WorldWideScience

Sample records for membrane electrode assembly

  1. Advanced membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  2. Nanofiber membrane-electrode-assembly and method of fabricating same

    Science.gov (United States)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2016-02-02

    In one aspect of the present invention, a fuel cell membrane-electrode-assembly (MEA) has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode. At least one of the anode electrode, the cathode electrode and the membrane is formed of electrospun nanofibers.

  3. Nanofiber membrane-electrode-assembly and method of fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2018-01-23

    In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.

  4. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  5. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    2013-09-20

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

  6. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  7. Development and characterization of proton conductive membranes and membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Jiang, Ruichun

    Polymer electrolyte membrane fuel cells (PEMFCs), including hydrogen fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), are considered as attractive electrical power sources. However, there are some technical obstacles that impede the commercialization of PEMFCs. For instance, in H 2-PEMFCs, carbon monoxide (CO) poisoning of the anode catalyst causes serious performance loss; in DMFCs, methanol crossover through the membrane reduces the overall fuel cell efficiency. This work focused on: (1) developing high performance membrane electrode assemblies (MEAs) and investigating their behavior at higher temperature H2-PEMFC with H2+CO as the fuel; (2) improving DMFCs efficiency by preparing low methanol crossover/good proton conductivity membranes based on NafionRTM matrix; (3) synthesizing and modifying low cost sulfonated hydrocarbon (SPEEK) membranes for both H2-PEMFCs and DMFCs applications. High performance membrane electrode assemblies (MEAs) with composite NafionRTM-TeflonRTM-Zr(HPO 4)2 membranes were prepared, optimized and characterized at higher temperature (> 100°C)/lower relative humidity (oxidation mechanism of H2/CO in higher temperature PEMFC was investigated and simulated. Two type of membranes based on NafionRTM matrix were prepared: silica/NafionRTM membrane and palladium impregnated NafionRTM (Pd-NafionRTM) membrane. The composite silica/NafionRTM membrane was developed by in-situ sol-gel reaction followed by solution casting, while the Pd-NafionRTM was fabricated via a supercritical fluid CO2 (scCO 2) route. Reduced methanol crossover and enhanced efficiency was observed by applying each of the two membranes to DMFCs. In addition, the research demonstrated that scCO2 is a promising technique for modifying membranes or depositing nano-particle electrocatalysts onto electrolyte. Sulfonated poly(ether ether ketone) (SPEEK) was synthesized by a sulfonation reaction using poly(ether ether ketone) (PEEK). Multilayer structure SPEEK membranes with

  8. Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same

    DEFF Research Database (Denmark)

    2016-01-01

    In one aspect of the present invention, a fiber mat is provided. The fiber mat includes at least one type of fibers, which includes one or more polymers. The fiber mat may be a single fiber mat which includes one type of fibers, or may be a dual or multi fiber mat which includes multiple types...... of fibers. The fibers may further include particles of a catalyst. The fiber mat may be used to form an electrode or a membrane. In a further aspect, a fuel cell membrane-electrode-assembly has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode...... electrode. Each of the anode electrode, the cathode electrode and the membrane may be formed with a fiber mat....

  9. Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Kwon, Kyungjung; Park, Jung Ock; Yoo, Duck Young; Yi, Jung S.

    2009-01-01

    The ionomer content in electrode is one of the most important parameters for the high performance of fuel cells. The high temperature PEMFC based on phosphoric acid (PA)-doped polymer membrane with unhumidified reactant gases has a difficulty in controlling the liquid state PA ionomer content in electrode. To evaluate the PA content in electrode, the three techniques of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and acid-base titration (ABT) are carried out in situ or ex situ. The properties of membrane electrode assembly (MEA) such as electrochemical surface area (ESA), ohmic resistance, charge transfer resistance, double layer capacitance and the amount of PA in MEA components (anode, cathode and membrane) are extracted by each technique. Ex situ CV with the usage of dry gases has a limitation in assessing the reliable ESA of unhumidified PEMFC. While in situ EIS presents some informative values of resistance and capacitance for understanding the PA distribution in MEA, its sensitivity to the PA content in MEA components needs to be higher for detecting a subtle change in PA distribution. Ex situ ABT supplies a clear PA distribution in MEA at room temperature but does not seem to reflect the operating state well at high temperatures. However, it can be used as a detection tool for the loss of the initial acid content in membrane during a long-term MEA durability study.

  10. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  11. Membrane-spacer assembly for flow-electrode capacitive deionization

    Science.gov (United States)

    Lee, Ki Sook; Cho, Younghyun; Choo, Ko Yeon; Yang, SeungCheol; Han, Moon Hee; Kim, Dong Kook

    2018-03-01

    Flow-electrode capacitive deionization (FCDI) is a desalination process designed to overcome the limited desalination capacity of conventional CDI systems due to their fixed electrodes. Such a FCDI cell system is comprised of a current collector, freestanding ion-exchange membrane (IEM), gasket, and spacer for flowing saline water. To simplify the cell system, in this study we combined the membrane and spacer into a single unit, by coating the IEM on a porous ceramic structure that acts as the spacer. The combination of membrane with the porous structure avoids the use of costly freestanding IEM. Furthermore, the FCDI system can be readily scaled up by simply inserting the IEM-coated porous structures in between the channels for flow electrodes. However, coating the IEM on such porous ceramic structures can cause a sudden drop in the treatment capacity, if the coated IEM penetrates the ceramic pores and prevents these pores from acting as saline flow channels. To address this issue, we blocked the larger microscale pores on the outer surface with SiO2 and polymeric multilayers. Thus, the IEM is coated only onto the top surface of the porous structure, while the internal pores remain empty to function as water channels.

  12. Development of a membrane electrode assembly process for proton exchange membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Baldo, Wilians Roberto

    2003-01-01

    In this work, a Membrane Electrode Assembly (MEA) producing process was developed, involving simple steps, aiming cost reduction and good reproducibility for Proton Exchange Membrane Fuel Cell (PEMFC) commercial applications. The electrodes were produced by spraying ink into both sides of the polymeric membrane, building the catalytic layers, followed by hot pressing of Gas Diffusion Layers (GDL), forming the MEA. This new producing method was called 'Spray and hot pressing hybrid method'. Concerning that all the parameters of spray and hot pressing methods are interdependent, a statistical procedure were used in order to study the mutual variables influences and to optimize the method. This study was earned out in two distinct steps: the first one, where seven variables were considered for the analysis and the second one, where only the variables that interfered in the process performance in the first step were considered for analysis. The results showed that the developed process was adequate, including only simple steps, reaching MEA's performance of 651 m A cm -2 at a potential of 600 mV for catalysts loading of 0,4 mg cm -2 Pt at the anode and 0,6 mg cm -2 Pt at the cathode. This result is compared to available commercial MEA's, with the same fuel cell operations conditions. (author)

  13. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  14. A monolithic silicon-based membrane-electrode assembly for micro fuel cells

    Science.gov (United States)

    Yuzova, V. A.; Merkushev, F. F.; Semenova, O. V.

    2017-08-01

    We report the basic possibility of creating a micro fuel cell (MFC) with a monolithic silicon-based membrane-electrode assembly (MEA), which employs a porous three-layer framework structure manufactured by two-sided anodic etching of a 500-μm-thick silicon wafer. A technology of MEAs for MFCs is described.

  15. Final Report - High Performance, Durable, Low Cost Membrane Electrode Assemblies for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, Andrew [3M Company, Maplewood, MN (United States)

    2017-05-31

    The primary project objective was development of improved polymer electrolyte membrane fuel cell (PEMFC) membrane electrode assemblies (MEAs) which address the key DOE barriers of performance, durability and cost. Additional project objectives were to address commercialization barriers specific to MEAs comprising 3M nanostructured thin film (NSTF) electrodes, including a larger-than-acceptable sensitivity to operating conditions, an unexplained loss of rated power capability with operating time, and slow break-in conditioning. Significant progress was made against each of these barriers, and most DOE 2020 targets were met or substantially approached.

  16. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  17. Advanced Manufacturing of Intermediate Temperature, Direct Methane Oxidation Membrane Electrode Assemblies for Durable Solid Oxide Fuel Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation builds on the successes of the Phase I program by integrating our direct oxidation membrane electrode assembly (MEA) into a monolithic solid...

  18. High Performance Platinum Group Metal Free Membrane Electrode Assemblies through Control of Interfacial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton Energy Systems, Wallingford, CT (United States); Capuano, Christopher [Proton Energy Systems, Wallingford, CT (United States); Atanassov, Plamen [Univ. of New Mexico, Albuquerque, NM (United States); Mukerjee, Sanjeev [Northeastern Univ., Boston, MA (United States); Hickner, Michael [Pennsylvania State Univ., University Park, PA (United States)

    2017-11-29

    The quantitative goal of this project was to produce a high-performance anion exchange membrane water electrolyzer (AEM-WE) completely free of platinum group metals (PGMs), which could operate for at least 500 hours with less than 50 microV/hour degradation, at 500 mA/cm2. To achieve this goal, work focused on the optimization of electrocatalyst conductivity, with dispersion and utilization in the membrane electrode assembly (MEA) improved through refinement of deposition techniques. Critical factors were also explored with significant work undertaken by Northeastern University to further understand catalyst-membrane-ionomer interfaces and how they differ from liquid electrolyte. Water management and optimal cell operational parameters were established through the design, fabrication, and test of a new test station at Proton specific for AEM evaluation. Additionally, AEM material stability and robustness at high potentials and gas evolution conditions were advanced at Penn State.

  19. Impedance Analysis of the Conditioning of PBI–Based Electrode Membrane Assemblies for High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Vang, Jakob Rabjerg; Andreasen, Søren Juhl

    2013-01-01

    This work analyses the conditioning of single fuel cell assemblies based on different membrane electrode assembly (MEA) types, produced by different methods. The analysis was done by means of electrochemical impedance spectroscopy, and the changes in the fitted resistances of the all the tested...

  20. Development and characterization of membrane electrode assembly of direct methanol fuel cells using hydrocarbon membranes and supported catalysts

    Science.gov (United States)

    Huang, Xiaoming

    Direct methanol fuel cell (DMFC) is an attractive power source for portable applications in the near future, due to the high energy density of liquid methanol. Towards commercialization of the DMFC, several technical and economic challenges need to be addressed though. The present study aims at developing and characterizing high performance membrane electrode assemblies (MEAs) for the DMFCs by using a hydrocarbon type membrane (PolyFuel 62) and supported catalysts (PtRu/C). First, methanol and water transport properties in the PolyFuel 62 membrane were examined by various material characterization methods. Compared with the currently used perflurosulfonated Nafion 212 membrane, the PolyFuel membrane has lower methanol crossover, especially at high testing temperature. In addition, based on results of water diffusivity test, water diffusion through the PolyFuel membrane was also lower compared with the Nafion membrane. In order to check the possible impacts of the low methanol and water diffusivities in the PolyFuel membrane, a MEA with this new type of membrane was developed and its performance was compared with a Nafion MEA with otherwise identical electrodes and GDLs. The results showed anode performance was identical, while cathode performance of the PolyFuel MEA was lower. More experiments combined with a transmission line model revealed that low water transport through the PolyFuel membrane resulted in a higher proton resistance in the cathode electrode and thus, leading to a low cathode performance. Thus increasing the water content in the cathode electrode is critical for using the PolyFuel membrane in the DMFC MEA. Then, a low loading carbon supported catalyst, PtRu/C, was prepared and tested as the anode electrode in a MEA of the DMFC. Compared with performance of an unsupported MEA, we could find that lower performance in the supported MEA was due to methanol transport limitation because of the denser and thicker supported catalyst layer. Accordingly, an

  1. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes.

    Science.gov (United States)

    Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok

    2013-05-01

    The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.

  2. Performance of membrane electrode assemblies based on proton exchange membranes prepared by pre-irradiation induced grafting

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingye; Matsuura, Akio; Kakigi, Tomoyuki; Miura, Takaharu; Oshima, Akihiro; Washio, Masakazu [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2006-10-20

    Proton exchange membranes (PEMs) were prepared by pre-irradiation induced grafting of styrene (S) or styrene/divinylbenzene (S/DVB) into the radiation-crosslinked polytetrafluoroethylene (RX-PTFE) films and then sulfonated. The thicknesses of the obtained PEMs were lower than 20{mu}m and the ion exchange capacity (IEC) values were around 2meqg{sup -1}. The surfaces of the PEMs and carbon electrodes were coated with Nafion{sup (R)} dispersion, and then membrane electrode assembles (MEAs) were prepared by hot-pressing them together. A MEA based on a Nafion{sup (R)} 112 membrane was also prepared under same procedure for comparison. The performances of the MEAs in a single cell were tested under different cell temperatures and humidifications. Electrochemical impedance spectra (EIS) were measured with ac frequencies which ranged from 100kHz to 1Hz at a dc density of 0.5Acm{sup -2}. The obtained impedance curves in Nyquist representation were semicircular. (author)

  3. Final report: Seven-layer membrane electrode assembly - an innovative approach to PEM fuel cell design

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, A.

    2005-07-01

    Costs of materials and fabrication, rather than appropriateness of technology, are the major barriers to the sales of fuel cells. With the objective of reducing costs, potential alternative component materials for (a) the fluid flow plate (FFP) and (b) the gas diffusion layers were investigated. The concept of a 7-layer membrane electrode assembly (MEA), in which components are bonded into a unitised module, was also studied. The advantages of the bonded cell, and the flow field design, are expounded. Low-cost carbon particle composites were developed for the FFPs. The modular 7-layer MEA has an order of magnitude saving over current materials. Overall, the study has led to a greater volumetric power output, lower costs and greater reliability. The work was carried out by Morgan Group Technology Limited and funded by the DTI.

  4. Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells

    Science.gov (United States)

    Xu, C.; Zhao, T. S.; Yang, W. W.

    In this work, a one-dimensional, isothermal two-phase mass transport model is developed to investigate the water transport through the membrane electrode assembly (MEA) for liquid-feed direct methanol fuel cells (DMFCs). The liquid (methanol-water solution) and gas (carbon dioxide gas, methanol vapor and water vapor) two-phase mass transport in the porous anode and cathode is formulated based on classical multiphase flow theory in porous media. In the anode and cathode catalyst layers, the simultaneous three-phase (liquid and vapor in pores as well as dissolved phase in the electrolyte) water transport is considered and the phase exchange of water is modeled with finite-rate interfacial exchanges between different phases. This model enables quantification of the water flux corresponding to each of the three water transport mechanisms through the membrane for DMFCs, such as diffusion, electro-osmotic drag, and convection. Hence, with this model, the effects of MEA design parameters on water crossover and cell performance under various operating conditions can be numerically investigated.

  5. Development of a membrane electrode assembly production process for proton exchange membrane fuel cell (PEMFC) by sieve printing

    International Nuclear Information System (INIS)

    Bonifacio, Rafael Nogueira

    2010-01-01

    Energy is a resource that presents historical trend of growth in demand. Projections indicate that future energy needs will require a massive use of hydrogen as fuel. The use of systems based on the use of proton exchange membrane fuel cell (PEMFC) has features that allow its application for stationary applications, automotive and portable power generation. The use of hydrogen as fuel for PEMFC has the advantage low pollutants' emission, when compared to fossil fuels. For the reactions in a PEMFC is necessary to build membrane electrode assembly (MEA). And the production of MEAs and its materials are relevant to the final cost of kW of power generated by systems of fuel cell. This represent currently a technological and financial barriers to large-scale application of this technology. In this work a process of MEAs fabrication were developed that showed high reproducibility, rapidity and low cost by sieve printing. The process of sieve printing and the ink composition as a precursor to the catalyst layer were developed, which allow the preparation of electrodes for MEAs fabrication with the implementation of the exact catalyst loading, 0.6 milligrams of platinum per square centimeters (mgPt.cm -2 ) suitable for cathodes and 0.4 mgPt.cm -2 for anode in only one application step per electrode. The ink was developed, produced, characterized and used with similar characteristics to ink of sieve printing build for other applications. The MEAs produced had a performance of up to 712 mA.cm -2 by 600 mV to 25 cm 2 MEA area. The MEA cost production for MEAs of 247.86 cm 2 , that can generate 1 kilowatt of energy was estimated to US$ 7,744.14 including cost of equipment, materials and labor. (author)

  6. Manufacturing of Low Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Colin [W. L. Gore & Associates Inc., Newark, DE (United States)

    2017-05-23

    Over the past 20 years significant progress in membrane-electrode assembly (MEA) technology development for polymer electrolyte fuel cells (PEMFCs) has resulted in the PEMFC technology approaching a commercial reality for transportation applications. However, there remain two primary technical challenges to be addressed in the MEA. First and foremost is meeting the automotive cost targets: Producing a fuel cell stack cost competitive with today’s internal combustion engine. In addition to the material cost, MEA (and other components) and stack assembly production methods must be amenable for use in low cost, high speed, automotive assembly line. One impediment to this latter goal is that stack components must currently go through a long and tedious conditioning procedure before they produce optimal power. This so-called “break-in” can take many hours, and can involve quite complex voltage, temperature and/or pressure steps. These break-in procedures must be simplified and the time required reduced if fuel cells are to become a viable automotive engine. The second challenge is to achieve the durability targets in real-world automotive duty cycle operations. Significant improvements in cost, break-in time, and durability for the key component of fuel cell stacks, MEAs were achieved in this project. Advanced modeling was used to guide design of the new MEA to maximize performance and durability. A new, innovative process and manufacturing approach utilizing direct in-line coating using scalable, cost-competitive, continuous high volume 3-layer rolled-good manufacturing processes was developed and validated by single cell and short stack testing. In addition, the direct coating methods employed were shown to reduce the cost for sacrificial films. Furthermore, Gore has demonstrated a 10 µm reinforced membrane that is used in the new low-cost process and can meet automotive power density and durability targets. Across a wide range of operating conditions, the

  7. Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 (India); Kannan, A.M. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2009-09-05

    A membrane electrode assembly (MEA) was designed by incorporating an interlayer between the catalyst layer and the gas diffusion layer (GDL) to improve the low relative humidity (RH) performance of proton exchange membrane fuel cells (PEMFCs). On the top of the micro-porous layer of the GDL, a thin layer of doped polyaniline (PANI) was deposited to retain moisture content in order to maintain the electrolyte moist, especially when the fuel cell is working at lower RH conditions, which is typical for automotive applications. The surface morphology and wetting angle characteristics of the GDLs coated with doped PANI samples were examined using FESEM and Goniometer, respectively. The surface modified GDLs fabricated into MEAs were evaluated in single cell PEMFC between 50 and 100% RH conditions using H{sub 2} and O{sub 2} as reactants at ambient pressure. It was observed that the MEA with camphor sulfonic acid doped PANI interlayer showed an excellent fuel cell performance at all RH conditions including that at 50% at 80 C using H{sub 2} and O{sub 2}. (author)

  8. Ethanol/water mixture permeation through a Nafion {sup registered} based membrane electrode assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kontou, S.; Stergiopoulos, V.; Song, S.; Tsiakaras, P. [Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos, 38 334 Volos (Greece)

    2007-09-19

    In the present work, the permeation behavior of ethanol/water mixtures through a Nafion {sup registered} -115 based membrane electrode assembly (MEA) has been investigated. The crossover measurements were carried out in a single fuel cell test apparatus. Ethanol aqueous solutions at different concentrations were supplied to the anode compartment while high-purity dry helium was fed to the cathode in order to sweep off the permeated water and ethanol. The quantitative analysis of water and ethanol from the cathode effluent has been carried out on-line by a GC under the following operation conditions: T{sub cell} = 30-90 C, ethanol aqueous solution concentration C{sub ethanol} = 0-12.0 mol L{sup -1}, helium flow rate at the cathode F{sub He} in the range of 80-1500 mL min{sup -1} and liquid solution flow rate to the anode F{sub l} = 0.2 mL min{sup -1}. It was found that the water crossover rate is almost one order of magnitude higher than ethanol's. It was also found that the ethanol crossover rate depends on ethanol concentration and presents a volcano behavior, with the peak value at ethanol concentration of 8.0 mol L{sup -1}. This could be attributed to the different swelling behavior of the Nafion {sup registered} membrane in the presence of various ethanol aqueous solutions. A similar behavior was also observed in the case of water with the peak value at 2.0 mol L{sup -1} which could be attributed to thermodynamical reasons. (author)

  9. Development of more efficient and cheaper MEA's for PEM fuel cells; Membrane-electrode-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yde Andersen, S. (IRD Fuel Cell A/S, Svendborg (Denmark)); Nilsson, M.S. (Danish Power System Aps, Charlottenlund (Denmark)); Siu, A.; Plackett, D. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Dansk Polymer Center, Roskilde (Denmark)); Li, Q. (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark))

    2008-06-15

    The project covered 5 main areas: 1) polymer and membranes; 2) electrocatalysts; 3) gas diffusion electrodes; 4) MEAs; and 5) evaluation techniques. For the polymers, by purification of monomers and optimizing parameters, high molecular weight polybenzimidazoles have been synthesized in batches of 50 g with good reproducibility. Based on the polymer, two types of new membranes have been prepared. One is the cross-linked (covalently and acid-base) PBI blend membranes. The blend membranes were systematically characterized and show excellent properties such as very high acid doping levels, conductivity, mechanical strength and durability. The other type is composite membranes based on PBI and nanoclay. Using the modified nanoclay, good dispersion and transparent composite membranes have been achieved. For catalyst preparation, the carbon supports have been modified with thermal treatment. Improved corrosion resistance was achieved with little sacrificing of the catalytic activity. High Pt loading catalysts were prepared, based on which high performance gas diffusion electrodes were fabricated. The performance target of both cathode and anode was achieved, as evaluated by the PTFE half cell tests. New gas diffusion layer (GDL) materials have been developed and tested in different MEA configurations. Significant performance improvement has been achieved with also potential to reduce the cost. Techniques for applying micro porous layers and catalyst layers have been optimized, including tape casting, spraying, and catalyst-coated membrane (CCM). Using the developed membranes and gas diffusion electrodes, membrane-electrode assemblies (MEAs) were fabricated for both single cell and stack tests. Selection of sealing materials and design of integrated gaskets have been made for both low and high temperature MEAs. Parameters for hot-pressing such as temperature, pressure and duration were systematically studied. 44 MEAs with an active area of 256 cm{sup 2} have been prepared

  10. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung

    2016-01-01

    -performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries...... in the electrodes and result in low performance. MEAs with PTFE content of 20 wt% have an optimal pore structure for the efficient formation of electrolyte/catalyst interfaces and gas channels, which leads to high cell performance of approximately 0.5 A cm-2 at 0.6 V....

  11. Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells

    Science.gov (United States)

    Park, In-Su; Li, Wen; Manthiram, Arumugam

    Membrane-electrode assemblies (MEAs) have been fabricated with a direct coating of the catalyst slurry by a doctor blade method on the pre-swollen Nafion membrane for proton exchange membrane (PEMFC) and direct methanol fuel cells (DMFC). The effects of various swelling agents with different boiling points such as ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene glycol (TEEG), and glycerol in the swelling step of the membrane and the drying step of the coated catalyst have been investigated. Also, the use of dimethyl sulfoxide (DMSO) as a dispersing agent in the catalyst slurry has been investigated. Among the various swelling agents investigated, EG gives the best results with the dispersing agent DMSO offering further improvement. The MEAs fabricated with the EG-swollen membranes and DMSO as a dispersing agent in the catalyst layer show good performance in single fuel cells with hydrogen and methanol fuels.

  12. Optimization of fuel cell membrane electrode assemblies for transition metal ion-chelating ordered mesoporous carbon cathode catalysts

    Directory of Open Access Journals (Sweden)

    Johanna K. Dombrovskis

    2014-12-01

    Full Text Available Transition metal ion-chelating ordered mesoporous carbon (TM-OMC materials were recently shown to be efficient polymer electrolyte membrane fuel cell (PEMFC catalysts. The structure and properties of these catalysts are largely different from conventional catalyst materials, thus rendering membrane electrode assembly (MEA preparation parameters developed for conventional catalysts not useful for applications of TM-OMC catalysts. This necessitates development of a methodology to incorporate TM-OMC catalysts in the MEA. Here, an efficient method for MEA preparation using TM-OMC catalyst materials for PEMFC is developed including effects of catalyst/ionomer loading and catalyst/ionomer-mixing and application procedures. An optimized protocol for MEA preparation using TM-OMC catalysts is described.

  13. Development and Application of a Sample Holder for In Situ Gaseous TEM Studies of Membrane Electrode Assemblies for Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Kamino, Takeo; Yaguchi, Toshie; Shimizu, Takahiro

    2017-10-01

    Polymer electrolyte fuel cells hold great potential for stationary and mobile applications due to high power density and low operating temperature. However, the structural changes during electrochemical reactions are not well understood. In this article, we detail the development of the sample holder equipped with gas injectors and electric conductors and its application to a membrane electrode assembly of a polymer electrolyte fuel cell. Hydrogen and oxygen gases were simultaneously sprayed on the surfaces of the anode and cathode catalysts of the membrane electrode assembly sample, respectively, and observation of the structural changes in the catalysts were simultaneously carried out along with measurement of the generated voltages.

  14. Model-Based Control of a Continuous Coating Line for Proton Exchange Membrane Fuel Cell Electrode Assembly

    Directory of Open Access Journals (Sweden)

    Vikram Devaraj

    2015-01-01

    Full Text Available The most expensive component of a fuel cell is the membrane electrode assembly (MEA, which consists of an ionomer membrane coated with catalyst material. Best-performing MEAs are currently fabricated by depositing and drying liquid catalyst ink on the membrane; however, this process is limited to individual preparation by hand due to the membrane’s rapid water absorption that leads to shape deformation and coating defects. A continuous coating line can reduce the cost and time needed to fabricate the MEA, incentivizing the commercialization and widespread adoption of fuel cells. A pilot-scale membrane coating line was designed for such a task and is described in this paper. Accurate process control is necessary to prevent manufacturing defects from occurring in the coating line. A linear-quadratic-Gaussian (LQG controller was developed based on a physics-based model of the coating process to optimally control the temperature and humidity of the drying zones. The process controller was implemented in the pilot-scale coating line proving effective in preventing defects.

  15. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications through the Fundamental Understanding of Membrane and MEA Degradation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Randal L. [DuPont

    2013-10-31

    The Project focused on mitigation of degradation processes on membrane electrode assemblies. The approach was to develop a model to improve understanding of the mechanisms, and to use it to focus mitigation strategies. The detailed effects of various accelerated stress tests (ASTs) were evaluated to determine the best subset to use in model development. A combination of ASTs developed by the Fuel Cell Commercialization Conference of Japan and the Fuel Cell Tech Team were selected for use. The ASTs were compared by measuring effects on performance, running in-situ diagnostics, and performing microscopic analyses of the membrane electrode assemblies after the stress tests were complete. Nissan ran FCCJ AST protocols and performed in situ and ex-situ electrochemical testing. DuPont ran FCTT and USFCC AST protocols, performed scanning and transmission electron microscopy and ran in-situ electrochemical tests. Other ex-situ testing was performed by IIT, along with much of the data analysis and model development. These tests were then modified to generate time-dependent data of the degradation mechanisms. Three different catalyst types and four membrane variants were then used to generate data for a theoretically-based degradation model. An important part of the approach was to use commercially available materials in the electrodes and membranes made in scalable semiworks processes rather than lab-based materials. This constraint ensured all materials would be practicable for full-scale testing. The initial model for the electrode layer was tested for internal consistency and agreement with the data. A Java-based computer application was developed to analyze the time-dependent AST data using polarization curves with four different cathode gas feeds and generate model parameters. Data showed very good reproducibility and good consistency as cathode catalyst loadings were varied. At the point of termination of the project, a basic electrode model was in hand with several

  16. Micro-Membrane Electrode Assembly Design to Precisely Measure the in Situ Activity of Oxygen Reduction Reaction Electrocatalysts for PEMFC.

    Science.gov (United States)

    Long, Zhi; Li, Yankai; Deng, Guangrong; Liu, Changpeng; Ge, Junjie; Ma, Shuhua; Xing, Wei

    2017-06-20

    An in situ micro-MEA technique, which could precisely measure the performance of ORR electrocatalyst using Nafion as electrolyte, was designed and compared with regular thin-film rotating-disk electrode (TFRDE) (0.1 M HClO 4 ) and normal in situ membrane electrode assembly (MEA) tests. Compared to the traditional TFRDE method, the micro-MEA technique makes the acquisition of catalysts' behavior at low potential values easily achieved without being limited by the solubility of O 2 in water. At the same time, it successfully mimics the structure of regular MEAs and obtains similar results to a regular MEA, thus providing a new technique to simply measure the electrode activity without being bothered by complicated fabrication of regular MEA. In order to further understand the importance of in situ measurement, Fe-N-C as a typical oxygen reduction reaction (ORR) free-Pt catalyst was evaluated by TFRDE and micro-MEA. The results show that the half wave potential of Fe-N-C only shifted negatively by -135 mV in comparison with state-of-the-art Pt/C catalysts from TFRDE tests. However, the active site density, mass transfer of O 2 , and the proton transfer conductivity are found to strongly influence the catalyst activity in the micro-MEA, thereby resulting in a much lower limiting current density than Pt/C (8.7 times lower). Hence, it is suggested that the micro-MEA is better in evaluating the in situ ORR performance, where the catalysts are characterized more thoroughly in terms of intrinsic activity, active site density, proton transfer, and mass transfer properties.

  17. Manufacturing and characterisation of electrode membrane assemblies for low temperature fuel cells; Herstellung und Charakterisierung von Membran-Elektroden-Einheiten fuer Niedertemperatur Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kaz, Till

    2008-08-22

    The high cost for a Polymer electrolyte Fuel Cell (PEFC) System is still a barrier for commercial breakthrough, which cannot be compensated by the advantages of being pollution free, or nearly noiseless. The most effective way of saving costs is to reduce expensive materials, because the material costs only for the Membrane Electrode Assemblies (MEAs) is more than 70% of the total costs of a PEFC Stack. Within the MEA a main part of the costs is due to the catalyst. It is one of the main goals to decrease the catalyst loading by simultaneously increasing the performance or keeping it at least constant. Because in most electrodes only 20-50% of the catalyst in the electrodes is used, enlarging the electrochemical active area is one of the key problems of the PEFC. For being electrochemical active, the catalyst must be reachable for the gases, he must have a good ionic conductivity to the membrane and he must be attached to the Gas Diffusion Layer (GDL) by electron conductivity. In literature often an inferior ionic contact of the catalyst to the membrane is responsible for the low catalyst utilization. In the first part of the work, model electrodes with different kinds of catalysts and different amounts of electrolyte in the electrodes were investigated to explore the interrelationship between platinum and electrolyte content. Three different catalysts, unsupported Pt- black, 60 wt.% Pt carbon-supported and 20 wt.% Pt carbon-supported with an addition of Nafion powder of 0%, 20%, 40%, 60 wt.%, and 80 wt.% were used. The electrodes were prepared by spraying the electrode material with the DLR dry spray technique directly onto the membrane and then rolling them while hot. Because material solutions were not used, the structure of the electrodes are determinable and predictable. Numerous different in- and ex-situ characterization methods like impedance spectroscopy, U-i characteristic, cyclic voltammetry, proton conductivity measurements, half-cell measurements and

  18. High-performance membrane electrode assembly with multi-functional Pt/SnO2eSiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions

    CSIR Research Space (South Africa)

    Hou, S

    2016-06-01

    Full Text Available A novel self-humidifying membrane electrode assembly (MEA) with homemade multifunctional Pt/SnO(sub2)-SiO(sub2)/C as the anode was developed to improve the performance of a proton exchange membrane fuel cell under low humidity. The MEAs' performance...

  19. Modeling and High-Resolution-Imaging Studies of Water-Content Profiles in a Polymer-Electrolyte-Fuel-Cell Membrane-Electrode Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Cynthia; Weber, A.Z.; Hickner, M.A.

    2008-03-06

    Water-content profiles across the membrane electrode assembly of a polymer-electrolyte fuel cell were measured using high-resolution neutron imaging and compared to mathematical-modeling predictions. It was found that the membrane held considerably more water than the other membrane-electrode constituents (catalyst layers, microporous layers, and macroporous gas-diffusion layers) at low temperatures, 40 and 60 C. The water content in the membrane and the assembly decreased drastically at 80 C where vapor transport and a heat-pipe effect began to dominate the water removal from the membrane-electrode assembly. In the regimes where vapor transport was significant, the through-plane water-content profile skewed towards the cathode. Similar trends were observed as the relative humidity of the inlet gases was lowered. This combined experimental and modeling approach has been beneficial in rationalizing the results of each and given insight into future directions for new experimental work and refinements to currently available models.

  20. Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly

    DEFF Research Database (Denmark)

    Min, Booki; Poulsen, Finn Willy; Thygesen, Anders

    2012-01-01

    , the maximum power density was 631mW/m2 at current density of 1772mA/m2 at 82Ω. With 180-Ω external resistance, one set of the electrodes on the same side could generate more power density of 832±4mW/m2 with current generation of 1923±4mA/m2. The anode, inclusive a biofilm behaved ohmic, whereas a Tafel type...

  1. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    Science.gov (United States)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  2. Membrane module assembly

    Science.gov (United States)

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  3. Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly

    International Nuclear Information System (INIS)

    Kim, Joon-Hee; Yang, Min-Jee; Park, Jun-Young

    2014-01-01

    Highlights: • Faradaic efficiency and water transfer coefficient (WTC) of DMFC MEAs are calculated based on mass balance measurements. • Faradaic efficiency of the HC-based MEAs is generally improved over the Nafion-based MEAs. • Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of -2. • Low WTC of the HC-based MEAs indicates the back-diffusion of water from the cathode to the anode. • Performance of HC-based MEAs is improved as the fuel stoichiometry increases, maintaining high Faradaic efficiency. - Abstract: In order to improve the energy efficiency (fuel efficiency and electrical power) of direct methanol fuel cells (DMFCs), the hydrocarbon (HC) membrane-based membrane electrode assemblies (MEAs) are investigated under various operating conditions. The MEAs are then compared with the conventional Nafion-based MEA in terms of their efficiency and performance. The Faradaic efficiency and water transfer coefficient (WTC) are calculated based on mass balance measurements. The Faradaic efficiency of the HC-based MEAs is improved over the Nafion-based MEAs since methanol crossover decreased. The performance of HC-based MEAs shows strong dependency on the anode stoichiometry at high current densities probably because of the limited mass transport of fuel, which is not observed for the Nafion-based MEAs. The Nafion-based MEAs show a WTC of 3, whereas the HC-based MEAs show a very low WTC of −2, indicating the back-diffusion of water from the cathode to the anode. This may have limited mass transport by interrupting proton conduction at high current densities. The performance of HC-based MEAs at high current densities is improved as the fuel stoichiometry increases; High Faradaic efficiency is maintained by decreasing the cathode stoichiometry

  4. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cell Stacks

    Science.gov (United States)

    Valdez, Thomas I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    Dissolution of ruthenium was observed in the 80-cell stack. Duration testing was performed in single cell MEAs to determine the pathway of cell degradation. EDAX analysis on each of the single cell MEAs has shown that the Johnson Matthey commercial catalyst is stable in DMFC operation for 250 hours, no ruthenium dissolution was observed. Changes in the hydrophobicity of the cathode backing papers was minimum. Electrode polarization analysis revealed that the MEA performance loss is attributed to changes in the cathode catalyst layer. Ruthenium migration does not seem to occur during cell operation but can occur when methanol is absent from the anode compartment, the cathode compartment has access to air, and the cells in the stack are electrically connected to a load (Shunt Currents). The open-to-air cathode stack design allowed for: a) The MEAs to have continual access to oxygen; and b) The stack to sustain shunt currents. Ruthenium dissolution in a DMFC stack can be prevented by: a) Developing an internally manifolded stacks that seal reactant compartments when not in operation; b) Bringing the cell voltages to zero quickly when not in operation; and c) Limiting the total number of cells to 25 in an effort to limit shunt currents.

  5. Analyses of interfacial resistances in a membrane-electrode assembly for a proton exchange membrane fuel cell using symmetrical impedance spectroscopy.

    Science.gov (United States)

    Seo, Seok-Jun; Woo, Jung-Je; Yun, Sung-Hyun; Lee, Hong-Joo; Park, Jin-Soo; Xu, Tongwen; Yang, Tae-Hyun; Lee, Jaeyoung; Moon, Seung-Hyeon

    2010-12-14

    Interfacial resistances between the polymer electrolyte membrane (PEM) and catalyst layer (CL) in membrane-electrode assemblies (MEAs) have yet to be systematically examined in spite of its great importance on the fuel cell performance. In order to investigate ionic transport through the PEM/CL interface, the symmetrical impedance mode (SIM) was employed in which the same type of gas was injected (H(2)/H(2)). In this study, the ionic transport resistance at the interface was controlled by the additionally sprayed outer ionomer on the surface of each CL. Effectiveness of the outer ionomer on ionic transport at the interface was quantitatively explained by the reduced contact, proton hydration, and charge transport resistances in the SIM. To characterize the ionic transport resistance, the concept of total resistance (R(tot)) in the SIM was introduced, representing the overall ohmic loss due to proton transport in an MEA. This concept was successfully supported via an agreement of the interpretation and the linear correlation that was obtained between the admittance (1/R(tot)) and the performance of a fuel cell in the ohmic loss region. This correlation will enable researchers to predict the performance of a fuel cell under the influence of proton transport by examining the R(tot) in the SIM.

  6. A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer

    Science.gov (United States)

    Breitwieser, Matthias; Bayer, Thomas; Büchler, Andreas; Zengerle, Roland; Lyth, Stephen M.; Thiele, Simon

    2017-05-01

    A novel multilayer membrane electrode assembly (MEA) for polymer electrolyte membrane fuel cells (PEMFCs) is fabricated in this work, within a single spray-coating device. For the first time, direct membrane deposition is used to fabricate a PEMFC by spraying the short-side-chain ionomer Aquivion directly onto the gas diffusion electrodes. The fully sprayed MEA, with an Aquivion membrane 10 μm in thickness, achieved a high power density of 1.6 W/cm2 for H2/air operation at 300 kPaabs. This is one of the highest reported values for thin composite membranes operated in H2/air atmosphere. By the means of confocal laser scanning microscopy, individual carbon fibers from the gas diffusion layer are identified to penetrate through the micro porous layer (MPL), likely causing a low electrical cell resistance in the range of 150 Ω cm2 through the thin sprayed membranes. By spraying a 200 nm graphene oxide/cerium oxide (GO/CeO2) interlayer between two layers of Aquivion ionomer, the impact of the electrical short is eliminated and the hydrogen crossover current density is reduced to about 1 mA/cm2. The peak power density of the interlayer-containing MEA drops only by 10% compared to a pure Aquivion membrane of similar thickness.

  7. Study and development of membrane electrode assemblies for Proton Exchange Membrane Fuel Cell (PEMFC) with palladium based catalysts

    International Nuclear Information System (INIS)

    Bonifacio, Rafael Nogueira

    2013-01-01

    PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm 2 single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm -2 , showing power densities up to 550 mW.cm -2 and power of 2.2 kW net per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary application

  8. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  9. Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly [2,5-benzimidazole] (ABPBI) impregnated non-woven fabric filter.

    Science.gov (United States)

    Choi, Soojung; Kim, Jung Rae; Cha, Jaehwan; Kim, Yejin; Premier, Giuliano C; Kim, Changwon

    2013-01-01

    A membrane electrode assembly (MEA) microbial fuel cell (MFC) with a non-woven paper fabric filter (NWF) was investigated as an alternative to a proton exchange membrane (PEM) separator. The MFC with a NWF generated a cell voltage of 545 mV and a maximum power density of 1027 mW/m(3), which was comparable to that obtained from MFCs with a PEM (551 mV, 609 mW/m(3)). The MFC with a NWF showed stable cell performance (550 mV) over 300 days, whereas, the MFC with PEM performance decreased significantly from 551 mV to 415 mV due to biofilm formation and chemical precipitation on the membrane surface. Poly [2,5-benzimidazole] (ABPBI) was evaluated with respect to its capacity to increased proton conductivity and contact between separator and electrodes. The overall performance of the MFC with ABPBI was improved by enhancing the ion conductivity and steric contact, producing 766 mW/m(3) at optimum loading of 50 mg ABPBI/cm(2). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment

    International Nuclear Information System (INIS)

    Ferreira, Rui B.; Falcão, D.S.; Oliveira, V.B.; Pinto, A.M.F.R.

    2017-01-01

    Highlights: • EIS is employed to investigate the MEA design of a PEM fuel cell. • Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied. • MPL increases cell output at low to medium currents but reduces it at high currents. • Better results are obtained when employing a thinner Nafion membrane. • GDL hydrophobic treatment improves the cell performance. - Abstract: In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.

  11. Optimum concentration gradient of the electrocatalyst, Nafion® and poly(tetrafluoroethylene) in a membrane-electrode-assembly for enhanced performance of direct methanol fuel cells.

    Science.gov (United States)

    Liu, Jing Hua; Jeon, Min Ku; Lee, Ki Rak; Woo, Seong Ihl

    2010-12-14

    A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.

  12. Production of membrane-electrode assemblies to be used in high temperature solid oxide fuel cells; Producao de conjugados eletrolito-eletrodos para pilhas a combustivel de oxido solido de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos, Pedro R.; Silva, Gilmar Clemente; Miranda, Paulo Emilio V. de [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais. Lab. de Hidrogenio], e-mail: vlobos@labh2.coppe.ufrj.br

    2004-07-01

    This article describes the production and characterization of membrane-electrode assemblies to be used in high temperature solid oxide fuel cells. The single cells produced were characterized using scanning electron microscopy and X ray diffractometry, seeking the morphological characterization of the complete device and to verify the stability of the materials used with respect to the processing conditions. (author)

  13. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater

    KAUST Repository

    Hays, Sarah

    2011-10-01

    Graphite fiber brush electrodes provide high surface areas for exoelectrogenic bacteria in microbial fuel cells (MFCs), but the cylindrical brush format limits more compact reactor designs. To enable MFC designs with closer electrode spacing, brush anodes were pressed up against a separator (placed between the electrodes) to reduce the volume occupied by the brush. Higher maximum voltages were produced using domestic wastewater (COD = 390 ± 89 mg L-1) with brush anodes (360 ± 63 mV, 1000 Ω) than woven carbon mesh anodes (200 ± 81 mV) with one or two separators. Maximum power densities were similar for brush anode reactors with one or two separators after 30 days (220 ± 1.2 and 240 ± 22 mW m-2), but with one separator the brush anode MFC power decreased to 130 ± 55 mW m-2 after 114 days. Power densities in MFCs with mesh anodes were very low (<45 mW m-2). Brush anodes MFCs had higher COD removals (80 ± 3%) than carbon mesh MFCs (58 ± 7%), but similar Coulombic efficiencies (8.6 ± 2.9% brush; 7.8 ± 7.1% mesh). These results show that compact (hemispherical) brush anodes can produce higher power and more effective domestic wastewater treatment than flat mesh anodes in MFCs. © 2011 Elsevier B.V. All rights reserved.

  14. A membrane electrode assembled photoelectrochemical cell with a solar-responsive cadmium sulfide-zinc sulfide-titanium dioxide/mesoporous silica photoanode

    Science.gov (United States)

    Chen, Ming; Chen, Rong; Zhu, Xun; Liao, Qiang; An, Liang; Ye, Dingding; Zhou, Yuan; He, Xuefeng; Zhang, Wei

    2017-12-01

    In this work, a membrane electrode assembled photoelectrochemical cell (PEC) is developed for the electricity generation by degrading the organic compounds. The photocatalyst is prepared by the incorporation of mesoporous silica SBA-15 into TiO2 and the photosensitization of CdS-ZnS to enhance the photoanode performance, while the cathode employs the air-breathing mode to enhance the oxygen transport. The experimental results show that the developed PEC exhibits good photoresponse to the illumination and the appropriate SBA-15 mass ratio in the photoanode enables the enhancement of the performance. It is also shown that the developed PEC yields better performance in the alkaline environment than that in the neutral environment. Increasing the KOH concentration can improve the cell performance. There exist optimal liquid flow rate and organics concentration leading to the best performance. Besides, it is found that increasing the light intensity can generate more electron-hole pairs and thus enhance the cell performance. These results are helpful for optimizing the design.

  15. Gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P [Palo Alto, CA; Fulton, Donald A [Fairfield, CA

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  16. Fabrication of a nanosize-Pt-embedded membrane electrode assembly to enhance the utilization of Pt in proton exchange membrane fuel cells.

    Science.gov (United States)

    Choe, Junseok; Kim, Doyoung; Shim, Jinyong; Lee, Inhae; Tak, Yongsug

    2011-08-01

    A procedure to locate the Pt nanostructure inside the hydrophilic channel of a Nafion membrane was developed in order to enhance Pt utilization in PEMFCs. Nanosize Pt-embedded MEA was constructed by Cu electroless plating and subsequent Pt electrodeposition inside the hydrophilic channels of the Nafion membrane. The metallic Pt nanostructure fabricated inside the membrane was employed as an oxygen reduction catalyst for a PEMFC and facilitated effective use of the hydrophilic channels inside the membrane. Compared to the conventional MEA, a Pt-embedded MEA with only 68% Pt loading showed better PEMFC performance.

  17. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    Science.gov (United States)

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  19. Electrode assembly for a lithium ion battery, process for the production of such electrode assembly, and lithium ion battery comprising such electrode assemblies

    NARCIS (Netherlands)

    Mulder, F.M.; Wagemaker, M.

    2013-01-01

    The invention provides an electrode assembly for a lithium ion battery, the electrode assembly comprising a lithium storage electrode layer on a current collector, wherein the lithium storage electrode layer is a porous layer having a porosity in the range of -35 %, with pores having pore widths in

  20. Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Lebæk, Jesper; Nielsen, Lars Pleth

    2010-01-01

    This paper presents Type-T thin film thermocouples (TFTCs) fabricated on Kapton (polyimide) substrate for measuring the internal temperature of PBI(polybenzimidazole)-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Magnetron sputtering technique was employed to deposit a 2 mu...... degradation. This Kapton foil with deposited TFTCs was used as sealing inside a PBI (polybenzimidazole)-based single cell test rig, which enabled measurements of in situ temperature variations of the working fuel cell MEA. The performance of the TFTCs was promising with minimal interference to the operation...

  1. Chlorophyll assembled electrode for photovoltaic conversion device

    Energy Technology Data Exchange (ETDEWEB)

    Amao, Yutaka; Kato, Koichi [Department of Applied Chemistry, Oita University, 700 Dannoharu, Oita 870-1192 (Japan)

    2007-11-20

    Chlorophyll-a (Chl-a) assembled in hydrophobic domain by fatty acid with long alkyl hydrocarbon chain such as myristic acid (Myr), stearic acid (Ste) and cholic acid (Cho) modified onto nanocrystalline TiO{sub 2} electrode is prepared and the photovoltaic properties of the nanocrystalline TiO{sub 2} film by Chl-a are studied. Incident photon to current efficiency (IPCE) value at 660 nm in photocurrent action spectrum of Chl-a/Ste-TiO{sub 2}, Chl-a/Myr-TiO{sub 2} and Chl-a/Cho-TiO{sub 2} electrodes are 5.0%, 4.1% and 4.1%, respectively. Thus, the IPCE is maximum using Chl-a/Ste-TiO{sub 2} electrode. From the results of photocurrent responses with light intensity of 100 mW cm{sup -2} irradiation or monochromatic light with 660 nm, generated photocurrent increases using Chl-a/Ste-TiO{sub 2} electrode compared with the other Chl-a assembled TiO{sub 2} electrodes. These results show that the hydrophobic domain formed by stearic acid with long alkyl hydrocarbon chain is suitable for fixation of Chl-a onto TiO{sub 2} film electrodes and photovoltaic performance is improved using Chl-a onto Ste-TiO{sub 2} film electrode. (author)

  2. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Politecnica Univ. de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J. [Politecnica Univ. de Chiapas, Chiapas (Mexico). Energia y Sustentabilidad; Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Gamboa, S.A. [Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Pal, U. [Inst. de Fisica, Universidad Autonoma de Puebla Univ., Puebla (Mexico). Inst. de Fisica; Gonzalez, I. [Autonoma Metropolitana Univ. (Mexico). Dept. de Quimica

    2008-07-01

    This paper reported on a study in which membrane electrode assemblies (MEAs) were fabricated by depositing Au, Pt and AuPt nanoparticles on Nafion 115 membrane for use in a proton exchange membrane fuel cell (PEMFC). A Rotating Disc Electrode (RDE) was used to measure the nanoparticle catalyst activity. After deposition of the nanoparticles on the membrane, the surface was studied by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The membrane proton conduction process was studied by Electrochemical Impedance Spectroscopy (EIS) with the 4 probe technique. The MEAs fabricated with Nafion/Metal membranes were evaluated in a PEMFC under standard conditions. Colloidal solutions were used to prepare self-assembled electrodes with nanoparticles deposited on Nafion membrane. The particles deposited on Nafion showed good stability and had homogeneous distribution along the membrane surface. The impedance results revealed an increase in the membrane proton resistance of the self-assembled electrodes compared to unmodified Nafion. The Au-Pt nanoparticles were obtained by chemical reduction. The nanoparticle size in the three systems was about 2 nm. The self-assembled electrodes performed well in standard conditions. The optimum colloidal concentration and immersion time must be determined in order to obtain good catalytic activity and high membrane conductance. The self-assembled Nafion/AuPt had the best open circuit potential (887 mV). The Au and Pt self-assemblies showed a similar performance in terms of maximum power and maximum current density. The performance of the Nafion/Au self-assembly was influenced more by ohmic losses, particularly in the membrane. The maximum power generation was obtained at 0.35 V. The mass transport losses increased after this value, thereby affecting the efficiency of the PEMFC. 2 figs.

  3. Layer-by-layer cell membrane assembly

    Science.gov (United States)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  4. Modification of porosity in the catalyst layer of membrane electrode assemblies using pore-forming agents; Modificacion de la porosidad en la capa catalitica de ensambles membrana-electrodo empleando agentes formadores de poros

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Reyes, Brenda [UNAM. Facultad de Quimica, Mexico D.F. (Mexico); Barbosa P., Romeli [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico); Cano Castillo, Ulises; Albarran, Lorena [Instituto de Investigaciones Electricas Cuernavaca, Morelos (Mexico)

    2009-09-15

    Membrane electrode assemblies (MEA) are the most important part of PEM fuel cells since their interface results in the electrochemical reactions that make the generation of electricity possible. The MEA is composed of a proton exchange membrane, both sides of which are impregnated with a catalyst layer, normally of carbon-supported platinum. Depending on the technique used for its fabrication (atomization, serigraphy, brush methods, chemical reduction, etc.), the properties of the MEA can be different in terms of porosity, distribution of the catalyst, thickness and structure of the catalyst layer, and the quality of the union between the catalyst layer and the membrane, etc. Currently, the porosity of the electrodes is generated by isopropanol evaporation (solvent used in the dye) during the fabrication process conducted in the Instituto de Investigaciones Electricas (IIE). This document presents the results obtained from adding a porous agent to the catalytic dye base composition used in the fabrication of MEA at the IIE. [Spanish] Los Ensambles Membrana-Electrodo (MEA's) son la parte mas importante en las celdas de combustibles tipo PEM, ya que en su interfaz se llevan a cabo las reacciones electroquimicas que hacen posible la generacion de electricidad. El MEA esta compuesto de una membrana de intercambio protonico a la cual se le impregna en ambos lados una capa catalitica normalmente de platino soportado en carbon. Dependiendo de la tecnica empleada en su fabricacion (atomizado, serigrafia, brocha, reduccion quimica, etc.), las propiedades del MEA pueden ser diferentes en cuanto a porosidad, distribucion del catalizador, grosor y estructura de la capa catalitica, asi como la calidad de la union entre la capa catalizadora y la membrana, etc. Actualmente, la porosidad de los electrodos es generada por la evaporacion del isopropanol (solvente utilizado en la tinta) durante el proceso de fabricacion que se realiza en el Instituto de Investigaciones

  5. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  6. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Univ. Politecnica de Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J.; Gamboa, S.A.; Joseph, S. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Centrode Investigacion en Energia; Pal, U. [Univ. Autonoma de Puebla, Pue (Mexico). Inst. de Fisica; Gonzalez, I. [Univ. Autonoma Metropolitana, Mexico City (Mexico). Dept. de Quimica

    2010-07-01

    This paper described the synthesis and characterization of gold (Au), platinum (Pt) and Au-Pt nanoparticles impregnated on a Nafion membrane in a proton exchange membrane fuel cell (PEMFC). The aim of the study was to fabricate the membrane electrode assembly (MEA) by depositing the nanoparticles on the membrane using an immersion technique. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to study the deposition process. Electrochemical impedance spectroscopy (EIS) was used to study the membrane proton conduction process. An elemental mapping analysis was performed in order to study the location of the Au and Pt in the self-assemblies. Results of the study showed that the particles deposited on the Nafion had good stability and a homogenous distribution along the membrane surface. The particles showed a direct relation in size and location with the hydrophilic and hydrophobic distribution phases of the membrane. The main membrane resistance was located between the membrane and the electrolyte. The self-assembled electrodes demonstrated a good performance at standard conditions. 33 refs., 4 tabs., 11 figs.

  7. Low Cost Electrode Assembly for EEG Recordings in Mice

    Directory of Open Access Journals (Sweden)

    Emily C. Vogler

    2017-11-01

    Full Text Available Wireless electroencephalography (EEG of small animal subjects typically utilizes miniaturized EEG devices which require a robust recording and electrode assembly that remains in place while also being well-tolerated by the animal so as not to impair the ability of the animal to perform normal living activities or experimental tasks. We developed simple and fast electrode assembly and method of electrode implantation using electrode wires and wire-wrap technology that provides both higher survival and success rates in obtaining recordings from the electrodes than methods using screws as electrodes. The new wire method results in a 51% improvement in the number of electrodes that successfully record EEG signal. Also, the electrode assembly remains affixed and provides EEG signal for at least a month after implantation. Screws often serve as recording electrodes, which require either drilling holes into the skull to insert screws or affixing screws to the surface of the skull with adhesive. Drilling holes large enough to insert screws can be invasive and damaging to brain tissue, using adhesives may interfere with conductance and result in a poor signal, and soldering screws to wire leads results in fragile connections. The methods presented in this article provide a robust implant that is minimally invasive and has a significantly higher success rate of electrode implantation. In addition, the implant remains affixed and produces good recordings for over a month, while using economical, easily obtained materials and skills readily available in most animal research laboratories.

  8. Assembly of intermediates for rapid membrane fusion.

    Science.gov (United States)

    Harner, Max; Wickner, William

    2018-01-26

    Membrane fusion is essential for intracellular protein sorting, cell growth, hormone secretion, and neurotransmission. Rapid membrane fusion requires tethering and Sec1-Munc18 (SM) function to catalyze R-, Qa-, Qb-, and Qc-SNARE complex assembly in trans , as well as SNARE engagement by the SNARE-binding chaperone Sec17/αSNAP. The hexameric vacuolar HOPS ( ho motypic fusion and vacuole p rotein s orting) complex in the yeast Saccharomyces cerevisiae tethers membranes through its affinities for the membrane Rab GTPase Ypt7. HOPS also has specific affinities for the vacuolar SNAREs and catalyzes SNARE complex assembly, but the order of their assembly into a 4-SNARE complex is unclear. We now report defined assembly intermediates on the path to membrane fusion. We found that a prefusion intermediate will assemble with HOPS and the R, Qa, and Qc SNAREs, and that this assembly undergoes rapid fusion upon addition of Qb and Sec17. HOPS-tethered membranes and all four vacuolar SNAREs formed a complex that underwent an even more dramatic burst of fusion upon Sec17p addition. These findings provide initial insights into an ordered fusion pathway consisting of the following intermediates and events: 1) Rab- and HOPS-tethered membranes, 2) a HOPS:R:Qa:Qc trans -complex, 3) a HOPS:4-SNARE trans -complex, 4) an engagement with Sec17, and 5) the rapid lipid rearrangements during fusion. In conclusion, our results indicate that the R:Qa:Qc complex forms in the context of membrane, Ypt7, HOPS, and trans -SNARE assembly and serves as a functional intermediate for rapid fusion after addition of the Qb-SNARE and Sec17 proteins. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Fabrication and Characterisation of Membrane-Based Gold Electrodes

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Kwasny, Dorota; Dimaki, Maria

    2015-01-01

    This work presents a versatile, membrane based electrochemical sensor with thin film electrodes fabricated through Ebeam evaporation directly on porous materials (membranes). Here, the fabrication of the electrodes is described along with possible methods for integration in fluidic systems and ch...

  10. Development of a membrane electrode as assembly production process for proton exchange membrane fuel cell (PEMFC) by sieve printing; Desenvolvimento de processo de producao de conjuntos eletrodo-membrana-eletrodo para celulas a combustivel baseadas no uso de membrana polimerica conditora de protons (PEMFC) por impressa a tela

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, Rafael Nogueira

    2010-07-01

    Energy is a resource that presents historical trend of growth in demand. Projections indicate that future energy needs will require a massive use of hydrogen as fuel. The use of systems based on the use of proton exchange membrane fuel cell (PEMFC) has features that allow its application for stationary applications, automotive and portable power generation. The use of hydrogen as fuel for PEMFC has the advantage low pollutants' emission, when compared to fossil fuels. For the reactions in a PEMFC is necessary to build membrane electrode assembly (MEA). And the production of MEAs and its materials are relevant to the final cost of k W of power generated by systems of fuel cell. This represent currently a technological and financial barriers to large-scale application of this technology. In this work a process of MEAs fabrication were developed that showed high reproducibility, rapidity and low cost by sieve printing. The process of sieve printing and the ink composition as a precursor to the catalyst layer were developed, which allow the preparation of electrodes for MEAs fabrication with the implementation of the exact catalyst loading, 0.6 milligrams of platinum per square centimeters (mgPt.cm{sup -2}) suitable for cathodes and 0.4 mgPt.cm{sup -2} for anode in only one application step per electrode. The ink was developed, produced, characterized and used with similar characteristics to ink of sieve printing build for other applications. The MEAs produced had a performance of up to 712 m A.cm{sup -2} by 600 mV to 25 cm{sup 2} MEA area. The MEA cost production for MEAs of 247.86 cm{sup 2}, that can generate 1 kilowatt of energy was estimated to US$ 7,744.14 including cost of equipment, materials and labor. (author)

  11. Metal spring stub and ceramic body electrode assembly

    Science.gov (United States)

    Rolf, Richard L.; Sharp, Maurice L.

    1984-01-01

    An electrode assembly comprising an electrically conductive ceramic electrode body having an opening therein and a metal stub retained in the opening with at least a surface of the stub in intimate contact with a surface of the body and the stub adapted with a spring to flex and prevent damage to the body from expansion of the stub when subjected to a temperature differential.

  12. Study for increasing the stabilization time of a catalytic dye to facilitate the fabrication of membrane electrode assemblies; Estudio para incrementar el tiempo de estabilizacion de una tinta catalitica para facilitar la fabricacion de ensambles membrana-electrodo

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Martinez Vado, F. Isaias [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico); Cano Castillo, Ulises, Albarran Sanchez, Lorena [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2009-09-15

    An infrastructure project has been underway for hydrogen technology and fuel cells at the Electrical Research Institute (IIE, Spanish acronym). Part of this project is an activity for the fabrication of membrane electrode assemblies (MEA). Currently, a fabrication process is well-established for the MEA using the spray technique. In addition, a catalytic dye base composition has been developed for use in the fabrication of high-quality MEA with a good degree of reproducibility. Nevertheless, the instability of the dye over time prevents continuous fabrication of MEA. This document presents the results obtained, to-date, of research conducted at the IIE aimed at increasing the stability of the catalytic dye by adding a surfactant with different concentrations and increasing the concentration of the Nafion® solution. It was found that the effect of adding the surfactant to the catalytic dye results in a qualitative decrease in the agglomerate sizes, while also decreasing the porosity of the dye once it has dried. In addition, it was found that increasing the amount of Nafion® in the catalytic die increases the porosity. [Spanish] En el Instituto de Investigaciones Electricas (IIE) se ha venido trabajando en un proyecto de infraestructura sobre la tecnologia de hidrogeno y celdas de combustible. Dentro de este proyecto se tiene una actividad orientada a la fabricacion de Ensambles Membrana-Electrodo (MEA's). Actualmente se tiene un proceso de fabricacion bien establecido para la elaboracion de MEA's utilizando la tecnica de rociado, asimismo, se tiene una composicion base de tinta catalitica con la cual se fabrican MEA's de buena calidad y con buen grado de reproducibilidad. Sin embargo, la inestabilidad de la tinta con respecto al tiempo impide tener una fabricacion continua de los MEA's. En este documento se presentan los resultados obtenidos hasta ahora de una investigacion que se realiza en el IIE orientada a incrementar la estabilidad de la

  13. Gallium nitride electrodes for membrane-based electrochemical biosensors.

    Science.gov (United States)

    Schubert, T; Steinhoff, G; von Ribbeck, H-G; Stutzmannn, M; Eickhoff, M; Tanaka, M

    2009-10-01

    We report on the deposition of planar lipid bilayers (supported membranes) on gallium nitride (GaN) electrodes for potential applications as membrane-based biosensors. The kinetics of the lipid membrane formation upon vesicle fusion were monitored by simultaneous measurements of resistance and capacitance of the membrane using AC impedance spectroscopy in the frequency range between 50 mHz and 50 kHz. We could identify a two-step process of membrane spreading and self-healing. Despite its relatively low resistance, the membrane can be modeled by a parallel combination of an ideal resistor and capacitor, indicating that the membrane efficiently blocks the diffusion of ions.

  14. Self-assembling membranes and related methods thereof

    Science.gov (United States)

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  15. Four-port gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P.; Fulton, Donald A.; Lokhandwala, Kaaeid A.; Kaschemekat, Jurgen

    2010-07-20

    A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

  16. Nanocomposite Membrane via Magnetite Nanoparticle Assembly

    KAUST Repository

    Xie, Yihui

    2012-07-01

    Membrane technology is one of the most promising technologies for addressing the global water crisis as well as in many other applications. One of the drawbacks of current ultra- and nanofiltration membranes is the relatively broad pore size distribution. Block copolymer membranes with ultrahigh permeability and very regular pore sizes have been recently demonstrated with pores being formed by the supramolecular assembly of core/shell micelles. Our study aimed at developing an innovative and economically efficient alternative method to fabricate isoporous membrane by self-assembly of magnetic nanoparticle with a polystyrene shell, mimicking the behavior of block copolymer micelle. Fe3O4 nanoparticles of ~13 nm diameter were prepared by co-precipitation as cores. The initiator for ATRP was covalently bonded onto the surface of magnetic nanoparticles with two strategies. Then the surface initiated ATRP of styrene was carried out to functionalize nanoparticles with polystyrene through a “grafting from” method. Finally, the nanocomposite membrane was cast from 50 wt % Fe3O4@PS brush polymer solution in DMF via non solvent phase inversion. Microscopies reveal an asymmetric membrane with a dense thin layer on top of a porous sponge-like layer. This novel class of asymmetric membrane, based on the pure assembly of functionalized nanoparticles was prepared for the first time. The nanoparticles are well distributed however with no preferential order yet in the as-cast film.I would like to thank my committee chair and advisor, Prof. Suzana Nunes, and other committee members, Prof. Klaus-Viktor Peinemann and Prof. Gary Amy, for their guidance and support throughout the course of this research. My appreciation also goes to my colleagues in our group for useful discussions and suggestions. I also want to extend my gratitude to the staff from the KAUST Core Lab for Advanced Nanofabrication, Imaging and Characterization, especially Dr. Ali Reza Behzad, Dr. Rachid Sougrat, and

  17. Membrane-electrode structures for molecular catalysts for use in fuel cells and other electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John B.; Zhu, Xiaobing; Hwang, Gi Suk; Martin, Zulima; He, Qinggang; Driscoll, Peter; Weber, Adam; Clark, Kyle

    2016-09-27

    Water soluble catalysts, (M)meso-tetra(N-Methyl-4-Pyridyl)Porphinepentachloride (M=Fe, Co, Mn & Cu), have been incorporated into the polymer binder of oxygen reduction cathodes in membrane electrode assemblies used in PEM fuel cells and found to support encouragingly high current densities. The voltages achieved are low compared to commercial platinum catalysts but entirely consistent with the behavior observed in electroanalytical measurements of the homogeneous catalysts. A model of the dynamics of the electrode action has been developed and validated and this allows the MEA electrodes to be optimized for any chemistry that has been demonstrated in solution. It has been shown that improvements to the performance will come from modifications to the structure of the catalyst combined with optimization of the electrode structure and a well-founded pathway to practical non-platinum group metal catalysts exists.

  18. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara

    2011-01-01

    A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined by potenti......A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...... porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion–Pt(IV)TPPCl2 complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good...

  19. Analysis for impedance electrochemistry 'on-line' of membrane/electrode assemble (MEA) of protons exchange membrane fuel cells (PEMFC); Analise por impedancia eletroquimica 'on-line' de conjuntos eletrodos/membrana (MEA) de celulas a combustivel a membrana polimetrica (PEMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Antonio Rodolfo dos

    2007-07-01

    This work reports results of studies and characterization on membrane electrode assemblies (MEAs) for proton exchange membrane fuel cell (PEMFC). Some cell operation conditions and different processes of MEA production were investigated. The electrochemical impedance spectroscopy technique (EIS) (in situ - 0 to 16 A) was used 'on-line' as a tool for diagnosis, concerning the cell performance. The EIS measurements were carried out with a FC350 Fuel Cell EIS System (GAMRY), coupled to a PC4 potentiostat/galvanostat and connected to the electronic load (TDI) for 'on-line' EIS experiments (100 mHz - 10 kHz, dU = 5 mV). MEAs with 25 cm{sup 2} surface area, using PtM/C 20% (M Ru, Sn or Ni) electrocatalysts were manufactured using the alcohol reduction process (ARP). The catalytic ink was applied directly into the carbon cloth (GDL) and pressed in the Nafion membrane (105). MEAs using Pt/C and Pt Ru/C 20% from E-TEK electrocatalysts were manufactured by comparison. All the cathodes were sprayed with Pt/C 20% from E-TEK. The noble metal concentrations used were set to 0.4 mg Pt.cm{sup -2} at the anode and 0.6 mg Pt.cm{sup -2} at the cathode (E-TEK). Nyquist diagrams of the MEAs with Pt/C and PtRu/C from E-TEK or PtM/C (M = Ru, Sn or Ni) ARP showed essentially the same ohmic resistances for the MEAs. This fact can be explained by suppression of agglomerates during the MEA preparation process or by the homogeneity of the anchored electrocatalysts at the carbon surface. It could also be observed, at low current densities, that there was a significant performance difference between the electrocatalysts from E-TEK and those prepared with the alcohol reduction process. The polarization curves results confirmed that the Pt M/C (M = Ru, Sn or Ni) ARP showed an activity increase for the methanol and ethanol fed cells. The technique of EIE was shown efficient for the evaluation of the method preparation of MEAs and the acting of the cell, the results of EIE

  20. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes

    International Nuclear Information System (INIS)

    Bokoch, Michael P.; Devadoss, Anando; Palencsar, Mariela S.; Burgess, James D.

    2004-01-01

    Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 μM. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 μM for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented

  1. [Construction and characterization of a selective membrane electrode for tenoxicam determination].

    Science.gov (United States)

    Murăraşu, Andreea Elena; Mândrescu, Mariana; Spac, A F; Dorneanu, V

    2010-01-01

    This paper describes the construction and characterization of a selective membrane electrode which can be used for determination of tenoxicam. The electroactive compound is a precipitate obtained in 2 N hydrocloric acid solution containing tenoxicam in which a solution of iodine is added. The membrane is made by mixing the electroactive compound with polyethylene using tetrahydrofurane as solvent. The solution is evaporated in order to obtain a thick membrane, which is attached at one end of a PVC tube and is fixed with the same polymeric solution. In this tube an internal Ag/AgCl reference electrode is inserted. The assembly is filled with an internal solution containing tenoxicam. The electrode was characterized (electrode slope, selectivity, optimal pH range, response time, life time). The developed method was validated. The method showed a good liniarity in the range of 10(-6)-10(-1) M (the correlation coefficient r = 0.9999). The detection limit (LD) was 7.347 x 10(-7) M and the quantification limit (LQ) was 1.017 x 10(-6) M. There were established the precision (RSD = 1.79%) and the accuracy (mean recovery is 100.17%) The experimental results demonstrated a good sensibility.

  2. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    International Nuclear Information System (INIS)

    Saefurohman, Asep; Buchari,; Noviandri, Indra; Syoni

    2014-01-01

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm −1 , 1031 cm −1 and 794.7 cm −1 for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm −1 indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R 3 P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10 −3 M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10 −5 and 10 −1 M

  3. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  4. Pressure effects on lipids and bio-membrane assemblies

    Directory of Open Access Journals (Sweden)

    Nicholas J. Brooks

    2014-11-01

    Full Text Available Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid–protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.

  5. Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness

    Directory of Open Access Journals (Sweden)

    Viljar Palmre

    2014-04-01

    Full Text Available In this study, we attempt to improve the electromechanical performance of ionic polymer–metal composites (IPMCs by developing high surface area Pd-Pt electrodes and tailoring the ionomer membrane thickness. With proper electroless plating techniques, a high dispersion of palladium particles is achieved deep in the ionomer membrane, thereby increasing notably the interfacial surface area of electrodes. The membrane thickness is increased using 0.5 and 1 mm thick ionomer films. For comparison, IPMCs with the same ionomer membranes, but conventional Pt electrodes, are also prepared and studied. The electromechanical, mechanoelectrical, electrochemical and mechanical properties of different IPMCs are characterized and discussed. Scanning electron microscopy-energy dispersive X-ray (SEM-EDS is used to investigate the distribution of deposited electrode metals in the cross section of Pd-Pt IPMCs. Our experiments demonstrate that IPMCs assembled with millimeter thick ionomer membranes and newly developed Pd-Pt electrodes are superior in mechanoelectrical transduction, and show significantly higher blocking force compared to conventional type of IPMCs. The blocking forces of more than 0.3 N were measured at 4V DC input, exceeding the force output of typical Nafion® 117-based Pt IPMCs more than two orders of magnitude. The newly designed Pd-Pt IPMCs can be useful in more demanding applications, e.g., in biomimetic underwater robotics, where high stress and drag forces are encountered.

  6. Self-assembled Block Copolymer Membrane

    KAUST Repository

    Peinemann, Klaus-Viktor

    2012-12-20

    Embodiments of the invention include methods for the production of porous membranes. In certain aspects the methods are directed to producing polymeric porous membranes having a narrow pore size distribution.

  7. Autophagosomal membranes assemble at ER-plasma membrane contact sites.

    Science.gov (United States)

    Nascimbeni, Anna Chiara; Codogno, Patrice; Morel, Etienne

    2017-01-01

    The biogenesis of autophagosome, the double membrane bound organelle related to macro-autophagy, is a complex event requiring numerous key-proteins and membrane remodeling events. Our recent findings identify the extended synaptotagmins, crucial tethers of Endoplasmic Reticulum-plasma membrane contact sites, as key-regulators of this molecular sequence.

  8. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations

    KAUST Repository

    Zhang, Fang

    2014-01-01

    The effectiveness of refinery wastewater (RW) treatment using air-cathode, microbial fuel cells (MFCs) was examined relative to previous tests based on completely anaerobic microbial electrolysis cells (MECs). MFCs were configured with separator electrode assembly (SEA) or spaced electrode (SPA) configurations to measure power production and relative impacts of oxygen crossover on organics removal. The SEA configuration produced a higher maximum power density (280±6mW/m2; 16.3±0.4W/m3) than the SPA arrangement (255±2mW/m2) due to lower internal resistance. Power production in both configurations was lower than that obtained with the domestic wastewater (positive control) due to less favorable (more positive) anode potentials, indicating poorer biodegradability of the RW. MFCs with RW achieved up to 84% total COD removal, 73% soluble COD removal and 92% HBOD removal. These removals were higher than those previously obtained in mini-MEC tests, as oxygen crossover from the cathode enhanced degradation in MFCs compared to MECs. © 2013 Elsevier Ltd.

  9. Assembly factors for the membrane arm of human complex I.

    Science.gov (United States)

    Andrews, Byron; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2013-11-19

    Mitochondrial respiratory complex I is a product of both the nuclear and mitochondrial genomes. The integration of seven subunits encoded in mitochondrial DNA into the inner membrane, their association with 14 nuclear-encoded membrane subunits, the construction of the extrinsic arm from 23 additional nuclear-encoded proteins, iron-sulfur clusters, and flavin mononucleotide cofactor require the participation of assembly factors. Some are intrinsic to the complex, whereas others participate transiently. The suppression of the expression of the NDUFA11 subunit of complex I disrupted the assembly of the complex, and subcomplexes with masses of 550 and 815 kDa accumulated. Eight of the known extrinsic assembly factors plus a hydrophobic protein, C3orf1, were associated with the subcomplexes. The characteristics of C3orf1, of another assembly factor, TMEM126B, and of NDUFA11 suggest that they all participate in constructing the membrane arm of complex I.

  10. Potentiometric polymeric membrane electrodes for mercury detection using calixarene ionophores.

    Science.gov (United States)

    Tyagi, Sonika; Agarwal, Himanshu; Ikram, Saiqa

    2010-01-01

    It is here established that potentiometric polymeric membrane electrodes based on electrically neutral ionophores are a useful analytical tool for the detection of heavy metal ions from environmental and industrial waste water. PVC based membrane containing p-tert-butyl-calix[4]arenethioether derivative as active material along with sodiumtetraphenylborate (NaTPB) as solvent mediator and dibutylphthalate as a plasticizer in the ratio 45:9:460:310 (w/w%) (I:NaTPB:DBP:PVC) exhibits good properties with a Nernstian response of 29.50+/-1.0 mV per decade of activity and a working concentration range of 7.2 x 10(-8)-1.0 x 10(-1) M. The electrode gave more stable potential readings when used around pH 2.5-6.8 and exhibits fast response time of 14 s. The sensors were found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of acetone, methanol or ethanol and could be used over a period of 7-9 months. Excellent selectivity for Hg(2+) ions is indicated by match potential method and fixed interference method. The sensors could be used successfully in the estimation of mercury in different sample.

  11. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain

    2014-01-01

    New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self-assemble in combinat......New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self...

  12. Reduction of methanol crossover by thin cracked metal barriers at the interface between membrane and electrode in direct methanol fuel cells

    Science.gov (United States)

    Kim, Sungjun; Jang, Segeun; Kim, Sang Moon; Ahn, Chi-Yeong; Hwang, Wonchan; Cho, Yong-Hun; Sung, Yung-Eun; Choi, Mansoo

    2017-09-01

    This work reports the successful reduction in methanol crossover by creating a thin cracked metal barrier at the interface between a Nafion® membrane and an electrode in direct methanol fuel cells (DMFCs). The cracks are generated by simple mechanical stretching of a metal deposited Nafion® membrane as a result of the elastic mismatch between the two attached surfaces. The cracked metal barriers with varying strains (∼0.5 and ∼1.0) are investigated and successfully incorporated into the DMFC. Remarkably, the membrane electrode assembly with the thin metal crack exhibits comparable ohmic resistance as well as reduction of methanol crossover, which enhanced the device performance.

  13. Theoretical Simulation on the Assembly of Carbon Nanotubes Between Electrodes by AC Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2008-01-01

    Full Text Available Abstract The assembly of single-walled carbon nanotubes (SWCNTs using the AC dielectrophoresis technique is studied theoretically. It is found that the comb electrode bears better position control of SWCNTs compared to the parallel electrode. In the assembly, when some SWCNTs bridge the electrode first, they can greatly alter the local electrical field so as to “screen off” later coming SWCNTs, which contributes to the formation of dispersed SWCNT array. The screening distance scales with the gap width of electrodes and the length of SWCNTs, which provides a way to estimate the assembled density of SWCNTs. The influence of thermal noise on SWCNTs alignment is also analyzed in the simulation. It is shown that the status of the array distribution for SWCNTs is decided by the competition between the thermal noise and the AC electric-field strength. This influence of the thermal noise can be suppressed by using higher AC voltage to assemble the SWCNTs.

  14. Construction, assembling and application of a trehalase-GOD enzyme electrode system.

    Science.gov (United States)

    Antonelli, M L; Arduini, F; Laganà, A; Moscone, D; Siliprandi, V

    2009-01-01

    Trehalose is a disaccharide important in foods, serving as a glucose source in many and also as an additive in the food preparation. Because of its peculiar physico-chemical properties it plays an important role as preservative in drying and deep-freezing treatments. A new biosensor for trehalose determination has been realized by means of a flow system, based on a reactor in which the trehalase enzyme catalyses its hydrolysis into two alpha,d-glucose molecules, and a GOD (glucose oxidase) amperometric biosensor is employed for the glucose determination. The optimum operative conditions have been laid out and a particular attention has been paid to the immobilization procedure of the two enzymes. The electrode used is of the SPE (screen-printed electrode) type and has been activated with the Prussian Blue (PB) and then assembled using GOD immobilized with Nafion. The reactor has been prepared with the trehalase enzyme chemically immobilized on an Immunodyne ABC membrane. As demonstration of its utility, the biosensor has been tested on a real sample of Boletus edulis mushroom.

  15. A Self-Assembling Protein Hydrogel Technology for Enzyme Incorporation onto Electrodes in Biofuel Cells

    Science.gov (United States)

    2015-10-26

    AFRL-AFOSR-VA-TR-2015-0369 A Self-Assembling Protein Hydrogel Technology for Enzyme Incorporation onto Electrodes in Biofuel Cells (YIP) Zhilei Chen...Incorporation Onto Electrodes in Biofuel Cells 5a. CONTRACT NUMBER C12-00857 5b. GRANT NUMBER FA9550-12-1-0330 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...activity enzyme immobilization on electrodes in enzymatic biofuel cells. Enzymatic biofuel cells hold great potential for providing flexible, compact

  16. Study of the Nafion quantity effect in membrane and electrodes assemblies (MEAs) of 50 cm{sup 2} used in type proton exchange membrane (PEM) fuel cell operating with H{sub 2}/Air; Estudo do efeito da quantidade de Nafion em MEAs de 50 cm{sup 2} utilizadas em celula a combustivel tipo PEM operando com H{sub 2}/ar

    Energy Technology Data Exchange (ETDEWEB)

    Profeti, Demetrius; Colmati, Flavio; Carlindo, Adao A.J.; Paganin, Valdecir A.; Gonzalez, Ernesto R.; Ticianelli, Edson A. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: dprofeti@iqsc.usp.br

    2008-07-01

    The performance of a proton exchange membrane fuel cell (PEMFC) was investigated with the aim at characterizing the effects of the Nafion. content on the scale-up of the electrodes from 5 to 50 cm{sup 2}. It is observed that a diminution of the single cell performance occurred when the electrode area is increased from 5 to 50 cm{sup 2}. The tests carried out with different Nafion. contents, and fuel cell and humidifiers at the same temperature (T{sub cell}=T{sub H2}=T{sub air}=70 deg C) showed a slightly decrease of the fuel cell performance compared to the tests performed at different temperatures (T{sub cell}=70 deg C, T{sub H2}=85 deg C, T{sub air}=75 deg C). In the study of the variation on the Nafion. contents, the higher performance up to a current density of 0.8 A cm-2 is obtained with the 35.5 wt.% Nafion.. On the other hand, at higher current densities values, the performance of the fuel cells is very similar for the 31.0, 35.5 and 39.4 wt.% Nafion contents. (author)

  17. Molecular automata assembly: principles and simulation of bacterial membrane construction.

    Science.gov (United States)

    Lahoz-Beltra, R

    1997-01-01

    The motivation to understand the basic rules and principles governing molecular self-assembly may be relevant to explain in the context of molecular biology the self-organization and biological functions exhibited within cells. This paper presents a molecular automata model to simulate molecular self-assembly introducing the concept of molecular programming to simulate the biological function or operation performed by an assembled molecular state machine. The method is illustrated modelling Escherichia coli membrane construction including the assembly and operation of ATP synthase as well as the assembly of the bacterial flagellar motor. Flagellar motor operation was simulated using a different approach based on state machine definition used in virtual reality systems. The proposed methodology provides a modelling framework for simulation of biological functions performed by cellular components and other biological systems suitable to be modelled as molecular state machines.

  18. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  19. Thermomechanical Response of Self-Assembled Nanoparticle Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifan [Department; James; Chan, Henry [Center; Narayanan, Badri [Center; McBride, Sean P. [Department; Sankaranarayanan, Subramanian K. R. S. [Center; Lin, Xiao-Min [Center; Jaeger, Heinrich M. [Department; James

    2017-07-21

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiment's and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self assembly process and can be controlled by changing the ligand coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.

  20. Fuel Cell Electrodes for Hydrogen-Air Fuel Cell Assemblies.

    Science.gov (United States)

    The report describes the design and evaluation of a hydrogen-air fuel cell module for use in a portable hydrid fuel cell -battery system. The fuel ... cell module consists of a stack of 20 single assemblies. Each assembly contains 2 electrically independent cells with a common electrolyte compartment

  1. Contribution to the study of fluoride dosing by using a membrane selective electrode

    International Nuclear Information System (INIS)

    Rivas, Jean de

    1972-01-01

    As the method of dosing fluoride ions by precipitation with lead fluorochloride is not very satisfying, the author reports the study of a new process for the dosing of the fluorine ion by using a selective electrode. After some generalities on selective electrodes (principle, types, operation principle) and some recalls and definitions (Galvani and Volta potential, stability constants of complexes, principles of diffusion in solids), the author reports the study of the diffusion potential in glass membranes, the study of the membrane potential, and the study of the ion exchange equilibrium. He presents methods of calculation of selectivity coefficients of membrane electrodes, and the reports experiments performed in laboratory

  2. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash

    2011-02-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  3. Interlaced CNT Electrodes for Bacterial Fouling Reduction of Microfiltration Membranes.

    Science.gov (United States)

    Zhang, Qiaoying; Arribas, Paula; Remillard, E Marielle; García-Payo, M Carmen; Khayet, Mohamed; Vecitis, Chad D

    2017-08-15

    Interlaced carbon nanotube electrodes (ICE) were prepared by vacuum filtering a well-dispersed carbon nanotube-Nafion solution through a laser-cut acrylic stencil onto a commercial polyvinylidene fluoride (PVDF) microfiltration (MF) membrane. Dead-end filtration was carried out using 10 7 and 10 8 CFU mL -1 Pseudomonas fluorescens to study the effects of the electrochemically active ICE on bacterial density and morphology, as well as to evaluate the bacterial fouling trend and backwash (BW) efficacy, respectively. Finally, a simplified COMSOL model of the ICE electric field was used to help elucidate the antifouling mechanism in solution. At 2 V DC and AC (total cell potential), the average bacterial log removal of the ICE-PVDF increased by ∼1 log compared to the control PVDF (3.5-4 log). Bacterial surface density was affected by the presence and polarity of DC electric potential, being 87-90% lower on the ICE cathode and 59-93% lower on the ICE anode than that on the PVDF after filtration, and BW further reduced the density on the cathode significantly. The optimal operating conditions (2 V AC) reduced the fouling rate by 75% versus the control and achieved up to 96% fouling resistance recovery (FRR) during BW at 8 V AC using 155 mM NaCl. The antifouling performance should mainly be due to electrokinetic effects, and the electric field simulation by COMSOL model suggested electrophoresis and dielectrophoresis as likely mechanisms.

  4. Study of pressing effects and variation in Pt charge in the anode on the performance of membrane electrode assemblies; Estudio de los efectos de prensado y variacion de la carga de Pt en el anodo en el rendimiento de ensambles membrana-electrodo

    Energy Technology Data Exchange (ETDEWEB)

    Albarran S, Irma Lorena; Flores Hernandez, J. Roberto; Cano Castillo, Ulises [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico). E-mail: ilas@iie.org.mx; Loyola, Felix (UNAM, Facultad de Quimica, Mexico D.F. (Mexico)

    2009-09-15

    Fabricating membrane electrode assemblies (MEA) involves different variables that determine their performance, such as: amount of the catalyst, concentration of the different solvents used in the fabrication of the catalyst dye, use of a thermomechanical process to increase the degree of adhesion between the catalyst layers and the membrane, etc. This work studied the effect of the Pt charge in the anode on performance, as well as the effect of the thermomechanical process on the fabrication of MEAs. It is evident that the optimal Pt charge should be that which provides good performance during an acceptable useful lifetime at a competitive cost. This work presents the results obtained by varying the Pt charge in the anode between 1.0 and 0.4 mgPt/cm{sup ²} while maintaining a constant charge of 1 mgPt/cm{sup ²} in the cathode. It also shows the comparison between the polarization curves and the active areas obtained in the MEAs with and without pressing during their fabrication. [Spanish] En la fabricacion de los Ensambles Membrana-Electrodo (MEA's) intervienen diferentes variables que determinan su desempeno, como lo son: cantidad de catalizador, concentracion de los diferentes solventes que se emplean en la fabricacion de la tinta catalitica, el uso de un proceso termomecanico para incrementar el grado de adherencia entre las capas cataliticas y la membrana, etc. De las variables anteriormente mencionadas, en este trabajo se estudio el efecto de la carga anodica de Pt en el desempeno, asi como del proceso termomecanico en la fabricacion de MEA's. Es evidente que la carga optima de Pt debe ser aquella que proporcione un buen rendimiento por un periodo de vida util aceptable a un costo competitivo. En este trabajo se presentan los resultados obtenidos al variar la carga de Pt en el anodo entre 1.0 a 0.4 mgPt/cm{sup ²} manteniendo una carga constante de 1 mgPt/cm{sup ²} en el catodo. Tambien se muestra la comparacion de las curvas de polarizacion y las

  5. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells

    Science.gov (United States)

    Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.

  6. Electrochemical sensing of membrane potential and enzyme function using gallium arsenide electrodes functionalized with supported membranes.

    Science.gov (United States)

    Gassull, Daniel; Ulman, Abraham; Grunze, Michael; Tanaka, Motomu

    2008-05-08

    We deposit phospholipid monolayers on highly doped p-GaAs electrodes that are precoated with methyl-mercaptobiphenyl monolayers and operate such a biofunctional electrolyte-insulator-semiconductor (EIS) setup as an analogue of a metal-oxide-semiconductor setup. Electrochemical impedance spectra measured over a wide frequency range demonstrate that the presence of a lipid monolayer remarkably slows down the diffusion of ions so that the membrane-functionalized GaAs can be subjected to electrochemical investigations for more than 3 days with no sign of degradation. The biofunctional EIS setup enables us to translate changes in the surface charge density Q and bias potentials Ubias into the change in the interface capacitance Cp. Since Cp is governed by the capacitance of semiconductor space charge region CSC, the linear relationships obtained for 1/Cp2 vs Q and 1/Cp2 vs Ubias suggests that Cp can be used to detect the surface charges with a high sensitivity (1 charge per 18 nm2). Furthermore, the kinetics of phospholipids degradation by phospholipase A2 can also be monitored by a significant decrease in diffusion coefficients through the membrane by a factor of 104. Thus, the operation of GaAs membrane composites established here allows for electrochemical sensing of surface potential and barrier capability of biological membranes in a quantitative manner.

  7. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide

    International Nuclear Information System (INIS)

    Hori, Y.; Ito, H.; Okano, K.; Nagasu, K.; Sato, S.

    2003-01-01

    Silver-coated ion exchange membrane electrodes (solid polymer electrolyte, SPE) were prepared by electroless deposition of silver onto ion exchange membranes. The SPE electrodes were used for carbon dioxide (CO 2 ) reduction with 0.2 M K 2 SO 4 as the electrolyte with a platinum plate (Pt) for the counterelectrode. In an SPE electrode system prepared from a cation exchange membrane (CEM), the surface of the SPE was partly ruptured during CO 2 reduction, and the reaction was rapidly suppressed. SPE electrodes made of an anion exchange membrane (SPE/AEM) sustained reduction of CO 2 to CO for more than 2 h, whereas, the electrode potential shifted negatively during the electrolysis. The reaction is controlled by the diffusion of CO 2 through the metal layer of the SPE electrode at high current density. Ultrasonic radiation, applied to the preparation of SPE/AEM, was effective to improve the electrode properties, enhancing the electrolysis current of CO 2 reduction. Observation by a scanning electron microscope (SEM) showed that the electrode metal layer became more porous by the ultrasonic radiation treatment. The partial current density of CO 2 reduction by SPE/AEM amounted to 60 mA cm -2 , i.e. three times the upper limit of the conventional electrolysis by a plate electrode. Application of SPE device may contribute to an advancement of CO 2 fixation at ambient temperature and pressure

  8. Understanding on Interface Contribution to the Electrode Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Grahl-Madsen, L.

    2016-01-01

    The commercialization of proton exchange membrane fuel cells (PEMFCs) is closer to the reality than ever before. Electrode interface development can bring a boost to the last few steps. Here, we explore electrode properties from its interface structure, especially the ionomer phase. Electrodes...... containing identical catalyst but various ionomer loading (0, 10, 20, 30, 40 and 50 wt.%) were prepared. An optimal value of electrode performance, stability and platinum dissolution was observed respectively for the electrode containing around 30 wt.% ionomer. The platinum particle increment monotonically...

  9. X-ray photoelectron spectroscopy investigation on electrochemical degradation of proton exchange membrane fuel cell electrodes

    Science.gov (United States)

    Andersen, Shuang Ma; Dhiman, Rajnish; Skou, Eivind

    2015-05-01

    X-ray photoelectron spectroscopy studies were systematically carried out on the electrodes before and after the electrochemical stress tests in an aqueous electrolyte at 20 °C and 70 °C. The electrodes have different ionomer structures (no ionomer, only ionomer, physically mixed ionomer and hot pressed ionomer) but have identical, commercial catalyst and catalyst loading. A significant degree of carbon corrosion, platinum migration and ionomer degradation were observed in the electrodes after the treatment. The degradation of the ionomer in the electrode is more severe than that of membrane. The electrode structure and the corresponding interface are crucial for the catalyst performance and durability.

  10. X-ray Photoelectron Spectroscopy Investigation on Electrochemical Degradation of Proton Exchange Membrane Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Skou, Eivind Morten

    2015-01-01

    pressed ionomer) but have identical, commercial catalyst and catalyst loading. A significant degree of carbon corrosion, platinum migration and ionomer degradation were observed in the electrodes after the treatment. The degradation of the ionomer in the electrode is more severe than that of membrane......X-ray photoelectron spectroscopy studies were systematically carried out on the electrodes before and after the electrochemical stress tests in an aqueous electrolyte at 20 °C and 70 °C. The electrodes have different ionomer structures (no ionomer, only ionomer, physically mixed ionomer and hot....... The electrode structure and the corresponding interface are crucial for the catalyst performance and durability....

  11. Challenges and advances in the field of self-assembled membranes

    NARCIS (Netherlands)

    van Rijn, Patrick; Tutus, Murat; Kathrein, Christine; Zhu, Leilei; Wessling, Matthias; Schwaneberg, Ulrich; Boeker, Alexander

    2013-01-01

    Self-assembled membranes are of vital importance in biological systems e. g. cellular and organelle membranes, however, more focus is being put on synthetic self-assembled membranes not only as an alternative for lipid membranes but also as an alternative for lithographic methods. More

  12. Fabrication and characterisation of hydrogen fuel cell membrane electrode assemblies

    CSIR Research Space (South Africa)

    Mathe

    2006-09-01

    Full Text Available stream_source_info Mathe_2006.pdf.txt stream_content_type text/plain stream_size 1 Content-Encoding ISO-8859-1 stream_name Mathe_2006.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ...

  13. Method to prevent sulfur accumulation in membrane electrode assembly

    Science.gov (United States)

    Steimke, John L; Steeper, Timothy J; Herman, David T

    2014-04-29

    A method of operating a hybrid sulfur electrolyzer to generate hydrogen is provided that includes the steps of providing an anolyte with a concentration of sulfur dioxide, and applying a current. During steady state generation of hydrogen a plot of applied current density versus concentration of sulfur dioxide is below a boundary line. The boundary line may be linear and extend through the origin of the graph with a slope of 0.001 in which the current density is measured in mA/cm2 and the concentration of sulfur dioxide is measured in moles of sulfur dioxide per liter of anolyte.

  14. From micelle supramolecular assemblies in selective solvents to isoporous membranes

    KAUST Repository

    Nunes, Suzana Pereira

    2011-08-16

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values. © 2011 American Chemical Society.

  15. Membrane electrodes for the determination of pyridostigmine bromide.

    Science.gov (United States)

    El-Kosasy, Amira M; Salem, Maissa Y; El-Bardicy, Mohamed G; Abd El-Rahman, Mohamed K

    2009-01-01

    Two pyridostigmine bromide (PB) selective electrodes were investigated with 2-nitrophenyl octyl ether as a plasticizer in a polymeric matrix of carboxylated polyvinyl chloride (PVC-COOH), based on the interaction between the drug solution and the dissociated COOH groups in the PVC-COOH. One of the sensors was fabricated by using PVC-COOH only as anionic site without incorporation of an ionophore (sensor 1). The second sensor was constructed by using 2-hydroxy propyl beta-cyclodextrin as an ionophore (sensor 2). Linear responses of PB within a concentration range of 10(-3)-10(-2) and 10(-5)-10(-2) M, with slopes of 51.9 +/- 0.31 and 56.7 +/- 0.40 mV/decade over pH range of 5-10 were obtained using sensors 2 and 1, respectively. The proposed method displayed useful analytical characteristics for determination of PB in tablets with average recoveries of 100.22 +/- 0.62, and 100.15 +/- 0.72, and in plasma with average recoveries of 99.14 +/- 1.19 and 99.79 +/- 0.72, for sensors 2 and 1, respectively. The utility of 2-hydroxy propyl beta-cyclodextrin as an ionophore has a significant influence on increasing both membrane sensitivity and selectivity of sensor 2 in comparison with sensor 1. The methods were also used to determine the intact drug in the presence of its degradate, and thus could be used as stability-indicating methods. The results obtained by the proposed procedures were statistically analyzed and compared with those obtained by the U.S. Pharmacopeia method. No significant difference for either accuracy or precision was observed.

  16. Development of a Low-Cost, Durable Membrane and Membrane Electrode Assemby for Stationary and Mobile Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Foure, Michel; Gaboury, Scott; Goldbach, Jim; Mountz, David; Yi, Jung

    2008-01-31

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. (formerly Atofina, Inc.) to address these shortages. Thus, this project addresses the following technical barriers from the Fuel Cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted in using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® (Arkema trade name for PVDF) provides an exceptional combination of properties that make it ideally suited for a membrane matrix. In a first phase, Arkema demonstrated the feasibility of the concept with the M31 membrane generation. After MEA optimization, it was shown that the beginning-of-life (BOL) performance of M31 MEAs was essentially on a par with that of PFSA MEAs at 60ºC under fully humidified conditions. On the other hand, long-term durability studies showed a high decay rate of 45µV/h over a 2100 hr. test. Arkema then designed several families of polyelectrolyte candidates, which, in principle, could not undergo the same failure mechanisms. A new membrane candidate was developed: M41. It offered the same generally good mechanical, ex-situ conductivity and gas barrier properties as M31. In addition, ex-situ accelerated testing suggested a several orders of magnitude improvement in chemical stability. M41 based MEAs showed comparable BOL performance with that of PFSA (80ºC, 100% RH). M41 MEAs were further shown to be able to withstand several hours temperature excursions at 120ºC without apparent damage. Accelerated studies were carried out using the DOE and/or US Fuel Cell Council

  17. Interaction of chiral rafts in self-assembled colloidal membranes

    Science.gov (United States)

    Xie, Sheng; Hagan, Michael F.; Pelcovits, Robert A.

    2016-03-01

    Colloidal membranes are monolayer assemblies of rodlike particles that capture the long-wavelength properties of lipid bilayer membranes on the colloidal scale. Recent experiments on colloidal membranes formed by chiral rodlike viruses showed that introducing a second species of virus with different length and opposite chirality leads to the formation of rafts—micron-sized domains of one virus species floating in a background of the other viruses [Sharma et al., Nature (London) 513, 77 (2014), 10.1038/nature13694]. In this article we study the interaction of such rafts using liquid crystal elasticity theory. By numerically minimizing the director elastic free energy, we predict the tilt angle profile for both a single raft and two rafts in a background membrane, and the interaction between two rafts as a function of their separation. We find that the chiral penetration depth in the background membrane sets the scale for the range of the interaction. We compare our results with the experimental data and find good agreement for the strength and range of the interaction. Unlike the experiments, however, we do not observe a complete collapse of the data when rescaled by the tilt angle at the raft edge.

  18. Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes.

    Science.gov (United States)

    Kim, Sung-Kon; Jung, Euiyeon; Goodman, Matthew D; Schweizer, Kenneth S; Tatsuda, Narihito; Yano, Kazuhisa; Braun, Paul V

    2015-05-06

    We report a three-dimensional (3D) porous carbon electrode containing both nanoscale and microscale porosity, which has been hierarchically organized to provide efficient ion and electron transport. The electrode organization is provided via the colloidal self-assembly of monodisperse starburst carbon spheres (MSCSs). The periodic close-packing of the MSCSs provides continuous pores inside the 3D structure that facilitate ion and electron transport (electrode electrical conductivity ∼0.35 S m(-1)), and the internal meso- and micropores of the MSCS provide a good specific capacitance. The capacitance of the 3D-ordered porous MSCS electrode is ∼58 F g(-1) at 0.58 A g(-1), 48% larger than that of disordered MSCS electrode at the same rate. At 1 A g(-1) the capacitance of the ordered electrode is 57 F g(-1) (95% of the 0.24 A g(-1) value), which is 64% greater than the capacitance of the disordered electrode at the same rate. The ordered electrode preserves 95% of its initial capacitance after 4000 charging/discharging cycles.

  19. Novel Fabrication of CA Membrane Bound Carbon Electrode for Bi-enzymatic Determination of Lactate

    Directory of Open Access Journals (Sweden)

    VIKAS

    2006-12-01

    Full Text Available Lactate oxidase from Pediococcus species has been immobilized onto cellulose acetate (CA membrane to form an enzymatic membrane. HRP has been incorporated into carbon paste electrode. Enzymatic membrane was mounted over the HRP-carbon paste electrode with the help of dialyses membrane, which acts as working electrode. Lactate biosensor was constructed by connecting this fabricated working electrode to Ag/AgCl reference electrode along with platinum wire auxiliary electrode through potentiostate. The biosensor showed an excellent performance with a linear response range between 5µM to 1mML-1 of lactate with a correlation coefficient (r of .94 for n=30, when compared to standard colorimetric methods. The optimum pH of the biosensor is 6.5 and incubation temperature is 25°C. This bi-enzyme electrode can be used for 150 determinants; over 45 days with out any considerable lose of activity, when stored at 4°C in 0.5M sodium phosphate buffer (pH 6.5. The response time was 1 second and no major metabolic interference was observed.

  20. Electrochemical properties of honeycomb-like structured HFBI self-organized membranes on HOPG electrodes.

    Science.gov (United States)

    Yamasaki, Ryota; Takatsuji, Yoshiyuki; Lienemann, Michael; Asakawa, Hitoshi; Fukuma, Takeshi; Linder, Markus; Haruyama, Tetsuya

    2014-11-01

    HFBI (derived from Trichoderma sp.) is a unique structural protein, which forms a self-organized monolayer at both air/water interface and water/solid interfaces in accurate two-dimensional ordered structures. We have taken advantage of the unique functionality of HFBI as a molecular carrier for preparation of ordered molecular phase on solid substrate surfaces. The HFBI molecular carrier can easily form ordered structures; however, the dense molecular layers form an electrochemical barrier between the electrode and solution phase. In this study, the electrochemical properties of HFBI self-organized membrane-covered electrodes were investigated. Wild-type HFBI has balanced positive and negative charges on its surface. Highly oriented pyrolytic graphite (HOPG) electrodes coated with HFBI molecules were investigated electrochemically. To improve the electrochemical properties of this HFBI-coated electrode, the two types of HFBI variants, with oppositely charged surfaces, were prepared genetically. All three types of HFBI-coated HOPG electrode perform electron transfer between the electrode and solution phase through the dense HFBI molecular layer. This is because the HFBI self-organized membrane has a honeycomb-like structure, with penetrating holes. In the cases of HFBI variants, the oppositely charged HFBI membrane phases shown opposite electrochemical behaviors in electrochemical impedance spectroscopy. HFBI is a molecule with a unique structure, and can easily form honeycomb-like structures on solid material surfaces such as electrodes. The molecular membrane phase can be used for electrochemical molecular interfaces. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Orthogonal enzymatic reactions for the assembly of proteins at electrode addresses.

    Science.gov (United States)

    Yang, Xiaohua; Shi, Xiao-Wen; Liu, Yi; Bentley, William E; Payne, Gregory F

    2009-01-06

    The ability to interface proteins to device surfaces is important for a range of applications. Here, we enlist the unique capabilities of enzymes and biologically derived polymers to assemble target proteins to electrode addresses. First, the stimuli-responsive aminopolysaccharide chitosan is directed to assemble at the electrode address in response to electrode-imposed signals. The electrodeposited chitosan film serves as the biodevice interface for subsequent protein assembly. Next, tyrosinase is used to catalyze grafting of a protein or peptide tether to the chitosan film. Finally, microbial transglutaminase (mTG) catalyzes the assembly of target proteins to the tether. mTG covalently links proteins through their glutamine (Gln) and lysine (Lys) residues. Since Gln and Lys residues of globular proteins are often inaccessible to mTG, we engineered our target proteins to have fusion tags with added Gln or Lys residues. This assembly method employs the electrical signal to confer spatial selectivity (during chitosan electrodeposition) and employs the enzymes to confer chemical selectivity (i.e., amino acid residue selectivity). Further, this method is mild, since no reactive reagents or protection steps are required, and all steps are performed in aqueous solution. These results demonstrate the potential for employing biological materials and mechanisms to biofabricate the biodevice interface.

  2. Membrane Assembly and Ion Transport Ability of a Fluorinated Nanopore.

    Directory of Open Access Journals (Sweden)

    Raphaël Godbout

    Full Text Available A novel 21-residue peptide incorporating six fluorinated amino acids was prepared. It was designed to fold into an amphiphilic alpha helical structure of nanoscale length with one hydrophobic face and one fluorinated face. The formation of a fluorous interface serves as the main vector for the formation of a superstructure in a bilayer membrane. Fluorescence assays showed this ion channel's ability to facilitate the translocation of alkali metal ions through a phospholipid membrane, with selectivity for sodium ions. Computational studies showed that a tetramer structure is the most probable and stable supramolecular assembly for the active ion channel structure. The results illustrate the possibility of exploiting multiple Fδ-:M+ interactions for ion transport and using fluorous interfaces to create functional nanostructures.

  3. Self-assembled ordered carbon-nanotube arrays and membranes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Siegal, Michael P.; Yelton, William Graham

    2004-11-01

    Imagine free-standing flexible membranes with highly-aligned arrays of carbon nanotubes (CNTs) running through their thickness. Perhaps with both ends of the CNTs open for highly controlled nanofiltration? Or CNTs at heights uniformly above a polymer membrane for a flexible array of nanoelectrodes or field-emitters? How about CNT films with incredible amounts of accessible surface area for analyte adsorption? These self-assembled crystalline nanotubes consist of multiple layers of graphene sheets rolled into concentric cylinders. Tube diameters (3-300 nm), inner-bore diameters (2-15 nm), and lengths (nanometers - microns) are controlled to tailor physical, mechanical, and chemical properties. We proposed to explore growth and characterize nanotube arrays to help determine their exciting functionality for Sandia applications. Thermal chemical vapor deposition growth in a furnace nucleates from a metal catalyst. Ordered arrays grow using templates from self-assembled hexagonal arrays of nanopores in anodized-aluminum oxide. Polymeric-binders can mechanically hold the CNTs in place for polishing, lift-off, and membrane formation. The stiffness, electrical and thermal conductivities of CNTs make them ideally suited for a wide-variety of possible applications. Large-area, highly-accessible gas-adsorbing carbon surfaces, superb cold-cathode field-emission, and unique nanoscale geometries can lead to advanced microsensors using analyte adsorption, arrays of functionalized nanoelectrodes for enhanced electrochemical detection of biological/explosive compounds, or mass-ionizers for gas-phase detection. Materials studies involving membrane formation may lead to exciting breakthroughs in nanofiltration/nanochromatography for the separation of chemical and biological agents. With controlled nanofilter sizes, ultrafiltration will be viable to separate and preconcentrate viruses and many strains of bacteria for 'down-stream' analysis.

  4. Influence of nonionic surfactants on the potentiometric response of hydrogen ion-selective polymeric membrane electrodes.

    Science.gov (United States)

    Espadas-Torre, C; Bakker, E; Barker, S; Meyerhoff, M E

    1996-05-01

    The influence of poly(ethylene oxide)-based nonionic surfactants (i.e., Triton X-100 and Brij 35) in the sample phase on the response properties of hydrogen ion-selective polymeric membrane electrodes containing mobile (lipophilic amines) or covalently bound (aminated-poly-(vinyl chloride)) hydrogen ion carriers is reported. In the presence of these nonionic surfactants, membrane electrode response toward interfering cation activity (e.g., Na+) in the sample phase is increased substantially and the pH measuring range shortened. The degree of cation interference for pH measurements is shown to correlate with the basicity of the hydrogen ion carrier doped within the membrane phase. The observed deterioration in selectivity arises from the partitioning of the surfactant into the membrane and concomitant extraction of metal cations by the surfactants in the organic phase. The effect of nonionic surfactants on pH electrodes prepared with aminated-PVC membranes is shown to be more complex, with additional large shifts in EMF values apparently arising from multidentate interactions between the surfactant molecules and the polymeric amine in the membrane, leading to a change in the apparent pKa values for the amine sites. The effects induced by nonionic surfactants on the EMF response function of hydrogen ion-selective polymeric membrane electrodes are modeled, and experimental results are shown to correlate well with theoretical predictions.

  5. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes

    International Nuclear Information System (INIS)

    Gupta, V.K.; Singh, A.K.; Gupta, Barkha

    2007-01-01

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S 1 ) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S 2 ) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S 1 ) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 x 10 -8 to 1.0 x 10 -1 M Cd 2+ with limit of detection 5.0 x 10 -8 M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants

  6. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)]. E-mail: vinodfcy@iitr.ernet.in; Singh, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India); Gupta, Barkha [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2007-02-05

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S{sub 1}) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S{sub 2}) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S{sub 1}) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 x 10{sup -8} to 1.0 x 10{sup -1} M Cd{sup 2+} with limit of detection 5.0 x 10{sup -8} M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  7. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: electrochemical, surface plasmon resonance (SPR), and gravimetric studies.

    Science.gov (United States)

    Nieciecka, Dorota; Krysinski, Pawel

    2011-02-01

    We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.

  8. Determination of Nitrite in Meat Products using a Metalloporphyrin Based Nitrite-Selective Membrane Electrode

    Directory of Open Access Journals (Sweden)

    Dana VLASCICI

    2006-07-01

    Full Text Available The potentiometric response characteristics of a nitrite-selective electrode based on Co (III tetraphenylporphyrins (TPP in o-nitrophenyloctylether plasticized polyvinyl chloride membranes are compared. To establish the optimum composition of the membrane, different molar percents of cationic derivative (0-100 mol% relative to ionophore were used. The influence of different plasticizers: o-nitrophenyloctylether, dioctylphtalate and tricresilphosphate on potentiometric answer were studied. Electrodes formulated with membranes containing 1 wt% ClCoTPP, 66 wt% o-NPOE, 33 wt% PVC (plasticizer:PVC = 2:1 and the lipophilic cationic derivative (10 mol% are shown to exhibit high selectivity for nitrite over many anions, except the lipophilic anions perchlorate and thiocyanate. The electrodes based on Co (III porphyrins were used for the potentiometric determination of nitrites in meat products. The results were compared with a colorimetric method used as the reference method. There was a good agreement between the potentiometric and colorimetric procedures.

  9. Iodide selective membrane electrodes based on a Molybdenum-Salen as a neutral carrier

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei-Motlagh, Masoud [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Taher, Mohammad Ali, E-mail: ma_taher@yahoo.com [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ahmadi, Kyoumars [AJA University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sheikhshoaie, Iran [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2011-12-01

    A new polymeric membrane electrode (PME) and a coated platinum disk electrode (CPtE) based on Schiff base complex of Mo(VI) as a suitable carrier for I{sup -} ion were described. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrodes. The electrodes exhibited a Nernstian slope of 63.0 {+-} 0.5 (CPtE) and 60.3 {+-} 0.4 (PME) mV decade{sup -1} in I{sup -} ion over a wide concentration range from 7.9 x 10{sup -7} to 1.0 x 10{sup -1} M for CPtE and 9.1 x 10{sup -6} to 1.0 x 10{sup -1} M I{sup -} for PME. The potentiometric response of the electrodes was independent of the pH of the test solution in the pH range 2.0-8.5 with a fast response time (< 10 s). The process of transfer of iodide across the membrane interface was investigated by use of the AC impedance technique. The proposed sensors were successfully applied to direct determination of iodide in samples containing interfering anions, waste water and as indicator electrodes in precipitation titrations. Highlights: {yields} We study new selective membrane electrodes for iodide ions. {yields} To the best of our knowledge this is the first coated platinum disk electrode of I{sup -}. {yields} The sensors have a wide concentration range with a fast response time. {yields} Efforts have been made to improve the selectivity with the use of CPtE.

  10. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    OpenAIRE

    Chiriaev, Serguei; Dam Madsen, Nis; Rubahn, Horst-Günter; Andersen, Shuang Ma

    2017-01-01

    Characterization of composite materials with microscopy techniques is an essential route to understanding their properties and degradation mechanisms, though the observation with a suitable type of microscopy is not always possible. In this work, we present proton exchange membrane fuel cell electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM). A special focus was on acquiring high resolution images of the electrode structure and a...

  11. Integrated assembly of 3D graphene networks for construction of all-in-one supercapacitor electrodes

    DEFF Research Database (Denmark)

    Dey, Ramendra Sundar; Chi, Qijin

    efficient and cost - effective n ovel materials. Because of their ultrahigh specific surface areas and excellent conductivity , t hree - dimensional (3D) graphene materials hold great promises for supercapacitors. However, the assembly of graphene building blocks into the supercapacitor electrodes with low...... of all - in - one supercapacitor ele ctrodes (3DrGO@CuF) [1] . The overall procedure in clude s two step s : self - assembly of graphene oxide (GO) on Cu F and electrochemical reduction of GO into rGO. The resulting electrodes are capable of delivering a specific capacitance as high as 623 F g - 1......Supercapacitors are a kind of efficient and safe energy storage and conversion devices. The development of new - generation supercapacitors that can be used in portable electronic devices and in next - generation vehicles is increasingly demanded. This crucially depends on the discovery of more...

  12. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  13. Calculation of Electrochemical Reorganization Energies for Redox Molecules at Self-Assembled Monolayer Modified Electrodes.

    Science.gov (United States)

    Ghosh, Soumya; Hammes-Schiffer, Sharon

    2015-01-02

    Electrochemical electron transfer reactions play an important role in energy conversion processes with many technological applications. Electrodes modified by self-assembled monolayers (SAMs) exhibit reduced double layer effects and are used in molecular electronics. An important quantity for calculating the electron transfer rate constant is the reorganization energy, which is associated with changes in the solute geometry and the environment. In this Letter, an approach for calculating the electrochemical reorganization energy for a redox molecule attached to or near a SAM modified electrode is presented. This integral equations formalism polarizable continuum model (IEF-PCM) approach accounts for the detailed electronic structure of the molecule, as well as the contributions from the electrode, SAM, and electronic and inertial solvent responses. The calculated total reorganization energies are in good agreement with experimental data for a series of metal complexes in aqueous solution. This approach will be useful for calculating electron transfer rate constants for molecular electrocatalysts.

  14. Novel surfactant-selective membrane electrode based on polyelectrolyte-surfactant complex.

    Science.gov (United States)

    Zorin, Ivan; Scherbinina, Tatiana; Fetin, Petr; Makarov, Ivan; Bilibin, Alexander

    2014-12-01

    Novel class of active ionophores for surfactant selective electrodes is proposed. PVC membrane doped with polyelectrolyte-surfactant stoichiometric complex is used for ion-selective electrode construction responsive to cetyltrimethyl ammonium bromide and related surfactants. New ionophore is quite stable and completely insoluble in aqueous media in wide range of pH. The electrode displays nearly Nernstian slope in CTAB concentration range 10(-6)-10(-3)M. Polyelectrolyte platform allows to design wide range of different ionophores responsive to cationic organic substances. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Fabrication of a Polyaniline Ultramicroelectrode via a Self Assembled Monolayer Modified Gold Electrode

    Science.gov (United States)

    Bolat, Gulcin; Kuralay, Filiz; Eroglu, Gunes; Abaci, Serdar

    2013-01-01

    Herein, we report a simple and inexpensive way for the fabrication of an ultramicroelectrode and present its characterization by electrochemical techniques. The fabrication of polyaniline UME involves only two steps: modification of a gold (Au) electrode by self assembled monolayers (SAM) and then electrodeposition of polyaniline film on this thiol-coated Au electrode by using cyclic voltammetry and constant potential electrolysis methods. Two types of self-assembled monolayers (4-mercapto-1-butanol, MB, and 11-mercaptoundecanoic acid, MUA) were used, respectively, to see the effect of chain length on microelectrode formation. Microelectrode fabrication and utility of the surface was investigated by cyclic voltammetric measurements in a redox probe. The thus prepared polyaniline microelectrode was then used for DNA immobilization. Discrimination between double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) was obtained with enhanced electrochemical signals compared to a polyaniline-coated Au electrode. Different modifications on the electrode surfaces were examined using scanning electron microscopy (SEM). PMID:23797740

  16. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  17. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction.

    Science.gov (United States)

    Geng, Jing; Wu, Hao; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Zheng, Gengfeng

    2015-09-14

    A type of freestanding, light-weight eggshell membrane-based electrode is demonstrated for supercapacitors and for oxygen evolution reaction (OER) catalysis. As a widely available daily waste, eggshell membranes have unique porous three-dimensional grid-like fibrous structures with relatively high surface area and abundant macropores, allowing for effective conjugation of carbon nanotubes and growth of NiCo2O4 nanowire arrays, an effective supercapacitor material and OER catalyst. The three-dimensional fibrous eggshell membrane frameworks with carbon nanotubes offer efficient pathways for charge transport, and the macropores between adjacent fibers are fully accessible for electrolytes and bubble evolution. As a supercapacitor, the eggshell membrane/carbon nanotube/NiCo2O4 electrode shows high specific capacitances at current densities from 1 to 20 A g(-1), with excellent capacitance retention (>90%) at 10 A g(-1) for over 10,000 cycles. When employed as an OER catalyst, this eggshell membrane-based electrode exhibits an OER onset potential of 1.53 V vs. the reversible hydrogen electrode (RHE), and a stable catalytic current density of 20 mA cm(-2) at 1.65 V vs. the RHE.

  18. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae

    2012-10-11

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater treatment was examined using a single-chamber MFC (130 mL) with multiple graphite fiber brush anodes wired together and a single air cathode (cathode specific area of 27 m2/m3). In fed-batch operation, where the COD concentration was spatially uniform in the reactor but changed over time, the maximum current density was 148 ± 8 mA/m2 (1,000 Ω), the maximum power density was 120 mW/m2, and the overall COD removal was >90 %. However, in continuous flow operation (8 h hydraulic retention time, HRT), there was a 57 % change in the COD concentration across the reactor (influent versus effluent) and the current density was only 20 ± 13 mA/m2. Two approaches were used to increase performance under continuous flow conditions. First, the anodes were separately wired to the cathode, which increased the current density to 55 ± 15 mA/m2. Second, two MFCs were hydraulically connected in series (each with half the original HRT) to avoid large changes in COD among the anodes in the same reactor. The second approach improved current density to 73 ± 13 mA/m2. These results show that current generation from wastewaters in MFCs with multiple anodes, under continuous flow conditions, can be improved using multiple reactors in series, as this minimizes changes in COD in each reactor. © 2012 Springer-Verlag Berlin Heidelberg.

  19. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    Directory of Open Access Journals (Sweden)

    Serguei Chiriaev

    2017-12-01

    Full Text Available Characterization of composite materials with microscopy techniques is an essential route to understanding their properties and degradation mechanisms, though the observation with a suitable type of microscopy is not always possible. In this work, we present proton exchange membrane fuel cell electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM. A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its advantages in surface imaging, which is paramount in studies of the interface morphology of ionomer covered or absorbed catalyst structures in a combination with electrochemical characterization and accelerated stress test. The electrode porosity was found to depend on the ionomer content. The stressed electrodes demonstrated higher porosity in comparison to the unstressed ones on the condition of no external mechanical pressure. Moreover, formation of additional small grains was observed for the electrodes with the low ionomer content, indicating Pt redeposition through Ostwald ripening. Polymer nanofiber structures were found in the crack regions of the catalyst layer, which appear due to the internal stress originated from the solvent evaporation. These fibers have fairly uniform diameters of a few tens of nanometers, and their density increases with the increasing ionomer content in the electrodes. In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles.

  20. Synthesis of modified polymer inclusion membranes for photo-electrodeposition of cadmium using polarized electrodes

    International Nuclear Information System (INIS)

    Yahia Cherif, Asma; Arous, Omar; Amara, Mourad; Omeiri, Said; Kerdjoudj, Hacène; Trari, Mohamed

    2012-01-01

    Highlights: ► Homogeneous PIM membranes containing water soluble polymers have been obtained under new experimental conditions. ► Photoelectrodeposition of “Cd” has been carried out using WO 3 and CuFeO 2 as electrode. ► Using both photo-polarized electrodes enhances transference of cadmium compared to one. ► Membrane with poly-phosphoric acid (PPA) give a rise of transferred amount of Cd. - Abstract: In this work, we have developed a novel class of polymeric inclusion membranes (PIMs) for the cations separation. The membrane is made up of cellulose triacetate modified by poly-electrolytes (poly-phosphoric acid, polyvinyl pyrolidone, polyacrylic acid, polyvinyl alcohol and poly-anetholsulfonic acid) using 2-hydroxy-5-dodecylbenzaldehyde incorporated into the polymer as carrier and tris ethyl hexyl phosphate or glycerine as plasticizers. Different PIMs are synthesized and characterized by the Fourier transform infrared, X-ray diffraction, thermal analysis and scanning electron microscopy. The influence of the membrane nature is studied using supports with different physical characteristics (porosity, thickness, hydrophobia). As application, the transport of Cd 2+ using PIMs coupled with photo-electrodes is investigated. The photo-catalytic results indicate that the combined system p-CuFeO 2 /membrane/n-WO 3 enhances considerably the electrons transfer toward the delafossite CuFeO 2 . The position of the conduction band of CuFeO 2 is looked to be the key issue for the photo electrochemical Cd 2+ reduction.

  1. Functional behavior of bio-electrochemical treatment system with increasing azo dye concentrations: Synergistic interactions of biocatalyst and electrode assembly.

    Science.gov (United States)

    Sreelatha, S; Velvizhi, G; Naresh Kumar, A; Venkata Mohan, S

    2016-08-01

    Treatment of dye bearing wastewater through biological machinery is particularly challenging due to its recalcitrant and inhibitory nature. In this study, functional behavior and treatment efficiency of bio-electrochemical treatment (BET) system was evaluated with increasing azo dye concentrations (100, 200, 300 and 500mg dye/l). Maximum dye removal was observed at 300mg dye/l (75%) followed by 200mg dye/l (65%), 100mg dye/l (62%) and 500mg dye/l (58%). Concurrent increment in dye load resulted in enhanced azo reductase and dehydrogenase activities respectively (300mg dye/l: 39.6U; 4.96μg/ml). Derivatives of cyclic voltammograms also supported the involvement of various membrane bound redox shuttlers, viz., cytochrome-c, cytochrome-bc1 and flavoproteins during the electron transfer. Bacterial respiration during BET operation utilized various electron acceptors such as electrodes and dye intermediates with simultaneous bioelectricity generation. This study illustrates the synergistic interaction of biocatalyst with electrode assembly for efficient treatment of azo dye wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Development of membrane selective electrode for determination of the antipsychotic sulpiride in pharmaceuticals and urine.

    Science.gov (United States)

    García, Ma Soledad; Ortuño, Joaquín A; Albero, Ma Isabel; Abuherba, Mustafa Salem

    2009-01-01

    The construction and electrochemical response characteristics of a poly(vinyl chloride) (PVC) membrane selective electrode for the determination of sulpiride (SPD) are described. The sensing membrane comprised an ion-exchanger formed between the protonated drug and tetraphenylborate (TPB(-)) in a plasticized PVC matrix. The influence of membrane composition on the electrode response was studied. The electrode showed a fast, stable and Nernstian response over a sulpiride concentration range (1 × 10(-4) - 1 × 10(-2) M) with a mean slope of 58.4 ± 0.9 mV dec(-1) of concentration, a mean detection limit of 4.2 × 10(-5) ± 1.2 × 10(-5) M, a wide working pH range (2 - 8) and a fast response time (< 15 s). The electrode showed good selectivity towards sulpiride with respect to some inorganic and organic compounds. When the electrode was applied to the determination of sulpiride in pharmaceuticals and human urine, a high percentage of recovery was attained with no need for sample pretreatment procedures because of the lack of interfering matrix effects.

  3. Development of Membrane Selective Electrode for Determination of the Antipsychotic Sulpiride in Pharmaceuticals and Urine

    Directory of Open Access Journals (Sweden)

    Mª Isabel Albero

    2009-06-01

    Full Text Available The construction and electrochemical response characteristics of a poly(vinyl chloride (PVC membrane selective electrode for the determination of sulpiride (SPD are described. The sensing membrane comprised an ion-exchanger formed between the protonated drug and tetraphenylborate (TPB- in a plasticized PVC matrix. The influence of membrane composition on the electrode response was studied. The electrode showed a fast, stable and Nernstian response over a sulpiride concentration range (1 × 10-4– 1 × 10-2 M with a mean slope of 58.4 ± 0.9 mV dec-1 of concentration, a mean detection limit of 4.2 × 10-5 ± 1.2 × 10-5 M, a wide working pH range (2 – 8 and a fast response time (< 15 s. The electrode showed good selectivity towards sulpiride with respect to some inorganic and organic compounds. When the electrode was applied to the determination of sulpiride in pharmaceuticals and human urine, a high percentage of recovery was attained with no need for sample pretreatment procedures because of the lack of interfering matrix effects.

  4. Self-assembled plasmonic nanoparticles on vertically aligned carbon nanotube electrodes via thermal evaporation.

    Science.gov (United States)

    Kim, Youngmin; Lee, Seungjae; Lee, Kyungjun; Shim, Sangdeok; Kim, Jin Young; Lee, Hyung Woo; Choi, Dukhyun

    2014-11-26

    This study details the development of a large-area, three-dimensional (3D), plasmonic integrated electrode (PIE) system. Vertically aligned multiwalled carbon nanotube (VA-MWNT) electrodes are grown and populated with self-assembling silver nanoparticles via thermal evaporation. Due to the geometric and surface characteristics of VA-MWNTs, evaporated silver atoms form nanoparticles approximately 15-20 nm in diameter. The nanoparticles are well distributed on VA-MWNTs, with a 5-10 nm gap between particles. The size and gap of the self-assembled plasmonic nanoparticles is dependent upon both the length of the MWNT and the thickness of the evaporated silver. The wetting properties of water of the VA-MWNT electrodes change from hydrophilic (∼70°) to hydrophobic (∼120°) as a result of the evaporated silver. This effect is particularly pronounced on the VA-MWNT electrodes with a length of 1 μm, where the contact angle is altered from an initial 8° to 124°. Based on UV-visible spectroscopic analysis, plasmonic resonance of the PIE systems occurs at a wavelength of approximately 400 nm. The optical behavior was found to vary as a function of MWNT length, with the exception of MWNT with a length of 1 μm. Using our PIE systems, we were able to obtain clear surface-enhanced Raman scattering (SERS) spectra with a detection limit of ∼10 nM and an enhancement factor of ∼10(6). This PIE system shows promise for use as a novel electrode system in next-generation optoelectronics such as photovoltaics, light-emitting diodes, and solar water splitting.

  5. Lanthanum(IlI) PVC membrane electrodes based on 1,3,5-trithiacyclohexane.

    Science.gov (United States)

    Shamsipur, Mojtaba; Yousefi, Mohammad; Hosseini, Morteza; Ganjali, Mohammad Reza

    2002-11-01

    Novel plasticized polymeric membrane (PPME) and membrane-coated graphite (MCGE) electrodes based on 1,3,5-trithiacyclohexane for highly selective determination of La3+ ion have been developed. The electrodes exhibit Nernstian responses over very wide concentration ranges (8.0 x 10(-6)-5.0 x 10(-2) M for PPME and 4.0 x 10(-8)-1.0 x 10(-2) M for MCGE). The limit of detections were 5.0 x 10(-6) and 2.0 x 10(-8) M for PPME and MCGE, respectively. The electrodes possess a fast response time of approximately 10 s and can be used for at least 6 months without observing any deviation. The proposed electrodes revealed excellent selectivities for La3+ over a wide variety of alkali, alkaline earth, transition, and heavy metal ions and could be used in a pH range of 5.0-8.0. The practical utility of the electrodes has been demonstrated by their use as indicator electrodes in the potentiometric titration of La3+ ions with EDTA and in determination of F- in some mouthwash preparations.

  6. Reduction of thrombogenicity of PVC-based sodium selective membrane electrodes using heparin-modified chitosan.

    Science.gov (United States)

    Badr, Ibrahim H A; Gouda, M; Abdel-Sattar, R; Sayour, Hossam E M

    2014-01-01

    Heparin-modified chitosan (H-chitosan) membrane was utilized to enhance biocompatibility of sodium selective membrane electrode based on the highly thrombogenic polyvinyl chloride (PVC). Sodium ion sensing film was prepared using PVC, sodium ionophore-X, potassium tetrakis(chlorophenyl)-borate, and o-nitrophenyloctylether. The PVC-based sensing film was sandwiched to chitosan or H-chitosan to prevent platelet adhesion on the surface of PVC. Potentiometric response characteristics of PVC-chitosan and PVC-H-chitosan membrane electrodes were found to be comparable to that of a control PVC based sodium-selective electrode. This indicates that chitosan and H-chitosan layers do not alter the response behaviour of the PVC-based sensing film. Biocompatibility of H-chitosan was confirmed by in vitro platelet adhesion study. The platelet adhesion investigations indicated that H-chitosan film is less thrombogenic compared to PVC, which could result in enhancement of biocompatibility of sodium selective membrane electrodes based on PVC, while maintaining the overall electrochemical performance of the PVC-based sensing film. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Amperometry of heparin polyion using a rotating disk electrode coated with a plasticized PVC membrane

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Olšák, J.; Samcová, E.; Samec, Zdeněk; Trojánek, Antonín

    2006-01-01

    Roč. 18, č. 2 (2006), s. 115-120 ISSN 1040-0397 R&D Projects: GA ČR GA203/04/0424 Institutional research plan: CEZ:AV0Z40400503 Keywords : amperometry * coulometry * heparin polyion * rotating glassy carbon electrode * PVC membrane Subject RIV: CG - Electrochemistry Impact factor: 2.444, year: 2006

  8. Crown bridged thiacalix[4]arenes as cesium-selective ionophores in solvent polymeric membrane electrodes

    International Nuclear Information System (INIS)

    Bereczki, Robert; Csokai, Viktor; Gruen, Alajos; Bitter, Istvan; Toth, Klara

    2006-01-01

    Novel 1,3-alternate thiacalix[4]mono- and biscrown-6 ethers were studied as ionophores in poly(vinyl chloride) membrane electrodes. Their selectivity behavior was characterized with respect to large number of cations, including potential interferents in environmental samples, and the membrane composition was optimized for cesium ion response. Among the ionophores, 1,3-alternate thiacalix[4]mono(crown-6) ether showed, especially high selectivity for cesium over other alkali-metal ions. Transition and heavy metal ions did not interfere seriously with the electrode response, which indicates that the bridging sulfur atoms do not take part in the ion recognition process. The potentiometric cesium responses of all electrodes involved in this study were found close to Nernstian and the detection limits were lower than 10 -7 M. The Cs + /Na + selectivity of the different ionophore-based sensors and the solvent extraction ability of the ligands were interpreted based on the respective constants of complex formation

  9. DNA hybridization on membrane-modified carbon electrodes

    Czech Academy of Sciences Publication Activity Database

    Kouřilová, Alena; Babkina, S. S.; Cahová, Kateřina; Havran, Luděk; Jelen, František; Paleček, Emil; Fojta, Miroslav

    2005-01-01

    Roč. 38, - (2005), s. 2493-2507 ISSN 0003-2719 R&D Projects: GA MPO(CZ) 1H-PK/42; GA AV ČR(CZ) IAA4004402; GA AV ČR(CZ) IBS5004355 Institutional research plan: CEZ:AV0Z50040507 Keywords : DNA hybridization * electrochemical DNA sensor * nitrocellulose membrane Subject RIV: BO - Biophysics Impact factor: 1.036, year: 2005

  10. Co2+-selective membrane electrode based on the Schiff Base NADS.

    Science.gov (United States)

    Mashhadizadeh, Mohammad Hossein; Sheikhshoaie, Iran

    2003-03-01

    A new PVC membrane electrode for cobalt(II) ions based on a recently synthesized Schiff base of 5-((4-nitrophenyl)azo)- N-(2',4'-dimethoxyphenyl)salicylaldimine is reported. The electrode exhibits a Nernstian response for Co(2+) ions over a wide concentration range (9.0 x 10(-7)-1.0 x 10(-2) M) with a slope of 29(+/-1). The limit of detection is 8.0 x 10(-7) M. The proposed sensor revealed good selectivities over a wide variety of other cations including hard and soft metals. This electrode could be used in a pH range of 3.5-6.0. It was used as an indicator electrode in potentiometric titrations of cobalt(II) ions and can be used in the direct determination of Co(2+) in aqueous solutions.

  11. New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores

    Energy Technology Data Exchange (ETDEWEB)

    Khamjumphol, Utisawadee [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Watchasit, Sarayut [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Suksai, Chomchai [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131 (Thailand); Janrungroatsakul, Wanwisa [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Boonchiangma, Suthasinee [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Tuntulani, Thawatchai [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Ngeontae, Wittaya, E-mail: wittayange@kku.ac.th [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2011-10-17

    Highlights: {yields} New four ionophores having tripodal amine (TPA) unit on anthracene and calixarene. {yields} Synthesis and characterization data were reported. {yields} Incorporated to the plasticized PVC membranes to prepare Cd-ISEs. {yields} Two TPA units on calixarene showed the best selectivity toward Cd{sup 2+}. {yields} Applied for sensing Cd{sup 2+} from the oxidation of CdS QDs solution. - Abstract: Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd{sup 2+} was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd{sup 2+}. The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg{sup -1}) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4 {+-} 0.6 mV decade{sup -1} of activity for Cd{sup 2+} ions and a working concentration range of 1.6 x 10{sup -6}-1.0 x 10{sup -2} M. The sensor has a fast response time of 10 s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed

  12. New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores

    International Nuclear Information System (INIS)

    Khamjumphol, Utisawadee; Watchasit, Sarayut; Suksai, Chomchai; Janrungroatsakul, Wanwisa; Boonchiangma, Suthasinee; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2011-01-01

    Highlights: → New four ionophores having tripodal amine (TPA) unit on anthracene and calixarene. → Synthesis and characterization data were reported. → Incorporated to the plasticized PVC membranes to prepare Cd-ISEs. → Two TPA units on calixarene showed the best selectivity toward Cd 2+ . → Applied for sensing Cd 2+ from the oxidation of CdS QDs solution. - Abstract: Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd 2+ was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd 2+ . The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg -1 ) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4 ± 0.6 mV decade -1 of activity for Cd 2+ ions and a working concentration range of 1.6 x 10 -6 -1.0 x 10 -2 M. The sensor has a fast response time of 10 s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed as a probe for determining Cd 2+ from the oxidation of CdS QDs

  13. Self-assembled monolayer of graphene/Pt as counter electrode for efficient dye-sensitized solar cell.

    Science.gov (United States)

    Gong, Feng; Wang, Hong; Wang, Zhong-Sheng

    2011-10-21

    Monolayer of PDDA/graphene/PDDA/H(2)PtCl(6) is fabricated on conductive glass using electrostatic layer-by-layer self-assembly technique, which is then converted to graphene/Pt monolayer for use as counter electrode in dye-sensitized solar cell (DSSC). As compared to the sputtered Pt counter electrode, the self-assembled monolayer reduces the Pt amount by about 1000-fold but exhibits comparable photovoltaic performance. This finding provides a new route to fabrication of cheap and efficient counter electrodes for flow-line production of DSSCs. This journal is © the Owner Societies 2011

  14. Dimensionally Stable Membrane for High Pressure Electrolyzers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilizing high strength polymers with controlled pore dimensions as a support, a customized membrane electrode assembly (MEA) can be generated for NASA's...

  15. Dimensionally Stable Membrane for High Pressure Electrolyzers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilizing high strength polymers with controlled pore dimensions as a support, a customized membrane electrode assembly (MEA) can be generated for NASA's...

  16. Iodide selective membrane electrodes based on a Molybdenum-Salen as a neutral carrier

    International Nuclear Information System (INIS)

    Ghanei-Motlagh, Masoud; Taher, Mohammad Ali; Ahmadi, Kyoumars; Sheikhshoaie, Iran

    2011-01-01

    A new polymeric membrane electrode (PME) and a coated platinum disk electrode (CPtE) based on Schiff base complex of Mo(VI) as a suitable carrier for I - ion were described. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrodes. The electrodes exhibited a Nernstian slope of 63.0 ± 0.5 (CPtE) and 60.3 ± 0.4 (PME) mV decade -1 in I - ion over a wide concentration range from 7.9 x 10 -7 to 1.0 x 10 -1 M for CPtE and 9.1 x 10 -6 to 1.0 x 10 -1 M I - for PME. The potentiometric response of the electrodes was independent of the pH of the test solution in the pH range 2.0-8.5 with a fast response time ( - . → The sensors have a wide concentration range with a fast response time. → Efforts have been made to improve the selectivity with the use of CPtE.

  17. Nanostructured polyamic acid membranes as novel electrode materials.

    Science.gov (United States)

    Andreescu, Daniel; Wanekaya, Adam K; Sadik, Omowunmi A; Wang, Joseph

    2005-07-19

    This paper describes a new approach for the preparation of polyamic acid (PAA) composites containing Ag and Au nanoparticles. The composite film of PAA and metal particles were obtained upon electrodeposition of a PAA solution containing gold or silver salts with subsequent thermal treatment, while imidization to polyimide is prevented. The structural characterization of the films is provided by 1H NMR and Fourier transform infrared spectroscopy (FTIR), while the presence of metallic nanoparticles within the polymeric matrix was confirmed by scanning electron microscopy (SEM), cyclic voltammetry (CV), energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). This approach utilizes the unique reactivity of PAA by preventing the cyclization of the reactive soluble intermediate into polyimides at low temperature to design polymer-assisted nanostructured materials. The ability to prevent the cyclization process should enable the design of a new class of electrode materials by use of thermal reduction and/or electrodeposition.

  18. Interactions between Cytochrome c and DNA Strands Self-Assembled at Gold Electrode

    Science.gov (United States)

    Lao, Ruojun; Wang, Lihua; Wan, Ying; Zhang, Jiong; Song, Shiping; Zhang, Zhizhou; Fan, Chunhai; He, Lin

    2007-01-01

    In this work, we reported the investigation on the interaction between DNA strands self-assembled at gold electrodes and an electron transfer protein, cytochrome c. We observed that cytochrome c exhibited well-defined electrochemistry in both double-stranded and single-stranded DNA films. This suggested that the electron transfer reaction of cytochrome c arose possibly due to the electron hopping along DNA strands rather than wiring along the double helix. We also compared the heterogeneous electron transfer rate of cytochrome c with that of a ruthenium complex, which further confirmed this mechanism.

  19. Method of fabricating electrode catalyst layers with directionally oriented carbon support for proton exchange membrane fuel cell

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing

    2010-07-20

    A method of making a membrane electrode assembly (MEA) having an anode and a cathode and a proton conductive membrane there between. A bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated in the nanotubes forms at least one portion of the MEA and is in contact with the membrane. A combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into a first reaction zone maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is transmitted to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes. The nanotubes are in contact with a portion of the MEA at production or being positioned in contact thereafter. Methods of forming a PEMFC are also disclosed.

  20. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis.

    Science.gov (United States)

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon; Forbes, Douglass J

    2010-12-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.

  1. Layer-by-Layer Self-Assembled Graphene Multilayer Films via Covalent Bonds for Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Xianbin Liu

    2015-05-01

    Full Text Available To maximize the utilization of its single-atom thin nature, a facile scheme to fabricate graphene multilayer films via a layer-by-layer self-assembled process was presented. The structure of multilayer films was constructed by covalently bonding graphene oxide (GO using p-phenylenediamine (PPD as a covalent cross-linking agent. The assembly process was confirmed to be repeatable and the structure was stable. With the π-π conjugated structure and a large number of spaces in the framework, the graphene multi‐ layer films exhibited excellent electrochemical perform‐ ance. The uniform ultrathin electrode exhibited a capacitance of 41.71 μF/cm2 at a discharge current of 0.1 μA/cm2, and displayed excellent stability of 88.9 % after 1000 charge-discharge cycles.

  2. Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration

    KAUST Repository

    Yu, Haizhou

    2015-09-21

    The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol−1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.

  3. Study and development of membrane electrode assemblies for Proton Exchange Membrane Fuel Cell (PEMFC) with palladium based catalysts; Estudo e desenvolvimento de conjuntos membrana-eletrodos (MEA) para celula a combustivel de eletrolito polimerico condutor de protons (PEMFC) com eletrocatalisadores a base de paladio

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, Rafael Nogueira

    2013-07-01

    PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm{sup 2} single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm{sup -2}, showing power densities up to 550 mW.cm{sup -2} and power of 2.2 kW{sub net} per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary

  4. Fabrication of Micro-Needle Electrodes for Bio-Signal Recording by a Magnetization-Induced Self-Assembly Method

    Directory of Open Access Journals (Sweden)

    Keyun Chen

    2016-09-01

    Full Text Available Micro-needle electrodes (MEs have attracted more and more attention for monitoring physiological electrical signals, including electrode-skin interface impedance (EII, electromyography (EMG and electrocardiography (ECG recording. A magnetization-induced self-assembling method (MSM was developed to fabricate a microneedle array (MA. A MA coated with Ti/Au film was assembled as a ME. The fracture and insertion properties of ME were tested by experiments. The bio-signal recording performance of the ME was measured and compared with a typical commercial wet electrode (Ag/AgCl electrode. The results show that the MA self-assembled from the magnetic droplet array under the sum of gravitational surface tension and magnetic potential energies. The ME had good toughness and could easily pierce rabbit skin without being broken or buckling. When the compression force applied on the ME was larger than 2 N, ME could stably record EII, which was a lower value than that measured by Ag/AgCl electrodes. EMG signals collected by ME varied along with the contraction of biceps brachii muscle. ME could record static ECG signals with a larger amplitude and dynamic ECG signals with more distinguishable features in comparison with a Ag/AgCl electrode, therefore, ME is an alternative electrode for bio-signal monitoring in some specific situations.

  5. Ion source for ion beam deposition employing a novel electrode assembly

    Science.gov (United States)

    Hayes, A. V.; Kanarov, V.; Yevtukhov, R.; Hegde, H.; Druz, B.; Yakovlevitch, D.; Cheesman, W.; Mirkov, V.

    2000-02-01

    A rf inductively coupled ion source employing a novel electrode assembly for focusing a broad ion beam on a relatively small target area was developed. The primary application of this ion source is the deposition of thin films used in the fabrication of magnetic sensors and optical devices. The ion optics consists of a three-electrode set of multiaperture concave dished grids with a beam extraction diameter of 150 mm. Also described is a variation in the design providing a beam extraction diameter of 120 mm. Grid hole diameters and grid spacing were optimized for low beamlet divergence and low grid impingement currents. The radius of curvature of the grids was optimized to obtain an optimally focused ion beam at the target location. A novel grid fabrication and mounting design was employed which overcomes typical limitations of such grid assemblies, particularly in terms of maintaining optimum beam focusing conditions after multiple cycles of operation. Ion beam generation with argon and xenon gases in energy ranges from 0.3 to 2.0 keV was characterized. For operation with argon gas, beam currents greater than 0.5 A were obtained with a beam energy of 800 eV. At optimal beam formation conditions, beam profiles at distances about equal to the radius of curvature were found to be close to Gaussian, with 99.9% of the beam current located within a 150 mm target diameter. Repeatability of the beam profile over long periods of operation is also reported.

  6. Synthesis of modified polymer inclusion membranes for photo-electrodeposition of cadmium using polarized electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yahia Cherif, Asma [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Arous, Omar, E-mail: omararous@yahoo.fr [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Center of Research in Physical and Chemical Analysis CRAPC, BP 248 Algiers, RP 16004, Algiers (Algeria); Amara, Mourad [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Omeiri, Said [Center of Research in Physical and Chemical Analysis CRAPC, BP 248 Algiers, RP 16004, Algiers (Algeria); Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Kerdjoudj, Hacene [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Trari, Mohamed [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Homogeneous PIM membranes containing water soluble polymers have been obtained under new experimental conditions. Black-Right-Pointing-Pointer Photoelectrodeposition of 'Cd' has been carried out using WO{sub 3} and CuFeO{sub 2} as electrode. Black-Right-Pointing-Pointer Using both photo-polarized electrodes enhances transference of cadmium compared to one. Black-Right-Pointing-Pointer Membrane with poly-phosphoric acid (PPA) give a rise of transferred amount of Cd. - Abstract: In this work, we have developed a novel class of polymeric inclusion membranes (PIMs) for the cations separation. The membrane is made up of cellulose triacetate modified by poly-electrolytes (poly-phosphoric acid, polyvinyl pyrolidone, polyacrylic acid, polyvinyl alcohol and poly-anetholsulfonic acid) using 2-hydroxy-5-dodecylbenzaldehyde incorporated into the polymer as carrier and tris ethyl hexyl phosphate or glycerine as plasticizers. Different PIMs are synthesized and characterized by the Fourier transform infrared, X-ray diffraction, thermal analysis and scanning electron microscopy. The influence of the membrane nature is studied using supports with different physical characteristics (porosity, thickness, hydrophobia). As application, the transport of Cd{sup 2+} using PIMs coupled with photo-electrodes is investigated. The photo-catalytic results indicate that the combined system p-CuFeO{sub 2}/membrane/n-WO{sub 3} enhances considerably the electrons transfer toward the delafossite CuFeO{sub 2}. The position of the conduction band of CuFeO{sub 2} is looked to be the key issue for the photo electrochemical Cd{sup 2+} reduction.

  7. Layer-by-layer self-assembled active electrodes for hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Kniprath, Rolf

    2008-11-18

    Solar cells based on thin organic/inorganic heterofilms are currently in the focus of research, since they represent promising candidates for cost-efficient photovoltaic energy conversion. In this type of cells, charges are separated at a heterointerface between dissimilar electrode materials. These materials either absorb light themselves, or they are sensitized by an additional absorber layer at the interface. The present work investigates photovoltaic cells which are composed of nanoporous TiO{sub 2} combined with conjugated polymers and semiconductor quantum dots (QDs). The method of layer-by-layer self-assembly of oppositely charged nanoparticles and polymers is used for the fabrication of such devices. This method allows to fabricate nanoporous films with controlled thicknesses in the range of a few hundred nanometers to several micrometers. Investigations with scanning electron (SEM) and atomic force microscopy (AFM) reveal that the surface morphology of the films depends only on the chemical structure of the polyions used in the production process, and not on their molecular weight or conformation. From dye adsorption at the internal surface of the electrodes one can estimate that the internal surface area of a 1 {mu}m thick film is up to 120 times larger than the projection plane. X-ray photoelectron spectroscopy (XPS) is used to demonstrate that during the layer-by-layer self-assembly at least 40% of the TiO{sub 2} surface is covered with polymers. This feature allows to incorporate polythiophene derivatives into the films and to use them as sensitizers for TiO{sub 2}. Further, electrodes containing CdSe or CdTe quantum dots (QDs) as sensitizers are fabricated. For the fabrication of photovoltaic cells the layer-by-layer grown films are coated with an additional polymer layer, and Au back electrodes are evaporated on top. The cells are illuminated through transparent doped SnO{sub 2} front electrodes. The I/V curves of all fabricated cells show diode

  8. Cobalt(II)-selective membrane electrode based on a recently synthesized benzo-substituted macrocyclic diamide.

    Science.gov (United States)

    Shamsipur, M; Poursaberi, T; Rouhani, S; Niknam, K; Sharghi, H; Ganjali, M R

    2001-09-01

    A PVC-membrane electrode based on a recently synthesized 18-membered macrocyclic diamide is presented. The electrode reveals a Nernstian potentiometric response for Co2+ over a wide concentration range (2.0 x 10(-6)-1.0 x 10(-2) M). The electrode has a response time of about 10 s and can be used for at least 2 months without any divergence. The proposed sensor revealed very good selectivities for Co2+ over a wide variety of other metal ions, and could be used over a wide pH range (3.0-8.0). The detection limit of the sensor is 6.0 x 10(-7) M. It was successfully applied to the direct determination and potentiometric titration of cobalt ion.

  9. Microscopy studies on pronton exchange membrane fuel cell electrodes with different ionomer contents

    DEFF Research Database (Denmark)

    Ma, Shuang; Solterbeck, Claus Henning; Odgaard, Madeleine

    2009-01-01

    of the electrode was well displayed in the topography and phase images. The particle and pore size (Z) distributions showed the most frequent values at 30-40 nm and 20-30 nm, respectively. The particle size corresponds to the size of the carbon support for the platinum catalyst. Catalyst agglomeration was observed......Proton Exchange Membrane (PEM) fuel cell electrodes with different ionomer contents were studied with various microscopic techniques. The morphology and surface potential were examined by Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM), respectively. The particulate nature...... in high ionomer content electrodes. The surface potential images showed distinct difference to the topography images. The overall grain size was seen to increase, the pore volume to decrease, the surface roughness to decrease, and the surface potential variation to increase with the increase of ionomer...

  10. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    Science.gov (United States)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  11. Liquid membrane ion-selective electrodes for potentiometric dosage of coper and nickel

    Directory of Open Access Journals (Sweden)

    MARIA PLENICEANY

    2005-02-01

    Full Text Available This paper presents experimental and theoretical data regarding the preparation and characterization of three liquid-membrane electrodes, which have not been mentioned in the specialized literature so far. The active substances, the solutions of which in nitrobenzene formed the membranes on a graphite rod, are simple complex combinations of Cu(II and Ni(II ions with an organic ligand belonging to the Schiff base class: N-[2-thienylmethilidene]-2-aminoethanol (TNAHE. The Cu2+ -selective and Ni2+ -selective electrodes were used to determine the copper and nickel ions in aqueous solutions, both by direct potentiometry and by potentiometric titration with EDTA. They were also used for the determination of Cu2+ and Ni2+ ions in industrial waters by direct potentiometry.

  12. Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Steenberg, Thomas

    2014-01-01

    A new electrode concept was proved with no polymeric binder in the catalyst layer for acid-doped polybenzimidazole (PBI) membrane fuel cells. It shows that a stable interface between the membrane and the catalyst layer can be retained when a proton conducting acid phase is established. The absence...... higher than 0.5 mgPt cm−2. For fuel cell operation on H2 and air supplied under ambient pressure, a peak power density as high as 471 mW cm−2 was measured. The tolerance to carbon monoxide (CO) was also studied with Pt loadings of the anode ranging from 0.24 to 1.82 mgPt cm−2. Lifetime test for a MEA...... loaded with 0.96 mgPt cm−2 on both electrodes revealed no voltage decay during 900 h of uninterrupted operation at 200 mA cm−2 and 160 °C....

  13. Characterization of All Solid State Hydrogen Ion Selective Electrode Based on PVC-SR Hybrid Membranes

    Directory of Open Access Journals (Sweden)

    Yoon-Bo Shim

    2003-06-01

    Full Text Available Hydrogen ion selective membranes formulated with 3140 RTV silicone rubber (SR in PVC were studied to extend the life time of solid state ion sensors through improved membrane adhesion. All solid state hydrogen ion selective electrodes were prepared by incorporation of tridodecyl amine (TDDA as an ionophore, potassium tetrakis[3.5-bis(p-chlorophenylborate (KTpClPB as a lipophilic additive, bis(2-ethylhexyladipate (DOA as a plasticizer. Their linear dynamic range was pH 2.0-11.0 and showed the near Nernstian slope of 55.1±0.2 mV/pH (r=0.999. The ifluences from alkali and alkaline earth metal ions were studied for the response of the final ISE membrane composition. Impedance spectroscopic data showed that the resistance was increased by increasing SR content in PVC. Brewster Angle Microscopy (BAM image showed clear differences according to the SR compositions in PVC. Life time of the all solid state membrane electrode was extended to about 2 months by preparing the membrane with PVC and SR. The standard reference material from NIST (2181 HEPES Free acid and 2182 NaHEPESate was tested for the ISE and it gave good result.

  14. An oxalate selective electrode based on modified PVC-membrane with tetra-butylammonium--Clinoptilolite nanoparticles.

    Science.gov (United States)

    Hoseini, Zohre; Nezamzadeh-Ejhieh, Alireza

    2016-03-01

    A modified PVC-membrane electrode with tetra-butylammonium bromide - Clinoptilolite nano-particles (TBA-NCP) showed good Nernstian slope (29.9±0.6 mV per decade of oxalate concentration) in concentration range of 3.1×10(-7)-8.3×10(-1) mol L(-1) with a detection limit of 1.5×10(-7) mol L(-1). The best performance was obtained with a membrane composition of 31.5% PVC, 62.5% DOP and 6% TBA-NCP in the temperature range of 20-35 °C and the pH range of 4-9. The fast response time and good reproducibility over a period of 3 months are other characteristics of the sensor. The proposed electrode was successfully used as an indicator electrode in titration of oxalate ions with CaCl2 solution. The proposed electrode was also used in direct potentiometric determination of oxalate in many real samples such as: mushroom, black and green tea, spinach and beet. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Application of self-consistent field theory to self-assembled bilayer membranes

    International Nuclear Information System (INIS)

    Zhang Ping-Wen; Shi An-Chang

    2015-01-01

    Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes. (topical review)

  16. Silver nanowire catalysts on carbon nanotubes-incorporated bacterial cellulose membrane electrodes for oxygen reduction reaction.

    Science.gov (United States)

    Kim, Bona; Choi, Youngeun; Cho, Se Youn; Yun, Young Soo; Jin, Hyoung-Joon

    2013-11-01

    Silver nanowires have unique electrical, thermal and optical properties, which support their potential application in numerous fields including catalysis, electronics, optoelectronics, sensing, and surface-enhanced spectroscopy. Especially, their application such as catalysts for alkaline fuel cells (AFCs) have attracted much interest because of their superior electrical conductivity over that of any metal and their lower cost compared to Pt. In this study, multiwalled carbon nanotubes (MWCNTs)-incorporated bacterial cellulose (BC) membrane electrode with silver nanowire catalyst was prepared. First, acid-treated MWCNTs were incorporated into BC membranes and then freeze-dried after solvent exchange to tert-butanol in order to maintain the 3D-network macroporous structure. Second, silver nanowires synthesized by polyol process were introduced onto the surface of the MWCNTs-incorporated BC membrane through easy vacuum filtration. Finally, thermal treatment was carried out to confirm the effect of the PVP on the silver nanowire catalysts toward oxygen reduction reaction. The electrode with thermally treated silver nanowire had great electrocatalytic activity compared with non-treated one. These results suggest that the MWCNTs-incorporated BC electrode with silver nanowire catalysts after thermal treatment could be potentially used in cathodes of AFCs.

  17. Hierarchical Composite Membranes with Robust Omniphobic Surface Using Layer-By-Layer Assembly Technique

    KAUST Repository

    Woo, Yun Chul

    2018-01-17

    In this study, composite membranes were fabricated via layer-by-layer (LBL) assembly of negatively-charged silica aerogel (SiA) and 1H, 1H, 2H, 2H – Perfluorodecyltriethoxysilane (FTCS) on a polyvinylidene fluoride phase inversion membrane, and interconnecting them with positively-charged poly(diallyldimethylammonium chloride) (PDDA) via electrostatic interaction. The results showed that the PDDA-SiA-FTCS coated membrane had significantly enhanced the membrane structure and properties. New trifluoromethyl and tetrafluoroethylene bonds appeared at the surface of the coated membrane, which led to lower surface free energy of the composite membrane. Additionally, the LBL membrane showed increased surface roughness. The improved structure and property gave the LBL membrane an omniphobic property, as indicated by its good wetting resistance. The membrane performed a stable air gap membrane distillation (AGMD) flux of 11.22 L/m2h with very high salt rejection using reverse osmosis brine from coal seam gas produced water as feed with the addition of up to 0.5 mM SDS solution. This performance was much better compared to those of the neat membrane. The present study suggests that the enhanced membrane properties with good omniphobicity via LBL assembly make the porous membranes suitable for long-term AGMD operation with stable permeation flux when treating challenging saline wastewater containing low surface tension organic contaminants.

  18. Smart gating membranes with in situ self-assembled responsive nanogels as functional gates

    Science.gov (United States)

    Luo, Feng; Xie, Rui; Liu, Zhuang; Ju, Xiao-Jie; Wang, Wei; Lin, Shuo; Chu, Liang-Yin

    2015-01-01

    Smart gating membranes, inspired by the gating function of ion channels across cell membranes, are artificial membranes composed of non-responsive porous membrane substrates and responsive gates in the membrane pores that are able to dramatically regulate the trans-membrane transport of substances in response to environmental stimuli. Easy fabrication, high flux, significant response and strong mechanical strength are critical for the versatility of such smart gating membranes. Here we show a novel and simple strategy for one-step fabrication of smart gating membranes with three-dimensionally interconnected networks of functional gates, by self-assembling responsive nanogels on membrane pore surfaces in situ during a vapor-induced phase separation process for membrane formation. The smart gating membranes with in situ self-assembled responsive nanogels as functional gates show large flux, significant response and excellent mechanical property simultaneously. Because of the easy fabrication method as well as the concurrent enhancement of flux, response and mechanical property, the proposed smart gating membranes will expand the scope of membrane applications, and provide ever better performances in their applications. PMID:26434387

  19. Comparison of The Performance of Proton Exchange Membrane Fuel Cell (PEMFC Electrodes with Different Carbon Powder Content and Methods of Manufacture

    Directory of Open Access Journals (Sweden)

    Dedi Rohendi

    2016-11-01

    Full Text Available Carbon powder in the gas diffusion layer (GDL contained in the membrane electrode assembly (MEA has an important role in the flow of electrons and reactant gas. Meanwhile, the method of making the electrode is one of the many studies conducted to determine the most appropriate method to use. Comparative study of the performance of proton exchange membrane fuel cell (PEMFC electrodes with different carbon powder content (vulcan XC-72 in the GDL and methods of manufacture of the electrode between casting and spraying method has been carried out. The spraying method consists of one layer and three layer of catalyst layer (CL. The content of carbon powder in the GDL as much as 3 mg cm-2 has a better performance compared to 1.5 mg cm-2 with an increase of 177.78% current density at 0.6 V. Meanwhile, the manufacture of CL with three-layer spraying method has better performance compared with one-layer spraying and casting method.

  20. Electrode-analytical properties of polyvinylchloride membranes based on triple metal-polymeric complexes

    Directory of Open Access Journals (Sweden)

    Katerina V. Matorina

    2015-10-01

    Full Text Available The influence of the nature of the electrode-active substances (EAS, the composition of the external and internal solutions on the formation of the analytical signal of polyvinylchloride (PVC membranes based on associates and triple metal-polymeric complexes (TMPC was established. Dehumidification of synthesized membranes increases with the content of polyvinylpyrrolidone (PVP. The value of the swelling degree is more than two times greater for membranes, which contain as EAS TMPC, relative to membranes based on associates. The value of water absorption of membranes is determined by the nature of EAS. They formed a series of increasing of the swelling degree such as associate < background membrane < TMPC. Swelling of the background membrane is explained by the physical sorption of water molecules on the surface of plasticized membrane. Hydration of PVP macromolecules varies with the introduction of metal ions, macromolecules unit undergoes a conformational transition. PVP macromolecules form tunnels or cavities where complex particles distributed and additional water accumulated through the second coordination layer. Constructed sensors based on TMPC have slope of electrode function equal to 25 mV/pC. Linear dependence of potential on the polymer concentration is observed in the range of 5–7 pC units. Sensors based on associates have slope of the electrode function of 20–25 mV/pC that can be varied depending on the nature of the EAS. Working range is 4–8 pC. Response time of sensor is less than 1 min. The optimal time for conditioning of the synthesized PVC membrane is 24 hours. Potentiometric sensors have been developed for the determination of residual amounts of low molecular PVP which is a food additive E 1201 commonly used for thickening, stabilizing and clarifying of food products. The content of PVP was determined in real objects (apple juice, beer, red wine and cognac with using the polyvinylpyrrolidone sensors (Sr < 0.08. The

  1. Dual-electrode CMUT with non-uniform membranes for high electromechanical coupling coefficient and high bandwidth operation.

    Science.gov (United States)

    Guldiken, Rasim O; Zahorian, Jaime; Yamaner, F Y; Degertekin, F Levent

    2009-06-01

    In this paper, we report measurement results on dual-electrode CMUT demonstrating electromechanical coupling coefficient (k(2)) of 0.82 at 90% of collapse voltage as well as 136% 3 dB one-way fractional bandwidth at the transducer surface around the design frequency of 8 MHz. These results are within 5% of the predictions of the finite element simulations. The large bandwidth is achieved mainly by utilizing a non-uniform membrane, introducing center mass to the design, whereas the dual-electrode structure provides high coupling coefficient in a large dc bias range without collapsing the membrane. In addition, the non-uniform membrane structure improves the transmit sensitivity of the dual-electrode CMUT by about 2dB as compared with a dual electrode CMUT with uniform membrane.

  2. Copper (II) ion selective liquid membrane electrode based on new Schiff base carrier.

    Science.gov (United States)

    Sadeghi, Susan; Vardini, Mohammad Taghi; Naeimi, Hossein

    2006-01-01

    Cu2+ selective PVC membrane electrode based on new Schiff base 2, 2'-[1,9 nonanediyl bis (nitriloethylidyne)]-bis-(1-naphthol) as a selective carrier was constructed. The electrode exhibited a linear potential response within the activity range of 1.0 x 10(-6) - 5.0 x 10(-3) moll(-1) with a Nernstian slope of 29 +/- 1 mV decade(-1) of Cu2+ activity and a limit of detection 8.0 x 10(-7) mol l(-1). The response time of the electrode was fast, 10 s, and stable potentials were obtained within the pH range of 3.5- 6.5. The potentiometric selectivity coefficients were evaluated using two solution method and revealed no important interferences except for Ag+ ion. The proposed electrode was applied as an indicator electrode to potentiometric titration of Cu2+ ions and determination of Cu2+ content in real samples such as black tea leaves and multivitamin capsule.

  3. Styrofoam cup-membrane assembly for studying microorganism-root interactions.

    Science.gov (United States)

    Hartel, P G; Billingsley, J W; Williamson, J W

    1989-05-01

    An assembly consisting of Styrofoam cups with membranes of varying porosities was developed to study microorganism-root interactions. The assembly permitted uniform distribution of a bacterium in soil and was simple, easy to use, and disposable. In tests with the bacterium Pseudomonas solanacearum, little difference in P. solanacearum survival was observed in the rhizosphere or nonrhizosphere of tomato.

  4. Self-assembled block copolymer membranes: From basic research to large-scale manufacturing

    KAUST Repository

    Nunes, Suzana Pereira

    2013-09-24

    Order and porosity of block copolymer membranes have been controlled by solution thermodynamics, self-assembly, and macrophase separation. We have demonstrated how the film manufacture with long-range order can be up-scaled with the use of conventional membrane production technology.

  5. Plasma membrane is the site of productive HIV-1 particle assembly.

    Directory of Open Access Journals (Sweden)

    Nolwenn Jouvenet

    2006-12-01

    Full Text Available Recently proposed models that have gained wide acceptance posit that HIV-1 virion morphogenesis is initiated by targeting the major structural protein (Gag to late endosomal membranes. Thereafter, late endosome-based secretory pathways are thought to deliver Gag or assembled virions to the plasma membrane (PM and extracellular milieu. We present several findings that are inconsistent with this model. Specifically, we demonstrate that HIV-1 Gag is delivered to the PM, and virions are efficiently released into the extracellular medium, when late endosome motility is abolished. Furthermore, we show that HIV-1 virions are efficiently released when assembly is rationally targeted to the PM, but not when targeted to late endosomes. Recently synthesized Gag first accumulates and assembles at the PM, but a proportion is subsequently internalized via endocytosis or phagocytosis, thus accounting for observations of endosomal localization. We conclude that HIV-1 assembly is initiated and completed at the PM, and not at endosomal membranes.

  6. Self-assembly of phosphorylated dihydroceramide at Au(111) electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawłowski, Jan; Juhaniewicz, Joanna; Sęk, Sławomir, E-mail: slasek@chem.uw.edu.pl

    2017-01-15

    Although the adsorption of lipids on reconstructed Au(111) surface and formation of highly ordered stripe-like domains are well-known phenomena, the exact orientation of the molecules with respect to the substrate remains unclear. Therefore, in this study we have focused on the structure and arrangement of lipid molecules forming highly ordered stripe-like domains at gold electrode-electrolyte interface. N-palmitoyl-D-erythro-dihydroceramide-1-phosphate was selected as model compound since its ability to transform into hemimicellar structure is limited. This way it was possible to get very stable lipid film with characteristic stripe-like pattern. Application of complementary techniques such as atomic force microscopy and scanning tunneling microscopy enabled detailed characteristics of lipid adlayer adsorbed on Au(111) electrode. Based on careful analysis of the experimental results, we have proposed a model which describes the arrangement of the molecules within the film. In general, it assumes flat-lying orientation of the lipids but only one hydrocarbon chain of phosphorylated dihydroceramide is involved in direct interaction with gold. - Highlights: • STM and AFM methods were used to examine adsorption of model lipid on Au(111). • Self-assembly of model lipid leads to formation of highly organized molecular film. • The model is proposed which reproduces the STM contrast.

  7. Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells.

    Science.gov (United States)

    Zhang, Fang; Xia, Xue; Luo, Yong; Sun, Dan; Call, Douglas F; Logan, Bruce E

    2013-04-01

    In a separator electrode assembly microbial fuel cell, oxygen crossover from the cathode inhibits current generation by exoelectrogenic bacteria, resulting in poor reactor startup and performance. To determine the best approach for improving startup performance, the effect of acclimation to a low set potential (-0.2V, versus standard hydrogen electrode) was compared to startup at a higher potential (+0.2 V) or no set potential, and inoculation with wastewater or pre-acclimated cultures. Anodes acclimated to -0.2 V produced the highest power of 1330±60 mW m(-2) for these different anode conditions, but unacclimated wastewater inocula produced inconsistent results despite the use of this set potential. By inoculating reactors with transferred cell suspensions, however, startup time was reduced and high power was consistently produced. These results show that pre-acclimation at -0.2 V consistently improves power production compared to use of a more positive potential or the lack of a set potential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells

    KAUST Repository

    Zhang, Fang

    2013-04-01

    In a separator electrode assembly microbial fuel cell, oxygen crossover from the cathode inhibits current generation by exoelectrogenic bacteria, resulting in poor reactor startup and performance. To determine the best approach for improving startup performance, the effect of acclimation to a low set potential (-0.2V, versus standard hydrogen electrode) was compared to startup at a higher potential (+0.2V) or no set potential, and inoculation with wastewater or pre-acclimated cultures. Anodes acclimated to -0.2V produced the highest power of 1330±60mWm-2 for these different anode conditions, but unacclimated wastewater inocula produced inconsistent results despite the use of this set potential. By inoculating reactors with transferred cell suspensions, however, startup time was reduced and high power was consistently produced. These results show that pre-acclimation at -0.2V consistently improves power production compared to use of a more positive potential or the lack of a set potential. © 2013 Elsevier Ltd.

  9. Cross-flow-assembled ultrathin and robust graphene oxide membranes for efficient molecule separation

    Science.gov (United States)

    Ying, Yulong; Ying, Wen; Guo, Yi; Peng, Xinsheng

    2018-04-01

    A graphene oxide (GO) membrane is promising for molecule separation. However, it is still a big challenge to achieve highly stable pristine GO membranes, especially in water. In this work, an ultrathin and robust GO membrane is assembled via the cross-flow method. The as-prepared 12 nm thick GO membrane (GOCF membrane) presents high stability with water permeance of 1505 ± 65 litres per hour per square meter per bar (LHM bar-1) and Evans Blue (EB) rejection of 98.7 ± 0.4%, 21-fold enhancement in water permeance compared with that of a pristine GO membrane (50-70 LHM bar-1) and 100 times higher than that of commercial ultrafiltration membranes (15 LHM.bar-1, GE2540F30, MWCO 1000, GE Co., Ltd) with similar rejection. Attributed to the surface cross-flow, the GO nanosheets will be refolded, crumpled, or wrinkled, resulting in a very strong inter-locking structure among the GO membrane, which significantly enhances the stability and facilitates their separation performance. This cross-flow assembling technique is also easily extended to assemble GO membranes onto other various backing filter supports. Based on the Donnan effect and size sieving mechanism, selective membrane separation of dyes with a similar molecular structure from their mixture (such as Rhodamine B (RhB) and Rose Bengal, and RhB and EB) are achieved with a selectivity of 133 ± 10 and 227 ± 15, respectively. Assembly of this ultrathin GO membrane with high stability and separation performance, via a simple cross-flow method, shows great potential for water purification.

  10. Polymer membrane electrodes for sensitive potentiometric determination of beta-blockers.

    Science.gov (United States)

    Wassil, Anwar A; Farag, Abd El-Ftaah Bastawy; Moukdad, Fatma A

    2007-01-01

    The construction of PVC matrix-type beta-blockers (sotalol, carvedilol, and betaxolol) ion selective electrodes and their use for direct potentiometry of their respective species are described. The proposed sensors are based on the complex ion associates of beta-blockers with tungstophosphate (TP) and Ammonium Reineckate (Rein) ionophoris in poly vinyl chloride membrane (PVC) with Dioctylphthalate (DOP) plasticizer. The four electrodes (Beta-TP), (Sota-TP), (Carve-TP), and (Cave-Rein) show stable potential response with near Nernstian slope of 50.8, 33.7, 32.35, and 33 mv per decade, range of concentration 10-2-10-7 M beta-blockers. Selectivity coefficients data obtained for 11 different organic and inorganic ions are presented. The electrodes have fast response time (30 and 40 s) and were used over wide range of pH 4.5-8.5. Validation of the method according to the quality assurance standers shows suitability of proposed sensors for use in the quality control assessment of these drugs. The results obtained for the determination of beta-blockers with the proposed electrodes show average recoveries of 100.78% and a mean standard deviation of +/-1.2. The nominal are obtained. The data agree well with those obtained by standard methods.

  11. Development of a pH sensing membrane electrode based on a new calix[4]arene derivative.

    Science.gov (United States)

    Kormalı Ertürün, H Elif; Demirel Özel, Ayça; Sayın, Serkan; Yılmaz, Mustafa; Kılıç, Esma

    2015-01-01

    A new pH sensing poly(vinyl chloride) (PVC) membrane electrode was developed by using recently synthesized 5,17-bis(4-benzylpiperidine-1-yl)methyl-25,26,27,28-tetrahydroxy calix[4]arene as an ionophore. The effects of membrane composition, inner filling solution and conditioning solution on the potential response of the proposed pH sensing membrane electrode were investigated. An optimum membrane composition of 3% ionophore, 67% o-nitrophenyl octyl ether (o-NPOE) as plasticizer, 30% PVC was found. The electrode exhibited a near-Nernstian slope of 58.7±1.1 mV pH(-1) in the pH range 1.9-12.7 at 20±1 °C. It showed good selectivity for H(+) ions in the presence of some cations and anions and a longer lifetime of at least 12 months when compared with the other PVC membrane pH electrodes reported in the literature. Having a wide working pH range, it was not only applied as a potentiometric indicator electrode in various acid-base titrations, but also successfully employed in different real samples. It has good reproducibility and repeatability with a response time of 6-7s. Compared to traditional glass pH electrode, it exhibited excellent potentiometric response after being used in fluoride-containing media. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Characterization of dual-electrode CMUTs: demonstration of improved receive performance and pulse echo operation with dynamic membrane shaping.

    Science.gov (United States)

    Guldiken, Rasim O; Balantekin, Mujdat; Zahorian, Jaime; Degertekin, F Levent

    2008-10-01

    A 1-D dual-electrode CMUT array for intracardiac echocardiography (ICE) with a center frequency of 8 MHz has been designed, fabricated, and used to demonstrate the potential of dual-electrode CMUTs. Using a dual-electrode CMUT, 9 dB higher receive signal level is obtained over the 6 dB fractional bandwidth as compared with a conventional CMUT with an identical center electrode biased close to its collapse voltage. Because the same device shows a 7.4 dB increase in maximum pressure output, 16.4 dB overall improvement in transduction performance has been achieved as compared with conventional CMUT. A net peak output pressure of 1.6 MPa on the dual-electrode CMUT membrane with tone burst excitation at 12 MHz is also reported. The frequency response of the dual-electrode CMUT is similar to that of a conventional CMUT with the same membrane geometry with about 15% increase in the center frequency. Monostatic operation of dual-electrode CMUTs shows that the high performance of the transducer is applicable in typical pulse-echo imaging mode of operation. With dynamic shaping of the CMUT membrane to optimize the transmit-and-receive modes of operation separately during each pulse-echo cycle, dual-electrode CMUT is a highly competitive alternative to its piezoelectric counterparts.

  13. Enantioanalysis of S-deprenyl using enantioselective, potentiometric membrane electrodes based on C60 derivatives

    International Nuclear Information System (INIS)

    Stefan-van Staden, Raluca-Ioana

    2010-01-01

    Enantioselective, potentiometric membrane electrodes based on (1,2-methanofullerene C 60 )-61-carboxylic acid, diethyl (1,2-methanofullerene C 60 )-61-61-dicarboxylate and tert-butyl (1,2-methanofullerene C 60 )-61-carboxylic acid were proposed for the enantioanalysis of S-deprenyl in pharmaceutical compounds. Molecular modeling calculations were performed to prove the reliability of the proposed electrodes. The different characteristics involved in this analysis were explained, namely (i) the stability of each molecule using total energy, hardness and dipole moment, and (ii) the explanation of the mechanism of interaction using intermolecular forces (moderate hydrogen bond interactions), atomic charges and electrostatic potential. Electronic structures as well as molecular interaction have been investigated using Hartree-Fock theory, 3-21G(*) basis set. Stability and feasibility of all the generated structures were supported by their respective energy minima and fundamental frequencies.

  14. Iodide-selective membrane electrode based on salophen complex of cobalt (III)

    OpenAIRE

    Zare,Hamid R.; Memarzadeh,Farkhondeh; Gorji,Alireza; Ardakani,Mohammad Mazloum

    2005-01-01

    A highly selective PVC membrane electrode based on a cobalt-salophen complex was prepared. The sensor displays an anti-Hofmeister selectivity sequence with a preference for iodide ion over many common anions. The electrode has a linear dynamic range between 5.0×10-7 to 1.0×10-1 mol L-1, with a Nernstian slope of -58.9 mV decade-1 and a detection limit of 3.0×10-7 mol L-1. The working pH range of the sensor is 3.1-9.8. It exhibits of a fast as 15 s and has a lifetime of about 2 months. The sel...

  15. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  16. Self-assembly of nanoscale particles with biosurfactants and membrane scaffold proteins.

    Science.gov (United States)

    Faas, Ramona; Pohle, Annelie; Moß, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-12-01

    Nanodiscs are membrane mimetics which may be used as tools for biochemical and biophysical studies of a variety of membrane proteins. These nanoscale structures are composed of a phospholipid bilayer held together by an amphipathic membrane scaffold protein (MSP). In the past, nanodiscs were successfully assembled with membrane scaffold protein 1D1 and 1,2-dipalmitoyl- sn -glycero-3-phosphorylcholine with a homogeneous diameter of ∼10 nm. In this study, the formation of nanoscale particles from MSP1D1 and rhamnolipid biosurfactants is investigated. Different protein to lipid ratios of 1:80, 1:90 and 1:100 were used for the assembly reaction, which were consecutively separated, purified and analyzed by size-exclusion chromatography (SEC) and dynamic light scattering (DLS). Size distributions were measured to determine homogeneity and confirm size dimensions. In this study, first evidence is presented on the formation of nanoscale particles with rhamnolipid biosurfactants and membrane scaffold proteins.

  17. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ...

  18. Metalophthalocyanine complexes as ion-carriers in membrane-selective electrodes for detection of thiosalicylic acid

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Souri, Ali

    2004-01-01

    The potentiometric response properties of several PVC-based membrane electrodes using phthalocyanine complexes of aluminum (AlPc), nickel (NiPc) and copper (CuPc) as anion carriers, toward thiosalicylic acid (TSA) were investigated. The influences of lipophilic ionic additives (cationic and anionic) and the pH of the buffered solutions were used for the interpretation of the mechanism of the potentiometric response of sensors. The sensitivity, linear range, detection limit, and potentiometric selectivity of the membrane sensors show a considerable dependence on the nature of central metal of the ionophore. The membrane electrodes based on AlPc demonstrate sub-Nernstian responses toward TSA over the range of 0.01 to 1x10 -5 M. In the case of NiPc and CuPc as ionophores and in the presence of trioctylmethyl ammonium (TOMA + ) as a cationic additive, a Nernstian response could be established in a range of 4 orders of magnitudes of TSA concentration (0.01 to 1x10 -6 M). The results of potentiometric investigations revealed that from thermodynamic point of view, the axial coordination of thiosalicylate with the central metal of NiPc and CuPc is more efficient with respect to AlPc. This preference in response to TSA was discussed on the basis of the softness nature of NiPc and CuPc and more affinity for coordination with the thiolate group of thiosalicylate as a soft anion. These potentiometric sensors manifest prominent advantages of high selectivity for TSA over the various inorganic and organic anions, fast response times and micromolar detection limits and can be used over a wide pH range of 4.0-8.0. The prepared electrodes based on NiPc and CuPc were successfully applied in the potentiometric titration of sub-milimolar quantities of Hg 2+ in aqueous solutions and very good recovery results were obtained in these measurements. The results of complexometric studies between Hg 2+ and TSA using electrodes based on NiPc and CuPc as indicator electrodes were compared with

  19. A study for the research trends of membranes for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Sener, T.

    2004-01-01

    'Full text:' A single PEM fuel cell is comprised of a membrane electrode assembly, two bipolar plates and two fields. Membrane electrode assembly is the basic component of PEM fuel cell due to its cost and function, and it consists a membrane sandwiched between two electrocatalyst layers/electrodes and two gas diffusion layers. Increasing the PEM fuel cell operation temperature from 80 o C to 150-200 o C will prevent electrocatalysts CO poisoning and increase the fuel cell performance. Therefore, membranes must have chemical and mechanical resistance and must keep enough water at high temperatures. The aim of membrane studies through fuel cell commercialization is to produce a less expensive thin membrane with high operation temperature, chemical and mechanical resistance and water adsorption capacity. Within this frame, alternative membrane materials, membrane electrode assembly manufacture and evaluation methods are being studied. In this paper, recent studies are reviewed to give a conclusion for research trends. (author)

  20. Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode

    Czech Academy of Sciences Publication Activity Database

    Labajová, A.; Vojtíšková, Alena; Křiváková, P.; Kofránek, J.; Drahota, Zdeněk; Houštěk, Josef

    2006-01-01

    Roč. 353, č. 1 (2006), s. 37-42 ISSN 0003-2697 R&D Projects: GA ČR(CZ) GD303/03/H065; GA ČR(CZ) GA303/06/1261 Grant - others:GA UK(CZ) 126/04/C; IGA MŠk(CZ) RP 394 Institutional research plan: CEZ:AV0Z50110509 Keywords : membrane potential * TPP -selective electrode Subject RIV: CE - Biochemistry Impact factor: 2.948, year: 2006

  1. Impacts of Electrode Coating Irregularities on Polymer Electrolyte Membrane Fuel Cell Lifetime Using Quasi In-Situ Infrared Thermography and Accelerated Stress Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Guido [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Phillips, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ulsh, Michael J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neyerlin, Kenneth C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Porter, Jason [Colorado School of Mines

    2018-03-02

    In-line quality control diagnostics for roll-to-roll (R2R) manufacturing techniques will play a key role in the future commercialization of the polymer electrolyte membrane fuel cell (PEMFC) used in automotive applications. These diagnostics monitor the fabrication of the membrane electrode assembly (MEA), which detect and flag any non-uniformity that may potentially harm PEMFC performance and/or lifetime. This will require quantitative thresholds and a clear distinction between harmful defects and harmless coating irregularities. Thus, novel fuel cell hardware with quasi in-situ infrared (IR) thermography capabilities is utilized to understand how bare spots in the cathode electrode impact MEA lifetime. An accelerated stress test (AST) simulates chemical and mechanical degradation modes seen in vehicular operation. The actual open circuit voltage and rate of change of this voltage are used as in-situ indicators for MEA failure, enabling capture of the progression of failure point development. Bare spot coating irregularities located at the center of the electrode were found to have no impact on MEA lifetime when compared to a pristine MEA. However, MEA lifetime was found to be considerably shortened when these same irregularities are located at the cathode inlet and, especially, the anode inlet regions of the fuel cell.

  2. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly.

    Science.gov (United States)

    Sardo, Luca; Hatch, Steven C; Chen, Jianbo; Nikolaitchik, Olga; Burdick, Ryan C; Chen, De; Westlake, Christopher J; Lockett, Stephen; Pathak, Vinay K; Hu, Wei-Shau

    2015-11-01

    To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the absence of Gag, whereas

  3. Assembly of the membrane domain of ATP synthase in human mitochondria.

    Science.gov (United States)

    He, Jiuya; Ford, Holly C; Carroll, Joe; Douglas, Corsten; Gonzales, Evvia; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2018-03-20

    The ATP synthase in human mitochondria is a membrane-bound assembly of 29 proteins of 18 kinds. All but two membrane components are encoded in nuclear genes, synthesized on cytoplasmic ribosomes, and imported into the matrix of the organelle, where they are assembled into the complex with ATP6 and ATP8, the products of overlapping genes in mitochondrial DNA. Disruption of individual human genes for the nuclear-encoded subunits in the membrane portion of the enzyme leads to the formation of intermediate vestigial ATPase complexes that provide a description of the pathway of assembly of the membrane domain. The key intermediate complex consists of the F 1 -c 8 complex inhibited by the ATPase inhibitor protein IF 1 and attached to the peripheral stalk, with subunits e, f, and g associated with the membrane domain of the peripheral stalk. This intermediate provides the template for insertion of ATP6 and ATP8, which are synthesized on mitochondrial ribosomes. Their association with the complex is stabilized by addition of the 6.8 proteolipid, and the complex is coupled to ATP synthesis at this point. A structure of the dimeric yeast F o membrane domain is consistent with this model of assembly. The human 6.8 proteolipid (yeast j subunit) locks ATP6 and ATP8 into the membrane assembly, and the monomeric complexes then dimerize via interactions between ATP6 subunits and between 6.8 proteolipids (j subunits). The dimers are linked together back-to-face by DAPIT (diabetes-associated protein in insulin-sensitive tissue; yeast subunit k), forming long oligomers along the edges of the cristae.

  4. Tin(II Selective PVC Membrane Electrode Based on Salicylaldehyde Thiosemicarbazone as an Ionophore

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2013-01-01

    Full Text Available A polymeric membrane-based tin selective electrode was developed by using salicylaldehyde thiosemicarbazone (STSC. The best performance was recorded with a membrane composition of PVC : TBP : ionophore : NaTPB as 28 : 59 : 8 : 5 (w/w%. The Nernstian slope calculated from the calibration curve for Sn2+ sensor was 28.8 ± 0.4 mV/decade. The detection limit of the sensor was 2.10 × 10−8 M, in the linear concentration range of 1.0 × 10−2−1.1 × 10−7 M. It was relatively fast response time (<8 s for concentration ≥1.0×10−4 and <12 s for concentration of ≥1.0×10−6 M and can be used for 9 months without any considerable divergence in potentials. The proposed sensor exhibit relatively good selectivity and high sensitivity for tin(II as other mono-, di-, and trivalent cations and can be used in a pH range of 2.0–8.5. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of stannous in artificially made samples.

  5. Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; W Salleh, W N; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Mohamad, Abu Bakar; M Zain, M F; Awang, Nor Asikin; Mohd Hir, Zul Adlan

    2017-02-10

    This research involves the rare utilisation of the kapok fibre (Ceiba pentandra) as a raw material for the fabrication of cellulose nanocrystal (CNC) and self-assembled CNC membranes. The isolation of CNC from Ceiba pentandra began with the extraction of cellulose via the chemical alkali extraction by using 5wt% NaOH, followed by the typical acidified bleaching method and, finally, the CNC production through acid hydrolysis with 60wt% H 2 SO 4 at the optimum time of 60min. The prepared CNC was then employed for the preparation of self-assembled membrane through the water suspension casting evaporation technique. The obtained CNC membrane was characterised in terms of its composition, crystallinity, thermal stability, as well as, structural and morphological features with the use of several techniques including FTIR, XRD, AFM, TEM, FESEM, and TGA. The FESEM and AFM analyses had illustrated the achievement of a self-assembled CNC membrane with a smooth surface and a well-distributed nano-porous structure, with the porosity of 52.82±7.79%. In addition, the findings proved that the self-assembled CNC membrane displayed good adsorption capability indicated by the recorded efficiency of 79% and 85% for 10mg/L and 5mg/L of methylene blue in an aqueous solution, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. AC electrokinetic drug delivery in dentistry using an interdigitated electrode assembly powered by inductive coupling.

    Science.gov (United States)

    Ivanoff, Chris S; Wu, Jie Jayne; Mirzajani, Hadi; Cheng, Cheng; Yuan, Quan; Kevorkyan, Stepan; Gaydarova, Radostina; Tomlekova, Desislava

    2016-10-01

    AC electrokinetics (ACEK) has been shown to deliver certain drugs into human teeth more effectively than diffusion. However, using electrical wires to power intraoral ACEK devices poses risks to patients. The study demonstrates a novel interdigitated electrode arrays (IDE) assembly powered by inductive coupling to induce ACEK effects at appropriate frequencies to motivate drugs wirelessly. A signal generator produces the modulating signal, which multiplies with the carrier signal to produce the amplitude modulated (AM) signal. The AM signal goes through the inductive link to appear on the secondary coil, then rectified and filtered to dispose of its carrier signal, and the positive half of the modulating signal appears on the load. After characterizing the device, the device is validated under light microscopy by motivating carboxylate-modified microspheres, tetracycline, acetaminophen, benzocaine, lidocaine and carbamide peroxide particles with induced ACEK effects. The assembly is finally tested in a common dental bleaching application. After applying 35 % carbamide peroxide to human teeth topically or with the IDE at 1200 Hz, 5 Vpp for 20 min, spectrophotometric analysis showed that compared to diffusion, the IDE enhanced whitening in specular optic and specular optic excluded modes by 215 % and 194 % respectively. Carbamide peroxide absorbance by the ACEK group was two times greater than diffusion as measured by colorimetric oxidation-reduction and UV-Vis spectroscopy at 550 nm. The device motivates drugs of variable molecular weight and structure wirelessly. Wireless transport of drugs to intraoral targets under ACEK effects may potentially improve the efficacy and safety of drug delivery in dentistry.

  7. Poly(vinyl chloride) membrane alkali metal ion-selective electrodes based on crystalline synthetic zeolite of the Faujasite type

    International Nuclear Information System (INIS)

    Aghai, H.; Giahi, M.; Arvand Barmehi, M.

    2002-01-01

    Potentiometric electrodes based on the incorporation of zeolite particle in to poly (vinyl chloride) (pvc) membranes are described. The electrodes characteristics are evaluated regarding the response towards alkali ions. Pvc membranes plasticised with dibutyl phthalate and without lipophilic additives (co-exchanger) were used throughout this study. The electrode exhibits a Nernst ion response over the alkali metal cations concentration a range of 1.0x10 - 4 - 1.0 x 10 1 M with a slop of 57.0 ± 0.9 mV per decade of concentration a working ph range (3.0- 9.0) and a fast response time (≤15 c). The selective coefficients for cesium ion as test species with respect to alkaline earth, ammonium and some heavy metal ions were determined. Zeolite-PVC electrodes were applied to the determination of ionic surfactant

  8. Polymersomes with asymmetric membranes and self-assembled superstructures using pentablock quintopolymers resolved by electron tomography

    KAUST Repository

    Haataja, J. S.

    2018-01-09

    Polystyrene-block-poly(1,4-isoprene)-block-poly(dimethyl siloxane)-block-poly(tert-butyl methacrylate)-block-poly(2-vinyl pyridine), PS-b-PI-b-PDMS-b-PtBMA-b-P2VP, self-assembles in acetone into polymersomes with asymmetric (directional) PI-b-PDMS membranes. The polymersomes, in turn, self-assemble into superstructures. Analogically to supravesicular structures at a smaller length scale, we refer to them as suprapolymersome structures. Electron tomograms are shown to be invaluable in the structural assessment of such complex self-assemblies.

  9. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

    Science.gov (United States)

    Cisar, Alan J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    1997-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.

  10. Self-assembled isoporous block copolymer membranes with tuned pore sizes

    KAUST Repository

    Yu, Haizhou

    2014-07-23

    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Self-assembled isoporous block copolymer membranes with tuned pore sizes.

    Science.gov (United States)

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2014-09-15

    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Optimization of polymeric triiodide membrane electrode based on clozapine-triiodide ion-pair using experimental design.

    Science.gov (United States)

    Farhadi, Khalil; Bahram, Morteza; Shokatynia, Donya; Salehiyan, Floria

    2008-07-15

    Central composite design (CCD) and response surface methodology (RSM) were developed as experimental strategies for modeling and optimization of the influence of some variables on the performance of a new PVC membrane triiodide ion-selective electrode. This triiodide sensor is based on triiodide-clozapine ion-pair complexation. PVC, plasticizers, ion-pair amounts and pH were investigated as four variables to build a model to achieve the best Nernstian slope (59.9 mV) as response. The electrode is prepared by incorporating the ion-exchanger in PVC matrix plasticized with 2-nitrophenyl octal ether, which is directly coated on the surface of a graphite electrode. The influence of foreign ions on the electrode performance was also investigated. The optimized membranes demonstrate Nernstian response for triiodide ions over a wide linear range from 5.0 x 10(-6) to 1.0 x 10(-2)mol L(-1) with a limit of detection 2.0 x 10(-6) mol L(-1) at 25 degrees C. The electrodes could be used over a wide pH range 4-8, and have the advantages of easy to prepare, good selectivity and fast response time, long lifetime (over 3 months) and small interferences from hydrogen ion. The proposed electrode was successfully used as indicator electrode in potentiometric titration of triiodide ions and ascorbic acid.

  13. Self-assembly in casting solutions of block copolymer membranes

    KAUST Repository

    Marques, Debora S.

    2013-01-01

    Membranes with exceptional pore regularity and high porosity were obtained from block copolymer solutions. We demonstrate by small-angle X-ray scattering that the order which gives rise to the pore morphology is already incipient in the casting solution. Hexagonal order was confirmed in PS-b-P4VP 175k-b-65k solutions in DMF/THF/dioxane with concentrations as high as 24 wt%, while lamellar structures were obtained in more concentrated solutions in DMF or DMF/dioxane. The change in order has been understood with the support of dissipative particle dynamic modeling. © 2013 The Royal Society of Chemistry.

  14. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)], E-mail: akscyfcy@iitr.ernet.in; Jain, A.K.; Mehtab, Sameena [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2007-08-10

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2 x 10{sup -7} to 1.0 x 10{sup -2} M (detection limit 5.5 x 10{sup -8} M) with a Nernstian slope of 19.7 mV decade{sup -1} of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb{sup 3+} ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.

  15. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier

    International Nuclear Information System (INIS)

    Singh, A.K.; Jain, A.K.; Mehtab, Sameena

    2007-01-01

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2 x 10 -7 to 1.0 x 10 -2 M (detection limit 5.5 x 10 -8 M) with a Nernstian slope of 19.7 mV decade -1 of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb 3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples

  16. Probing a self-assembled fd virus membrane with a microtubule.

    Science.gov (United States)

    Xie, Sheng; Pelcovits, Robert A; Hagan, Michael F

    2016-06-01

    The self-assembly of highly anisotropic colloidal particles leads to a rich variety of morphologies whose properties are just beginning to be understood. This article uses computer simulations to probe a particle-scale perturbation of a commonly studied colloidal assembly, a monolayer membrane composed of rodlike fd viruses in the presence of a polymer depletant. Motivated by experiments currently in progress, we simulate the interaction between a microtubule and a monolayer membrane as the microtubule "pokes" and penetrates the membrane face-on. Both the viruses and the microtubule are modeled as hard spherocylinders of the same diameter, while the depletant is modeled using ghost spheres. We find that the force exerted on the microtubule by the membrane is zero either when the microtubule is completely outside the membrane or when it has fully penetrated the membrane. The microtubule is initially repelled by the membrane as it begins to penetrate but experiences an attractive force as it penetrates further. We assess the roles played by translational and rotational fluctuations of the viruses and the osmotic pressure of the polymer depletant. We find that rotational fluctuations play a more important role than the translational ones. The dependence on the osmotic pressure of the depletant of the width and height of the repulsive barrier and the depth of the attractive potential well is consistent with the assumed depletion-induced attractive interaction between the microtubule and viruses. We discuss the relevance of these studies to the experimental investigations.

  17. Assembly of β-barrel proteins in the mitochondrial outer membrane.

    Science.gov (United States)

    Höhr, Alexandra I C; Straub, Sebastian P; Warscheid, Bettina; Becker, Thomas; Wiedemann, Nils

    2015-01-01

    Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Membranes Prepared by Self-assembly and Chelation Assisted Phase Inversion

    KAUST Repository

    Xie, Yihui

    2017-05-19

    We combine self-assembly in solution, complexation with metallic salts and phase separation induced by solvent-non-solvent exchange to prepare nanostructured membranes for separation in the nanofiltration range. The method was applied to synthesized poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) copolymers dissolved in a selective solvent mixture and immersed in aqueous Cu2+ or Ag+ solutions.

  19. The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties

    NARCIS (Netherlands)

    Wang, [No Value; Shi, FX; Wosten, HAB; Hektor, H; Poolman, B; Robillard, GT; Wang, X.; Shi, Fuxin

    Hydrophobins are a class of small proteins that fulfill a wide spectrum of functions in fungal growth and development. They do so by self-assembling into an amphipathic membrane at hydrophilic-hydrophobic interfaces. The SC3 hydrophobin of Schizophyllum commune is the best-studied hydrophobin. It

  20. Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon

    NARCIS (Netherlands)

    Rep, M; van Dijl, J M; Suda, K; Schatz, G; Grivell, L A; Suzuki, C K

    1996-01-01

    Afg3p and Rca1p are adenosine triphosphate (ATP)-dependent metalloproteases in yeast mitochondria. Cells lacking both proteins exhibit defects in respiration-dependent growth, degradation of mitochondrially synthesized proteins, and assembly of inner-membrane complexes. Defects in growth and protein

  1. Micellar Self-Assembly of Block Copolymers for Fabrication of Nanostructured Membranes

    KAUST Repository

    Marques, Debora S.

    2013-11-01

    This research work examines the process of block copolymer membrane fabrication by self-assembly combined by non-solvent induced phase separation. Self-assembly takes place from the preparation of the primordial solution until the moment of immersion in a non-solvent bath. These mechanisms are driven thermodynamically but are limited by kinetic factors. It is shown in this work how the ordering of the assembly of micelles is improved by the solution parameters such as solvent quality and concentration of block copolymer. Order transitions are detected, yielding changes in the morphology. The evaporation of the solvents after casting is demonstrated to be essential to reach optimum membrane structure. The non-solvent bath stops the phase separation at an optimum evaporation time.

  2. Improving the Response of Copper(II) Selective PVC Membrane Electrode by Modification of N2S2 Donor Ligand.

    Science.gov (United States)

    Brinić, Slobodan; Buzuk, Marijo; Generalić, Eni; Bralić, Marija

    2010-06-01

    S,S'-bis(2-aminophenyl)ethanebis(thioate), (APhET), is reported as N2S2 ligand which form chelate with copper of high stability as compared to the other metals. Two modification of APhET, simpler 1,2-di-(o-aminophenylthio)ethane (DAPhTE), and the complex one 1,2-di-(o-salicylaldiminophenylthio)ethane (SAPhTE), were examined as the active material for copper(II) ion selective PVC membrane electrodes, and observed results are correlated. The obtained results with DAPhTE based electrodes show that only coordination abilities of ligand are insufficient for preparing the efficient membrane material. On the other hand, the results that are achieved with electrodes based on SAPhTE actuate interaction of ligand with polymer membrane matrix and necessity of ionophore immobilization in membrane. Optimized SAPhTE based membrane electrode has a linear range down to 10-6 mol L-1, with slope of 27.0 mV per decade, very rapid response time (under 5 seconds) and detection limit of 5.1 × 10-7 mol L-1. Such electrode is suitable for determination of copper(II) in analytical measurements by direct potentiometry and in potentiometric titrations, within pH between 2 and 7. The electrode is selective for copper(II) ions over a large number of metal ions, with the exception on Hg2+ ion when is present in concentrations above 2 × 10-5 mol L-1.

  3. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    Science.gov (United States)

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2-O2 proton exchange membrane fuel cells

    Science.gov (United States)

    Ebenezer, D.; Deshpande, Abhijit P.; Haridoss, Prathap

    2016-02-01

    Proton exchange membrane fuel cell (PEMFC) performance with a cross-linked poly (vinyl alcohol)/sulfosuccinic acid (PVA/SSA) polymer is compared with Nafion® N-115 polymer. In this study, PVA/SSA (≈5 wt. % SSA) polymer membranes are synthesized by a solution casting technique. These cross-linked PVA/SSA polymers and Nafion are used as electrolytes and ionomers in catalyst layers, to fabricate different membrane electrode assemblies (MEAs) for PEMFCs. Properties of each MEA are evaluated using scanning electron microscopy, contact angle measurements, impedance spectroscopy and hydrogen pumping technique. I-V characteristics of each cell are evaluated in a H2-O2 fuel cell testing fixture under different operating conditions. PVA/SSA ionomer causes only an additional ≈4% loss in the anode performance compared to Nafion ionomer. The maximum power density obtained from PVA/SSA based cells range from 99 to 117.4 mW cm-2 with current density range of 247 to 293.4 mA cm-2. Ionic conductivity of PVA/SSA based cells is more sensitive to state of hydration of MEA, while maximum power density obtained is less sensitive to state of hydration of MEA. Maximum power density of cross-linked PVA/SSA membrane based cell is about 35% that of Nafion® N-115 based cell. From these results, cross-linked PVA/SSA polymer is identified as potential candidate for PEMFCs.

  5. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus.

    Science.gov (United States)

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A; Fraser, Mark E; Scott, Jordan L; Soni, Smita P; Jones, Keaton R; Digman, Michelle A; Gratton, Enrico; Tessier, Charles R; Stahelin, Robert V

    2015-09-01

    Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. Copyright © 2015, American

  6. Mg(II Selective PVC Membrane Electrode Based on Methyl Phenyl Semicarbazone as an Ionophore

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2013-01-01

    Full Text Available A PVC-membrane-based Mg(II selective electrode was constructed using methyl phenyl semicarbazone (MPS as a neutral carrier. The sensor exhibits a Nernstian response for Mg(II ion over a wide concentration range 1.0×10-8  to  1.0×10-1 M with the slope of 28.4 mV/per decade having detection limit 1.7×10-9 M. It was relatively a fast response time (<10 s for concentration ≥1.0×10-3 and <15 s for concentration of ≥1.0×10-6 M and can be used for 8 months without any considerable divergence in potentials. The proposed sensor revealed relatively good selectivity and high sensitivity for Mg(II over a mono-, di-, and trivalent cation and can be used in a pH range of 1.0–9.5. It was also successfully used as an indicator electrode in potentiometer titration and in the analysis of concentration of magnesium in various real samples.

  7. High flux nanofiltration membranes based on layer-by-layer assembly modified electrospun nanofibrous substrate

    Science.gov (United States)

    Xu, Guo-Rong; Liu, Xiao-Yu; Xu, Jian-Mei; Li, Lu; Su, Hui-Chao; Zhao, He-Li; Feng, Hou-Jun

    2018-03-01

    Herein, high flux nanofiltration (NF) membranes were fabricated by combined procedures of electrospinning, layer-by-layer (LBL) assembly, and phase inversion. The membranes displayed three-dual structure constituted polyether sulfone (PES) coating layer, LBL assembly modified electrospun polyester (PET) nanofibrous mats, and non-woven supports. High flux NF membranes thus prepared are characterized by ultrathin phase inversion layer (∼10 μm) while that of conventional membranes are 100-150 μm, implying that very high flux could be expected. Various factors including electrospinning conditions, chitosan (CHI)/alginate (ALG) concentration, PES concentration, exposed time, coagulating temperature, thermal treatment, and sulfonated poly ether ketone (SPEEK) content were systematically investigated. Structures of the membranes were characterized by field emission scanning electron microscopy (FESEM), mechanical properties test, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and static contact angle measurements. The separation experiments indicated that thus prepared membranes exhibited high flux of as high as ∼75 L m-2 h-1 with Mg SO4 rejection of ∼80%.

  8. Preparation and characterization of composite membrane via layer by layer assembly for desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wasim, Maria, E-mail: maria-be24@hotmail.co.uk; Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Jamil, Tahir

    2017-02-28

    Highlights: • Cellulose acetate based polymer composite membranes were formed via layer by layer assembly for nanofiltration. • Modified membranes shown improved MgSO{sub 4} salt rejection property up to 98.9%. • Surface roughness and antibacterial property of fabricated membrane were successfully studied. - Abstract: Cellulose acetate (CA) incorporated with sepiolite and Polyvinylpyrrolidone (PVP) multilayer composite on Polysulfone (PSf) substrate have been prepared by layer by layer (LbL) assembly method. Fourier TransformInfrared Spectroscopy (FTIR) results verified the hydrogen bonding among the components of composite membrane. Atomic force microscopy (AFM), scanning electron microscope (SEM) was carried out for the determination and elucidation of roughness and morphology of the fabricated membranes on PSf substrate. The AFM and SEM results showed the increased surface roughness with the porous and spongy structure. The performance results verified that the successful incorporation of sepiolite in membranes showed maximum MgSO{sub 4} rejection (98.9%) and flux of 38.7 L/m{sup 2} h. Whereas, in case of NaCl the rejection is 98.3% and flux is 34.9L/m{sup 2} h. The modification was evidenced to be effective in increasing the surface hydrophilicity that led to increase in surface roughness. The chlorine resistivity is improved by dropping the active sites for chlorine attack and protecting the underlying PSf substrate.

  9. Electrochemical characterization of self-assembled monolayers (SAMs) of silanes on indium tin oxide (ITO) electrodes--tuning electron transfer behaviour across electrode-electrolyte interface.

    Science.gov (United States)

    Muthurasu, A; Ganesh, V

    2012-05-15

    In this work, we have systematically investigated the formation and characterization of Self-assembled Monolayer (SAM) films of several silanes on indium tin oxide (ITO) surfaces. Silane molecules having different domains namely substrate binding domain (siloxanes), electron transport region (aliphatic and aromatic spacer) and terminal functional groups (-SH, -CH(3) groups) are employed for the study in order to tune the electron transfer (ET) behaviour across SAM modified electrode-electrolyte interface. Structural characterization of these monolayer films is carried out using X-ray photoelectron spectroscopy (XPS) studies. Wettability (hydrophilic and hydrophobic nature) of such modified electrodes is evaluated using contact angle measurements. ET behaviour of these modified electrodes is investigated by electrochemical techniques namely cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using K(4)Fe(II)(CN)(6)|K(3)Fe(III)(CN)(6) redox couple as a probe. Disappearance of redox peaks in the CV measurements and formation of semicircle having a higher charge transfer resistance (R(ct)) values during EIS studies suggest that the resultant monolayer films are compact, highly ordered with very low defects and posses good blocking property with less pinholes. The heterogeneous ET rate constant (k) values are determined from EIS by fitting them to an appropriate equivalent circuit model. Based on our results, we comment on tuning the ET behaviour across the interface by a proper choice of spacer region. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Thiocyanate ion-selective PVC membrane electrode based on N,N'-ethylene-bis(4-methylsalicylidineiminato)nickel(II).

    Science.gov (United States)

    Mazloum Ardakani, M; Jamshidpour, M; Naeimi, H; Moradi, L

    2006-09-01

    A highly selective poly(vinyl chloride) (PVC) membrane electrode based on an N,N'-ethylene-bis(4-methyl-salicylidineiminato) nickel(II) [Ni(EBMSI)] complex as a carrier for a thiocyanate-selective electrode is reported. The influences of the membrane composition, pH and possible interfering anions were investigated based on the response properties of the electrode. The electrode exhibited a good Nernstian slope of -58.9 +/- 0.7 mV decade(-1), over a wide pH range of 3.5 - 8.5 and a linear range of 1.0 x 10(-6) - 1.0 x 10(-1) M for thiocyanate. The detection limit of electrode was 3.1 x 10(-7) M SCN(-). The selectivity coefficients determined by a fixed interference method (FIM) indicate that a good discriminating ability towards the SCN- ion compared to other anions. The proposed sensor had a fast response time of about 5 - 15 s and could be used for at least 3 months without any considerable divergence in the potential. It was applied as an indicator electrode in the titration of thiocyanate with Ag+ and in the potentiometric determination of thiocyanate in saliva and urine samples.

  11. Method of improving fuel cell performance by removing at least one metal oxide contaminant from a fuel cell electrode

    Science.gov (United States)

    Kim, Yu Seung [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Zelenay, Piotr [Los Alamos, NM

    2009-08-18

    A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.

  12. Effect of the Phase Volume Ratio on the Potential of a Liquid-Membrane Ion-Selective Electrode

    Czech Academy of Sciences Publication Activity Database

    Samec, Zdeněk; Girault, H. H.

    2004-01-01

    Roč. 76, č. 14 (2004), s. 4150-4155 ISSN 0003-2700 R&D Projects: GA MŠk ME 502 Institutional research plan: CEZ:AV0Z4040901 Keywords : liquit-membrane * ion-selective electrode * two.phase liquid system Subject RIV: CG - Electrochemistry Impact factor: 5.450, year: 2004

  13. Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Di Li

    2017-07-01

    Full Text Available A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR, transmission electron microscopy (TEM, and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G and adenine (A. The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA.

  14. Stuides on a Pb2+-selective electrode with a macrocyclic liquid membrane. Potentiometric determination of Pb2+ ions

    Directory of Open Access Journals (Sweden)

    MARIAN ISVORANU

    2006-12-01

    Full Text Available This paper presents experimental and theoretical data regarding the design, characterization and analytical applications of a non-expensive, liquid-membrane ion-selective electrode for Pb2+ ions. The membrane is a solution of the active complex formed by Pb2+ ions with dibenzo-18-crown-6-ionophore (DB-[18]-C-6 extracted in propylene carbonate (PC. The sucessful application of the developed electrode for the determination of Pb2+ ions in aqueos solution samples by direct potentiometry and potentiometric titration is presented. For the presented analytical results, there are insignificant systematic errors between the direct potentiometric method with the developed ion-selective electrode and atomic absorption spectrometry.

  15. Electrophoretic self-assembly of expanded mesocarbon microbeads with attached nickel nanoparticles as a high-rate electrode for supercapacitors

    Science.gov (United States)

    Wu, Mao-Sung; Fu, Yan-Hao

    2014-03-01

    Expanded mesocarbon microbeads (EMCMBs) with graphene oxide (GO) sheets were prepared by expanding graphitized mesocarbon microbeads (MCMBs) using a simple solution-based oxidative process. EMCMB-supported nickel nanoparticles with an average size of 4.6 nm were fabricated by an electrophoretic deposition (EPD) method in the presence of nickel nitrate additive. Nickel ions were self-assembled on the fluffy GO sheets resulting in a more positively charged EMCMB particle for facilitating EPD and dispersion. After heat treatment at 300 °C, GO could be converted to graphene which could provide a conductive network for facilitating the transport of electrons. Well-dispersed nickel nanoparticles on graphene sheets could act as a redox center to allow storage of extra charge and a nanospacer to prevent the graphene sheets from restacking. The specific capacitance of EMCMB-supported nickel electrode could reach 491 F g-1, which is much higher than that of EMCMB electrode (43 F g-1) and bare nickel electrode (146 F g-1) at a discharge current of 5 A g-1. More importantly, the EMCMB-supported nickel electrode is capable of delivering a high specific capacitance of 440 F g-1 at a discharge current of 50 A g-1, and could pave the way towards high-rate supercapacitors.Expanded mesocarbon microbeads (EMCMBs) with graphene oxide (GO) sheets were prepared by expanding graphitized mesocarbon microbeads (MCMBs) using a simple solution-based oxidative process. EMCMB-supported nickel nanoparticles with an average size of 4.6 nm were fabricated by an electrophoretic deposition (EPD) method in the presence of nickel nitrate additive. Nickel ions were self-assembled on the fluffy GO sheets resulting in a more positively charged EMCMB particle for facilitating EPD and dispersion. After heat treatment at 300 °C, GO could be converted to graphene which could provide a conductive network for facilitating the transport of electrons. Well-dispersed nickel nanoparticles on graphene sheets

  16. Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes.

    Science.gov (United States)

    Jiang, Yi; Wang, Wei-Ning; Liu, Di; Nie, Yao; Li, Wenlu; Wu, Jiewei; Zhang, Fuzhong; Biswas, Pratim; Fortner, John D

    2015-06-02

    In this work, we describe multifunctional, crumpled graphene oxide (CGO) porous nanocomposites that are assembled as advanced, reactive water treatment membranes. Crumpled 3D graphene oxide based materials fundamentally differ from 2D flat graphene oxide analogues in that they are highly aggregation and compression-resistant (i.e., π-π stacking resistant) and allow for the incorporation (wrapping) of other, multifunctional particles inside the 3D, composite structure. Here, assemblies of nanoscale, monomeric CGO with encapsulated (as a quasi core-shell structure) TiO2 (GOTI) and Ag (GOAg) nanoparticles, not only allow high water flux via vertically tortuous nanochannels (achieving water flux of 246 ± 11 L/(m(2)·h·bar) with 5.4 μm thick assembly, 7.4 g/m(2)), outperforming comparable commercial ultrafiltration membranes, but also demonstrate excellent separation efficiencies for model organic and biological foulants. Further, multifunctionality is demonstrated through the in situ photocatalytic degradation of methyl orange (MO), as a model organic, under fast flow conditions (tres properties, evaluated with GOAg, are observed for both biofilm (contact) and suspended growth scenarios (>3 log effective removal, Escherichia coli). This is the first demonstration of 3D, crumpled graphene oxide based nanocomposite structures applied specifically as (re)active membrane assemblies and highlights the material's platform potential for a truly tailored approach for next generation water treatment and separation technologies.

  17. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells

    KAUST Repository

    Lan, Xinzheng

    2013-01-06

    Herein, a solution-processed, bottom-up-fabricated, nanowire network electrode is developed. This electrode features a ZnO template which is converted into locally connected, infiltratable, TiO2 nanowires. This new electrode is used to build a depleted bulk heterojunction solar cell employing hybrid-passivated colloidal quantum dots. The new electrode allows the application of a thicker, and thus more light-absorbing, colloidal quantum dot active layer, from which charge extraction of an efficiency comparable to that obtained from a thinner, planar device could be obtained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Importance of Electrode Hot-Pressing Conditions for the Catalyst Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Larsen, Mikkel Juul

    2015-01-01

    lamination have a great influence on the catalyst properties of a low-temperature PEMFC, especially on its durability. Lamination pressure, temperature and duration were systematically studied in relation to the electrochemical surface area, platinum dissolution, platinum particle size and electrode surface...... composition. The degradation of the platinum catalyst and polymer was analyzed in relation to the preparation conditions. An optimal electrode interface structure can improve Pt performance by (1) providing high platinum utilization; (2) decreasing platinum migration and coalescence; (3) reducing carbon......The catalyst performance in a proton exchange membrane fuel cell (PEMFC) depends on not only the choice of materials, but also on the electrode structure and in particular on the interface between the components. In this work, we demonstrate that the hot-pressing conditions used during electrode...

  19. Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators.

    Science.gov (United States)

    Walde, Peter; Umakoshi, Hiroshi; Stano, Pasquale; Mavelli, Fabio

    2014-09-14

    This article deals with artificial vesicles and their membranes as reaction promoters and regulators. Among the various molecular assemblies which can form in an aqueous medium from amphiphilic molecules, vesicle systems are unique. Vesicles compartmentalize the aqueous solution in which they exist, independent on whether the vesicles are biological vesicles (existing in living systems) or whether they are artificial vesicles (formed in vitro from natural or synthetic amphiphiles). After the formation of artificial vesicles, their aqueous interior (the endovesicular volume) may become - or may be made - chemically different from the external medium (the exovesicular solution), depending on how the vesicles are prepared. The existence of differences between endo- and exovesicular composition is one of the features on the basis of which biological vesicles contribute to the complex functioning of living organisms. Furthermore, artificial vesicles can be formed from mixtures of amphiphiles in such a way that the vesicle membranes become molecularly, compositionally and organizationally highly complex, similarly to the lipidic matrix of biological membranes. All the various properties of artificial vesicles as membranous compartment systems emerge from molecular assembly as these properties are not present in the individual molecules the system is composed of. One particular emergent property of vesicle membranes is their possible functioning as promoters and regulators of chemical reactions caused by the localization of reaction components, and possibly catalysts, within or on the surface of the membranes. This specific feature is reviewed and highlighted with a few selected examples which range from the promotion of decarboxylation reactions, the selective binding of DNA or RNA to suitable vesicle membranes, and the reactivation of fragmented enzymes to the regulation of the enzymatic synthesis of polymers. Such type of emergent properties of vesicle membranes may

  20. Functionalized Nanoporous Track-Etched b-PVDF Membrane Electrodes for Heavy Metal Determination by Square-Wave Anodic Stripping Voltammetry

    Directory of Open Access Journals (Sweden)

    Bessbousse H.

    2013-04-01

    Full Text Available Track-etched functionalized nanoporous β-PVDF membrane electrodes, or functionalized membrane electrodes (FMEs, are electrodes made from track-etched, poly(acrylic acid (PAA functionalized nanoporous β-poly(vinylidene fluoride (β-PVDF membranes with thin porous Au films sputtered on each side as electrodes. To form the β-PVDF nanoporous membranes, β-PVDF films are irradiated by swift heavy ions. After irradiation, radical tracks are stable in the membranes. Chemical etching removes some of the radical tracks revealing nanopores. Radicals, remaining in the pores, initiate radio grafting of PAA from the pore walls of the nanoporous β-PVDF. PAA is a cation exchange polymer that adsorbs metal ions, such as Pb2+, from aqueous solutions thus concentrating the ions into the membrane. After a calibrated time the FME is transferred to an electrochemical cell for square-wave anodic stripping voltammetry analysis.

  1. Meso-scale Modeling of Block Copolymers Self-Assembly in Casting Solutions for Membrane Manufacture

    KAUST Repository

    Moreno Chaparro, Nicolas

    2016-05-01

    Isoporous membranes manufactured from diblock copolymer are successfully produced at laboratory scale under controlled conditions. Because of the complex phenomena involved, membrane preparation requires trial and error methodologies to find the optimal conditions, leading to a considerable demand of resources. Experimental insights demonstrate that the self-assembly of the block copolymers in solution has an effect on the final membrane structure. Nevertheless, the complete understanding of these multi-scale phenomena is elusive. Herein we use the coarse-grained method Dissipative Particle Dynamics to study the self-assembly of block copolymers that are used for the preparation of the membranes. To simulate representative time and length scales, we introduce a framework for model reduction of polymer chain representations for dissipative particle dynamics, which preserves the properties governing the phase equilibria. We reduce the number of degrees of freedom by accounting for the correlation between beads in fine-grained models via power laws and the consistent scaling of the simulation parameters. The coarse-graining models are consistent with the experimental evidence, showing a morphological transition of the aggregates as the polymer concentration and solvent affinity change. We show that hexagonal packing of the micelles can occur in solution within different windows of polymer concentration depending on the solvent affinity. However, the shape and size dispersion of the micelles determine the characteristic arrangement. We describe the order of crew-cut micelles using a rigid-sphere approximation and propose different phase parameters that characterize the emergence of monodisperse-spherical micelles in solution. Additionally, we investigate the effect of blending asymmetric diblock copolymers (AB/AC) over the properties of the membranes. We observe that the co-assembly mechanism localizes the AC molecules at the interface of A and B domains, and induces

  2. Highly selective PVC-membrane electrodes based on Co(II)-Salen for determination of nitrite ion.

    Science.gov (United States)

    Ganjali, Mohammad Reza; Rezapour, Morteza; Pourjavid, Mohammad Reza; Salavati-Niasari, Masoud

    2003-08-01

    A cobalt(II) derivative was used as a suitable ionophore for the preparation of a polymeric membrane nitrite-selective electrode. The electrode reveals a Nemstian behavior over a very wide NO2- ion concentration range (1.0 x 10(-6)-1.0 x 10(-1) M) and a very low detection limit (5.0 x 10(-7) M). The potentiometric response is independent of the pH of solution in the pH range 4.0-9.5. The electrode shows advantages such as low resistance, fast response and, most importantly, good selectivity relative to a wide variety of inorganic and organic anions. In fact, the selectivity behavior of the proposed NO2- ion-selective electrode shows great improvements compared to the previously reported electrodes for nitrite ion. The proposed electrodes could be used for at least 2 months without any significant changes in potentials. The electrode was successfully applied to the determination of nitrate ion concentrations in sausage and milk samples.

  3. Understanding the structure and performance of self-assembled triblock terpolymer membranes

    KAUST Repository

    Pendergast, MaryTheresa M.

    2013-10-01

    Nanoporous membranes represent a possible route towards more precise particle and macromolecular separations, which are of interest across many industries. Here, we explored membranes with vertically-aligned nanopores formed from a poly(isoprene-. b-styrene-. b-4 vinyl pyridine) (ISV) triblock terpolymer via a hybrid self-assembly/nonsolvent induced phase separation process (S-NIPS). ISV concentration, solvent composition, and evaporation time in the S-NIPS process were varied to tailor ordering of the selective layer and produce enhanced water permeability. Here, water permeability was doubled over previous versions of ISV membranes. This was achieved by increasing volatile solvent concentration, thereby decreasing the evaporation period required for self-assembly. Fine-tuning was required, however, since overly-rapid evaporation did not yield the desired pore structure. Transport models, used to relate the in-. situ structure to the performance of these materials, revealed narrowing of pores and blocking by the dense region below. It was shown that these vertically aligned nanoporous membranes compare favorably with commercial ultrafiltration membranes formed by NIPS and track-etching processes, which suggests that there is practical value in further developing and optimizing these materials for specific industrial separations. © 2013 Elsevier B.V.

  4. Small-angle neutron scattering reveals the assembly of alpha-synuclein in lipid membranes.

    Science.gov (United States)

    Anunciado, Divina; Rai, Durgesh K; Qian, Shuo; Urban, Volker; O'Neill, Hugh

    2015-12-01

    The aggregation of α-synuclein (asyn), an intrinsically disordered protein (IDP), is a hallmark in Parkinson's disease (PD). We investigated the conformational changes that asyn undergoes in the presence of membrane and membrane mimetics using small-angle neutron scattering (SANS). In solution, asyn is monomeric and unfolded assuming an ensemble of conformers spanning extended and compact conformations. Using the contrast variation technique and SANS, the protein scattering signal in the membrane-protein complexes is selectively highlighted in order to monitor its conformational changes in this environment. We showed that in the presence of phospholipid membranes asyn transitions from a monodisperse state to aggregated structures with sizes ranging from 200 to 900Å coexisting with the monomeric species. Detailed SANS data analysis revealed that asyn aggregates have a hierarchical organization in which clusters of smaller asyn aggregates assemble to form the larger structures. This study provides new insight into the mechanism of asyn aggregation. We propose an aggregation mechanism in which stable asyn aggregates seed the aggregation process and hence the hierarchical assembly of structures. Our findings demonstrate that membrane-induced conformational changes in asyn lead to its heterogeneous aggregation which could be physiologically relevant in its function or in the diseased state. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synthesis and characterization of tethered lipid assemblies for membrane protein reconstitution (Review).

    Science.gov (United States)

    Veneziano, Rémi; Rossi, Claire; Chenal, Alexandre; Brenner, Catherine; Ladant, Daniel; Chopineau, Joël

    2017-09-28

    Biological membranes and their related molecular mechanisms are essential for all living organisms. Membranes host numerous proteins and are responsible for the exchange of molecules and ions, cell signaling, and cell compartmentation. Indeed, the plasma membrane delimits the intracellular compartment from the extracellular environment and intracellular membranes. Biological membranes also play a major role in metabolism regulation and cellular physiology (e.g., mitochondrial membranes). The elaboration of membrane based biomimetic systems allows us to reconstitute and investigate, in controlled conditions, biological events occurring at the membrane interface. A whole variety of model membrane systems have been developed in the last few decades. Among these models, supported membranes were developed on various hydrophilic supports. The use of solid supports enables the direct use of surface sensitive techniques (e.g., surface plasmon resonance, quartz crystal microbalance, and atomic force microscopy) to monitor and quantify events occurring at the membrane surface. Tethered bilayer membranes (tBLMs) could be considered as an achievement of the first solid supported membranes described by the McConnell group. Tethered bilayers on solid supports were designed to delimit an inside compartment from an outside one. They were used for measuring interactions with ligands or incorporating large membrane proteins or complexes without interference with the support. In this context, the authors developed an easy concept of versatile tBLMs assembled on amino coated substrates that are formed upon the vesicle fusion rupture process applicable to protein-free vesicles as well as proteoliposomes. The phospholipid bilayer (natural or synthetic lipids) incorporated 5% of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly ethylene glycol-N-hydroxy succinimide to ensure the anchorage of the bilayer to the amino coated surface. The conditions for the formation of tBLMs on amino

  6. Shape Selection in Self-Assembled Chiral Membranes: New Mechanism Based on the Flexoelectric Effect

    Science.gov (United States)

    Lu, Zhao; Selinger, Robin; Selinger, Jonathan

    2006-03-01

    Many biological materials self-assemble into chiral microstructures such as cylindrical tubules and helical ribbons. A chiral elastic theory proposed by Selinger et al., based on the elastic properties and chirality of amphiphilic lipid molecules, has been successful in explaining the formation of tubules and helical ribbons. Recently, an experiment has shown that achiral lipid molecules can also form chiral microstructures. This challenges the previous theory based on molecular chirality. Toward understanding this problem, we develop a new model for membrane shape selection based on the flexoelectric effect. We investigate this model through both analytical calculations and dissipative particle dynamic simulations on tethered membranes.

  7. Analysis of Perforin Assembly by Quartz Crystal Microbalance Reveals a Role for Cholesterol and Calcium-independent Membrane Binding*

    Science.gov (United States)

    Stewart, Sarah E.; Bird, Catherina H.; Tabor, Rico F.; D'Angelo, Michael E.; Piantavigna, Stefania; Whisstock, James C.; Trapani, Joseph A.; Martin, Lisandra L.; Bird, Phillip I.

    2015-01-01

    Perforin is an essential component in the cytotoxic lymphocyte-mediated cell death pathway. The traditional view holds that perforin monomers assemble into pores in the target cell membrane via a calcium-dependent process and facilitate translocation of cytotoxic proteases into the cytoplasm to induce apoptosis. Although many studies have examined the structure and role of perforin, the mechanics of pore assembly and granzyme delivery remain unclear. Here we have employed quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate binding and assembly of perforin on lipid membranes, and show that perforin monomers bind to the membrane in a cooperative manner. We also found that cholesterol influences perforin binding and activity on intact cells and model membranes. Finally, contrary to current thinking, perforin efficiently binds membranes in the absence of calcium. When calcium is added to perforin already on the membrane, the QCM-D response changes significantly, indicating that perforin becomes membranolytic only after calcium binding. PMID:26542805

  8. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris [Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Shimoni, Eyal; Kaplan-Ashiri, Ifat [Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Werle, Kai; Wohlleben, Wendel [Department of Material Physics, Materials and Systems Research, BASF SE, 67056, Ludwigshafen (Germany)

    2017-02-13

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Liquid crystalline graphene oxide/PEDOT:PSS self-assembled 3D architecture for binder-free supercapacitor electrodes

    Directory of Open Access Journals (Sweden)

    Monirul eIslam

    2014-08-01

    Full Text Available Binder-free self-assembled 3D architecture electrodes have been fabricated by a novel convienient method. Liquid crystalline graphene oxide (LC GO was used as precursor to interact with poly(3,4-ethylene-dioxythiophene:poly(styrenesulfonate (PEDOT:PSS in dispersion in order to form a conductive polymer entrapped, self-assembled layer-by-layer structure. This advanced network containing PEDOT:PSS enabled us to ascribe the superior electrochemical properties of particular graphene sheets. This layer-by-layer self-assembled 3D architecture of best performing composite (rGO-PEDOT:PSS 25 showed excellent electrochemical performance of 434 F g-1 through chemical treatment. To highlight these advances, we further explored the practicality of the as-prepared electrode by varying the composite material content. An asymmetric supercapacitor device using aqueous electrolyte was also studied of this same composite. The resulting performance from this set up included a specific capacitance of 132 F g-1. Above all, we observed an increase in specific capacitance (19% with increase in cycle life emphasizing the excellent stability of this device.

  10. Indirect amperometric sensing of dopamine using a redox-switchable naphthoquinone-terminated self-assembled monolayer on gold electrode

    International Nuclear Information System (INIS)

    Hammami, Asma; Raouafi, Noureddine; Sahli, Rihab

    2016-01-01

    We report on the design of a simple yet sensitive and selective electrode for amperometric determination of dopamine at a cathodic potential as low as −0.30 V vs. Ag/AgCl. The electrode was obtained by self-assembly of ω-mercaptopropyl naphthoquinone (NQ-SAM) on the surface of a polycrystalline gold electrode. The presence of dopamine induces an increase of the reduction current peak at −0.30 V corresponding to the reduction of naphthoquinone to hydronaphthoquinone. Dopamine and dopamine-quinone accumulate on the surface to form a 3D network linked by hydrogen bonds. Raman and infrared spectroscopy as well as atomic force microscopy confirmed the multilayer formation. The method allows dopamine to be indirectly detected at a working potential that is lower by 0.50 V than the standard oxidation potential at a bare gold electrode. The sensor shows distinct oxidation potentials for dopamine (120 mV), ascorbic acid (280 mV) and uric acid (520 mV) which makes the method fairly selective. The analytical range extends from 1 to 100 μM concentrations of dopamine, and the limits of detection and quantification are 0.040 and 0.134 μM, respectively. (author)

  11. Engineering particle morphology and assembly for proton conducting fuel cell membrane applications

    Science.gov (United States)

    Liu, Dongxia

    The development of high performance ion conducting membranes is crucial to the commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). This thesis work addresses some of the issues for improving the performance of ion conducting membranes in PEMFCs and SOFCs through engineering membrane microstructures. Electric-field directed particle assembly shows promise as a route to control the structure of polymer composite membranes in PEMFCs. The application of electric fields results in the aggregation of proton conducting particles into particle chains spanning the thickness of composite membranes. The field-induced structure provides improved proton conductivity, selectivity for protons over methanol, and mechanical stability compared to membranes processed without electric field. Hydrothermal deposition is developed as a route to grow electrolyte crystals into membranes (material is hydroxyapatite) with aligned proton conductive pathways that significantly enhance proton transport by eliminating grain boundary resistance. By varying deposition parameters such as reactant concentration, reaction time, or adding crystal growth modifiers, dense hydroxyapatite electrolyte membranes with a range of thickness are produced. The microstructurally engineered hydroxyapatite membranes are promising electrolyte candidates for intermediate temperature fuel cells. The microstructural engineering of ceramics by hydrothermal deposition can potentially be applied to create other ion conducting materials with optimized transport properties. To understand how to control the crystal growth habit by adding growth modifiers, growth of unusual calcite rods was investigated in a microemulsion-based synthesis prior to the investigation of hydrothermal deposition of hydroxyapatite membranes. The microemulsions act as crystal growth modifier to mediate crystal nucleation and subsequent growth. The small microemulsion droplets confine nucleation

  12. A parametric study of assembly pressure, thermal expansion, and membrane swelling in PEM fuel cells

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2016-01-01

    Proton Exchange membrane (PEM) fuel cells are still undergoing intense development, and the combination of new and optimized materials, improved product development, novel architectures, more efficient transport processes, and design optimization and integration are expected to lead to major gains in performance, efficiency, durability, reliability, manufacturability and cost-effectiveness. PEM fuel cell assembly pressure is known to cause large strains in the cell components. All components ...

  13. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle

    International Nuclear Information System (INIS)

    Singh, Ashok K.; Singh, Prerna

    2010-01-01

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L 1 ) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate- 1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L 2 ) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L 2 :PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L 2 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3 x 10 -8 mol L -1 for PME and 7.7 x 10 -9 mol L -1 for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples.

  14. Rab33B Controls Hepatitis B Virus Assembly by Regulating Core Membrane Association and Nucleocapsid Processing.

    Science.gov (United States)

    Bartusch, Christina; Döring, Tatjana; Prange, Reinhild

    2017-06-21

    Many viruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Using RNA interference (RNAi), we demonstrate that the Golgi/autophagosome-associated Rab33B is required for hepatitis B virus (HBV) propagation in hepatoma cell lines. While Rab33B is dispensable for the secretion of HBV subviral envelope particles, its knockdown reduced the virus yield to 20% and inhibited nucleocapsid (NC) formation and/or NC trafficking. The overexpression of a GDP-restricted Rab33B mutant phenocopied the effect of deficit Rab33B, indicating that Rab33B-specific effector proteins may be involved. Moreover, we found that HBV replication enhanced Rab33B expression. By analyzing HBV infection cycle steps, we identified a hitherto unknown membrane targeting module in the highly basic C-terminal domain of the NC-forming core protein. Rab33B inactivation reduced core membrane association, suggesting that membrane platforms participate in HBV assembly reactions. Biochemical and immunofluorescence analyses provided further hints that the viral core, rather than the envelope, is the main target for Rab33B intervention. Rab33B-deficiency reduced core protein levels without affecting viral transcription and hampered core/NC sorting to envelope-positive, intracellular compartments. Together, these results indicate that Rab33B is an important player in intracellular HBV trafficking events, guiding core transport to NC assembly sites and/or NC transport to budding sites.

  15. Cyclic voltammetric investigations of microstructured and platinum-covered glassy carbon electrodes in contact with a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G.G.; Veziridis, Z.; Staub, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Freimuth, H. [Inst. fuer Mikrotechnik Mainz IMM, Mainz (Germany)

    1997-06-01

    Model gas diffusion electrodes were prepared by microstructuring glassy carbon surfaces with high aspect ratios and subsequent deposition of platinum. These electrodes were characterized by hydrogen under-potential deposition (H-upd) in contact with a polymer electrolyte membrane employing cyclic voltametry. H-upd was found on platinum areas not in direct contact to the solid electrolyte, as long as a continuous platinum-path existed. A carbon surface between platinum acts as barrier for H-upd. (author) 4 figs., 5 refs.

  16. Construction and performance characteristics of polymeric membrane electrode and coated graphite electrode for the selective determination of Fe³⁺ ion.

    Science.gov (United States)

    Bandi, Koteswara Rao; Singh, Ashok K; Upadhyay, Anjali

    2014-03-01

    Novel Fe(3+) ion-selective polymeric membrane electrodes (PMEs) were prepared using three different ionophores N-(4-(dimethylamino)benzylidene)thiazol-2-amine [L1], 5-((3-methylthiophene-2yl) methyleneamino)-1,3,4-thiadiazole-2-thiol [L2] and N-((3-methylthiophene-2yl)methylene)thiazol-2-amine [L3] and their potentiometric characteristics were discussed. Effect of various plasticizers and anion excluders was also studied in detail and improved performance was observed. The best performance was obtained for the membrane electrode having a composition of L2:PVC:o-NPOE:NaTPB as 3:38.5:56:2.5 (w/w; mg). A coated graphite electrode (CGE) was also prepared with the same composition and compared. CGE is found to perform better as it shows a wider working concentration range of 8.3×10(-8)-1.0×10(-1)molL(-1), a lower detection limit of 2.3×10(-8)molL(-1), and a near Nernstian slope of 19.5 ± 0.4 mVdecade(-1) of activity with a response time of 10s. The CGE shows a shelf life of 6 weeks and in view of high selectivity, it can be used to quantify Fe(3+) ion in water, soil, vegetable and medicinal plants. It can also be used as an indicator electrode in potentiometric titration of EDTA with Fe(3+) ion. Copyright © 2013. Published by Elsevier B.V.

  17. Membrane biofilm communities in full-scale membrane bioreactors are not randomly assembled and consist of a core microbiome

    KAUST Repository

    Matar, Gerald Kamil

    2017-06-21

    Finding efficient biofouling control strategies requires a better understanding of the microbial ecology of membrane biofilm communities in membrane bioreactors (MBRs). Studies that characterized the membrane biofilm communities in lab-and pilot-scale MBRs are numerous, yet similar studies in full-scale MBRs are limited. Also, most of these studies have characterized the mature biofilm communities with very few studies addressing early biofilm communities. In this study, five full-scale MBRs located in Seattle (Washington, U.S.A.) were selected to address two questions concerning membrane biofilm communities (early and mature): (i) Is the assembly of biofilm communities (early and mature) the result of random immigration of species from the source community (i.e. activated sludge)? and (ii) Is there a core membrane biofilm community in full-scale MBRs? Membrane biofilm (early and mature) and activated sludge (AS) samples were collected from the five MBRs, and 16S rRNA gene sequencing was applied to investigate the bacterial communities of AS and membrane biofilms (early and mature). Alpha and beta diversity measures revealed clear differences in the bacterial community structure between the AS and biofilm (early and mature) samples in the five full-scale MBRs. These differences were mainly due to the presence of large number of unique but rare operational taxonomic units (∼13% of total reads in each MBR) in each sample. In contrast, a high percentage (∼87% of total reads in each MBR) of sequence reads was shared between AS and biofilm samples in each MBR, and these shared sequence reads mainly belong to the dominant taxa in these samples. Despite the large fraction of shared sequence reads between AS and biofilm samples, simulated biofilm communities from random sampling of the respective AS community revealed that biofilm communities differed significantly from the random assemblages (P < 0.001 for each MBR), indicating that the biofilm communities (early

  18. Micromachined Dense Palladium Electrodes for Thin-film Solid Acid Fuel Cells

    NARCIS (Netherlands)

    Unnikrishnan, S.

    2009-01-01

    This thesis paves the way towards the microfabrication of a solid acid electrolyte based fuel cell (µSAFC), which has a membrane electrode assembly (MEA) consisting of a thin-film of water soluble electrolyte encapsulated between two dense palladium electrode membranes. This project work

  19. Membranes with charged nanopores from the assembly of random copolymer micelles

    Science.gov (United States)

    Asatekin, Ayse

    In this study, we aimed to prepare synthetic polymer membranes that can separate small molecule solutes based on charge by mimicking biological pores like ion channels: Pores 1-5 nm in diameter, lined with functional groups that interact with the target. We found that random copolymers that combine highly hydrophobic fluorinated repeat units of trifluoroethyl methacrylate with ionizable repeat units of methacrylic acid form micelles and vesicles in methanol. When these micelles are coated onto the surface of a porous support membrane whose pores are smaller than the micelles and then immersed into water, a selective layer of micelles packed together is formed. The gaps between the micelles act as carboxylate-functional nanochannels. The membrane showed charge-based selectivity between organic molecules, rejecting anionic solutes while passing neutral ones. The carboxyl groups can be post-functionalized to alter the selectivity of the membrane for desired separations. This shows the potential of using polymer self-assembly and functionality to design membranes that mimic biological pores while maintaining scalable manufacturing methods. We believe these approaches will eventually lead to novel membranes that can separate molecules of similar size but different chemical structure. We gratefully acknowledge financial support from Tufts University, the Tufts Collaborates program, and the National Science Foundation (NSF) under Grant No. CBET-1553661.

  20. One-Step Assembly of Molecular Separation Membranes by Direct Atomizing Oligomers.

    Science.gov (United States)

    Fan, Hongwei; Wang, Ren; Shan, Linglong; Yan, Hao; Li, Jie; Ji, Shulan; Lin, Haiqing; Zhang, Guojun

    2017-02-01

    Polymeric membranes are important materials for efficient sieving of targeted components at the molecular level and have made significant advancement in many industrial applications such as biofuel production, water purification, fuel combustion, and carbon dioxide capture. Although their separation efficiencies have been widely investigated, lack of more efficient, greener, and lower-cost membrane fabrication mechanisms is still a major hurdle for mass production, because the conventional membrane-making process is always time-consuming, highly inefficient, and consumes a large amount of organic solvents. Herein we report a one-step assembly concept capable of directly processing low-viscosity oligomers into polymer-based molecular separation membranes in an ultrafast and green manner. This process was implemented by alternate atomizing-depositing of low-viscosity oligomers and reaction auxiliary agents onto a rotating support and followed by an ultrafast interfacial reaction under solvent-free conditions. Without the need for dissolution processing of polymer, solvent evaporation, and any post-treatments, the whole technological process could be accomplished within a few seconds/minutes, which is 2-3 orders of magnitude faster than conventional solution-coating technologies. The universality of this facile approach has also been demonstrated by successfully producing various defect-free polymeric membranes and homodispersed nanohybrid membranes with excellent and stable performance for bioalcohol production and recovery of different trace organics from dilute solutions.

  1. Assembly of the alpha-toxin-hexamer of Staphylococcus aureus in the liposome membrane.

    Science.gov (United States)

    Ikigai, H; Nakae, T

    1987-02-15

    It has been shown that the access of the alpha-toxin of Staphylococcus aureus to the target membrane and assembly of the hexamer can be monitored independently by respectively measuring the fluorescence energy transfer from the tryptophan residue(s) of the toxin to the dansylated phosphatidylethanolamine in the liposome membrane and the fluorescence increment of the toxin at 336 nm (Ikigai, H., and Nakae, T., (1987) J. Biol. Chem. 262, 2150-2155). Measurement of these parameters under various conditions showed the following results: when phosphatidylcholine (PC) liposomes composed of saturated fatty acids were mixed with the toxin, the fluorescence energy transfer occurred below, at, and above the transition temperature of the lipid, but the change of fluorescence at 336 nm was never detectable; when PC-liposomes containing unsaturated fatty acids were used, both the fluorescence energy transfer and the fluorescence increment of 336 nm were observed. These results suggested that the toxin-membrane interaction occurs in PC-membranes containing saturated and/or unsaturated fatty acids and that the oligomerization occurs only in the presence of PC containing unsaturated fatty acid(s). This conclusion was supported by the results of quantitative determination of the toxin-hexamer assembly and leakage of carboxyfluorescein from PC-liposomes under conditions similar to the above.

  2. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    DEFF Research Database (Denmark)

    Chiriaev, Serguei; Dam Madsen, Nis; Rubahn, Horst-Günter

    2017-01-01

    electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM). A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its...

  3. All-Solid-State, PVC Membrane, and Carbon Paste Ion-Selective Electrodes for Determination of Donepezil Hydrochloride in Pharmaceutical Formulation.

    Science.gov (United States)

    Khamees, Nesreen; Mohamed, Tagreed Abdel-Fattah; Derar, Abeer Rashad; Aziz, Azza

    2017-09-01

    All-solid-state, polyvinyl chloride (PVC) membrane, and carbon paste potentiometric ion-selective electrodes (ISEs) were proposed for the determination of donepezil hydrochloride (DON) in the drug substance and a pharmaceutical formulation. The potentiometric response toward DON was based on the existence of donepezil-tetraphenyl borate (DON-TPB) in a PVC membrane or a carbon paste in the presence of dioctylphthalate. In contrast, the solid-state electrode was prepared by direct incorporation of DON-TPB into a commercial nail varnish without external additives. The electrodes exhibited Nernstian slopes of 55.0, 57.0, and 53.0 mV/decade over the concentration ranges of 1 × 10-5 to 1 × 10-3, 1 × 10-4 to 10-2, and 1 × 10-4 to 5 × 10-3 for the solid-state, PVC membrane, and carbon paste electrodes, respectively. The response of the electrodes is independent of pH in the range of 2-≤8. The electrodes showed good selectivity for DON with respect to a number of inorganic cations and amino acids. The electrodes were used for the determination of DON in pure solution and in pharmaceutical tablets with high accuracy (±2%) and precision (RSD ≤2%). The solid-state electrode is simple, economical, and rapid when compared to the PVC membrane and carbon paste electrodes.

  4. Copper(II)-selective membrane electrode based on a recently synthesized naphthol-derivative Schiff's base

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, N.; Ershad, S. [Dept. of Chemistry, Tarbiat Moderres Univ., Tehran (Iran); Naeimi, H.; Sharghi, H. [Dept. of Chemistry, Shiraz Univ. (Iran); Shamsipur, M. [Dept. of Chemistry, Razi Univ., Kermanshah (Iran)

    1999-11-01

    A PVC membrane electrode for copper(II) ions based on a recently synthesized naphthol-derivative Schiff's base as membrane carrier was prepared. The sensor exhibits a Nernstian response for Cu{sup 2+} ions over a wide concentration range (5.0 x 10{sup -6}-5.0 x 10{sup -2} mol/L) with a detection limit of 3.1 x 10{sup -6} mol/L (0.2 {mu}g/mL). It has a very short response time of about 5 s and can be used for 3 months without any divergence in potential. The proposed electrode revealed good selectivities over a wide variety of other cations including alkali, alkaline earth, transition and heavy metal ions and could be used in a pH range of 4.0-7.0. It was successfully applied to the direct determination and potentiometric titration of copper ion. (orig.)

  5. Electrochemical detection of Hg(II in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid on gold electrode

    Directory of Open Access Journals (Sweden)

    Gauta Gold Matlou

    2016-09-01

    Full Text Available This work reports on the detection of mercury using single walled carbon nanotube-poly (m-amino benzene sulfonic acid (SWCNT-PABS modified gold electrode by self-assembled monolayers (SAMs technique. A thiol containing moiety (dimethyl amino ethane thiol (DMAET was used to facilitate the assembly of the SWCNT-PABS molecules onto the Au electrode surface. The successfully assembled monolayers were characterised using atomic force microscopy (AFM. Cyclic voltammetric and electrochemical impedance spectroscopic studies of the modified electrode (Au-DMAET-(SWCNT-PABS showed improved electron transfer over the bare Au electrode and the Au-DMAET in [Fe (CN6]3−/4− solution. The Au-DMAET-(SWCNT-PABS was used for the detection of Hg in water by square wave anodic stripping voltammetry (SWASV analysis at the following optimized conditions: deposition potential of −0.1 V, deposition time of 30 s, 0.1 M HCl electrolyte and pH 3. The sensor showed a good sensitivity and a limit of detection of 0.06 μM with a linear concentration range of 20 ppb to 250 ppb under the optimum conditions. The analytical applicability of the proposed method with the sensor electrode was tested with real water sample and the method was validated with inductively coupled plasma – optical emission spectroscopy. Keywords: Self-assembly, Gold electrode, Carbon nanotubes, Electrochemical detection, Mercury

  6. Comparative Study of PVC-Free All-Solid-State, PVC Membrane, and Carbon Paste Ion-Selective Electrodes for the Determination of Dapoxetine Hydrochloride in Pharmaceutical Formulation.

    Science.gov (United States)

    Aziz, Azza; Khamees, Nesrin; Mohamed, Tagreed Abdel-Fattah; Derar, Abeer Rashad

    2016-11-01

    The potentiometric response characteristics and analytical applications of a poly(vinyl chloride) (PVC)-free all-solid-state ion-selective electrode for dapoxetine hydrochloride (DAP) are examined. The Nernstian response of the electrode was evaluated by comparison with PVC-based liquid membrane and carbon paste electrodes. The PVC-free electrode is prepared by direct incorporation of dapoxetine-tetraphenyl borate (DAP-TPB) as a sensing element into a commercial nail varnish containing cellulose acetate propionate. The composite was applied onto a 3 mm diameter graphite disk electrode. The electrode exhibited a Nernstian slope of 56.0 mV/decade in the concentration range of 1 × 10-4 to 1 × 10-2 mol/L with an LOD of 2 × 10-5 mol/L. The electrode is independent of pH in the range of 2 to 6 and showed good selectivity for DAP with respect to a large number of inorganic cations and amino acids. Comparable Nernstian slope, sensitivity, pH range, and selectivity pattern were obtained with a PVC membrane and a carbon paste incorporating DAP-TPB as a sensing element and dioctylphthalate as a solvent mediator. The electrodes were used for the determination of DAP in pure solution and in tablets without extraction with high accuracy and precision (RSD ≤ 2%). The nail varnish solid-state electrode is simple, economical, and rapid when compared with PVC membrane and carbon paste electrodes.

  7. Optimization of a new polymeric chromium (III) membrane electrode based on methyl violet by using experimental design.

    Science.gov (United States)

    Kazemi, Sayed Yahya; Hamidi, Akram sadat; Asanjarani, Neda; Zolgharnein, Javad

    2010-06-15

    Plackett-Burman and Box-Behnken designs were applied as experimental design strategies to screen and optimize the influence of membrane ingredients on the electrode performance. A new poly(vinyl chloride) membrane sensor for Cr(III) based on methyl violet as an ionophore was planned. The major variables to find a model for achieving the best Nernstian slope as response were: PVC, plasticizers, methyl violet, KpClTPB, pH, conditioning time and internal solution concentration. Plackett-Burman design was used to screen the main factors and Box-Behnken response surface was led to find a model for optimizing the response. The optimized membrane electrode shows a Nernstian slope for chromium (III) ions over a wide linear range from 1.99x10(-6) to 3.16x10(-2)molL(-1) and a slope of 19.5+/-0.1mVdecade(-1) of activity. It would be successfully applied in the pH range from 3.5 to 6.5 with detection limit of 1.77x10(-6)molL(-1) (0.092mgL(-1)). The response time of the sensor is about 8s and the membrane can be used for more than 6 weeks without any deviation. The relative standard deviations (R.S.D.) for six replicate the measurements of 1.0x10(-4) and 1.0x10(-3)molL(-1) of Cr(III) were 3.2 and 3%, respectively. The electrode revealed comparatively good selectivity with respect to many cations including alkali earth, transition and heavy metal ions. The electrode was successfully used as an indicator in the potentiometric titration of Cr(III) with EDTA and was also applied to the direct determination chromium (III) content of spiked water and soil samples.

  8. Carbon paste- and PVC membrane electrodes as sensitive sensors for the determination of antidiabetic drugs for type 2 diabetic patients.

    Science.gov (United States)

    Badawy, Waheed A; El-Ries, Mohammed A; Mahdi, Inas M

    2009-12-01

    Carbon paste- and polyvinyl chloride membrane electrodes are simple, precise, rapid and selective sensors for the determination of antidiabetic drugs for type 2 diabetic patients. These electrodes were successfully used for the potentiometric determination of rosiglitazone, pioglitazone, glimepiride and glyburide in their standard forms and also as pharmaceutical preparations. The preparation of these ion-selective electrodes for the potentiometric determination of the drug is based on the construction of a 10% standard drug-ion pair with reineckate or tungstophosphate imbedded as an electro-active material in the carbon paste or in the polyvinyl chloride membrane. The prepared ion-selective electrodes showed a Nernstian response with a limit of detection amounting to 10(-6) M in a pH range of 3 to 5. A good selectivity coefficient and long term stability could be achieved. The developed potentiometric method based on the CPE and PVC sensors is economic and less time consuming compared to the conventionally used high performance liquid chromatography, HPLC, methods.

  9. Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled Au substrate and its recognition mechanism.

    Science.gov (United States)

    Li, Xian-Qing; Liang, Hai-Qing; Cao, Zhong; Xiao, Qing; Xiao, Zhong-Liang; Song, Liu-Bin; Chen, Dan; Wang, Fu-Liang

    2017-03-01

    A simple and rapid mercury ion selective electrode based on 1-undecanethiol (1-UDT) assembled Au substrate (Au/1-UDT) has been well constructed. 1-UDT was for the purpose of generating self-assembled monolayer on gold surface to recognize Hg 2+ in aqueous solution, which had a working concentration range of 1.0×10 -8 -1.0×10 -4 molL -1 , with a Nernst response slope of 28.83±0.4mV/-pC, a detection limit of 4.5×10 -9 molL -1 , and a good selectivity over the other tested cations. Also, the Au/1-UDT possessed good reproducibility, stability, and short response time. The recovery obtained for the determination of mercury ion in practical tremella samples was in the range of 99.8-103.4%. Combined electrochemical analysis and X-ray photoelectron spectroscopy (XPS) with quantum chemical computation, the probable recognition mechanism of the electrode for selective recognition of Hg 2+ has been investigated. The covalent bond formed between mercury and sulfur is stronger than the one between gold and sulfur and thus prevents the adsorption of 1-UDT molecules on the gold surface. The quantum chemical computation with density functional theory further demonstrates that the strong interaction between the mercury atom and the sulfur atom on the gold surface leads to the gold sulfur bond ruptured and the gold mercury metallophilic interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Self-Assembly of Grafted Nanoparticles for Transport Channels in Membranes

    Science.gov (United States)

    Bilchak, Connor; Buenning, Ellie; Durning, Christopher; Kumar, Sanat

    2015-03-01

    Polymer membranes have seen increased application for vapor separations, particularly for natural gas processing and purification. The addition of nanoparticles to such membranes has led to conflicting findings; conventional (Maxwell) composite theory predicts the addition of inert filler to hinder membrane transport properties. However, our research using silica nanoparticles grafted with Poly (Methacrylate) has shown these grafted systems to possess permeabilities similar to those of a pure polymer system increasing penetrant solubility without compromising diffusivity. This is counterintuitive to Maxwell theory. We propose that the grafted nanoparticles self-assemble into an ordered crystal lattice containing low-density ``channels'' which facilitate penetrant uptake. Atomic force microscopy and small-angle neutron scattering experiments appear to confirm this theory. Varying polymer grafting density and chain length is also predicted to alter transport properties, allowing for the fabrication of membrane with tunable diffusivity and selectivity. These grafted nanocomposite systems therefore represent a means of creating robust membranes with transport properties similar to those of conventional polymeric films that may be easily adapted for various separations processes. Corresponding author.

  11. Layer-by-Layer Assembly for Preparation of High-Performance Forward Osmosis Membrane

    Science.gov (United States)

    Yang, Libin; Zhang, Jinglong; Song, Peng; Wang, Zhan

    2018-01-01

    Forward osmosis (FO) membrane with high separation performance is needed to promote its practical applications. Herein, layer-by-layer (LbL) approach was used to prepare a thin and highly cross-linked polyamide layer on a polyacrylonitrile substrate surface to prepare a thin-film composite forward osmosis (TFC-FO) membrane with enhanced FO performance. The effects of monomer concentrations and assembly cycles on the performance of the TFC-FO membranes were systematically investigated. Under the optimal preparation condition, TFC-FO membrane achieved the best performance, exhibiting the water flux of 14.4/6.9 LMH and reverse salt flux of 7.7/3.8 gMH under the pressure retarded osmosis/forward osmosis (PRO/FO) mode using 1M NaCl as the draw against a DI-water feed, and a rejection of 96.1% for 2000 mg/L NaCl aqueous solution. The result indicated that layer-by-layer method was a potential method to regulate the structure and performance of the TFC-FO membrane.

  12. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane.

    Science.gov (United States)

    Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong

    2015-04-18

    We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.

  13. Enhanced Piezoelectricity in a Robust and Harmonious Multilayer Assembly of Electrospun Nanofiber Mats and Microbead-Based Electrodes.

    Science.gov (United States)

    Kim, Young Won; Lee, Han Bit; Yeon, Si Mo; Park, Jeanho; Lee, Hye Jin; Yoon, Jonghun; Park, Suk Hee

    2018-02-14

    Here, we present a simple yet highly efficient method to enhance the output performance of a piezoelectric device containing electrospun nanofiber mats. Multiple nanofiber mats were assembled together to harness larger piezoelectric sources in the as-spun fibers, thereby providing enhanced voltage and current outputs compared to those of a single-mat device. In addition to the multilayer assembly, microbead-based electrodes were integrated with the nanofiber mats to deliver a complexed compression and tension force excitation to the piezoelectric layers. A vacuum-packing process was performed to attain a tight and well-organized assembly of the device components even though the total thickness was several millimeters. The integrated piezoelectric device exhibited a maximum voltage and current of 10.4 V and 2.3 μA, respectively. Furthermore, the robust integrity of the device components could provide high-precision sensitivity to perceive small pressures down to approximately 100 Pa while retaining a linear input-output relationship.

  14. Towards self-assembled hybrid artificial cells: novel bottom-up approaches to functional synthetic membranes.

    Science.gov (United States)

    Brea, Roberto J; Hardy, Michael D; Devaraj, Neal K

    2015-09-01

    There has been increasing interest in utilizing bottom-up approaches to develop synthetic cells. A popular methodology is the integration of functionalized synthetic membranes with biological systems, producing "hybrid" artificial cells. This Concept article covers recent advances and the current state-of-the-art of such hybrid systems. Specifically, we describe minimal supramolecular constructs that faithfully mimic the structure and/or function of living cells, often by controlling the assembly of highly ordered membrane architectures with defined functionality. These studies give us a deeper understanding of the nature of living systems, bring new insights into the origin of cellular life, and provide novel synthetic chassis for advancing synthetic biology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Water droplets as template for next-generation self-assembled poly-(etheretherketone) with cardo membranes.

    Science.gov (United States)

    Gugliuzza, Annarosa; Aceto, Marianna Carmela; Macedonio, Francesca; Drioli, Enrico

    2008-08-28

    Next generation PEEK-WC membranes have been fabricated by using an innovative self-assembly technique. Patterned architectures have been achieved via a solvent-reduced and water-assisted process, resulting in honeycomb packed geometry. The membranes exhibit monodisperse pores with size and shape comparable to those left by templating water droplets. Influencing factors for the formation of self-assembled poly-(etheretherketone) with Cardo [PEEK-WC] membranes have been evaluated, identifying the critical parameters for nucleation, growth, and propagation of the droplet-mobile arrays through the overall films. Structure-transport relationships have been discussed according to the results achieved from the implementation of membrane distillation processes, yielding indication about the suitability of self-assembled PEEK-WC films to work as interfaces in contactor operations.

  16. Supramolecular structures of peptide assemblies in membranes by neutron off-plane scattering: method of analysis.

    Science.gov (United States)

    Yang, L; Weiss, T M; Harroun, T A; Heller, W T; Huang, H W

    1999-11-01

    In a previous paper (Yang et al., Biophys. J. 75:641-645, 1998), we showed a simple, efficient method of recording the diffraction patterns of supramolecular peptide assemblies in membranes where the samples were prepared in the form of oriented multilayers. Here we develop a method of analysis based on the diffraction theory of two-dimensional liquids. Gramicidin was used as a prototype model because its pore structure in membrane in known. At full hydration, the diffraction patterns of alamethicin and magainin are similar to gramicidin except in the scale of q (the momentum transfer of scattering), clearly indicating that both alamethicin and magainin form pores in membranes but of different sizes. When the hydration of the multilayer samples was decreased while the bilayers were still fluid, the in-plane positions of the membrane pores became correlated from one bilayer to the next. We believe that this is a new manifestation of the hydration force. The effect is most prominent in magainin patterns, which are used to demonstrate the method of analysis. When magainin samples were further dehydrated or cooled, the liquid-like diffraction turned into crystal-like patterns. This discovery points to the possibility of investigating the supramolecular structures with high-order diffraction.

  17. Structure and interactions in biomaterials based on membrane-biopolymer self-assembly

    Science.gov (United States)

    Koltover, Ilya

    Physical and chemical properties of artificial pure lipid membranes have been extensively studied during the last two decades and are relatively well understood. However, most real membrane systems of biological and biotechnological importance incorporate macromolecules either embedded into the membranes or absorbed onto their surfaces. We have investigated three classes of self-assembled membrane-biopolymer biomaterials: (i) Structure, interactions and stability of the two-dimensional crystals of the integral membrane protein bacteriorhodopsin (bR). We have conducted a synchrotron x-ray diffraction study of oriented bR multilayers. The important findings were as follows: (1) the protein 2D lattice exhibited diffraction patterns characteristic of a 2D solid with power-law decay of in-plane positional correlations, which allowed to measure the elastic constants of protein crystal; (2) The crystal melting temperature was a function of the multilayer hydration, reflecting the effect of inter-membrane repulsion on the stability of protein lattice; (3) Preparation of nearly perfect (mosaicity video-enhanced light microscopy we have observed a membrane-distortion induced attraction between the particles with the interaction range of the order of particle diameter. Fluid membranes decorated with many particles exhibited: (i) a finite-sized two-dimensional closed packed aggregates and (ii) a one-dimensional ring-like aggregates. (iii) Structure, stability and interactions in the cationic lipid-DNA complexes. Cationic liposomes complexed with DNA are among the most promising synthetic non-viral carriers of DNA vectors currently used in gene therapy applications. We have established that DNA complexes with cationic lipid (DOTAP) and a neutral lipid (DOPC) have a compact multilayer liquid crystalline structure ( L ca ) with DNA intercalated between the lipid bilayers in a periodic 2D smectic phase. Furthermore, a different 2D columnar phase of complexes was found in mixtures

  18. Novel PVC-membrane electrode for flow injection potentiometric determination of Biperiden in pharmaceutical preparations.

    Science.gov (United States)

    Khaled, Elmorsy; El-Sabbagh, Inas A; El-Kholy, N G; Ghahni, E Y Abdel

    2011-12-15

    The construction and performance characteristics of Biperiden (BP) polyvinyl chloride (PVC) electrodes are described. Different methods for electrode fabrication are tested including; incorporation of BP-ion pairs (BP-IPs), incorporation of ion pairing agents, or soaking the plain electrode in BP-ion pairs suspension solution. Electrode matrices were optimized referring to the effect of modifier content and nature, plasticizer and the method of modification. The proposed electrodes work satisfactorily in the BP concentration range from 10(-5) to 10(-2)mol L(-1), with fast response time (7s) and adequate operational lifetime (28 days). The electrode potential is pH independent within the range 2.0-7.0, with good selectivity towards BP in presence of various interfering species. The developed electrodes have been applied for potentiometric determination of BP in pharmaceutical formulation under batch and flow injection analysis (FIA) conditions. FIA offers the advantages of accuracy and automation feasibility with high sampling frequency. The dissolution profile for Akineton tablets (2mg BP/tablet) was studied using the proposed electrode in comparison with the official methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle.

    Science.gov (United States)

    Singh, Ashok K; Singh, Prerna

    2010-08-24

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L(1)) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L(2)) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L(2):PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L(2) was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3x10(-8) mol L(-1) for PME and 7.7x10(-9) mol L(-1) for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples. 2010 Elsevier B.V. All rights reserved.

  20. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok K., E-mail: akscyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India); Singh, Prerna [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India)

    2010-08-24

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L{sub 1}) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate- 1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L{sub 2}) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L{sub 2}:PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L{sub 2} was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3 x 10{sup -8} mol L{sup -1} for PME and 7.7 x 10{sup -9} mol L{sup -1} for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples.

  1. A highly sensitive PVC membrane iodide electrode based on complexes of mercury(II) as neutral carrier.

    Science.gov (United States)

    Chai, Y-Q; Yuan, R; Xu, L; Xu, W-J; Dai, J-Y; Jiang, F

    2004-09-01

    A novel solvent polymeric membrane electrode based on bis(1,3,4-thiadiazole) complexes of Hg(II) is described which has excellent selectivity and sensitivity toward iodide ion. The electrode, containing 1,4-bis(5-methyl-1,3,4-thiadiazole-2-yl-thio)butanemercury(II) [Hg(II)BMTB(NO3)4], has a Nernstian potentiometric response from 2.0 x 10(-8) to 2.0 x 10(-2) mol L(-1) with a detection limit of 8.0 x 10(-9) mol L(-1) and a slope of -59.0+/-0.5 mV/decade in 0.01 mol L(-1) phosphate buffer solution (pH 3.0, 20 degrees C). The selectivity sequence observed is iodide>bromide>thiocyanate>nitrite>nitrate>chloride>perchlorate>acetate>sulfate. The selectivity behavior is discussed in terms of the UV-Vis spectrum, and the process of transfer of iodide across the membrane interface is investigated by use of the AC impedance technique. The electrode was successfully applied to the determination of iodide in Jialing River and Spring in Jinyun Mountains, with satisfactory results.

  2. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various thermopl......A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  3. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation

    KAUST Repository

    Karunakaran, Madhavan

    2014-03-01

    A simple and efficient approach towards the fabrication of a skinned membrane with highly ordered pores in the nanometer range is presented here. We successfully combined the self-assembly of PS-b-PEO block copolymer and water induced phase separation for the preparation of isoporous PS-b-PEO block copolymer membranes. We produced for the first time asymmetric isoporous PS-b-PEO membranes with a 100nm thin isoporous separating layer using water at room temperature as coagulant. This was possible by careful selection of the block lengths and the solvent system. FESEM, AFM and TEM measurements were employed to characterize the nanopores of membranes. The pure water fluxes were measured and the flux of membrane was exceptionally high (around 800Lm-2h-1bar-1). Protein rejection measurements were carried out for this membrane and the membrane had a retention of about 67% of BSA and 99% of γ-globulin. © 2013 Elsevier B.V.

  4. Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell.

    Science.gov (United States)

    Yoshida, Kenta; Xudong, Zhang; Bright, Alexander N; Saitoh, Koh; Tanaka, Nobuo

    2013-02-15

    Spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied to study the catalytic activity of platinum/amorphous carbon electrode catalysts in proton-exchange-membrane fuel cells (PEMFCs). These electrode catalysts were characterized in different atmospheres, such as hydrogen and air, and a conventional high vacuum of 10(-5) Pa. A high-speed charge coupled device camera was used to capture real-time movies to dynamically study the diffusion and reconstruction of nanoparticles with an information transfer down to 0.1 nm, a time resolution below 0.2 s and an acceleration voltage of 300 kV. With such high spatial and time resolution, AC-ETEM permits the visualization of surface-atom behaviour that dominates the coalescence and surface-reconstruction processes of the nanoparticles. To contribute to the development of robust PEMFC platinum/amorphous carbon electrode catalysts, the change in the specific surface area of platinum particles was evaluated in hydrogen and air atmospheres. The deactivation of such catalysts during cycle operation is a serious problem that must be resolved for the practical use of PEMFCs in real vehicles. In this paper, the mechanism for the deactivation of platinum/amorphous carbon electrode catalysts is discussed using the decay rate of the specific surface area of platinum particles, measured first in a vacuum and then in hydrogen and air atmospheres for comparison.

  5. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    Science.gov (United States)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  6. Fabrication of copper-selective PVC membrane electrode based on newly synthesized copper complex of Schiff base as carrier

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2016-09-01

    Full Text Available The newly synthesized copper(II complex of Schiff base p-hydroxyacetophenone semicarbazone was explored as neutral ionophore for the fabrication of poly(vinylchloride (PVC based membrane electrode selective to Cu(II ions. The electrode shows a Nernstian slope of 29.8 ± 0.3 mV/decade with improved linear range of 1.8 × 10−7 to 1.0 × 10−1 M, comparatively lower detection limit 5.7 × 10−8 M between pH range of 2.0–8.0, giving a relatively fast response within 5s and can be used for at least 16 weeks without any divergence in potential. The selectivity coefficient was calculated using the fixed interference method (FIM. The electrode can also be used in partially non-aqueous media having up to 25% (v/v methanol, ethanol or acetone content with no significant change in the value of slope or working concentration range. It was successfully applied for the direct determination of copper content in water and tea samples with satisfactory results. The electrode has been used in the potentiometric titration of Cu2+ with EDTA.

  7. Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Cetinbas, Firat C.; Ahluwalia, Rajesh K.; Kariuki, Nancy; De Andrade, Vincent; Fongalland, Dash; Smith, Linda; Sharman, Jonathan; Ferreira, Paulo; Rasouli, Somaye; Myers, Deborah J.

    2017-03-01

    The cost and performance of proton exchange membrane fuel cells strongly depend on the cathode electrode due to usage of expensive platinum (Pt) group metal catalyst and sluggish reaction kinetics. Development of low Pt content high performance cathodes requires comprehensive understanding of the electrode microstructure. In this study, a new approach is presented to characterize the detailed cathode electrode microstructure from nm to μm length scales by combining information from different experimental techniques. In this context, nano-scale X-ray computed tomography (nano-CT) is performed to extract the secondary pore space of the electrode. Transmission electron microscopy (TEM) is employed to determine primary C particle and Pt particle size distributions. X-ray scattering, with its ability to provide size distributions of orders of magnitude more particles than TEM, is used to confirm the TEM-determined size distributions. The number of primary pores that cannot be resolved by nano-CT is approximated using mercury intrusion porosimetry. An algorithm is developed to incorporate all these experimental data in one geometric representation. Upon validation of pore size distribution against gas adsorption and mercury intrusion porosimetry data, reconstructed ionomer size distribution is reported. In addition, transport related characteristics and effective properties are computed by performing simulations on the hybrid microstructure.

  8. From charge-mosaic to micelle self-assembly: Block copolymer membranes in the last 40 years

    KAUST Repository

    Nunes, Suzana Pereira

    2013-01-23

    Different strategies for membrane preparation based on block copolymers are reviewed in this paper, starting from early papers on charge-mosaic membranes and following with dense membranes for gas separation for applications like CO2 separation, pervaporation of aqueous solutions containing organic pollutants, low-fouling surfaces and finally tailoring porous membranes with very sharp pore size distribution. The approaches for manufacture of nanoporous films are summarized, including etching and preferential dissolution. The advantages of a new process based on micelle assembly and phase inversion are emphasized, confirming its perspective of up-scale and application at large scale. © 2012 American Chemical Society.

  9. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    Science.gov (United States)

    Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.

    2012-07-24

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  10. Determining the platinum loading and distribution of industrial scale polymer electrolyte membrane fuel cell electrodes using low energy X-ray imaging

    DEFF Research Database (Denmark)

    Holst, T.; Vassiliev, Anton; Kerr, R.

    2014-01-01

    Low energy X-ray imaging (E <25 keV) is herein demonstrated to be a rapid, effective and non-destructive tool for the quantitative determination of the platinum loading and distribution over the entire geometric area of gas diffusion electrodes for polymer electrolyte membrane fuel cells. A linea...... of electrodes fabricated using an industrial spraying process. This technique proves to be an attractive option for the electrode performance study, the process optimization and quality control of electrode fabrication on an industrial scale....

  11. Electrocatalytic oxidation of dihydronicotineamide adenine dinucleotide on gold electrode modified with catechol-terminated alkanethiol self-assembly

    International Nuclear Information System (INIS)

    Nakano, Koji; Ohkubo, Kimihiko; Taira, Hiroaki; Takagi, Makoto; Imato, Toshihiko

    2008-01-01

    Synthesis of a mercaptoundecaneamide derivative having a terminus of catechol is described. FT-IR spectroscopic characterization showed that the new molecular entry simply undergoes molecular self-assembly on Au substrate surfaces promoting intra- and intermolecular hydrogen bonds to form well-packed monolayers. Cyclic voltammetric (CV) measurements on the monolayer-modified Au electrode revealed that the surface adlayer possesses specific electrochemical activity due to the reversible catechol/o-quinone redox reaction having characteristics of a surface process and also pH-dependence in its formal potential (59 mV per pH). Detailed analysis of CVs gave fundamental electrochemical parameters including the electroactive surface coverage (0.20-0.24 nmol cm -2 ), the transfer coefficients (0.24 in oxidation and 0.81 in reduction), and also the electron transfer rate constant (1.10-2.76 s -1 ). These data were almost consistent to those seen in literature. We have also found that the catechol monolayer modified electrode exhibits an electrocatalytic function in NADH oxidation. That is, the faradaic current appeared reinforcingly at around the same potential where catechol function is oxidized in the monolayer and increased with an increase in the NADH concentration from 1 to 5 mM, and then reached to a plateau indicating a catalyzed reaction pathway. Detailed analyses revealed that the present system could be characterized by its weak stability of the intermediate compound formed and prompt reaction rate compared with the previously reported chemically modified electrode (CME) systems. We think this type of achievement should be important for the basics of biosensors that rely on dehydrogenase enzymes

  12. Application of membrane LaF3 electrode in the determination of stability constants of Uranyl Fluoride complex in solution

    International Nuclear Information System (INIS)

    Muzakky; Iswani GS; Mintolo

    1996-01-01

    A membrane electrode LaF 3 has been applied in the determination of uranyl fluoride complex stability constant in solution. The determination is based on the detection of free F ion in solution as a result of hydrolysis reaction (process) of uranyl ions into the uranyl hydroxide form at low pH. The experiment results showed that there was no effect of ammonium carbonate 2 M titran, flow rate on the electrode response. The F release is optimum at pH 1. The free F ion in solution is calculated from the standard curve at pH 1, after the fluoride concentration at the same pH has been corrected. Using the plot of average number of ligand binding (n) versus minus log of free ligand (-log F) the value of β1 = 4.4, β2 = 7.48, β3=9.73, and β4 = 11.67

  13. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cells Stacks

    Science.gov (United States)

    Valdez, T. I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    This viewgraph presentation gives a detailed review of the Direct Methanol Based Fuel Cell (DMFC) stack and investigates the Ruthenium that was found at the exit of the stack. The topics include: 1) Motivation; 2) Pathways for Cell Degradation; 3) Cell Duration Testing; 4) Duration Testing, MEA Analysis; and 5) Stack Degradation Analysis.

  14. Microscopy studies on pronton exchange membrane fuel cell electrodes with different ionomer contents

    DEFF Research Database (Denmark)

    Ma, Shuang; Solterbeck, Claus Henning; Odgaard, Madeleine

    2009-01-01

    of the electrode was well displayed in the topography and phase images. The particle and pore size (Z) distributions showed the most frequent values at 30-40 nm and 20-30 nm, respectively. The particle size corresponds to the size of the carbon support for the platinum catalyst. Catalyst agglomeration was observed...... content in the catalyst layer. Transmission electron microscopy (TEM) was carried out on selective electrodes to provide additional information and confirmed with the AFM results. Cyclic voltammetry (CV) showed that the electrode containing 30 wt.% ionomer has maximum catalyst utilization....

  15. The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes

    International Nuclear Information System (INIS)

    Kjelstrup, S.; Vie, P.J.S.; Akyalcin, L.; Zefaniya, P.; Pharoah, J.G.; Burheim, O.S.

    2013-01-01

    Highlights: • The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements. • When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with hydrogen electrodes. • At Soret equilibrium for water in the fuel cell, most of the entropy of the fuel cell reaction is generated at the anode. -- Abstract: We report that the Seebeck coefficient of a Nafion membrane cell with hydrogen electrodes saturated with water vapour, at 1 bar hydrogen pressure and 340 K, is equal to 670 ± 50 μV/K, meaning that the entropy change of the anode reaction at reversible conditions (67 J/(K mol)) corresponds to a reversible heat release of 22 kJ/mol. The transported entropy of protons across the membrane at Soret equilibrium was estimated from this value to 1 ± 5 J/(K mol). The results were supported by the expected variation in the Seebeck coefficient with the hydrogen pressure. We report also the temperature difference of the electrodes, when passing electric current through the cell, and find that the anode is heated (a Peltier heat effect), giving qualitative support to the result for the Seebeck coefficient. The Seebeck and Peltier effects are related by non-equilibrium thermodynamics theory, and the Peltier heat of the cathode in the fuel cell is calculated for steady state conditions to 6 ± 2 kJ/mol at 340 K. The division of the reversible heat release between the anode and the cathode, can be expected to vary with the current density, as the magnitude of the current density can have a big impact on water transport and water concentration profile

  16. Building a Low-Cost, Six-Electrode Instrument to Measure Electrical Properties of Self-Assembled Monolayers of Gold Nanoparticles

    Science.gov (United States)

    Gerber, Ralph W.; Oliver-Hoyo, Maria

    2007-01-01

    The development of a new low-cost, six-electrode instrument for measuring the electrical properties of the self-assembled monolayers of gold particles is being described. The system can also be used to measure conductive liquids, except for those that contain aqua region.

  17. IMPACT OF POLYCYCLIC AROMATIC HYDROCARBONS OF THE ELECTROCHEMICAL RESPONSES OF A FERRICYNIDE PROBE AT TEMPLATE-MODIFIED SELF ASSEMBLED MONOLAYERS ON GOLD ELECTRODES

    Science.gov (United States)

    The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...

  18. Fabrication of porous nanosheets assembled from NiCo2O4/NiO electrode for electrochemical energy storage application.

    Science.gov (United States)

    Wei, Chao; Huang, Ying; Chen, Menghua; Yan, Jing; Yao, Wen; Chen, Xuefang

    2017-10-15

    In this work, The NiCo 2 O 4 /NiO electrode materials are successfully synthesized via hydrothermal and following calcination approach. Due to the distinctive porous nanosheets assembled structure through controlling effectively the feeding amount of HMT, the NiCo 2 O 4 /NiO electrode possesses excellent specific surface area and reasonable pore size distribution, which hence minimizes the intrinsic electrode resistance and improves the morphology and structure stability. Therefore, the NiCo 2 O 4 /NiO electrode delivers a superior specific capacitance (Csp) (992.85Fg -1 at the current density of 1Ag -1 ), good rate capability (79.14% Csp retention even at 10Ag -1 ) and considerable cycle life (79.82% Csp retention at 10Ag -1 after 5000 times). Furthermore, the asymmetric supercapacitor is successfully assembled by NCN-0.1 as positive electrode and activated carbon (AC) as negative electrode. The NCN-0.1//AC device delivers a relatively excellent energy density of 47.43kWkg -1 at a power density of 0.389Whkg -1 . Consequently, the outstanding performance and stability of the ASC device shows great potential for future energy storage application. Copyright © 2017. Published by Elsevier Inc.

  19. Construction of Uranyl Selective Electrode Based on Complex of Uranyl Ion with New Ligand Carboxybenzotriazole in PVC Matrix Membrane

    Science.gov (United States)

    Abu-Dalo, M. A.; Al-Rawashdeh, N. A. F.; Al-Mheidat, I. R.; Nassory, N. S.

    2015-10-01

    In the present study uranyl selective electrodes in polyvinyl chloride (PVC) matrix membrane were prepared based on a complex of uranyl ion (UO2) with carboxybenzotriazole (CBT) as ligand. The effect of the nature of plasticizer in PVC matrix were evaluated using three different plasticizers, these are dibutyl phthalate (DBP), dioctyl phthalate (DOP) and bis(2-ethylhexyl) sebacate (BHS). The results of this study indicated that the best plasticizer could be used is the DBP, which may be attributed to its lowest viscosity value compared to DOP and BHS. The electrodes with DBP as plasticizer exhibits a Nernstian response with a slope of 28.0 mV/ decade, over a wide range of concentration from 3.0×10-5-6.0×10-2 M and a detection limit of 4.0×10-6 M. It can be used in the pH range of 4.0-10.0 with a response time of less than 10 s for DBP and 25 s for both DOP and BHS. The effects of ions interferences on the electrode response were evaluated. The di- and tri-valent cations were found to interfere less than univalent cations, which was attributed to the high diffusion and the exchange rate between the univalent ions and the uranyl ion solution. The electrodes were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron microscopy (SEM). The results of the standard addition method were satisfactory with errors less than 7%. The developed electrode was found to be fast, sensitive and reliable indicated its potential use in measuring the uranly ion concentration in the field.

  20. Simultaneous electromembrane extraction of cationic and anionic herbicides across hollow polymer inclusion membranes with a bubbleless electrode.

    Science.gov (United States)

    Mamat, Nor Akma; See, Hong Heng

    2017-06-30

    A new electric-field driven extraction approach based on the integration of a bubbleless electrode into the electromembrane extraction (EME) across hollow polymer inclusion membranes (HPIMs) was demonstrated for the first time. The bubbleless electrode was prepared based on an in-situ synthesised polyacrylamide within a fused silica capillary. The electrode functions as a salt bridge, which conducts the electrical current between the acceptor phase in the lumen of the HPIM and the acceptor solution in the reservoir connected to a high voltage supply through a platinum electrode. Two types of HPIMs were employed, which consisted of desired proportions of cellulose acetate as base polymer, tris(2-ethylhexyl)phosphate as plasticizer, and di-(2-ethylhexyl)phosphoric acid as anionic carrier or Aliquat 336 as cationic carrier, respectively. The EME strategy was evaluated for the simultaneous determination of cationic quaternary ammonium and anionic chlorophenoxy acetic acid herbicides present in the river water, respectively. The analysis was carried out using capillary electrophoresis coupled with UV and contactless conductivity detection. Under the optimised conditions, enrichment factors in the range of 152-185-fold were obtained from 4mL of river water sample with a 20min extraction time and an applied voltage of 3000V. The proposed method provided good linearity with correlation coefficients ranging from 0.9982 to 0.9997 over a concentration range of 1-1000μg/L. The detection limits of the method for the herbicides were in the range of 0.3-0.4μg/L, with relative standard deviations of between 4.8% and 8.5%. The relative recoveries obtained when analysing the spiked river water ranged from 99.1% to 100%. A comparison was also made between the newly developed approach with the conventional EME setup by placing the platinum electrode directly in the lumen of the HPIMs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  2. Molecular Assembly of Hemin on Single-Crystal Au(111)-electrode Surfaces

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    also acts as catalyst in electrochemical reduction of dioxygen and other small inert molecules such as nitrogen monoxide, and in electrochemiluminescent detection of dioxygen, peroxide, DNA, and proteins. л-л interactions of hemin with carbon materials have been broadly studied. Hemin onnoble metal......-defined single-crystal Au(111)-electrodesurfaces using electrochemistry combined with scanning tunnelling microscopy under electrochemical control. Hemin gives two voltammetric peaks assigned to adsorbed monomers and dimmers (Fig. 1A). In situ STM shows that hemin self-assembles in ordered monolayers through non...

  3. Assembly of Lyotropic Liquid Crystals with Solid Crystal's Structural Order Translated from the Lipid Rafts in Cell Membranes.

    Science.gov (United States)

    Lee, Yoon Seob

    2017-11-29

    Self-assembly offers a powerful way to control the complexity and hierarchy of nanoscale materials, and promises to create a diverse range of emergent properties. Successful syntheses that allow a delicate structural design of building units play an important role. However, as can be learned from many cellular processes and functions, coself-assembly using logically chosen additives should be equally effective in designing self-assembly. Herein I show that, translated from the dynamic nanoscale assemblies in cell membranes known as lipid rafts, coself-assembly of 1-decanol into cetyltrimethylammonium chloride micelles for the assembly of lyotropic liquid crystals generates new structural complexity and hierarchy, and a surprising property that is emerging from it. Designing the intermolecular forces in the way that cholesterol interacts with sphingolipids promotes the synergistic balance between the flexibility and rigidity, and the unique molecular recognition for silicic acid, followed by the micelle coalescence. This very much resembles the assembly process of the lipid rafts in cell membranes and triggers orders of magnitude of sharp increases in X-ray diffraction intensity. The analysis of the diffraction patterns shows that the structural order of these liquid crystals matches that of solid crystals, often of single crystals. Furthermore, the assembly of the liquid crystals promotes a substantial increase in the condensation rate of silicic acids by guiding them to form a silicate trimer along the surface of micelles. This very much resembles the role of the lipid rafts that sharply increases the reaction rate of biomolecules by guiding them to form discrete species along the surface of membranes. This finding demonstrates that it is possible to translate the key features of cellular processes and functions into artificial self-assembling systems of our choice using the building units that are readily available, thus creating novel soft materials.

  4. Enantioselective Potentiometric Membrane Electrodes Based on Antibiotics for the Determination of L- and D-Glyceric Acids

    Directory of Open Access Journals (Sweden)

    Raluca-Ioana Stefan-van Staden

    2011-01-01

    Full Text Available Glyceric acid (GA is a human metabolite existing in L- and D-configurations, which are considered the markers for the diseases L- and D-glyceric aciduria/academia, respectively. Enantioselective, potentiometric membrane electrodes based on carbon paste modified with antibiotics as chiral selectors, vancomycin, and teicoplanin were designed for the assay of L- and D-GA, respectively, in the concentration ranges of 10−9–10−7 and 10−4–10−2 moL/L with very low detection limits (1.5 × 10−10 moL/L for L-GA and 1.6 × 10−4  moL/L for D-GA, resp.. The surface of the electrodes can be regenerated simply by polishing in order to obtain a fresh surface ready to be used in a new assay. The proposed electrodes can be successfully applied for the enantioanalysis of L- and D-glyceric acids in serum samples.

  5. Ion selective phosphotungestate and beta-cyclodextrin based membrane electrodes for stability-indicating determination of midodrine hydrochloride.

    Science.gov (United States)

    Elzanfaly, Eman S; Zaazaa, Hala E; Merey, Hanan A

    2013-01-01

    This paper reports the construction and evaluation of two ion selective electrodes for the determination midodrine hydrochloride (MD) by direct potentiometry in pure drug substance and in tablet formulations. Precipitation based technique was used for fabrication of the first membrane sensor (sensor 1) using phosphotungestate (PT) and dioctylphthalate (DOP) as cation exchanger and solvent mediator, respectively. beta-cyclodextrin (beta-CD)-based technique with PT as a fixed anionic site in PVC matrix was used for fabrication of the second membrane sensor (sensor 2). The proposed sensors showed fast, stable Nernstian responses of 54 and 56 mV/decade for sensors 1 and 2, respectively, across a relatively wide MD concentration range (1x 10(-4) to 1 x 10(-1) mol/L and 5 x 10(-5) to 1 x 10(-1) mol/L for sensor 1 and 2, respectively) in the pH range of 5-7. Sensor I and sensor 2 can be used for three and two weeks, respectively without any measurable change in sensitivity. The suggested electrodes succeeded to determine intact MD in the presence of up to 10% of its degradation product and displayed good selectivity in presence of common inorganic and organic species.

  6. Construction of Tb3+ PVC-MembraneElectrode Based on N,N’-Bis(pyrrolylmethylene-2-aminobenzylamine

    Directory of Open Access Journals (Sweden)

    Hassan Ali Zamani

    2011-01-01

    Full Text Available In this work, we report as new Tb3+-PVC membrane sensor based on N,N’-bis(pyrrolylmethylene- 2-aminobenzylamine (PMA as a suitable ion carrier. Poly vinylchloride (PVC-based membrane composed of PMA with oleic acid (OA as anionic additives and acetophenone (AP as plasticizing solvent mediators. The Tb3+ sensor exhibits a Nernstian slope of 19.7±0.4 mV per decade over the concentration range of 1.0×10-5 to 1.0×10-2 M and a detection limit of 4.6×10-6 M of Tb3+ ions. The potentiometric response of the sensor is independent of the solution pH in the range of 2.9–8.1. It has a very short response time, in the whole concentration range (∼5 s. The recommended sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, some transition and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Tb(III ions with EDTA. The electrode was also employed for the determination of the fluoride ion in two mouth wash preparations and the determination of Tb3+ ions concentration in mixtures of three different ions.

  7. Determination of Cd2+ in aqueous solution using polyindole-Ce(IV) vanadophosphate conductive nanocomposite ion-selective membrane electrode

    Science.gov (United States)

    Khan, Asif Ali; Quasim Khan, Mohd; Hussain, Rizwan

    2017-09-01

    In the present study an organic-inorganic nanocomposite ion exchanger Polyindole-Ce(IV) vanadophosphate (PIn-CVP) was synthesized via sol-gel process showing excellent ion exchange capacity (IEC‒1.90 meqg-1). The material was characterized by SEM, TEM, XRD, FTIR, and TGA. A heterogeneous ion exchange membrane of PIn-CVP (IEC‒0.90 meqg-1) was also prepared by solution casting method. PIn-CVP shows high electrical conductivity (5.5  ×  10-2 S cm-1) and it is stable up to 120 °C under ambient conditions. Cd2+ selective membrane electrode was fabricated and its linear working range (3.98  ×  10-7 M to 1.0  ×  10-1 M), response time (25 s), Nerstian slope 25.00 mV dec-1 and working pH range (4-7) were calculated. It was employed as an indicator electrode in the potentiometric titration of Cd2+.

  8. Concentration-Gradient Multichannel Flow-Stream Membrane Capacitive Deionization Cell for High Desalination Capacity of Carbon Electrodes.

    Science.gov (United States)

    Kim, Choonsoo; Lee, Juhan; Srimuk, Pattarachai; Aslan, Mesut; Presser, Volker

    2017-12-22

    We present a novel multichannel membrane flow-stream capacitive deionization (MC-MCDI) concept with two flow streams to control the environment around the electrodes and a middle channel for water desalination. The introduction of side channels to our new cell design allows operation in a highly saline environment, while the feed water stream in the middle channel (conventional CDI channel) is separated from the electrodes with anion- and cation-exchange membranes. At a high salinity gradient between side (1000 mm) and middle (5 mm) channels, MC-MCDI exhibited an unprecedented salt-adsorption capacity (SAC) of 56 mg g -1 in the middle channel with charge efficiency close to unity and low energy consumption. This excellent performance corresponds to a fourfold increase in desalination performance compared to the state-of-the-art in a conventional CDI cell. The enhancement originates from the enhanced specific capacitance in high-molar saline media in agreement with the Gouy-Chapman-Stern theory and from a double-ion desorption/adsorption process of MC-MCDI through voltage operation from -1.2 to +1.2 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Novel PVC membrane-based thoron ion selective electrode and its application: determination of zirconium.

    Science.gov (United States)

    Arida, Hassan A

    2008-06-30

    The construction, electrochemical evaluation and application of new electrode selective to the thoron reagent are reported. The electrode incorporates bathophenanthroline iron: thoron ion pair as electroactive sensing material, o-nitrophenyl octyl ether as plasticizer and PVC as support matrix, exhibits a Nernstian response to thoron with a slope of -29.7+/-1 mV per decade in a range of concentration from 1.0x10(-6) to 5.0x10(-2) mol L(-1), a detection limit of 6.0x10(-7) mol L(-1) and fast response time of less than 30 s. The proposed electrode is successfully applied to zirconium ion determination in aqueous samples using indirect potentiometry and the results obtained are compared with those provided by spectrophotometric analysis using thoron as complexing agent.

  10. Perchlorate-selective membrane electrode based on a new complex of uranil.

    Science.gov (United States)

    Mazloum Ardakani, M; Jalayer, M; Naeimi, H; Zare, H R; Moradi, L

    2005-03-01

    A potentiometric ion-selective electrode based on new compound, as a carrier, has been successfully developed for detection of perchlorate anion in aqueous solution. Within the perchlorate ion concentration range 1.0x10(-6) to 1.0 mol L(-1) the electrode had a linear response with a Nernstian slope of 60.6+/-1.0 mV per decade . The limit of detection as determined from the intersection of the extrapolated linear segments of the calibration plot was 8.0x10(-7) mol L(-1). The proposed electrode has fairly a good discriminating ability towards ClO(4) (-) ion in comparison to other anions. The sensor has a response time of < or =10 s and can be used for at least 2 months without substantial divergence in potential. It was successfully applied to direct determination of perchlorate in urine and water.

  11. QENS investigation of proton confined motions in hydrated perfluorinated sulfonic membranes and self-assembled surfactants

    Directory of Open Access Journals (Sweden)

    Berrod Quentin

    2015-01-01

    Full Text Available We report on QuasiElastic Neutron Scattering (QENS investigations of the dynamics of protons and water molecules confined in nanostructured perfluorinated sulfonic acid (PFSA materials, namely a commercial Aquivion membrane and the perfluorooctane sulfonic acid (PFOS surfactant. The former is used as electrolyte in low-temperature fuel cells, while the latter forms mesomorphous self-assembled phases in water. The dynamics was investigated as a function of the hydration level, in a wide time range by combining time-of-flight and backscattering incoherent QENS experiments. Analysis of the quasielastic broadening revealed for both systems the existence of localized translational diffusive motions, fast rotational motions and slow hopping of protons in the vicinity of the sulfonic charges. The characteristic times and diffusion coefficients have been found to exhibit a very similar behaviour in both membrane and surfactant structures. Our study provides a comprehensive picture of the proton motion mechanisms and the dynamics of confined water in model and real PFSA nanostructures.

  12. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@yahoo.com [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Department of Nanotechnology Engenering, Faculty of Advanced Science and Technology, University of Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2011-07-01

    Highlights: > Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. > In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. > Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. > The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. > Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}), of immobilized GOx were 1.50 x 10{sup -12} mol cm{sup -2}, 9.2 {+-} 0.5 s{sup -1

  13. PEDOT:PSS self-assembled films to methanol crossover reduction in Nafion® membranes

    Science.gov (United States)

    Almeida, Tiago P.; Miyazaki, Celina M.; Paganin, Valdecir A.; Ferreira, Marystela; Saeki, Margarida J.; Perez, Joelma; Riul, Antonio

    2014-12-01

    Alternative energy sources are on a global demand, with fuel cells as promising devices from mobile to stationary applications. Nafion® is at the heart of many of these appliances, being mostly used due to its high proton conduction and good chemical stability at ambient temperature in proton exchange membranes (PEM). Therefore, methanol permeation throughout Nafion® films reduces drastically the performance of direct methanol fuel cells (DMFC). We present here the deposition of layer-by-layer (LbL) nanostructured thin films of poly(allylamine hydrochloride) (PAH) and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) onto commercial Nafion® 212 membranes. It was observed a good adherence of the LbL films onto Nafion® 212, with UV-vis results displaying a linear characteristic growth, indicative that the same amount of material was deposited at each deposition step during the layer-by-layer assembly. In addition, the LbL films also act as a good barrier to avoid methanol crossover, with an observed reduction in the methanol permeation from 5.5 × 10-6 cm2 s-1 to 3.2 × 10-6 cm2 s-1, respectively to pristine Nafion® 212 and a 5-bilayer PAH/PEDOT:PSS LbL film deposited on Nafion®212. The measured power density in a DMFC set-up was not significantly changed (∼12 mW cm-2) due to the LbL films, since the PAH/PEDOT:PSS nanostructure is impeding water and ion transport, consequently affecting the proton conduction throughout the membrane.

  14. Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes

    Science.gov (United States)

    Kang, Hui; Shi, Jie; Liu, Liyan; Shan, Mingjing; Xu, Zhiwei; Li, Nan; Li, Jing; Lv, Hanming; Qian, Xiaoming; Zhao, Lihuan

    2018-01-01

    To tune interlayer spacing, regulate water channel and improve stability of composite membrane, graphene oxide (GO) and oxidized carbon nanotubes (OCNTs) were assembled alternately to form sandwich morphology on a polyacrylonitrile substrate by layer-by-layer self-assembly technique. Polyelectrolyte played a part in cross-linking between GO and OCNTs. The effects about concentration ratio of GO and OCNTs on nanofiltration performance were investigated in detail. The composite membrane was used for dye rejection. When composite membrane with concentration ratio of GO and OCNTs was 10:1, water flux and rejection rate for methyl blue reached 21.71 L/(m2 h) and 99.3%, respectively. Meanwhile, this composite membrane had higher flux compared with reported literatures in which rejection also reached up to 99%. When concentration ratio of composite membranes about GO and OCNTs were 10:1 and 15:1, dye rejection for methyl blue remained 99.3% and 99.6% respectively after operating time of 50 h. Irreversible fouling ratio of composite membrane in a concentration ratio of 10:1 was only 4.4%, indicating that composite membrane had excellent antifouling performance for Bovine Serum Albumin. It was speculated that proper distribution of OCNTs in the sandwich morphology formed proper support points and water channels which benefited for a more stable performance.

  15. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  16. Ionic self-assembly of porphyrin nanostructures on the surface of charge-altered track-etched membranes

    CSIR Research Space (South Africa)

    Mongwaketsi, N

    2010-01-01

    Full Text Available and Sn(IV) tetrakis(4-pyridyl)porphyrin were used to synthesize ionic self-assembled porphyrin nanorods. The track-etched membranes surface charge was changed from negative to positive using polyethyleneimine. The porphyrin nanorods were either filtered...

  17. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    Science.gov (United States)

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  18. Direct detection of acidity, alkalinity, and pH with membrane electrodes.

    Science.gov (United States)

    Crespo, Gastón A; Ghahraman Afshar, Majid; Bakker, Eric

    2012-12-04

    An electrochemical sensing protocol based on supported liquid ion-selective membranes for the direct detection of total alkalinity of a sample that contains a weak base such as Tris (pK(a) = 8.2) is presented here for the first time. Alkalinity is determined by imposing a defined flux of hydrogen ions from the membrane to the sample with an applied current. The transition time at which the base species at the membrane-sample interface depletes owing to diffusion limitation is related to sample alkalinity in this chronopotentiometric detection mode. The same membrane is shown to detect pH (by zero current potentiometry) and acidity and alkalinity (by chronopotentiometry at different current polarity). This principle may become a welcome tool for the in situ determination of these characteristics in complex samples such as natural waters.

  19. Generation of Transparent Oxygen Evolution Electrode Consisting of Regularly Ordered Nanoparticles from Self-Assembly Cobalt Phthalocyanine as a Template

    KAUST Repository

    Ziani, Ahmed

    2016-11-04

    The decoration of (photo)electrodes for efficient photoresponse requires the use of electrocatalysts with good dispersion and high transparency for efficient light absorption by the photoelectrode. As a result of the ease of thermal evaporation and particulate self-assembly growth, the phthalocyanine molecular species can be uniformly deposited layer-by-layer on the surface of substrates. This structure can be used as a template to achieve a tunable amount of catalysts, high dispersion of the nanoparticles, and transparency of the catalysts. In this study, we present a systematic study of the structural and optical properties, surface morphologies, and electrochemical oxygen evolution reaction (OER) performance of cobalt oxide prepared from a phthalocyanine metal precursor. Cobalt phthalocyanine (CoPc) films with different thicknesses were deposited by thermal evaporation on different substrates. The films were annealed at 400 °C in air to form a material with the cobalt oxide phase. The final Co oxide catalysts exhibit high transparency after thermal treatment. Their OER measurements demonstrate well expected mass activity for OER. Thermally evaporated and treated transition metal oxide nanoparticles are attractive for the functionalization of (photo)anodes for water oxidation.

  20. Synthesis of silver embedded poly(o-anisidine molybdophosphate nano hybrid cation-exchanger applicable for membrane electrode.

    Directory of Open Access Journals (Sweden)

    Anish Khan

    Full Text Available Poly(o-anisidine molybdophosphate was expediently obtained by sol-gel mixing of Poly(o-anisidine into the inorganic matrices of molybdophosphate, which was allowed to react with silver nitrate to the formation of poly(o-anisidine molybdophosphate embedded silver nano composite. The composite was characterized by Fourier Transform Infrared Spectroscopy, X-ray powder diffraction, UV-Vis Spectrophotometry, Fluorescence Spectroscopy, Scanning Electron Microscopy/Energy-dispersive X-ray Spectroscopy and Thermogravimertic Analysis. Ion exchange capacity and distribution studies were carried out to understand the ion-exchange capabilities of the nano composite. On the basis of highest distribution studies, this nano composite cation exchanger was used as preparation of heavy metal ion selective membrane. Membrane was characterized for its performance as porosity and swelling later on was used for the preparation of membrane electrode for Hg(II, having better linear range, wide working pH range (2-4.5 with fast response in the real environment.

  1. The effects of round window membrane injury and the use of a model electrode application on hearing in rats.

    Science.gov (United States)

    Koc, Murat; Dalgic, Abdullah; Ozuer, Mehmet Ziya

    2016-03-01

    We conducted an animal experiment to investigate the effects of mechanical trauma to the round window with the placement of a model electrode inserted into the scala tympani on the cochlear reserve, and to determine the efficacy of topical steroids in preventing hearing loss in such a situation. Our subjects included 21 male Wistar albino rats that were assigned into three groups of 7 each. In all three groups, an initial mechanical injury to the round window was created. At that point, group 1 received no further treatment, group 2 received a dexamethasone injection into the cochlea, and group 3 underwent implantation of a multichannel cochlear implant guide followed by dexamethasone administration. After a few minutes, the round window opening was obliterated with muscle, and the incision was sutured with 4-0 Vicryl Rapide polyglactin in all 3 groups. Distortion-product otoacoustic emissions were obtained before and immediately after the surgical injury, and again on postoperative day 7. Mean signal/noise ratios (S/Ns) obtained at 2, 3, and 4 kHz were calculated, and datasets were compared with nonparametric statistical tests. We found that the early postoperative mean S/N values were significantly lower than the preoperative values in groups 1 and 2, but there was no difference between the mean preoperative values and those obtained on postoperative day 7 in those two groups. In group 3, there were statistically significant differences among the mean preoperative, early postoperative, and postoperative day 7 S/N values. We observed that an electrode insertion into the cochlea via the round window subsequent to mechanical trauma seemed to cause a progressive hearing loss. Therefore, we conclude that special care must be taken to avoid injury to the round window membrane during placement of a cochlear implant electrode, as well as during surgery for chronic otitis media.

  2. Two-Dimensional Fluidization of Nanomaterials via Biomimetic Membranes towards Assisted Self Assembly

    Science.gov (United States)

    Kelly, Kathleen

    Materials that take advantage of the exceptional properties of nano-meter sized aggregates of atoms are poised to play an important role in future technologies. Prime examples for such nano-materials that have an extremely large surface to volume ratio and thus are physically determined by surface related effects are quantum dots (qdots) and carbon nanotubes (CNTs). The production of such manmade nano-objects has by now become routine and even commercialized. However, the controlled assembly of individual nano-sized building blocks into larger structures of higher geometric and functional complexity has proven to be much more challenging. Yet, this is exactly what is required for many applications that have transformative potential for new technologies. If the tedious procedure to sequentially position individual nano-objects is to be forgone, the assembly of such objects into larger structures needs to be implicitly encoded and many ways to bestow such self-assembly abilities onto nano objects are being developed. Yet, as overall size and complexity of such self-assembled structures increases, kinetic and geometric frustration begin to prevent the system to achieve the desired configuration. In nature, this problem is solved by relying on guided or forced variants of the self-assembly approach. To translate such concepts into the realm of man-made nano-technology, ways to dynamically manipulate nano-materials need to be devised. Thus, in the first part of this work, I provide a proof of concept that supported lipid bilayers (SLBs) that exhibit free lateral diffusion of their constituents can be utilized as a two-dimensional platform for active nano-material manipulation. We used streptavidin coated quantum dots (Q-dots) as a model nano-building-block. Q-dots are 0-dimensional nanomaterials engineered to be fluorescent based solely on their diameter making visualization convenient. Biotinylated lipids were used to tether Q-dots to a SLB and we observed that the 2

  3. An aluminum selective electrode via modification of PVC membrane by modified clinoptilolite nanoparticles with hexadecyltrimethyl ammonium bromide (HDTMA-Br) surfactant containing Arsenazo III.

    Science.gov (United States)

    Mahdavi, Mostafa; Nezamzadeh-Ejhieh, Alireza

    2017-05-15

    A modified PVC (polyvinyl chloride) membrane with clinoptilolite nanoparticles/hexadecyltrimethyl ammonium bromide surfactant (HDTMABr)/Arsenazo III: (NSMZ-ARS), was used for construction of Al(III) -selective electrode. The raw and modified samples were characterized by XRD, FTIR, SEM and TEM methods. Among the different tested membranes constructed by raw and modified samples, only, the membrane electrode containing NSMZ-ARS showed a suitable Nernstian response to aluminum in the concentration range of 2.04×10 -5 to 1.99×10 -1 M (r=0.9987), with a detection limit of 1.0×10 -5 molL -1 and a Nernstian slope of 19.6±0.5mV per decade of aluminum concentration. The electrode response to aluminum remained constant in the pH range of 2-4. The sensor was selective for aluminum over a wide variety of other ions and exhibited. The electrode had a rapid response time and its response reached to steady potential at 5s. The electrode had also satisfactory long term stability and held its activity at least 3months. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane.

    Science.gov (United States)

    Ji, Hongtao; Dong, Hansong

    2015-09-01

    Many plant- and animal-pathogenic Gram-negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel-like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two-step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two-domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin-rich middle lamella by the bacterial pilus. One-domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin-type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  5. Click-assembling triazole membrane on copper surface via one-step or two-steps and their corrosion inhibition performance

    Science.gov (United States)

    Wang, Yizhen; Yu, Yinzhe; Zhang, Jie; Gao, Lixin; Feng, Likui; Zhang, Daquan

    2018-01-01

    Triazole membrane was prepared on copper surface via one-step or two-steps click chemistry reaction of azide and alkyne compounds. Fourier transforms infrared spectroscopy (FT-IR) suggests the formation of triazole membrane on copper surface through both of one-step and two-steps click-assembling. The electrochemical results indicate that the protection efficiency of triazole click-assembling membrane forming via one-step is better than that for two-steps. The surface film on copper via one-step click-assembling is mainly composed of the triazole membrane. As for two-steps click-assembling, the triazole membrane is mainly produced in the defect of the alkyne inhibition film.

  6. Fabrication and Characterization of a Stabilized Thin Film Ag/AgCl Reference Electrode Modified with Self-Assembled Monolayer of Alkane Thiol Chains for Rapid Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Tanzilur Rahman

    2017-10-01

    Full Text Available The fabrication of miniaturized electrical biosensing devices can enable the rapid on-chip detection of biomarkers such as miRNA molecules, which is highly important in early-stage cancer detection. The challenge in realizing such devices remains in the miniaturization of the reference electrodes, which is an integral part of electrical detection. Here, we report on a novel thin film Ag/AgCl reference electrode (RE that has been fabricated on top of a Au-sputtered glass surface, which was coated with a self-assembled monolayer (SAM of 6-mercepto-1-hexanol (MCH. The electrode showed very little measurement deviation (−1.5 mv from a commercial Ag/AgCl reference electrode and exhibited a potential drift of only ± 0.2 mV/h. In addition, the integration of this SAM-modified microfabricated thin film RE enabled the rapid detection (<30 min of miRNA (let-7a. The electrode can be integrated seamlessly into a microfluidic device, allowing the highly stable and fast measurement of surface potential and is expected to be very useful for the development of miniature electrical biosensors.

  7. New method for preparation of polyoxometalate-capped gold nanoparticles, and their assembly on an indium-doped tin oxide electrode

    International Nuclear Information System (INIS)

    Cheng, Y.; Zheng, J.; Wang, Z.; Liu, L.; Wu, Y.; Yang, J.

    2011-01-01

    Functionalized gold nanoparticles capped with polyoxometalates were prepared by a simple photoreduction technique where phosphododecamolybdates serve as reducing reagents, photocatalysts, and as stabilizers. TEM images of the resulting gold nanoparticles show the particles to have a relative narrow size distribution. Monolayer and multilayer structures of the negatively charged capped gold nanoparticles were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide (ITO) electrode via the layer-by-layer technique. The surface plasmon resonance band of the gold nanoparticles displays a blue shift on the surface of the ITO electrode. This is due to the substrate-induced charge redistribution in the gold nanoparticles and a change in the electromagnetic coupling between the assembled nanoparticles. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate and excellent electrocatalytic activity. The catalysis of the modified electrode towards the model compound iodate was systematically studied. The heterogeneous catalytic rate constant for the electrochemical reduction of iodate was determined by chronoamperometry to be ca. 1. 34 x 10 5 mol -1 .L.s -1 . The amperometric method gave a linear range from 2. 5 x 10 -6 to 1. 5 x 10 -3 M and a detection limit of 1. 0 x 10 -6 M. We believe that the functionalized gold nanoparticles prepared by this photoreduction technique are advantageous in terms of fabrication of sensitive and stable redox electrodes. (author)

  8. Design, Synthesis, and Use of Peptides Derived from Human Papillomavirus L1 Protein for the Modification of Gold Electrode Surfaces by Self-Assembled Monolayers.

    Science.gov (United States)

    Lara Carrillo, John Alejandro; Fierro Medina, Ricardo; Manríquez Rocha, Juan; Bustos Bustos, Erika; Insuasty Cepeda, Diego Sebastián; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny

    2017-11-14

    In order to obtain gold electrode surfaces modified with Human Papillomavirus L1 protein (HPV L1)-derived peptides, two sequences, SPINNTKPHEAR and YIK, were chosen. Both have been recognized by means of sera from patients infected with HPV. The molecules, Fc-Ahx-SPINNTKPHEAR, Ac-C- Ahx -(Fc)KSPINNTKPHEAR, Ac-C- Ahx -SPINNTKPHEAR(Fc)K, C- Ahx -SPINNTKPHEAR, and (YIK)₂- Ahx -C, were designed, synthesized, and characterized. Our results suggest that peptides derived from the SPINNTKPHEAR sequence, containing ferrocene and cysteine residues, are not stable and not adequate for electrode surface modification. The surface of polycrystalline gold electrodes was modified with the peptides C-Ahx-SPINNTKPHEAR or (YIK)₂-Ahx-C through self-assembly. The modified polycrystalline gold electrodes were characterized via infrared spectroscopy and electrochemical measurements. The thermodynamic parameters, surface coverage factor, and medium pH effect were determined for these surfaces. The results indicate that surface modification depends on the peptide sequence (length, amino acid composition, polyvalence, etc.). The influence of antipeptide antibodies on the voltammetric response of the modified electrode was evaluated by comparing results obtained with pre-immune and post-immune serum samples.

  9. Construction and evaluation of As(V) selective electrodes based on iron oxyhydroxide embedded in silica gel membrane

    International Nuclear Information System (INIS)

    Rodriguez, J.A.; Barrado, E.; Vega, M.; Prieto, F.; Lima, J.L.F.C.

    2005-01-01

    Two As(V) selective electrodes (with and without inner reference solution) have been developed using selective membranes based on iron oxyhydroxide embedded on silica gel mixed with ultrapure graphite at a 2/98 (w/w) ratio. The active component of the membrane was synthesised by means of the sol-gel technique and characterized by X-ray and FTIR spectroscopy. This compound shows a great affinity towards As(V) ions adsorbing 408 mg g -1 . Using 1 mol l -1 phosphate buffer (at a 1/1, v/v ratio) to adjust the pH and the ionic strength to 7 and 0.5 mol l -1 , respectively, the calibration curve is linear from 1.0 x 10 -1 to 1.0 x 10 -6 mol l -1 As(V), with a practical detection limit of 4 x 10 -7 mol l -1 (0.03 mg l -1 ) and a slope close to 30 mV decade -1 . The effect of potentially interfering ions was investigated. The accuracy and precision of the procedure have been tested on arsenic-free drinking water samples spiked with known amounts of arsenic and on groundwater samples containing high levels of arsenic. Total arsenic in these samples was determined after oxidation of As(III) with iodine at pH 7. The results of total As were comparable to those generated by ET-AAS

  10. Highly selective oxalate-membrane electrode based on 2,2'-[1,4-butandiyle bis(nitrilo propylidine)]bis-1-naphtholato copper(II).

    Science.gov (United States)

    Ardakani, M Mazloum; Jalayer, M; Naeimi, H; Heidarnezhad, A; Zare, H R

    2006-01-15

    A new oxalate-selective electrode based on the complex 2,2'-[1,4-butandiyle bis(nitrilo propylidine)]bis-1-naphtholato copper(II) (CuL) as the membrane carrier was developed. The electrode exhibited a good Nernstian slope of -29.2+/-0.6 mV/decade (mean value+/-standard deviation, n=5) and a linear range of 5.0 x 10(-8) to 1.0 x 10(-1)M for oxalate. The limit of detection was 5.0 x 10(-8)M. This electrode represents a fast response time (i.e. 10-15s) and could be used for more than 3 months. The selectivity coefficients were determined by the fixed interference method (FIM) and could be used in the pH range of 2.0-7.0. It was employed as an indicator electrode for the determination of oxalate in water samples.

  11. Localised electrochemical impedance measurements of a polymer electrolyte fuel cell using a reference electrode array to give cathode-specific measurements and examine membrane hydration dynamics

    Science.gov (United States)

    Engebretsen, Erik; Hinds, Gareth; Meyer, Quentin; Mason, Tom; Brightman, Edward; Castanheira, Luis; Shearing, Paul R.; Brett, Daniel J. L.

    2018-04-01

    Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after ∼250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.

  12. Convenient synthesis and application of versatile nucleic acid lipid membrane anchors in the assembly and fusion of liposomes

    DEFF Research Database (Denmark)

    Ries, Oliver; Löffler, Philipp M. G.; Vogel, Stefan

    2015-01-01

    or the construction of DNA origami structures. We herein present the synthesis and applications of versatile lipid membrane anchor building blocks suitable for solid phase oligonucleotide synthesis. These are readily synthesized in bulk in five to seven steps from commercially available precursors and can...... be incorporated at any position within an oligonucleotide without significantly altering duplex stability and structure as proven by thermal denaturation experiments and circular dichroism. Furthermore, applicability could be demonstrated by assembly and fusion of liposomes mediated by lipid...

  13. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  14. Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis.

    Directory of Open Access Journals (Sweden)

    Carolina Agop-Nersesian

    2009-01-01

    Full Text Available The final step during cell division is the separation of daughter cells, a process that requires the coordinated delivery and assembly of new membrane to the cleavage furrow. While most eukaryotic cells replicate by binary fission, replication of apicomplexan parasites involves the assembly of daughters (merozoites/tachyzoites within the mother cell, using the so-called Inner Membrane Complex (IMC as a scaffold. After de novo synthesis of the IMC and biogenesis or segregation of new organelles, daughters bud out of the mother cell to invade new host cells. Here, we demonstrate that the final step in parasite cell division involves delivery of new plasma membrane to the daughter cells, in a process requiring functional Rab11A. Importantly, Rab11A can be found in association with Myosin-Tail-Interacting-Protein (MTIP, also known as Myosin Light Chain 1 (MLC1, a member of a 4-protein motor complex called the glideosome that is known to be crucial for parasite invasion of host cells. Ablation of Rab11A function results in daughter parasites having an incompletely formed IMC that leads to a block at a late stage of cell division. A similar defect is observed upon inducible expression of a myosin A tail-only mutant. We propose a model where Rab11A-mediated vesicular traffic driven by an MTIP-Myosin motor is necessary for IMC maturation and to deliver new plasma membrane to daughter cells in order to complete cell division.

  15. DNA biosensor for detection of Salmonella typhi from blood sample of typhoid fever patient using gold electrode modified by self-assembled monolayers of thiols

    Science.gov (United States)

    Suryapratiwi, Windha Novita; Paat, Vlagia Indira; Gaffar, Shabarni; Hartati, Yeni Wahyuni

    2017-05-01

    Electrochemical biosensors are currently being developed in order to handle various clinical problems in diagnosing infectious diseases caused by pathogenic bacteria, or viruses. On this research, voltammetric DNA biosensor using gold electrode modified by thiols with self-assembled monolayers had been developed to detect a certain sequence of Salmonella typhi DNA from blood sample of typhoid fever patient. Thiol groups of cysteamines (Cys) and aldehyde groups from glutaraldehydes (Glu) were used as a link to increase the performance of gold electrode in detecting guanine oxidation signal of hybridized S. typhi DNA and ssDNA probe. Standard calibration method was used to determine analytical parameters from the measurements. The result shown that, the detection of S. typhi DNA from blood sample of typhoid fever patient can be carried out by voltammetry using gold electrode modified by self-assembled monolayers of thiols. A characteristic oxidation potential of guanine using Au/Cys/Gluwas obtained at +0.17 until +0.20 V. Limit of detection and limit of quantification from this measurements were 1.91μg mL-1 and 6.35 μg mL-1. The concentration of complement DNA from sample was 6.96 μg mL-1.

  16. Layer by layer assembly of ultrathin V2O5 anchored MWCNTs and graphene on textile fabrics for fabrication of high energy density flexible supercapacitor electrodes

    Science.gov (United States)

    Shakir, Imran; Ali, Zahid; Bae, Jihyun; Park, Jongjin; Kang, Dae Joon

    2014-03-01

    Among transition metal oxides, vanadium oxides have received relatively modest attention for supercapacitor applications. Yet, this material is abundant, relatively inexpensive and offer several oxidation states which can provide a broad range of redox reactions suitable for supercapacitor operation. Electrochemical supercapacitors based on nanostructured vanadium oxide (V2O5) suffer from relatively low energy densities as they have low surface area and poor electrical conductivities. To overcome these problems, we developed a layer by layer assembly (LBL) technique in which a graphene layer was alternatively inserted between MWCNT films coated with ultrathin (3 nm) V2O5. The insertion of a conductive spacer of graphene between the MWCNT films coated with V2O5 not only prevents agglomeration between the MWCNT films but also substantially enhances the specific capacitance by 67%, to as high as ~2590 F g-1. Furthermore, the LBL assembled multilayer supercapacitor electrodes exhibited an excellent cycling performance of >97%, capacitance retention over 5000 cycles and a high energy density of 96 W h kg-1 at a power density of 800 W kg-1. Our approach clearly offers an exciting opportunity for enhancing the device performance of metal oxide-based electrochemical supercapacitors suitable for next-generation flexible energy storage devices by employing a facile LBL assembly technique.Among transition metal oxides, vanadium oxides have received relatively modest attention for supercapacitor applications. Yet, this material is abundant, relatively inexpensive and offer several oxidation states which can provide a broad range of redox reactions suitable for supercapacitor operation. Electrochemical supercapacitors based on nanostructured vanadium oxide (V2O5) suffer from relatively low energy densities as they have low surface area and poor electrical conductivities. To overcome these problems, we developed a layer by layer assembly (LBL) technique in which a graphene layer

  17. Synthesis of a New Calix[4]Arene and Its Application in Construction of a Highly Selective Silver Ion-Selective Membrane Electrode

    Directory of Open Access Journals (Sweden)

    Saeed Taghvaei-Ganjali

    2009-01-01

    Full Text Available A PVC membrane sensor for Ag (I ions has been prepared. The membrane has 5, 11, 17, 23-tetra-tert-butyl-25-(3-N, N-diethyldithio carbamoylpropoxy-26,27,28-tris-propoxy calix[4]arene (CAD as a carrier. It was found that the sensor exhibits a Nernstian response for Ag+ ions over a wide concentration range (10−2–10−6 M. Additionally, it illustrates a fast response time (about 5 seconds, and it can be used for at least 2 months without any considerable divergence in potentials. The nature of the plasticizer, the additive, the concentration of internal solutions in the electrodes, and the composition of the membrane were investigated. Furthermore, the suggested membrane electrode revealed good selectivities for Ag+ over a variety of other metal cations, and it could be used in the pH range of 3.0–7.0. Eventually, it was successfully applied as an indicator electrode for the potentiometric titration of Ag+ ion with NaCl.

  18. Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Noyhouzer, Tomer [Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Mandler, Daniel, E-mail: mandler@vms.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2011-01-17

    The electrochemical determination of low levels of Cd using a self-assembled monolayer (SAM) modified Au electrode is reported. Determination was based on the stripping of Cd, which was deposited by under potential deposition (UPD). A series of short alkanethiol SAMs bearing different end groups, i.e., sulfonate, carboxylate and ammonium, were examined. Lowest level of detection (ca. 50 ng L{sup -1}) was achieved with a 3-mercaptopropionic acid (MPA) monolayer using subtractive anodic square wave voltammetry (SASV). Additional surface methods, namely, reductive desorption and X-ray photoelectron spectroscopy, were applied to determine the interfacial structure of the electrodeposited Cd on the modified electrodes. We conclude that the deposited Cd forms a monoatomic layer, which bridges between the gold surface and the alkanethiol monolayer associating with both the gold and the sulfur atoms.

  19. Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode.

    Science.gov (United States)

    Noyhouzer, Tomer; Mandler, Daniel

    2011-01-17

    The electrochemical determination of low levels of Cd using a self-assembled monolayer (SAM) modified Au electrode is reported. Determination was based on the stripping of Cd, which was deposited by under potential deposition (UPD). A series of short alkanethiol SAMs bearing different end groups, i.e., sulfonate, carboxylate and ammonium, were examined. Lowest level of detection (ca. 50 ngL(-1)) was achieved with a 3-mercaptopropionic acid (MPA) monolayer using subtractive anodic square wave voltammetry (SASV). Additional surface methods, namely, reductive desorption and X-ray photoelectron spectroscopy, were applied to determine the interfacial structure of the electrodeposited Cd on the modified electrodes. We conclude that the deposited Cd forms a monoatomic layer, which bridges between the gold surface and the alkanethiol monolayer associating with both the gold and the sulfur atoms. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries.

    Science.gov (United States)

    Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi

    2015-05-27

    A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.

  1. Identifying SARS-CoV membrane protein amino acid residues linked to virus-like particle assembly.

    Directory of Open Access Journals (Sweden)

    Ying-Tzu Tseng

    Full Text Available Severe acute respiratory syndrome coronavirus (SARS-CoV membrane (M proteins are capable of self-assembly and release in the form of membrane-enveloped vesicles, and of forming virus-like particles (VLPs when coexpressed with SARS-CoV nucleocapsid (N protein. According to previous deletion analyses, M self-assembly involves multiple M sequence regions. To identify important M amino acid residues for VLP assembly, we coexpressed N with multiple M mutants containing substitution mutations at the amino-terminal ectodomain, carboxyl-terminal endodomain, or transmembrane segments. Our results indicate that a dileucine motif in the endodomain tail (218LL219 is required for efficient N packaging into VLPs. Results from cross-linking VLP analyses suggest that the cysteine residues 63, 85 and 158 are not in close proximity to the M dimer interface. We noted a significant reduction in M secretion due to serine replacement for C158, but not for C63 or C85. Further analysis suggests that C158 is involved in M-N interaction. In addition to mutations of the highly conserved 107-SWWSFNPE-114 motif, substitutions at codons W19, W57, P58, W91, Y94 or F95 all resulted in significantly reduced VLP yields, largely due to defective M secretion. VLP production was not significantly affected by a tryptophan replacement of Y94 or F95 or a phenylalanine replacement of W19, W57 or W91. Combined, these results indicate the involvement of specific M amino acids during SARS-CoV virus assembly, and suggest that aromatic residue retention at specific positions is critical for M function in terms of directing virus assembly.

  2. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: Study of direct voltammetry and bioelectrocatalytic activity

    International Nuclear Information System (INIS)

    Saadati, Shagayegh; Salimi, Abdollah; Hallaj, Rahman; Rostami, Amin

    2012-01-01

    Highlights: ► Catalase and amine-terminated ionic liquid were immobilized to GC/TiNnp with LBL assembly method. ► First a thin layer of NH 2 -IL is covalently attached to GC/TiNnp electrode using electro-oxidation. ► With alternative assemble of IL and catalase with positive and negative charged, multilayer was formed. ► Immobilized catalase shows excellent electrocatalytic activity toward H 2 O 2 reduction. ► Biosensor response is directly correlated to the number of bilayers. - Abstract: A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH 2 -IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH 2 -IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH 2 -IL and negatively charged catalase a sensitive H 2 O 2 biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (k s ) and Michaelis–Menten constant (K M ) of immobilized catalase were 3.32 × 10 −12 mol cm −2 , 5.28 s −1 and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 μA mM −1 cm −2 and low detection limit of 100 nM at concentration range up to 2.1 mM.

  3. Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: Study of direct voltammetry and bioelectrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Saadati, Shagayegh [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman; Rostami, Amin [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Catalase and amine-terminated ionic liquid were immobilized to GC/TiNnp with LBL assembly method. Black-Right-Pointing-Pointer First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation. Black-Right-Pointing-Pointer With alternative assemble of IL and catalase with positive and negative charged, multilayer was formed. Black-Right-Pointing-Pointer Immobilized catalase shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} reduction. Black-Right-Pointing-Pointer Biosensor response is directly correlated to the number of bilayers. - Abstract: A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH{sub 2}-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH{sub 2}-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH{sub 2}-IL and negatively charged catalase a sensitive H{sub 2}O{sub 2} biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}) of immobilized catalase were 3.32 Multiplication-Sign 10{sup -12} mol cm{sup -2}, 5.28 s{sup -1} and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 {mu}A mM{sup -1} cm{sup -2} and low detection limit of 100 nM at concentration range up to 2.1 mM.

  4. Amphiphilic DNA tiles for controlled insertion and 2D assembly on fluid lipid membranes: the effect on mechanical properties.

    Science.gov (United States)

    Dohno, Chikara; Makishi, Shingo; Nakatani, Kazuhiko; Contera, Sonia

    2017-03-02

    Future lipid membrane-associated DNA nanostructures are expected to find applications ranging from synthetic biology to nanomedicine. Here we have designed and synthesized DNA tiles and modified them with amphiphilic covalent moieties. dod-DEG groups, which consist of a hydrophilic diethylene glycol (DEG) and a hydrophobic dodecyl group, are introduced at the phosphate backbone to create amphiphilic DNA strands which are subsequently introduced into one face of the DNA tiles. In this way the tile becomes able to stably bind to lipid membranes by insertion of the hydrophobic groups inside the bilayer core. The functionalized tiles do not aggregate in solution. Our results show that these amphiphilic DNA tiles can bind and assemble into 2D lattices on both gel and fluid lipid bilayers. The binding of the DNA structures to membranes is dependent on the lipid phase of the membrane, the concentration of Mg 2+ cations, the length of the amphiphilic modifications to the DNA as well as on the density of the modifications within the tile. Atomic force microscopy-based force spectroscopy is used to investigate the effect of the inserted DNA tiles on the mechanical properties of the lipid membranes. The results indicate that the insertion of DNA tiles produces an approx. 20% increase of the bilayer breakthrough force.

  5. Modification of single-walled carbon nanotube electrodes by layer-by-layer assembly for electrochromic devices

    OpenAIRE

    Jain, Vaibhav; Yochum, Henry M.; Montazami, Reza; Heflin, James R.; Hu, Liangbing; Gruner, George

    2008-01-01

    We have studied the morphological properties and electrochromic (EC) performance of polythiophene multilayer films on single wall carbon nanotube (SWCNT) conductive electrodes. The morphology for different numbers of layer-by-layer (LbL) bilayer on the SWCNT electrode has been characterized with atomic force microscopy and scanning electron microscope, and it was found that the LbL multilayers significantly decrease the surface roughness of the nanoporous nanotube films. The controlled surfac...

  6. Core-shell fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav; Bliznakov, Stoyan; Vukmirovic, Miomir

    2017-12-26

    Embodiments of the disclosure relate to membrane electrode assemblies. The membrane electrode assembly may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.

  7. Self-assembling peptide and protein nanodiscs for studies of membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi

    investigations of membrane proteins by traditional X-ray crystallography have proved a difficult challenge, and a surprisingly small amount of membrane proteins has been crystalized so far. This implies that development of lipoproteins as a platform for studying membrane proteins is much needed. In this thesis......Particles containing both lipids and proteins (so-called lipoproteins) are vital to study. They are selfassembling particles that, in the human body, are responsible for the transport of lipids and cholesterol. Due to the increasing problems of obesity and related illnesses in the world, obtaining...... for working with lipoprotein particles are their potential in the study membrane proteins. Membrane proteins are responsible for most of the transport in and out of cells and signaling between cells. As an example G-protein coupled receptors, a class of membrane proteins, are the third largest class...

  8. Flow Injection Potentiometric Determination of Cd2+ Ions Using a Coated Graphite Plasticized PVC-Membrane Electrode Based on 1, 3-Bis(2-cyanobenzene)triazene.

    Science.gov (United States)

    Shamsipur, Mojtaba; Sahari, Shokat; Payehghadr, Mahmood; Alizadeh, Kamal

    2011-09-01

    1, 3-Bis(2-cyanobenzene)triazene, L, was used as a suitable ionophore for the fabrication of a new PVC-based polymeric membrane coated graphite electrode for selective sensing of Cd2+ ion. The electrode exhibited a selective linear Nernstian response to Cd2+ ion at an optimal pH range of 6-9 with a limit of detection of 8.0 × 10-6 M and a fast response time of about 2 s. The electrode was used as a proper detection system in flow-injection potentiometry of cadmium ion and resulted in well defined peaks for cadmium ions with stable baseline, excellent reproducibility and high sampling rates of over 100 injections per hour. It showed good stability, reproducibility and fast response time. The practical utility of the proposed system has also been reported.

  9. Influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb(II) ion-selective electrode

    DEFF Research Database (Denmark)

    Joon, Narender Kumar; He, Ning; Wagner, Michal

    2017-01-01

    In this work, the influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb2+-selective electrode (Pb2+-ISE) was studied. The effects of bovine serum albumin (BSA) adsorption at the surface of the ion-selective membrane combined...... with electrode conditioning in phosphate-buffered saline (PBS) solution was elucidated by potentiometry and electrochemical impedance spectroscopy. The adsorbed BSA at the surface of the Pb2+-ISE slightly lowered the detection limit but did not influence the selectivity of the Pb2+-ISE towards the interfering...... dm–3 PBS + 1 mg/ml BSA it was possible to extend the linear response range of the Pb2+-ISE towards lower analyte concentrations. The utilization of this conditioning procedure was validated by determination of Pb2+ concentrations down to ca 20 ppb in aqueous samples by Pb2+-ISEs and by comparing...

  10. HIV-1 Viral RNA Dynamics at the Plasma Membrane May Provide Insight into Viral Assembly | Poster

    Science.gov (United States)

    Many aspects of how infectious viruses assemble in cells have yet to be completely deciphered. However, as reported in a recent Journal of Virology paper, researchers may be one step closer to understanding how HIV-1, the virus that causes AIDS, assembles and replicates.

  11. Determination of cobalt ions at nano-level based on newly synthesized pendant armed macrocycle by polymeric membrane and coated graphite electrode.

    Science.gov (United States)

    Singh, Ashok K; Singh, Prerna; Bhattacharjee, G

    2009-12-15

    Poly(vinylchloride) (PVC) based membranes of macrocycles 2,3,4:9,10,11-dipyridine-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L(1)) and 2,3,4:9,10,11-dipyridine-1,5,8,12-tetramethylacrylate-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L(2)) with NaTPB and KTpClPB as anion excluders and dibutylphthalate (DBP), benzyl acetate (BA), dioctylphthalate (DOP), o-nitrophenyloctyl ether (o-NPOE) and tri-n-butylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as Co(2+) selective electrodes. The best performance was observed with the membranes having the composition L(2):PVC:TBP:NaTPB in the ratio of 6:39:53:2 (w/w; mg). The performance of the membrane based on L(2) was compared with polymeric membrane electrode (PME) and coated graphite electrode (CGE). The PME exhibits detection limit of 4.7x10(-8)M with a Nernstian slope of 29.7 mV decade(-1) of activity between pH 2.5 and 8.5 whereas CGE exhibits the detection limit of 6.8x10(-9)M with a Nernstian slope of 29.5 mV decade(-1) of activity between pH 2.0 and 9.0. The response time for PME and CGE was found to be 11 and 8s, respectively. The CGE has been found to work satisfactorily in partially non-aqueous media up to 35% (v/v) content of methanol, ethanol and 25% (v/v) content of acetonitrile and could be used for a period of 4 months. The CGE was successfully applied for the determination of Co(2+) in real and pharmaceutical samples and as an indicator electrode in potentiometric titration of cobalt ion.

  12. A polymeric membrane ion selective electrode based on organic-inorganic composite ion exchanger for the determination of thorium(IV)

    International Nuclear Information System (INIS)

    Chandra, Sulekh; Agarwal, Himanshu; Chandan Kumar, Singh; Sindhu, Susheel Kumar; Pankaj Kumar

    2005-01-01

    A poly(vinyl chloride) membrane electrode based on organic- inorganic composite ion exchanger, tin(IV) tungstoselenate-pyridine, has been prepared and tested for the selective determination of thorium(IV) ions. The PVC membrane electrode comprising 16% composite ion exchanger as the electroactive phase, 50% o-dioctyl phthalate as plasticizer, 4% tetraphenyl borate as anionic excluder and 30% poly(vinylchloride) displays a linear response to thorium(IV) ions over a wide concentration range of 1.0 x 10 -1 -8.0 x 10 -6 M with a Nernstain slope of 14.2 mV/ decade. The electrode shows a very short response time (∼15 s) and may be used in the pH range 2.5-9.0. The selectivity coefficient for alkali, alkaline earth and transition is smaller than 4.0 x 10 -4 . The sensor has been successfully used as an indicator electrode in the potentiometric titration of Th 4+ with EDTA as well as also for the determination of Th 4+ in the binary mixtures. (author)

  13. DNA-promoted electrochemical assembly of [Ru(bpy){sub 2}dpp]{sup 3+/2+} on the ITO electrode by introducing copper(II) ion

    Energy Technology Data Exchange (ETDEWEB)

    Yao Su [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Li Hong [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)], E-mail: lihong@scnu.edu.cn; Guo Qingyu; Xu Zhenghe [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Ji Liangnian [Department of Chemistry, Zhongshan University, Guangzhou 510275 (China)

    2008-06-30

    The electrochemical assembly of [Ru(bpy){sub 2}dpp]{sup 3+/2+} (where bpy = 2,2'-bipyridine, dpp = 2,3-bis (2-pyridyl) pyrazine) promoted by calf thymus DNA on an ITO electrode based on the introduction of copper(II) ion has been investigated. There exists a diffusion-controlled wave and two prewaves for the complex in the differential pulse voltammetric sweeping process. The formal potential of the high prewave shift ca. 0.530 V negatively compared with that of the diffusion-controlled wave. Dpp ligand with two vacant chelating N sites in the complex can bite Cu{sup 2+} and the resultant heterometallic complex shows a weakened assembly in contrast to that of [Ru(bpy){sub 2}dpp]{sup 3+/2+} alone. Furthermore, double stranded DNA is able to accelerate the assembly of the ruthenium complex and heterometallic complex generated by chelating with Cu{sup 2+} by using the ITO surface, the prompted strength of the latter is far stronger than the former. Their assembled mechanism enhanced by DNA is proposed.

  14. DNA-promoted electrochemical assembly of [Ru(bpy)2dpp]3+/2+ on the ITO electrode by introducing copper(II) ion

    International Nuclear Information System (INIS)

    Yao Su; Li Hong; Guo Qingyu; Xu Zhenghe; Ji Liangnian

    2008-01-01

    The electrochemical assembly of [Ru(bpy) 2 dpp] 3+/2+ (where bpy = 2,2'-bipyridine, dpp = 2,3-bis (2-pyridyl) pyrazine) promoted by calf thymus DNA on an ITO electrode based on the introduction of copper(II) ion has been investigated. There exists a diffusion-controlled wave and two prewaves for the complex in the differential pulse voltammetric sweeping process. The formal potential of the high prewave shift ca. 0.530 V negatively compared with that of the diffusion-controlled wave. Dpp ligand with two vacant chelating N sites in the complex can bite Cu 2+ and the resultant heterometallic complex shows a weakened assembly in contrast to that of [Ru(bpy) 2 dpp] 3+/2+ alone. Furthermore, double stranded DNA is able to accelerate the assembly of the ruthenium complex and heterometallic complex generated by chelating with Cu 2+ by using the ITO surface, the prompted strength of the latter is far stronger than the former. Their assembled mechanism enhanced by DNA is proposed

  15. Hexameric assembly of membrane fusion protein YknX of the sporulation delaying efflux pump from Bacillus amyloliquefaciens.

    Science.gov (United States)

    Xu, Yongbin; Jo, Inseong; Wang, Lulu; Chen, Jinli; Fan, Shengdi; Dong, Yuesheng; Quan, Chunshan; Ha, Nam-Chul

    2017-11-04

    Membrane fusion proteins (MFPs) play an essential role in the action of the drug efflux pumps and protein secretion systems in bacteria. The sporulation delaying protein (SDP) efflux pump YknWXYZ has been identified in diverse Bacillus species. The MFP YknX requires the ATP-binding cassette (ABC) transporter YknYZ and the Yip1 family protein YknW to form a functional complex. To date, the crystal structure, molecular function and mechanism of action of YknX remain unknown. In this study, to characterize the structural and biochemical roles of YknX in the functional assembly of YknWXYZ from B. amyloliquefaciens, we successfully obtained crystals of the YknX protein that diffracted X-rays to a resolution of 4.4 Å. We calculated an experimentally phased map using single-wavelength anomalous diffraction (SAD), revealing that YknX forms a hexameric assembly similar to that of MacA from Gram-negative bacteria. The hexameric assembly of YknX exhibited a funnel-like structure with a central channel and a conical mouth. Functional studies in vitro suggest that YknX can bind directly to peptidoglycan. Our study provides an improved understanding of the assembly of the YknWXYZ efflux pump and the role of YknX in the complex. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier

    Directory of Open Access Journals (Sweden)

    Andrew D. Nelson

    2017-05-01

    Full Text Available Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of

  17. Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage

    Directory of Open Access Journals (Sweden)

    Kuhn Andreas

    2011-09-01

    Full Text Available Abstract Background Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. Results The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Conclusions Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.

  18. Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage.

    Science.gov (United States)

    Ploss, Martin; Kuhn, Andreas

    2011-09-26

    Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.

  19. Vipp1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes.

    Science.gov (United States)

    Aseeva, Elena; Ossenbühl, Friederich; Sippel, Claudia; Cho, Won K; Stein, Bernhard; Eichacker, Lutz A; Meurer, Jörg; Wanner, Gerhard; Westhoff, Peter; Soll, Jürgen; Vothknecht, Ute C

    2007-02-01

    Vipp1 (vesicle inducing protein in plastids 1) is found in cyanobacteria and chloroplasts where it is essential for thylakoid formation. Arabidopsis thaliana mutant plants with a reduction of Vipp1 to about 20% of wild type content become albinotic at an early stage. We propose that this drastic phenotype results from an inability of the remaining Vipp1 protein to assemble into a homo-oligomeric complex, indicating that oligomerization is a prerequisite for Vipp1 function. A Vipp1-ProteinA fusion protein, expressed in the Deltavipp1 mutant background, is able to reinstate oligomerization and restore photoautotrophic growth. Plants containing Vipp1-ProteinA in amounts comparable to Vipp1 in the wild type exhibit a wild type phenotype. However, plants with a reduced amount of Vipp1-ProteinA protein are growth-retarded and significantly paler than the wild type. This phenotype is caused by a decrease in thylakoid membrane content and a concomitant reduction in photosynthetic activity. To the extent that thylakoid membranes are made in these plants they are properly assembled with protein-pigment complexes and are photosynthetically active. This strongly supports a function of Vipp1 in basic thylakoid membrane formation and not in the functional assembly of thylakoid protein complexes. Intriguingly, electron microscopic analysis shows that chloroplasts in the mutant plants are not equally affected by the Vipp1 shortage. Indeed, a wide range of different stages of thylakoid development ranging from wild-type-like chloroplasts to plastids nearly devoid of thylakoids can be observed in organelles of one and the same cell.

  20. Direct electrochemistry and electrocatalysis of hemoglobin at three-dimensional gold film electrode modified with self-assembled monolayers of 3-mercaptopropylphosphonic acid

    International Nuclear Information System (INIS)

    Chen Yu; Yang Xiaojing; Guo Lirong; Li Jing; Xia Xinghua; Zheng Limin

    2009-01-01

    Multilayered hemoglobin (Hb) molecules were successfully immobilized on three-dimensional gold film electrode modified with self-assembled monolayers (SAMs) of 3-mercaptopropylphosphonic acid. Direct electrochemistry of the immobilized multilayered Hb occurs with high thermal stability and electrochemical stability. In the multilayered Hb film, the most inner Hb molecules can directly transfer electron with the electrode, while the Hb protein beyond this layer communicates electron with the electrode via protein-protein electron exchange. In addition, the proposed functional interface can greatly enhance electron transfer rate of the immobilized Hb protein (k s = 15.8 ± 2.0 s -1 ) due to the increase of roughness of the gold substrate. Under optimized experimental conditions, the multilayered Hb film displays good bioelectrocatalytic activity toward the reduction of hydrogen peroxide. This electrochemical sensor shows fast response (less than 1 s), wide linear range (7.8 x 10 -8 to 9.1 x 10 -5 M) and low detection limit (2.5 x 10 -8 M), which can be attributed to good mass transport, large Hb proteins loading per unit area and fast electron transfer rate of Hb protein.

  1. Ionic Liquids As Self-Assembly Guide for the Formation of Nanostructured Block Copolymer Membranes

    KAUST Repository

    Madhavan, Poornima

    2015-04-30

    Nanostructured block copolymer membranes were manufactured by water induced phase inversion, using ionic liquids (ILs) as cosolvents. The effect of ionic liquids on the morphology was investigated, by using polystyrene-b-poly(4-vinyl pyridine) (PS-b-PV4P) diblock as membrane copolymer matrix and imidazolium and pyridinium based ILs. The effect of IL concentration and chemical composition was evident with particular interaction with P4VP blocks. The order of block copolymer/ILs solutions previous to the membrane casting was confirmed by cryo scanning electron microscopy and the morphologies of the manufactured nanostructured membranes were characterized by transmission and scanning electron microscopy. Non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ILs led to a lamella-structured membrane. The rheology of the IL/block copolymer solutions was investigated, evaluating the storage and loss moduli. Most membranes prepared with ionic liquid had higher water flux than pure block copolymer membranes without additives.

  2. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    Science.gov (United States)

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  3. Characterization of Dual-Electrode CMUTs: Demonstration of Improved Receive Performance and Pulse Echo Operation with Dynamic Membrane Shaping

    OpenAIRE

    Guldiken, Rasim O.; Balantekin, Mujdat; Zahorian, Jaime; Degertekin, F. Levent

    2008-01-01

    A 1-D dual-electrode CMUT array for intracardiac echocardiography (ICE) with a center frequency of 8 MHz has been designed, fabricated, and used to demonstrate the potential of dual-electrode CMUTs. Using a dual-electrode CMUT, 9 dB higher receive signal level is obtained over the 6 dB fractional bandwidth as compared with a conventional CMUT with an identical center electrode biased close to its collapse voltage. Because the same device shows a 7.4 dB increase in maximum pressure output, 16....

  4. Binding and assembly of actin filaments by plasma membranes from dictyostelium discoideum

    International Nuclear Information System (INIS)

    Schwartz, M.A.; Luna, E.J.

    1986-01-01

    The binding of native, 125 I-Bolton-Hunter-labeled actin to purified Dictyostelium discoideum plasma membranes was measured using a sedimentation assay. Binding was saturable only in the presence of the actin capping protein, gelsolin. The binding curves were sigmoidal, indicating positive cooperativity at low actin concentrations. This cooperativity appeared to be due to actin-actin associations during polymerization, since phalloidin converted the curve to a hyperbolic shape. This membrane-bound actin stained with rhodamine-phalloidin and was cross-linked by m-maleimidobenzoyl succinimide ester, a bifunctional cross-linker, into multimers with the same pattern observed for cross-linked F-actin. The authors conclude that D. discoideum plasma membranes bind actin specifically and saturably and that these membranes organize actin into filaments below the normal critical concentration for polymerization. This interaction probably occurs between multiple binding sites on the membrane and the side of the actin filament, and may be related to the clustering of membrane proteins

  5. Effects of ion-carrier substituents on the potentiometric-response characteristics in anion-selective membrane electrodes based on iron porphyrins.

    Science.gov (United States)

    Shahrokhian, Saeed; Seifi, Hassan; Bagherzadeh, Mojtaba; Mousavi, S Reza

    2004-05-17

    The potentiometric response characteristics with respect to salicylate anion of several membrane electrodes based on iron(III) tetraphenylporphyrin chloride (FeTPPCl) and derivatives with electrophilic and nucleophilic substituents, incorporated into plasticized polyvinylchloride (PVC) membranes were investigated. Complexes tetraphenyl porphyrin iron(III) chloride (FeTPPCl; A), tetrakis (4-methoxyphenyl) porphyrin iron(III) chloride (Fe(TOCH3PP)Cl; B), tetrakis (2,6-dichlorophenyl) porphyrin iron(III) chloride (Fe(TDClPP)Cl; C), tetrakis (4-nitrophenyl) porphyrin iron(III) chloride (Fe(TNO2PP)Cl; D), and tetrakis (pentafluorophenyl) porphyrin iron(III) chloride (Fe(TPFPP)Cl; E) were used as anion carriers in the membrane electrodes. The sensitivity, working range, detection limit, response mechanism, and selectivity of the membrane sensor toward interference shows a considerable dependence on the type of carrier substituent and the pH value of the sample solution. Potentiometric investigations in solutions of various pH show that the carrier complex containing fluoro substituents (E), which have very strong electron-accepting properties and a high ability to form hydrogen bonds, is capable of serving as a positively charged ionophore. Some other ionophores are capable of serving as both charged and neutral carriers under different conditions. The electrodes prepared in this work show super-Nernstian slopes with respect to salicylate concentration, which tend to a Nernstian response (slope near to -59 mV decade-1) upon an increase of the pH of the test solution. The results of UV/Vis absorption spectroscopy are used for interpretation of the formation of an oxene complex between salicylate and iron porphyrins.

  6. Layer by layer assembly of ultrathin V₂O₅ anchored MWCNTs and graphene on textile fabrics for fabrication of high energy density flexible supercapacitor electrodes.

    Science.gov (United States)

    Shakir, Imran; Ali, Zahid; Bae, Jihyun; Park, Jongjin; Kang, Dae Joon

    2014-04-21

    Among transition metal oxides, vanadium oxides have received relatively modest attention for supercapacitor applications. Yet, this material is abundant, relatively inexpensive and offer several oxidation states which can provide a broad range of redox reactions suitable for supercapacitor operation. Electrochemical supercapacitors based on nanostructured vanadium oxide (V₂O₅) suffer from relatively low energy densities as they have low surface area and poor electrical conductivities. To overcome these problems, we developed a layer by layer assembly (LBL) technique in which a graphene layer was alternatively inserted between MWCNT films coated with ultrathin (3 nm) V₂O₅. The insertion of a conductive spacer of graphene between the MWCNT films coated with V₂O₅ not only prevents agglomeration between the MWCNT films but also substantially enhances the specific capacitance by 67%, to as high as ∼2590 F g(-1). Furthermore, the LBL assembled multilayer supercapacitor electrodes exhibited an excellent cycling performance of >97%, capacitance retention over 5000 cycles and a high energy density of 96 W h kg(-1) at a power density of 800 W kg(-1). Our approach clearly offers an exciting opportunity for enhancing the device performance of metal oxide-based electrochemical supercapacitors suitable for next-generation flexible energy storage devices by employing a facile LBL assembly technique.

  7. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.

    Science.gov (United States)

    Kim, Hee Min; Hwang, Jang-Yeon; Manthiram, Arumugam; Sun, Yang-Kook

    2016-01-13

    Elemental sulfur electrode has a huge advantage in terms of charge-storage capacity. However, the lack of electrical conductivity results in poor electrochemical utilization of sulfur and performance. This problem has been overcome to some extent previously by using a bare multiwall carbon nanotube (MWCNT) paper interlayer between the sulfur cathode and the polymeric separator, resulting in good electron transport and adsorption of dissolved polysulfides. To advance the interlayer concept further, we present here a self-assembled MWCNT interlayer fabricated by a facile, low-cost process. The Li-S cells fabricated with the self-assembled MWCNT interlayer and a high loading of 3 mg cm(-2) sulfur exhibit a first discharge specific capacity of 1112 mAh g(-1) at 0.1 C rate and retain 95.8% of the capacity at 0.5 C rate after 100 cycles as the self-assembled MWCNT interlayer facilitates good interfacial contact between the interlayer and the sulfur cathode and fast electron and lithium-ion transport while trapping and reutilizing the migrating polysulfides. The approach presented here has the potential to advance the commercialization feasibility of the Li-S batteries.

  8. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  9. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Bei, E-mail: 1021453457@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Wu, Jing-Jing, E-mail: 957522275@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Su, Yu, E-mail: 819388710@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Zhou, Jin, E-mail: zhoujin_ah@163.com [Department of Materials and Chemical Engineering, Chizhou University, Muzhi Rd. 199, Chizhou, Anhui 247000 (China); Gao, Yong, E-mail: 154682180@qq.com [School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Yu, Hai-Yin, E-mail: yhy456@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Gu, Jia-Shan, E-mail: jiashanG@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Clickable membrane prepared by photo bromination and S{sub N}2 nucleophilic substitution. • Azide graphene oxide prepared by ring-opening reaction. • Alkyne graphene oxide was prepared via esterification reaction. • Layer-by-layer assembly of graphene oxide on membrane by click chemistry. • Antibacterial and antifouling characteristics were enhanced greatly. - Abstract: Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface.

  10. Reconstitution of membrane protein complexes involved in pneumococcal septal cell wall assembly.

    Directory of Open Access Journals (Sweden)

    Marjolaine Noirclerc-Savoye

    Full Text Available The synthesis of peptidoglycan, the major component of the bacterial cell wall, is essential to cell survival, yet its mechanism remains poorly understood. In the present work, we have isolated several membrane protein complexes consisting of the late division proteins of Streptococcus pneumoniae: DivIB, DivIC, FtsL, PBP2x and FtsW, or subsets thereof. We have co-expressed membrane proteins from S. pneumoniae in Escherichia coli. By combining two successive affinity chromatography steps, we obtained membrane protein complexes with a very good purity. These complexes are functional, as indicated by the retained activity of PBP2x to bind a fluorescent derivative of penicillin and to hydrolyze the substrate analogue S2d. Moreover, we have evidenced the stabilizing role of protein-protein interactions within each complex. This work paves the way for a complete reconstitution of peptidoglycan synthesis in vitro, which will be critical to the elucidation of its intricate regulation mechanisms.

  11. Membrane electrodes for determination of two antihypertensive drugs in pharmaceutical formulations of either single or binary mixtures and in biological fluids.

    Science.gov (United States)

    El-Ghobashy, M R; Zaazaa, H E

    2010-06-01

    Membrane-selective electrodes were used to determine benazepril hydrochloride (BZ) and trandolapril (TR) in their binary mixtures with hydrochlorothiazide (HZ) and verapamil (VR), respectively. This method involves construction of four water insoluble ion-association complexes: benazepril-tetraphenyl borate (BZ-TPB), benazepril-reineckate (BZ-R), trandolapril-tetraphenyl borate (TR-TPB), and trandolapril-reineckate (TR-R). These complexes were used as electroactive materials in polyvinyl chloride (PVC) matrix membrane sensors in order to determine the two aforementioned drugs in their pharmaceutical formulations and in plasma. The performance characteristics of these sensors, evaluated according to IUPAC recommendations, revealed a fast, stable, and linear response for BZ and TR. The suggested procedures were checked using laboratory-prepared mixtures and were successfully used to analyze their pharmaceutical preparations. The results obtained using the proposed method were statistically analyzed and compared with those obtained using previously reported methods.

  12. ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization

    International Nuclear Information System (INIS)

    Portaccio, M.; Gravagnuolo, A.M.; Longobardi, S.; Giardina, P.; Rea, I.; De Stefano, L.; Cammarota, M.; Lepore, M.

    2015-01-01

    Graphical abstract: - Highlights: • Hydrophobin self-assembled layers on Teflon in different preparation conditions were investigated. • ATR collection data geometry allowed samples examination without any particular preparation. • Amide content, lipid/amide and carbohydrate/amide ratios of the protein layer were estimated. • Secondary structure of protein was determined for the examined samples. • FT-IR demonstrated to be of extreme relevance in monitoring hydrophobin self-assembled layers preparation. - Abstract: Surface functionalization by layers of hydrophobins, amphiphilic proteins produced by fungi offers a promising and green strategy for fabrication of biomedical and bioanalytical devices. The layering process of the Vmh2 hydrophobin from Pleurotus ostreatus on Teflon membrane has been investigated by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy. In particular, protein layers obtained with hydrophobin purified with two different procedures and in various coating conditions have been examined. The layers have been characterized by quantifying the amide I and amide II band area together with the lipid/amide ratio and carbohydrate/amide ratio. This characterization can be very useful in evaluating the best purification strategy and coating conditions. Moreover the analysis of the secondary structure of the layered protein using the deconvolution procedure of amide I band indicate the prevalent contribution from β-sheet state. The results inferred by infrared spectroscopy have been also confirmed by scanning electron microscopy imaging

  13. Polarized light microscopy reveals physiological and drug-induced changes in surfactant membrane assembly in alveolar type II pneumocytes.

    Science.gov (United States)

    Haller, Thomas; Cerrada, Alejandro; Pfaller, Kristian; Braubach, Peter; Felder, Edward

    2018-01-06

    In alveolar type II (AT II) cells, pulmonary surfactant (PS) is synthetized, stored and exocytosed from lamellar bodies (LBs), specialized large secretory organelles. By applying polarization microscopy (PM), we confirm a specific optical anisotropy of LBs, which indicates a liquid-crystalline mesophase of the stored surfactant phospholipids (PL) and an unusual case of a radiation-symmetric, spherocrystalline organelle. Evidence is shown that the degree of anisotropy is dependent on the amount of lipid layers and their degree of hydration, but unaffected by acutely modulating vital cell parameters like intravesicular pH or cellular energy supply. In contrast, physiological factors that perturb this structure include osmotic cell volume changes and LB exocytosis. In addition, we found two pharmaceuticals, Amiodarone and Ambroxol, both of which severely affect the liquid-crystalline order. Our study shows that PM is an easy, very sensitive, but foremost non-invasive and label-free method able to collect important structural information of PS assembly in live AT II cells which otherwise would be accessible by destructive or labor intense techniques only. This may open new approaches to dynamically investigate LB biosynthesis - the incorporation, folding and packing of lipid membranes - or the initiation of pathological states that manifest in altered LB structures. Due to the observed drug effects, we further suggest that PM provides an appropriate way to study unspecific drug interactions with alveolar cells and even drug-membrane interactions in general. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Synthesis, Characterization and Application of Poly (Styrene-4- Vinyl Pyridine) Membranes Assembled With Single-Wall Carbon Nanotubes

    KAUST Repository

    He, Haoze

    2011-06-01

    Poly(styrene‐4‐vinylpyridine) (PS‐P4VP) isoporous membranes were prepared and their properties were evaluated in this research. The solution was prepared by dissolving PS‐P4VP polymer with necessary additives into a 1:1:1 1,4‐dioxane – N,N‐dimethyl formamide – tetrahydrofuran (DOX‐DMF‐THF, DDT) solvent. Then 0.5‐1.0 mL of the primary solution was cast onto the non‐woven substrate membrane on a glass slide, evaporated for 15‐20 sec and immersed into de‐ionized water for more than 30 min for the solidification of isoporous structure and for the formation of the primary films, which could be post‐processed in different ways for different tests. The membrane surface presents a well‐ordered, hexagonal self‐assembly structure, which is fit for aqueous and gaseous filtration. The pore size of the isoporous surface is 30~40 nm. The pore size is also sensitive to [H+] in the solution and a typical pair of S‐shape pH‐correlation curves with significant hysteresis was found. Four techniques were tried to improve the properties of the membranes in this research: 1) 1,4‐diiodobutane was introduced to chemically change the structure as a cross‐linking agent. 2) single‐wall carbon nanotube (SWCNT) was linked to the membranes in order to strengthen the stability and rigidity and to reduce the hysteresis. 3) Homo‐poly(4‐vinylpyridine) (homo‐P4VP) was added and inserted into the PS‐P4VP micelles to affect the pore size and surface structure. 4) Copper acetate (Cu(Ac)2) was used as substitute of dioxane to prepare the Cu(Ac)2‐DMF‐THF (CDT) mixed solvent, for a better SWCNT dispersion. All the possible improvements were judged by the atomic force microscopy (AFM) images, water and gas flux tests and pH‐correlation curves. The introduction of SWCNT was the most important innovation in this research and is promising in future applications.

  15. A fast response hafnium selective polymeric membrane electrode based on N,N'-bis(alpha-methyl-salicylidene)-dipropylenetriamine as a neutral carrier.

    Science.gov (United States)

    Rezaei, B; Meghdadi, S; Zarandi, R Fazel

    2008-08-30

    In this study a new hafnium selective sensor was fabricated from polyvinylchloride (PVC) matrix membrane containing neutral carrier N,N'-bis(alpha-methyl-salicylidene)-dipropylenetriamine (Mesaldpt) as a new ionophore, sodium tetraphenyl borate (NaTPB) as anionic discriminator and dioctyl phthalate (DOP) as plasticizing solvent mediator in tetrahydrofuran solvent. The electrode exhibits Nernstian response for Hf(4+) (Hafnium(IV)) over a wide concentration range (2.0 x 10(-7) to 1.0 x 10(-1)M) with the determination coefficient of 0.9966 and slope of 15.1+/-0.1 mVdecades(-1). The limit of detection is 1.9 x 10(-7)M. The electrode has a fast response time of 18s and a working pH range of 4-8. The proposed membrane shows excellent discriminating ability towards Hf(4+) ion with regard to several alkali, alkaline earth transition and heavy metal ions. It can be used over a period of 1.5 months with good reproducibility. It is successfully applied for direct determination of Hf(4+) in solutions by standard addition method for real sample analysis.

  16. A fast response hafnium selective polymeric membrane electrode based on N,N'-bis(α-methyl-salicylidene)-dipropylenetriamine as a neutral carrier

    International Nuclear Information System (INIS)

    Rezaei, B.; Meghdadi, S.; Zarandi, R. Fazel

    2008-01-01

    In this study a new hafnium selective sensor was fabricated from polyvinylchloride (PVC) matrix membrane containing neutral carrier N,N'-bis(α-methyl-salicylidene)-dipropylenetriamine (Mesaldpt) as a new ionophore, sodium tetraphenyl borate (NaTPB) as anionic discriminator and dioctyl phthalate (DOP) as plasticizing solvent mediator in tetrahydrofuran solvent. The electrode exhibits Nernstian response for Hf 4+ (Hafnium(IV)) over a wide concentration range (2.0 x 10 -7 to 1.0 x 10 -1 M) with the determination coefficient of 0.9966 and slope of 15.1 ± 0.1 mV decades -1 . The limit of detection is 1.9 x 10 -7 M. The electrode has a fast response time of 18 s and a working pH range of 4-8. The proposed membrane shows excellent discriminating ability towards Hf 4+ ion with regard to several alkali, alkaline earth transition and heavy metal ions. It can be used over a period of 1.5 months with good reproducibility. It is successfully applied for direct determination of Hf 4+ in solutions by standard addition method for real sample analysis

  17. A fast response hafnium selective polymeric membrane electrode based on N,N'-bis({alpha}-methyl-salicylidene)-dipropylenetriamine as a neutral carrier

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, B. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: rezaei@cc.iut.ac.ir; Meghdadi, S.; Zarandi, R. Fazel [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2008-08-30

    In this study a new hafnium selective sensor was fabricated from polyvinylchloride (PVC) matrix membrane containing neutral carrier N,N'-bis({alpha}-methyl-salicylidene)-dipropylenetriamine (Mesaldpt) as a new ionophore, sodium tetraphenyl borate (NaTPB) as anionic discriminator and dioctyl phthalate (DOP) as plasticizing solvent mediator in tetrahydrofuran solvent. The electrode exhibits Nernstian response for Hf{sup 4+} (Hafnium(IV)) over a wide concentration range (2.0 x 10{sup -7} to 1.0 x 10{sup -1} M) with the determination coefficient of 0.9966 and slope of 15.1 {+-} 0.1 mV decades{sup -1}. The limit of detection is 1.9 x 10{sup -7} M. The electrode has a fast response time of 18 s and a working pH range of 4-8. The proposed membrane shows excellent discriminating ability towards Hf{sup 4+} ion with regard to several alkali, alkaline earth transition and heavy metal ions. It can be used over a period of 1.5 months with good reproducibility. It is successfully applied for direct determination of Hf{sup 4+} in solutions by standard addition method for real sample analysis.

  18. Sphingosine-1-phosphate receptors stimulate macrophage plasma-membrane actin assembly via ADP release, ATP synthesis and P2X7R activation.

    Science.gov (United States)

    Kuehnel, Mark P; Reiss, Miriam; Anand, Paras K; Treede, Irina; Holzer, Daniela; Hoffmann, Eik; Klapperstueck, Manuela; Steinberg, Thomas H; Markwardt, Fritz; Griffiths, Gareth

    2009-02-15

    Eukaryotic plasma membranes assemble actin filaments within seconds of activation of many receptors, especially during chemotaxis. Here, serum or sphingosine-1-phosphate stimulation of J774 and RAW macrophages released ADP within seconds into the extracellular medium, along with an adenylate kinase activity that converted ADP to ATP. ATP then activated the P2X7 receptor (P2X7R) that was necessary for a peak of plasma-membrane actin assembly within 5 to 10 seconds in P2X7R-expressing J774, RAW and primary macrophages. Neither actin assembly nor characteristic P2X7R channel activity was seen in response to ATP in P2X7R-knockout macrophages, as detected by patch-clamp analysis. Since P2X7R has been shown previously to form a macromolecular complex with actin we propose that it is involved in the membrane assembly of actin. Our data reveal a surprisingly rapid and complex relay of signaling and externalization events that precede and control actin assembly induced by sphingosine-1-phosphate. The overall model we present is strongly supported by the data presented in the accompanying paper that focuses on latex bead phagosomes.

  19. Stability of a Cu0.7Co2.3O4 electrode during the oxygen evolution reaction for alkaline anion-exchange membrane water electrolysis

    Science.gov (United States)

    Kang, Kyoung Eun; Kim, Chi Ho; Lee, Myung Sup; Jung, Chang Wook; Kim, Yang Do; Lee, Jae Ho

    2018-01-01

    The electrode materials for oxygen evolution, especially non-platinum group metal oxides, have attracted increasing attention. Among the spinel-type transition metal oxides, Cu0.7Co2.3O4 powders were evaluated as a potential replacement for expensive dimensionally stabilized anode materials. Cu0.7Co2.3O4 powder for use as an electrode material for oxygen evolution in an alkaline anion-exchange membrane water electrolyzer was prepared using a thermal decomposition method. The Cu0.7Co2.3O4 powders heat-treated at 250 °C exhibited the same X-ray diffraction patterns without any secondary phases as the Co3O4 spinel structure did. The Cu0.7Co2.3O4 powders heat-treated at 250 °C for 30 minutes showed the smallest mean particle size of approximately 376 nm with the powders having a homogeneous shape and size distribution. The fine powders with a relatively homogeneous size distribution showed a higher current density during the oxygen evolution reaction. The lifetime of the Cu0.7Co2.3O4 electrode was relatively long at a low current density, but was quickly shortened due to physical detachment of the Cu0.7Co2.3O4 powders as the current density was increased. This study showed that the efficiency and the stability of Cu0.7Co2.3O4 powders during the oxygen evolution reaction were related directly to the active electrode area.

  20. PEDOT:PSS self-assembled films to methanol crossover reduction in Nafion{sup ®} membranes

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Tiago P. [Universidade Federal de São Carlos, Sorocaba, SP (Brazil); Miyazaki, Celina M. [Universidade Estadual Paulista, POSMAT, SP (Brazil); Paganin, Valdecir A. [Universidade de São Paulo, IQSC, São Carlos, SP (Brazil); Ferreira, Marystela [Universidade Federal de São Carlos, Sorocaba, SP (Brazil); Saeki, Margarida J. [Universidade Estadual Paulista, Instituto de Biociências, Botucatu, SP (Brazil); Perez, Joelma [Universidade de São Paulo, IQSC, São Carlos, SP (Brazil); Riul, Antonio, E-mail: riul@ifi.unicamp.br [Universidade Estadual de Campinas, IFGW, Campinas (Brazil)

    2014-12-30

    Highlights: • PAH/PEDOT:PSS LbL films were regularly multilayered onto Nafion. • The LbL modified membranes were succesfully applied to reduce methanol crossover in Nafion. • PAH/PEDO:PSS films also decreased the proton conduction, reducing in 15% the DMFC performance. - Abstract: Alternative energy sources are on a global demand, with fuel cells as promising devices from mobile to stationary applications. Nafion{sup ®} is at the heart of many of these appliances, being mostly used due to its high proton conduction and good chemical stability at ambient temperature in proton exchange membranes (PEM). Therefore, methanol permeation throughout Nafion{sup ®} films reduces drastically the performance of direct methanol fuel cells (DMFC). We present here the deposition of layer-by-layer (LbL) nanostructured thin films of poly(allylamine hydrochloride) (PAH) and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) onto commercial Nafion{sup ®} 212 membranes. It was observed a good adherence of the LbL films onto Nafion{sup ®} 212, with UV–vis results displaying a linear characteristic growth, indicative that the same amount of material was deposited at each deposition step during the layer-by-layer assembly. In addition, the LbL films also act as a good barrier to avoid methanol crossover, with an observed reduction in the methanol permeation from 5.5 × 10{sup −6} cm{sup 2} s{sup −1} to 3.2 × 10{sup −6} cm{sup 2} s{sup −1}, respectively to pristine Nafion{sup ®} 212 and a 5-bilayer PAH/PEDOT:PSS LbL film deposited on Nafion{sup ®}212. The measured power density in a DMFC set-up was not significantly changed (∼12 mW cm{sup −2}) due to the LbL films, since the PAH/PEDOT:PSS nanostructure is impeding water and ion transport, consequently affecting the proton conduction throughout the membrane.

  1. Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants

    NARCIS (Netherlands)

    Stoll, T.; Zafeiropoulos, G.; Tsampas, M. N.

    2016-01-01

    A novel photoelectrochemical (PEC) cell design is proposed and investigated for H-2 production with gaseous reactants. The core of the cell is a membrane electrode assembly (MEA) that consists of a TiO2 nanotube arrays photoanode, a Pt/C cathode, a Pt/C reference electrode and a proton conducting

  2. Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly

    KAUST Repository

    Nunes, Suzana Pereira

    2011-05-24

    A process is described to manufacture monodisperse asymmetric pH-responsive nanochannels with very high densities (pore density >2 × 10 14 pores per m2), reproducible in m2 scale. Cylindric pores with diameters in the sub-10 nm range and lengths in the 400 nm range were formed by self-assembly of metal-block copolymer complexes and nonsolvent-induced phase separation. The film morphology was tailored by taking into account the stability constants for a series of metal-polymer complexes and confirmed by AFM. The distribution of metal-copolymer micelles was imaged by transmission electron microscopy tomography. The pH response of the polymer nanochannels is the strongest reported with synthetic pores in the nm range (reversible flux increase of more than 2 orders of magnitude when switching the pH from 2 to 8) and could be demonstrated by cryo-field emission scanning electron microscopy, SAXS, and ultra/nanofiltration experiments. © 2011 American Chemical Society.

  3. Assembly of a methodology for determination of membrane efficiency in preserved shales

    International Nuclear Information System (INIS)

    Villabona Camacho, Jhoao; Orozco Orozco, Sergio; Caldero Carrillo, Zuly; Saavedra, Netor F

    2009-01-01

    Determination of Membrane Efficiency (ME) is a very useful tool in the study of the chemical component of well bore stability since it is a variable input in chemical-elastic models (Lomba, Chenevert and Sharma, 2000). This article presents a novel methodology for the determination of ME using the Electrochemical Potential Test (EPT) in shale rocks. This method is based on the development of correlations with Ionic Selectivity (IS) values in presence of NaCl, KCl and CaCl 2 at diverse solution concentrations. The correlation, not reported previously in the literature, depends on the type of salt used. The EPT is a generic test easily applied to any rock type from any well or basin. It is simpler and quicker than other tests used for the ME determination, like the Pressure Transmission Test (PTT). Correlations between ME and IS are applicable to any type of argillaceous rock. Samples of unperturbed plugs with diverse properties belonging to different Colombian formations were used. The results obtained with the application of the proposed methodology indicate that it is possible to obtain IS and ME values through EPT in any type of argillaceous rock by applying the developed correlations.

  4. Perimicrovillar membrane assembly: the fate of phospholipids synthesised by the midgut of Rhodnius prolixus

    Directory of Open Access Journals (Sweden)

    Paula Rego Bittencourt-Cunha

    2013-06-01

    Full Text Available In this study, we describe the fate of fatty acids that are incorporated from the lumen by the posterior midgut epithelium of Rhodnius prolixus and the biosynthesis of lipids. We also demonstrate that neutral lipids (NL are transferred to the haemolymphatic lipophorin (Lp and that phospholipids remain in the tissue in which they are organised into perimicrovillar membranes (PMMs. 3H-palmitic acid added at the luminal side of isolated midguts of R. prolixus females was readily absorbed and was used to synthesise phospholipids (80% and NL (20%. The highest incorporation of 3H-palmitic acid was on the first day after a blood meal. The amounts of diacylglycerol (DG and triacylglycerol synthesised by the tissue decreased in the presence of Lp in the incubation medium. The metabolic fates of 3H-lipids synthesised by the posterior midgut were followed and it was observed that DG was the major lipid released to Lp particles. However, the majority of phospholipids were not transferred to Lp, but remained in the tissue. The phospholipids that were synthesised and accumulated in the posterior midgut were found to be associated with Rhodnius luminal contents as structural components of PMMs.

  5. Evidence for a conserved inhibitory binding mode between the membrane fusion assembly factors Munc18 and syntaxin in animals.

    Science.gov (United States)

    Morey, Czuee; Kienle, C Nickias; Klöpper, Tobias H; Burkhardt, Pawel; Fasshauer, Dirk

    2017-12-15

    The membrane fusion necessary for vesicle trafficking is driven by the assembly of heterologous SNARE proteins orchestrated by the binding of Sec1/Munc18 (SM) proteins to specific syntaxin SNARE proteins. However, the precise mode of interaction between SM proteins and SNAREs is debated, as contrasting binding modes have been found for different members of the SM protein family, including the three vertebrate Munc18 isoforms. While different binding modes could be necessary, given their roles in different secretory processes in different tissues, the structural similarity of the three isoforms makes this divergence perplexing. Although the neuronal isoform Munc18a is well-established to bind tightly to both the closed conformation and the N-peptide of syntaxin 1a, thereby inhibiting SNARE complex formation, Munc18b and -c, which have a more widespread distribution, are reported to mainly interact with the N-peptide of their partnering syntaxins and are thought to instead promote SNARE complex formation. We have reinvestigated the interaction between Munc18c and syntaxin 4 (Syx4). Using isothermal titration calorimetry, we found that Munc18c, like Munc18a, binds to both the closed conformation and the N-peptide of Syx4. Furthermore, using a novel kinetic approach, we found that Munc18c, like Munc18a, slows down SNARE complex formation through high-affinity binding to syntaxin. This strongly suggests that secretory Munc18s in general control the accessibility of the bound syntaxin, probably preparing it for SNARE complex assembly. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts.

    Science.gov (United States)

    Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H

    2007-08-15

    Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.

  7. Bacillus subtilis Bactofilins Are Essential for Flagellar Hook- and Filament Assembly and Dynamically Localize into Structures of Less than 100 nm Diameter underneath the Cell Membrane.

    Directory of Open Access Journals (Sweden)

    Jihad El Andari

    Full Text Available Bactofilins are a widely conserved protein family implicated in cell shape maintenance and in bacterial motility. We show that the bactofilins BacE and BacF from Bacillus subtilis are essential for motility. The proteins are required for the establishment of flagellar hook- and filament structures, but apparently not for the formation of basal bodies. Functional YFP fusions to BacE and to BacF localize as discrete assemblies at the B. subtilis cell membrane, and have a diameter of 60 to 70 nm. BacF assemblies are relatively static, and partially colocalize with flagellar basal bodies, while BacE assemblies are fewer per cell than those of BacF and are highly mobile. Tracking of BacE foci showed that the assemblies arrest at a single point for a few hundred milliseconds, showing that a putative interaction with flagellar structures would be transient and fast. When overexpressed or expressed in a heterologous cell system, bactofilins can form filamentous structures, and also form multimers as purified proteins. Our data reveal a propensity for bactofilins to form filaments, however, in B. subtilis cells, bactofilins assemble into defined size assemblies that show a dynamic localization pattern and play a role in flagellar assembly.

  8. Label-free impedimetric sensor for a ribonucleic acid oligomer specific to hepatitis C virus at a self-assembled monolayer-covered electrode.

    Science.gov (United States)

    Park, Jin-Young; Lee, Yoon-suk; Chang, Byoung-Yong; Kim, Byeang Hyean; Jeon, Sangmin; Park, Su-Moon

    2010-10-01

    A ribonucleic acid (RNA) sensor based on hybridization of its peptide nucleic acid (PNA) molecule with a target RNA oligomer of the internal ribosome entry site sequence specific to the hepatitis C virus (HCV) and the electrochemical impedance detection is described. This RNA is one of the most conservative molecules of the whole HCV RNA genome. The ammonium ion terminated PNA molecule was immobilized via its host-guest interactions with the diaza crown ring of 3-thiophene-acetamide-diaza-18-crown-6 synthesized by a simple two-step method, which forms a well-defined self-assembled monolayer (SAM) on gold. Hybridization events of the probe PNA with the target RNA were monitored by measuring charge-transfer resistances for the Fe(CN)(6)(3-/4-) redox probe using Fourier transform electrochemical impedance spectroscopy. The ratio of the resistances of the SAM-covered electrode measured before and after hybridization increased linearly with log[RNA] in the rat liver lysate with a detection limit of about 23 pM.

  9. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    Science.gov (United States)

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  10. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  11. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-01-01

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258

  12. Gas-Phase Mass-Transfer Resistances at Polymeric Electrolyte Membrane Fuel Cells Electrodes: Theoretical Analysis on the Effectiveness of Interdigitated and Serpentine Flow Arrangements

    Directory of Open Access Journals (Sweden)

    Elisabetta Arato

    2016-03-01

    Full Text Available Mass transfer phenomena in polymeric electrolyte membrane fuel cells (PEMFC electrodes has already been analyzed in terms of the interactions between diffusive and forced flows. It was demonstrated that the whole phenomenon could be summarized by expressing the Sherwood number as a function of the Peclet number. The dependence of Sherwood number on Peclet one Sh(Pe function, which was initially deduced by determining three different flow regimes, has now been given a more accurate description. A comparison between the approximate and the accurate results for a reference condition of diluted reactant and limit current has shown that the former are useful for rapid, preliminary calculations. However, a more precise and reliable estimation of the Sherwood number is worth attention, as it provides a detailed description of the electrochemical kinetics and allows a reliable comparison of the various geometrical arrangements used for the distribution of the reactants.

  13. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Akihiro [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Ryuhei, E-mail: nakamura@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hashimoto, Kazuhito, E-mail: hashimoto@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); ERATO/JST, HASHIMOTO Light Energy Conversion Project (Japan)

    2011-06-30

    Graphical abstract: . Display Omitted Highlights: > Monolayer biofilm of Shewanella cells was prepared on an ITO electrode. > Extracellular electron transfer (EET) process was examined with series of mutants. > Direct ET was confirmed with outer-membrane-bound OmcA-MtrCAB complex. > The EET process was not prominently influenced by capsular polysaccharide. - Abstract: The direct electron-transfer (DET) property of Shewanella bacteria has not been resolved in detail due to the complexity of in vivo electrochemistry in whole-cell systems. Here, we report the in vivo assignment of the redox signal indicative of the DET property in biofilms of Shewanella oneidensis MR-1 by cyclic voltammetry (CV) with a series of mutants and a chemical marking technique. The CV measurements of monolayer biofilms formed by deletion mutants of c-type cytochromes ({Delta}mtrA, {Delta}mtrB, {Delta}mtrC/{Delta}omcA, and {Delta}cymA), and pilin ({Delta}pilD), capsular polysaccharide ({Delta}SO3177) and menaquinone ({Delta}menD) biosynthetic proteins demonstrated that the electrochemical redox signal with a midpoint potential at 50 mV (vs. SHE) was due to an outer-membrane-bound OmcA-MtrCAB protein complex of decaheme cytochromes, and did not involve either inner-membrane-bound CymA protein or secreted menaquinone. Using the specific binding affinity of nitric monoxide for the heme groups of c-type cytochromes, we further confirmed this conclusion. The heterogeneous standard rate constant for the DET process was estimated to be 300 {+-} 10 s{sup -1}, which was two orders of magnitude higher than that previously reported for the electron shuttling process via riboflavin. Experiments using a mutant unable to produce capsular polysaccharide ({Delta}SO3177) revealed that the DET property of the OmcA-MtrCAB complex was not influenced by insulating and hydrophilic extracellular polysaccharide. Accordingly, under physiological conditions, S. oneidensis MR-1 utilizes a high density of outer-membrane

  14. DC source assemblies

    Science.gov (United States)

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  15. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke; Li, Yifan; Yu, Shule; Cullen, David A.; Retterer, Scott T.; Toops, Todd J.; Bender, Guido; Pivovar, Bryan S.; Green, Johney B.; Zhang, Feng-Yuan

    2018-05-01

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layers at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.

  16. Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments

    KAUST Repository

    Wang, Hong

    2017-03-31

    Self-supported electrocatalysts being generated and employed directly as electrodes for energy conversion has been intensively pursued in the fields of materials chemistry and energy. Herein, we report a synthetic strategy to prepare freestanding hierarchically structured, nitrogen-doped nanoporous graphitic carbon membranes functionalized with Janus-type Co/CoP nanocrystals (termed as HNDCM-Co/CoP), which were successfully applied as a highly efficient, binder-free electrode in the hydrogen evolution reaction (HER). Benefited from multiple structural merits, such as a high degree of graphitization, three-dimensionally interconnected micro/meso/macropores, uniform nitrogen doping, well-dispersed Co/CoP nanocrystals, as well as the confinement effect of the thin carbon layer on the nanocrystals, HNDCM-Co/CoP exhibited superior electrocatalytic activity and long-term operation stability for HER under both acidic and alkaline conditions. As a proof-of-concept of practical usage, a 5.6 cm × 4 cm × 60 μm macroscopic piece of HNDCM-Co/CoP was prepared in our laboratory. Driven by a solar cell, electroreduction of water in alkaline conditions (pH 14) was performed, and H was produced at a rate of 16 mL/min, demonstrating its potential as real-life energy conversion systems.

  17. Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide

    Science.gov (United States)

    Salehi, Hasan; Rastgar, Masoud; Shakeri, Alireza

    2017-08-01

    To date, forward osmosis (FO) has received considerable attention due to its potential application in seawater desalination. FO does not require external hydraulic pressure and consequently is believed to have a low fouling propensity. Despite the numerous privileges of FO process, a major challenge ahead for its development is the lack of high performance membranes. In this study, we fabricated a novel highly-efficient FO membrane using layer-by-layer (LbL) assembly of positive chitosan (CS) and negative graphene oxide (GO) nanosheets via electrostatic interaction on a porous support layer. The support layer was prepared by blending hydrophilic sulfonated polyethersulfone (SPES) into polyethersulfone (PES) matrix using wet phase inversion process. Various characterization techniques were used to confirm successful fabrication of LbL membrane. The number of layers formed on the SPES-PES support layer was easily adjusted by repeating the CS and GO deposition cycles. Thin film composite (TFC) membrane was also prepared by the same SPES-PES support layer and polyamide (PA) active layer to compare membranes performances. The water permeability and salt rejection of the fabricated membranes were obtained by two kinds of draw solutions (including Na2SO4 and sucrose) under two different membrane orientations. The results showed that membrane coated by a CS/GO bilayers had water flux of 2-4 orders of magnitude higher than the TFC one. By increasing the number of CS/GO bilayers, the selectivity of the LbL membrane was improved. The novel fabricated LbL membrane showed better fouling resistance than the TFC one in the feed solution containing 200 ppm of sodium alginate as a foulant model.

  18. Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes

    Science.gov (United States)

    Meitl, Leisa A.; Eggleston, Carrick M.; Colberg, Patricia J. S.; Khare, Nidhi; Reardon, Catherine L.; Shi, Liang

    2009-09-01

    Bacterial metal reduction is an important biogeochemical process in anaerobic environments. An understanding of electron transfer pathways from dissimilatory metal-reducing bacteria (DMRB) to solid phase metal (hydr)oxides is important for understanding metal redox cycling in soils and sediments, for utilizing DMRB in bioremedation, and for developing technologies such as microbial fuel cells. Here we hypothesize that the outer membrane cytochromes OmcA and MtrC from Shewanella oneidensis MR-1 are the only terminal reductases capable of direct electron transfer to a hematite working electrode. Cyclic voltammetry (CV) was used to study electron transfer between hematite electrodes and protein films, S. oneidensis MR-1 wild-type cell suspensions, and cytochrome deletion mutants. After controlling for hematite electrode dissolution at negative potential, the midpoint potentials of adsorbed OmcA and MtrC were measured (-201 mV and -163 mV vs. Ag/AgCl, respectively). Cell suspensions of wild-type MR-1, deletion mutants deficient in OmcA (Δ omcA), MtrC (Δ mtrC), and both OmcA and MtrC (Δ mtrC-Δ omcA) were also studied; voltammograms for Δ mtrC-Δ omcA were indistinguishable from the control. When the control was subtracted from the single deletion mutant voltammograms, redox peaks were consistent with the present cytochrome (i.e., Δ omcA consistent with MtrC and Δ mtrC consistent with OmcA). The results indicate that OmcA and MtrC are capable of direct electron exchange with hematite electrodes, consistent with a role as terminal reductases in the S. oneidensis MR-1 anaerobic respiratory pathway involving ferric minerals. There was no evidence for other terminal reductases operating under the conditions investigated. A Marcus-based approach to electron transfer kinetics indicated that the rate constant for electron transfer ket varies from 0.025 s -1 in the absence of a barrier to 63.5 s -1 with a 0.2 eV barrier.

  19. Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Semblante, Galilee Uy; Lu, Shao-Chung; Damodar, Rahul A.; Wei, Ta-Chin

    2012-01-01

    Highlights: ► Plasma and grafting parameters that maximized TiO 2 binding sites were found. ► PVDF hydrophilicity was vastly improved compared to other modification techniques. ► At least 1.5% TiO 2 and 30 min UV exposure were needed to attain full flux recovery. ► Photocatalytic membranes could remove up to 42% of 50 mg/l RB5 dye. - Abstract: Immobilization of TiO 2 is a promising approach that produces antifouling and photocatalytic membranes that could help advance wastewater treatment and re-use processes. In this study, poly(acrylic acid) (PAA) was plasma-grafted on commercial poly(vinylidene fluoride) (PVDF) to introduce functional groups on the membrane surface that can support the nanoparticles. It was found that plasma treatment at 100 W for 120 s followed by liquid grafting with 70% aqueous AA at 60 °C for 2 h maximized the number of TiO 2 binding sites. Membrane hydrophilicity was tremendously enhanced by the self-assembly of TiO 2 , following a direct proportionality to TiO 2 loading. The membrane with 0.5% TiO 2 loading maintained the highest pure water flux and the best protein antifouling property. UV irradiation triggered the photodegradation of strongly bound foulants, but at least 1.5% TiO 2 and 30 min cumulative irradiation were necessary to completely recover the membrane's original performance. The TiO 2 -modified membranes removed 30–42% of 50 mg/l aqueous Reactive Black 5 (RB5) dye. The fabricated membranes demonstrate huge potential for use in membrane reactors with high hydrophilicity, fouling mitigation, and photocatalytic capability.

  20. ExsB Is Required for Correct Assembly of the Pseudomonas aeruginosa Type III Secretion Apparatus in the Bacterial Membrane and Full Virulence In Vivo

    Science.gov (United States)

    Perdu, Caroline; Huber, Philippe; Bouillot, Stéphanie; Blocker, Ariel; Elsen, Sylvie; Attrée, Ina

    2015-01-01

    Pseudomonas aeruginosa is responsible for high-morbidity infections of cystic fibrosis patients and is a major agent of nosocomial infections. One of its most potent virulence factors is a type III secretion system (T3SS) that injects toxins directly into the host cell cytoplasm. ExsB, a lipoprotein localized in the bacterial outer membrane, is one of the components of this machinery, of which the function remained elusive until now. The localization of the exsB gene within the exsCEBA regulatory gene operon suggested an implication in the T3SS regulation, while its similarity with yscW from Yersinia spp. argued in favor of a role in machinery assembly. The present work shows that ExsB is necessary for full in vivo virulence of P. aeruginosa. Furthermore, the requirement of ExsB for optimal T3SS assembly and activity is demonstrated using eukaryotic cell infection and in vitro assays. In particular, ExsB promotes the assembly of the T3SS secretin in the bacterial outer membrane, highlighting the molecular role of ExsB as a pilotin. This involvement in the regulation of the T3S apparatus assembly may explain the localization of the ExsB-encoding gene within the regulatory gene operon. PMID:25690097

  1. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  2. Synthesis and characterization of Nafion/TiO2 nanocomposite membrane for proton exchange membrane fuel cell.

    Science.gov (United States)

    Kim, Tae Young; Cho, Sung Yong

    2011-08-01

    In this study, the syntheses and characterizations of Nafion/TiO2 membranes for a proton exchange membrane fuel cell (PEMFC) were investigated. Porous TiO2 powders were synthesized using the sol-gel method; with Nafion/TiO2 nanocomposite membranes prepared using the casting method. An X-ray diffraction analysis demonstrated that the synthesized TiO2 had an anatase structure. The specific surface areas of the TiO2 and Nafion/TiO2 nanocomposite membrane were found to be 115.97 and 33.91 m2/g using a nitrogen adsorption analyzer. The energy dispersive spectra analysis indicated that the TiO2 particles were uniformly distributed in the nanocomposite membrane. The membrane electrode assembly prepared from the Nafion/TiO2 nanocomposite membrane gave the best PEMFC performance compared to the Nafion/P-25 and Nafion membranes.

  3. Layer-by-layer self-assembly of in situ polymerized polypyrrole on sulfonated poly(arylene ether ketone) membrane with extremely low methanol crossover

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haidan; Zhao, Chengji; Ma, Wenjia; Li, Hongtao; Na, Hui [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-12-15

    The surface of sulfonated poly(arylene ether ketone) bearing carboxyl groups (SPAEK-C) was modified by alternating deposition of oppositely charged polypyrrole (PPY) and phosphotungstic acid (PWA) via the layer-by-layer (LBL) method in order to prevent the crossover of methanol in the direct methanol fuel cell (DMFC). FT-IR confirms that PPY and PWA are assembled in the multilayers successfully. The morphology of the membranes studied in detail by SEM shows the presence and stability of thin PPY/PWA layers coated on SPAEK-C membranes. Methanol permeability was determined and was shown to be effectively reduced. The selectivity of SPAEK-C-(PPY/PWA){sub n} is 1 order more than Nafion {sup registered} 117, which is attractive in DMFCs. Thermal stability, water uptake, water swelling and proton conductivity of the SPAEK-C and SPAEK-C-(PPY/PWA){sub n} membranes were also investigated. (author)

  4. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  5. Effects of Lateral and Terminal Chains of X-Shaped Bolapolyphiles with Oligo(phenylene ethynylene Cores on Self-Assembly Behavior. Part 2: Domain Formation by Self-Assembly in Lipid Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Stefan Werner

    2017-09-01

    Full Text Available Supramolecular self-assembly of membrane constituents within a phospholipid bilayer creates complex functional platforms in biological cells that operate in intracellular signaling, trafficking and membrane remodeling. Synthetic polyphilic compounds of macromolecular or small size can be incorporated into artificial phospholipid bilayers. Featuring three or four moieties of different philicities, they reach beyond ordinary amphiphilicity and open up avenues to new functions and interaction concepts. Here, we have incorporated a series of X-shaped bolapolyphiles into DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayers of giant unilamellar vesicles. The bolapolyphiles consist of a rod-like oligo(phenylene ethynylene (OPE core, hydrophilic glycerol-based headgroups with or without oligo(ethylene oxide expansions at both ends and two lateral alkyl chains attached near the center of the OPE core. In the absence of DPPC and water, the compounds showed thermotropic liquid-crystalline behavior with a transition between polyphilic and amphiphilic assembly (see part 1 in this issue. In DPPC membranes, various trends in the domain morphologies were observed upon structure variations, which entailed branched alkyl chains of various sizes, alkyl chain semiperfluorination and size expansion of the headgroups. Observed effects on domain morphology are interpreted in the context of the bulk behavior (part 1 and of a model that was previously developed based on spectroscopic and physicochemical data.

  6. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...... based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully...... humidified conditions in the 120-180°C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160°C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical...

  7. Effectiveness of nanometer-sized extracellular matrix layer-by-layer assembled films for a cell membrane coating protecting cells from physical stress.

    Science.gov (United States)

    Matsuzawa, Atsushi; Matsusaki, Michiya; Akashi, Mitsuru

    2013-06-18

    In recent approaches to tissue engineering, cells face various stresses from physical, chemical, and environmental stimuli. For example, coating cell membranes with nanofilms using layer-by-layer (LbL) assembly requires many cycles of centrifugation, causing physical (gravity) stress. Damage to cell membranes can cause the leakage of cytosol molecules or sometimes cell death. Accordingly, we evaluated the effectiveness of LbL films prepared on cell membranes in protecting cells from physical stresses. After two steps of LbL assembly using Tris-HCl buffer solution without polymers or proteins (four centrifugation cycles including washing), hepatocyte carcinoma (HepG2) cells showed extremely high cell death and the viability was ca. 15%. Their viability ultimately decreased to 6% after 9 steps of LbL assembly (18 cycles of centrifugation), which is the typical number of steps involved in preparing LbL nanofilms. However, significantly higher viability (>85%) of HepG2 cells was obtained after nine steps of LbL assembly employing fibronectin (FN)-gelatin (G) or type IV collagen (Col IV)-laminin (LN) solution combinations, which are typical components of an extracellular matrix (ECM), to fabricate 10-nm-thick LbL films. When LbL films of synthetic polymers created via electrostatic interactions were employed instead of the ECM films described above, the viability of the HepG2 cells after the same nine steps slightly decreased to 61%. The protective effects of LbL films were strongly dependent on their thickness, and the critical thickness was >5 nm. Surprisingly, a high viability of over 85% was achieved even under extreme physical stress conditions (10,000 rpm). We evaluated the leakage of lactate dehydrogenase (LDH) during the LbL assembly processes to clarify the protective effect, and a reduction in LDH leakage was clearly observed when using FN-G nanofilms. Moreover, the LbL films do not inhibit cell growth during cell culturing, suggesting that these coated cells

  8. Gold electrode modified with a self-assembled glucose oxidase and 2,6-pyridinedicarboxylic acid as novel glucose bioanode for biofuel cells

    NARCIS (Netherlands)

    Ammam, Malika; Fransaer, Jan

    2014-01-01

    In this study, we have constructed a gold electrode modified with (3-aminopropyl)trimethoxysilane/2,6-pyridinedicarboxylic acid/glucose oxidase (abbreviated as, Au/ATS/PDA/GOx) by sequential chemical adsorption. Au/ATS/PDA/GOx electrode was characterized by Fourier Transform Infrared Spectroscopy

  9. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors

    Science.gov (United States)

    Tian, Yapeng; Yang, Chenhui; Que, Wenxiu; He, Yucheng; Liu, Xiaobin; Luo, Yangyang; Yin, Xingtian; Kong, Ling Bing

    2017-11-01

    Supercapacitor, as an important energy storage device, is a critical component for next generation electric power system, due to its high power density and long cycle life. In this study, a novel electrode material with quasi-core-shell structure, consisting of negatively charged few layer Ti3C2 nanosheets (FL-Ti3C2) and positively charged polyethyleneimine as building blocks, has been prepared by using an electrostatic layer-by-layer self-assembly method, with highly conductive Ni foam to be used as the skeleton. The unique quasi-core-shell structured ultrathin Ti3C2 nanosheets provide an excellent electron channel, ion transport channel and large effective contact area, thus leading to a great improvement in electrochemical performance of the material. The specific capacitance of the binder-free FL-Ti3C2@Ni foam electrodes reaches 370 F g-1 at the scan rate of 2 mV s-1 and a specific capacitance of 117 F g-1 is obtained even at the scan rate of 1000 mV s-1 in the electrolyte of Li2SO4, indicating a high rate performance. In addition, this electrode shows a long-term cyclic stability with a loss of only 13.7% after 10,000 circles. Furthermore, quantitative analysis has been conducted to ensure the relationship between the capacitive contribution and the rate performance of the as-fabricated electrode.

  10. High Antifouling Property of Ion-Selective Membrane: toward In Vivo Monitoring of pH Change in Live Brain of Rats with Membrane-Coated Carbon Fiber Electrodes.

    Science.gov (United States)

    Hao, Jie; Xiao, Tongfang; Wu, Fei; Yu, Ping; Mao, Lanqun

    2016-11-15

    In vivo monitoring of pH in live brain remains very essential to understanding acid-base chemistry in various physiological processes. This study demonstrates a potentiometric method for in vivo monitoring of pH in the central nervous system with carbon fiber-based proton-selective electrodes (CF-H + ISEs) with high antifouling property. The CF-H + ISEs are prepared by formation of a H + -selective membrane (H + ISM) with polyvinyl chloride polymeric matrixes containing plasticizer bis(2-ethylhexyl)sebacate, H + ionophore tridodecylamine, and ion exchanger potassium tetrakis(4-chlorophenyl)borate onto carbon fiber electrodes (CFEs). Both in vitro and in vivo studies demonstrate that the H + ISM exhibits strong antifouling property against proteins, which enables the CF-H + ISEs to well maintain the sensitivity and reversibility for pH sensing after in vivo measurements. Moreover, the CF-H + ISEs exhibit a good response to pH changes within a narrow physiological pH range from 6.0 to 8.0 in quick response time with high reversibility and selectivity against species endogenously existing in the central nervous system. The applicability of the CF-H + ISEs is illustrated by real-time monitoring of pH changes during acid-base disturbances, in which the brain acidosis is induced by CO 2 inhalation and brain alkalosis is induced by bicarbonate injections. The results demonstrate that brain pH value rapidly decreases in the amygdaloid nucleus by ca. 0.14 ± 0.01 (n = 5) when the rats breath in pure CO 2 gas, while increases in the cortex by about 0.77 ± 0.12 (n = 3) following intraperitoneal injection of 5 mmol/kg NaHCO 3 . This study demonstrates a new potentiometric method for in vivo measurement of pH change in the live brain of rats with high reliability.

  11. Fluorinated building blocks for next-generation polymer electrolyte membrane fuel cells

    NARCIS (Netherlands)

    Wadekar, M.N.

    2012-01-01

    The purpose of this thesis is to design, create and study basic building blocks for the construction of self-assembled nanostructured electrodes and membranes for PEMFC. The research described deals with the synthesis of polymerizable fluorosurfactant (1) and its non-polymerizable analogue (2) and

  12. Hydrogen from electrochemical reforming of C1–C3 alcohols using proton conducting membranes

    NARCIS (Netherlands)

    Sapountzi, F. M.; Tsampas, M. N.; Fredriksson, H. O. A.; Gracia, J. M.; Niemantsverdriet, J. W.

    2017-01-01

    This study investigates the production of hydrogen from the electrochemical reforming of short-chain alcohols (methanol, ethanol, iso-propanol) and their mixtures. High surface gas diffusion Pt/C electrodes were interfaced to a Nafion polymeric membrane. The assembly separated the two chambers of an

  13. A Quantitative Approach to Evaluate the Impact of Fluorescent Labeling on Membrane-Bound HIV-Gag Assembly by Titration of Unlabeled Proteins.

    Directory of Open Access Journals (Sweden)

    Julia Gunzenhäuser

    Full Text Available The assembly process of the human immunodeficiency virus 1 (HIV-1 is driven by the viral polyprotein Gag. Fluorescence imaging of Gag protein fusions is widely performed and has revealed important information on viral assembly. Gag fusion proteins are commonly co-transfected with an unlabeled form of Gag to prevent labeling artifacts such as morphological defects and decreased infectivity. Although viral assembly is widely studied on individual cells, the efficiency of the co-transfection rescue has never been tested at the single cell level. Here, we first develop a methodology to quantify levels of unlabeled to labeled Gag in single cells using a fluorescent reporter protein for unlabeled Gag and fluorescence correlation spectroscopy. Using super-resolution imaging based on photoactivated localization microscopy (PALM combined with molecular counting we then study the nanoscale morphology of Gag clusters as a function of unlabeled to labeled Gag ratios in single cells. We show that for a given co-transfection ratio, individual cells express a wide range of protein ratios, necessitating a quantitative read-out for the expression of unlabeled Gag. Further, we show that monomerically labeled Gag assembles into membrane-bound clusters that are morphologically indistinguishable from mixtures of unlabeled and labeled Gag.

  14. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein-Based Fusion Antigen CTH522 Into Protein Nanoparticles

    DEFF Research Database (Denmark)

    Rose, Fabrice; Karlsen, Kasper; Jensen, Pernille

    2018-01-01

    but is a challenging vaccine candidate by being an integral membrane protein, and the immunogenicity depends on a correctly folded structure. We investigated the biophysical properties of the recombinant MOMP-based fusion antigen CTH522, which is tested in early human clinical trials. It consists of a truncated......Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic......-defined secondary structural elements, and no thermal transitions were measurable. Chemical unfolding resulted monomers that upon removal of the denaturant self-assembled into higher order structures, comparable to the structure of the native protein. The conformation of CTH522 in nanoparticles is thus not entirely...

  15. Influence of van der Waals contact forces on the deformation mechanics of thin flexible membranes assembled from metallic or semiconducting single-wall carbon nanotubes

    Science.gov (United States)

    Hobbie, Erik K.; Harris, John; Iyer, Swathi; Huh, Ji Yeon; Fagan, Jeffrey A.; Hudson, Steven D.; Stafford, Christopher M.

    2011-03-01

    Thin membranes of single-wall carbon nanotubes (SWCNTs) assembled from either metallic or semiconducting SWCNTs are subjected to the compressive strains imposed by a stretched elastic substrate, and the mechanical characteristics of the membranes are inferred from the topography of the wrinkling instability that emerges. By depositing comparable films on quartz, we also use optical (UV-Vis-NIR) absorption spectroscopy to compute the effective London dispersion spectra of the purified materials, and from these we compute the attractive part of the van der Waals potential between nanotubes of identical electronic type as a function of separation and relative orientation. We find significant differences in the strength and shape of the contact potential depending on electronic type, which in turn are evident in the modulus and yield strain measured from the deformation of the films. Supported by the NSF through CMMI-0969155 and the DOE through DE-FG36-08GO88160.

  16. Self-assembled nanocomposite organic-inorganic proton conducting sulfonated poly-ether-ether-ketone (SPEEK)-based membranes: Optimized mechanical, thermal and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sgreccia, E. [Dip. Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, 00133 Roma (Italy); Universite de Provence-CNRS: Laboratoire Chimie Provence (UMR 6264), Centre St Jerome, Marseille (France); Di Vona, M.L.; Licoccia, S. [Dip. Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, 00133 Roma (Italy); Sganappa, M.; Casciola, M. [Dip. Chimica, Universita di Perugia, Via Elce di Sotto 8, Perugia (Italy); Chailan, J.F. [MAPIEM (EA 4323), Universite Sud Toulon-Var, Toulon (France); Knauth, P. [Universite de Provence-CNRS: Laboratoire Chimie Provence (UMR 6264), Centre St Jerome, Marseille (France)

    2009-07-15

    Mechanical, thermal and electrical properties of polymer blends of SPEEK with 7% SiPPSU are reported. Presence of silicon stabilizes the polymer morphology. The glass transition temperature, determined by dynamic mechanical analysis, depends more on blend formation than on degree of sulfonation. The water uptake coefficients, determined in liquid water and water vapour, are strongly reduced by the presence of the secondary silylated phase, so that blend membranes do not dissolve in water even at 140 C. The electrical conductivity is of the order of pure SPEEK and does not degrade even at high relative humidity. The sum of these properties make these self-assembled nanocomposite membranes most attractive for use in intermediate temperature PEMFC. (author)

  17. Fabrication of novel coated pyrolytic graphite electrodes for the selective nano-level monitoring of Cd²⁺ ions in biological and environmental samples using polymeric membrane of newly synthesized macrocycle.

    Science.gov (United States)

    Sahani, Manoj Kumar; Singh, A K; Jain, A K; Upadhyay, Anjali; Kumar, Amit; Singh, Udai P; Narang, Shikha

    2015-02-20

    Novel 5-amino-1,3,4-thiadiazole-2-thiol unit based macrocyclic ionophore 5,11,17-trithia-1,3,7,9,13,15,19,20,21-nonaazatetracyclo[14.2.1.1(4,7).1(10,13)]henicosa-4(20),10(21),16(19)-triene-6,12,18-trithione (M1), was synthesized and characterized. Preliminary studies on M1 have showed that it has more the affinity toward Cd(2+) ion. Thus, the macrocyclic ionophore (M1) was used as electroactive material in the fabrication of PVC-membrane electrodes such as polymeric membrane electrode (PME), coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) were prepared and its performance characteristic were compared with. The electroanalytical studies performed on PME, CGE and CPGE revealed that CPGE having membrane composition M1:PVC:1-CN:NaTPB in the ratio of 7:37:54:2 exhibits the best potentiometric characteristics in terms of detection limit of 7.58×10(-9) mol L(-1), Nernstian slope of 29.6 mV decade(-1) of activity. The sensor was found to be independent of pH in the range 2.5-8.5. The sensor showed a fast response time of 10s and could be used over a period of 4 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for monitoring of the Cd(2+) ion in real samples and also used as an indicator electrode in the potentiometric titration of Cd(2+) ion with EDTA. Copyright © 2014. Published by Elsevier B.V.

  18. Equivalent complex conductivities representing the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by external-electrode method

    Science.gov (United States)

    Sekine, Katsuhisa

    2017-12-01

    In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.

  19. Layer-by-layer self-assembly of polyaniline on sulfonated poly(arylene ether ketone) membrane with high proton conductivity and low methanol crossover

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chengji; Lin, Haidan; Na, Hui [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China); Zhang, Qiang [Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-10-15

    Sulfonated poly(arylene ether ketone) bearing carboxyl groups (SPAEK-C) membranes were first modified by alternating deposition of oppositely charged polyaniline (PANI) and phosphotungstic acid (PWA) via the layer-by-layer method in order to prevent the crossover of methanol in a direct methanol fuel cell. The methanol permeability of SPAEK-C-(PANI/PWA){sub 5} is 2 orders of magnitude less than those of Nafion 117 and pristine SPAEK-C. Furthermore, the modified membrane shows a proton conductivity of 0.093 Scm{sup -1} at 25 C and 0.24 Scm{sup -1} at 80 C, which are superior to those of Nafion 117 and pristine SPAEK-C. Fourier transform infrared spectroscopy confirms that PANI and PWA are assembled in the multilayers. The SEM images show the presence of thin PANI/PWA layers coated on the SPAEK-C membrane. Thermal stability, water uptake, water swelling, proton and electron conductivity at different temperature of the SPAEK-C and SPAEK-C-(PANI/PWA){sub n} membranes are also investigated. (author)

  20. Performance of a 1 kW Class Nafion-PTFE Composite Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Pattabiraman Krishnamurthy

    2012-01-01

    Full Text Available Composite membranes have been prepared by impregnation of Nafion into the expanded polytetrafluoroethylene (EPTFE matrix. Nafion loading in the composite membranes was kept constant at 2 mg/cm2. The lower amount of electrolyte per unit area in the composite membranes offers cost advantages compared to conventional membrane of 50 μm thickness with an electrolyte loading of ~9 mg/cm2. Composite membranes (30 μm thickness were found to have higher thermal stability and mechanical strength compared to the conventional membranes (50 μm thickness. The performance of the membrane electrode assembly made with these composite membranes was comparable to that of the conventional membranes. Single cells fabricated from these MEAs were tested for their performance and durability before scaling them up for large area. The performance of a 20-cell stack of active area 330 cm2 fabricated using these membranes is reported.

  1. Membranes for Direct Methanol Fuel Cell Applications: analysis based on characterization, experimentation and modeling

    OpenAIRE

    Vasco S. Silva; Adélio M. Mendes; Luís M. Madeira; Suzana P. Nunes

    2005-01-01

    A critical analysis is performed about fundamental aspects regarding the direct methanol fuel cell (DMFC) technology, focusing mainly on the proton exchange membrane (PEM). First, the basic DMFC operation principles, thermodynamic background and polarization characteristics are presented with a description of each of the components that comprise the membrane electrode assembly (MEA) and of the DMFC testsystem usually used for DMFC research. Next, the paper focuses particularly on the PEM deve...

  2. Development of electrode-membrane-electrode assemblies for proton exchange membrane fuel cells (PEMFC) by Sieve printing; Desenvolvimento de conjuntos eletrodo-membrana-eletrodo para celulas a combustivel a membrana trocadora de protons (PEMFC) por impressao a tela

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Alexandre Bodart de

    2008-07-01

    The Sieve Printing process was studied in this work to apply the catalyst layers onto electrolytes utilized in PEMFC. Initially, 25 cm{sup 2} active area MEAs were built for comparison with others MEAs produced by the Spray technique. The two methods produced MEAs that showed current densities higher than 600 mA.cm{sup -2} at 600 mV. A scaling up study for 144 cm{sup 2} of active area MEAs was carried out. For this purpose, a new cell had to be projected for shelter the MEAs in such dimensions. The profile of the gas distribution channels was developed through the computational fluid dynamic tool 'Comsol Multiphysics'. For the design of the bipolar plates of the cell the 'Auto CAD' was used. The 144 cm{sup 2} MEAs made by Spray and by Sieve Printing methods were confronted with commercials MEAs ones of equal dimensions. These commercials MEAs presented better performance at 600 mV, however they were more costly than the solution developed in this study. The new method was showed to be adequate to fabricate low cost MEAs of different geometries and to produce any amount of MEAs for small scale stacks (up to 10 kW). (author)

  3. Preparation and characterization of Nafion/titanium dioxide nanocomposite membranes for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Inci; Devrim, Yilser; Erkan, Serdar [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Bac, Nurcan [Yeditepe Univ., Istanbul (Turkey). Dept. of Chemical Engineering

    2010-07-01

    In the present study, Nafion/Titanium dioxide (TiO{sub 2}) nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFC) were investigated. Nafion/TiO{sub 2} membranes were prepared using the recasting procedure. The composite membranes have been characterized by thermal analysis, XRD, SEM, proton conductivity measurements and single cell performance. Thermal analysis results showed that the composite membranes have good thermal properties. The introduction of the inorganic filler supplies the composite membrane with a good thermal resistance. The physico-chemical properties studied by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques have proved the uniform and homogeneous distribution of TiO{sub 2} and the consequent enhancement of crystalline character of these membranes. The energy dispersive spectra (EDS) analysis indicated that the distribution of Ti element on the surface of the composite membrane was uniform. Performances of fabricated Membrane electrode assembly (MEA)'s measured via the PEMFC test station built at METU Fuel Cell Technology Laboratory. A single cell with a 5 cm{sup 2} active area was used in the experiments. These results should be conducive to the preparation of membranes suitable for PEMFC. We believe that Nafion/TiO{sub 2} nano composite membranes have good prospects for use in PEMFC. (orig.)

  4. Control of edge effects of oxidant electrode

    Science.gov (United States)

    Carr, Peter; Chi, Chen H.

    1981-09-08

    Described is an electrode assembly comprising; a. a porous electrode having a first and second exterior face with a cavity formed in the interior between said exterior faces thereby having first and second interior faces positioned opposite the first and second exterior faces; b. a counter electrode positioned facing each of the first and second exterior faces of the porous electrode; c. means for passing an oxidant through said porous electrode; and d. screening means for blocking the interior face of the porous electrode a greater amount than the blocking of the respective exterior face of the porous electrode, thereby maintaining a differential of oxidant electrode surface between the interior face and the exterior face. The electrode assembly is useful in a metal, halogen, halogen hydrate electrical energy storage device.

  5. Multifunctional sensing membrane-based platform for tissue or cell culturing and monitoring

    DEFF Research Database (Denmark)

    2014-01-01

    The present application discloses a water-permeable sensor membrane comprising i) a first layer of a conductive material defining at least one electrode and having a thickness of 0.1-,000 [mu]m; ii) a second layer of a nanostructure material build on the first layer; and iii) a third, topmost......, layer of a conducting polymer material defining at least one electrode and having a thickness of 0.001-1.0 [mu]m. The application also discloses a tissue or cell culture sample monitoring assembly comprising a sensor assembly and a tissue sample or a cell culture sample arranged on top of the third...

  6. Production of L-malic acid with fixation of HCO3(-) by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method.

    Science.gov (United States)

    Zheng, Haitao; Ohno, Yoko; Nakamori, Toshihiko; Suye, Shin-Ichiro

    2009-01-01

    Malic enzyme prepared and purified from Brevundimonas diminuta IFO13182 catalyzed the decarboxylation reaction of malate to pyruvate and CO2 using NAD+ as the coenzyme, and the reverse reaction was used in the present study for L-malic acid production with fixation of HCO3(-) as a model compound for carbon source. The L-malic acid production was based on electrochemical regeneration of NADH on a carbon plate electrode modified by layer-by-layer adsorption of polymer-bound mediator (Alginic acid bound viologen derivative, Alg-V), polymer-bound coenzyme (Alginic acid bound NAD+, Alg-NAD+), and lipoamide dehydrogenase (LipDH). Electrochemical reduction of immobilized NAD+ catalyzed by LipDH in a multilayer film was achieved, and the L-malic acid production with HCO3(-) fixation system with layer-by-layer immobilization of Alg-V/LipDH/Alg-NAD+/malic enzyme multilayer film on the electrode gave an L-malic acid production of nearly 11.9 mmol and an HCO3(-) fixation rate of nearly 47.4% in a buffer containing only KHCO3 and pyruvic acid potassium salt, using a cation exchange membrane. The total turnover number of NADH within 48 h was about 19,000, which suggests that efficient NADH regeneration and fast electron transfer were achieved within the multilayer film, and that the modified electrode is a potential method for the fixation of HCO3(-) without addition of free coenzyme.

  7. Critical Issues in the Commercialization of DMFC and Role of Membranes

    Science.gov (United States)

    Chang, Hyuk; Kim, Haekyoung; Choi, Yeong Suk; Lee, Wonmok

    Mobile telecommunication devices in the next generation require a new concept of quick charging and a long-lasting mobile energy source. The direct methanol fuel cell (DMFC) is becoming attractive, but there are critical issues involved in its commercialization with regard to the core technologies of catalyst, membrane, membrane electrode assembly (MEA), stack, and system. More importantly, the main role of the proton-conducting membrane is enhancing the energy and power density and affecting the other components in DMFC systems. Functions, current status, and technical approaches are discussed in terms of protonic conductivity, methanol permeability, water permeability, life cycle, and processing cost as well as interaction with other compartments. Materials such as perfluorinated and partially fluorinated membranes, hydrocarbon membranes, composite membranes, and other modified ionomers have been studied in connection with technology roadmap of membrane and mobile DMFC systems. These would explain the critical issues of DMFC and the role of membranes for commercialization.

  8. Stripping chronopotentiometric measurements of lead(II) and cadmium(II) in soils extracts and wastewaters using a bismuth film screen-printed electrode assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kadara, Rashid O.; Tothill, Ibtisam E. [Cranfield Biotechnology Centre, Cranfield University, MK45 4DT, Silsoe, Bedfordshire (United Kingdom)

    2004-02-01

    The key to remediative processes is the ability to measure toxic contaminants on-site using simple and cheap sensing devices, which are field-portable and can facilitate more rapid decision-making. A three-electrode configuration system has been fabricated using low-cost screen-printing (thick-film) technology and this coupled with a portable electrochemical instrument has provided a a relatively inexpensive on-site detector for trace levels of toxic metals. The carbon surface of the screen-printed working electrode is used as a substrate for in situ deposition of a metallic film of bismuth, which allows the electrochemical preconcentration of metal ions. Lead and cadmium were simultaneously detected using stripping chronopotentiometry at the bismuth film electrode. Detection limits of 8 and 10 ppb were obtained for cadmium(II) and lead(II), respectively, for a deposition time of 120 s. The developed method was applied to the determination of lead and cadmium in soils extracts and wastewaters obtained from polluted sites. For comparison purposes, a mercury film electrode and ICP-MS were also used for validation. (orig.)

  9. Incorporation of a Metal Oxide Interlayer using a Virus-Templated Assembly for Synthesis of Graphene-Electrode-Based Organic Photovoltaics.

    Science.gov (United States)

    Lee, Yong Man; Kim, Wanjung; Kim, Young Hun; Kim, Jung Kyu; Jang, Ji-Ryang; Choe, Woo-Seok; Park, Jong Hyeok; Yoo, Pil J

    2015-07-20

    Transition metal oxide (TMO) thin films have been exploited as interlayers for charge extraction between electrodes and active layers in organic photovoltaic (OPV) devices. Additionally, graphene-electrode-based OPVs have received considerable attention as a means to enhance device stability. However, the film deposition process of a TMO thin-film layer onto the graphene electrode is highly restricted owing to the hydrophobic nature of the graphene surface; thus, the preparation of the device should rely on a vacuum process that is incompatible with solution processing. In this study, we present a novel means for creating a thin tungsten oxide (WO3 ) interlayer on a graphene electrode by employing an engineered biotemplate of M13 viruses, whereby nondestructive functionalization of the graphene and uniform synthesis of a WO3 thin interlayer are concurrently achieved. As a result, the incorporated virus-templated WO3 interlayer exhibited solar-conversion efficiency that was 20 % higher than that of conventional OPVs based on the use of a (3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) interlayer. Notably, bilayer-structured OPVs with synergistically integrated WO3 /PEDOT:PSS achieved >60 % enhancement in device performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Minimizing electrode contamination in an electrochemical cell

    Science.gov (United States)

    Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

    2014-12-09

    An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

  11. Smart polymer brush nanostructures guide the self-assembly of pore-spanning lipid bilayers with integrated membrane proteins

    NARCIS (Netherlands)

    de Groot, G.W.; Demarche, S.; Santonicola, M.G.; Tiefenauer, L.; Vancso, Gyula J.

    2014-01-01

    Nanopores in arrays on silicon chips are functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes and used as supports for pore-spanning lipid bilayers with integrated membrane proteins. Robust platforms are created by the covalent grafting of polymer brushes using surface-initiated

  12. Electro-catalytic membrane reactors and the development of bipolar membrane technology

    NARCIS (Netherlands)

    Balster, J.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2004-01-01

    Membrane reactors are currently under extensive research and development. Hardly any concept, however, is realized yet in practice. Frequently, forgotten as membrane reactors are electro-catalytic membrane reactors where electrodes perform chemical conversations and membranes separate the locations

  13. Power module assembly

    Science.gov (United States)

    Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  14. Development of a ceramic membrane from a lithian spinel, Li1+xMyMn2-yO4 (M=trivalent or tetravalent cations) for a Li ion-selective electrode

    Science.gov (United States)

    Yoon, H.; Venugopal, N.; Rim, T.; Yang, B.; Chung, K.; Ko, T.

    2010-12-01

    Recently a few lithium containing ceramics are reported as promising cathodes for application in lithium batteries. Among them, a spinel-type lithium manganate (LM) exhibits an exceptionally high ion selectivity at room temperature. Thus, LM could have a great potential as an ion selective membrane material for screening interfering ions from lithium ion for the determination of lithium ion in salt solution. In this study, we developed an ion-selective electrode based on LM as a membrane material and investigated its lithium ion selectivity by varying the content of M in composition. A sol-gel process was successfully applied for preparing LM films without resorting to calcination at a high temperature. The LM thin film-type membranes exhibit a high selectivity for Li ion over other cations, a wide operation detection range of 10-5 ~ 10-2 M, and a fast response time less than 60 s. Furthermore, our result demonstrates a linear potentiometric response over a wide range of lithium concentration, which is compared to that of a lithium ion-selective electrode based on an ionophore. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).

  15. Evidence that the assembly of the yeast cytochrome bc1 complex involves the formation of a large core structure in the inner mitochondrial membrane.

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-04-01

    The assembly status of the cytochrome bc(1) complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc(1) subunits were deleted. In all the yeast strains tested, a bc(1) sub-complex of approximately 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS/PAGE and immunodecoration, revealed the presence of the two catalytic subunits, cytochrome b and cytochrome c(1), associated with the noncatalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Together, these bc(1) subunits build up the core structure of the cytochrome bc(1) complex, which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc(1) core structure may represent a true assembly intermediate during the maturation of the bc(1) complex; first, because of its wide distribution in distinct yeast deletion strains and, second, for its characteristics of stability, which resemble those of the intact homodimeric bc(1) complex. By contrast, the bc(1) core structure is unable to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc(1) complex provides a number of new elements clarifying the molecular events leading to the maturation of the yeast cytochrome bc(1) complex in the inner mitochondrial membrane.

  16. Evidence that assembly of the yeast cytochrome bc1 complex involves formation of a large core structure in the inner mitochondrial membrane

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L.

    2009-01-01

    The assembly status of the cytochrome bc1 complex has been analyzed in distinct yeast deletion strains in which genes for one or more of the bc1 subunits had been deleted. In all the yeast strains tested a bc1 sub-complex of about 500 kDa was found when the mitochondrial membranes were analyzed by blue native electrophoresis. The subsequent molecular characterization of this sub-complex, carried out in the second dimension by SDS-PAGE and immunodecoration, revealed the presence of the two catalytic subunits cytochrome b and cytochrome c1, associated with the non catalytic subunits core protein 1, core protein 2, Qcr7p and Qcr8p. Altogether these bc1 subunits build up the core structure of the cytochrome bc1 complex which is then able to sequentially bind the remaining subunits, such as Qcr6p, Qcr9p, the Rieske iron-sulfur protein and Qcr10p. This bc1 core structure may represent a true assembly intermediate during the maturation of the bc1 complex, first because of its wide distribution in distinct yeast deletion strains and second for its characteristics of stability which resemble those of the intact homodimeric bc1 complex. Differently from this latter, however, the bc1 core structure is not able to interact with the cytochrome c oxidase complex to form respiratory supercomplexes. The characterization of this novel core structure of the bc1 complex provides a number of new elements for clarification of the molecular events leading to the maturation of the yeast cytochrome bc1 complex in the inner mitochondrial membrane. PMID:19236481

  17. A layer-by-layer assembled graphene/zinc sulfide/polypyrrole thin-film electrode via electrophoretic deposition for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sookhakian, M., E-mail: m.sokhakian@gmail.com [Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Amin, Y.M. [Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Baradaran, S. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Tajabadi, M.T. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Golsheikh, A. Moradi [Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Nanotechnology and Catalysis Research Centre, Institute of Postgraduate Studies, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-02-03

    An organic–inorganic photovoltaic electrode consisting of graphene nanosheets, zinc sulfide nanoparticles (ZnS) and polypyrrole nanotubes (PPy) was fabricated on indium tin oxide (ITO) glass using layer-by-layer electrophoretic deposition. The morphology and structure of the as-fabricated electrode were confirmed by X-ray diffraction, high resolution transmission electron microscopy, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and Raman spectroscopy. The photovoltaic properties of the ZnS, ZnS/PPy (ZP) and graphene/ZnS/PPy (GZP) ternary composite films modified on ITO electrodes were investigated for their solar cell performance. Both transient photocurrent and current–voltage curve measurements illustrated that the photocurrent and the power conversion efficiency of the GZP ternary composite film were significantly enhanced compared to the ZnS and ZP films. Based on these results, PPy nanotubes are an excellent sensitizer and hole acceptor, ZnS nanoparticles act as a bridge and graphene nanosheets are an excellent conductive collector and transporter, which means that, altogether, this combination of materials can significantly increase the photovoltaic efficiency. - Highlights: • Zinc sulfide (ZnS)/polypyrrole(PPy)/graphene by electrophoretic deposition • Support of ZnS/PPy composite shows efficient performance of organic–inorganic solar cell. • Current–voltage curve and transient current improved in the presence of graphene.

  18. Assembly and Regulation of the Membrane Attack Complex Based on Structures of C5b6 and sC5b9

    Directory of Open Access Journals (Sweden)

    Michael A. Hadders

    2012-03-01

    Full Text Available Activation of the complement system results in formation of membrane attack complexes (MACs, pores that disrupt lipid bilayers and lyse bacteria and other pathogens. Here, we present the crystal structure of the first assembly intermediate, C5b6, together with a cryo-electron microscopy reconstruction of a soluble, regulated form of the pore, sC5b9. Cleavage of C5 to C5b results in marked conformational changes, distinct from those observed in the homologous C3-to-C3b transition. C6 captures this conformation, which is preserved in the larger sC5b9 assembly. Together with antibody labeling, these structures reveal that complement components associate through sideways alignment of the central MAC-perforin (MACPF domains, resulting in a C5b6-C7-C8β-C8α-C9 arc. Soluble regulatory proteins below the arc indicate a potential dual mechanism in protection from pore formation. These results provide a structural framework for understanding MAC pore formation and regulation, processes important for fighting infections and preventing complement-mediated tissue damage.

  19. Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly.

    Directory of Open Access Journals (Sweden)

    Yvonne Beckham

    Full Text Available Here we demonstrate that Arp2/3 regulates a transition between mesenchymal and amoeboid protrusions in MCF10A epithelial cells. Using genetic and pharmacological means, we first show Arp2/3 inhibition impairs directed cell migration. Arp2/3 inhibition results in a dramatically impaired cell adhesion, causing deficient cell attachment and spreading to ECM as well as an 8-fold decrease in nascent adhesion assembly at the leading edge. While Arp2/3 does not play a significant role in myosin-dependent adhesion growth, mature focal adhesions undergo large scale movements against the ECM suggesting reduced coupling to the ECM. Cell edge protrusions occur at similar rates when Arp2/3 is inhibited but their morphology is dramatically altered. Persistent lamellipodia are abrogated and we observe a markedly increased incidence of blebbing and unstable pseuodopods. Micropipette-aspiration assays indicate that Arp2/3-inhibited cells have a weak coupling between the cell cortex and the plasma membrane, and suggest a potential mechanism for increased pseudopod and bleb formation. Pseudopods are not sensitive to reduced in formin or myosin II activity. Collectively, these results indicate that Arp2/3 is not necessary for rapid protrusion of the cell edge but plays a crucial role in assembling focal adhesions required for its stabilization.

  20. Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly.

    Science.gov (United States)

    Beckham, Yvonne; Vasquez, Robert J; Stricker, Jonathan; Sayegh, Kareem; Campillo, Clement; Gardel, Margaret L

    2014-01-01

    Here we demonstrate that Arp2/3 regulates a transition between mesenchymal and amoeboid protrusions in MCF10A epithelial cells. Using genetic and pharmacological means, we first show Arp2/3 inhibition impairs directed cell migration. Arp2/3 inhibition results in a dramatically impaired cell adhesion, causing deficient cell attachment and spreading to ECM as well as an 8-fold decrease in nascent adhesion assembly at the leading edge. While Arp2/3 does not play a significant role in myosin-dependent adhesion growth, mature focal adhesions undergo large scale movements against the ECM suggesting reduced coupling to the ECM. Cell edge protrusions occur at similar rates when Arp2/3 is inhibited but their morphology is dramatically altered. Persistent lamellipodia are abrogated and we observe a markedly increased incidence of blebbing and unstable pseuodopods. Micropipette-aspiration assays indicate that Arp2/3-inhibited cells have a weak coupling between the cell cortex and the plasma membrane, and suggest a potential mechanism for increased pseudopod and bleb formation. Pseudopods are not sensitive to reduced in formin or myosin II activity. Collectively, these results indicate that Arp2/3 is not necessary for rapid protrusion of the cell edge but plays a crucial role in assembling focal adhesions required for its stabilization.

  1. Self-assembly of polyphosphazene immunoadjuvant with poly(ethylene oxide enables advanced nanoscale delivery modalities and regulated pH-dependent cellular membrane activity

    Directory of Open Access Journals (Sweden)

    Alexander K. Andrianov

    2016-04-01

    Full Text Available Water-soluble polyphosphazene polyacids, such as poly[di(carboxylatophenoxyphosphazene] (PCPP, have been of significant interest due to their unique immunoadjuvant and vaccine delivery properties. We report that PCPP can spontaneously self-assemble into intermolecular complexes with common formulation excipients − polyethers in aqueous solutions at neutral pH through the establishment of hydrogen bonds. The resulting advanced PCPP delivery modalities can range from macromolecular assemblies at the nanoscale level to physically cross-linked hydrogels and the physical state can be modulated through varying polymer ratios and molecular weight of polyether. It has been demonstrated that such macromolecular complexes maintain protein-binding ability − a key characteristics of the delivery system. Importantly, the non-covalent modification of PCPP immunoadjuvant with polyethers introduces pH dependent membrane disruptive activity, which is not characteristic for PCPP itself, and is typically correlated to the ability of macromolecular carrier to facilitate endosomal escape. This can potentially affect the mechanism of immunoadjuvant action displayed by PCPP, afford means for its fine-tuning, as well as provide important insights for understanding the relationship between fundamental physico-chemical characteristics of polyphosphazene immunoadjuvants and their activity in vivo.

  2. Collagen metabolism and basement membrane formation in cultures of mouse mammary epithelial cells: Induction of assembly on fibrillar type I collagen substrata

    International Nuclear Information System (INIS)

    David, G.; van der Schueren, B.; van den Berghe, H.; Nusgens, B.; Van Cauwenberge, D.; Lapiere, C.

    1987-01-01

    Collagen metabolism was compared in cultures of mouse mammary epithelial cells maintained on plastic or fibrillar type I collagen gel substrata. The accumulation of dialysable and non-dialysable [ 3 H]hydroxyproline and the identification of the collagens produced suggest no difference between substrata in the allover rates of collagen synthesis and degradation. The proportion of the [ 3 H]collagen which accumulates in the monolayers of cultures on collagen, however, markedly exceeds that of cultures on plastic. Cultures on collagen deposit a sheet-like layer of extracellular matrix materials on the surface of the collagen fibers. Transformed cells on collagen produce and accumulate more [ 3 H]collage, yet are less effective in basement membrane formation than normal cells, indicting that the accumulation of collagen alone and the effect of interstitial collagen thereupon do not suffice. Thus, exogenous fibrillar collagen appears to enhance, but is not sufficient for proper assembly of collagenous basement membrane components near the basal epithelial cell surface

  3. Recognition of anti-mycolic acid antibody at self-assembled mycolic acid antigens on a gold electrode: a potential impedimetric immunosensing platform for active tuberculosis

    CSIR Research Space (South Africa)

    Mathebula, NS

    2009-01-01

    Full Text Available Electrochemical impedimetric recognition by anti-mycolic acid antibodies, present in tuberculosis (TB)-positive human serum co-infected with human immunodeficiency virus (HIV), of mycolic acids (MA) integrated into a self-assembled monolayer of N-(2...

  4. Thermal curing of PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Cleemann, Lars N.; Li, Qingfeng

    2012-01-01

    Phosphoric acid doped polybenzimidazole (PBI) has emerged as one of the most promising electrolyte materials for proton exchange membrane (PEM) fuel cells operating under anhydrous conditions at temperatures of up to 200 °C. The limited long-term durability of the membrane electrode assemblies...... (MEAs) is currently hampering the commercial viability of the technology. In the present study, thermoset PBI membranes were prepared by curing the membranes under inert atmosphere at temperatures of up to 350 °C prior to the acid doping. The systematic membrane characterizations with respect...... to solubility, phosphoric acid doping, radical-oxidative resistance and mechanical strength indicated that the PBI membranes were irreversibly cured by the thermal treatment. After curing, the PBI membranes demonstrated features that are fundamental characteristics of a thermoset resin including complete...

  5. Multilayer Films Electrodes Consisted of Cashew Gum and Polyaniline Assembled by the Layer-by-Layer Technique: Electrochemical Characterization and Its Use for Dopamine Determination

    Directory of Open Access Journals (Sweden)

    Sergio Bitencourt Araújo Barros

    2012-01-01

    with PANI or PANI-PA intercalated with CG or with PVS alternately resulting in four films with different sequences: PANI/CG PANI-PA/CG, PANI/PVS and PANI-PA/PVS, respectively. Analysis by cyclic voltammetry (CV of the films showed that the presence of gum increases the stability of the films in acidic medium. The performance of the modified electrode of PANI-PA/CG was evaluated in electro analytical determination of dopamine (DA. The tests showed great sensitivity of the film for this analyte that was detected at 10−5 mol L−1.

  6. Flexible Strain Sensor Based on Layer-by-Layer Self-Assembled Graphene/Polymer Nanocomposite Membrane and Its Sensing Properties

    Science.gov (United States)

    Zhang, Dongzhi; Jiang, Chuanxing; Tong, Jun; Zong, Xiaoqi; Hu, Wei

    2018-01-01

    Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.

  7. Flexible Strain Sensor Based on Layer-by-Layer Self-Assembled Graphene/Polymer Nanocomposite Membrane and Its Sensing Properties

    Science.gov (United States)

    Zhang, Dongzhi; Jiang, Chuanxing; Tong, Jun; Zong, Xiaoqi; Hu, Wei

    2018-04-01

    Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.

  8. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  9. Corrosion protection ability of self-assembled monolayer of 3-amino-5-mercapto-1,2,4-triazole on copper electrode

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, Ganesan; Sethuraman, Mathur Gopalakrishnan, E-mail: mgsethu@rediffmail.com

    2014-07-01

    The self-assembled monolayer (SAM) of 3-amino-5-mercapto-1,2,4-triazole (AMTa) was formed on a copper surface and characterized using cyclic voltammetry, Fourier Transform Infra-red spectroscopy and scanning electron microscopy. Quantum chemical calculations suggested the stronger interaction between AMTa and copper. The protection ability of SAM has been evaluated using electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The formed monolayer showed significant protection ability in 1% NaCl medium. The enhanced corrosion protection ability could be due to the compact film structure which blocks the electron transfer from the solution to AMTa monolayer modified copper substrate. - Highlights: • Self-assembled monolayer (SAM) of AMTa has been achieved on copper surface. • Monolayer formed has been duly characterized. • SAM of AMTa has been shown to offer significant protection to copper in NaCl medium.

  10. Improving performance, stability, and processability of OFETs with printed Ag electrodes by means of a novel, multipurpose self-assembled monolayer (Conference Presentation)

    Science.gov (United States)

    Alt, Milan; Jesper, Malte; Schinke, Janusz; Hillebrandt, Sabina; Reiser, Patrick; Rödlmeier, Tobias; Angelova, Iva; Hamburger, Manuel; Lemmer, Ulrich; Hernandez-Sosa, Gerardo; Lovrincic, Robert

    2016-11-01

    We present a novel SAM-forming molecule bisjulolidyldisulfide that reduces the WF of metal surfaces by 1.2 eV and can lower the barrier for electron injection to organic semiconductors. Applied to Au and Ag surfaces, including inkjet-printed Ag on PET, we characterized bisjulolidyldisulfide monolayers by means of photoelectron spectroscopy (PES) and sessile drop technique, as well as their influence on the performance of n-type OFETs. Next a strong reduction of the contact resistance by two orders of magnitude, we found that this SAM treatment extends the shelf lifetime of ambient-stored OFET devices. Also, it improves the wettability and thereby facilitates solution processing of a subsequent layer with respect to the untreated surface. The full electrical functionality of bisjulolidyldisulfide SAMs was found to become manifest with only one minute of immersion in ethanol solution. PES measurements suggests that the surface coverage is thorough on Au, but only fractional on Ag, especially on printed Ag. However, the quality of SAM-treated bottom contacts in n-type OFETs is very similar for all three investigated metal surfaces (Au and Ag evaporated and printed Ag). This is especially important for printed Ag-electrodes, as their surface was found to be significantly worse for device performance in comparison to their evaporated Ag counterpart. Using this surface treatment we realized integrated unipolar n-type ring oscillators with inkjet printed Ag electrodes.

  11. A hierarchically assembled mesoporous ZnO hemisphere array and hollow microspheres for photocatalytic membrane water filtration.

    Science.gov (United States)

    Pan, Jia Hong; Zhang, Xiwang; Du, Alan J; Bai, Hongwei; Ng, Jiawei; Sun, Darren

    2012-05-28

    A mesoporous ZnO hemisphere array has been prepared via a topotactic transition of Zn(4)(OH)(6)CO(3)·H(2)O (ZCHH) by chemical bath deposition. Each hemisphere is comprised of a radially oriented nanoflake shell grown on the hemispherical interior. Reaction time-dependent SEM analysis shows that the morphological formation of ZCHH involves a deposition-growth-secondary growth-redeposition procedure. Upon calcination, ZCHH readily decomposes to nanocrystalline wurtzite-phase ZnO without significant change in morphology, and the release of CO(2) and H(2)O from ZCHH creates an additional mesoporous structure in both hemispherical interior and nanoflake shell. A similar process but without using a substrate has been developed for synthesis of mesoporous ZnO hollow microspheres in powder form. Both the elaborated superstructured photocatalysts consisting of mesoporous nanoflakes have been demonstrated to exhibit excellent performances in the photocatalytic membrane filtration.

  12. Enhanced performance of proton exchange membrane fuel cell by introducing nitrogen-doped CNTs in both catalyst layer and gas diffusion layer

    CSIR Research Space (South Africa)

    Hou, S

    2017-11-01

    Full Text Available are increased by 88% and 77% respectively with the addition of 20 wt% of NCNTs in MPL. The membrane electrode assembly (MEA) with adding 20 wt% NCNTs both in cathode CL and in cathode GDL can yield the best cell performance. At a cell temperature of 70 °C and 30...

  13. The Pore Structure of Direct Methanol Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Lund, Peter Brilner

    2005-01-01

    The pore structure and morphology of direct methanol fuel cell electrodes are characterized using mercury intrusion porosimetry and scanning electron microscopy. It is found that the pore size distributions of printed primer and catalyst layers are largely dictated by the powders used to make...... the printing ink. The extent to which the pore structure is modified by changing several parameters in the membrane electrode assembly MEA manufacturing process is discussed. The pore structure of the printed layers is found to be invariant with respect to changes in powder loading or in choice of printing...... substrate, and is relatively undisturbed by MEA hot-pressing. Changing the source of the primer powder and adding a pore-forming agent to the catalyst ink are found to be successful methods of creating a more open pore structure in the printed layers....

  14. Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2017-01-01

    Full Text Available Thin anodic porous alumina (tAPA was fabricated from a 500 nm thick aluminum (Al layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm gold (Au layer. The as obtained tAPA–Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA and aminothiol (AT, and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB. At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×. The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA–Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS biosensors on living cells. In the future, these tAPA–Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.

  15. Influence of Nafion film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Ohma, Atsushi; Fushinobu, Kazuyoshi; Okazaki, Ken

    2010-01-01

    The influence of Nafion film on ORR kinetics and H 2 O 2 formation on a Pt electrode was investigated using RRDE in 0.1 M HClO 4 . It was found that the Nafion-coated Pt system showed lower apparent ORR activity and more H 2 O 2 production than the bare Pt electrode system. From the temperature sensitivity, it was revealed that the apparent activation energies of ORR in the Nafion-coated Pt system were lower than the bare Pt electrode system, and the H 2 O 2 formation was suppressed with the increase of the temperature. In order to analyze the results furthermore, other systems (0.1/1.0 M, HClO 4 /CF 3 SO 3 H) with the bare Pt electrodes were also examined as references. It was exhibited that the ORR kinetic current, the H 2 O 2 formation, and the apparent activation energies of 1.0 M CF 3 SO 3 H system were close to those of the Nafion-coated Pt system. We concluded that the orientation of anion species of Nafion and CF 3 SO 3 H to the Pt surface via water molecules, as well as a fluorocarbon polymer network of Nafion, might block O 2 adsorption, resulting in the smaller effective surface area of the Pt electrode for ORR, the smaller ORR kinetic current, and the more H 2 O 2 production.

  16. Electrochemical cell assembled in discharged state

    Science.gov (United States)

    Yao, Neng-Ping; Walsh, William J.

    1976-01-01

    A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

  17. The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization.

    Directory of Open Access Journals (Sweden)

    Yannick R Brunet

    2015-10-01

    Full Text Available The Type VI secretion system (T6SS is a widespread weapon dedicated to the delivery of toxin proteins into eukaryotic and prokaryotic cells. The 13 T6SS subunits assemble a cytoplasmic contractile structure anchored to the cell envelope by a membrane-spanning complex. This structure is evolutionarily, structurally and functionally related to the tail of contractile bacteriophages. In bacteriophages, the tail assembles onto a protein complex, referred to as the baseplate, that not only serves as a platform during assembly of the tube and sheath, but also triggers the contraction of the sheath. Although progress has been made in understanding T6SS assembly and function, the composition of the T6SS baseplate remains mostly unknown. Here, we report that six T6SS proteins-TssA, TssE, TssF, TssG, TssK and VgrG-are required for proper assembly of the T6SS tail tube, and a complex between VgrG, TssE,-F and-G could be isolated. In addition, we demonstrate that TssF and TssG share limited sequence homologies with known phage components, and we report the interaction network between these subunits and other baseplate and tail components. In agreement with the baseplate being the assembly platform for the tail, fluorescence microscopy analyses of functional GFP-TssF and TssK-GFP fusion proteins show that these proteins assemble stable and static clusters on which the sheath polymerizes. Finally, we show that recruitment of the baseplate to the apparatus requires initial positioning of the membrane complex and contacts between TssG and the inner membrane TssM protein.

  18. Selectivity of Direct Methanol Fuel Cell Membranes.

    Science.gov (United States)

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  19. Selectivity of Direct Methanol Fuel Cell Membranes

    Science.gov (United States)

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  20. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò

    2015-11-01

    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  1. TP0326, a Treponema pallidum β-Barrel Assembly Machinery A (BamA) Ortholog and Rare Outer Membrane Protein

    Science.gov (United States)

    Desrosiers, Daniel C.; Anand, Arvind; Luthra, Amit; Dunham-Ems, Star M; LeDoyt, Morgan; Cummings, Michael A. D.; Eshghi, Azad; Cameron, Caroline E.; Cruz, Adriana R.; Salazar, Juan C.; Caimano, Melissa J.; Radolf, Justin D.

    2011-01-01

    SUMMARY Definitive identification of Treponema pallidum (Tp) rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in Tp with sequence homology to a Gram-negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modeling predicted that five polypeptide transport-associated (POTRA) domains comprise the N-terminus of TP0326, while the C-terminus forms an 18-stranded amphipathic β-barrel. Circular dichroism, heat-modifiability by SDS-PAGE, Triton X-114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β-barrel is responsible for the native protein's amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease-surface accessibility assay confirmed surface exposure. Size-exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in Tp considerably larger than that of E. coli. Non-orthologous ancillary factors and self-association of TP0326 via its β-barrel may both contribute to the Bam complex. Tp-infected rabbits mount a vigorous antibody response to both POTRA and β-barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity. PMID:21488980

  2. Preparation of Gold Nanoparticles Deposited Silicon Thin Film Electrode by Self-Assembly Method for the Employment of an Anode Material for Lithium Secondary Batteries.

    Science.gov (United States)

    Halim, Martin; Kim, Jung Sub; Nguyen, Si Hieu; Jeon, Bup Ju; Lee, Joong Kee

    2015-10-01

    This work describes a self-assembly method of gold nanoparticles coating on the surface of silicon thin films for the anode material of lithium secondary batteries. The preparation of the silicon thin films was carried out by electron cyclotron resonance metal organic chemical vapor deposition (ECR-MOCVD) process. The obtained films were further coated with (3-aminopropyl)-trimethoxysilane (APTMS) which has a role to bind the oxygen functional groups on Si surface and the gold nanoparticles. The dispersed gold nanoparticles on the surface of silicon thin films could be prepared due to self-assembly phenomena which interact between attraction and repulsion in gold nanoparticles colloidal solution (GNCS). The use of reducing agent of sodium citrate and tannic acid in GNCS significantly affected the size of gold nanoparticle in our experimental range. Based on our experimental results, the higher reversible capacity was exhibited for the silicon that was immersed in the GNCS consisted of only sodium citrate. The GNCS consisted of both sodium citrate and tannic acid produced severe coagulated nanoparticles when deposited on the silicon surface and thus inhibited the lithium movement from electrolyte to silicon surface. Consequently, the reversible capacity of silicon anode material with coagulated gold nanoparticles coating showed the reduced performance.

  3. Electrochemical characterization of a 1,8-octanedithiol self-assembled monolayer (ODT-SAM) on a Au(1 1 1) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Raya, Daniel; Madueno, Rafael; Sevilla, Jose Manuel; Blazquez, Manuel [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Cordoba (Spain); Pineda, Teresa [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Cordoba (Spain)], E-mail: tpineda@uco.es

    2008-11-15

    Recently, it has becoming increasingly important to control the organization of self-assembled monolayers (SAMs) of {omega}-functionalized thiols for its potential applications in the construction of more complex molecular architectures. In this paper, we report on the spontaneous formation of a SAM of octanedithiol (ODT) as a function of the modification time. Electrochemical techniques such as cyclic voltammetry, double layer capacitance and electrochemical impedance spectroscopy are used for the characterization of this monolayer. The increase in modification time brings about changes in the octanedithiol self-assembled monolayer (ODT-SAM) reductive desorption voltammograms that indicate an evolution toward a more ordered and compact monolayer. This trend has also been found by following the changes in the electron transfer processes of the redox probe K{sub 3}Fe(CN){sub 6}. In fact, the ODT-SAM formed at low-modification time does not significantly perturb the electrochemical response as it is typical of either a low coverage or of the presence of large defects in the layer. Upon increasing the modification time, the voltammograms of the redox probe adopt a sigmoidal shape indicating the existence of pinholes in the monolayer distributed as an array of microelectrodes. The surface coverage as well as the size and distribution of these pinholes have been determined by the impedance technique that gives a more reliable evaluation of these monolayer structural parameters.

  4. Electrochemical characterization of a 1,8-octanedithiol self-assembled monolayer (ODT-SAM) on a Au(111) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Raya, Daniel; Madueno, Rafael; Sevilla, Jose Manuel; Blazquez, Manuel; Pineda, Teresa [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Cordoba (Spain)

    2008-11-15

    Recently, it has becoming increasingly important to control the organization of self-assembled monolayers (SAMs) of {omega}-functionalized thiols for its potential applications in the construction of more complex molecular architectures. In this paper, we report on the spontaneous formation of a SAM of octanedithiol (ODT) as a function of the modification time. Electrochemical techniques such as cyclic voltammetry, double layer capacitance and electrochemical impedance spectroscopy are used for the characterization of this monolayer. The increase in modification time brings about changes in the octanedithiol self-assembled monolayer (ODT-SAM) reductive desorption voltammograms that indicate an evolution toward a more ordered and compact monolayer. This trend has also been found by following the changes in the electron transfer processes of the redox probe K{sub 3}Fe(CN){sub 6}. In fact, the ODT-SAM formed at low-modification time does not significantly perturb the electrochemical response as it is typical of either a low coverage or of the presence of large defects in the layer. Upon increasing the modification time, the voltammograms of the redox probe adopt a sigmoidal shape indicating the existence of pinholes in the monolayer distributed as an array of microelectrodes. The surface coverage as well as the size and distribution of these pinholes have been determined by the impedance technique that gives a more reliable evaluation of these monolayer structural parameters. (author)

  5. Multilayer Films Electrodes Consisted of Cashew Gum and Polyaniline Assembled by the Layer-by-Layer Technique: Electrochemical Characterization and Its Use for Dopamine Determination

    Science.gov (United States)

    Barros, Sergio Bitencourt Araújo; Leite, Cleide Maria da Silva; de Brito, Ana Cristina Facundo; Dos Santos Júnior, José Ribeiro; Zucolotto, Valtencir; Eiras, Carla

    2012-01-01

    We take advantage of polyelectrolyte feature exhibited by natural cashew gum (Anacardium occidentale L.) (CG), found in northeast Brazil, to employ it in the formation of electroactive nanocomposites prepared by layer-by-layer (LbL) technique. We used polyaniline unmodified (PANI) or modified with phosphonic acid (PA), PANI-PA as cationic polyelectrolyte. On the other hand, the CG or polyvinyl sulfonic (PVS) acids were used as anionic polyelectrolytes. The films were prepared with PANI or PANI-PA intercalated with CG or with PVS alternately resulting in four films with different sequences: PANI/CG PANI-PA/CG, PANI/PVS and PANI-PA/PVS, respectively. Analysis by cyclic voltammetry (CV) of the films showed that the presence of gum increases the stability of the films in acidic medium. The performance of the modified electrode of PANI-PA/CG was evaluated in electro analytical determination of dopamine (DA). The tests showed great sensitivity of the film for this analyte that was detected at 10−5 mol L−1. PMID:22505924

  6. Layer-by-layer assembly of gold nanoparticles and cysteamine on gold electrode for immunosensing of human chorionic gonadotropin at picogram levels.

    Science.gov (United States)

    Roushani, Mahmoud; Valipour, Akram; Valipour, Mehdi

    2016-04-01

    The development of an electrochemical immunosensor for the detection of human chorionic gonadotropin (hCG) is described with a limit of detection as low as 0.3 pg mL(-1) in phosphate buffer. In this immunosensor, cysteamine (Cys) and gold nanoparticles (AuNPs) were used to immobilize an anti-hCG monoclonal antibody onto a gold electrode (GE). The structure of AuNPs has been confirmed by EDS, SEM, and TEM analysis. Due to the large specific surface area and excellent electrical conductivity of AuNPs, electron transfer was promoted and the amount of hCG antibody was enhanced significantly. A systematic study on the effects of experimental parameters such as pH, incubation time in the hCG solution and urea solution used for experiments on the binding between the immobilized antibody and hCG has been carried out. Under optimal experimental parameters, differential pulse voltammetry (DPV) signal changes of the [Fe(CN)6](3-/4-) are used to detect hCG with two broad linear ranges: 0.001 to 0.2 and 0.2 to 60.7 ng mL(-1). The LOD value proves more sensitive in comparison with previously reported methods. The prepared immunosensor showed high sensitivity and stability. In addition, the immunosensor was successfully used for the determination of hCG in human serum. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Composite electrode/electrolyte structure

    Science.gov (United States)

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  8. Rheological properties of poly(vinyl alcohol) (PVA) derived composite membranes for fuel cells

    International Nuclear Information System (INIS)

    Remiš, T

    2017-01-01

    Rheological properties of new anhydrous proton conducting membrane based on PVA, tetraethyl orthosilicate (TEOS),sulfosuccinic acid (SSA), titanium dioxide (TiO 2 )was examined at various stoichiometric ratios. SSA was used as sulfonating agents to form a crosslinked structure and as proton source, whereas TEO Sand TiO 2 were utilized to improve the thermal and mechanical properties of the membrane. In order to verify that all the substances were immobilized into the matrix, the membranes were analysed by means of FT-IR. The rheological, mechanical and thermal properties of the membranes were investigated using rheometer ARES G2 and thermogravimetic analyser (TGA).The analysis of mixed PVA solutions exhibited a unique behaviour of viscosity with increased crosslink density. The dynamic storage modulus G´ of dried composite membranes shows better mechanical resistance and increased tolerance to pressure applied during membrane electrode assembly (MEA). (paper)

  9. Rheological properties of poly(vinyl alcohol) (PVA) derived composite membranes for fuel cells

    Science.gov (United States)

    Remiš, T.

    2017-01-01

    Rheological properties of new anhydrous proton conducting membrane based on PVA, tetraethyl orthosilicate (TEOS),sulfosuccinic acid (SSA), titanium dioxide (TiO2)was examined at various stoichiometric ratios. SSA was used as sulfonating agents to form a crosslinked structure and as proton source, whereas TEO Sand TiO2were utilized to improve the thermal and mechanical properties of the membrane. In order to verify that all the substances were immobilized into the matrix, the membranes were analysed by means of FT-IR. The rheological, mechanical and thermal properties of the membranes were investigated using rheometer ARES G2 and thermogravimetic analyser (TGA).The analysis of mixed PVA solutions exhibited a unique behaviour of viscosity with increased crosslink density. The dynamic storage modulus G´ of dried composite membranes shows better mechanical resistance and increased tolerance to pressure applied during membrane electrode assembly (MEA).

  10. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  11. Numerical modeling transport phenomena in proton exchange membrane fuel cells

    Science.gov (United States)

    Suh, DongMyung

    To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2

  12. Layer-by-layer assembly of gold nanoparticles and cysteamine on gold electrode for immunosensing of human chorionic gonadotropin at picogram levels

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com [Department of Chemistry, Ilam University, P.O. Box, 69315-516, Ilam (Iran, Islamic Republic of); Valipour, Akram [Department of Chemistry, Ilam University, P.O. Box, 69315-516, Ilam (Iran, Islamic Republic of); Valipour, Mehdi [Department of Chemistry, Payame Noor University, P.O. Box, 19395-3697, Tehran (Iran, Islamic Republic of)

    2016-04-01

    The development of an electrochemical immunosensor for the detection of human chorionic gonadotropin (hCG) is described with a limit of detection as low as 0.3 pg mL{sup −1} in phosphate buffer. In this immunosensor, cysteamine (Cys) and gold nanoparticles (AuNPs) were used to immobilize an anti-hCG monoclonal antibody onto a gold electrode (GE). The structure of AuNPs has been confirmed by EDS, SEM, and TEM analysis. Due to the large specific surface area and excellent electrical conductivity of AuNPs, electron transfer was promoted and the amount of hCG antibody was enhanced significantly. A systematic study on the effects of experimental parameters such as pH, incubation time in the hCG solution and urea solution used for experiments on the binding between the immobilized antibody and hCG has been carried out. Under optimal experimental parameters, differential pulse voltammetry (DPV) signal changes of the [Fe(CN){sub 6}]{sup 3−/4−} are used to detect hCG with two broad linear ranges: 0.001 to 0.2 and 0.2 to 60.7 ng mL{sup −1}. The LOD value proves more sensitive in comparison with previously reported methods. The prepared immunosensor showed high sensitivity and stability. In addition, the immunosensor was successfully used for the determination of hCG in human serum. - Highlights: • AuNPs were used for covalent attachment of anti-body onto GE. • AuNPs joint to GE via Cys, which were similar to electron-transfer tunnel. • A simple method and a sensitive immunosensing for hCG were reported.

  13. Layer-by-layer assembly of gold nanoparticles and cysteamine on gold electrode for immunosensing of human chorionic gonadotropin at picogram levels

    International Nuclear Information System (INIS)

    Roushani, Mahmoud; Valipour, Akram; Valipour, Mehdi

    2016-01-01

    The development of an electrochemical immunosensor for the detection of human chorionic gonadotropin (hCG) is described with a limit of detection as low as 0.3 pg mL −1 in phosphate buffer. In this immunosensor, cysteamine (Cys) and gold nanoparticles (AuNPs) were used to immobilize an anti-hCG monoclonal antibody onto a gold electrode (GE). The structure of AuNPs has been confirmed by EDS, SEM, and TEM analysis. Due to the large specific surface area and excellent electrical conductivity of AuNPs, electron transfer was promoted and the amount of hCG antibody was enhanced significantly. A systematic study on the effects of experimental parameters such as pH, incubation time in the hCG solution and urea solution used for experiments on the binding between the immobilized antibody and hCG has been carried out. Under optimal experimental parameters, differential pulse voltammetry (DPV) signal changes of the [Fe(CN) 6 ] 3−/4− are used to detect hCG with two broad linear ranges: 0.001 to 0.2 and 0.2 to 60.7 ng mL −1 . The LOD value proves more sensitive in comparison with previously reported methods. The prepared immunosensor showed high sensitivity and stability. In addition, the immunosensor was successfully used for the determination of hCG in human serum. - Highlights: • AuNPs were used for covalent attachment of anti-body onto GE. • AuNPs joint to GE via Cys, which were similar to electron-transfer tunnel. • A simple method and a sensitive immunosensing for hCG were reported.

  14. THE EFFECT OF PVC-BASED MEMBRANE COMPOSITION AND Zn(II, Cd(II AND Pb(II INTERFERING IONS TO Hg(II ION SELECTIVE ELECTRODE (ISE PERFORMANCE BY USING DBA218C6 IONOPHORE

    Directory of Open Access Journals (Sweden)

    Abd. Wahid Wahab

    2010-06-01

    Full Text Available The effect of PVC (Polyvinylchloride-Based Membrane Composition to Ion Selective Electrode (ISE-Hg(II Performance using Ionophore DBA218C6 (N,N'-Dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclo octadecane,  Plasticizer NPOE (Nitrophenyl Octhyl Ether, Anionic Site KTCPB (Potassium Tetrakis (4-chloro phenyl borate have been performed. Membrane compositions used were:(a PVC (30 mg, NPOE (60 mg, DBA218C6(6 mg and KTCPB (4 mg; (b PVC(30 mg, NPOE (60 mg, DBA218C6(7 mg and KTCPB (3 mg; (c PVC (30 mg, NPOE (59 mg, DBA218C6 (8 mg and KTCPB( 3 mg. The concentration range of interference ions Zn(II, Cd(II and Pb(II  were 1.0 x 10-3 - 1.0 x 10-1 M. ISE-Hg(II performance for membrane composition of 30 : 60 : 6 : 4 was 26.34 mV per decade (Nernstian Slope value on Hg(II concentration range of 1.0x10-6 - 1.0 x 10-1 M , membrane composition of 30 : 60 : 7 : 3 was 27.71 mV per decade on Hg(II concentration range of 1.0 x10-6 - 1.0 x10-1 M, and membrane composition of 30 : 59 : 8 : 3 was 28.52 mV per decade on Hg(II concentration range of  1.0 x10-6 - 1.0 x10-1 M with activity between pH 1.0-3.0. The concentration of interference ions : Zn(II, Cd(II and Pb(II in the range of 1.0 x 10-3 - 1.0 x 10-1 M with the ratio of the primary ion to interference ions of 4 : 1 gave real effect. As results, selectivities and sensitivities between ISE-Hg(II and Ionophore DBA218C6 could be determined by PVC-Based Membrane Composition and the effect of Zn(II, Cd(II and Pb(II  interference ions was observed in the concentration of 1,0 x10-3 - 1,0 x10-1 M.   Keywords: membrane composition effect, ionophore DBA218C6, ISE-Hg(II

  15. Voltammetry and Molecular Assembly of G-quadruplex DNAzyme on Single-crystal Au(111)-electrode Surfaces – Hemin as an Electrochemical Intercalator

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    2016-01-01

    ). The target DNZyme is formed from a single-strand OGN with 12 guanines and iron (III) porphyrin IX (hemin), and assembles on Au(111) by the mercapto alkyl linker. The DNAzyme monolayers exhibit a strong pair of redox peaks at 0.0 V (NHE) at pH 7 in acetate buffer, shifted positively by about 50 mV compared......DNA quadruplexes (qs’s) are a class of “non-canonical” oligonucleotides (OGNs) composed of stacked guanine (G) quartets generally stabilized by monovalent cations. Metal porphyrins selectively bind to G-qs complexes to form DNAzyme, which can exhibit peroxidase and other catalytic activity similar...... to free hemin physisorbed on the Au(111). The voltammetric signal of DNZyme is enhanced 15 times, indicative that hemin is strongly bound to the immobilized 12G-qs and in well-defined orientation favorable for interfacial ET with a rate constant of 6.0 s−1. The G-quartet structures with a size of 1.6 ± 0...

  16. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.

    Science.gov (United States)

    Puurtinen, Merja M; Komulainen, Satu M; Kauppinen, Pasi K; Malmivuo, Jaakko A V; Hyttinen, Jari A K

    2006-01-01

    Textile sensors, when embedded into clothing, can provide new ways of monitoring physiological signals, and improve the usability and comfort of such monitoring systems in the areas of medical, occupational health and sports. However, good electrical and mechanical contact between the electrode and the skin is very important, as it often determines the quality of the signal. This paper introduces a study where the properties of dry textile electrodes, textile electrodes moistened with water, and textile electrodes covered with hydrogel were studied with five different electrode sizes. The aim was to study how the electrode size and preparation of the electrode (dry electrode/wet electrode/electrode covered with hydrogel membrane) affect the measurement noise, and the skin-electrode impedance. The measurement noise and skin-electrode impedance were determined from surface biopotential measurements. These preliminary results indicate that noise level increases as the electrode size decreases. The noise level is high in dry textile electrodes, as expected. Yet, the noise level of wet textile electrodes is quite low and similar to that of textile electrodes covered with hydrogel. Hydrogel does not seem to improve noise properties, however it may have effects on movement artifacts. Thus, it is feasible to use textile embedded sensors in physiological monitoring applications when moistening or hydrogel is applied.

  17. A lipobead microarray assembled by particle entrapment in a microfluidic obstacle course and used for the display of cell membrane receptors.

    Science.gov (United States)

    Chen, Xiaoxiao; Shojaei-Zadeh, Shahab; Gilchrist, M Lane; Maldarelli, Charles

    2013-08-07

    Platforms which can display cell membrane ligands and receptors as a microarray library of probes for screening against a target are essential tools in drug discovery, biomarker identification, and pathogen detection. Membrane receptors and ligands require their native bilayer environment to retain their selectivity and binding affinity, and this complicates displaying them in a microarray platform. In this study, a design is developed in which the probes are first incorporated in supported lipid bilayers formed around micron-sized particles (lipobeads), and the microbeads themselves are then arrayed on a surface by hydrodynamic capture in a microfluidic obstacle course of traps. The traps are "V" shaped open enclosures, which are arranged in a wide channel of a microfluidic device, and capture the lipobeads (slightly smaller than the channel height) as they are streamed through the course. Screening assays are undertaken directly in the device after assembly, by streaming a fluorescently labeled target through the device and detecting the bead fluorescence. Conditions are first established for which the supported bilayers on the bead surface remain intact during the capture and assay steps, using fluorescent tags in the bilayer to infer bilayer integrity. Numerical calculations of the hydrodynamic drag coefficient on the entrapped beads are presented in conjunction with the stability experiments to develop criteria for the bilayer stability as a function of the screening assay perfusion rate. Simulations of the flow streamlines are also presented to quantify the trapping efficiency of the obstacle course. Screening assays are illustrated, assaying fluorescently labeled NeutrAvidin with biotin, and labeled cholera toxin with its ganglioside binding ligand, GM1. Sequential capturing of sets of lipobeads (one at a time, and with each set bearing a different probe), followed by indexing the bead positions after each set is entrapped, allows for the construction of an

  18. Improved characteristics of conventional and inverted polymer photodetectors using phosphonic acid-based self-assembled monolayer treatment for interfacial engineering of Ga-doped ZnO electrodes

    Science.gov (United States)

    Kajii, Hirotake; Mohri, Yoshinori; Okui, Hiyuto; Kondow, Masahiko; Ohmori, Yutaka

    2018-03-01

    The characteristics of conventional and inverted polymer photodetectors based on a blend of a donor, poly(3-hexylthiophene) (P3HT), and an acceptor, fullerene derivative [6,6]phenyl-C61-butyric acid methyl ester (PCBM) using Ga-doped ZnO (GZO) electrodes modified by phosphonic acid-based self-assembled monolayer (SAM) treatment in a short time are investigated. Fluoroalkyl SAM, 1H,1H,2H,2H-perfluorooctane phosphonic acid (FOPA) treatment leads to efficient hole extraction from the active layer. The characteristics of the conventional device with GZO modified by FOPA treatment are almost the same as those with indium tin oxide modified by FOPA. Cs2CO3 and aminoalkyl SAM, 11-aminoundecylphosphonic acid (11-AUPA) treatments suppress the hole injection from GZO to the organic layer. For the inverted devices with GZO cathodes using Cs2CO3 and 11-AUPA, the dark current decreases, which results in the improved photodetector detectivity. An inverted device with both Cs2CO3 and 11-AUPA exhibits incident-photon-to-current conversion efficiency (IPCE) of approximately 65% (80%) at 0 V (-6 V) under light irradiation (λ = 500 nm), high on/off ratio, and improved durability. Improved open-circuit voltage and IPCE at low voltages are achieved by these treatments, which are related with the improved internal built-in field, the reduction of recombination probability in the vicinity of GZO, and the modified charge collection efficiency.

  19. Platinum Activated IrO2/SnO2 Nanocatalysts and Their Electrode Structures for High Performance Proton Exchange Membrane Water Electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Christensen, Erik

    2013-01-01

    In order to improve proton exchange membrane water electrolysis performance, anode catalyst and catalyst layer were examined in this work. SnO2 supported IrO2 nanocatalyst and its analogue with platinum enhancement were firstly synthesized for the oxygen evolution reaction. The effect...

  20. Method for control of edge effects of oxidant electrode

    Science.gov (United States)

    Carr, Peter; Chi, Chen H.

    1980-12-23

    Described is an electrode assembly comprising; a. a porous electrode having a first and second exterior face with a cavity formed in the interior between said exterior faces thereby having first and second interior faces positioned opposite the first and second exterior faces; b. a counter electrode positioned facing each of the first and second exterior faces of the porous electrode; c. means for passing an oxidant through said porous electrode; and d. screening means for blocking the interior face of the porous electrode a greater amount than the blocking of the respective exterior face of the porous electrode, thereby maintaining a differential of oxidant electrode surface between the interior face and the exterior face. The electrode assembly is useful in a metal, halogen, halogen hydrate electrical energy storage device.

  1. Fuel cell membranes and crossover prevention

    Science.gov (United States)

    Masel, Richard I [Champaign, IL; York, Cynthia A [Newington, CT; Waszczuk, Piotr [White Bear Lake, MN; Wieckowski, Andrzej [Champaign, IL

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  2. Method for the electro-addressable functionalization of electrode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Jason C.; Polsky, Ronen; Dirk, Shawn M.; Wheeler, David R.; Arango, Dulce C.; Brozik, Susan M.

    2015-12-15

    A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium molecules on an electrode array followed by post-assembly electro-addressable conversion of the unreactive group to a chemical or biological recognition group. Electro-addressable functionalization of electrode arrays enables the multi-target electrochemical sensing of biological and chemical analytes.

  3. Quaternized poly (styrene-co-vinylbenzyl chloride) anion exchange membranes for alkaline water electrolysers

    Science.gov (United States)

    Vengatesan, S.; Santhi, S.; Jeevanantham, S.; Sozhan, G.

    2015-06-01

    In this study, poly (ST-co-VBC) based anion exchange membranes with different styrene to VBC ratios (1: 0.16, 1: 0.33 and 1: 1) have been prepared via chloromethylation-free synthetic route using aromatic vinyl monomers. The synthesized co-polymers are identified by FTIR and 1H-NMR analysis. Hydroxide (OH-) ion conductivity of the anion exchange membrane with styrene to VBC ratio of 1: 0.33 is as high as 6.8 × 10-3 S cm-1 in de-ionised water at 25 °C. The membrane also acquires the ion-exchange capacity of 2.14 meq. g-1, and the water uptake of 127%. Membrane-electrode-assembly (MEA) using the anion exchange membrane and Ni - foam catalyst demonstrate the current density of 40 mA cm-2 at 2.3 V in a water electrolyser cell.

  4. Study of operating conditions and cell design on the performance of alkaline anion exchange membrane based direct methanol fuel cells

    Science.gov (United States)

    Prakash, G. K. Surya; Krause, Frederick C.; Viva, Federico A.; Narayanan, S. R.; Olah, George A.

    2011-10-01

    Direct methanol fuel cells using an alkaline anion exchange membrane (AAEM) were prepared, studied, and optimized. The effects of fuel composition and electrode materials were investigated. Membrane electrode assemblies fabricated with Tokuyama® AAEM and commercial noble metal catalysts achieved peak power densities between 25 and 168 mW cm-2 depending on the operating temperature, fuel composition, and electrode materials used. Good electrode wettability at the anode was found to be very important for achieving high power densities. The performance of the best AAEM cells was comparable to Nafion®-based cells under similar conditions. Factors limiting the performance of AAEM MEAs were found to be different from those of Nafion® MEAs. Improved electrode kinetics for methanol oxidation in alkaline electrolyte at Pt-Ru are apparent at low current densities. At high current densities, rapid CO2 production converts the hydroxide anions, necessary for methanol oxidation, to bicarbonate and carbonate: consequently, the membrane and interfacial conductivity are drastically reduced. These phenomena necessitate the use of aqueous potassium hydroxide and wettable electrode materials for efficient hydroxide supply to the anode. However, aqueous hydroxide is not needed at the cathode. Compared to AAEM-based fuel cells, methanol fuel cells based on proton-conducting Nafion® retain better performance at high current densities by providing the benefit of carbon dioxide rejection.

  5. Improved performance of single-chamber microbial fuel cells through control of membrane deformation

    KAUST Repository

    Zhang, Xiaoyuan

    2010-03-01

    Cation (CEMs) and anion exchange membrane (AEMs) are commonly used in microbial fuel cells (MFCs) to enhance Coulombic efficiencies (CEs) by reducing thefluxof oxygen through the cathode to bacteriaonthe anode. AEMs typically work better than CEMs, but in initial experiments we observed the opposite using a membrane electrode assembly MFC. The reason was identified to be membrane deformation, which resulted in water and gas trapped between the membrane and cathode. To correct this, stainless steel mesh was used to press the membrane flat against the cathode. With the steel mesh, AEM performance increased to 46±4W/m3 in a single cathode MFC, and 98±14W/m3 in a double-cathode MFC. These power densities were higher than those using a CEM of 32±2W/m3 (single cathode) and 63±6W/m3 (double cathode). Higher pH gradients across the membrane and salt precipitation on the cathode were responsible for the reduced performance of the CEM compared to the AEM. CEs reached over 90% for both membranes at >2A/m2. These results demonstrate the importance of avoiding water accumulation in thin films between membranes and electrodes, and explain additional reasons for poorer performance of CEMs compared to AEMs. © 2009 Elsevier B.V.

  6. A novel PTFE-based proton-conductive membrane

    Science.gov (United States)

    Reichman, S.; Duvdevani, T.; Aharon, A.; Philosoph, M.; Golodnitsky, D.; Peled, E.

    The demand for a solid polymer electrolyte membrane (SPEM) for fuel-cell systems, capable of withstanding temperatures above 130 °C, decreasing the electrode-catalyst loadings and reducing poisoning by carbon monoxide, has prompted this study. A novel, low-cost, highly conductive, nanoporous proton-conducting membrane (NP-PCM) based on a polytetrafluoroethylene (PTFE) backbone has been developed. It comprises non-conductive nano-size ceramic powder, PTFE binder and an aqueous acid. The preparation procedures were studied and the membrane was characterized with the use of: SEM, EDS, pore-size-distribution measurements (PSD), TGA-DTA and electrochemical methods. The ionic conductivity of a membrane doped with 3 M sulfuric acid increases with the ceramic powder content and reaches 0.22 S cm -1 at 50% (v/v) silica. A non-optimized direct-methanol fuel cell (DMFC) with a 250 μm thick membrane has been assembled. It demonstrated 50 and 130 mW cm -2 at 80 and 130 °C, respectively. Future study will be directed to improving the membrane-preparation process, getting thinner membranes and using this membrane in a hydrogen-fed fuel cell.

  7. Evaluation of the Scaffolding Effect of Pt Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes

    Directory of Open Access Journals (Sweden)

    Peter Mardle

    2018-01-01

    Full Text Available The stacking and overlapping effect of two-dimensional (2D graphene nanosheets in the catalyst coating layer is a big challenge for their practical application in proton exchange membrane fuel cells (PEMFCs. These effects hinder the effective transfer of reactant gases to reach the active catalytic sites on catalysts supported on the graphene surface and the removal of the produced water, finally leading to large mass transfer resistances in practical electrodes and poor power performance. In this work, we evaluate the catalytic power performance of aligned Pt nanowires grown on reduced graphene oxide (rGO (PtNW/rGO as cathodes in 16-cm2 single PEMFCs. The results are compared to Pt nanoparticles deposited on rGO (Pt/rGO and commercial Pt/C nanoparticle catalysts. It is found that the scaffolding effect from the aligned Pt nanowire structure reduces the mass transfer resistance in rGO-based catalyst electrodes, and a nearly double power performance is achieved as compared with the Pt/rGO electrodes. However, although a higher mass activity was observed for PtNW/rGO in membrane electrode assembly (MEA measurement, the power performance obtained at a large current density region is still lower than the Pt/C in PEMFCs because of the stacking effect of rGO.

  8. Evaluation of silver as a miniature direct methanol full cell electrode

    Science.gov (United States)

    Gao, Yong; Kong, Xiangxing; Munroe, Norman; Jones, Kinzy

    Miniature direct methanol fuel cells (DMFCs) and direct hydrogen fuel cells are promising candidates for future polymer electrolyte membrane (PEM) based micro-power sources. Currently, most miniature DMFCs are developed using a silicon based microelectromechanical system (MEMS) technique, which requires complex and precise processing. Low temperature cofire ceramic (LTCC) technology offers an attractive alternative for a ceramics MEMS construction, allowing the integration of high density interconnect and embedded electronic components with microchannels and hermetic cavities from the meso- to the microscale. Silver is a major metallization source for LTCC, which can be fabricated in a range of configurations, from a solid hermetic layer to a porous open structure with microchannels that can easily be integrated into the structures. Silver based LTCC provides an ideal technology for the fabrication of an integrated fuel cell into a high density ceramic-based microelectronic assembly. A silver electrode was evaluated in a simulated DMFC operating environment and found to exhibit good corrosion resistance and chemical stability, essential properties for electrode systems. Potentiodynamic analysis of a catalyzed silver electrode (prepared by thermal decomposition of a Pt/Ru resinate) revealed excellent corrosion resistance under anodic and cathodic DMFC operating conditions. The Pt/Ru catalyst on the silver electrode enhanced the methanol oxidation reaction (MOR) as well as oxygen reduction reaction (ORR) as compared with similar reactions on carbon electrodes. The potential at which methanol is oxidized was lower than the silver oxidation potential, which served to protect the silver electrode. The determination of a contact angle of 30° on the silver electrode indicated wettability, which is deleterious for its application in DMFCs. Nevertheless, the results of good corrosion resistance derived from this investigation as well as the high electrical and thermal

  9. A Nafion -based co-planar electrode amperometric sensor for ...

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan ... A co-planar electrode device, fabricated with all electrodes (working, counter and reference) on the same face of a Nafion. ® polymer electrolyte membrane, is proposed for the amperometric detection of gaseous methanol using Pt as the working electrode.

  10. Task 1: Modeling Study of CO Effects on Polymer Electrolyte Fuel Cell Anodes Task 2: Study of Ac Impedance as Membrane/Electrode Manufacturing Diagnostic Tool

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Springer

    1998-01-30

    Carbon monoxide poisoning of polymer electrolyte fuel cell anodes is a key problem to be overcome when operating a polymer electrolyte fuel cell (PEFC) on reformed fuels. CO adsorbs preferentially on the precious metal surface leading to substantial performance losses. Some recent work has explored this problem, primarily using various Pt alloys in attempts to lower the degree of surface deactivation. In their studies of hydrogen oxidation on Pt and Pt alloy (Pt/Sn, Pt/Ru) rotating disk electrodes exposed to H{sub 2}/CO mixtures, Gasteiger et al. showed that a small hydrogen oxidation current is observed well before the onset of major CO oxidative stripping (ca. 0.4 V) on Pt/Ru. However, these workers concluded that such current observed at low anode overpotentials was too low to be of practical value. Nonetheless, MST-11 researchers and others have found experimentally that it is possible to run a PEFC, e.g., with a Pt/Ru anode, in the presence of CO levels in the range 10--100 ppm with little voltage loss. Such experimental results suggest that, in fact, PEFC operation at significant current densities under low anode overpotentials is possible in the presence of such levels of CO, even before resorting to air bleeding into the anode feed stream. The latter approach has been shown to be effective in elimination of Pt anode catalyst poisoning effects at CO levels of 20--50 ppm for cells operating at 80 C with low Pt catalyst loading. The effect of oxygen bleeding is basically to lower P{sub CO} down to extremely low levels in the anode plenum thanks to the catalytic (chemical) oxidation of CO by dioxygen at the anode catalyst. In this modeling work the authors do not include specific description of oxygen bleeding effects and concentrate on the behavior of the anode with feed streams of H{sub 2} or reformate containing low levels of CO. The anode loss is treated in this work as a hydrogen and carbon monoxide electrode kinetics problem, but includes the effects of

  11. Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes

    Science.gov (United States)

    Nabil, Y.; Cavaliere, S.; Harkness, I. A.; Sharman, J. D. B.; Jones, D. J.; Rozière, J.

    2017-09-01

    Niobium carbide/carbon nanotubular porous structures have been prepared using electrospinning and used as electrocatalyst supports for proton exchange membrane fuel cells. They were functionalised with 3.1 nm Pt particles synthesised by a microwave-assisted polyol method and characterised for their electrochemical properties. The novel NbC-based electrocatalyst demonstrated electroactivity towards the oxygen reduction reaction as well as greater stability over high potential cycling than a commercial carbon-based electrocatalyst. Pt/NbC/C was integrated at the cathode of a membrane electrode assembly and characterised in a single fuel cell showing promising activity and power density.

  12. Dielectrophoretic assembly of carbon nanotube devices

    DEFF Research Database (Denmark)

    Dimaki, Maria

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane....... The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an electric field, thus enabling nanotube integration in microsystems. Dielectrophoresis offers also...... the potential of distinguishing between nanotubes of different electrical properties, which is very important for the optimisation of the properties of the carbon nanotube sensors. Various cantilever and planar structures were designed, fabricated and tested both with multi-walled and single-walled carbon...

  13. Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt

    International Nuclear Information System (INIS)

    Kim Davies; Shelly X Li

    2007-01-01

    Pyrochemical processing plays an important role in development of proliferation-resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ∼2 grams of LiCl/KCl salt electrolyte with a low concentration (∼1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver

  14. Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim Davies; Shelly X Li

    2007-09-01

    Pyrochemical processing plays an important role in development of proliferation- resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ~2 grams of LiCl/KCl salt electrolyte with a low concentration (~1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver wire

  15. A highly sensitive and selective sensor based on a graphene-coated carbon paste electrod