sprayed with Pt/C 20% from E-TEK. The noble metal concentrations used were set to 0.4 mg Pt.cm{sup -2} at the anode and 0.6 mg Pt.cm{sup -2} at the cathode (E-TEK). Nyquist diagrams of the MEAs with Pt/C and PtRu/C from E-TEK or PtM/C (M = Ru, Sn or Ni) ARP showed essentially the same ohmic resistances for the MEAs. This fact can be explained by suppression of agglomerates during the MEA preparation process or by the homogeneity of the anchored electrocatalysts at the carbon surface. It could also be observed, at low current densities, that there was a significant performance difference between the electrocatalysts from E-TEK and those prepared with the alcohol reduction process. The polarization curves results confirmed that the Pt M/C (M = Ru, Sn or Ni) ARP showed an activity increase for the methanol and ethanol fed cells. The technique of EIE was shown efficient for the evaluation of the method preparation of MEAs and the acting of the cell, the results of EIE

  19. Analysis for impedance electrochemistry 'on-line' of membrane/electrode assemble (MEA) of protons exchange membrane fuel cells (PEMFC); Analise por impedancia eletroquimica 'on-line' de conjuntos eletrodos/membrana (MEA) de celulas a combustivel a membrana polimetrica (PEMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio Rodolfo dos

    2007-07-01

    This work reports results of studies and characterization on membrane electrode assemblies (MEAs) for proton exchange membrane fuel cell (PEMFC). Some cell operation conditions and different processes of MEA production were investigated. The electrochemical impedance spectroscopy technique (EIS) (in situ - 0 to 16 A) was used 'on-line' as a tool for diagnosis, concerning the cell performance. The EIS measurements were carried out with a FC350 Fuel Cell EIS System (GAMRY), coupled to a PC4 potentiostat/galvanostat and connected to the electronic load (TDI) for 'on-line' EIS experiments (100 mHz - 10 kHz, dU = 5 mV). MEAs with 25 cm{sup 2} surface area, using PtM/C 20% (M Ru, Sn or Ni) electrocatalysts were manufactured using the alcohol reduction process (ARP). The catalytic ink was applied directly into the carbon cloth (GDL) and pressed in the Nafion membrane (105). MEAs using Pt/C and Pt Ru/C 20% from E-TEK electrocatalysts were manufactured by comparison. All the cathodes were sprayed with Pt/C 20% from E-TEK. The noble metal concentrations used were set to 0.4 mg Pt.cm{sup -2} at the anode and 0.6 mg Pt.cm{sup -2} at the cathode (E-TEK). Nyquist diagrams of the MEAs with Pt/C and PtRu/C from E-TEK or PtM/C (M = Ru, Sn or Ni) ARP showed essentially the same ohmic resistances for the MEAs. This fact can be explained by suppression of agglomerates during the MEA preparation process or by the homogeneity of the anchored electrocatalysts at the carbon surface. It could also be observed, at low current densities, that there was a significant performance difference between the electrocatalysts from E-TEK and those prepared with the alcohol reduction process. The polarization curves results confirmed that the Pt M/C (M = Ru, Sn or Ni) ARP showed an activity increase for the methanol and ethanol fed cells. The technique of EIE was shown efficient for the evaluation of the method preparation of MEAs and the acting of the cell, the results of EIE showed coherence in the

  20. Effect of electrode shape on grounding resistances - Part 1

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Dahlin, Torleif

    2016-01-01

    Electrode grounding resistance is a major factor affecting measurement quality in electric resistivity tomography (ERT) measurements for cryospheric applications. Still, little information is available on grounding resistances in the geophysical literature, mainly because it is difficult to measure....... The focus-one protocol is a new method for estimating single electrode grounding resistances by measuring the resistance between a single electrode in an ERT array and all the remaining electrodes connected in parallel. For large arrays, the measured resistance is dominated by the grounding resistance...... of the electrode under test, the focus electrode. We have developed an equivalent circuit model formulation for the resistance measured when applying the focus-one protocol. Our model depends on the individual grounding resistances of the electrodes of the array, the mutual resistances between electrodes...

  1. Flow and fouling in membrane filters: Effects of membrane morphology

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  2. Polystyrene Based Silver Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Shiva Agarwal

    2002-06-01

    Full Text Available Silver(I selective sensors have been fabricated from polystyrene matrix membranes containing macrocycle, Me6(14 diene.2HClO4 as ionophore. Best performance was exhibited by the membrane having a composition macrocycle : Polystyrene in the ratio 15:1. This membrane worked well over a wide concentration range 5.0×10-6–1.0×10-1M of Ag+ with a near-Nernstian slope of 53.0 ± 1.0 mV per decade of Ag+ activity. The response time of the sensor is <15 s and the membrane can be used over a period of four months with good reproducibility. The proposed electrode works well in a wide pH range 2.5-9.0 and demonstrates good discriminating power over a number of mono-, di-, and trivalent cations. The sensor has also been used as an indicator electrode in the potentiometric titration of silver(II ions against NaCl solution. The sensor can also be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of Ag+ in solution having up to 25% (v/v nonaqueous fraction.

  3. Improved performance of single-chamber microbial fuel cells through control of membrane deformation

    KAUST Repository

    Zhang, Xiaoyuan; Cheng, Shaoan; Huang, Xia; Logan, Bruce E.

    2010-01-01

    , but in initial experiments we observed the opposite using a membrane electrode assembly MFC. The reason was identified to be membrane deformation, which resulted in water and gas trapped between the membrane and cathode. To correct this, stainless steel mesh

  4. Study for increasing the stabilization time of a catalytic dye to facilitate the fabrication of membrane electrode assemblies; Estudio para incrementar el tiempo de estabilizacion de una tinta catalitica para facilitar la fabricacion de ensambles membrana-electrodo

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Martinez Vado, F. Isaias [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico); Cano Castillo, Ulises, Albarran Sanchez, Lorena [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2009-09-15

    An infrastructure project has been underway for hydrogen technology and fuel cells at the Electrical Research Institute (IIE, Spanish acronym). Part of this project is an activity for the fabrication of membrane electrode assemblies (MEA). Currently, a fabrication process is well-established for the MEA using the spray technique. In addition, a catalytic dye base composition has been developed for use in the fabrication of high-quality MEA with a good degree of reproducibility. Nevertheless, the instability of the dye over time prevents continuous fabrication of MEA. This document presents the results obtained, to-date, of research conducted at the IIE aimed at increasing the stability of the catalytic dye by adding a surfactant with different concentrations and increasing the concentration of the Nafion® solution. It was found that the effect of adding the surfactant to the catalytic dye results in a qualitative decrease in the agglomerate sizes, while also decreasing the porosity of the dye once it has dried. In addition, it was found that increasing the amount of Nafion® in the catalytic die increases the porosity. [Spanish] En el Instituto de Investigaciones Electricas (IIE) se ha venido trabajando en un proyecto de infraestructura sobre la tecnologia de hidrogeno y celdas de combustible. Dentro de este proyecto se tiene una actividad orientada a la fabricacion de Ensambles Membrana-Electrodo (MEA's). Actualmente se tiene un proceso de fabricacion bien establecido para la elaboracion de MEA's utilizando la tecnica de rociado, asimismo, se tiene una composicion base de tinta catalitica con la cual se fabrican MEA's de buena calidad y con buen grado de reproducibilidad. Sin embargo, la inestabilidad de la tinta con respecto al tiempo impide tener una fabricacion continua de los MEA's. En este documento se presentan los resultados obtenidos hasta ahora de una investigacion que se realiza en el IIE orientada a incrementar la estabilidad de la

  5. Fuel cell electrodes: Electrochemical characterization and electrodeposition of Pt nanoparticles

    CSIR Research Space (South Africa)

    Modibedi, M

    2008-05-01

    Full Text Available Fuel Cell (PEMFC) Electrolyte: solid polymer membrane (typically Nafion) Types of fuel cells (FC) ? CSIR 2007 www.csir.co.za PEMFC http://fuelcellsworks.com/ ? CSIR 2007 www.csir.co.za Electrodes...

  6. Electrode redox reactions with polarizable molecules

    Science.gov (United States)

    Matyushov, Dmitry V.

    2018-04-01

    A theory of redox reactions involving electron transfer between a metal electrode and a polarizable molecule in solution is formulated. Both the existence of molecular polarizability and its ability to change due to electron transfer distinguish this problem from classical theories of interfacial electrochemistry. When the polarizability is different between the oxidized and reduced states, the statistics of thermal fluctuations driving the reactant over the activation barrier becomes non-Gaussian. The problem of electron transfer is formulated as crossing of two non-parabolic free energy surfaces. An analytical solution for these free energy surfaces is provided and the activation barrier of electrode electron transfer is given in terms of two reorganization energies corresponding to the oxidized and reduced states of the molecule in solution. The new non-Gaussian theory is, therefore, based on two theory parameters in contrast to one-parameter Marcus formulation for electrode reactions. The theory, which is consistent with the Nernst equation, predicts asymmetry between the cathodic and anodic branches of the electrode current. They show different slopes at small electrode overpotentials and become curved at larger overpotentials. However, the curvature of the Tafel plot is reduced compared to the Marcus-Hush model and approaches the empirical Butler-Volmer form with different transfer coefficients for the anodic and cathodic currents.

  7. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with an alkaline earth metal....

  8. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with a lanthanide metal....

  9. A solvated electron lithium electrode for secondary batteries

    Science.gov (United States)

    Sammells, A. F.; Semkow, K. W.

    1986-09-01

    Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.

  10. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  11. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  12. Low Energy Desalination Using Battery Electrode Deionization

    KAUST Repository

    Kim, Taeyoung; Gorski, Christopher A.; Logan, Bruce

    2017-01-01

    capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes

  13. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  14. A survey of reference electrodes for high temperature waters; Oeversikt av referenselektroder i hoegtemperaturvatten

    Energy Technology Data Exchange (ETDEWEB)

    Molander, A.; Eriksson, Sture; Pein, K. [Studsvik Nuclear, Nykoeping (Sweden)

    2000-11-01

    In nuclear power plants, corrosion potential measurements are used to follow the conditions for different corrosion types in reactor systems, particularly IGSCC in BWRs. The goal of this work has been to give a survey of reference electrodes for high temperature water, both those that are used for nuclear environments and those that are judged to possible future development. The reference electrodes that are used today in nuclear power plants for corrosion potential measurements are of three types. Silver chloride electrodes, membrane electrodes and platinum electrodes (hydrogen electrodes). The principals for their function is described as well as the conversion of measured potentials to the SHE scale (Standard Hydrogen Electrode). Silver chloride electrodes consist of an inner reference system of silver chloride in equilibrium with a chloride solution. The silver chloride electrode is the most common reference electrode and can be used in several different systems. Platinum electrodes are usually more robust and are particularly suitable to use in BWR environment to follow the hydrogen dosage, but have limitations at low and no hydrogen dosage. Ceramic membrane electrodes can be with different types of internal reference system. They were originally developed for pH measurements in high temperature water. If pH is constant, the membrane electrode can be used as reference electrode. A survey of ceramic reference electrodes for high temperature water is given. A ceramic membrane of the type used works as an oxygen conductor, so the potential and pH in surrounding medium is in equilibrium with the internal reference system. A survey of the lately development of electrodes is presented in order to explain why the different types of electrodes are developed as well as to give a background to the possibilities and limitations with the different electrodes. Possibilities of future development of electrodes are also given. For measurements at low or no hydrogen dosage

  15. Micromachined Dense Palladium Electrodes for Thin-film Solid Acid Fuel Cells

    NARCIS (Netherlands)

    Unnikrishnan, S.

    2009-01-01

    This thesis paves the way towards the microfabrication of a solid acid electrolyte based fuel cell (µSAFC), which has a membrane electrode assembly (MEA) consisting of a thin-film of water soluble electrolyte encapsulated between two dense palladium electrode membranes. This project work

  16. Reverse iontophoresis of lithium: electrode formulation using a thermoreversible polymer.

    Science.gov (United States)

    Wascotte, Valentine; Leboulanger, Benoît; Guy, Richard H; Begoña Delgado-Charro, M

    2005-01-01

    This work investigated the use of a thermoreversible gel as a collector vehicle in reverse iontophoresis applications. A 20% (w/w) aqueous gel of Pluronic F127 was a suitable receptor medium to be used at the cathodal chamber. In vitro iontophoresis experiments investigated the simultaneous extraction of lithium (analyte of interest) and sodium (used as an internal standard) into either a control buffer or a gelled receptor. The gelification process at room temperature provided a suitable consistency and contact with the skin surface during the iontophoresis experiments. Subsequent cooling of the gelled solution to 4 degrees C allows an easy recovery of lithium and sodium for later quantification. Both the lithium extraction fluxes and the lithium to sodium ratio of extraction fluxes were linearly related to the subdermal lithium concentration. On the whole, the results show that thermoreversible polymer solutions offer a simple and convenient way to handle samples in reverse iontophoresis studies.

  17. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  18. Design of a new electrode array for cochlear implants

    International Nuclear Information System (INIS)

    Kha, H.; Chen, B.

    2010-01-01

    Full text: This study aims to design a new electrode array which can be precisely located beneath the basilar membrane within the cochlear scala tympani. This placement of the electrode array is beneficial for increasing the effectiveness of the electrical stimulation of the audi tory nerves and maximising the growth factors delivered into the cochlea for regenerating the progressively lost auditory neurons, thereby significantly improving performance of the cochlear implant systems. Methods The design process involved two steps. First, the biocom patible nitinol-based shape memory alloy, of which mechanical deformation can be controlled using electrical cUTents/fields act vated by body temperature, was selected. Second, five different designs of the electrode array with embedded nitinol actuators were studied (Table I). The finite element method was employed to predict final positions of these electrode arrays. Results The electrode array with three 6 mm actuators at 2-8, 8-J4 and 14-20 mm from the tip (Fig. I) was found to be located most closely to the basilar membrane, compared with those in the other four cases. Conclusions A new nitinol cochlear implant electrode array with three embedded nitinol actuators has been designed. This electrode array is expected to be located beneath the basilar membrane for maximising the delivery of growth factors. Future research will involve the manufacturing of a prototype of this electrode array for use in insertion experiments and neurotrophin release tests.

  19. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  20. Diffuse Charge Effects in Fuel Cell Membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Franco, A.A.; Bazant, M.Z.

    2009-01-01

    It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, the standard model for electron transfer kinetics at the membrane/electrode

  1. Proton exchange membrane water electrolysers

    International Nuclear Information System (INIS)

    Millet, P.

    2007-01-01

    This work deals with the PEM water electrolysis process. Are successively described: the thermodynamical, kinetic and energetic aspects, the different possible used electrolysis cells, the preparation of the membrane-electrode assembling, the used electrolysers, the annex production equipment, the uses fields and the limits of the process. (O.M.)

  2. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    Science.gov (United States)

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  4. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  5. Near-Electrode Imager

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II

    1999-05-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  6. Reactor vessel using metal oxide ceramic membranes

    Science.gov (United States)

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  7. Round window electrode insertion potentiates retention in the scala tympani.

    Science.gov (United States)

    Connor, Stephen E J; Holland, N Julian; Agger, Andreas; Leong, Annabelle C; Varghese, Re Ajay; Jiang, Dan; Fitzgerald O'Connor, Alec

    2012-09-01

    The round window membrane (RWM)-intentioned approach is superior to the traditional bony cochleostomy (BC) approach in obtaining electrode placement within the scala tympani (ST). Cochlear implant outcome is influenced by several factors, including optimal placement and retention of the electrode array within the ST. The present study aimed to assess whether the RWM route is superior to a traditional BC for placement and retention of the electrode array in the ST. This was a prospective consecutive non-randomized comparison study. All patients were implanted with the Advanced Bionics 1J electrode array. The RWM approach (n = 32) was compared with a traditional BC group (n = 33). The outcome measure was the electrode position as judged within the scalar chambers at four points along the basal turn using postoperative computed tomography (CT). When the mean position scores were compared, the RWM-intentioned group had significantly more electrodes directed towards the ST compartment than the BC group (p scala vestibuli.

  8. ELECTROD FLUOR-SELECTIV

    Directory of Open Access Journals (Sweden)

    Mariana DÎRU

    2018-03-01

    Full Text Available A fost preparat un senzor anionic specific, bazat pe pivalatul trinuclear al cromului(III ca material electro­activ încorporat în membrana PVC plastifiată. Senzorul prezintă răspuns Nernstian (55,78 mV/decadă în intervalul de concentrație 10-1-10-4 mol/L cu limita de detecție 2,0∙10-5 mol/L pentru anionul fluorură. Domeniul optim de pH de funcţionare a electrodului asamblat este ˃5. Senzorul dat are un timp de răspuns de 30-60 s și reproductibilitatea rezultatelor se menține timp de 3 luni. Coeficienții potențiometrici ai selectivității au fost determinați prin metoda soluțiilor separate. A fost realizată aplicarea acestor electrozi la analiza pastei de dinți ce conține fluorură și rezultatele experimentale au fost comparate cu datele de pe prospect.FLUORIDE-SELECTIVE ELECTRODEA specific anionic sensor has been prepared, based on trinuclearchromium(III pivalate as sensing material incorpo­rated into the plasticized PVC-membrane. The sensor exhibited Nernstian response (55,78 mV/decade in the region between 10-1-10-4 mol/L with a detection limit of 2,0∙10-5 mol/L for fluoride. The working pH of the electrode was in the 5-6 range. The sensor has a response time 30-60 s and can be used for least 3 month. The potentiometric selectivity coefficients were determined by separate solution method. Application of these electrodes to the analysis of toothpaste containing fluoride has been realized and experimental results have been compared with the data on the prospectus.

  9. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  10. Audits of radiopharmaceutical formulations

    International Nuclear Information System (INIS)

    Castronovo, F.P. Jr.

    1992-01-01

    A procedure for auditing radiopharmaceutical formulations is described. To meet FDA guidelines regarding the quality of radiopharmaceuticals, institutional radioactive drug research committees perform audits when such drugs are formulated away from an institutional pharmacy. All principal investigators who formulate drugs outside institutional pharmacies must pass these audits before they can obtain a radiopharmaceutical investigation permit. The audit team meets with the individual who performs the formulation at the site of drug preparation to verify that drug formulations meet identity, strength, quality, and purity standards; are uniform and reproducible; and are sterile and pyrogen free. This team must contain an expert knowledgeable in the preparation of radioactive drugs; a radiopharmacist is the most qualified person for this role. Problems that have been identified by audits include lack of sterility and apyrogenicity testing, formulations that are open to the laboratory environment, failure to use pharmaceutical-grade chemicals, inadequate quality control methods or records, inadequate training of the person preparing the drug, and improper unit dose preparation. Investigational radiopharmaceutical formulations, including nonradiolabeled drugs, must be audited before they are administered to humans. A properly trained pharmacist should be a member of the audit team

  11. Reactive decontamination formulation

    Science.gov (United States)

    Giletto, Anthony [College Station, TX; White, William [College Station, TX; Cisar, Alan J [Cypress, TX; Hitchens, G Duncan [Bryan, TX; Fyffe, James [Bryan, TX

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  12. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Derivation of finite element formulation for electrochemical governing equations of ionic polymer actuators

    International Nuclear Information System (INIS)

    Kang, Sung Soo

    2013-01-01

    Ionic polymer actuators have recently attracted a great deal of interest as electroactive materials with potentials as soft actuators, sensors, artificial muscles, robotics, and microelectromechanical systems because of their numerous advantages, including low voltage requirement, high compliance, lightness, and flexibility. The platinum-plated Nafion, a perfluorosulfonic acid membrane made by Dupont, is commonly used as a polyelectrolyte in actuator applications. The bending of the ionic polymer actuators in an electric field is dominated by the electro-osmosis of hydrated ions and slow diffusion of free water molecules. The changes in hydration cause a local volumetric strain resulting in bending deformation, such as expansion and contraction. In this study, a two-dimensional finite element (FE) formulation based on the Galerkin method is derived for the governing equations describing these electrochemical responses. In addition, a three-dimensional FE deformation analysis is conducted on the bending behaviors of the platinum-plated ionic polymer actuators. Several numerical studies for ionic polymer actuators, such as plates with various electrode arrangements and disk models in electric field, are performed to confirm the validity of the proposed formulation.

  14. Preparation of radiopharmaceutical formulations

    International Nuclear Information System (INIS)

    Simon, J.; Garlich, J.R.; Frank, R.K.; McMillan, K.

    1998-01-01

    Radiopharmaceutical formulations for complexes comprising at least one radionuclide complexed with a ligand, or its physiologically-acceptable salts thereof, especially 153 samarium-ethylenediaminetetramethylenephosphonic acid, which optionally contains a divalent metal ion, e.g. calcium, and is frozen, thawed, and then administered by injection. Alternatively, the radiopharmaceutical formulations must contain the divalent metal and are frozen only if the time before administration is sufficiently long to cause concern for radiolysis of the ligand. 2 figs., 9 tabs

  15. Tariff formulation and equalization

    International Nuclear Information System (INIS)

    Svartsund, Trond

    2003-01-01

    The primary goal of the transmission tariff is to provide for socioeconomic use of the transmission grid. The present tariff structure is basically right. The responsibility for the formulation of the tariff resides with the local grid owner. This must take place in agreement with the current regulations which are passed by the authorities. The formulation must be adaptable to the local requirements. EBL (Norwegian Electricity Industry Association) is content with the current regulations

  16. Uncharged positive electrode composition

    Science.gov (United States)

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  17. Results of the LIRES Round Robin test on high temperature reference electrodes for LWR applications

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, R.W. [SCK.CEN, Nuclear Research Centre Belgium, Boeretang 200, B-2400 Mol (Belgium); Nagy, G. [Magyar Tudomanyos Akademia KFKI Atomenergia Kutatointezet, AEKI, Konkoly Thege ut 29-33, 1121 Budapest (Hungary); Feron, D. [CEA Saclay, 91191 Gif-Sur-Yvette Cedex (France); Navas, M. [CIEMAT, Edificio 30, Dpto. Fision Nuclear, Avda. Complutense 22, 28040 Madrid, (Spain); Bogaerts, W. [KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven (Belgium); Karnik, D. [Nuclear Research Institute, NRI, Rez (Czech Republic); Dorsch, T. [Framatone ANP, Inc., Charlotte, North Carolina (United States); Molander, A. [Studsvik AB SE-611 82 Nykoeping (Sweden); Maekelae, K. [Materials and Structural Integrity, VTT Technical Research Centre of Finland, Kemistintie 3, P.O. Box 1704, FIN-02044 VTT (Finland)

    2004-07-01

    A European sponsored research project has been started on 1 October 2000 to develop high temperature reference electrodes that can be used for in-core electrochemical measurements in Light Water Reactors (LWR's). This LIRES-project (Development of Light Water Reactor Reference Electrodes) consists of 9 partners (SCK-CEN, AEKI, CEA, CIEMAT, KU Leuven, NRI Rez, Framatone ANP, Studsvik Nuclear and VTT) and will last for four years. The main objective of this LIRES project is to develop a reference electrode, which is robust enough to be used inside a LWR. Emphasize is put on the radiation hardness of both the mechanical design of the electrode as the proper functioning of the electrode. A four steps development trajectory is foreseen: (1) To set a testing standard for a Round Robin, (2) To develop different reference electrodes, (3) To perform a Round Robin test of these reference electrodes followed by selection of the best reference electrode(s), (4) To perform irradiation tests under appropriate LWR conditions in a Material Test Reactor (MTR). Four different high temperature reference electrodes have been developed and are being tested in a Round Robin test. These electrodes are: A Ceramic Membrane Electrode (CME), a Rhodium electrode, an external Ag/AgCl electrode and a Palladium electrode. The presentation will focus on the results obtained with the Round Robin test. (authors)

  18. Strategies of Miniaturised Reference Electrodes Integrated in a Silicon Based “one chip” pH Sensor

    OpenAIRE

    Simonis, Anette; Lüth, Hans; Wang, Joseph; Schöning, J.

    2003-01-01

    Different types of Ag/AgCl reference electrodes have been realised by means of thin- and thick-film technique. For inner electrolyte, KCl-containing membranes have been deposited and different coatings have been used to protect the reference electrode from a fast leaching out of KCl. The stability of the potential of the reference electrodes without KClcontaining membranes in 3 M KCl was about 7 hours for thin-film electrodes and up to 90 hours for thick-film electrodes. The reference electro...

  19. Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity.

    Science.gov (United States)

    Kingsbury, Ryan S; Flotron, Sophie; Zhu, Shan; Call, Douglas F; Coronell, Orlando

    2018-04-17

    Ion exchange membranes (IEMs) are versatile materials relevant to a variety of water and waste treatment, energy production, and industrial separation processes. The defining characteristic of IEMs is their ability to selectively allow positive or negative ions to permeate, which is referred to as permselectivity. Measured values of permselectivity that equal unity (corresponding to a perfectly selective membrane) or exceed unity (theoretically impossible) have been reported for cation exchange membranes (CEMs). Such nonphysical results call into question our ability to correctly measure this crucial membrane property. Because weighing errors, temperature, and measurement uncertainty have been shown to not explain these anomalous permselectivity results, we hypothesized that a possible explanation are junction potentials that occur at the tips of reference electrodes. In this work, we tested this hypothesis by comparing permselectivity values obtained from bare Ag/AgCl wire electrodes (which have no junction) to values obtained from single-junction reference electrodes containing two different electrolytes. We show that permselectivity values obtained using reference electrodes with junctions were greater than unity for CEMs. In contrast, electrodes without junctions always produced permselectivities lower than unity. Electrodes with junctions also resulted in artificially low permselectivity values for AEMs compared to electrodes without junctions. Thus, we conclude that junctions in reference electrodes introduce two biases into results in the IEM literature: (i) permselectivity values larger than unity for CEMs and (ii) lower permselectivity values for AEMs compared to those for CEMs. These biases can be avoided by using electrodes without a junction.

  20. Formulation of Ionic-Liquid Electrolyte To Expand the Voltage Window of Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    2015-03-18

    An effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic-liquid (IL) electrolytes is reported. Using model electrochemical cells based on two identical onion-like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Also, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  1. Multiple-membrane multiple-electrolyte redox flow battery design

    Science.gov (United States)

    Yan, Yushan; Gu, Shuang; Gong, Ke

    2017-05-02

    A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte.

  2. Bipolar plates for polymer electrolyte membrane fuel cells made of thermal and electrical high conductivity thermoplastics. Formulation, production, characterization and application; Bipolarplatten fuer Polymerelektrolytmembran-Brennstoffzellen aus thermisch und elektrisch hochleitfaehigen thermoplastischen Kunststoffen. Rezeptierung, Herstellung, Charakterisierung und Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Ralf Leonhard

    2008-07-01

    The upcoming lack of primary energy sources and the need of reducing the anthropogenic climate change led to increased research activities in the field of Fuel Cells (FC) technology within the last ten years in Europe, the USA and Japan. Especially the automotive industry is highly interested in developing zero emission cars as a replacement of nowadays cars within the next twenty years. Not only for mobile applications the Polymer Electrolyte Membrane Fuel Cell systems (PEM-FC systems) is the focus of research and development. Also stationary (PEM-) FC applications seem to be more and more interesting for a decentralized energy supply, producing electricity and heat (Vaillant FC-Systems, Bosch/Junkers). For this purpose, system miniaturizing and weight reduction (70-90 wt-% of the stack itself is due to bipolar- and endplate) is not that essential as it is for mobile appliance, resulting in earlier commercial market introduction of these systems within the next few years. Not only the weight reduction of the FC-stack itself, but also the cost cutting of its components is vital for the economic success of this technology. The three most expensive components of the stack are the perfluorsulfonated ion conducting Membranen (PEM: Nafion, Ashai, Ashai glass), the noble metal catalyst (Platinum and/or Ruthenium) and the Bipolar Plate (BPP). The moulding processes (injection and/or compression moulding) of polymer materials allow highly integrated, tool reduced mass production of tailored stack components like the BP, the endplate, cell frame and peripheral components. The objective of this thesis is to describe the development of an conductive functionalised material suitable for moulding BPP, to investigate compounding optimisation methods (DOE) and evaluate the best fit parameters, to analyse the rheological behaviour of these highly filled compounds, to discuss suitable polymer related manufacturing processes like hot pressing, injection moulding and profile

  3. Platinum and Palladium Alloys Suitable as Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt, Pd and mixtures thereof alloyed with a further element selected from Sc, Y and La as well as any mixtures thereof, wherein said alloy is supported on a conductive...

  4. Electrode stabilizing materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  5. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  6. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1976-01-01

    Progress in Surface and Membrane Science, Volume 10 covers the advances in surface and membrane science. The book discusses the selective changes of cellular particles influencing sedimentation properties; and the rotating disk and ring-disk electrodes in investigations of surface phenomena at the metal-electrolyte interface. The text also describes the membrane potential of phospholipid bilayer and biological membranes; the adsorption of surfactant monolayers at gas/liquid and liquid/liquid interfaces; and the enzymes immobilized on glass. Chemists and people involved in electrochemistry will

  7. Granulated decontamination formulations

    Science.gov (United States)

    Tucker, Mark D.

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  8. Nonlinear Impedance of Whole Cells Near an Electrode as a Probe of Mitochondrial Activity

    Directory of Open Access Journals (Sweden)

    John H. Miller Jr.

    2011-04-01

    Full Text Available By simultaneously measuring the bulk media and electrode interface voltages of a yeast (Saccharomyces cerevisiae suspension subjected to an AC voltage, a yeast-dependent nonlinear response was found only near the current injection electrodes. Computer simulation of yeast near a current injection electrode found an enhanced voltage drop across the yeast near the electrode due to slowed charging of the electrode interfacial capacitance. This voltage drop is sufficient to induce conformation change in membrane proteins. Disruption of the mitochondrial electron transport chain is found to significantly change the measured nonlinear current response, suggesting nonlinear impedance can be used as a non-invasive probe of cellular metabolic activity.

  9. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    International Nuclear Information System (INIS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Wang, You; Luo, Zhiyuan

    2017-01-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3 α ,12 α -bis(4-trifluoroacetylbenzoyloxy)-5 β -cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  −27.5 mV/decade with a detection limit of 3.6 * 10 −5 mol l −1 . Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance. (paper)

  10. Dissolution Model Development: Formulation Effects and Filter Complications

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Holm, Rene; Jacobsen, Jette

    2016-01-01

    This study describes various complications related to sample preparation (filtration) during development of a dissolution method intended to discriminate among different fenofibrate immediate-release formulations. Several dissolution apparatus and sample preparation techniques were tested. The fl....... With the tested drug–formulation combination, the best in vivo–in vitro correlation was found after filtration of the dissolution samples through 0.45-μm hydrophobic PTFE membrane filters....

  11. Amperometric biosensor for the detection of hydrogen peroxide using catalase modified electrodes in polyacrylamide.

    Science.gov (United States)

    Varma, Shailly; Mattiasson, Bo

    2005-09-23

    A simple biosensor for the detection of hydrogen peroxide in organic solvents has been developed and coupled to a flow injection analysis (FIA) system. Catalase was entrapped in polyacrylamide gel and placed on the surface of platinum (working electrode) fixed in a Teflon holder with Ag-wire (auxiliary electrode), followed by addition of filter paper soaked in KCl. The entrapped catalase gel was held on the electrode using membranes. The effects of cellulose and polytetrafluroethylene (PTFE) membranes on the electrode response towards hydrogen peroxide have been studied. The modified electrode has been used to study the detection of hydrogen peroxide in solvents like water, dimethyl sulfoxide (DMSO), and 1,4-dioxane using amperometric techniques like cyclic voltammetry (CV) and FIA. The CV of modified catalase electrode showed a broad oxidation peak at -150 mV and a clear reduction peak at -212 mV in the presence of hydrogen peroxide. Comparison of CV with hydrogen peroxide in various solvents has been carried out. The electrode showed an irreversible kinetics with DMSO as the solvent. A flow cell has been designed in order to carry on FIA studies to obtain calibration plots for hydrogen peroxide with the modified electrode. The calibration plots in several solvents such as water, dimethyl sulfoxide, 1,4-dioxane have been obtained. The throughput of the enzyme electrode was 10 injections per hour. Due to the presence of membrane the response time of the electrode is concentration dependent.

  12. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  13. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary; Katuri, Krishna; Werner, Craig; Saikaly, Pascal; Sandoval, Rodrigo Jimenez; Lai, Zhiping; Chen, Wei; Jeon, Sungil

    2015-01-01

    the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable

  14. Polymeric membrane neodymium(III)-selective electrode based on 11,13-diaza-4,7,12-trioxo-2(3),8(9)-dibenzoyl- cyclotetridecane-1,11-diene

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sulekh [Department of Chemistry, Zakir Husain College, University of Delhi, J.L.N. Marg, New Delhi, 110002 (India)], E-mail: schandra_00@yahoo.com; Singh, Dev Raj [Department of Chemistry, Zakir Husain College, University of Delhi, J.L.N. Marg, New Delhi, 110002 (India)

    2009-02-25

    We found that 11, 13-diaza-4, 7, 12-trioxo-2(3), 8(9)-dibenzoyl-cyclotetridecane-1, 11-diene (DATODBCT) can be used as an excellent ionophore in the construction of a novel neodymium(III) poly(vinylchloride) (PVC)-based membrane sensor. A membrane composition of 29% poly(vinylchloride), 59% dibutylphthalate (DBP), 9% DATODBCT and 3% sodiumtetrakis (p-chlorophenyl) borate (NaTpClPB), led to the optimum results. The Nd(III)-selectivity of the sensor, is relatively better as compared to a large number of lanthanide metal ions, such as lanthanum, gadolinium, samarium, dysprosium, praseodymium and ytterbium ions. The sensor response is Nernstian (with slope of 19.4 {+-} 0.3 mV per decade for the triply charged ion) over a wide concentration range (1.0 x 10{sup -8} to 1.0 x 10{sup -1} mol L{sup -1}) with a detection limit of 8.0 x 10{sup -7} mol L{sup -1}, a relatively fast response time, in the whole concentration range (<15 s), and a considerable life time at least for seven weeks in the pH range of 3.0-7.0.

  15. Polymeric membrane neodymium(III)-selective electrode based on 11,13-diaza-4,7,12-trioxo-2(3),8(9)-dibenzoyl- cyclotetridecane-1,11-diene

    International Nuclear Information System (INIS)

    Chandra, Sulekh; Singh, Dev Raj

    2009-01-01

    We found that 11, 13-diaza-4, 7, 12-trioxo-2(3), 8(9)-dibenzoyl-cyclotetridecane-1, 11-diene (DATODBCT) can be used as an excellent ionophore in the construction of a novel neodymium(III) poly(vinylchloride) (PVC)-based membrane sensor. A membrane composition of 29% poly(vinylchloride), 59% dibutylphthalate (DBP), 9% DATODBCT and 3% sodiumtetrakis (p-chlorophenyl) borate (NaTpClPB), led to the optimum results. The Nd(III)-selectivity of the sensor, is relatively better as compared to a large number of lanthanide metal ions, such as lanthanum, gadolinium, samarium, dysprosium, praseodymium and ytterbium ions. The sensor response is Nernstian (with slope of 19.4 ± 0.3 mV per decade for the triply charged ion) over a wide concentration range (1.0 x 10 -8 to 1.0 x 10 -1 mol L -1 ) with a detection limit of 8.0 x 10 -7 mol L -1 , a relatively fast response time, in the whole concentration range (<15 s), and a considerable life time at least for seven weeks in the pH range of 3.0-7.0

  16. Ion-selective solid-phase electrode sensitive to ammonium ions

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Milonova, M.S.; Antonov, P.P.; Bychkov, E.A.; Ehfa, A.Ya.

    1983-01-01

    Ammonium phosphomolybdate is investigated for the purpose of using it as membrane material of ammonium-selective solid-phase electrodes. Estimation of proton mobility and ion conductivity of ammonium phosphomolybdate is performed

  17. Water and chemical savings in cooling towers by using membrane capacitive deionization

    NARCIS (Netherlands)

    Limpt, van B.; Wal, van der A.

    2014-01-01

    Membrane capacitive deionization (MCDI) is a water desalination technology based on applying a voltage difference between two oppositely placed porous carbon electrodes. In front of each electrode, an ion exchange membrane is positioned, and between them, a spacer is situated, which transports the

  18. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  19. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    International Nuclear Information System (INIS)

    Li, X.W.; Li, J.X.; Gao, C.Y.; Chang, M.

    2011-01-01

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  20. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.W., E-mail: lynnww@sohu.com [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China); Li, J.X. [Tianjin Polytechnic University, Tianjin 300160 (China); Gao, C.Y. [Chinese Peoples Armed Police Forces Academy, Langfang 065000 (China); Chang, M. [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China)

    2011-10-15

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  1. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  2. Polymeric matrix membrane sensors for stability-indicating potentiometric determination of oxybutynin hydrochloride and flavoxate hydrochloride urogenital system drugs.

    Science.gov (United States)

    Heba, Mohamed; Ramadan, Nesrin; El-Laithy, Moustafa

    2008-01-01

    Four polyvinyl chloride (PVC) matrix membrane electrodes responsive to 2 drugs affecting the urogenital system--oxybutynin hydrochloride (OX) and flavoxate hydrochloride (FX)--were developed, described, and characterized. A precipitation-based technique with tungstophosphate (TP) and ammonium reineckate (R) anions as electroactive materials in a PVC matrix with an OX cation was used for electrode 1 and 2 fabrication, respectively. Electrode 3 and 4 fabrication was based on use of the precipitation technique of FX cation with tetrakis (4-chlorophenyl) borate and R anions as electroactive materials. Fast and stable Nernstian responses in the range 1 x 10(-2)-1 x 10(-6) M for the 2 drugs over the pH range 5-8 revealed the performance characteristics of these electrodes, which were evaluated according to International Union of Pure and Applied Chemistry recommendations. The method was applied to FX and OX in their pharmaceutical formulations and in human plasma samples. The 4 proposed sensors were found to be specific for the drugs in the presence of up to 60% of their degradation products. Validation of the method according to the quality assurance standards showed suitability of the proposed electrodes for use in the quality control assessment of these drugs. The recoveries for determination of the drugs by the 4 proposed selective electrodes were 99.5 +/- 0.5, 100.0 +/- 0.4, 99.9 +/- 0.4, and 100.1 +/- 0.4% for sensors 1-4, respectively. Statistical comparison between the results obtained by this method and the official method of the drugs was done, and no significant difference found.

  3. All-solid-state potassium-selective electrode using graphene as the solid contact

    DEFF Research Database (Denmark)

    Li, Fenghua; Ye, Junjin; Zhou, Min

    2012-01-01

    Graphene sheets are used for the first time to fabricate a new type of solid-contact ion-selective electrode (SC-ISE) as the intermediate layer between an ionophore-doped solvent polymeric membrane and a glassy carbon electrode. The new transducing layer was characterized by transmission electron...

  4. Development and Evaluation of Topical Gabapentin Formulations

    Directory of Open Access Journals (Sweden)

    Christopher J. Martin

    2017-08-01

    Full Text Available Topical delivery of gabapentin is desirable to treat peripheral neuropathic pain conditions whilst avoiding systemic side effects. To date, reports of topical gabapentin delivery in vitro have been variable and dependent on the skin model employed, primarily involving rodent and porcine models. In this study a variety of topical gabapentin formulations were investigated, including Carbopol® hydrogels containing various permeation enhancers, and a range of proprietary bases including a compounded Lipoderm® formulation; furthermore microneedle facilitated delivery was used as a positive control. Critically, permeation of gabapentin across a human epidermal membrane in vitro was assessed using Franz-type diffusion cells. Subsequently this data was contextualised within the wider scope of the literature. Although reports of topical gabapentin delivery have been shown to vary, largely dependent upon the skin model used, this study demonstrated that 6% (w/w gabapentin 0.75% (w/w Carbopol® hydrogels containing 5% (w/w DMSO or 70% (w/w ethanol and a compounded 10% (w/w gabapentin Lipoderm® formulation were able to facilitate permeation of the molecule across human skin. Further pre-clinical and clinical studies are required to investigate the topical delivery performance and pharmacodynamic actions of prospective formulations.

  5. Development and Evaluation of Topical Gabapentin Formulations

    Science.gov (United States)

    Alcock, Natalie; Hiom, Sarah; Birchall, James C.

    2017-01-01

    Topical delivery of gabapentin is desirable to treat peripheral neuropathic pain conditions whilst avoiding systemic side effects. To date, reports of topical gabapentin delivery in vitro have been variable and dependent on the skin model employed, primarily involving rodent and porcine models. In this study a variety of topical gabapentin formulations were investigated, including Carbopol® hydrogels containing various permeation enhancers, and a range of proprietary bases including a compounded Lipoderm® formulation; furthermore microneedle facilitated delivery was used as a positive control. Critically, permeation of gabapentin across a human epidermal membrane in vitro was assessed using Franz-type diffusion cells. Subsequently this data was contextualised within the wider scope of the literature. Although reports of topical gabapentin delivery have been shown to vary, largely dependent upon the skin model used, this study demonstrated that 6% (w/w) gabapentin 0.75% (w/w) Carbopol® hydrogels containing 5% (w/w) DMSO or 70% (w/w) ethanol and a compounded 10% (w/w) gabapentin Lipoderm® formulation were able to facilitate permeation of the molecule across human skin. Further pre-clinical and clinical studies are required to investigate the topical delivery performance and pharmacodynamic actions of prospective formulations. PMID:28867811

  6. Clean energy generation using capacitive electrodes in reverse electrodialysis

    NARCIS (Netherlands)

    Vermaas, David; Bajracharya, S.; Bastos Sales, B.; Saakes, Michel; Hamelers, B.; Nijmeijer, Dorothea C.

    2013-01-01

    Capacitive reverse electrodialysis (CRED) is a newly proposed technology to generate electricity from mixing of salt water and fresh water (salinity gradient energy) by using a membrane pile as in reverse electrodialysis (RED) and capacitive electrodes. The salinity difference between salt water and

  7. Micromachined Planar Supercapacitor with Interdigital Buckypaper Electrodes

    Directory of Open Access Journals (Sweden)

    Yun-Ting Chen

    2018-05-01

    Full Text Available In this work, a flexible micro-supercapacitor with interdigital planar buckypaper electrodes is presented. A simple fabrication process involving vacuum filtration method and SU-8 molding techniques is proposed to fabricate in-plane interdigital buckypaper electrodes on a membrane filter substrate. The proposed process exhibits excellent flexibility for future integration of the micro-supercapacitors (micro-SC with other electronic components. The device’s maximum specific capacitance measured using cyclic voltammetry was 107.27 mF/cm2 at a scan rate of 20 mV/s. The electrochemical stability was investigated by measuring the performance of charge-discharge at different discharge rates. Devices with different buckypaper electrode thicknesses were also fabricated and measured. The specific capacitance of the proposed device increased linearly with the buckypaper electrode thickness. The measured leakage current was approximately 9.95 µA after 3600 s. The device exhibited high cycle stability, with 96.59% specific capacitance retention after 1000 cycles. A Nyquist plot of the micro-SC was also obtained by measuring the impedances with frequencies from 1 Hz to 50 kHz; it indicated that the equivalent series resistance value was approximately 18 Ω.

  8. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  9. Intermediate Temperature Fuel Cell Using Gypsum Based Electrolyte And Electrodes

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Nagai, Masayuki; Katagiri, Yuji

    2011-01-01

    The proton conductive electrolyte membrane and the electrodes for intermediate temperature fuel cell were made from the phosphoric acid treated gypsum as a proton conductor. The membrane and the electrodes were built into single cell and tested at intermediate temperature region. The power density of the fuel cell was 0.56 mW/cm -2 at 150 deg. C without any humidification and 1.38 mW/cm -2 at 150 deg. C, 5% relative humidity. The open circuit voltage of the cell was increased higher than 0.7 V when the electrodes were annealed at 150 deg. C, 5%R.H., however the reasons for this are still to be further investigated. The results show that the potential of the phosphoric acid treated gypsum for the intermediate temperature proton conductor.

  10. Method for making thin carbon foam electrodes

    Science.gov (United States)

    Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  11. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  12. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  13. Measurement of methanol diffusion coefficient in polymer electrode membrane by small NMR sensor. 1st report. Development of method of measure methanol diffusion coefficient and evaluation of measured results

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Ito, Kohei

    2010-01-01

    A method for measuring the diffusion coefficient of methanol in a polymer electrolyte membrane (PEM) was developed using the NMR method. A circular coil of 0.6mm inside diameter was used as a small NMR sensor. The PEM was inserted in a penetration cell, where methanol solvent is supplied to one side of the PEM and nitrogen gas is supplied to the other side of the PEM. The small NMR sensor was placed on the nitrogen gas side of the PEM. The small NMR sensor detects the NMR signal from the methanol solvent which permeates the PEM. The CH and OH components of the methanol solvent were obtained from the NMR signal by spectral analysis. The methanol concentration in the PEM was determined by the ratio of CH to OH components. The methanol concentration was acquired at intervals of 30s and was measured for 2000s. After 1500 seconds, the methanol concentration in the PEM reaches a steady state. The final methanol concentration was about 20% of the methanol concentration of the solvent. It assumed that the diffusion phenomenon of methanol in a PEM was a one-dimensional transport phenomenon, and the time-dependent change of methanol concentration was analyzed by parameterizing the diffusion coefficient. The diffusion coefficient of methanol in a PEM was determined by comparison with the measurement result of the time change of methanol concentration and the analysis results. The concentration difference diffusion coefficient of methanol in PEM obtained using this method was 3.5 * 10 -10 m 2 /s. (author)

  14. Membrane properties for permeability testing: Skin versus synthetic membranes.

    Science.gov (United States)

    Haq, Anika; Dorrani, Mania; Goodyear, Benjamin; Joshi, Vivek; Michniak-Kohn, Bozena

    2018-03-25

    Synthetic membranes that are utilized in diffusion studies for topical and transdermal formulations are usually porous thin polymeric sheets for example cellulose acetate (CA) and polysulfones. In this study, the permeability of human skin was compared using two synthetic membranes: cellulose acetate and Strat-M® membrane and lipophilic and hydrophilic compounds either as saturated or formulated solutions as well as marketed dosage forms. Our data suggests that hydrophilic compounds have higher permeation in Strat-M membranes compared with lipophilic ones. High variation in permeability values, a typical property of biological membranes, was not observed with Strat-M. In addition, the permeability of Strat-M was closer to that of human skin than that of cellulose acetate (CA > Strat-M > Human skin). Our results suggest that Strat-M with little or no lot to lot variability can be applied in pilot studies of diffusion tests instead of human skin and is a better substitute than a cellulose acetate. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.

    Science.gov (United States)

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E

    2017-09-14

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.

  16. Processing of carbon composite paper as electrode for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, R.B.; Maheshwari, Priyanka H.; Dhami, T.L. [Carbon Technology Unit, National Physical Laboratory, New Delhi 110012 (India); Sharma, R.K.; Sharma, C.P. [Soft Polymeric Group, Division of Engineering Materials, National Physical Laboratory, New Delhi 110012 (India)

    2006-10-27

    The porous carbon electrode in a fuel cell not only acts as an electrolyte and a catalyst support, but also allows the diffusion of hydrogen fuel through its fine porosity and serves as a current-carrying conductor. A suitable carbon paper electrode is developed and possesses the characteristics of high porosity, permeability and strength along with low electrical resistivity so that it can be effectively used in proton-exchange membrane and phosphoric acid fuel cells. The electrode is prepared through a combination of two important techniques, viz., paper-making technology by first forming a porous chopped carbon fibre preform, and composite technology using a thermosetting resin matrix. The study reveals an interdependence of one parameter on another and how judicious choice of the processing conditions are necessary to achieve the desired characteristics. The current-voltage performance of the electrode in a unit fuel cell matches that of a commercially-available material. (author)

  17. Equilibrium fluctuation relations for voltage coupling in membrane proteins.

    Science.gov (United States)

    Kim, Ilsoo; Warshel, Arieh

    2015-11-01

    A general theoretical framework is developed to account for the effects of an external potential on the energetics of membrane proteins. The framework is based on the free energy relation between two (forward/backward) probability densities, which was recently generalized to non-equilibrium processes, culminating in the work-fluctuation theorem. Starting from the probability densities of the conformational states along the "voltage coupling" reaction coordinate, we investigate several interconnected free energy relations between these two conformational states, considering voltage activation of ion channels. The free energy difference between the two conformational states at zero (depolarization) membrane potential (i.e., known as the chemical component of free energy change in ion channels) is shown to be equivalent to the free energy difference between the two "equilibrium" (resting and activated) conformational states along the one-dimensional voltage couplin reaction coordinate. Furthermore, the requirement that the application of linear response approximation to the free energy functionals of voltage coupling should satisfy the general free energy relations, yields a novel closed-form expression for the gating charge in terms of other basic properties of ion channels. This connection is familiar in statistical mechanics, known as the equilibrium fluctuation-response relation. The theory is illustrated by considering the coupling of a unit charge to the external voltage in the two sites near the surface of membrane, representing the activated and resting states. This is done using a coarse-graining (CG) model of membrane proteins, which includes the membrane, the electrolytes and the electrodes. The CG model yields Marcus-type voltage dependent free energy parabolas for the response of the electrostatic environment (electrolytes etc.) to the transition from the initial to the final configuratinal states, leading to equilibrium free energy difference and free

  18. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  19. Platinum Porous Electrodes for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    Fuel cell energy bears the merits of renewability, cleanness and high efficiency. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising candidates as the power source in the near future. A fine management of different transports and electrochemical reactions in PEM fuel cells...... to a genuine picture of a working PEM fuel cell catalyst layer. These, in turn, enrich the knowledge of Three-Phase-Boundary, provide efficient tool for the electrode selection and eventually will contribute the advancement of PEMFC technology....

  20. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Politecnica Univ. de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J. [Politecnica Univ. de Chiapas, Chiapas (Mexico). Energia y Sustentabilidad; Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Gamboa, S.A. [Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Pal, U. [Inst. de Fisica, Universidad Autonoma de Puebla Univ., Puebla (Mexico). Inst. de Fisica; Gonzalez, I. [Autonoma Metropolitana Univ. (Mexico). Dept. de Quimica

    2008-07-01

    This paper reported on a study in which membrane electrode assemblies (MEAs) were fabricated by depositing Au, Pt and AuPt nanoparticles on Nafion 115 membrane for use in a proton exchange membrane fuel cell (PEMFC). A Rotating Disc Electrode (RDE) was used to measure the nanoparticle catalyst activity. After deposition of the nanoparticles on the membrane, the surface was studied by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The membrane proton conduction process was studied by Electrochemical Impedance Spectroscopy (EIS) with the 4 probe technique. The MEAs fabricated with Nafion/Metal membranes were evaluated in a PEMFC under standard conditions. Colloidal solutions were used to prepare self-assembled electrodes with nanoparticles deposited on Nafion membrane. The particles deposited on Nafion showed good stability and had homogeneous distribution along the membrane surface. The impedance results revealed an increase in the membrane proton resistance of the self-assembled electrodes compared to unmodified Nafion. The Au-Pt nanoparticles were obtained by chemical reduction. The nanoparticle size in the three systems was about 2 nm. The self-assembled electrodes performed well in standard conditions. The optimum colloidal concentration and immersion time must be determined in order to obtain good catalytic activity and high membrane conductance. The self-assembled Nafion/AuPt had the best open circuit potential (887 mV). The Au and Pt self-assemblies showed a similar performance in terms of maximum power and maximum current density. The performance of the Nafion/Au self-assembly was influenced more by ohmic losses, particularly in the membrane. The maximum power generation was obtained at 0.35 V. The mass transport losses increased after this value, thereby affecting the efficiency of the PEMFC. 2 figs.

  1. Electrode and interconnect for miniature fuel cells using direct methanol feed

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor)

    2004-01-01

    An improved system for interconnects in a fuel cell. In one embodiment, the membranes are located in parallel with one another, and current flow between them is facilitated by interconnects. In another embodiment, all of the current flow is through the interconnects which are located on the membranes. The interconnects are located between two electrodes.

  2. Determination of Fluoride in Different Toothpaste Formulations

    International Nuclear Information System (INIS)

    Kamau, N.G.; Njoroge, M.; Njau, M.

    1998-01-01

    Fluoride ion selective electrode was used to determine fluoride ion concentrations in seven brands of toothpaste. These were the only available formulations found in Kenya. The brands were classified into three groups-fluoridated, non fluoridated or not indicated. However, there was no independent indication of their quantitative composition. The analysed brands had fluoride content between 0.0033% and 0.096%. These values compared favourably with those obtained elsewhere. The calculated lowest limit of detection (LLD) was 0.01 ppmF- . The mean calibration curve gave a slope of of -50.0mV. which was not significantly different from the theoretical value of 5.88mV at 23 degrees celsius at 95% confidence level

  3. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  4. Drug delivery and formulations.

    Science.gov (United States)

    Breitkreutz, Jörg; Boos, Joachim

    2011-01-01

    Paediatric drug delivery is a major challenge in drug development. Because of the heterogeneous nature of the patient group, ranging from newborns to adolescents, there is a need to use appropriate excipients, drug dosage forms and delivery devices for different age groups. So far, there is a lack of suitable and safe drug formulations for children, especially for the very young and seriously ill patients. The new EU legislation will enforce paediatric clinical trials and drug development. Current advances in paediatric drug delivery include interesting new concepts such as fast-dissolving drug formulations, including orodispersible tablets and oral thin strips (buccal wafers), and multiparticulate dosage forms based on mini-tabletting or pelletization technologies. Parenteral administration is likely to remain the first choice for children in the neonatal period and for emergency cases. Alternative routes of administration include transdermal, pulmonary and nasal drug delivery systems. A few products are already available on the market, but others still need further investigations and clinical proof of concept.

  5. Ether formulations of relativity

    International Nuclear Information System (INIS)

    Duffy, M.C.

    1980-01-01

    Contemporary ether theories are surveyed and criticised, especially those formally identical to orthodox Relativity. The historical development of Relativity, Special and General, in terms of an ether, is briefly indicated. Classical interpretations of Generalized Relativity using ether are compared to Euclidean formulations using a background space. The history of a sub-group of theories, formulating a 'new' Relativity involving modified transforms, is outlined. According to the theory with which they agree, recent supposed detections of drift are classified and criticised. Cosmological evidence suggesting an ether is mentioned. Only ether theories formally identical to Relativity have been published in depth. They stand criticised as being contrary to the positivist spirit. The history of mechanical analogues is traced, from Hartley's representing gravitating matter as spherical standing waves, to recent suggestions that vortex-sponge might model electromagnetic, quantum, uncertainty and faster-than-light phenomena. Contemporary theories are particular physical theories, themselves 'second interpretations' of a primary mathematical model. Mechanical analogues are auxiliary, not necessary, to other theory, disclosing relationships between classical and non-classical descriptions of assemblies charging state. The ether-relativity polemic, part of a broader dispute about relativity, is founded on mistaken conceptions of the roles of mathematical and physical models, mechanical analogues; and a distored view of history, which indicates that ether theories have become relativistic. (author)

  6. A new potentiometric electrode incorporating functionalized β-cyclodextrins for diclofenac determination.

    Science.gov (United States)

    Lenik, Joanna

    2014-12-01

    This paper reports the preparation of diclofenac-selective membrane electrodes incorporating β-cyclodextrins: (2-hydroxypropyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, and heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin. Several plasticized poly(vinyl chloride) membranes of different compositions were tested with the best electrode being the one incorporating heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin with the membrane plasticized with 2-nitrophenyloctyl ether. The electrode is characterized by a near-Nernstian response slope of -60.0 mV decade(-1) over the linear range of 5.0×10(-5)-1.0×10(-2) mol L(-1) and a limit of detection of 1.4×10(-5) mol L(-1). The proposed electrode can easily discriminate diclofenac ions from several inorganic and organic interferents and some common drug excipients. The electrode has a response time of 10s and can be used within a pH range of 6.2-8.5 over 10 months without any considerable deterioration. The electrical properties of the membrane electrode were studied by impedance spectroscopy. The notable advantages of the diclofenac-selective electrode include its high sensitivity, selectivity, cost-effectiveness, and comfortable application in drug and urine analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Double-membrane triple-electrolyte redox flow battery design

    Science.gov (United States)

    Yushan, Yan; Gu, Shuang; Gong, Ke

    2018-03-13

    A redox flow battery is provided having a double-membrane (one cation exchange membrane and one anion exchange membrane), triple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and one electrolyte positioned between and in contact with the two membranes). The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte. This design physically isolates, but ionically connects, the negative electrolyte and positive electrolyte. The physical isolation offers great freedom in choosing redox pairs in the negative electrolyte and positive electrolyte, making high voltage of redox flow batteries possible. The ionic conduction drastically reduces the overall ionic crossover between negative electrolyte and positive one, leading to high columbic efficiency.

  8. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  9. Porous electrode preparation method

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  10. Sandwich-type electrode

    Science.gov (United States)

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  11. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  12. Membranous nephropathy

    Science.gov (United States)

    ... skin-lightening creams Systemic lupus erythematosus , rheumatoid arthritis, Graves disease, and other autoimmune disorders The disorder occurs at ... diagnosis. The following tests can help determine the cause of membranous nephropathy: Antinuclear antibodies test Anti-double- ...

  13. Novel membrane-based electrochemical sensor for real-time bio-applications

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Dimaki, Maria

    2014-01-01

    This article presents a novel membrane-based sensor for real-time electrochemical investigations of cellular- or tissue cultures. The membrane sensor enables recording of electrical signals from a cell culture without any signal dilution, thus avoiding loss of sensitivity. Moreover, the porosity...... of the membrane provides optimal culturing conditions similar to existing culturing techniques allowing more efficient nutrient uptake and molecule release. The patterned sensor electrodes were fabricated on a porous membrane by electron-beam evaporation. The electrochemical performance of the membrane electrodes...

  14. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  15. Vozy formule 1

    OpenAIRE

    Zbožínek, Adam

    2009-01-01

    Tato práce uvádí základní pravidla a předpoklady pro konstrukci a použití vozů formule 1. Hlavní zaměření je na aerodynamiku, která je nejdůležitější disciplínou v tomto motoristickém sportu, dále je tato práce zaměřena na základní faktory týkající se motoru vozu, kol, nové technologie KERS a provedení volantu. This work shows basic rules and conditions for construction and use of cars formula 1. The main part of this work focus on the aerodynamics which is the most important discipline of...

  16. Assessment of strategy formulation

    DEFF Research Database (Denmark)

    Acur, Nuran; Englyst, Linda

    2006-01-01

    of the success criteria through face-to-face interviews with 46 managers, workshops involving 40 managers, and two in-depth case studies. The success criteria have been slightly modified due to the empirical results, to yield the assessment tool. Findings – The resulting assessment tool integrates three generic...... approaches to strategy assessment, namely the goal-centred, comparative and improvement approaches, as found in the literature. Furthermore, it encompasses three phases of strategy formulation processes: strategic thinking, strategic planning and embedding of strategy. The tool reflects that the different......, but cases and managerial perceptions indicate that the need for accurate and detailed plans might be overrated in the literature, as implementation relies heavily on continuous improvement and empowerment. Concerning embedding, key aspects relate both to the goal-centred and improvement approaches, while...

  17. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    Science.gov (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  18. Study on the preparation of immobilized glucose oxidase membrane and its application in clinic analysis

    International Nuclear Information System (INIS)

    Yu Ye; Cao Jin; Su Zongxian; Chen Zixiong

    1990-01-01

    The paper deals with the preparation of immobilized glucose oxidase membrane by using two steps irradiation (irradiation gratfting, irradiation entrapping). Some properties of membrane were discussed. The immobilized glucose oxidase membrane with oxygen electrode and oxygen analyser can be satisfied with the clinic analysis for the determination of serum glucose

  19. Quantum charged rigid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2011-03-21

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  20. Quantum charged rigid membrane

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2011-01-01

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  1. Erythrocyte Membrane Failure by Electromechanical Stress

    Directory of Open Access Journals (Sweden)

    E Du

    2018-01-01

    Full Text Available We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  2. Study of pressing effects and variation in Pt charge in the anode on the performance of membrane electrode assemblies; Estudio de los efectos de prensado y variacion de la carga de Pt en el anodo en el rendimiento de ensambles membrana-electrodo

    Energy Technology Data Exchange (ETDEWEB)

    Albarran S, Irma Lorena; Flores Hernandez, J. Roberto; Cano Castillo, Ulises [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico). E-mail: ilas@iie.org.mx; Loyola, Felix (UNAM, Facultad de Quimica, Mexico D.F. (Mexico)

    2009-09-15

    Fabricating membrane electrode assemblies (MEA) involves different variables that determine their performance, such as: amount of the catalyst, concentration of the different solvents used in the fabrication of the catalyst dye, use of a thermomechanical process to increase the degree of adhesion between the catalyst layers and the membrane, etc. This work studied the effect of the Pt charge in the anode on performance, as well as the effect of the thermomechanical process on the fabrication of MEAs. It is evident that the optimal Pt charge should be that which provides good performance during an acceptable useful lifetime at a competitive cost. This work presents the results obtained by varying the Pt charge in the anode between 1.0 and 0.4 mgPt/cm{sup ²} while maintaining a constant charge of 1 mgPt/cm{sup ²} in the cathode. It also shows the comparison between the polarization curves and the active areas obtained in the MEAs with and without pressing during their fabrication. [Spanish] En la fabricacion de los Ensambles Membrana-Electrodo (MEA's) intervienen diferentes variables que determinan su desempeno, como lo son: cantidad de catalizador, concentracion de los diferentes solventes que se emplean en la fabricacion de la tinta catalitica, el uso de un proceso termomecanico para incrementar el grado de adherencia entre las capas cataliticas y la membrana, etc. De las variables anteriormente mencionadas, en este trabajo se estudio el efecto de la carga anodica de Pt en el desempeno, asi como del proceso termomecanico en la fabricacion de MEA's. Es evidente que la carga optima de Pt debe ser aquella que proporcione un buen rendimiento por un periodo de vida util aceptable a un costo competitivo. En este trabajo se presentan los resultados obtenidos al variar la carga de Pt en el anodo entre 1.0 a 0.4 mgPt/cm{sup ²} manteniendo una carga constante de 1 mgPt/cm{sup ²} en el catodo. Tambien se muestra la comparacion de las curvas de polarizacion y las

  3. Protected electrodes for plasma panels

    International Nuclear Information System (INIS)

    Hall, S.W.

    1984-01-01

    A metal oxide coating is applied between the conductive base and the magnesium oxide dielectric of the input and/or erase electrode(s) in a plasma display device to prevent break-down of the dielectric

  4. The new mid-scala electrode array: a radiologic and histologic study in human temporal bones.

    Science.gov (United States)

    Hassepass, Frederike; Bulla, Stefan; Maier, Wolfgang; Laszig, Roland; Arndt, Susan; Beck, Rainer; Traser, Lousia; Aschendorff, Antje

    2014-09-01

    To analyze the quality of insertion of the newly developed midscala (MS) electrode, which targets a midscalar electrode position to reduce the risk of trauma to the lateral wall and the modiolus. Modern cochlear implant surgery aims for a safe intracochlear placement of electrode arrays with an ongoing debate regarding cochleostomy or round window (RW) insertion and the use of lateral wall or perimodiolar electrode placement. Intracochlear trauma after insertion of different electrodes depends on insertion mode and electrode design and may result in trauma to the delicate structures of the cochlear. We performed a temporal bone (TB) trial with insertion of the MS electrode in n = 20 TB's after a mastoidectomy and posterior tympanotomy. Insertion was performed either via the RW or a cochleostomy. Electrode positioning, length of insertion, and angle of insertion were analyzed with rotational tomography (RT). TBs were histologically analyzed. Results of RT and histology were compared. Scala tympani (ST) insertion could be accomplished reliably by both RW and via a cochleostomy approach. In 20 TBs, 1 scala vestibuli insertion, 1 incomplete (ST), and 1 elevation of basilar membrane were depicted. No trauma was found in 94.7% of all ST insertions. RT allowed determination of the intracochlear electrode position, which was specified by histologic sectioning. The new MS electrode seems to fulfill reliable atraumatic intracochlear placement via RW and cochleostomy approaches. RT is available for evaluation of intracochlear electrode position, serving as a potential quality control instrument in human implantation.

  5. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  6. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-01-01

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure. PMID:28788148

  7. Lactate Biosensor Based on Cellulose Acetate Membrane Bound Lactate Oxidase

    Directory of Open Access Journals (Sweden)

    Suman

    2007-05-01

    Full Text Available Lactate biosensor was fabricated by immobilizing lactate oxidase in cellulose acetate membrane and by mounting over the sensing part of Pt electrode (working and connected to Ag/AgCl electrode (reference along with auxillary electrode through potentiostat. The enzyme electrode was anodically polarized at +400 mV to generate electrons from H2O2, which was formed from oxidation of serum lactate by immobilized lactate oxidase. The minimum detection limit of the electrode was 0.1mmoles/L and sensitivity of the sensor was 0.008 mA/mM/L lactate. Assay coefficients of variation were < 2% .A good correlation (r=0.99 was found between lactate values obtained by colorimetric method and lactate biosensor. The self-life of the biosensor was 18 days at 4ºC and enzyme electrode can be re-used 150 times without any significant loss in enzyme activity.

  8. Analysis of proton exchange membrane fuel cell performance with alternate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wakizoe, Masanobu; Velev, O A; Srinivasan, S [Texas A and M Univ., College Station, TX (United States). Texas Engineering Experiment Station

    1995-02-01

    Renewed interest in proton exchange membrane fuel cell technology for space and terrestrial (particularly electric vehicles) was stimulated by the demonstration, in the mid 1980s, of high energy efficiencies and high power densities. One of the most vital components of the PEMFC is the proton conducting membrane. In this paper, an analysis is made of the performances of PEMFCs with Dupont`s Nafion, Dow`s experimental, and Asahi Chemical`s Aciplex-S membranes. Attempts were also made to draw correlations between the PEMFC performances with the three types of membranes and their physico-chemical characteristics. Practically identical levels of performances (energy efficiency, power density, and lifetime) were achieved in PEMFCs with the Dow and the Aciplex-S membranes and these performances were better than in the PEMFCs with the Nafion-115 membrane. The electrode kinetic parameters for oxygen reduction are better for the PEMFCs with the Aciplex-S and Nafion membranes than with the Dow membranes. The PEMFCs with the Aciplex-S and Dow membranes have nearly the same internal resistances which are considerably lower than for the PEMFC with the Nafion membrane. The desired membrane characteristics to obtain high levels of performance are low equivalent weight and high water content. (Author)

  9. Enhanced performance of proton exchange membrane fuel cell by introducing nitrogen-doped CNTs in both catalyst layer and gas diffusion layer

    CSIR Research Space (South Africa)

    Hou, S

    2017-11-01

    Full Text Available The performance of the proton exchange membrane fuel cell (PEMFC) is significantly improved through introducing nitrogen-doped carbon nanotubes (NCNTs) into the catalyst layer (CL) and microporous layer (MPL) of the membrane electrode assembly (MEA...

  10. Synthesis and characterization of Nafion/TiO2 nanocomposite membrane for proton exchange membrane fuel cell.

    Science.gov (United States)

    Kim, Tae Young; Cho, Sung Yong

    2011-08-01

    In this study, the syntheses and characterizations of Nafion/TiO2 membranes for a proton exchange membrane fuel cell (PEMFC) were investigated. Porous TiO2 powders were synthesized using the sol-gel method; with Nafion/TiO2 nanocomposite membranes prepared using the casting method. An X-ray diffraction analysis demonstrated that the synthesized TiO2 had an anatase structure. The specific surface areas of the TiO2 and Nafion/TiO2 nanocomposite membrane were found to be 115.97 and 33.91 m2/g using a nitrogen adsorption analyzer. The energy dispersive spectra analysis indicated that the TiO2 particles were uniformly distributed in the nanocomposite membrane. The membrane electrode assembly prepared from the Nafion/TiO2 nanocomposite membrane gave the best PEMFC performance compared to the Nafion/P-25 and Nafion membranes.

  11. Rapid determination of trace level copper in tea infusion samples by solid contact ion selective electrode

    Directory of Open Access Journals (Sweden)

    Aysenur Birinci

    2016-07-01

    Full Text Available A new solid contact copper selective electrode with a poly (vinyl chloride (PVC membrane consisting of o-xylylenebis(N,N-diisobutyldithiocarbamate as ionophore has been prepared. The main novelties of constructed ion selective electrode concept are the enhanced robustness, cheapness, and fastness due to the use of solid contacts. The electrode exhibits a rapid (< 10 seconds and near-Nernstian response to Cu2+ activity from 10−1 to 10−6 mol/L at the pH range of 4.0–6.0. No serious interference from common ions was found. The electrode characterizes by high potential stability, reproducibility, and full repeatability. The electrode was used as an indicator electrode in potentiometric titration of Cu(II ions with EDTA and for the direct assay of tea infusion samples by means of the calibration graph technique. The results compared favorably with those obtained by the atomic absorption spectroscopy (AAS.

  12. Metamaterial membranes

    International Nuclear Information System (INIS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-01-01

    We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena. (paper)

  13. Baseline LAW Glass Formulation Testing

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-01-01

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements

  14. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  15. Electrochemical impedance measurement of a carbon nanotube probe electrode

    International Nuclear Information System (INIS)

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Shimoyama, Isao; Matsumoto, Kiyoshi

    2012-01-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1–10 nm in CNT diameter, 80–300 nm in insulator diameter, 0.5–4 μm in exposed CNT length and 1–10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible. (paper)

  16. Fabrication of Polymer Microneedle Electrodes Coated with Nanoporous Parylene

    Science.gov (United States)

    Nishinaka, Yuya; Jun, Rina; Setia Prihandana, Gunawan; Miki, Norihisa

    2013-06-01

    In this study, we demonstrate the fabrication of polymer microneedle electrodes covered with a nanoporous parylene film that can serve as flexible electrodes for a brain-machine interface. In brain wave measurement, the electric impedance of electrodes should be below 10 kΩ at 15 Hz, and the conductive layer needs to be protected to survive its insertion into the stratum corneum. Polymer microneedles can be used as substrates for flexible electrodes, which can compensate for the movement of the skin; however, the adhesion between a conductive metal film, such as a silver film, and a polymer, such as poly(dimethylsiloxane) (PDMS), is weak. Therefore, we coated the electrode surface with a nanoporous parylene film, following the vapor deposition of a silver film. When the porosity of the parylene film is appropriate, it protects the silver film while allowing the electrode to have sufficient conductivity. The porosity can be controlled by adjusting the amount of the parylene dimer used for the deposition or the parylene film thickness. We experimentally verified that a conductive membrane was successfully protected while maintaining a conductivity below 10 kΩ when the thickness of the parylene film was between 25 and 38 nm.

  17. The effect of formulation additives on in vitro dissolution-absorption profile and in vivo bioavailability of telmisartan from brand and generic formulations.

    Science.gov (United States)

    Borbás, Enikő; Nagy, Zsombor K; Nagy, Brigitta; Balogh, Attila; Farkas, Balázs; Tsinman, Oksana; Tsinman, Konstantin; Sinkó, Bálint

    2018-03-01

    In this study, brand and four generic formulations of telmisartan, an antihypertensive drug, were used in in vitro simultaneous dissolution-absorption, investigating the effect of different formulation additives on dissolution and on absorption through an artificial membrane. The in vitro test was found to be sensitive enough to show even small differences between brand and generic formulations caused by the use of different excipients. By only changing the type of filler from sorbitol to mannitol in the formulation, the flux through the membrane was reduced by approximately 10%. Changing the salt forming agent as well resulted in approximately 20% of flux reduction compared to the brand formulation. This significant difference was clearly shown in the published in vivo results as well. The use of additional lactose monohydrate in the formulation also leads to approximately 10% reduction in flux. The results show that by changing excipients, the dissolution of telmisartan was not altered significantly, but the flux through the membrane was found to be significantly changed. These results pointed out the limitations of traditional USP dissolution tests and emphasized the importance of simultaneously measuring dissolution and absorption, which allows the complex effect of formulation excipients on both processes to be measured. Moreover, the in vivo predictive power of the simultaneous dissolution-absorption test was demonstrated by comparing the in vitro fluxes to in vivo bioequivalence study results. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Manufacture and evaluation of integrated metal-oxide electrode prototype for corrosion monitoring in high temperature water

    International Nuclear Information System (INIS)

    Hashimoto, Yoshinori; Tani, Jun-ichi

    2014-01-01

    We have developed an integrated metal-oxide (M/O) electrode based on an yttria-stabilized-zirconia-(YSZ)-membrane M/O electrode, which was used as a reference electrode for corrosion monitoring in high temperature water. The YSZ-membrane M/O electrode can operate at high temperatures because of the conductivity of YSZ membrane tube. We cannot utilize it for long term monitoring at a wide range of temperatures. It also has a braze juncture between the YSZ membrane and metal tubes, which may corrode in high-temperature water. This corrosion should be prevented to improve the performance of the M/O electrode. An integrated M/O electrode was developed (i.e., integrated metal-oxide electrode, IMOE) to eliminate the braze juncture and increase the conductivity of YSZ. These issues should be overcome to improve the performance of M/O electrode. So we have developed two type of IMOE prototype with sputter - deposition or thermal oxidation. In this paper we will present and discuss the performance of our IMOEs in buffer solution at room temperature. (author)

  19. Voltammetric quantitation of nitazoxanide by glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2013-12-01

    Full Text Available The present study reports voltammetric reduction of nitazoxanide in Britton–Robinson (B–R buffer by cyclic and square-wave voltammetry at glassy carbon electrode. A versatile fully validated voltammetric method for quantitative determination of nitazoxanide in pharmaceutical formulation has been proposed. A squrewave peak current was linear over the nitazoxanide concentration in the range of 20–140 µg/mL. The limit of detection (LOD and limit of quantification (LOQ was calculated to be 5.23 μg/mL and 17.45 μg/mL, respectively. Keywords: Nitazoxanide, Squarewave voltammetry, Glassy carbon electrode, Pharmaceutical formulation

  20. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  1. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  2. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  3. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  4. Methods for making lithium vanadium oxide electrode materials

    Science.gov (United States)

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  5. Large-scale membrane transfer process: its application to single-crystal-silicon continuous membrane deformable mirror

    International Nuclear Information System (INIS)

    Wu, Tong; Sasaki, Takashi; Hane, Kazuhiro; Akiyama, Masayuki

    2013-01-01

    This paper describes a large-scale membrane transfer process developed for the construction of large-scale membrane devices via the transfer of continuous single-crystal-silicon membranes from one substrate to another. This technique is applied for fabricating a large stroke deformable mirror. A bimorph spring array is used to generate a large air gap between the mirror membrane and the electrode. A 1.9 mm × 1.9 mm × 2 µm single-crystal-silicon membrane is successfully transferred to the electrode substrate by Au–Si eutectic bonding and the subsequent all-dry release process. This process provides an effective approach for transferring a free-standing large continuous single-crystal-silicon to a flexible suspension spring array with a large air gap. (paper)

  6. Ion-Selective Electrodes for the Potentiometric Determination of Pramoxine HCl Using Different Ionophores.

    Science.gov (United States)

    Ramadan, Nesrin K; Merey, Hanan A

    2012-12-01

    Four novel pramoxine HCl (PAM) selective electrodes were investigated with 2-nitrophenyl octylether as a plasticiser in a polymeric matrix of polyvinyl chloride (PVC). Sensor 1 was fabricated using sodium-tetraphenylborate (TPB) as an anionic exchanger without incorporation of an ionophore. Sensor 2 used 2-hydroxy propyl -cyclodextrin as an ionophore, while sensors 3 and 4 were constructed using 4-sulfocalix-6-arene and 4-sulfocalix-8-arene respectively as ionophores. Linear responses of PAM within the concentration ranges of 1.0 × 10-4 to 1.0 × 10-2 mol L-1 and 1.0 × 10-5 to 1.0 × 10-2 mol L-1 were obtained using sensors 1 and 2, respectively and 1.0 × 10-6 to 1.0 × 10-2 mol L-1 were obtained using sensors 3 and 4. Nernstian slopes of 50.4 ± 0.6, 54.3 ± 0.8, 56.3 ± 0.3 and 59.1 ± 0.5 mV/decade over the pH range of 3.0-6.0 were observed. The selectivity coefficients of the developed sensors indicated excellent selectivity for PAM. The utility of 2-hydroxy- propylcyclodextrin (2HP-β-CD) and 4-sulfocalix [6,8] arene (SC 6, 8) as ionophores had a significant influence on increasing the membrane sensitivity and selectivity of sensors 2, 3 and 4 compared to sensor 1. The proposed sensors displayed useful analytical characteristics for the determination of PAM in bulk powder, pharmaceutical formulation, and in biological fluid. Validation of the method showed the suitability of the proposed electrodes for the use in the quality control assessment of the drug. Furthermore, statistical comparison between the results obtained by the proposed method and the official method of the drug was performed and no significant difference was found.

  7. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  8. Frequency-domain analysis of intrinsic neuronal properties using high-resistant electrodes

    Directory of Open Access Journals (Sweden)

    Christian Rössert

    2009-08-01

    Full Text Available Intrinsic cellular properties of neurons in culture or slices are usually studied by the whole cell clamp method using low-resistant patch pipettes. These electrodes allow detailed analyses with standard electrophysiological methods such as current- or voltage-clamp. However, in these preparations large parts of the network and dendritic structures may be removed, thus preventing an adequate study of synaptic signal processing. Therefore, intact in vivo preparations or isolated in vitro whole brains have been used in which intracellular recordings are usually made with sharp, high-resistant electrodes to optimize the impalement of neurons. The general non-linear resistance properties of these electrodes, however, severely limit accurate quantitative studies of membrane dynamics especially needed for precise modelling. Therefore, we have developed a frequency-domain analysis of membrane properties that uses a Piece-wise Non-linear Electrode Compensation (PNEC method. The technique was tested in second-order vestibular neurons and abducens motoneurons of isolated frog whole brain preparations using sharp potassium chloride- or potassium acetate-filled electrodes. All recordings were performed without online electrode compensation. The properties of each electrode were determined separately after the neuronal recordings and were used in the frequency-domain analysis of the combined measurement of electrode and cell. This allowed detailed analysis of membrane properties in the frequency-domain with high-resistant electrodes and provided quantitative data that can be further used to model channel kinetics. Thus, sharp electrodes can be used for the characterization of intrinsic properties and synaptic inputs of neurons in intact brains.

  9. On the fairlie's Moyal formulation of M(atrix)-theory

    International Nuclear Information System (INIS)

    Hssaini, M.; Sedra, M.B.; Bennai, M.; Maroufi, B.

    2000-07-01

    Starting from the Moyal formulation of M-theory in the large N-limit, we propose to reexamine the associated membrane equations of motion in 10 dimensions formulated in terms of Poisson bracket. Among the results obtained, we rewrite the coupled first order Nahm's equations into a simple form leading in turn to their systematic relation with SU(∞) Yang Mills equations of motion. The former are interpreted as the vanishing condition of some conserved currents which we propose. We also develop an algebraic analysis in which an ansatz is considered and find an explicit form for the membrane solution of our problem. Typical solutions known in literature can also emerge as special cases of the proposed solution. (author)

  10. Study and development of membrane electrode assemblies for Proton Exchange Membrane Fuel Cell (PEMFC) with palladium based catalysts; Estudo e desenvolvimento de conjuntos membrana-eletrodos (MEA) para celula a combustivel de eletrolito polimerico condutor de protons (PEMFC) com eletrocatalisadores a base de paladio

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, Rafael Nogueira

    2013-07-01

    PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm{sup 2} single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm{sup -2}, showing power densities up to 550 mW.cm{sup -2} and power of 2.2 kW{sub net} per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary

  11. Fabrication and characterisation of hydrogen fuel cell membrane electrode assemblies

    CSIR Research Space (South Africa)

    Mathe

    2006-09-01

    Full Text Available stream_source_info Mathe_2006.pdf.txt stream_content_type text/plain stream_size 1 Content-Encoding ISO-8859-1 stream_name Mathe_2006.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  12. Ionic polymer metal composites with polypyrrole-silver electrodes

    Science.gov (United States)

    Cellini, F.; Grillo, A.; Porfiri, M.

    2015-03-01

    Ionic polymer metal composites (IPMCs) are a class of soft active materials that are finding increasing application in robotics, environmental sensing, and energy harvesting. In this letter, we demonstrate the fabrication of IPMCs via in-situ photoinduced polymerization of polypyrrole-silver electrodes on an ionomeric membrane. The composition, morphology, and sheet resistance of the electrodes are extensively characterized through a range of experimental techniques. We experimentally investigate IPMC electrochemistry through electrochemical impedance spectroscopy, and we propose a modified Randle's model to interpret the impedance spectrum. Finally, we demonstrate in-air dynamic actuation and sensing and assess IPMC performance against more established fabrication methods. Given the simplicity of the process and the short time required for the formation of the electrodes, we envision the application of our technique in the development of a rapid prototyping technology for IPMCs.

  13. Direct electrodeposition of metal nanowires on electrode surface

    International Nuclear Information System (INIS)

    Gambirasi, Arianna; Cattarin, Sandro; Musiani, Marco; Vazquez-Gomez, Lourdes; Verlato, Enrico

    2011-01-01

    A method for decorating the surface of disk electrodes with metal nanowires is presented. Cu and Ni nanowires with diameters from 1.0 μm to 0.2 μm are directly deposited on the electrode surface using a polycarbonate membrane filter template maintained in contact with the metal substrate by the soft homogeneous pressure of a sponge soaked with electrolyte. The morphologic and structural properties of the deposit are characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The latter shows that the head of nanowires with diameter of 0.4 μm is ordinarily polycrystalline, and that of nanowires with diameter of 0.2 μm is almost always monocrystalline for Cu and frequently also for Ni. Cyclic voltammetries and impedance investigations recorded in alkaline solutions at representative Ni electrodes decorated with nanowires provide consistent values of roughness factor, in the range 20-25.

  14. Novel electrode structure for DMFC operated with liquid methanol

    International Nuclear Information System (INIS)

    Shao, Z.-G.; Lin, W.; Christensen, P.A.; Zhu, F.; Slowinski, G.; Amini, M.K.; Scott, K.

    2004-01-01

    'Full text:' Up to now, the electrodes for direct methanol fuel cell (DMFC) were developed mostly on the basis of the gas diffusion electrodes employed in proton exchange membrane fuel cells. Typically, the structure of such electrodes comprises a catalyst layer and a diffusion layer, the latter being carbon cloth or carbon paper. However, unlike other fuel cells, the liquid feed DMFC suffers from mass transport limitations predominantly at the anode due to the low diffusion coefficient of methanol in water. In addition, carbon paper is fragile and expensive and carbon cloth is soft compared with metal material, such materials are not as versatile as metals. In our present work, new structures of the anode and cathode have been developed. The preparation procedures and the main characteristics of the anodes and cathodes have been studied and will be reported. (author)

  15. Microsphere based improved sunscreen formulation of ethylhexyl methoxycinnamate.

    Science.gov (United States)

    Gogna, Deepak; Jain, Sunil K; Yadav, Awesh K; Agrawal, G P

    2007-04-01

    Polymethylmethacrylate (PMMA) microspheres of ethylhexyl methoxycinnamate (EHM) were prepared by emulsion solvent evaporation method to improve its photostability and effectiveness as sunscreening agent. Process parameters like stirring speed and aqueous polyvinyl alcohol (PVA) concentration were analyzed in order to optimize the formulations. Shape and surface morphology of the microspheres were examined using scanning electron microscopy. Particle size of the microspheres was determined using laser diffraction particle size analyzer. The PMMA microspheres of EHM were incorporated in water-removable cream base. The in vitro drug release of EHM in pH 7.4 was performed using dialysis membrane. Thin layer chromatography was performed to determine photostability of EHM inside the microspheres. The formulations were evaluated for sun protection factor (SPF) and minimum erythema dose (MED) in albino rats. Cream base formulation containing microspheres prepared using EHM:PMMA in ratio of 1:3 (C(3)) showed slowest drug (EHM) release and those prepared with EHM: PMMA in ratio of 1:1 showed fastest release. The cream base formulations containing EHM loaded microspheres had shown better SPF (more than 16.0) as compared to formulation C(d) that contained 3% free EHM as sunscreen agent and showed SPF 4.66. These studies revealed that the incorporation of EHM loaded PMMA microspheres into cream base had greatly increased the efficacy of sunscreen formulation approximately four times. Further, photostability was also shown to be improved in PMMA microspheres.

  16. All-solid-state reference electrodes based on conducting polymers.

    Science.gov (United States)

    Kisiel, Anna; Marcisz, Honorata; Michalska, Agata; Maksymiuk, Krzysztof

    2005-12-01

    A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.

  17. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  18. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  19. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  20. Novel Formulations for Antimicrobial Peptides

    Science.gov (United States)

    Carmona-Ribeiro, Ana Maria; Carrasco, Letícia Dias de Melo

    2014-01-01

    Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy. PMID:25302615

  1. Explicit formulation of an anisotropic Allman/DKT 3-node thin triangular flat shell elements

    Science.gov (United States)

    Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.

    A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular, flat shell element in global coordinates is presented. An Allman triangle is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending triangle. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, membrane and bending strain-displacement matrices.

  2. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.

    1985-01-01

    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  3. Influence of cellulose derivative and ethylene glycol on optimization of lornoxicam transdermal formulation.

    Science.gov (United States)

    Shahzad, Yasser; Khan, Qalandar; Hussain, Talib; Shah, Syed Nisar Hussain

    2013-10-01

    Lornoxicam containing topically applied lotions were formulated and optimized with the aim to deliver it transdermally. The formulated lotions were evaluated for pH, viscosity and in vitro permeation studies through silicone membrane using Franz diffusion cells. Data were fitted to linear, quadratic and cubic models and best fit model was selected to investigate the influence of variables, namely hydroxypropyl methylcellulose (HPMC) and ethylene glycol (EG) on permeation of lornoxicam from topically applied lotion formulations. The best fit quadratic model revealed that low level of HPMC and intermediate level of EG in the formulation was optimum for enhancing the drug flux across silicone membrane. FT-IR analysis confirmed absence of drug-polymer interactions. Selected optimized lotion formulation was then subjected to accelerated stability testing, sensatory perception testing and in vitro permeation across rabbit skin. The drug flux from the optimized lotion across rabbit skin was significantly better that that from the control formulation. Furthermore, sensatory perception test rated a higher acceptability while lotion was stable over stability testing period. Therefore, use of Box-Wilson statistical design successfully elaborated the influence of formulation variables on permeation of lornoxicam form topical formulations, thus, helped in optimization of the lotion formulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  5. Field testing of sulphide electrodes

    International Nuclear Information System (INIS)

    Singh, P.R.; Gaonkar, K.B.; Gadiyar, H.S.

    1993-01-01

    Sulphide ion selective electrodes have been developed at BARC, for determination of Ag + and S - ions directly and Cl - and CN - ions indirectly. The electrodes were tested for their use in sulphide environments in the EAD (Effluent After Dilution) stream at the Heavy Water Plant, Kota. The electrodes are suitable in the concentration range of 16000 ppm to 0.002 ppm, with a slope of 29-31 mV per decade change in the sulphide ion concentration. The response time is less than 10 seconds. These electrodes are reliable for continuous on-line use for a long period. (author). 7 refs., 11 figs., 1 tab

  6. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  7. Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes

    Science.gov (United States)

    Azoubel, Suzanna; Shemesh, Shay; Magdassi, Shlomo

    2012-08-01

    Carbon nanotube (CNTs) inks may provide an effective route for producing flexible electronic devices by digital printing. In this paper we report on the formulation of highly concentrated aqueous CNT inks and demonstrate the fabrication of flexible electroluminescent (EL) devices by inkjet printing combined with wet coating. We also report, for the first time, on the formation of flexible EL devices in which all the electrodes are formed by inkjet printing of low-cost multi-walled carbon nanotubes (MWCNTs). Several flexible EL devices were fabricated by using different materials for the production of back and counter electrodes: ITO/MWCNT and MWCNT/MWCNT. Transparent electrodes were obtained either by coating a thin layer of the CNTs or by inkjet printing a grid which is composed of empty cells surrounded by MWCNTs. It was found that the conductivity and transparency of the electrodes are mainly controlled by the MWCNT film thickness, and that the dominant factor in the luminance intensity is the transparency of the electrode.

  8. Surgical implications of perimodiolar cochlear implant electrode design: avoiding intracochlear damage and scala vestibuli insertion.

    Science.gov (United States)

    Briggs, R J; Tykocinski, M; Saunders, E; Hellier, W; Dahm, M; Pyman, B; Clark, G M

    2001-09-01

    To review the mechanisms and nature of intracochlear damage associated with cochlear implant electrode array insertion, in particular, the various perimodiolar electrode designs. Make recommendations regarding surgical techniques for the Nucleus Contour electrode to ensure correct position and minimal insertion trauma. The potential advantages of increased modiolar proximity of intracochlear multichannel electrode arrays are a reduction in stimulation thresholds, an increase in dynamic range and more localized neural excitation. This may improve speech perception and reduce power consumption. These advantages may be negated if increased intracochlear damage results from the method used to position the electrodes close to the modiolus. A review of the University of Melbourne Department of Otolaryngology experience with temporal bone safety studies using the Nucleus standard straight electrode array and a variety of perimodiolar electrode array designs; comparison with temporal bone insertion studies from other centres and postmortem histopathology studies reported in the literature. Review of our initial clinical experience using the Nucleus Contour electrode array. The nature of intracochlear damage resulting from electrode insertion trauma ranges from minor, localized, spiral ligament tear to diffuse organ of Corti disruption and osseous spiral lamina fracture. The type of damage depends on the mechanical characteristics of the electrode array, the stiffness, curvature and size of the electrode in relation to the scala, and the surgical technique. The narrow, flexible, straight arrays are the least traumatic. Pre-curved or stiffer arrays are associated with an incidence of basilar membrane perforation. The cochleostomy must be correctly sited in relation to the round window to ensure scala tympani insertion. A cochleostomy anterior to the round window rather than inferior may lead to scala media or scala vestibuli insertion. Proximity of electrodes to the modiolus

  9. Miniaturized membrane sensors for potentiometric determination of metoprolol tartrate and hydrochlorothiazide.

    Science.gov (United States)

    Ramadan, Nesrin K; Mohamed, Heba M; Mostafa, Azza A

    2012-06-01

    Four microsized graphite and platinum wire poly(vinyl chloride) matrix membrane electrodes responsive to some drugs affecting cardiovascular system, Metoprolol tartrate (MT) and Hydrochlorothiazide (HZ) were developed, described and characterized. These sensors were constructed by using (2-Hydroxypropyl)-β-cyclodextrin (2HP β-CD) as an ionophore which has a significant influence on increasing both membrane sensitivity and selectivity. The four sensors were fabricated in a polymeric matrix of carboxylated polyvinyl chloride (PVC-COOH) and dioctylphthalate (DOP) as a plasticizer, based on the interaction between the drugs and the dissociated COOH groups in the PVC-COOH. Fast and stable Nernstian responses of 1.0 × 10-6-1.0 × 10-2 M for MT (sensors 1 and 2) and of 1.0 × 10-7-1.0 × 10-3 M for HZ (sensors 3 and 4) over pH range 3.0-9.0 and 3.0-7.0 for the MT and HZ sensors respectively were obtained. Nernstian slopes of 56.2, 54.6, 19.0 and 20.8 mV/decade for electrodes 1-4 respectively were observed. The proposed method displayed useful analytical characteristics for the determination of MT and HZ in their pure powder forms with average recoveries of 99.11 ± 0.357, 99.21 ± 0.389, 100.08 ± 0.459 and 100.28 ± 0.438% for sensors 1-4 respectively. The lower limit of detection (LOD) were 5.5 × 10-6, 4.5 × 10-6, 4.8 × 10-8 and 5.0 × 10-8 M for sensors 1-4 respectively indicated high sensitivity. The four sensors displayed a good stability over a period of 6 weeks. The selectivity coefficients of the developed sensors indicated excellent selectivity. Results obtained by the four electrodes revealed the performance characteristics of these electrodes which evaluated according to IUPAC recommendations. The method was successively applied for the determination of MT and HZ in presence of each other, in presence of Salamide (SA), the main degradation product of HZ, in their pharmaceutical formulations and in human plasma samples. Statistical comparison between the

  10. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  11. New Transparent Laser-Drilled Fluorine-doped Tin Oxide covered Quartz Electrodes for Photo-Electrochemical Water Splitting

    International Nuclear Information System (INIS)

    Hernández, Simelys; Tortello, Mauro; Sacco, Adriano; Quaglio, Marzia; Meyer, Toby; Bianco, Stefano; Saracco, Guido; Pirri, C. Fabrizio; Tresso, Elena

    2014-01-01

    Graphical abstract: - Highlights: • A new transparent, conductive and porous electrode was developed. • It has a high effective surface area available for catalyst molecules attachment. • It is an ideal support for testing new anodic and cathodic photoactive materials. • The proof-of-concept was achieved in an appositely designed water photo-electrolyzer. • The EIS technique was used as a very powerful tool to characterize the new designed electrode. - Abstract: A new-designed transparent, conductive and porous electrode was developed for application in a compact laboratory-scale proton exchange membrane (PEM) photo-electrolyzer. The electrode is made of a thin transparent quartz sheet covered with fluorine-doped tin oxide (FTO), in which an array of holes is laser-drilled to allow water and gas permeation. The electrical, morphological, optical and electrochemical characterization of the drilled electrodes is presented in comparison with a non-drilled one. The drilled electrode exhibits, in the visible region, a good transmittance (average value of 62%), a noticeable reflectance due to the light scattering effect of the hole-drilled internal region, and a higher effective surface area than the non-drilled electrode. The proof-of-concept of the applicability of the drilled electrode was achieved by using it as a support for a traditional photocatalyst (i.e. commercial TiO 2 nanoparticles). The latter, coupled with a polymeric electrolyte membrane (i.e.Nafion 117) and a Pt counter electrode, forms a transparent membrane electrode assembly (MEA), with a good conductivity, wettability and porosity. Electrochemical impedance spectroscopy (EIS) was used as a very powerful tool to gain information on the real active surface of the new drilled electrode and the main electrochemical parameters driving the charge transfer reactions on it. This new electrode architecture is demonstrated to be an ideal support for testing new anodic and cathodic photoactive

  12. Dysprosium selective potentiometric membrane sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Faridbod, Farnoush; Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-03-01

    A novel Dy(III) ion-selective PVC membrane sensor was made using a new synthesized organic compound, 3,4-diamino-N Prime -((pyridin-2-yl)methylene)benzohydrazide (L) as an excellent sensing element. The electrode showed a Nernstian slope of 19.8 {+-} 0.6 mV per decade in a wide concentration range of 1.0 Multiplication-Sign 10{sup -6}-1.0 Multiplication-Sign 10{sup -2} mol L{sup -1}, a detection limit of 5.5 Multiplication-Sign 10{sup -7} mol L{sup -1}, a short conditioning time, a fast response time (< 10 s), and high selectivity towards Dy(III) ion in contrast to other cations. The proposed sensor was successfully used as an indicator electrode in the potentiometric titration of Dy(III) ions with EDTA. The membrane sensor was also applied to the F{sup -} ion indirect determination of some mouth washing solutions and to the Dy{sup 3+} determination in binary mixtures. Highlights: Black-Right-Pointing-Pointer The novelty of this work is based on the high affinity of the ionophore toward the Dy{sup 3+} ions. Black-Right-Pointing-Pointer This technique is very simple, fast and inexpensive and it is not necessary to use sophisticated equipment. Black-Right-Pointing-Pointer The newly developed sensor is superior to the formerly reported Dy{sup 3+} sensors in terms of selectivity.

  13. Eggshell membrane-templated porous gold membranes using nanoparticles as building blocks

    International Nuclear Information System (INIS)

    Ashraf, S.; Khalid, Z. M.; Hussain, I.

    2013-01-01

    Highly porous gold membrane-like structures are formed using eggshell membrane, as such and heat denatured, as a template and gold nanoparticles as building blocks. Gold nanoparticles were produced in-situ on the eggshell membranes without using additional reducing agents. The morphology and loading of gold nanoparticles can easily be controlled by adjusting the pH and thus the redox potential of eggshell membranes. Lower pH favored the formation of irregularly-shaped but dense gold macro/ nanocrystals whereas higher pH(8-9) favored the formation of fairly uniform but less dense gold nanoparticles onto the eggshell membranes. Heat treatment of eggshell membrane-gold nanoparticle composites formed at pH 8-9 led to the formation of highly porous membrane like gold while mimicking the original structure of eggshell membrane. All these materials have been thoroughly characterized using field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma - atomic emission spectroscopy (ISP-AES). These highly porous membrane-like gold materials may have potential applications in catalysis, biosensors, electrode materials, optically selective coatings, heat dissipation and biofiltration. (author)

  14. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  15. Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Liu Jinn-Liang

    2017-10-01

    Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.

  16. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Pant, Deepak, E-mail: deepak.pant@vito.b [Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, Mol 2400 (Belgium); Van Bogaert, Gilbert; De Smet, Mark; Diels, Ludo; Vanbroekhoven, Karolien [Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, Mol 2400 (Belgium)

    2010-11-01

    In the existing microbial fuel cells (MFCs), the use of platinized electrodes and Nafion as proton exchange membrane (PEM) leads to high costs leading to a burden for wastewater treatment. In the present study, two different novel electrode materials are reported which can replace conventional platinized electrodes and can be used as very efficient oxygen reducing cathodes. Further, a novel membrane which can be used as an ion permeable membrane (Zirfon) can replace Nafion as the membrane of choice in MFCs. The above mentioned gas porous electrodes were first tested in an electrochemical half cell configuration for their ability to reduce oxygen and later in a full MFC set up. It was observed that these non-platinized air electrodes perform very well in the presence of acetate under MFC conditions (pH 7, room temperature) for oxygen reduction. Current densities of -0.43 mA cm{sup -2} for a non-platinized graphite electrode and -0.6 mA cm{sup -2} for a non-platinized activated charcoal electrode at -200 mV vs. Ag/AgCl of applied potential were obtained. The proposed ion permeable membrane, Zirfonwas tested for its oxygen mass transfer coefficient, K{sub 0} which was compared with Nafion. The K{sub 0} for Zirfon was calculated as 1.9 x 10{sup -3} cm s{sup -1}.

  17. Neonates need tailored drug formulations.

    Science.gov (United States)

    Allegaert, Karel

    2013-02-08

    Drugs are very strong tools used to improve outcome in neonates. Despite this fact and in contrast to tailored perfusion equipment, incubators or ventilators for neonates, we still commonly use drug formulations initially developed for adults. We would like to make the point that drug formulations given to neonates need to be tailored for this age group. Besides the obvious need to search for active compounds that take the pathophysiology of the newborn into account, this includes the dosage and formulation. The dosage or concentration should facilitate the administration of low amounts and be flexible since clearance is lower in neonates with additional extensive between-individual variability. Formulations need to be tailored for dosage variability in the low ranges and also to the clinical characteristics of neonates. A specific focus of interest during neonatal drug development therefore is a need to quantify and limit excipient exposure based on the available knowledge of their safety or toxicity. Until such tailored vials and formulations become available, compounding practices for drug formulations in neonates should be evaluated to guarantee the correct dosing, product stability and safety.

  18. Graphene-based integrated electrodes for flexible lithium ion batteries

    International Nuclear Information System (INIS)

    Shi, Ying; Wen, Lei; Zhou, Guangmin; Chen, Jing; Pei, Songfeng; Huang, Kun; Cheng, Hui-Ming; Li, Feng

    2015-01-01

    We have prepared flexible free-standing electrodes with anode and cathode active materials deposited on a highly conductive graphene membrane by a two-step filtration method. Compared with conventional electrodes using metal as current collectors, these electrodes have displayed stronger adhesion, superior electrochemical performance, higher energy density, and better flexibility. A full lithium ion battery assembled by adopting these graphene-based electrodes has showed high rate capability and long cyclic life. We have also assembled a thin, lightweight, and flexible lithium ion battery with poly-(dimethyl siloxane) sheets as packaging material to light a red light-emitting diode. This flexible battery can be easily bent without structural failure or performance loss and operated well under a bent state. The fabrication process of these graphene-based integrated electrodes only has two filtration steps; thus it is easy to scale up. These results suggest great potential for these graphene-based flexible batteries in lightweight, bendable, and wearable electronic devices. (paper)

  19. Nanofiber electrode and method of forming same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Zhang, Wenjing

    2018-02-27

    In one aspect, a method of forming an electrode for an electrochemical device is disclosed. In one embodiment, the method includes the steps of mixing at least a first amount of a catalyst and a second amount of an ionomer or uncharged polymer to form a solution and delivering the solution into a metallic needle having a needle tip. The method further includes the steps of applying a voltage between the needle tip and a collector substrate positioned at a distance from the needle tip, and extruding the solution from the needle tip at a flow rate such as to generate electrospun fibers and deposit the generated fibers on the collector substrate to form a mat with a porous network of fibers. Each fiber in the porous network of the mat has distributed particles of the catalyst. The method also includes the step of pressing the mat onto a membrane.

  20. Nanowire-decorated microscale metallic electrodes

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Antohe, V.A.

    2008-01-01

    The fabrication of metallic nanowire patterns within anodic alumina oxide (AAO) membranes on top of continuous conducting substrates are discussed. The fabrication protocol is based on the realization of nanowire patterns using supported nanoporous alumina templates (SNAT) prepared on top...... of lithographically defined metallic microelectrodes. The anodization of the aluminum permits electroplating only on top of the metallic electrodes, leading to the nanowire patterns having the same shape as the underlying metallic tracks. The variation in the fabricated structures between the patterned and non......-patterned substrates can be interpreted in terms of different behavior during anodization. The improved quality of fabricated nanowire patterns is clearly demonstrated by the SEM imaging and the uniform growth of nanowires inside the alumina template is observed without any significant height variation....

  1. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  2. Microcanonical formulation of quantum field theories

    International Nuclear Information System (INIS)

    Iwazaki, A.

    1984-03-01

    A microcanonical formulation of Euclidean quantum field theories is presented. In the formulation, correlation functions are given by a microcanonical ensemble average of fields. Furthermore, the perturbative equivalence of the formulation and the standard functional formulation is proved and the equipartition low is derived in our formulation. (author)

  3. Evaluation of the hybrid-L24 electrode using microcomputed tomography.

    Science.gov (United States)

    Driscoll, Colin L W; Carlson, Matthew L; Fama, Anthony F; Lane, John I

    2011-07-01

    To compare electrode array position, and depth of insertion of the Cochlear Hybrid-L24 electrode array following traditional cochleostomy and round window (RW) insertion. Prospective cadaveric temporal bone study. Ten cadaveric temporal bones were implanted with the Hybrid-L24 electrode array; half were introduced through a RW approach, whereas the other half were inserted through a traditional scala tympani cochleostomy. A micro-CT scanner was then used to evaluate electrode position, intracochlear trauma, and depth of insertion. All electrodes were inserted into the scala tympani without significant resistance. No electrodes demonstrated tip fold-over or through-fracturing of the osseous spiral lamina, basilar membrane, or spiral ligament. The average angular depth of insertion for all 10 electrodes was 252.4°. Compared to cochleostomy insertions, electrodes inserted through the RW more commonly acquired a proximal perimodiolar orientation, followed a more predictable course, and less commonly contacted critical soft tissue structures. The results of this study demonstrate that the Hybrid-L24 electrode can be successfully inserted using a RW or traditional cochleostomy technique with minimal intracochlear trauma. Our data also suggests that with this model, RW insertions may provide particular advantages with respect to hearing preservation over the traditional cochleostomy approach. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  4. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    Science.gov (United States)

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Univ. Politecnica de Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J.; Gamboa, S.A.; Joseph, S. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Centrode Investigacion en Energia; Pal, U. [Univ. Autonoma de Puebla, Pue (Mexico). Inst. de Fisica; Gonzalez, I. [Univ. Autonoma Metropolitana, Mexico City (Mexico). Dept. de Quimica

    2010-07-01

    This paper described the synthesis and characterization of gold (Au), platinum (Pt) and Au-Pt nanoparticles impregnated on a Nafion membrane in a proton exchange membrane fuel cell (PEMFC). The aim of the study was to fabricate the membrane electrode assembly (MEA) by depositing the nanoparticles on the membrane using an immersion technique. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to study the deposition process. Electrochemical impedance spectroscopy (EIS) was used to study the membrane proton conduction process. An elemental mapping analysis was performed in order to study the location of the Au and Pt in the self-assemblies. Results of the study showed that the particles deposited on the Nafion had good stability and a homogenous distribution along the membrane surface. The particles showed a direct relation in size and location with the hydrophilic and hydrophobic distribution phases of the membrane. The main membrane resistance was located between the membrane and the electrolyte. The self-assembled electrodes demonstrated a good performance at standard conditions. 33 refs., 4 tabs., 11 figs.

  6. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  7. EDM Electrode for Internal Grooves

    Science.gov (United States)

    Ramani, V.; Werner, A.

    1985-01-01

    Electroerosive process inexpensive alternative to broaching. Hollow brass electrodes, soldered at one end to stainless-steel holding ring, held in grooves in mandrel. These electrodes used to machine grooves electrically in stainless-steel tube three-eights inch (9.5 millimeters) in diameter. Tool used on tubes already in place in equipment.

  8. Making EDM Electrodes By Stereolithography

    Science.gov (United States)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  9. Surface-modified electrodes (SME)

    NARCIS (Netherlands)

    Schreurs, J.P.G.M.; Barendrecht, E.

    1984-01-01

    This review deals with the literature (covered up to August 1983), the characterization and the applications of Surface-Modified Electrodes (SME). As a special class of SME's, the Enzyme-Modified Electrode (EME) is introduced. Three types of modification procedures are distinguished; i.e. covalent

  10. Storage-battery electrodes. [preparation

    Energy Technology Data Exchange (ETDEWEB)

    1961-12-29

    Two incompatible thermoplastic resins are mixed with a powdered electrochemical active substance. The substance may be, for example, an oxide of cadmium, iron, lead, or zinc or nickel hydroxide. After the mixture is shaped into elements which are inserted into conducting sheaths for an electrode, the one resin is washed out to form a porous electrode. (RWR)

  11. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  12. Improved photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  13. Alkaline fuel cell with nitride membrane

    Science.gov (United States)

    Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika

    2017-06-01

    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.

  14. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  15. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  16. Adsorption at electrodes

    International Nuclear Information System (INIS)

    Hubbard, A.T.; Ping Gao

    1991-01-01

    Surface electrochemical studies are described and summarized in which atomic, ionic or molecular layers were allowed to form from aqueous solutions at well-defined Pt(111) surfaces. The resulting adsorbed layers were chemisorbed in most cases and stable in vacuum, permitting identification and quantitation by Auger spectroscopy, EELS, LEED and electrochemistry. Adsorbed atomic, ionic, or molecular layers formed at metal-solution interfaces frequently display long-range order. Molecular properties of the adsorbed layers correlate with their electrochemical properties. The molecular orientation of organic adsorbates was deduced from packing density measurements, supplemented with vibrational spectra. Interfacial variables such as electrode potential have a strong influence on interfacial structure along with the nature and mode of surface attachment of adsorbates. The angular distribution of Auger electron emission from metal single crystals and atomic adsorbed layers has proved to be useful for direct imaging of surface crystal and interfacial structure. (author). 14 refs, 11 figs

  17. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  18. Tactile friction of topical formulations.

    Science.gov (United States)

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  20. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  1. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    The relationship between digital and analogue is often constructed as one of opposition. The perception that the world is permeated with underlying patterns of data, describing events and matter alike, suggests that information can be understood apart from the substance to which it is associated......, and that its encoded logic can be constructed and reconfigured as an isolated entity. This disembodiment of information from materiality implies that an event like a thunderstorm, or a material like a body, can be described equally by data, in other words it can be read or written. The following prototypes......, Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  2. Decontamination formulation with sorbent additive

    Science.gov (United States)

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  3. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    Science.gov (United States)

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  4. CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE.

    Science.gov (United States)

    Mikucki, Michael; Zhou, Y C

    2017-01-01

    This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization.

  5. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...

  6. Detecting Levels of Polyquaternium-10 (PQ-10) via Potentiometric Titration with Dextran Sulphate and Monitoring the Equivalence Point with a Polymeric Membrane-Based Polyion Sensor.

    Science.gov (United States)

    Ferguson, Stephen A; Wang, Xuewei; Meyerhoff, Mark E

    2016-08-07

    Polymeric quaternary ammonium salts (polyquaterniums) have found increasing use in industrial and cosmetic applications in recent years. More specifically, polyquaternium-10 (PQ-10) is routinely used in cosmetic applications as a conditioner in personal care product formulations. Herein, we demonstrate the use of potentiometric polyion-sensitive polymeric membrane-based electrodes to quantify PQ-10 levels. Mixtures containing both PQ-10 and sodium lauryl sulfate (SLS) are used as model samples to illustrate this new method. SLS is often present in cosmetic samples that contain PQ-10 (e.g., shampoos, etc.) and this surfactant species interferes with the polyion sensor detection chemistry. However, it is shown here that SLS can be readily separated from the PQ-10/SLS mixture by use of an anion-exchange resin and that the PQ-10 can then be titrated with dextran sulphate (DS). This titration is monitored by potentiometric polyanion sensors to provide equivalence points that are directly proportional to PQ-10 concentrations.

  7. Proton exchange membrane fuel cells for space and electric vehicle applications: From basic research to technology development

    Science.gov (United States)

    Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James

    1994-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.

  8. Capacitance enhancement via electrode patterning

    International Nuclear Information System (INIS)

    Ho, Tuan A.; Striolo, Alberto

    2013-01-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties

  9. Studies of pyrrole black electrodes as possible battery positive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mengoli, G.; Musiani, M.M.; Fleischmann, M.; Pletcher, D.

    1984-05-01

    It is shown that a polypyrrole, pyrrole black, may be formed anodically in several aqueous acids. The polypyrrole film shows a redox couple at less positive potentials than that required to form the film and the charge associated with these reduction and oxidation processes together with their stabilty to cycling varies with the anion in solution and the potential where the polypyrrole is formed; over-oxidation of the film caused by taking its potential too positive has a particularly disadvantageous affect. In the acids HBr and HI, the polypyrrole films can act as a storage medium for Br/sub 2/ or I/sub 2/ so that they may be used as a substrate for a X/sub 2//X/sup -/ electrode. Such electrodes may be charge/discharge cycled and the pyrrole/Br/sub 2/ electrode shows promise as a battery positive electrode.

  10. Formulation and Evaluation of Rifampicin Liposomes for Buccal Drug Delivery.

    Science.gov (United States)

    Lankalapalli, Srinivas; Tenneti, V S Vinai Kumar

    2016-01-01

    Drug delivery through liposomes offers several advantages, but still challenging to the researchers for the use of liposomes as carriers in drug delivery due to their poor physical stability, unpredictable drug encapsulation and systemic availability of the loaded drug. The present investigation was planned with an objective to prepare Rifampicin loaded liposomes by using response surface methodology of statistical 32 factorial design and further to formulate them into pastilles for deliver through buccal route thereby to enhance systemic absorption. Rifampicin liposomes were prepared by using different ratios of soya lecithin and cholesterol by solvent Injection method. These liposomes were characterized by using optical microscopy, Scanning Electron Microscopy (SEM) and evaluated for particle size, entrapment efficiency (EE), in vitro and ex vivo drug release. Main effects and interaction terms of the formulation variables were evaluated quantitatively using a mathematical statistical model approach showing that both independent variables have significant (P value value: 0.0273), percentage entrapment efficiency (P value: 0.0096), percentage drug release through dialysis membrane (P value: 0.0047) and percentage drug release through porcine buccal membrane (P value: 0.0019). The statistical factorial design of liposomal formulations fulfilled all the requirements of the target set and exhibited suitable values for the selected test parameters. Pastilles were prepared for liposomes using glycerol gelatin base and were found to be soft, smooth with uniform drug content and drug release.

  11. AC impedance electrochemical modeling of lithium-ion positive electrodes

    International Nuclear Information System (INIS)

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF 6 dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes (1). Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley (2). The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation (3). The resulting system of differential equations was solved

  12. Electrochemistry of Phosphorous and Hypophosphorous Acid on a Pt electrode

    International Nuclear Information System (INIS)

    Prokop, M.; Bystron, T.; Bouzek, K.

    2015-01-01

    Highlights: • H 3 PO 3 and H 3 PO 2 oxidation on Pt electrode proceed at high overpotential. • H 3 PO 2 oxidation proceeds via H 3 PO 3 as intermediate. • H 3 PO 3 and H 3 PO 2 adsorb on Pt electrode, adsorption isotherms determined. • Adsorption is more pronounced at elevated temperature. • Tautomeric equilibria plays an important role in the acids behaviour. - Abstract: H 3 PO 4 is commonly used as a proton-conducting phase in high temperature proton exchange membrane fuel cell membranes. However, its reduction with hydrogen at elevated temperatures yields compounds like H 3 PO 3 and phosphorus. The aim of this work was to describe the basic electrochemical behaviour of H 3 PO 3 and H 3 PO 2 on a Pt electrode in diluted aqueous H 2 SO 4 solutions. The results show that adsorption of both phosphorus acids studied becomes important at an oxoacid bulk concentration around and below 10 mol dm −3 . Adsorption isotherms at 25 and 70 °C were determined for both acids. Unusually, the extent of adsorption increases with rising temperature. H 3 PO 3 is anodically oxidised on a bare Pt as well as on a PtO surface. H 3 PO 2 oxidation proceeds mainly on a PtO surface, with the intermediate product being H 3 PO 3 . High overvoltage around 1 V is characteristic of all anodic oxidation reactions occurring in the temperature range studied

  13. Curcumin nanodisks: formulation and characterization

    OpenAIRE

    Ghosh, Mistuni; Singh, Amareshwar T. K.; Xu, Wenwei; Sulchek, Todd; Gordon, Leo I.; Ryan, Robert O.

    2010-01-01

    Nanodisks (ND) are nanoscale, disk-shaped phospholipid bilayers whose edge is stabilized by apolipoproteins. In the present study, ND were formulated with the bioactive polyphenol, curcumin, at a 6:1 phospholipid:curcumin molar ratio. Atomic force microscopy revealed that curcumin-ND are particles with diameters

  14. Covariant Formulation of Hooke's Law.

    Science.gov (United States)

    Gron, O.

    1981-01-01

    Introducing a four-vector strain and a four-force stress, Hooke's law is written as a four-vector equation. This formulation is shown to clarify seemingly paradoxical results in connection with uniformly accelerated motion, and rotational motion with angular acceleration. (Author/JN)

  15. Influence of Electric Fields on Biofouling of Carbonaceous Electrodes.

    Science.gov (United States)

    Pandit, Soumya; Shanbhag, Sneha; Mauter, Meagan; Oren, Yoram; Herzberg, Moshe

    2017-09-05

    Biofouling commonly occurs on carbonaceous capacitive deionization electrodes in the process of treating natural waters. Although previous work reported the effect of electric fields on bacterial mortality for a variety of medical and engineered applications, the effect of electrode surface properties and the magnitude and polarity of applied electric fields on biofilm development has not been comprehensively investigated. This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA) and a carbon aerogel (CA) in the presence and the absence of an electric field. The experiments were conducted using a two-electrode flow cell with a voltage window of ±0.9 V. The CA was less susceptible to biofilm formation compared to the PA due to its lower surface roughness, lower hydrophobicity, and significant antimicrobial properties. For both positive and negative applied potentials, we observed an inverse relationship between biofilm formation and the magnitude of the applied potential. The effect is particularly strong for the CA electrodes and may be a result of cumulative effects between material toxicity and the stress experienced by cells at high applied potentials. Under the applied potentials for both electrodes, high production of endogenous reactive oxygen species (ROS) was indicative of bacterial stress. For both electrodes, the elevated specific ROS activity was lowest for the open circuit potential condition, elevated when cathodically and anodically polarized, and highest for the ±0.9 V cases. These high applied potentials are believed to affect the redox potential across the cell membrane and disrupt redox homeostasis, thereby inhibiting bacterial growth.

  16. Development of solid supports for electrochemical study of biomimetic membrane systems

    DEFF Research Database (Denmark)

    Mech-Dorosz, Agnieszka

    cushion directly on a gold electrode microchip and on a polyethersulfone (PES) support grafted by in situ polymerized hydrogel. Both strategies proved to be suitable for immobilization of functional bRh loaded lipo-polymersomes. Amperometric monitoring showed that the PES membrane support facilitated......Biomimetic membranes are model membrane systems used as an experimental tool to study fundamental cellular membrane physics and functionality of reconstituted membrane proteins. By exploiting the properties of biomimetic membranes resembling the functions of biological membranes, it is possible...... to construct biosensors for high-throughput screening of potential drug candidates. Among a variety of membrane model systems used for biomimetic approach, lipid bilayers in the form of black lipid membranes (BLMs) and lipo-polymersomes (vesicle structures composed of lipids and polymers), both...

  17. Energy consumption and constant current operation in membrane capacitive deionization

    NARCIS (Netherlands)

    Zhao, R.; Biesheuvel, P.M.; Wal, van der A.F.

    2012-01-01

    Membrane capacitive deionization (MCDI) is a water desalination technology based on applying a cell voltage between two oppositely placed porous electrodes sandwiching a spacer channel that transports the water to be desalinated. In the salt removal step, ions are adsorbed at the carbon–water

  18. Introduction to solid supported membrane based electrophysiology.

    Science.gov (United States)

    Bazzone, Andre; Costa, Wagner Steuer; Braner, Markus; Călinescu, Octavian; Hatahet, Lina; Fendler, Klaus

    2013-05-11

    The electrophysiological method we present is based on a solid supported membrane (SSM) composed of an octadecanethiol layer chemisorbed on a gold coated sensor chip and a phosphatidylcholine monolayer on top. This assembly is mounted into a cuvette system containing the reference electrode, a chlorinated silver wire. After adsorption of membrane fragments or proteoliposomes containing the membrane protein of interest, a fast solution exchange is used to induce the transport activity of the membrane protein. In the single solution exchange protocol two solutions, one non-activating and one activating solution, are needed. The flow is controlled by pressurized air and a valve and tubing system within a faraday cage. The kinetics of the electrogenic transport activity is obtained via capacitive coupling between the SSM and the proteoliposomes or membrane fragments. The method, therefore, yields only transient currents. The peak current represents the stationary transport activity. The time dependent transporter currents can be reconstructed by circuit analysis. This method is especially suited for prokaryotic transporters or eukaryotic transporters from intracellular membranes, which cannot be investigated by patch clamp or voltage clamp methods.

  19. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò

    2015-11-01

    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  20. Selectivity of Direct Methanol Fuel Cell Membranes.

    Science.gov (United States)

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  1. Fractals in several electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunyong, E-mail: zhangchy@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); Wu, Jingyu [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fu, Degang [Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2014-09-15

    Highlights: • Fractal geometry was employed to characterize three important electrode materials. • The surfaces of all studied electrodes were proved to be very rough. • The fractal dimensions of BDD and ACF were scale dependent. • MMO film was more uniform than BDD and ACF in terms of fractal structures. - Abstract: In the present paper, the fractal properties of boron-doped diamond (BDD), mixed metal oxide (MMO) and activated carbon fiber (ACF) electrode have been studied by SEM imaging at different scales. Three materials are self-similar with mean fractal dimension in the range of 2.6–2.8, confirming that they all exhibit very rough surfaces. Specifically, it is found that MMO film is more uniform in terms of fractal structure than BDD and ACF. As a result, the intriguing characteristics make these electrodes as ideal candidates for high-performance decontamination processes.

  2. Electrode materials for rechargeable batteries

    Science.gov (United States)

    Abouimrane, Ali; Amine, Khalil

    2015-04-14

    Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.

  3. Electrode structures of polymer-electrolyte fuel cells (PEFC). An electron microscopy approach to the characterization of the electrode structure of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Scheiba, Frieder

    2009-01-28

    catalyst and catalyst support, but that it forms a complex structure consisting of fiber and film like structures in the pores of the electrode. In addition, the EF-TEM result delivered a strong indication for the infiltration of catalyst agglomerates by the polymer electrolyte. Furthermore, a new concept for the investigation of multi-component structures, consisting of the membrane, electrodes and gas di1usion layers (GDL) was developed. Thus it was possible to provide evidence for the intrusion of individual carbon fibers from the GDL into the electrode. In addition the influence of GDL structure on delamination of the electrode could be demonstrated. Another part of the work deals with the characterization of a novel platinum catalyst deposited on hydrous ruthenium oxide coated carbon nanotubes (CNT), which was developed in close cooperation with a Chinese partner at Tsinghua University (Beijing). (orig.)

  4. Composite Electrodes for Electrochemical Supercapacitors

    OpenAIRE

    Li, Jun; Yang, QuanMin; Zhitomirsky, Igor

    2010-01-01

    Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with to...

  5. Influence of membrane composition on its flexibility

    International Nuclear Information System (INIS)

    Gerbelli, B.B.; Teixeira da Silva, E.R.; Oliveira, C.L.P.; Oliveira, E.A.

    2012-01-01

    Full text: Lamellar phases and vesicles composed of lipids have been used as model systems to investigate biological process related to cell membrane as well as promising carriers for drugs and gene therapy. The composition of the membrane determines its three dimensional shape and its properties such as rigidity and compressibility which play an important role on membrane fusion, protein adhesion, interactions between proteins, etc. We present systematic study of a lamellar system composed mainly of lecithin which is a biocompatible phospholipid and simusol, which is a mixture of fatty acids that acts as a cosurfactant introducing flexibility to the membrane. Using X ray scattering we determine the lamellar periodicity as a function of the hydration for different formulations of the membrane; ranging from 100 % to 50 % mass fraction of lecithin. The X-ray spectra are fitted using a 4 Gaussian model [1]that allows us to determine the lamellar periodicity and the Caille parameter [2]. The ideal swelling law relating the membrane volume fraction (φ m ) to the lamellar periodicity (D) is given by φ m =δ m /D, where δ m is the thickness membrane, however, when steric interactions are dominant with respect to electrostatic and van der Waals interactions, deviations from this behavior are expected [3]. We present experimental data illustrating the swelling behavior for the membrane compositions and the respective behavior of the hydration limit, membrane Luzzati [4], of the Caille parameter and qualitative interpretation of the interaction forces the systems studying the parameter membrane square amplitude fluctuation[5]. [1] Private communication with Prof. Dr. Cristiano Luis Pinto de Oliveira. [2] Caille A. et all, Acad. Sci. Paris B274 (1972) 891. [3] E. Kurtisovski et all, PRL 98, 258103 (2007). [4] Nagle et all, Curr Opin Struct Biol. 2000 Aug;10(4):474-80. [5] H. I. Petrache. Structure and interactions of fluid phospholipids bilayers measured by high resolution

  6. PALLADIUM-FACILITATED ELECTROLYTIC DECHLORINATION OF 2-CHLOROBIPHENYL USING A GRANULAR-GRAPHITE ELECTRODE.

    Science.gov (United States)

    Palladium-assisted electrocatalytic dechlorination of 2-chlorobiphenyl (2-Cl BP) in aqueous solutions was conducted in a membrane-separated electrochemical reactor with granular-graphite packed electrodes. The dechlorination took place at a granular-graphite cathode while Pd was ...

  7. The stability of PEMFC electrodes : platinum dissolution vs potential and temperature investigated by quartz crystal microbalance

    NARCIS (Netherlands)

    Dam, V.A.T.; Bruijn, de F.A.

    2007-01-01

    The stability of platinum in proton exchange membrane fuel cell (PEMFC) electrodes has been investigated by determining the dissolution of platinum from a thin platinum film deposited on a gold substrate in 1 M HClO4 at different temperatures ranging between 40 and 80°C and potentials between 0.85

  8. Finite element modeling of the neuron-electrode interface: stimulus transfer and geometry

    NARCIS (Netherlands)

    Buitenweg, Jan R.; Rutten, Wim; Marani, Enrico

    1999-01-01

    The relation between stimulus transfer and the geometry of the neuron-electrode interface can not be determined properly using electrical equivalent circuits, since current that flows from the sealing gap through the neuronal membrane is difficult to model in these circuits. Therefore, finite

  9. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    DEFF Research Database (Denmark)

    Wiberg, Gustav Karl Henrik; Fleige, Michael; Arenz, Matthias

    2015-01-01

    temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow...

  10. Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode

    DEFF Research Database (Denmark)

    Pedersen, Christoffer Mølleskov; Escribano, Maria Escudero; Velazquez-Palenzuela, Amado Andres

    2015-01-01

    We present up-to-date benchmarking methods for testing electrocatalysts for polymer exchange membrane fuel cells (PEMFC), using the rotating disk electrode (RDE) method. We focus on the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) in the presence of CO. We have chosen...

  11. Effect of formulation compositions on niosomal preparations.

    Science.gov (United States)

    Chaw, Cheng Shu; Kim, Kwong Yioung Ah

    2013-01-01

    This study was aimed to investigate the effects of molar ratio of cholesterol to Span 60 and stabilizers (Solutol HS 15 or dicetyl phosphate (DCP)) on the entrapment of methylene blue, a model hydrophilic drug. The niosomes were prepared by the film hydration method and characterized for drug entrapment efficiency (EE), vesicle size, zeta potential and thermal properties of niosomal membrane. It was found that niosomal vesicles possessed median diameter ranging from 0.35 to 1.85 μm. The niosomes that were formulated with lower molar ratios of cholesterol to Span 60 of 0.33 and 0.50 produced significantly higher EE with both stabilizers when compared to cholesterol to Span 60 molar ratios of 1.0 and above (p Solutol HS 15 except at a molar ratio of cholesterol to Span 60 of 0.33. In conclusion, with low molar ratios of cholesterol to Span 60, more drugs could be entrapped within the niosomes regardless of the type of stabilizers. Furthermore, EE and median diameter of niosomes containing DCP were higher than those stabilized with Solutol HS 15.

  12. Cadmium-sensitive electrode based on tetracetone derivatives of p-tert-butylcalix[8]arene

    Energy Technology Data Exchange (ETDEWEB)

    Dernane, C. [Université de Jijel, Laboratoire de Matériaux: Elaborations-Propriétés-Applications, BP 98, Ouled Aissa, 18000 Jijel (Algeria); Zazoua, A., E-mail: azazoua@yahoo.fr [Université de Jijel, Laboratoire de Matériaux: Elaborations-Propriétés-Applications, BP 98, Ouled Aissa, 18000 Jijel (Algeria); Kazane, I. [Université de Jijel, Laboratoire de Matériaux: Elaborations-Propriétés-Applications, BP 98, Ouled Aissa, 18000 Jijel (Algeria); Jaffrezic-Renault, N. [Université de Lyon, LSA-UMR 5180 CNRS, Université Claude Bernard Lyon 1, 69622 Villeurbanne cedex (France)

    2013-10-15

    The performance of a cadmium-sensitive electrode based on the tetracetone derivatives of p-tert butylcalix[8]arene was investigated. The ion-sensitivity of the calix[8]arene was examined via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectrometry, UV/Vis spectroscopy and FT-IR spectroscopy. The sensitive membrane containing the active ionophore was cast onto the surface of a gold electrode. The electrode exhibited a linear relationship between the charge transfer resistance (R{sub ct}) and the logarithm of the detected ion concentration. The cathodic peak at a potential of 0.56 V increased linearly as the Cd{sup 2+} ion concentration increased. The detection limit of the device reached 10{sup −7} M with high sensitivity toward cadmium. - Highlights: • The performances of cadmium-sensitive electrode were investigated. • The sensitive membrane was casted on the surface of a gold electrode. • The electrode showed a linear relationship between the R{sub ct} and the ion concentration. • The detection limit of the device was 10{sup −7} M with high sensitivity toward cadmium.

  13. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure.

    Science.gov (United States)

    Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun

    2013-01-01

    Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.

  14. Wafer-Level Membrane-Transfer Process for Fabricating MEMS

    Science.gov (United States)

    Yang, Eui-Hyeok; Wiberg, Dean

    2003-01-01

    A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.

  15. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  16. Interactions of the spin-labeled chloroethylnitrosourea SLCNUgly with electrode-supported lipid films

    International Nuclear Information System (INIS)

    Tacheva, Bilyana; Georgieva, Radostina; Karabaliev, Miroslav

    2016-01-01

    The spin-labeled chloroethylnitrosourea containig glycine SLCNUgly is an analogue of the clinically used nitrosourea drug lomustine (1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, CCNU), showing promising properties and features in vitro as well as in vivo. In this work the interaction of SLCNUgly with a lipid model membrane is investigated. The presented results indicate penetration of the drug in the membranes without causing defects of the lipid structure and reveal the potential of both SLCNUgly and electrode-supported lipid films as models for investigating nitrosourea drugs-membrane interactions.

  17. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  18. The kinetics of porous insertion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Atlung, S; West, K [British Columbia Univ., Vancouver (Canada)

    1989-05-01

    The principles of porous electrodes are discussed as well as the discharge of the insertion compound, the working potential, transport in the electrolyte, the time dependence of the electrolyte concentration, and modeling of the porous electrode. The simulation of a TiS2 porous electrode and the composite insertion electrode are considered as well. The influence of electrode thickness and porosity in a typical porous TiS2 electrode is revealed. It is shown that the use of insertion compounds as battery electrodes is limited by the requirement that the inserted ion must be distributed in the interior of the insertion compound particle. 15 refs.

  19. Stimulation and recording electrodes for neural prostheses

    CERN Document Server

    Pour Aryan, Naser; Rothermel, Albrecht

    2015-01-01

    This book provides readers with basic principles of the electrochemistry of the electrodes used in modern, implantable neural prostheses. The authors discuss the boundaries and conditions in which the electrodes continue to function properly for long time spans, which are required when designing neural stimulator devices for long-term in vivo applications. Two kinds of electrode materials, titanium nitride and iridium are discussed extensively, both qualitatively and quantitatively. The influence of the counter electrode on the safety margins and electrode lifetime in a two electrode system is explained. Electrode modeling is handled in a final chapter.

  20. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    OpenAIRE

    Siekierka Anna; Bryjak Marek

    2017-01-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity an...

  1. Structural and electrical characterization of PZT on gold for micromachined piezoelectric membranes

    International Nuclear Information System (INIS)

    Robinson, M.C.; Morris, D.J.; Hayenga, P.D.; Cho, J.H.; Richards, C.D.; Richards, R.F.; Bahr, D.F.

    2006-01-01

    Piezoelectric membranes have been fabricated that incorporate a gold bottom electrode with an adhesion layer of titanium-tungsten (10:90 wt. %). For solution-deposited acetic acid based lead zirconate titanate (HoAc-PZT) with a Zr:Ti ratio of 40:60, the film's average piezoelectric coefficient, e 31 , is -5.31 C/m 2 , with a dielectric constant of 814 at 200 Hz, which is similar to values for platinum bottom electrodes. The PZT structure remains columnar on both types of bottom electrodes. Initial fabrication attempts resulted in cracking that initiated in the PZT layer of the structure. X-ray photoelectron spectroscopy was utilized to establish how processing affects diffusion throughout the composite membrane structure. Crack-free membranes were fabricated and tested. This paper discusses the performance properties and piezoelectric fatigue results for these membranes. (orig.)

  2. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  3. Langevin formulation of quantum dynamics

    International Nuclear Information System (INIS)

    Roncadelli, M.

    1989-03-01

    We first show that nonrelativistic quantum mechanics formulated at imaginary-(h/2 π) can formally be viewed as the Fokker-Planck description of a frictionless brownian motion, which occurs (in general) in an absorbing medium. We next offer a new formulation of quantum mechanics, which is basically the Langevin treatment of this brownian motion. Explicitly, we derive a noise-average representation for the transition probability W(X'',t''|X',t'), in terms of the solutions to a Langevin equation with a Gaussian white-noise. Upon analytic continuation back to real-(h/2 π),W(X'',t''|X',t') becomes the propagator of the original Schroedinger equation. Our approach allows for a straightforward application to quantum dynamical problems of the mathematical techniques of classical stochastic processes. Moreover, computer simulations of quantum mechanical systems can be carried out by using numerical programs based on the Langevin dynamics. (author). 19 refs, 1 tab

  4. Extraction electrode geometry for a calutron

    International Nuclear Information System (INIS)

    Veach, A.M.; Bell, W.A. Jr.

    1975-01-01

    This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source

  5. Optimization of chlorphenesin emulgel formulation

    OpenAIRE

    Mohamed, Magdy I.

    2004-01-01

    This study was conducted to develop an emulgel formulation of chlorphenesin (CHL) using 2 types of gelling agents: hydroxypropylmethyl cellulose (HPMC) and Carbopol 934. The influence of the type of the gelling agent and the concentration of both the oil phase and emulsifying agent on the drug release from the prepared emulgels was investigated using a 23 factorial design. The prepared emulgels were evaluated for their physical appearance, rheological behavior, drug release, antifungal activi...

  6. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  7. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jü rgen; Khashab, Niveen M.; Zaher, Amir

    2013-01-01

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  8. Flux recovery of ceramic tubular membranes fouled with whey proteins: Some aspects of membrane cleaning

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2008-01-01

    Full Text Available Efficiency of membrane processes is greatly affected by the flux reduction due to the deposits formation at the surface and/or in the pores of the membrane. Efficiency of membrane processes is affected by cleaning procedure applied to regenerate flux. In this work, flux recovery of ceramic tubular membranes with 50 and 200 nm pore size was investigated. The membranes were fouled with reconstituted whey solution for 1 hour. After that, the membranes were rinsed with clean water and then cleaned with sodium hydroxide solutions or formulated detergents (combination of P3 Ultrasil 67 and P3 Ultrasil 69. Flux recovery after the rinsing step was not satisfactory although fouling resistance reduction was significant so that chemical cleaning was necessary. In the case of 50 nm membrane total flux recovery was achieved after cleaning with 1.0% (w/w sodium hydroxide solution. In the case of 200 nm membrane total flux recovery was not achieved irrespective of the cleaning agent choice and concentration. Cleaning with commercial detergent was less efficient than cleaning with the sodium hydroxide solution.

  9. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guinovart, Tomàs [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Crespo, Gastón A. [Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva (Switzerland); Rius, F. Xavier [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain); Andrade, Francisco J., E-mail: franciscojavier.andrade@urv.cat [Departament de Química Orgànica i Química Analítica, Universitat Rovira i Virgili, Carrer Marcellí Domingo s/n 43007 Tarragona (Spain)

    2014-04-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec⁻¹ over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided.

  10. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements

    International Nuclear Information System (INIS)

    Guinovart, Tomàs; Crespo, Gastón A.; Rius, F. Xavier; Andrade, Francisco J.

    2014-01-01

    Highlights: • A disposable solid-contact reference electrode for potentiometry is presented. • The device shows unsensitivity to most ions, redox potential and light. • Low-cost and good stability, ideal to build disposable potentiometric sensors. • Nanopores formed in the membrane control the flux of ions with the solution. - Abstract: A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec −1 ) over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90 ± 33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided

  11. Tetraazacyclohexadeca Macrocyclic Ligand as a Neutral Carrier in a Cr Ion-selective Electrode

    Directory of Open Access Journals (Sweden)

    Puja Saxena

    2004-12-01

    Full Text Available Abstract: A polystyrene-based membrane of 2,10-dimethyl-4,12-diphenyl-1,5,9,13-tetraazacyclohexadeca-1,4,9,12-tetraene macrocyclic ionophore was prepared and investigated as Cr(III-selective electrode. The best performance was observed with the membrane having the polystyrene-ligand-dibutylphthalate-sodiumtetraphenyl borate composition 1:4:1:1 with a Nernstian slope of 19.0 mV per decade of concentration between pH 3.0 and 6.5. This electrode has been found to be chemically inert and of adequate stability with a response time of 20 s and was used over a period of 100 d with good reproducibility (S= 0.3 mV. The membrane works satisfactorily in a partially non-aqueous medium up to a maximum 30% (v/v content of methanol and ethanol. The potentiometric selectivity coefficient values indicate that the membrane sensor is highly selective for Cr(III ions over a number of monovalent, divalent and trivalent cations. The membrane electrode has also been successfully used to determine Cr3+ in various food materials.

  12. Lipophilic drug transfer between liposomal and biological membranes

    DEFF Research Database (Denmark)

    Fahr, Alfred; van Hoogevest, Peter; Kuntsche, Judith

    2006-01-01

    This review presents the current knowledge on the interaction of lipophilic, poorly water soluble drugs with liposomal and biological membranes. The center of attention will be on drugs having the potential to dissolve in a lipid membrane without perturbing them too much. The degree of interaction...... is described as solubility of a drug in phospholipid membranes and the kinetics of transfer of a lipophilic drug between membranes. Finally, the consequences of these two factors on the design of lipid-based carriers for oral, as well as parenteral use, for lipophilic drugs and lead selection of oral...... lipophilic drugs is described. Since liposomes serve as model-membranes for natural membranes, the assessment of lipid solubility and transfer kinetics of lipophilic drug using liposome formulations may additionally have predictive value for bioavailability and biodistribution and the pharmacokinetics...

  13. Quaternary alkylammonium and alkylphosphonium pertechnetates. Application to pertechnetate ion-selective electrodes

    International Nuclear Information System (INIS)

    German, K.E.; Dorokhov, A.V.; Tarasov, A.V.; Baulin, V.E.; Peretroukhine, V.; Tsivadze, A.Yu.; Kopytin, A.V.; Politov, Yu.; Pyatova, E.N.

    2005-01-01

    Pertechnetate ion-selective PVC membrane electrodes based on quaternary alkylammonium and phosphonium salts (bromides and pertechnetates) were examined. The most favorable ionophore was tetradecyltrimethylammonium bromide. The response function was linear within the concentration range 10 -2 -10 -6 mol/L and the slope was 52 mV/pTcO 4 . The detection limit remained at 5x10 -7 mol/L. The selectivity and response time of the electrodes was studied and it was found that the electrodes exhibited high selectivity to TcO 4 - -anion against the main inorganic components of radioactive waste solutions and environmental waters (nitrate, sulfate, chloride and others). The electrodes response was stable over a wide pH range. (author)

  14. Control of electrode processes in electrokinetic soil remediation

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M.; Marb, C. [Bavarian State Office for Environmental Protection, Waste Technology Centre, Augsburg (Germany)

    2001-07-01

    Technical control of electrode processes induced by water electrolysis is crucial for the effectiveness of electrokinetic soil remediation. A calculation method for the quantification of electrolysis products is derived and its validity by the consumption of neutralizing agents verified. Steel rods used as sacrificial anodes instead of inert materials cannot counteract the acidification of the anolyte due to the acidic property of Fe-cations released as oxidation products. An an alternative to ordinary porous well materials a tubular cation exchange membrane was used as a cathode well. Thereby the migration of anions stemming from the catholyte neutralisation was hampered and no loss in the electric field strength occured. (orig.)

  15. Performance of a 1 kW Class Nafion-PTFE Composite Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Pattabiraman Krishnamurthy

    2012-01-01

    Full Text Available Composite membranes have been prepared by impregnation of Nafion into the expanded polytetrafluoroethylene (EPTFE matrix. Nafion loading in the composite membranes was kept constant at 2 mg/cm2. The lower amount of electrolyte per unit area in the composite membranes offers cost advantages compared to conventional membrane of 50 μm thickness with an electrolyte loading of ~9 mg/cm2. Composite membranes (30 μm thickness were found to have higher thermal stability and mechanical strength compared to the conventional membranes (50 μm thickness. The performance of the membrane electrode assembly made with these composite membranes was comparable to that of the conventional membranes. Single cells fabricated from these MEAs were tested for their performance and durability before scaling them up for large area. The performance of a 20-cell stack of active area 330 cm2 fabricated using these membranes is reported.

  16. Differential electrolytic potentiometric titration method for the determination of ciprofloxacin in drug formulations.

    Science.gov (United States)

    Abulkibash, Abdalla M; Sultan, Salah M; Al-Olyan, Abeer M; Al-Ghannam, Sheikha M

    2003-10-17

    A simple and rapid differential electrolytic potentiometric titration method for the determination of ciprofloxacin was developed. The work is based on the fast complexation reaction between iron(III) and ciprofloxacin in a ratio of 1:3, respectively, in sulfuric acid media of 0.09 mol dm(-3). Among the electrodes tested silver amalgam electrodes were found to be a suitable indicating system. By applying a current density of 0.5 muA cm(-2) to these electrodes and using iron(III) solution of 0.097 mol dm(-3) as a titrant, normal titration curves were obtained. The method was successfully applied for the determination of ciprofloxacin in drug formulations as low as 4.0 ppm.

  17. Charge transport in the electrospun nanofiber composite membrane's three-dimensional fibrous structure

    Science.gov (United States)

    DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.

    2016-03-01

    In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.

  18. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  19. Effect of porosity and tortuosity of electrodes on carbon polymer soft actuators

    Science.gov (United States)

    S, Sunjai Nakshatharan; Punning, Andres; Johanson, Urmas; Aabloo, Alvo

    2018-01-01

    This work presents an electro-mechanical model and simulation of ionic electroactive polymer soft actuators with a porous carbon electrode, polymer membrane, and ionic liquid electrolyte. An attempt is made to understand the effects of specific properties of the porous electrodes such as porosity and tortuosity on the charge dynamics and mechanical performance of the actuator. The model uses porous electrode theory to study the electrochemical response of the system. The mechanical response of the whole laminate is attributed to the evolution of local stresses caused by diffusion of ions (diffusion-induced stresses or chemical stresses). The model indicates that in actuators with porous electrode, the diffusion coefficient of ions, conductivity of the electrodes, and ionic conductivity in both electrodes and separator are altered significantly. In addition, the model leads to an obvious deduction that the ions that are highly active in terms of mobility will dominate the whole system in terms of resulting mechanical deformation direction and rate of deformation. Finally, to validate the model, simulations are conducted using the finite element method, and the outcomes are compared with the experimental data. Significant effort has been put forward to experimentally measure the key parameters essential for the validation of the model. The results show that the model developed is able to well predict the behavior of the actuator, providing a comprehensive understanding of charge dynamics in ionic polymer actuator with porous electrodes.

  20. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dorraji, Parisa S.; Jalali, Fahimeh, E-mail: fjalali@razi.ac.ir

    2016-04-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.