WorldWideScience

Sample records for membrane drainage layer

  1. Layered plasma polymer composite membranes

    Science.gov (United States)

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  2. Layer-by-layer cell membrane assembly

    Science.gov (United States)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  3. Experimental analysis of drainage and water storage of litter layers

    Science.gov (United States)

    Guevara-Escobar, A.; Gonzalez-Sosa, E.; Ramos-Salinas, M.; Hernandez-Delgado, G. D.

    2007-06-01

    Leaf litter overlying forested floors are important for erosion control and slope stability, but also reduces pasture growth in silvopastoral systems. Little information exists regarding the value of percolation and storage capacity parameters for litter layers. These estimates are needed for modelling better management practices for leaf litter. Therefore, this work measured the effect of four rainfall intensities: 9.8, 30.2, 40.4 and 70.9 mm h-1 on the hydrological response of layers of three materials: recently senesced poplar leaves, fresh grass and woodchips. Maximum storage (Cmax), defined as the detention of water immediately before rainfall cessation, increased with rainfall intensity. The magnitude of the increment was 0.2 mm between the lowest and highest rainfall intensities. Mean values of Cmax were: 1.27, 1.51, 1.67 and 1.65 mm for poplar leaves; 0.63 0.77, 0.73 and 0.76 for fresh grass and; 1.64, 2.23, 2.21 and 2.16 for woodchips. Drainage parameters were: 9.9, 8.8 and 2.2 mm-1 for poplar, grass and woodchips layers. An underlying soil matrix influenced the drainage flow from poplar leaf layers producing pseudo-Hortonian overland flow, but this occurred only when the rainfall intensity was 40.4 and 70.9 mm h-1 and accounted for 0.4 and 0.8‰ of total drainage. On the other hand, the presence of a poplar leaf layer had a damping effect on the drainage rate from the underlying soil matrix, particularly at intermediate rainfall intensities: 30.2 or 40.4 mm h-1.

  4. Membrane technology applied to acid mine drainage from copper mining.

    Science.gov (United States)

    Ambiado, K; Bustos, C; Schwarz, A; Bórquez, R

    2017-02-01

    The objective of this study is to evaluate the treatment of high-strength acid mine drainage (AMD) from copper mining by nanofiltration (NF) and reverse osmosis (RO) at pilot scale. The performances of two commercial spiral-wound membranes - NF99 and RO98pHt, both from Alfa Laval - were compared. The effects of pressure and feed flow on ion rejection and permeate flux were evaluated. The results showed high ion removal under optimum pressure conditions, which reached 92% for the NF99 membrane and 98% for the RO98pHt membrane. Sulfate removal reached 97% and 99% for NF99 and RO98pHt, respectively. In the case of copper, aluminum, iron and manganese, the removal percentage surpassed 95% in both membranes. Although concentration polarization limited NF performance at higher pressures, permeate fluxes observed in NF were five times greater than those obtained by RO, with only slightly lower divalent ion rejection rates, making it a promising option for the treatment of AMD.

  5. A generic hydrological model for a green roof drainage layer.

    Science.gov (United States)

    Vesuviano, Gianni; Stovin, Virginia

    2013-01-01

    A rainfall simulator of length 5 m and width 1 m was used to supply constant intensity and largely spatially uniform water inflow events to 100 different configurations of commercially available green roof drainage layer and protection mat. The runoff from each inflow event was collected and sampled at one-second intervals. Time-series runoff responses were subsequently produced for each of the tested configurations, using the average response of three repeat tests. Runoff models, based on storage routing (dS/dt = I-Q) and a power-law relationship between storage and runoff (Q = kS(n)), and incorporating a delay parameter, were created. The parameters k, n and delay were optimized to best fit each of the runoff responses individually. The range and pattern of optimized parameter values was analysed with respect to roof and event configuration. An analysis was performed to determine the sensitivity of the shape of the runoff profile to changes in parameter values. There appears to be potential to consolidate values of n by roof slope and drainage component material.

  6. Ceramic nanostructure materials, membranes and composite layers

    NARCIS (Netherlands)

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of

  7. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Behzad, Ali Reza; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2014-01-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene

  8. The Hydrological Performance of Lightweight Green Roofs Made From Recycled Waste Materials As the Drainage Layer

    Directory of Open Access Journals (Sweden)

    Afizah Asman Nurul Shahadahtul

    2017-01-01

    Full Text Available Green roofs can be used for promoting infiltration and provide temporary storage spaces. Hence, in urban stormwater structural design, the investigation of the hydrological performance investigation is often required. Thus, this paper presents the results of a hydrological investigation in term of peak flow reduction and green roof’s weight using 0, 2, and 6% slope for three specimens drainage layer in green roofs. Three types of recycled waste are selected for each test bed which is rubber crumbs, palm oil shell, and polyfoam. Another test bed without a drainage layer as a control. The result indicates that rubber crumbs can be used as a stormwater control and runoff reduction while ensuring a good drainage and aeration of the substrate and roofs. From the results obtained shows that rubber crumbs are suitable as a drainage layer and a proposed slope of 6% are suitable for lightweight green roofs.

  9. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is

  10. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  11. Water transport and desalination through double-layer graphyne membranes.

    Science.gov (United States)

    Akhavan, Mojdeh; Schofield, Jeremy; Jalili, Seifollah

    2018-05-16

    Non-equilibrium molecular dynamics simulations of water-salt solutions driven through single and double-layer graphyne membranes by a pressure difference created by rigid pistons are carried out to determine the relative performance of the membranes as filters in a reverse osmosis desalination process. It is found that the flow rate of water through a graphyne-4 membrane is twice that of a graphyne-3 membrane for both single and double-layer membranes. Although the addition of a second layer to a single-layer membrane reduces the membrane permeability, the double-layer graphyne membranes are still two or three orders of magnitude more permeable than commercial reverse osmosis membranes. The minimum reduction in flow rate for double-layer membranes occurs at a layer spacing of 0.35 nm with an AA stacking configuration, while at a spacing of 0.6 nm the flow rate is close to zero due to a high free energy barrier for permeation. This is caused by the difference in the environments on either side of the membrane sheets and the formation of a compact two-dimensional layer of water molecules in the interlayer space which slows down water permeation. The distribution of residence times of water molecules in the interlayer region suggests that at the critical layer spacing of 0.6 nm, a cross-over occurs in the mechanism of water flow from the collective movement of hydrogen-bonded water sheets to the permeation of individual water molecules. All membranes are demonstrated to have a high salt rejection fraction and the double-layered graphyne-4 membranes can further increase the salt rejection by trapping ions that have passed through the first membrane from the feed solution in the interlayer space.

  12. Measurement of radon emanation of drainage layer media by liquid scintillation counting

    International Nuclear Information System (INIS)

    Turtiainen, T.

    2009-01-01

    Slab-on-ground is a typical base floor construction type in Finland. The drainage layer between the slab and soil is a layer of sand, gravel or crushed stone. This layer has a minimum thickness of 200 mm and is sometimes even 600 mm thick, and thus may be a significant contributor to indoor air radon. In order to investigate radon emanation from the drainage layer material, a simple laboratory test was developed. Many organic solvents have high Ostwald coefficients for radon, i.e., the ratio of the volume of gas absorbed to the volume of the absorbing liquid, which enables direct absorption of radon into a liquid scintillation cocktail. Here, we first present equations relating to the processes of gas transfer in emanation measurement by direct absorption into liquid scintillation cocktails. In order to optimize the method for emanation measurement, four liquid scintillation cocktails were assessed for their ability to absorb radon from air. A simple apparatus consisting of a closed glass container holding an open liquid scintillation vial was designed and the diffusion/absorption rate and Ostwald coefficient were determined for a selected cocktail. Finally, a simple test was developed based on this work. (author)

  13. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    Science.gov (United States)

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  14. POROUS MEMBRANE TEMPLATED SYNTHESIS OF POLYMER PILLARED LAYER

    Institute of Scientific and Technical Information of China (English)

    Zhong-wei Niu; Dan Li; Zhen-zhong Yang

    2003-01-01

    The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates to synthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and the layer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm the methodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.

  15. Impact of height-dependent drainage forcing on the stable atmospheric boundary layer over a uniform slope

    International Nuclear Information System (INIS)

    Maguire, A.J.; Rees, J.M.; Derbyshire, S.H.

    2008-01-01

    This paper presents a theoretical study of the stably stratified atmospheric boundary layer (SBL) overlying a uniform shallow slope with a gradient of the order of 1:1000. By relaxing the assumption made in a previous study that the slope-induced drainage force is constant across the boundary layer, analysis has been performed that demonstrates that a realistic form for the drainage forcing is a term proportional to (1-z/h) 1/2 , where z is the height above the ground and h is the depth of the boundary layer. Modified expressions for the maximum sustainable surface buoyancy flux and Zilitinkevich's ratio are derived.

  16. Effects of Pregnant Leach Solution Temperature on the Permeability of Gravelly Drainage Layer of Heap Leaching Structures

    Directory of Open Access Journals (Sweden)

    mehdi amini

    2013-12-01

    Full Text Available In copper heap leaching structures, the ore is leached by an acidic solution. After dissolving the ore mineral, the heap is drained off in the acidic solution using a drainage system (consisting of a network of perforated polyethylene pipes and gravelly drainage layers and is, then, transferred to the leaching plant for copper extraction where the copper is extracted and the remaining solution is dripped over the ore heap for re-leaching. In this process, the reaction between the acidic solution and copper oxide ore is exothermal and the pregnant leach solution (PLS, which is drained off the leaching heap, has a higher temperature than the dripped acidic solution. The PLS temperature variations cause some changes in the viscosity and density which affect the gravelly drainage layer's permeability. In this research, a special permeability measuring system was devised for determining the effects of the PLS temperature variations on the permeability coefficient of the gravelly drainage layer of heap leaching structures. The system, consisting of a thermal acid resistant element and a thermocouple, controls the PLS temperature, which helps measure the permeability coefficient of the gravelly drainage layer. The PLS and gravelly drainage layer of Sarcheshmeh copper mine heap leaching structure No. 1 were used in this study. The permeability coefficient of the gravelly soil was measured against the PLS and pure water at temperatures varying between 3°C to 60°C. Also, the viscosity and density of the PLS and pure water were measured at these temperatures and, using existing theoretical relations, the permeability coefficient of the gravel was computed. A comparison between the experimental and theoretical results revealed a good conformity between the two sets of results. Finally, a case (Taft heap leaching structure, Yazd, Iran was studied and its gravelly drainage layer was designed based on the results of the present research.

  17. Hierarchical Composite Membranes with Robust Omniphobic Surface Using Layer-By-Layer Assembly Technique

    KAUST Repository

    Woo, Yun Chul

    2018-01-17

    In this study, composite membranes were fabricated via layer-by-layer (LBL) assembly of negatively-charged silica aerogel (SiA) and 1H, 1H, 2H, 2H – Perfluorodecyltriethoxysilane (FTCS) on a polyvinylidene fluoride phase inversion membrane, and interconnecting them with positively-charged poly(diallyldimethylammonium chloride) (PDDA) via electrostatic interaction. The results showed that the PDDA-SiA-FTCS coated membrane had significantly enhanced the membrane structure and properties. New trifluoromethyl and tetrafluoroethylene bonds appeared at the surface of the coated membrane, which led to lower surface free energy of the composite membrane. Additionally, the LBL membrane showed increased surface roughness. The improved structure and property gave the LBL membrane an omniphobic property, as indicated by its good wetting resistance. The membrane performed a stable air gap membrane distillation (AGMD) flux of 11.22 L/m2h with very high salt rejection using reverse osmosis brine from coal seam gas produced water as feed with the addition of up to 0.5 mM SDS solution. This performance was much better compared to those of the neat membrane. The present study suggests that the enhanced membrane properties with good omniphobicity via LBL assembly make the porous membranes suitable for long-term AGMD operation with stable permeation flux when treating challenging saline wastewater containing low surface tension organic contaminants.

  18. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  19. On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport

    NARCIS (Netherlands)

    Długołȩcki, P.; Ogonowski, P.; Metz, S.J.; Saakes, M.; Nijmeijer, K.; Wessling, M.

    2010-01-01

    Membrane resistances are often measured under direct current conditions using a standard 0.5 M NaCl characterization solution, although several electro-membrane processes (e.g. reverse electrodialysis, electrodialysis, fuel cells, microbial fuel cells and membrane capacitive deionization) operate in

  20. Fluid-membrane tethers: minimal surfaces and elastic boundary layers.

    Science.gov (United States)

    Powers, Thomas R; Huber, Greg; Goldstein, Raymond E

    2002-04-01

    Thin cylindrical tethers are common lipid bilayer membrane structures, arising in situations ranging from micromanipulation experiments on artificial vesicles to the dynamic structure of the Golgi apparatus. We study the shape and formation of a tether in terms of the classical soap-film problem, which is applied to the case of a membrane disk under tension subject to a point force. A tether forms from the elastic boundary layer near the point of application of the force, for sufficiently large displacement. Analytic results for various aspects of the membrane shape are given.

  1. Evaluation of layered and mixed passive treatment systems for acid mine drainage.

    Science.gov (United States)

    Jeen, Sung-Wook; Mattson, Bruce

    2016-11-01

    Laboratory column tests for passive treatment systems for mine drainage from a waste rock storage area were conducted to evaluate suitable reactive mixture, system configuration, effects of influent water chemistry, and required residence time. Five columns containing straw, chicken manure, mushroom compost, and limestone (LS), in either layered or mixed configurations, were set up to simulate the treatment system. The results showed that all of the five columns removed metals of concern (i.e. Al, Cd, Co, Cu, Fe, Ni, and Zn) with a residence time of 15 h and greater. Reaction mechanisms responsible for the removal of metals may include sulfate reduction and subsequent sulfide precipitation, precipitation of secondary carbonates and hydroxides, co-precipitation, and sorption on organic substrates and secondary precipitates. The results suggest that the mixed systems containing organic materials and LS perform better than the layered systems, sequentially treated by organic and LS layers, due to the enhanced pH adjustment, which is beneficial to bacterial activity and precipitation of secondary minerals. The column tests provide a basis for the design of a field-scale passive treatment system, such as a reducing and alkalinity producing system or a permeable reactive barrier.

  2. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.

    Science.gov (United States)

    Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha

    2018-01-30

    Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.

  3. Apparatus for plasma surface treating and preparation of membrane layers

    NARCIS (Netherlands)

    1990-01-01

    An apparatus suitable for plasma surface treating (e.g., forming a membrane layer on a substrate surface) comprises a plasma generation section which is operable at least at substantially atmospheric pressure and is in communication via at least one plasma inlet (e.g., a nozzle) with an enclosed

  4. Method for plasma surface treating and preparation of membrane layers

    NARCIS (Netherlands)

    1992-01-01

    The invention relates to an apparatus suitable for plasma surface treating (e.g. forming a membrane layer on a substrate) which comprises a plasma generation section (2) which is in communication via at least one plasma inlet means (4) (e.g. a nozzle) with an enclosed plasma treating section (3)

  5. Membrane filtration device for studying compression of fouling layers in membrane bioreactors.

    Directory of Open Access Journals (Sweden)

    Mads Koustrup Jørgensen

    Full Text Available A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology's ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation.

  6. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    Science.gov (United States)

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Preparation and characterization of composite membrane via layer by layer assembly for desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wasim, Maria, E-mail: maria-be24@hotmail.co.uk; Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Jamil, Tahir

    2017-02-28

    Highlights: • Cellulose acetate based polymer composite membranes were formed via layer by layer assembly for nanofiltration. • Modified membranes shown improved MgSO{sub 4} salt rejection property up to 98.9%. • Surface roughness and antibacterial property of fabricated membrane were successfully studied. - Abstract: Cellulose acetate (CA) incorporated with sepiolite and Polyvinylpyrrolidone (PVP) multilayer composite on Polysulfone (PSf) substrate have been prepared by layer by layer (LbL) assembly method. Fourier TransformInfrared Spectroscopy (FTIR) results verified the hydrogen bonding among the components of composite membrane. Atomic force microscopy (AFM), scanning electron microscope (SEM) was carried out for the determination and elucidation of roughness and morphology of the fabricated membranes on PSf substrate. The AFM and SEM results showed the increased surface roughness with the porous and spongy structure. The performance results verified that the successful incorporation of sepiolite in membranes showed maximum MgSO{sub 4} rejection (98.9%) and flux of 38.7 L/m{sup 2} h. Whereas, in case of NaCl the rejection is 98.3% and flux is 34.9L/m{sup 2} h. The modification was evidenced to be effective in increasing the surface hydrophilicity that led to increase in surface roughness. The chlorine resistivity is improved by dropping the active sites for chlorine attack and protecting the underlying PSf substrate.

  8. Layer-by-Layer Assembly for Preparation of High-Performance Forward Osmosis Membrane

    Science.gov (United States)

    Yang, Libin; Zhang, Jinglong; Song, Peng; Wang, Zhan

    2018-01-01

    Forward osmosis (FO) membrane with high separation performance is needed to promote its practical applications. Herein, layer-by-layer (LbL) approach was used to prepare a thin and highly cross-linked polyamide layer on a polyacrylonitrile substrate surface to prepare a thin-film composite forward osmosis (TFC-FO) membrane with enhanced FO performance. The effects of monomer concentrations and assembly cycles on the performance of the TFC-FO membranes were systematically investigated. Under the optimal preparation condition, TFC-FO membrane achieved the best performance, exhibiting the water flux of 14.4/6.9 LMH and reverse salt flux of 7.7/3.8 gMH under the pressure retarded osmosis/forward osmosis (PRO/FO) mode using 1M NaCl as the draw against a DI-water feed, and a rejection of 96.1% for 2000 mg/L NaCl aqueous solution. The result indicated that layer-by-layer method was a potential method to regulate the structure and performance of the TFC-FO membrane.

  9. Membrane interactions and antimicrobial effects of layered double hydroxide nanoparticles

    DEFF Research Database (Denmark)

    Malekkhaiat Häffner, S; Nyström, L; Nordström, R

    2017-01-01

    Membrane interactions are critical for the successful use of inorganic nanoparticles as antimicrobial agents and as carriers of, or co-actives with, antimicrobial peptides (AMPs). In order to contribute to an increased understanding of these, we here investigate effects of particle size (42-208 nm...... into size-dependent synergistic effects with the antimicrobial peptide LL-37. Due to strong interactions with anionic lipopolysaccharide and peptidoglycan layers, direct membrane disruption of both Gram-negative and Gram-positive bacteria is suppressed. However, LDH nanoparticles cause size-dependent charge...

  10. Layer by Layer Composite Membranes of Alginate-Chitosan Crosslinked by Glutaraldehyde in Pervaporation Dehydration of Ethanol

    Directory of Open Access Journals (Sweden)

    Nur Rokhati

    2016-08-01

    Full Text Available Hydrophilicity of membrane causing only water can pass through membrane. Pervaporation process using organophilic membrane has been offered as alternative for ethanol dehydration. This paper investigate pervaporation based biopolymer composite membrane from alginate-chitosan using layer by layer method prepared by glutaraldehyde as crosslinking agent and polyethersulfone (PES as supported membrane. Characterization of crosslinked of composite membrane by FTIR helped in identification of sites for interaction between layers of membrane and support layer (PES. The SEM showed a multilayer structure and a distinct interface between the chitosan layer, the sodium alginate layer and the support layer. The coating sequence of membranes had an obvious influence on the pervaporation dehydration performance of membranes. For the dehydration of 95 wt% ethanol-water mixtures, a good performance of PES-chitosan-alginate-chitosan (PES/Chi/Alg/Chi composite membrane was found in the pervaporation dehydration of ethanol. Article History: Received April 12nd , 2016; Received in revised form June 25th , 2016; Accepted July 1st , 2016; Available online How to Cite This Article: Rokhati, N., Istirokhatun, T. and Samsudin, A.M. (2016 Layer by Layer Composite Membranes of Alginate-Chitosan Crosslinked by Glutaraldehyde in Pervaporation Dehydration of Ethanol. Int. Journal of Renewable Energy Development, 5(2, 101-106. http://dx.doi.org/10.14710/ijred.5.2.101-106 

  11. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.

    Science.gov (United States)

    Tabak, Henry H; Govind, Rakesh

    2003-12-01

    Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 degrees C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in

  12. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment

    International Nuclear Information System (INIS)

    Ferreira, Rui B.; Falcão, D.S.; Oliveira, V.B.; Pinto, A.M.F.R.

    2017-01-01

    Highlights: • EIS is employed to investigate the MEA design of a PEM fuel cell. • Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied. • MPL increases cell output at low to medium currents but reduces it at high currents. • Better results are obtained when employing a thinner Nafion membrane. • GDL hydrophobic treatment improves the cell performance. - Abstract: In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.

  13. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    Science.gov (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  14. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto; Yip, Ngai Yin; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2011-01-01

    the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide

  15. Prevention of intra-abdominal adhesion by bi-layer electrospun membrane.

    Science.gov (United States)

    Jiang, Shichao; Wang, Wei; Yan, Hede; Fan, Cunyi

    2013-06-04

    The aim of this study was to compare the anti-adhesion efficacy of a bi-layer electrospun fibrous membrane consisting of hyaluronic acid-loaded poly(ε-caprolactone) (PCL) fibrous membrane as the inner layer and PCL fibrous membrane as the outer layer with a single-layer PCL electrospun fibrous membrane in a rat cecum abrasion model. The rat model utilized a cecal abrasion and abdominal wall insult surgical protocol. The bi-layer and PCL membranes were applied between the cecum and the abdominal wall, respectively. Control animals did not receive any treatment. After postoperative day 14, a visual semiquantitative grading scale was used to grade the extent of adhesion. Histological analysis was performed to reveal the features of adhesion tissues. Bi-layer membrane treated animals showed significantly lower adhesion scores than control animals (p compared with the PCL membrane. Histological analysis of the bi-layer membrane treated rat rarely demonstrated tissue adhesion while that of the PCL membrane treated rat and control rat showed loose and dense adhesion tissues, respectively. Bi-layer membrane can efficiently prevent adhesion formation in abdominal cavity and showed a significantly decreased adhesion tissue formation compared with the control.

  16. Improved antifouling properties of polymer membranes using a ‘layer-by-layer’ mediated method

    KAUST Repository

    Chen, Lin; Thé rien-Aubin, Hé loï se; Wong, Mavis C. Y.; Hoek, Eric M. V.; Ober, Christopher K.

    2013-01-01

    Polymeric reverse osmosis membranes were modified with antifouling polymer brushes through a 'layer by layer' (LBL) mediated method. Based on pure physical electrostatic interaction, the attachment of LBL films did not alter separation performance

  17. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    KAUST Repository

    Kim, Wun-gwi; Lee, Jong Suk; Bucknall, David G.; Koros, William J.; Nair, Sankar

    2013-01-01

    Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower

  18. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    Science.gov (United States)

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  19. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  20. Novel Electrospun Dual-Layered Composite Nanofibrous Membrane Endowed with Electricity-Magnetism Bifunctionality at One Layer and Photoluminescence at the Other Layer.

    Science.gov (United States)

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-10-05

    Dual-layered composite nanofibrous membrane equipped with electrical conduction, magnetism and photoluminescence trifunctionality is constructed via electrospinning. The composite membrane consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticles (NPs)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional nanofibrous layer at one side and a Eu(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent nanofibrous layer at the other side, and the two layers are tightly combined face-to-face together into the novel dual-layered composite membrane with trifunctionality. The electric conductivity and magnetism of electrical-magnetic bifunctionality can be respectively tunable via modulating the respective PANI and Fe 3 O 4 NPs contents, and the highest electric conductivity approaches the order of 1 × 10 -2 S cm -1 . Predominant red emission at 615 nm can be obviously observed in the photoluminescent layer under 366 nm excitation. Moreover, the luminescent intensity of photoluminescent layer is almost unaffected by the electrical-magnetic bifunctional layer because of the fact that the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. The novel dual-layered composite nanofibrous membrane with trifunctionality has potentials in many fields. Furthermore, the design philosophy and fabrication method for the dual-layered multifunctional membrane provide a new and facile strategy toward other membranes with multifunctionality.

  1. Enhanced performance of proton exchange membrane fuel cell by introducing nitrogen-doped CNTs in both catalyst layer and gas diffusion layer

    CSIR Research Space (South Africa)

    Hou, S

    2017-11-01

    Full Text Available The performance of the proton exchange membrane fuel cell (PEMFC) is significantly improved through introducing nitrogen-doped carbon nanotubes (NCNTs) into the catalyst layer (CL) and microporous layer (MPL) of the membrane electrode assembly (MEA...

  2. Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Neelakandan, S.; Kanagaraj, P. [PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi 630003 (India); Sabarathinam, R.M. [Functional Material Division, Central Electrochemical Research Institute, Karaikudi 630006 (India); Nagendran, A., E-mail: nagimmm@yahoo.com [PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi 630003 (India)

    2015-12-30

    Graphical abstract: - Highlights: • A series of Ppy layered SPEES/TPA composite membranes were prepared. • SPEES/TPA-Ppy hybrid membranes displayed efficient methanol resistance than Nafion 117. • SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity of 2.86 × 104 S cm{sup 3} s. • Increasing Ppy layer on membrane surface reduces the leaching out of tungstophosphoric acid. - Abstract: Hybrid membranes based on sulfonated poly(1,4-phenylene ether ether sulfone) (SPEES)/tungstophosphoric acid (TPA) were prepared. SPEES/TPA membrane surfaces were modified with polypyrrole (Ppy) by in situ polymerization method to reduce the TPA leaching. The morphology and electrochemical property of the surface coated membranes were studied by SEM, AFM, water uptake, ion exchange capacity, proton conductivity, methanol permeability and tensile strength. The water uptake and the swelling ratio of the surface coated membranes decreased with increasing the Ppy layer. The surface roughness of the hybrid membrane was decreased with an increase in Ppy layer on the membrane surface. The methanol permeability of SPEES/TPA-Ppy4 hybrid membrane was significantly suppressed and found to be 2.1 × 10{sup −7} cm{sup 2} s{sup −1}, which is 1.9 times lower than pristine SPEES membrane. The SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity (2.86 × 10{sup 4} S cm{sup −3} s) than the other membrane with low TPA leaching. The tensile strength of hybrid membranes was improved with the introduction of Ppy layer. Combining their lower swelling ratio, high thermal stability and selectivity, SPEES/TPA-Ppy4 membranes could be a promising material as PEM for DMFC applications.

  3. Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Neelakandan, S.; Kanagaraj, P.; Sabarathinam, R.M.; Nagendran, A.

    2015-01-01

    Graphical abstract: - Highlights: • A series of Ppy layered SPEES/TPA composite membranes were prepared. • SPEES/TPA-Ppy hybrid membranes displayed efficient methanol resistance than Nafion 117. • SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity of 2.86 × 104 S cm"3 s. • Increasing Ppy layer on membrane surface reduces the leaching out of tungstophosphoric acid. - Abstract: Hybrid membranes based on sulfonated poly(1,4-phenylene ether ether sulfone) (SPEES)/tungstophosphoric acid (TPA) were prepared. SPEES/TPA membrane surfaces were modified with polypyrrole (Ppy) by in situ polymerization method to reduce the TPA leaching. The morphology and electrochemical property of the surface coated membranes were studied by SEM, AFM, water uptake, ion exchange capacity, proton conductivity, methanol permeability and tensile strength. The water uptake and the swelling ratio of the surface coated membranes decreased with increasing the Ppy layer. The surface roughness of the hybrid membrane was decreased with an increase in Ppy layer on the membrane surface. The methanol permeability of SPEES/TPA-Ppy4 hybrid membrane was significantly suppressed and found to be 2.1 × 10"−"7 cm"2 s"−"1, which is 1.9 times lower than pristine SPEES membrane. The SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity (2.86 × 10"4 S cm"−"3 s) than the other membrane with low TPA leaching. The tensile strength of hybrid membranes was improved with the introduction of Ppy layer. Combining their lower swelling ratio, high thermal stability and selectivity, SPEES/TPA-Ppy4 membranes could be a promising material as PEM for DMFC applications.

  4. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    Science.gov (United States)

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  5. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes.

    Science.gov (United States)

    Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing

    2014-01-01

    The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Double layer mixed matrix membrane adsorbers improving capacity and safety hemodialysis

    Science.gov (United States)

    Saiful; Borneman, Z.; Wessling, M.

    2018-05-01

    Double layer mixed matrix membranes adsorbers have been developed for blood toxin removal by embedding activated carbon into cellulose acetate macroporous membranes. The membranes are prepared by phase inversion method via water vapor induced phase separation followed by an immersion precipitation step. Double layer MMM consisting of an active support and a separating layer. The active support layer consists of activated carbon particles embedded in macroporous cellulose acetate; the separating layer consists of particle free cellulose acetate. The double layer membrane possess an open and interconnected macroporous structure with a high loading of activated carbon available for blood toxins removal. The MMM AC has a swelling degree of 6.5 %, porosity of 53 % and clean water flux of 800 Lm-2h-1bar-1. The prepared membranes show a high dynamic Creatinine (Crt) removal during hemodilysis process. The Crt removal by adsorption contributes to amore than 83 % of the total removal. The double layer adsorptive membrane proves hemodialysis membrane can integrated with adsorption, in which blood toxins are removed in one step.

  7. Irreversible fouling of membrane bioreactors due to formation of a non-biofilm gel layer

    DEFF Research Database (Denmark)

    Poorasgari, Eskandar; Larsen, Poul; Zheng, Xing

    2014-01-01

    Extra-cellular polymeric substances (EPS), known to contribute to fouling in membrane bio-reactors (MBRs), are generally divided into bound and free EPS. The free EPS are able to form a gel layer on the membrane active surface. The mechanisms involved in formation of such layer and its effects...... on performance of the MBR membranes were studied. The free EPS, extracted by centrifugation and microfiltration, contained a significant amount of humic-like substances. Under static contact to the membrane, adsorption of humic-like substances to the membrane occurred and could be explained by conventional...... adsorption kinetics. Due to static adsorption, surface roughness of the membrane declined significantly, indicating that adsorbed matters to the membranefilled the cavities of the membrane surface. Filtration of the free EPS caused 50% waterflux decline. The fouling resistance linearly increased...

  8. S-layer and cytoplasmic membrane – exceptions from the typical archaeal cell wall with a focus on double membranes

    Directory of Open Access Journals (Sweden)

    Andreas eKlingl

    2014-11-01

    Full Text Available The common idea of typical cell wall architecture in archaea consists of a pseudo-crystalline proteinaceous surface layer (S-layer, situated upon the cytoplasmic membrane. This is true for the majority of described archaea, hitherto. Within the crenarchaea, the S-layer often represents the only cell wall component, but there are various exceptions from this wall architecture. Beside (glycosylated S-layers in (hyperthermophilic cren- and euryarchaea as well as halophilic archaea, one can find a great variety of other cell wall structures like proteoglycan-like S-layers (Halobacteria, glutaminylglycan (Natronococci, methanochondroitin (Methanosarcina or double layered cell walls with pseudomurein (Methanothermus and Methanopyrus. The presence of an outermost cellular membrane in the crenarchaeal species Ignicoccus hospitalis already gave indications for an outer membrane similar to Gram-negative bacteria. Although there is just limited data concerning their biochemistry and ultrastructure, recent studies on the euryarchaeal methanogen Methanomassiliicoccus luminyensis, cells of the ARMAN group, and the SM1 euryarchaeon delivered further examples for this exceptional cell envelope type consisting of two membranes.

  9. Low-Resolution Modeling of Dense Drainage Networks in Confining Layers.

    Science.gov (United States)

    Pauw, P S; Van der Zee, S E A T M; Leijnse, A; Delsman, J R; De Louw, P G B; De Lange, W J; Oude Essink, G H P

    2015-01-01

    Groundwater-surface water (GW-SW) interaction in numerical groundwater flow models is generally simulated using a Cauchy boundary condition, which relates the flow between the surface water and the groundwater to the product of the head difference between the node and the surface water level, and a coefficient, often referred to as the "conductance." Previous studies have shown that in models with a low grid resolution, the resistance to GW-SW interaction below the surface water bed should often be accounted for in the parameterization of the conductance, in addition to the resistance across the surface water bed. Three conductance expressions that take this resistance into account were investigated: two that were presented by Mehl and Hill (2010) and the one that was presented by De Lange (1999). Their accuracy in low-resolution models regarding salt and water fluxes to a dense drainage network in a confined aquifer system was determined. For a wide range of hydrogeological conditions, the influence of (1) variable groundwater density; (2) vertical grid discretization; and (3) simulation of both ditches and tile drains in a single model cell was investigated. The results indicate that the conductance expression of De Lange (1999) should be used in similar hydrogeological conditions as considered in this paper, as it is better taking into account the resistance to flow below the surface water bed. For the cases that were considered, the influence of variable groundwater density and vertical grid discretization on the accuracy of the conductance expression of De Lange (1999) is small. © 2014, National GroundWater Association.

  10. Stable catalyst layers for hydrogen permeable composite membranes

    Science.gov (United States)

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  11. Multi-layer membrane model for mass transport in a direct ethanol fuel cell using an alkaline anion exchange membrane

    Science.gov (United States)

    Bahrami, Hafez; Faghri, Amir

    2012-11-01

    A one-dimensional, isothermal, single-phase model is presented to investigate the mass transport in a direct ethanol fuel cell incorporating an alkaline anion exchange membrane. The electrochemistry is analytically solved and the closed-form solution is provided for two limiting cases assuming Tafel expressions for both oxygen reduction and ethanol oxidation. A multi-layer membrane model is proposed to properly account for the diffusive and electroosmotic transport of ethanol through the membrane. The fundamental differences in fuel crossover for positive and negative electroosmotic drag coefficients are discussed. It is found that ethanol crossover is significantly reduced upon using an alkaline anion exchange membrane instead of a proton exchange membrane, especially at current densities higher than 500 A m

  12. Structural Study and Modification of Support Layer for Forward Osmosis Membranes

    KAUST Repository

    Shi, Meixia

    2016-06-01

    Water scarcity is a serious global issue, due to the increasing population and developing economy, and membrane technology is an essential way to address this problem. Forward osmosis (FO) is an emerging membrane process, due to its low energy consumption (not considering the draw solute regeneration). A bottleneck to advance this technology is the design of the support layer for FO membranes to minimize the internal concentration polarization. In this dissertation, we focus on the structural study and modification of the support layer for FO membranes. Firstly, we digitally reconstruct different membrane morphologies in 3D and propose a method for predicting performance in ultrafiltration operations. Membranes with analogous morphologies are later used as substrate for FO membranes. Secondly, we experimentally apply substrates with different potentially suitable morphologies as an FO support layer. We investigate their FO performance after generating a selective polyamide layer on the top, by interfacial polymerization. Among the different substrates we include standard asymmetric porous membranes prepared from homopolymers, such as polysulfone. Additionally block copolymer membrane and Anodisc alumina membrane are chosen based on their exceptional structures, with cylindrical pores at least in part. 3D digitally reconstructed porous substrates, analogous to those investigated for ultrafiltration, are then used to model the performance in FO operation. Finally, we analyze the effect of intermediate layers between the porous substrate and the interfacial polymerized layer. We investigate two materials including chitosan and hydrogel. The main results are the following. Pore-scale modeling for digital membrane generation effectively predicts the velocity profile in different layers of the membrane and the performance in UF experiments. Flow simulations confirm the advantage of finger-like substrates over sponge-like ones, when high water permeance is sought

  13. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-07-01

    Full Text Available The development of multilayer composite membranes for CO2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including the possibility to optimize membrane materials independently by layers according to their different functions and to reduce the overall transport resistance by using ultrathin selective layers, and less limitations on the material mechanical properties and processability. A comprehensive review is required to capture details of the progresses that have already been achieved in developing multilayer composite membranes with improved CO2 separation performance in the past 15–20 years. In this review, various composite membrane preparation methods were compared, advances in composite membranes for CO2/CH4 separation, CO2/N2 and CO2/H2 separation were summarized with detailed data, and challenges facing for the CO2 separation using composite membranes, such as aging, plasticization and long-term stability, were discussed. Finally the perspectives and future research directions for composite membranes were presented. Keywords: Composite membrane, CO2 separation, Membrane fabrication, Membrane aging, Long-term stability

  14. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.

    Science.gov (United States)

    Liu, Yan-Ling; Wang, Xiao-Mao; Yang, Hong-Wei; Xie, Yuefeng F

    2018-06-01

    Adsorption of trace organic compounds (TrOCs) onto the membrane materials has a great impact on their rejection by nanofiltration (NF) and reverse osmosis (RO) membranes. This study aimed to investigate the difference in adsorption of various pharmaceuticals (PhACs) onto different NF/RO membranes and to demonstrate the necessity of isolating the polyamide (PA) active layer from the polysulfone (PS) support layer for adsorption characterization and quantification. Both the isolated PA layers and the PA+PS layers of NF90 and ESPA1 membranes were used to conduct static adsorption tests. Results showed that apparent differences existed between the PA layer and the PA+PS layer in the adsorption capacity of PhACs as well as the time necessary to reach the adsorption equilibrium. PhACs with different physicochemical properties could be adsorbed to different extents by the isolated PA layer, which was mainly attributed to electrostatic attraction/repulsion and hydrophobic interactions. The PA layer of ESPA1 exhibited apparently higher adsorption capacities for the positively charged PhACs and similar adsorption capacities for the neutral PhACs although it had significantly less total interfacial area (per unit membrane surface area) for adsorption compared to the PA layer of NF90. The higher affinity of the PA layer of ESPA1 for the PhACs could be due to its higher capacity of forming hydrogen bonds with PhACs resulted from the modified chemistry with more -OH groups. This study provides a novel approach to determining the TrOC adsorption onto the active layer of membranes for the ease of investigating adsorption mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  16. The performance of double layer structure membrane prepared from flowing coagulant

    Science.gov (United States)

    Mieow Kee, Chan; Xeng, Anthony Leong Chan; Regal, Sasiskala; Singh, Balvinder; Raoo, Preeshaath; Koon Eu, Yap; Sok Choo, Ng

    2017-12-01

    Membrane with double layer structure is favourable as it exhibits smooth surface and macrovoids free structure. However, its’ performance in terms of permeability, porosity and strength has not been studied thoroughly. Additionally, the effect of flowing coagulant on the formation of double layer membrane has not been reported. Thus, the objective of this study is to investigate the performance of double layer membranes, which were prepared using flowing coagulant. Results showed that when the coagulant flow changed from laminar to turbulent, the pure water permeation of the membrane increased. It was due to the higher porosity in the membrane, which prepared by turbulent flow (CA-Turbulent) compared to the membrane which fabricated under laminar condition (CA-Laminar). This can be explained by the rapid solvent-coagulant exchange rate between the polymer solution and the turbulent coagulant. In term of strength, the tensile strength of the CA-Turbulent was ~32 MPa, which was 100% higher compared to CA-Laminar. This may due to the presence of large amount of nodules on its surface, which reduced the surface integrity. In conclusion, flowing coagulant altered the membrane properties and adopting turbulent coagulant flow in membrane fabrication would improve the porosity, surface roughness and the strength of the membrane.

  17. A new insight into membrane fouling mechanism in submerged membrane bioreactor: osmotic pressure during cake layer filtration.

    Science.gov (United States)

    Zhang, Meijia; Peng, Wei; Chen, Jianrong; He, Yiming; Ding, Linxian; Wang, Aijun; Lin, Hongjun; Hong, Huachang; Zhang, Ye; Yu, Haiying

    2013-05-15

    Big gap between experimental filtration resistance of cake layer formed on membrane surface and the hydraulic resistance calculated through the Carman-Kozeny equation, suggested the existence of a new membrane fouling mechanism: osmotic pressure during cake layer filtration in SMBR system. An osmotic pressure model based on chemical potential difference was then proposed. Simulation of the model showed that osmotic pressure accounted for the major fraction of total operation pressure, and pH, applied pressure and ionic strength were the key determining factors for osmosis effect. It was found that, variations of osmotic pressure with pH, applied pressure and added ionic strength were well coincident with perditions of model's simulation, providing the first direct evidences of the real occurrence of osmosis mechanism and the feasibility of the proposed model. These findings illustrate the essential role of osmotic pressure in filtration resistance, and improve fundamental understanding on membrane fouling in SMBR systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Hierarchical Composite Membranes with Robust Omniphobic Surface Using Layer-By-Layer Assembly Technique

    KAUST Repository

    Woo, Yun Chul; Kim, Youngjin; Yao, Minwei; Tijing, Leonard Demegilio; Choi, Juneseok; Lee, Sangho; Kim, Seunghyun; Shon, Hokyong

    2018-01-01

    gave the LBL membrane an omniphobic property, as indicated by its good wetting resistance. The membrane performed a stable air gap membrane distillation (AGMD) flux of 11.22 L/m2h with very high salt rejection using reverse osmosis brine from coal seam

  19. Self-assembling layers created by membrane proteins on gold.

    Science.gov (United States)

    Shah, D S; Thomas, M B; Phillips, S; Cisneros, D A; Le Brun, A P; Holt, S A; Lakey, J H

    2007-06-01

    Membrane systems are based on several types of organization. First, amphiphilic lipids are able to create monolayer and bilayer structures which may be flat, vesicular or micellar. Into these structures membrane proteins can be inserted which use the membrane to provide signals for lateral and orientational organization. Furthermore, the proteins are the product of highly specific self-assembly otherwise known as folding, which mostly places individual atoms at precise places in three dimensions. These structures all have dimensions in the nanoscale, except for the size of membrane planes which may extend for millimetres in large liposomes or centimetres on planar surfaces such as monolayers at the air/water interface. Membrane systems can be assembled on to surfaces to create supported bilayers and these have uses in biosensors and in electrical measurements using modified ion channels. The supported systems also allow for measurements using spectroscopy, surface plasmon resonance and atomic force microscopy. By combining the roles of lipids and proteins, highly ordered and specific structures can be self-assembled in aqueous solution at the nanoscale.

  20. Evaluation of in situ layers for treatment of acid mine drainage: a field comparison.

    Science.gov (United States)

    Hulshof, Andrea H M; Blowes, David W; Gould, W Douglas

    2006-05-01

    Reactive treatment layers, containing labile organic carbon, were evaluated to determine their ability to promote sulfate reduction and metal sulfide precipitation within a tailings impoundment, thereby treating tailings effluent prior to discharge. Organic carbon materials, including woodchips and pulp waste, were mixed with the upper meter of tailings in two separate test cells, a third control cell contained only tailings. In the woodchip cell sulfate reduction rates were 500 mg L-1a-1, (5.2 mmol L-1a-1) this was coupled with the gradual removal of 350 mg L-1 Zn (5.4 mmol L-1). Decreased delta13CDIC values from -3 per thousand to as low as -12 per thousand indicated that sulfate reduction was coupled with organic carbon oxidation. In the pulp waste cell the most dramatic change was observed near the interface between the pulp waste amended tailings and the underlying undisturbed tailings. Sulfate reduction rates were 5000 mg L-1a-1 (52 mmol L-1a-1), Fe concentrations decreased by 80-99.5% (148 mmol L-1) and Zn was consistently <5 mg L-1. Rates of sulfate reduction and metal removal decreased as the pore water migrated upward into the shallower tailings. Increased rates of sulfate reduction in the pulp waste cell were consistent with decreased delta13CDIC values, to as low as -22 per thousand, and increased populations of sulfate reducing bacteria. Lower concentrations of the nutrients, phosphorus, organic carbon and nitrogen in the woodchip material contribute to the lower sulfate reduction rates observed in the woodchip cell.

  1. Effect of enzyme location on activity and stability of trypsin and urease immobilized on porous membranes by using layer-by-layer self-assembly of polyelectrolyte

    OpenAIRE

    Guedidi, Sadika; Yürekli, Yılmaz; Deratani, André; Déjardin, Philippe; Innocent, Christophe; Altınkaya, Sacide; Roudesli, Sadok; Yemenicioğlu, Ahmet

    2010-01-01

    The layer-by-layer (LbL) self-assembly of polyelectrolyte is one of the simplest ways to immobilize enzyme on membrane. In this paper, the immobilization of trypsin (TRY) and urease (URE) on polyacrylonitrile based membranes using the LbL assembly technique was presented. The studied systems consisted in bilayered assemblies with the enzyme layer as the outer layer and trilayered assemblies with the enzyme layer as the inner sandwiched layer. The membrane pore size was chosen so that the smal...

  2. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes.

    Science.gov (United States)

    Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok

    2013-05-01

    The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.

  3. Anion-exchange membranes derived from quaternized polysulfone and exfoliated layered double hydroxide for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Liang, Na; Peng, Pai; Qu, Rong; Chen, Dongzhi; Zhang, Hongwei, E-mail: hanqiujiang@163.com

    2017-02-15

    Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10{sup −2} S cm{sup −1} at 60 °C. - Graphical abstract: Anion-exchange membrane based on quaternized polysulfone and exfoliated layered double hydroxide is optically transparent and has good ionic properties.

  4. Electrochemical charging of the single-layer graphene membrane

    Czech Academy of Sciences Publication Activity Database

    Komínková, Zuzana; Kalbáč, Martin

    2016-01-01

    Roč. 253, č. 12 (2016), s. 2331-2335 ISSN 0370-1972 R&D Projects: GA MŠk LL1301; GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388955 Keywords : electrochemical charging * graphene membrane * in situ Raman spectroelectrochemistry Subject RIV: CG - Electrochemistry Impact factor: 1.674, year: 2016

  5. Preparation of Two-Layer Anion-Exchange Poly(ethersulfone Based Membrane: Effect of Surface Modification

    Directory of Open Access Journals (Sweden)

    Lucie Zarybnicka

    2016-01-01

    Full Text Available The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride surface layer was covalently attached onto the poly(ethersulfone support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.

  6. Compressibility of the fouling layer formed by membrane bioreactor sludge and supernatant

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Poorasgari, Eskandar; Christensen, Morten Lykkegaard

    Membrane bioreactors (MBR) are increasingly used for wastewater treatment as they give high effluent quality, low footprint and efficient sludge degradation. However, the accumulation and deposition of sludge components on and within the membrane (fouling) limits the widespread application of MBR....... Compressibility of the gel layer was studied in a dead-end filtration system, whereas the compressibility of a fouling layer formed by MBR sludge was studied in a submerged system hollow sheet membrane by TMP stepping. It was shown that the fouling layer formed by the MBR sludge was highly compressible within....... Hence, for MBR systems operated at constant flux mode, the applied pressure should be increased over time, to compensate for the lower permeability. Increasing applied pressure causes compression of the fouling layer and results in a more severe permeability decline [1]. In a general view, the fouling...

  7. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    KAUST Repository

    Kim, Wun-gwi

    2013-08-01

    Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower molecules. In this work, we combine membrane synthesis, detailed microstructural characterization, and mixed gas permeation measurements to demonstrate that nanoporous flake/polymer membranes allows significant improvement in gas permeability while maintaining selectivity. We begin with the primary-amine-intercalated porous layered silicate SAMH-3 and show that it can be exfoliated using a high shear rate generated by a high-speed mixer. The exfoliated SAMH-3 flakes were used to form SAMH-3/cellulose acetate (CA) membranes. Their microstructure was analyzed by small angle X-ray scattering (SAXS), revealing a high degree of exfoliation of AMH-3 layers in the CA membrane with a small number of layers (4-8) in the exfoliated flakes. TEM analysis visualized the thickness of the flakes as 15-30nm, and is consistent with the SAXS analysis. The CO2/CH4 gas separation performance of the CA membrane was significantly increased by incorporating only 2-6wt% of SAMH-3 flakes. There was a large increase in CO2 permeability with maintenance of selectivity. This cannot be explained by conventional models of transport in flake-containing membranes, and indicates complex transport paths in the membrane. It is also in contrast to the much higher loadings of isotropic particles required for similar enhancements. The present approach may allow avoidance of particle aggregation and poor interfacial adhesion associated with larger quantities of inorganic fillers. © 2013 Elsevier B.V.

  8. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Directory of Open Access Journals (Sweden)

    Tajuddin Muhammad Hanis

    2018-01-01

    Full Text Available Thin film nanocomposite (TFN membrane with copper-aluminium layered double hydroxides (LDH incorporated into polyamide (PA selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4 removal and compared with thin film composite (TFC. The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  9. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Science.gov (United States)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  10. Sintering process optimization for multi-layer CGO membranes by in situ techniques

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Prasad, A.S.; Foghmoes, Søren Preben Vagn

    2013-01-01

    The sintering of asymmetric CGO bi-layers (thin dense membrane on a porous support; Ce0.9Gd0.1O1.95-delta = CGO) with Co3O4 as sintering additive has been optimized by combination of two in situ techniques. Optical dilatometry revealed that bi-layer shape and microstructure are dramatically...... changing in a narrow temperature range of less than 100 degrees C. Below 1030 degrees C, a higher densification rate in the dense membrane layer than in the porous support leads to concave shape, whereas the densification rate of the support is dominant above 1030 degrees C, leading to convex shape. A fiat...... bi-layer could be prepared at 1030 degrees C, when shrinkage rates were similar. In situ van der Pauw measurements on tape cast layers during sintering allowed following the conductivity during sintering. A strong increase in conductivity and in activation energy E-a for conduction was observed...

  11. Is There Excitation Energy Transfer between Different Layers of Stacked Photosystem-II-Containing Thylakoid Membranes?

    Science.gov (United States)

    Farooq, Shazia; Chmeliov, Jevgenij; Trinkunas, Gediminas; Valkunas, Leonas; van Amerongen, Herbert

    2016-04-07

    We have compared picosecond fluorescence decay kinetics for stacked and unstacked photosystem II membranes in order to evaluate the efficiency of excitation energy transfer between the neighboring layers. The measured kinetics were analyzed in terms of a recently developed fluctuating antenna model that provides information about the dimensionality of the studied system. Independently of the stacking state, all preparations exhibited virtually the same value of the apparent dimensionality, d = 1.6. Thus, we conclude that membrane stacking does not affect the efficiency of the delivery of excitation energy toward the reaction centers but ensures a more compact organization of the thylakoid membranes within the chloroplast and separation of photosystems I and II.

  12. Preparation and evaluation of PEGylated phospholipid membrane coated layered double hydroxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mina Yan

    2016-06-01

    Full Text Available The aim of the present study was to develop layered double hydroxide (LDH nanoparticles coated with PEGylated phospholipid membrane. By comparing the size distribution and zeta potential, the weight ratio of LDH to lipid materials which constitute the outside membrane was identified as 2:1. Transmission electron microscopy photographs confirmed the core-shell structure of PEGylated phospholipid membrane coated LDH (PEG-PLDH nanoparticles, and cell cytotoxicity assay showed their good cell viability on Hela and BALB/C-3T3 cells over the concentration range from 0.5 to 50 μg/mL.

  13. Asymmetric polymeric membranes containing a metal-rich dense layer with a controlled thickness and method of making same

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos, Vazquez De La Parra Luis Francisco

    2016-01-01

    A structure, and methods of making the structure are provided in which the structure can include: a membrane having a first layer and a second layer, the first layer comprising polymer chains formed with coordination complexes with metal ions, and the second layer consisting of a porous support layer formed of polymer chains substantially, if not completely, lacking the presence of metal ions. The structure can be an asymmetric polymeric membrane containing a metal-rich layer as the first layer. In various embodiments the first layer can be a metal-rich dense layer. The first layer can include pores. The polymer chains of the first layer can be closely packed. The second layer can include a plurality of macro voids and can have an absence of the metal ions of the first layer.

  14. Asymmetric polymeric membranes containing a metal-rich dense layer with a controlled thickness and method of making same

    KAUST Repository

    Peinemann, Klaus-Viktor

    2016-01-21

    A structure, and methods of making the structure are provided in which the structure can include: a membrane having a first layer and a second layer, the first layer comprising polymer chains formed with coordination complexes with metal ions, and the second layer consisting of a porous support layer formed of polymer chains substantially, if not completely, lacking the presence of metal ions. The structure can be an asymmetric polymeric membrane containing a metal-rich layer as the first layer. In various embodiments the first layer can be a metal-rich dense layer. The first layer can include pores. The polymer chains of the first layer can be closely packed. The second layer can include a plurality of macro voids and can have an absence of the metal ions of the first layer.

  15. Layer-by-layer bioassembly of cellularized polylactic acid porous membranes for bone tissue engineering

    NARCIS (Netherlands)

    Guduric, Vera; Metz, Carole; Siadous, Robin; Bareille, Reine; Levato, Riccardo; Engel, Elisabeth; Fricain, Jean-Christophe; Devillard, Raphaël; Luzanin, Ognjan; Catros, Sylvain

    2017-01-01

    The conventional tissue engineering is based on seeding of macroporous scaffold on its surface ("top-down" approach). The main limitation is poor cell viability in the middle of the scaffold due to poor diffusion of oxygen and nutrients and insufficient vascularization. Layer-by-Layer (LBL)

  16. Apparatus suitable for plasma surface treating and process for preparing membrane layers

    NARCIS (Netherlands)

    1988-01-01

    The invention relates to an apparatus suitable for plasma surface treating (e.g. forming a membrane layer on a substrate) which comprises a plasma generation section (2) which is in communication via at least one plasma inlet means (4) (e.g. a nozzle) with an enclosed plasma treating section (3)

  17. Characterizing free volumes and layer structures in polymeric membranes using slow positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Jean, Y C; Chen Hongmin; Awad, Somia; Zhang Sui; Chen Hangzheng; Lau, Cher Hon; Wang Huan; Li Fuyun; Chung, Tai-Shung; Lee, L James; Huang, James

    2011-01-01

    Positron annihilation spectroscopy coupled with a newly built slow positron beam at National University of Singapore has been used to study the free volume, pore, and depth profile (0 - 10 μm) in cellulose acetate polymeric membrane at the bottom and top sides of membranes for ionic separation in water purification applications. The S and R parameters from Doppler broadening energy of annihilation radiation representing free volumes (0.1-1 nm size) and pores (>1 nm-μm) as a function of depth have been analyzed into multilayers, i.e. skin dense, transition, and porous layers, respectively. The top side of membrane has large free volumes and pores and the bottom side has a skin dense layer, which plays a key role in membrane performance. Positron annihilation lifetime results provide additional information about free-volume size and distribution at the atomic and molecular scale in polymeric membrane systems. Doppler broadening energy and lifetime spectroscopies coupled with a variable mono-energy slow positron beam are sensitive and novel techniques for characterization of polymeric membrane in separation applications.

  18. Improved antifouling properties of polymer membranes using a ‘layer-by-layer’ mediated method

    KAUST Repository

    Chen, Lin

    2013-01-01

    Polymeric reverse osmosis membranes were modified with antifouling polymer brushes through a \\'layer by layer\\' (LBL) mediated method. Based on pure physical electrostatic interaction, the attachment of LBL films did not alter separation performance of the membranes. In addition, the incorporation of an LBL film also helped to amplify the number of potential reaction sites on the membrane surfaces for attachment of antifouling polymer brushes, which were then attached to the surface. Attachment of the brushes included two different approaches, grafting to and grafting from. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements showed successful growth of the LBL films and subsequently the polymer brushes. Using this method to modify reverse osmosis membranes, preliminary performance testing showed the antifouling properties of the as-modified membranes were much better than the virgin membrane with no significant loss in water flux and salt rejection. © 2013 The Royal Society of Chemistry.

  19. Chlorine-Resistant Polyamide Reverse Osmosis Membrane with Monitorable and Regenerative Sacrificial Layers.

    Science.gov (United States)

    Huang, Hai; Lin, Saisai; Zhang, Lin; Hou, Li'an

    2017-03-22

    Improving chlorine stability is a high priority for aromatic polyamide (PA) reverse osmosis (RO) membranes especially in long-term desalination. In this Research Article, PA RO membranes of sustainable chlorine resistance was synthesized. Glycylglycine (Gly) was grafted onto the membrane surface as a regenerative chlorine sacrificial layer, and the zeta-potential was used to monitor the membrane performance and to conduct timely regeneration operations for chlorinated Gly. The Gly-grafted PA membrane exhibited ameliorative chlorine resistance in which the N-H moiety of glycylglycine served as sacrificial pendants against chlorine attacks. Cyclic chlorination experiments, combined with FT-IR and XPS analysis, were carried out to characterize the membrane. Results indicated that the resulting N-halamines could be fast regenerated by a simple alkaline reduction step (pH 10). A synchronous relationship between the zeta-potential and the chlorination extent of the sacrificial layer was observed. This indicated that the zeta-potential can be used as an on-site sensor to conduct a timely regeneration operation. The intrinsic mechanism of the surface sacrificial process was also studied.

  20. Fabrication and characterization of two-layered nanofibrous membrane for guided bone and tissue regeneration application.

    Science.gov (United States)

    Masoudi Rad, Maryam; Nouri Khorasani, Saied; Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Foroughi, Mohammad Reza; Kharaziha, Mahshid; Saadatkish, Niloufar; Ramakrishna, Seeram

    2017-11-01

    Membranes used in dentistry act as a barrier to prevent invasion of intruder cells to defected area and obtains spaces that are to be subsequently filled with new bone and provide required bone volume for implant therapy when there is insufficient volume of healthy bone at implant site. In this study a two-layered bioactive membrane were fabricated by electrospinning whereas one layer provides guided bone regeneration (GBR) and fabricated using poly glycerol sebacate (PGS)/polycaprolactone (PCL) and Beta tri-calcium phosphate (β-TCP) (5, 10 and 15%) and another one containing PCL/PGS and chitosan acts as guided tissue regeneration (GTR). The morphology, chemical, physical and mechanical characterizations of the membranes were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), tensile testing, then biodegradability and bioactivity properties were evaluated. In vitro cell culture study was also carried out to investigate proliferation and mineralization of cells on different membranes. Transmission electron microscope (TEM) and SEM results indicated agglomeration of β-TCP nanoparticles in the structure of nanofibers containing 15% β-TCP. Moreover by addition of β-TCP from 5% to 15%, contact angle decreased due to hydrophilicity of nanoparticles and bioactivity was found to increase. Mechanical properties of the membrane increased by incorporation of 5% and 10% of β-TCP in the structure of nanofibers, while addition of 15% of β-TCP was found to deteriorate mechanical properties of nanofibers. Although the presence of 5% and 10% of nanoparticles in the nanofibers increased proliferation of cells on GBR layer, cell proliferation was observed to decrease by addition of 15% β-TCP in the structure of nanofibers which is likely due to agglomeration of nanoparticles in the nanofiber structure. Our overall results revealed PCL/PGS containing 10% β-TCP could be selected as the optimum GBR membrane

  1. Polymer supported ZIF-8 membranes by conversion of sputtered zinc oxide layers

    KAUST Repository

    Neelakanda, Pradeep; Barankova, Eva; Peinemann, Klaus-Viktor

    2015-01-01

    ZIF-8 composite membranes were synthesized at room temperature from aqueous solution by a double-zinc-source method on polyacrylonitrile (PAN) porous supports. The support was coated with zinc oxide (ZnO) by magnetron sputtering prior to ZIF-8 growth to improve the nucleation as well as the adhesion between the ZIF-8 layer and support. By this method, we were able to grow a continuous, dense, very thin (900 nm) and defect free ZIF-8 layer on a polymeric support. The developed ZIF-8 membranes had a gas permeance of 1.23 x 10-7 mol m-2 sec-1 Pa-1 for hydrogen and a selectivity of 26 for hydrogen/propane gases which is 5 times higher than the Knudsen selectivity. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were done to characterize the membranes.

  2. Polymer supported ZIF-8 membranes by conversion of sputtered zinc oxide layers

    KAUST Repository

    Neelakanda, Pradeep

    2015-09-05

    ZIF-8 composite membranes were synthesized at room temperature from aqueous solution by a double-zinc-source method on polyacrylonitrile (PAN) porous supports. The support was coated with zinc oxide (ZnO) by magnetron sputtering prior to ZIF-8 growth to improve the nucleation as well as the adhesion between the ZIF-8 layer and support. By this method, we were able to grow a continuous, dense, very thin (900 nm) and defect free ZIF-8 layer on a polymeric support. The developed ZIF-8 membranes had a gas permeance of 1.23 x 10-7 mol m-2 sec-1 Pa-1 for hydrogen and a selectivity of 26 for hydrogen/propane gases which is 5 times higher than the Knudsen selectivity. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were done to characterize the membranes.

  3. Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, P., E-mail: prasri@ece.ucsb.edu, E-mail: srinivasan@lifesci.ucsb.edu [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA and Neuroscience Research Institute, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    Experimental platform that allows precise spatial positioning of biomolecules with an exquisite control at nanometer length scales is a valuable tool to study the molecular mechanisms of membrane bound signaling. Using micromachined thin film gold (Au) in layered architecture, it is possible to add both optical and biochemical functionalities in in vitro. Towards this goal, here, I show that docking of complementary DNA tethered giant phospholiposomes on Au surface can create membrane-restricted nanodomains. These nanodomains are critical features to dissect molecular choreography of membrane signaling complexes. The excited surface plasmon resonance modes of Au allow label-free imaging at diffraction-limited resolution of stably docked DNA tethered phospholiposomes, and lipid-detergent bicelle structures. Such multifunctional building block enables realizing rigorously controlled in vitro set-up to model membrane anchored biological signaling, besides serving as an optical tool for nanoscale imaging.

  4. Rare earth elements as a tool for studying the formation of cemented layers in an area affected by acid mine drainage

    International Nuclear Information System (INIS)

    Grawunder, Anja; Lonschinski, Martin; Merten, Dirk; Büchel, Georg

    2015-01-01

    Highlights: • Spatially resolved analysis of 14 rare earth elements (REE) by LA-ICP-MS. • Positive correlation of Mn contents and (positive) Ce anomalies. • Linkage of the two cemented layer’s formation to soil solution and groundwater. - Abstract: In a profile with two cemented layers sampled in an area affected by acid mine drainage, both have rare earth element (REE) signatures with positive Ce anomalies in the Post Archean Australian Shale-normalised patterns. Both cemented layers have higher contents of environmentally relevant metals (Cd, Co, Cu, Fe, Mn, U, and Zn) than the over- and underlying unconsolidated Quaternary sediments and are depleted of Al, Ca, K, and Mg. The cemented layers are enriched in middle and heavy REE, but only the bulk pattern of the lower cemented layer reveals a positive Ce anomaly. For the upper cemented layer, this positive Ce anomaly was only determined by spatially resolved laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) studies only for segments with a high abundance of Mn, occurring as Mn phases as proven by energy dispersive X-ray spectroscopy. The Mn phases are formed secondarily to the ferric cement and are especially enriched in Ce and Co. The Ce anomaly of the lower cemented layer most probably is inherited from groundwater to the ferric cement, whereas the Ce anomaly of the upper cemented layer is the result of preferential scavenging of Ce onto the Mn phases compared to other REE

  5. Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide

    Science.gov (United States)

    Salehi, Hasan; Rastgar, Masoud; Shakeri, Alireza

    2017-08-01

    To date, forward osmosis (FO) has received considerable attention due to its potential application in seawater desalination. FO does not require external hydraulic pressure and consequently is believed to have a low fouling propensity. Despite the numerous privileges of FO process, a major challenge ahead for its development is the lack of high performance membranes. In this study, we fabricated a novel highly-efficient FO membrane using layer-by-layer (LbL) assembly of positive chitosan (CS) and negative graphene oxide (GO) nanosheets via electrostatic interaction on a porous support layer. The support layer was prepared by blending hydrophilic sulfonated polyethersulfone (SPES) into polyethersulfone (PES) matrix using wet phase inversion process. Various characterization techniques were used to confirm successful fabrication of LbL membrane. The number of layers formed on the SPES-PES support layer was easily adjusted by repeating the CS and GO deposition cycles. Thin film composite (TFC) membrane was also prepared by the same SPES-PES support layer and polyamide (PA) active layer to compare membranes performances. The water permeability and salt rejection of the fabricated membranes were obtained by two kinds of draw solutions (including Na2SO4 and sucrose) under two different membrane orientations. The results showed that membrane coated by a CS/GO bilayers had water flux of 2-4 orders of magnitude higher than the TFC one. By increasing the number of CS/GO bilayers, the selectivity of the LbL membrane was improved. The novel fabricated LbL membrane showed better fouling resistance than the TFC one in the feed solution containing 200 ppm of sodium alginate as a foulant model.

  6. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Bei, E-mail: 1021453457@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Wu, Jing-Jing, E-mail: 957522275@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Su, Yu, E-mail: 819388710@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Zhou, Jin, E-mail: zhoujin_ah@163.com [Department of Materials and Chemical Engineering, Chizhou University, Muzhi Rd. 199, Chizhou, Anhui 247000 (China); Gao, Yong, E-mail: 154682180@qq.com [School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Yu, Hai-Yin, E-mail: yhy456@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Gu, Jia-Shan, E-mail: jiashanG@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Clickable membrane prepared by photo bromination and S{sub N}2 nucleophilic substitution. • Azide graphene oxide prepared by ring-opening reaction. • Alkyne graphene oxide was prepared via esterification reaction. • Layer-by-layer assembly of graphene oxide on membrane by click chemistry. • Antibacterial and antifouling characteristics were enhanced greatly. - Abstract: Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface.

  7. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    International Nuclear Information System (INIS)

    Zhang, Zhen-Bei; Wu, Jing-Jing; Su, Yu; Zhou, Jin; Gao, Yong; Yu, Hai-Yin; Gu, Jia-Shan

    2015-01-01

    Graphical abstract: - Highlights: • Clickable membrane prepared by photo bromination and S N 2 nucleophilic substitution. • Azide graphene oxide prepared by ring-opening reaction. • Alkyne graphene oxide was prepared via esterification reaction. • Layer-by-layer assembly of graphene oxide on membrane by click chemistry. • Antibacterial and antifouling characteristics were enhanced greatly. - Abstract: Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface

  8. Influence of Active Layer on Separation Potentials of Nanofiltration Membranes for Inorganic Ions.

    Science.gov (United States)

    Wadekar, Shardul S; Vidic, Radisav D

    2017-05-16

    Active layers of two fully aromatic and two semi-aromatic nanofiltration membranes were studied along with surface charge at different electrolyte composition and effective pore size to elucidate their influence on separation mechanisms for inorganic ions by steric, charge, and dielectric exclusion. The membrane potential method used for pore size measurement is underlined as the most appropriate measurement technique for this application owing to its dependence on the diffusional potentials of inorganic ions. Crossflow rejection experiments with dilute feed composition indicate that both fully aromatic membranes achieved similar rejection despite the differences in surface charge, which suggests that rejection by these membranes is exclusively dependent on size exclusion and the contribution of charge exclusion is weak. Rejection experiments with higher ionic strength and different composition of the feed solution confirmed this hypothesis. On the other hand, increase in the ionic strength of feed solution when the charge exclusion effects are negligible due to charge screening strongly influenced ion rejection by semi-aromatic membranes. The experimental results confirmed that charge exclusion contributes significantly to the performance of semi-aromatic membranes in addition to size exclusion. The contribution of dielectric exclusion to overall ion rejection would be more significant for fully aromatic membranes.

  9. Irreversible fouling of membrane bioreactors due to formation of a non-biofilm gel-like layer

    DEFF Research Database (Denmark)

    Poorasgari, Eskandar; Larsen, Poul; Zheng, Xing

    2013-01-01

    Extra-cellular polymeric substances (EPS), known to contribute to fouling in membrane bio-reactors (MBR)s, are generally divided into bound and free EPS. The free EPS are able to form a gel-like layer on the membrane active surface. The mechanisms involved in formation of such layer and its effects...... on performance of the MBR membranes were studied. The free EPS, extracted by centrifugation and microfiltration, contained a significant amount of humic-like substances. Under static contact to the membrane, adsorption of humic-like substances to the membrane occurred and could be explained by conventional...... adsorption kinetics. Due to static adsorption, surface roughness of the membrane declined significantly indicating that adsorbed matters to the membrane filled the cavities of the membrane surface. Filtration of the free EPS caused 50% water flux decline. The fouling resistance linearly increased...

  10. Interaction of S-layer proteins of Lactobacillus kefir with model membranes and cells.

    Science.gov (United States)

    Hollmann, Axel; Delfederico, Lucrecia; Santos, Nuno C; Disalvo, E Anibal; Semorile, Liliana

    2018-06-01

    In previous works, it was shown that S-layer proteins from Lactobacillus kefir were able to recrystallize and stabilize liposomes, this feature reveling a great potential for developing liposomal-based carriers. Despite previous studies on this subject are important milestones, a number of questions remain unanswered. In this context, the feasibility of S-layer proteins as a biomaterial for drug delivery was evaluated in this work. First, S-layer proteins were fully characterized by electron microscopy, 2D-electrophoresis, and anionic exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Afterward, interactions of S-layer proteins with model lipid membranes were evaluated, showing that proteins adsorb to the lipid surface following a non-fickean or anomalous diffusion, when positively charged lipid were employed, suggesting that electrostatic interaction is a key factor in the recrystallization process on these proteins. Finally, the interaction of S-layer coated liposomes with Caco-2 cell line was assessed: First, cytotoxicity of formulations was tested showing no cytotoxic effects in S-layer coated vesicles. Second, by flow cytometry, it was observed an increased ability to transfer cargo molecules into Caco-2 cells from S-layer coated liposomes in comparison to control ones. All data put together, supports the idea that a combination of adhesive properties of S-layer proteins concomitant with higher stability of S-layer coated liposomes represents an exciting starting point in the development of new drug carriers.

  11. Tomographic Structural Changes of Retinal Layers after Internal Limiting Membrane Peeling for Macular Hole Surgery.

    Science.gov (United States)

    Faria, Mun Yueh; Ferreira, Nuno P; Cristóvao, Diana M; Mano, Sofia; Sousa, David Cordeiro; Monteiro-Grillo, Manuel

    2018-01-01

    To highlight tomographic structural changes of retinal layers after internal limiting membrane (ILM) peeling in macular hole surgery. Nonrandomized prospective, interventional study in 38 eyes (34 patients) subjected to pars plana vitrectomy and ILM peeling for idiopathic macular hole. Retinal layers were assessed in nasal and temporal regions before and 6 months after surgery using spectral domain optical coherence tomography. Total retinal thickness increased in the nasal region and decreased in the temporal region. The retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) showed thinning on both nasal and temporal sides of the fovea. The thickness of the outer plexiform layer (OPL) increased. The outer nuclear layer (ONL) and outer retinal layers (ORL) increased in thickness after surgery in both nasal and temporal regions. ILM peeling is associated with important alterations in the inner retinal layer architecture, with thinning of the RNFL-GCL-IPL complex and thickening of OPL, ONL, and ORL. These structural alterations can help explain functional outcome and could give indications regarding the extent of ILM peeling, even though peeling seems important for higher rate of hole closure. © 2017 S. Karger AG, Basel.

  12. PDGF-metronidazole-encapsulated nanofibrous functional layers on collagen membrane promote alveolar ridge regeneration

    Directory of Open Access Journals (Sweden)

    Ho MH

    2017-08-01

    Full Text Available Ming-Hua Ho,1 Hao-Chieh Chang,2,3 Yu-Chia Chang,3 Jeiannete Claudia,1 Tzu-Chiao Lin,2 Po-Chun Chang2,3 1Department of Chemical Engineering, College of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; 2Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; 3Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan Abstract: This study aimed to develop a functionally graded membrane (FGM to prevent infection and promote tissue regeneration. Poly(L-lactide-co-D,L-lactide encapsulating platelet-derived growth factor (PDLLA-PDGF or metronidazole (PDLLA-MTZ was electrospun to form a nanofibrous layer on the inner or outer surface of a clinically available collagen membrane, respectively. The membrane was characterized for the morphology, molecule release profile, in vitro and in vivo biocompatibility, and preclinical efficiency for alveolar ridge regeneration. The PDLLA-MTZ and PDLLA-PDGF nanofibers were 800–900 nm in diameter, and the thicknesses of the functional layers were 20–30 µm, with sustained molecule release over 28 days. All of the membranes tested were compatible with cell survival in vitro and showed good tissue integration with minimal fibrous capsule formation or inflammation. Cell proliferation was especially prominent on the PDLLA-PDGF layer in vivo. On the alveolar ridge, all FGMs reduced wound dehiscence compared with the control collagen membrane, and the FGM with PDLLA-PDGF promoted osteogenesis significantly. In conclusion, the FGMs with PDLLA-PDGF and PDLLA-MTZ showed high biocompatibility and facilitated wound healing compared with conventional membrane, and the FGM with PDLLA-PDGF enhanced alveolar ridge regeneration in vivo. The design represents a beneficial modification, which may be easily adapted for future clinical use. Keywords: tissue engineering, platelet-derived growth factor, metronidazole, alveolar process

  13. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer

    KAUST Repository

    Zhang, Sui

    2010-09-01

    The design and engineering of membrane structure that produces low salt leakage and minimized internal concentration polarization (ICP) in forward osmosis (FO) processes have been explored in this work. The fundamentals of phase inversion of cellulose acetate (CA) regarding the formation of an ultra-thin selective layer at the bottom interface of polymer and casting substrate were investigated by using substrates with different hydrophilicity. An in-depth understanding of membrane structure and pore size distribution has been elucidated with field emission scanning electronic microscopy (FESEM) and positron annihilation spectroscopy (PAS). A double dense-layer structure is formed when glass plate is used as the casting substrate and water as the coagulant. The thickness of the ultra-thin bottom layer resulted from hydrophilic-hydrophilic interaction is identified to be around 95nm, while a fully porous, open-cell structure is formed in the middle support layer due to spinodal decomposition. Consequently, the membrane shows low salt leakage with mitigated ICP in the FO process for seawater desalination. The structural parameter (St) of the membrane is analyzed by modeling water flux using the theory that considers both external concentration polarization (ECP) and ICP, and the St value of the double dense-layer membrane is much smaller than those reported in literatures. Furthermore, the effects of an intermediate immersion into a solvent/water mixed bath prior to complete immersion in water on membrane formation have been studied. The resultant membranes may have a single dense layer with an even lower St value. A comparison of fouling behavior in a simple FO-membrane bioreactor (MBR) system is evaluated for these two types of membranes. The double dense-layer membrane shows a less fouling propensity. This study may help pave the way to improve the membrane design for new-generation FO membranes. © 2010 Elsevier B.V.

  14. Catalytic, Conductive Bipolar Membrane Interfaces through Layer-by-Layer Deposition for the Design of Membrane-Integrated Artificial Photosynthesis Systems.

    Science.gov (United States)

    McDonald, Michael B; Freund, Michael S; Hammond, Paula T

    2017-11-23

    In the presence of an electric field, bipolar membranes (BPMs) are capable of initiating water disassociation (WD) within the interfacial region, which can make water splitting for renewable energy in the presence of a pH gradient possible. In addition to WD catalytic efficiency, there is also the need for electronic conductivity in this region for membrane-integrated artificial photosynthesis (AP) systems. Graphene oxide (GO) was shown to catalyze WD and to be controllably reduced, which resulted in electronic conductivity. Layer-by-layer (LbL) film deposition was employed to improve GO film uniformity in the interfacial region to enhance WD catalysis and, through the addition of a conducting polymer in the process, add electronic conductivity in a hybrid film. Three different deposition methods were tested to optimize conducting polymer synthesis with the oxidant in a metastable solution and to yield the best film properties. It was found that an approach that included substrate dipping in a solution containing the expected final monomer/oxidant ratio provided the most predictable film growth and smoothest films (by UV/Vis spectroscopy and atomic force microscopy/scanning electron microscopy, respectively), whereas dipping in excess oxidant or co-spraying the oxidant and monomer produced heterogeneous films. Optimized films were found to be electronically conductive and produced a membrane ohmic drop that was acceptable for AP applications. Films were integrated into the interfacial region of BPMs and revealed superior WD efficiency (≥1.4 V at 10 mA cm -2 ) for thinner films (<10 bilayers≈100 nm) than for either the pure GO catalyst or conducting polymer individually, which indicated that there was a synergistic effect between these materials in the structure configured by the LbL method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  16. Instabilities and diffusion in a hydrodynamic model of a fluid membrane coupled to a thin active fluid layer.

    Science.gov (United States)

    Sarkar, N; Basu, A

    2012-11-01

    We construct a coarse-grained effective two-dimensional (2d hydrodynamic theory as a theoretical model for a coupled system of a fluid membrane and a thin layer of a polar active fluid in its ordered state that is anchored to the membrane. We show that such a system is prone to generic instabilities through the interplay of nonequilibrium drive, polar order and membrane fluctuation. We use our model equations to calculate diffusion coefficients of an inclusion in the membrane and show that their values depend strongly on the system size, in contrast to their equilibrium values. Our work extends the work of S. Sankararaman and S. Ramaswamy (Phys. Rev. Lett., 102, 118107 (2009)) to a coupled system of a fluid membrane and an ordered active fluid layer. Our model is broadly inspired by and should be useful as a starting point for theoretical descriptions of the coupled dynamics of a cell membrane and a cortical actin layer anchored to it.

  17. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles [National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD 20899-8313 (United States); Vanderah, David J. [Institute for Bioscience and Biotechnology Research, NIST, Rockville, Maryland 20850 (United States); Chen, Lei, E-mail: lei.chen@nist.gov [NIST Center for Nanoscale Science and Technology, Gaithersburg, Maryland 20899-8313 (United States); Gawrisch, Klaus [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-15

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  18. Sulfonated poly(ether ether ketone) membranes for electric double layer capacitors

    International Nuclear Information System (INIS)

    Kim, Wan Ju; Kim, Dong-Won

    2008-01-01

    Sulfonated poly(ether ether ketone) (S-PEEK) with different degree of sulfonation (DS) has been prepared and evaluated as a proton conducting membrane for electric double layer capacitor (EDLC). The polymer electrolytes prepared with S-PEEK membrane exhibited ionic conductivities about 1.2 x 10 -3 -4.5 x 10 -3 S cm -1 at room temperature, which depended on both soaking solvent and degree of sulfonation. The quasi-solid-state EDLCs consisted of activated carbon electrodes and S-PEEK membrane were assembled, and their electrochemical characteristics were studied by cyclic voltammetry and charge-discharge cycle tests. The effect of DS on the electrochemical performances of EDLCs has been investigated

  19. Final report: Seven-layer membrane electrode assembly - an innovative approach to PEM fuel cell design

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, A.

    2005-07-01

    Costs of materials and fabrication, rather than appropriateness of technology, are the major barriers to the sales of fuel cells. With the objective of reducing costs, potential alternative component materials for (a) the fluid flow plate (FFP) and (b) the gas diffusion layers were investigated. The concept of a 7-layer membrane electrode assembly (MEA), in which components are bonded into a unitised module, was also studied. The advantages of the bonded cell, and the flow field design, are expounded. Low-cost carbon particle composites were developed for the FFPs. The modular 7-layer MEA has an order of magnitude saving over current materials. Overall, the study has led to a greater volumetric power output, lower costs and greater reliability. The work was carried out by Morgan Group Technology Limited and funded by the DTI.

  20. Bulk and contact resistances of gas diffusion layers in proton exchange membrane fuel cells

    Science.gov (United States)

    Ye, Donghao; Gauthier, Eric; Benziger, Jay B.; Pan, Mu

    2014-06-01

    A multi-electrode probe is employed to distinguish the bulk and contact resistances of the catalyst layer (CL) and the gas diffusion layer (GDL) with the bipolar plate (BPP). Resistances are compared for Vulcan carbon catalyst layers (CL), carbon paper and carbon cloth GDL materials, and GDLs with microporous layers (MPL). The Vulcan carbon catalyst layer bulk resistance is 100 times greater than the bulk resistance of carbon paper GDL (Toray TG-H-120). Carbon cloth (CCWP) has bulk and contact resistances twice those of carbon paper. Compression of the GDL decreases the GDL contact resistance, but has little effect on the bulk resistance. Treatment of the GDL with polytetrafluoroethylene (PTFE) increases the contact resistance, but has little effect on the bulk resistance. A microporous layer (MPL) added to the GDL decreases the contact resistance, but has little effect on the bulk resistance. An equivalent circuit model shows that for channels less than 1 mm wide the contact resistance is the major source of electronic resistance and is about 10% of the total ohmic resistance associated with the membrane electrode assembly.

  1. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    Science.gov (United States)

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza

    2016-09-24

    A theoretical model for multi-tubular palladium-based membrane is proposed in this paper and validated against experimental data for two different sized membrane modules that operate at high temperatures. The model is used in a sequential simulation format to describe and analyse pure hydrogen and hydrogen binary mixture separations, and then extended to simulate an industrial scale membrane unit. This model is used as a sub-routine within an ASPEN Plus model to simulate a membrane reactor in a steam reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor. The economic sensitivity analysis results show usefulness in finding the optimum operating condition that achieves minimum hydrogen production cost at break-even point. A hydrogen production cost of 1.98 $/kg is estimated while the cost of the thin-layer selective membrane is found to constitute 29% of total process capital cost. These results indicate the competiveness of this thin-layer membrane process against conventional methods of hydrogen production. © 2016 Hydrogen Energy Publications LLC

  3. New insights into comparison between synthetic and practical municipal wastewater in cake layer characteristic analysis of membrane bioreactor.

    Science.gov (United States)

    Zhou, Lijie; Zhuang, Wei-Qin; Wang, Xin; Yu, Ke; Yang, Shufang; Xia, Siqing

    2017-11-01

    In previous studies, cake layer analysis in membrane bioreactor (MBR) was both carried out with synthetic and practical municipal wastewater (SMW and PMW), leading to different results. This study aimed to identify the comparison between SMW and PMW in cake layer characteristic analysis of MBR. Two laboratory-scale anoxic/oxic MBRs were operated for over 90days with SMW and PMW, respectively. Results showed that PMW led to rough cake layer surface with particles, and the aggravation of cake layer formation with thinner and denser cake layer. Additionally, inorganic components, especially Si and Al, in PMW accumulated into cake layer and strengthened the cake layer structure, inducing severer biofouling. However, SMW promoted bacterial metabolism during cake layer formation, thus aggravated the accumulation of organic components into cake layer. Therefore, SMW highlighted the organic components in cake layer, but weakened the inorganic functions in practical MBR operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Adele M.; Xue, Youjia [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Kinsela, Andrew S. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Institute for Environmental Research (IER), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234 (Australia); Wilcken, Klaus M. [Institute for Environmental Research (IER), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234 (Australia); Collins, Richard N., E-mail: richard.collins@unsw.edu.au [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values < 3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with {sup 55}Fe and {sup 26}Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (> 70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO{sub 4}){sub 2}{sup −} and/or Me–NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. - Highlights: • CLASS discharge large amounts of metals and their speciation is poorly

  5. Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes.

    Science.gov (United States)

    Xiong, Guang; Elam, Jeffrey W; Feng, Hao; Han, Catherine Y; Wang, Hsien-Hau; Iton, Lennox E; Curtiss, Larry A; Pellin, Michael J; Kung, Mayfair; Kung, Harold; Stair, Peter C

    2005-07-28

    Anodic aluminum oxide (AAO) membranes were characterized by UV Raman and FT-IR spectroscopies before and after coating the entire surface (including the interior pore walls) of the AAO membranes by atomic layer deposition (ALD). UV Raman reveals the presence of aluminum oxalate in bulk AAO, both before and after ALD coating with Al2O3, because of acid anion incorporation during the anodization process used to produce AAO membranes. The aluminum oxalate in AAO exhibits remarkable thermal stability, not totally decomposing in air until exposed to a temperature >900 degrees C. ALD was used to cover the surface of AAO with either Al2O3 or TiO2. Uncoated AAO have FT-IR spectra with two separate types of OH stretches that can be assigned to isolated OH groups and hydrogen-bonded surface OH groups, respectively. In contrast, AAO surfaces coated by ALD with Al2O3 display a single, broad band of hydrogen-bonded OH groups. AAO substrates coated with TiO2 show a more complicated behavior. UV Raman results show that very thin TiO2 coatings (1 nm) are not stable upon annealing to 500 degrees C. In contrast, thicker coatings can totally cover the contaminated alumina surface and are stable at temperatures in excess of 500 degrees C.

  6. Asymmetric bi-layer PFSA membranes as model systems for the study of water management in the PEMFC.

    Science.gov (United States)

    Peng, Z; Peng, A Z; Morin, A; Huguet, P; Lanteri, Y; Deabate, S

    2014-10-14

    New bi-layer PFSA membranes made of Nafion® NRE212 and Aquivion™ E79-05s with different equivalent weights are prepared with the aim of managing water repartition in the PEMFC. The membrane water transport properties, i.e. back-diffusion and electroosmosis, as well as the electrochemical performances, are compared to those of state-of-art materials. The actual water content (the inner water concentration profile across the membrane thickness) is measured under operation in the fuel cell by in situ Raman microspectroscopy. The orientation of the equivalent weight gradient with respect to the water external gradient and to the proton flow direction affects the membrane water content, the water transport ability and, thus, the fuel cell performances. Higher power outputs, related to lower ohmic losses, are observed when the membrane is assembled with the lower equivalent weight layer (Aquivion™) at the anode side. This orientation, corresponding to enhanced water transport by back-flow while electroosmosis remains unaffected, results in the higher hydration of the membrane and of the anode active layer during operation. Also, polarization data suggest a different water repartition in the fuel cell along the on-plane direction. Even if the interest in multi-layer PFSA membranes as perspective electrolytes for PEMFCs is not definitively attested, these materials appear to be excellent model systems to establish relationships between the membrane transport properties, the water distribution in the fuel cell and the electrochemical performances. Thanks to the micrometric resolution, in situ Raman microspectroscopy proves to be a unique tool to measure the actual hydration of the membrane at the surface swept by the hydrated feed gases during operation, so that it can be used as a local probe of the water concentration evolution along the gas distribution channels according to changing working conditions.

  7. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza; Arab, Mobin; Lai, Zhiping; Liu, Zongwen; Abbas, Ali

    2016-01-01

    reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor

  8. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes.

    Science.gov (United States)

    Sanyal, Oishi; Lee, Ilsoon

    2014-03-01

    Reverse osmosis (RO) and nanofiltration (NF) are the two dominant membrane separation processes responsible for ion rejection. While RO is highly efficient in removal of ions it needs a high operating pressure and offers very low selectivity between ions. Nanofiltration on the other hand has a comparatively low operating pressure and most commercial membranes offer selectivity in terms of ion rejection. However in many nanofiltration operations rejection of monovalent ions is not appreciable. Therefore a high flux high rejection membrane is needed that can be applied to water purification systems. One such alternative is the usage of polyelectrolyte multilayer membranes that are prepared by the deposition of alternately charged polyelectrolytes via layer-by-layer (LbL) assembly method. LbL is one of the most common self-assembly techniques and finds application in various areas. It has a number of tunable parameters like deposition conditions, number of bilayers deposited etc. which can be manipulated as per the type of application. This technique can be applied to make a nanothin membrane skin which gives high rejection and at the same time allow a high water flux across it. Several research groups have applied this highly versatile technique to prepare membranes that can be employed for water purification. Some of these membranes have shown better performance than the commercial nanofiltration and reverse osmosis membranes. These membranes have the potential to be applied to various different aspects of water treatment like water softening, desalination and recovery of certain ions. Besides the conventional method of LbL technique other alternative methods have also been suggested that can make the technique fast, more efficient and thereby make it more commercially acceptable.

  9. High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO2 selective layer formation

    Directory of Open Access Journals (Sweden)

    Stepan D. Bazhenov

    2016-10-01

    Full Text Available In the development of the composite gas separation membranes for post-combustion CO2 capture, little attention is focused on the optimization of the membrane supports, which satisfy the conditions of this technology. The primary requirements to the membrane supports are concerned with their high CO2 permeance. In this work, the membrane supports with desired characteristics were developed as high-permeance gas separation thin film composite (TFC membranes with the thin defect-free layer from the crosslinked highly permeable polymer, poly[1-(trimethylsilyl-1-propyne] (PTMSP. This layer is insoluble in chloroform and can be used as a gutter layer for the further deposition of the СО2-selective materials from the organic solvents. Crosslinking of PTMSP was performed using polyethyleneimine (PEI and poly (ethyleneglycol diglycidyl ether (PEGDGE as crosslinking agents. Optimal concentrations of PEI in PTMSP and PEGDGE in methanol were selected in order to diminish the undesirable effect on the final membrane gas transport characteristics. The conditions of the kiss-coating technique for the deposition of the thin defect-free PTMSP-based layer, namely, composition of the casting solution and the speed of movement of the porous commercial microfiltration-grade support, were optimized. The procedure of post-treatment with alcohols and alcohol solutions was shown to be crucial for the improvement of gas permeance of the membranes with the crosslinked PTMSP layer having thickness ranging within 1–2.5 μm. The claimed membranes showed the following characteristics: CO2 permeance is equal to 50–54 m3(STP/(m2 h bar (18,500–20,000 GPU, ideal CO2/N2 selectivity is 3.6–3.7, and their selective layers are insoluble in chloroform. Thus, the developed high-permeance TFC membranes are considered as a promising supports for further modification by enhanced CO2 selective layer formation. Keywords: Thin-film composite membrane

  10. Quantification of functional groups and modeling of their ionization behavior in the active layer of FT30 reverse osmosis membrane.

    Science.gov (United States)

    Coronell, Orlando; Mariñas, Benito J; Zhang, Xijing; Cahill, David G

    2008-07-15

    A new experimental approach was developed to measure the concentration of charged functional groups (FGs) in the active layer of thin-film composite reverse osmosis (RO) and nanofiltration (NF) membranes as a function of solution pH. FT30 RO membrane, with a fully aromatic polyamide (PA) active layer sandwiched between a polysulfone support and a coating layer, was used. The experiments consisted of saturating charged FGs with heavy ion probes, and determining the ion probe concentration by Rutherford backscattering spectrometry (RBS). Deprotonated carboxylic groups were saturated with Ag+, and protonated amine groups with W04(2-). The ionization behavior of carboxylic and amine groups was modeled based on acid-base equilibrium theory. While the ionization behavior of amine groups was satisfactorily described by one dissociation constant (pKa = 4.74), two pKa values (5.23 and 8.97) were necessary to describe the titration curve of carboxylic groups. These results were consistent with the bimodal pore size distribution (PSD) of FT30 active layer reported in the literature. The calculated total concentrations of carboxylic and amine groups in the active layer of the FT30 RO membrane studied were 0.432 and 0.036 M, respectively, and the isoelectric point (IEP) was 4.7. The total concentration of carboxylic and amine groups revealed that the degree of cross-linking of the PA active layer of the FT30 RO membrane studied was 94%.

  11. Development of membrane filters with nanostructured porous layer by coating of metal nanoparticles sintered onto a micro-filter

    International Nuclear Information System (INIS)

    Park, Seok Joo; Park, Young Ok; Lee, Dong Geun; Ryu, Jeong In

    2008-01-01

    The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 KPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%

  12. How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes?

    KAUST Repository

    Khan, Muhammad; Busch, Markus; Molina, Veró nica Garcí a; Emwas, Abdul-Hamid M.; Aubry, Cyril; Croue, Jean-Philippe

    2014-01-01

    To study the effect of water quality and operating parameters on membrane fouling, a comparative analysis of wastewater (WW) and seawater (SW) fouled reverse osmosis (RO) membranes was conducted. Membranes were harvested from SWRO and WWRO pilot plants located in Vilaseca (East Spain), both using ultrafiltration as pretreatment. The SWRO unit was fed with Mediterranean seawater and the WWRO unit was operated using secondary effluent collected from the municipal wastewater treatment plant. Lead and terminal SWRO and WWRO modules were autopsied after five months and three months of operation, respectively. Ultrastructural, chemical, and microbiological analyses of the fouling layers were performed. Results showed that the WWRO train had mainly bio/organic fouling at the lead position element and inorganic fouling at terminal position element, whereas SWRO train had bio/organic fouling at both end position elements. In the case of WWRO membranes, Betaproteobacteria was the major colonizing species; while Ca, S, and P were the major present inorganic elements. The microbial population of SWRO membranes was mainly represented by Alpha and Gammaproteobacteria. Ca, Fe, and S were the main identified inorganic elements of the fouling layer of SWRO membranes. These results confirmed that the RO fouling layer composition is strongly impacted by the source water quality. © 2014 Elsevier Ltd.

  13. How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes?

    KAUST Repository

    Khan, Muhammad

    2014-08-01

    To study the effect of water quality and operating parameters on membrane fouling, a comparative analysis of wastewater (WW) and seawater (SW) fouled reverse osmosis (RO) membranes was conducted. Membranes were harvested from SWRO and WWRO pilot plants located in Vilaseca (East Spain), both using ultrafiltration as pretreatment. The SWRO unit was fed with Mediterranean seawater and the WWRO unit was operated using secondary effluent collected from the municipal wastewater treatment plant. Lead and terminal SWRO and WWRO modules were autopsied after five months and three months of operation, respectively. Ultrastructural, chemical, and microbiological analyses of the fouling layers were performed. Results showed that the WWRO train had mainly bio/organic fouling at the lead position element and inorganic fouling at terminal position element, whereas SWRO train had bio/organic fouling at both end position elements. In the case of WWRO membranes, Betaproteobacteria was the major colonizing species; while Ca, S, and P were the major present inorganic elements. The microbial population of SWRO membranes was mainly represented by Alpha and Gammaproteobacteria. Ca, Fe, and S were the main identified inorganic elements of the fouling layer of SWRO membranes. These results confirmed that the RO fouling layer composition is strongly impacted by the source water quality. © 2014 Elsevier Ltd.

  14. Theory of the formation of the electric double layer at the ion exchange membrane-solution interface.

    Science.gov (United States)

    Moya, A A

    2015-02-21

    This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.

  15. Ultrathin Graphene Membranes as Flexible Electrodes for Electrochemical Double Layer Capacitors

    Science.gov (United States)

    Talapatra, Saikat; Kar, Swastik; Shah, Rakesh; Ghosh, Sujoy; An, Xiaohong; Simmons, Trevor; Washington, Morris; Nayak, Saroj

    2010-03-01

    We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using graphene based ultra thin membranes. These EDLC's show far superior performance compared to other carbon nanomaterials based EDLC's devices. We found that the graphene based devices possess specific capacitance values as high as 120 F/g, with impressive power densities (˜105 kW/kg) and energy densities (˜9.2 Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. Our ultracapacitors reflect a significant improvement over previously reported graphene-based ultracapacitors and are substantially better than those obtained with carbon nanotubes.

  16. Liquid water breakthrough location distances on a gas diffusion layer of polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Yu, Junliang; Froning, Dieter; Reimer, Uwe; Lehnert, Werner

    2018-06-01

    The lattice Boltzmann method is adopted to simulate the three dimensional dynamic process of liquid water breaking through the gas diffusion layer (GDL) in the polymer electrolyte membrane fuel cell. 22 micro-structures of Toray GDL are built based on a stochastic geometry model. It is found that more than one breakthrough locations are formed randomly on the GDL surface. Breakthrough location distance (BLD) are analyzed statistically in two ways. The distribution is evaluated statistically by the Lilliefors test. It is concluded that the BLD can be described by the normal distribution with certain statistic characteristics. Information of the shortest neighbor breakthrough location distance can be the input modeling setups on the cell-scale simulations in the field of fuel cell simulation.

  17. Electrodeposition to construct free-standing chitosan/layered double hydroxides hydro-membrane for electrically triggered protein release.

    Science.gov (United States)

    Zhao, Pengkun; Zhao, Yanan; Xiao, Ling; Deng, Hongbing; Du, Yumin; Chen, Yun; Shi, Xiaowen

    2017-10-01

    In this study, we report the electrodeposition of a chitosan/layered double hydroxides (LDHs) hydro-membrane for protein release triggered by an electrical signal. The electrodeposition was performed in a chitosan and insulin loaded LDHs suspension in the absence of salt. A free-standing chitosan/LDHs hydro-membrane was generated on the electrode with improved mechanical properties, which is dramatically different from the weak hydrogel deposited in the presence of salt. The amount of LDHs in the hydro-membrane affects the optical transmittance and multilayered structure of the hybrid membrane. Compared to the weak chitosan/LDHs hydrogel, the hydro-membrane has a higher insulin loading capacity and the release of insulin is relatively slow. By biasing electrical potentials to the hydro-membrane, the release behavior of insulin can be adjusted accordingly. In addition, the chitosan/LDHs hydro-membrane showed no toxicity to cells. Our results provide a facile method to construct a chitosan/LDHs hybrid multilayered hydro-membrane and suggest the great potential of the hydro-membrane in controlled protein release. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In-situ Growth of Biocidal AgCl Crystals in the Top Layer of Asymmetric Polytriazole Membranes

    KAUST Repository

    Villalobos, Luis Francisco; Chisca, Stefan; Cheng, Hong; Hong, Pei-Ying; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Scalable fabrication strategies to concentrate biocidal materials in only the surface of membranes are highly desirable. In this letter, tight-UF polytriazole membranes with a high concentration of biocide silver chloride (AgCl) crystals dispersed in only their top layer are presented. They were made following a simple dual-bath process that is compatible with current commercial membrane casting facilities. These membranes can achieve a 150-fold increase in their antimicrobial character compared to their silver-free counterpart. Moreover, fine-tuning of their properties is straightforward. A change in the silver concentration in one of the baths is enough to tune the permeance, molecular weight cut-off (MWCO) and silver loading of the final membrane.

  19. In-situ Growth of Biocidal AgCl Crystals in the Top Layer of Asymmetric Polytriazole Membranes

    KAUST Repository

    Villalobos, Luis Francisco

    2016-05-06

    Scalable fabrication strategies to concentrate biocidal materials in only the surface of membranes are highly desirable. In this letter, tight-UF polytriazole membranes with a high concentration of biocide silver chloride (AgCl) crystals dispersed in only their top layer are presented. They were made following a simple dual-bath process that is compatible with current commercial membrane casting facilities. These membranes can achieve a 150-fold increase in their antimicrobial character compared to their silver-free counterpart. Moreover, fine-tuning of their properties is straightforward. A change in the silver concentration in one of the baths is enough to tune the permeance, molecular weight cut-off (MWCO) and silver loading of the final membrane.

  20. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan

    International Nuclear Information System (INIS)

    Ohma, Atsushi; Mashio, Tetsuya; Sato, Kazuyuki; Iden, Hiroshi; Ono, Yoshitaka; Sakai, Kei; Akizuki, Ken; Takaichi, Satoshi; Shinohara, Kazuhiko

    2011-01-01

    The biggest issue that must be addressed in promoting widespread use of fuel cell vehicles (FCVs) is to reduce the cost of the fuel cell system. Especially, it is of vital importance to reduce platinum (Pt) loading of catalyst layers (CLs) in the membrane electrode assembly (MEA) of a proton exchange membrane fuel cell (PEMFC). In order to lower the Pt loading of the MEA, mass transport of reactants related to the performance in high current density should be enhanced significantly as well as kinetics of the catalyst, which can result in the better Pt utilization and effectiveness. In this study, we summarized our analytical approach and methods for reduction of Pt loading in CLs. Microstructure, mass transport properties of the reactants, and their relation in CLs were elucidated by applying experimental analyses and computational methods. A simple CL model for I–V performance prediction was then established, where experimentally elucidated parameters of the microstructure and the properties in CLs were taken into account. Finally, we revealed the impact of lowering the Pt loading on the transport properties, polarization, and the I–V performance.

  1. Gas diffusion layer for proton exchange membrane fuel cells - A review

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Kannan, A.M.; Lin, J.F.; Saminathan, K. [Fuel Cell Research Laboratory, Department of Engineering Technology, Arizona State University, Mesa, AZ 85212 (United States); Ho, Y. [Department of Biotechnology, College of Health Science, Asia University, Taichung 41354 (China); Lin, C.W. [Department of Chemical Engineering, National Yunlin University of Science and Technology, Yunlin 640 (China); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States)

    2009-10-20

    Gas diffusion layer (GDL) is one of the critical components acting both as the functional as well as the support structure for membrane-electrode assembly in the proton exchange membrane fuel cell (PEMFC). The role of the GDL is very significant in the H{sub 2}/air PEM fuel cell to make it commercially viable. A bibliometric analysis of the publications on the GDLs since 1992 shows a total of 400+ publications (>140 papers in the Journal of Power Sources alone) and reveals an exponential growth due to reasons that PEMFC promises a lot of potential as the future energy source for varied applications and hence its vital component GDL requires due innovative analysis and research. This paper is an attempt to pool together the published work on the GDLs and also to review the essential properties of the GDLs, the method of achieving each one of them, their characterization and the current status and future directions. The optimization of the functional properties of the GDLs is possible only by understanding the role of its key parameters such as structure, porosity, hydrophobicity, hydrophilicity, gas permeability, transport properties, water management and the surface morphology. This paper discusses them in detail to provide an insight into the structural parts that make the GDLs and also the processes that occur in the GDLs under service conditions and the characteristic properties. The required balance in the properties of the GDLs to facilitate the counter current flow of the gas and water is highlighted through its characteristics. (author)

  2. Structural Study and Modification of Support Layer for Forward Osmosis Membranes

    KAUST Repository

    Shi, Meixia

    2016-01-01

    polymerization. Among the different substrates we include standard asymmetric porous membranes prepared from homopolymers, such as polysulfone. Additionally block copolymer membrane and Anodisc alumina membrane are chosen based on their exceptional structures

  3. Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment

    KAUST Repository

    Fu, Fengjiang; Sun, Shipeng; Zhang, Sui; Chung, Neal Tai-Shung

    2014-01-01

    Delamination and low water permeability are two issues limiting the applications of dual-layer hollow fiber membranes in the pressure retarded osmosis (PRO) process. In this work, we first developed a universal co-casting method that is able to co-cast highly viscous dope solutions to form homogeneous dual-layer flat sheet membranes. By employing this method prior to the tedious dual-layer hollow fiber spinning process, both time and material consumptions are significantly saved. The addition of polyvinylpyrrolidone (PVP) is found to eliminate delamination at the sacrifice of water flux. A new post-treatment method that involves flowing ammonium persulfate (APS) solution and DI water counter-currently is potentially to remove the PVP molecules entrapped in the substrate while keeps the integrity of the interface. As the APS concentration increases, the water flux in the PRO process is increased while the salt leakage is slightly decreased. With the optimized APS concentration of 5wt%, the post-treated membrane shows a maximum power density of 5.10W/m2 at a hydraulic pressure of 15.0bar when 1M NaCl and 10mM NaCl were used as the draw and feed solutions, respectively. To the extent of our knowledge, this is the best phase inversion dual-layer hollow fiber membrane with an outer selective layer for osmotic power generation. © 2014 Elsevier B.V.

  4. Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment

    KAUST Repository

    Fu, Fengjiang

    2014-11-01

    Delamination and low water permeability are two issues limiting the applications of dual-layer hollow fiber membranes in the pressure retarded osmosis (PRO) process. In this work, we first developed a universal co-casting method that is able to co-cast highly viscous dope solutions to form homogeneous dual-layer flat sheet membranes. By employing this method prior to the tedious dual-layer hollow fiber spinning process, both time and material consumptions are significantly saved. The addition of polyvinylpyrrolidone (PVP) is found to eliminate delamination at the sacrifice of water flux. A new post-treatment method that involves flowing ammonium persulfate (APS) solution and DI water counter-currently is potentially to remove the PVP molecules entrapped in the substrate while keeps the integrity of the interface. As the APS concentration increases, the water flux in the PRO process is increased while the salt leakage is slightly decreased. With the optimized APS concentration of 5wt%, the post-treated membrane shows a maximum power density of 5.10W/m2 at a hydraulic pressure of 15.0bar when 1M NaCl and 10mM NaCl were used as the draw and feed solutions, respectively. To the extent of our knowledge, this is the best phase inversion dual-layer hollow fiber membrane with an outer selective layer for osmotic power generation. © 2014 Elsevier B.V.

  5. Nanoporous Aluminum Oxide Membranes Coated with Atomic Layer Deposition-Grown Titanium Dioxide for Biomedical Applications: An In Vitro Evaluation.

    Science.gov (United States)

    Petrochenko, Peter E; Kumar, Girish; Fu, Wujun; Zhang, Qin; Zheng, Jiwen; Liang, Chengdu; Goering, Peter L; Narayan, Roger J

    2015-12-01

    The surface topographies of nanoporous anodic aluminum oxide (AAO) and titanium dioxide (TiO2) membranes have been shown to modulate cell response in orthopedic and skin wound repair applications. In this study, we: (1) demonstrate an improved atomic layer deposition (ALD) method for coating the porous structures of 20, 100, and 200 nm pore diameter AAO with nanometer-thick layers of TiO2 and (2) evaluate the effects of uncoated AAO and TiO2-coated AAO on cellular responses. The TiO2 coatings were deposited on the AAO membranes without compromising the openings of the nanoscale pores. The 20 nm TiO2-coated membranes showed the highest amount of initial protein adsorption via the micro bicinchoninic acid (micro-BCA) assay; all of the TiO2-coated membranes showed slightly higher protein adsorption than the uncoated control materials. Cell viability, proliferation, and inflammatory responses on the TiO2-coated AAO membranes showed no adverse outcomes. For all of the tested surfaces, normal increases in proliferation (DNA content) of L929 fibroblasts were observed over from 4 hours to 72 hours. No increases in TNF-alpha production were seen in RAW 264.7 macrophages grown on TiO2-coated AAO membranes compared to uncoated AAO membranes and tissue culture polystyrene (TCPS) surfaces. Both uncoated AAO membranes and TiO2-coated AAO membranes showed no significant effects on cell growth and inflammatory responses. The results suggest that TiO2-coated AAO may serve as a reasonable prototype material for the development of nanostructured wound repair devices and orthopedic implants.

  6. The human periodontal membrane: focusing on the spatial interrelation between the epithelial layer of Malassez, fibers, and innervation

    DEFF Research Database (Denmark)

    Kjaer, Inger; Nolting, Dorrit

    2009-01-01

    OBJECTIVE: The purpose of the present study was to map the spatial interrelation of fibers, peripheral nerves, and epithelial layer of Malassez in human periodontal membrane in areas close to the root surfaces. MATERIAL AND METHODS: Four healthy permanent teeth extracted from four patients during...

  7. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer

    KAUST Repository

    Zhang, Sui; Wang, Kaiyu; Chung, Tai Shung Neal; Chen, Hongmin; Jean, Yanching; Amy, Gary L.

    2010-01-01

    polarization (ECP) and ICP, and the St value of the double dense-layer membrane is much smaller than those reported in literatures. Furthermore, the effects of an intermediate immersion into a solvent/water mixed bath prior to complete immersion in water

  8. Mechanical properties and osteogenic activity of poly(l-lactide) fibrous membrane synergistically enhanced by chitosan nanofibers and polydopamine layer.

    Science.gov (United States)

    Liu, Hua; Li, Wenling; Wen, Wei; Luo, Binghong; Liu, Mingxian; Ding, Shan; Zhou, Changren

    2017-12-01

    To synergistically improve the mechanical properties and osteogenic activity of electrospinning poly(l-lactide) (PLLA) membrane, chitosan (CS) nanofibers were firstly introduced to prepare sub-micro and nanofibers interpenetrated PLLA/CS membrane, which was further surface modified with a polydopamine (PDA) layer to obtain PLLA/CS-PDA. Surface morphology, porosity, surface area and hydrophilicity of the obtained fibrous membranes were studied in detail. As compared to pure PLLA, the significant increase in the mechanical properties of the PLLA/CS, and especially of the PLLA/CS-PDA, was confirmed by tensile testing both in dry and wet states. Cells culture results indicated that both the PLLA/CS and PLLA/CS-PDA membranes, especially the latter, were more beneficial to adhesion, spreading and proliferation, as well as up-regulating alkaline phosphate activity and calcium deposition of MC3T3-E1 cells than PLLA membrane. Results suggested there was a synergistic effect of the CS nanofibers and PDA layer on the mechanical properties and osteogenic activity of PLLA membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Subsurface drainage

    CSIR Research Space (South Africa)

    Van Der

    1993-09-01

    Full Text Available and long term behavior were evaluated. Laboratory tests for geotextile selection are recommended and tentative criteria given. The use of fin drains was evaluated in the laboratory and a field study to monitor the efficacy of drainage systems was started...

  10. Transport Asymmetry of Novel Bi-Layer Hybrid Perfluorinated Membranes on the Base of MF-4SC Modified by Halloysite Nanotubes with Platinum

    Directory of Open Access Journals (Sweden)

    Anatoly Filippov

    2018-03-01

    Full Text Available Three types of bi-layer hybrid nanocomposites on the base of perfluorinated cation-exchange membrane MF-4SC (Russian analogue of Nafion®-117 were synthesized and characterized. It was found that two membranes possess the noticeable asymmetry of the current–voltage curve (CVC under changing their orientation towards the applied electric field, despite the absence of asymmetry of diffusion permeability. These phenomena were explained in the frame of the “fine-porous model” expanded for bi-layer membranes. A special procedure to calculate the real values of the diffusion layers thickness and the limiting current density was proposed. Due to asymmetry effects of the current voltage curves of bi-layer hybrid membranes on the base of MF-4SC, halloysite nanotubes and platinum nanoparticles, it is prospective to assemble membrane switches (membrane relays or diodes with predictable transport properties, founded upon the theory developed here.

  11. Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM membranes

    Directory of Open Access Journals (Sweden)

    Sebastian Gutsch

    2015-04-01

    Full Text Available We use high-temperature-stable silicon nitride membranes to investigate single layers of silicon nanocrystal ensembles by energy filtered transmission electron microscopy. The silicon nanocrystals are prepared from the precipitation of a silicon-rich oxynitride layer sandwiched between two SiO2 diffusion barriers and subjected to a high-temperature annealing. We find that such single layers are very sensitive to the annealing parameters and may lead to a significant loss of excess silicon. In addition, these ultrathin layers suffer from significant electron beam damage that needs to be minimized in order to image the pristine sample morphology. Finally we demonstrate how the silicon nanocrystal size distribution develops from a broad to a narrow log-normal distribution, when the initial precipitation layer thickness and stoichiometry are below a critical value.

  12. Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells

    Science.gov (United States)

    Wang, Shunzhong; Li, Xiaohui; Wan, Zhaohui; Chen, Yanan; Tan, Jinting; Pan, Mu

    2018-03-01

    Oxygen transport resistance (OTR) is a critical factor influencing the performance of proton exchange membrane fuel cells (PEMFCs). In this paper, an effective method to reduce the OTR of catalyst layers (CLs) by introducing a hydrophobic additive into traditional CLs is proposed. A low-molecular-weight polytetrafluoroethylene (PTFE) is selected for its feasibility to prepare an emulsion, which is mixed with a traditional catalyst ink to successfully fabricate the CL with PTFE of 10 wt%. The PTFE film exists in the mesopores between the carbon particles. The limiting current of the hydrophobic CL was almost 4000 mA/cm2, which is 500 mA/cm2 higher than that of the traditional CL. PTFE reduces the OTR of the CL in the dry region by as much as 24 s/m compared to the traditional CL and expands the dry region from 2000 mA/cm2 in the traditional CL to 2500 mA/cm2. Furthermore, the CL with the hydrophobic agent can improve the oxygen transport in the wet region (>2000 mA/cm2) more effectively than that in the dry region. All these results indicate that the CL with the hydrophobic agent shows a superior performance in terms of optimizing water management and effectively reduces the OTR in PEMFCs.

  13. Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 1 - Experimental study

    Science.gov (United States)

    Ahadi, Mohammad; Tam, Mickey; Saha, Madhu S.; Stumper, Jürgen; Bahrami, Majid

    2017-06-01

    In this work, a new methodology is proposed for measuring the through-plane thermal conductivity of catalyst layers (CLs) in polymer electrolyte membrane fuel cells. The proposed methodology is based on deconvolution of bulk thermal conductivity of a CL from measurements of two thicknesses of the CL, where the CLs are sandwiched in a stack made of two catalyst-coated substrates. Effects of hot-pressing, compression, measurement method, and substrate on the through-plane thermal conductivity of the CL are studied. For this purpose, different thicknesses of catalyst are coated on ethylene tetrafluoroethylene (ETFE) and aluminum (Al) substrates by a conventional Mayer bar coater and measured by scanning electron microscopy (SEM). The through-plane thermal conductivity of the CLs is measured by the well-known guarded heat flow (GHF) method as well as a recently developed transient plane source (TPS) method for thin films which modifies the original TPS thin film method. Measurements show that none of the studied factors has any effect on the through-plane thermal conductivity of the CL. GHF measurements of a non-hot-pressed CL on Al yield thermal conductivity of 0.214 ± 0.005 Wṡm-1ṡK-1, and TPS measurements of a hot-pressed CL on ETFE yield thermal conductivity of 0.218 ± 0.005 Wṡm-1ṡK-1.

  14. Fabrication of In Vitro Cancer Microtissue Array on Fibroblast-Layered Nanofibrous Membrane by Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Tae-Min Park

    2017-11-01

    Full Text Available In general, a drug candidate is evaluated using 2D-cultured cancer cells followed by an animal model. Despite successful preclinical testing, however, most drugs that enter human clinical trials fail. The high failure rates are mainly caused by incompatibility between the responses of the current models and humans. Here, we fabricated a cancer microtissue array in a multi-well format that exhibits heterogeneous and batch-to-batch structure by continuous deposition of collagen-suspended Hela cells on a fibroblast-layered nanofibrous membrane via inkjet printing. Expression of both Matrix Metalloproteinase 2 (MMP2 and Matrix Metalloproteinase 9 (MMP9 was higher in cancer microtissues than in fibroblast-free microtissues. The fabricated microtissues were treated with an anticancer drug, and high drug resistance to doxorubicin occurred in cancer microtissues but not in fibroblast-free microtissues. These results introduce an inkjet printing fabrication method for cancer microtissue arrays, which can be used for various applications such as early drug screening and gradual 3D cancer studies.

  15. Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Yu, Shuchun; Li, Xiaojin; Li, Jin; Liu, Sa; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2013-01-01

    Highlights: • The hydrophobicity degradation mechanism of GDL was proposed thoroughly. • C-O and C=O groups appeared on the surfaces of GDL after immersion. • The relative content of PTFE in GDL decreased after immersion. • The surfaces and inner structure of GDL destroyed after immersion. - Abstract: As one of the essential components of proton exchange membrane fuel cell (PEMFC), gas diffusion layer (GDL) is of importance on water management, as well on the performance and durability of PEMFC. In this paper, the hydrophobicity degradation of GDL was investigated by immersing it in the 1.0 mol L −1 H 2 SO 4 solution saturated by air for 1200 h. From the measurements of contact angle and water permeability, the hydrophobic characteristics of the pristine and immersed GDLs were compared. To investigate the causes for hydrophobicity degradation, the GDLs were analyzed by scanning electron microscopy, X-ray photoelectron spectroscopy and thermogravimetry. Further, the chemical compositions of H 2 SO 4 solutions before and after immersion test were analyzed with infrared spectroscopy. Results showed that the hydrophobicity of immersed GDL decreased distinctly, which was caused by the damage of physical structure and surface characteristics. Moreover, the immersed GDL showed a worse fuel cell performance than the pristine GDL, especially under a low humidity condition

  16. Development of laundry drainage treatment system with ceramic ultra filter

    International Nuclear Information System (INIS)

    Kanda, Masanori; Kurahasi, Takafumi

    1995-01-01

    A compact laundry drainage treatment system (UF system hereafter) with a ceramic ultra filter membrane (UF membrane hereafter) has been developed to reduce radioactivity in laundry drainage from nuclear power plants. The UF membrane is made of sintered fine ceramic. The UF membrane has 0.01 μm fine pores, resulting in a durable, heat-resistant, and corrosion-resistant porous ceramic filter medium. A cross-flow system, laundry drainage is filtrated while it flows across the UF membrane, is used as the filtration method. This method creates less caking when compared to other methods. The UF membrane is back washed at regular intervals with permeated water to minimize caking of the filter. The UF membrane and cross-flow system provides long stable filtration. The ceramic UF membrane is strong enough to concentrate suspended solids in laundry drainage up to a weight concentration of 10%. The final concentrated laundry drainage can be treated in an incinerator. The performance of the UF system was checked using radioactive laundry drainage. The decontamination factor of the UF system was 25 or more. The laundry drainage treatment capacity and concentration ratio of the UF system, as well as the service life of the UF membrane were also checked by examination using simulated non-radioactive laundry drainage. Even though laundry drainage was concentrated 1000 times, the UF system showed good permeated water quality and permeated water flux. (author)

  17. Vascular Displacement in Idiopathic Macular Hole after Single-layered Inverted Internal Limiting Membrane Flap Surgery.

    Science.gov (United States)

    Lee, Jae Jung; Lee, In Ho; Park, Keun Heung; Pak, Kang Yeun; Park, Sung Who; Byon, Ik Soo; Lee, Ji Eun

    2017-08-01

    To compare vascular displacement in the macula after surgical closure of idiopathic macular hole (MH) after single-layered inverted internal limiting membrane (ILM) flap technique and conventional ILM removal. This retrospective study included patients who underwent either vitrectomy and ILM removal only or vitrectomy with single-layered inverted ILM flap for idiopathic MH larger than 400 μm from 2012 to 2015. A customized program compared the positions of the retinal vessels in the macula between preoperative and postoperative photographs. En face images of 6 × 6 mm optical coherence tomography volume scans were registered to calculate the scale. Retinal vessel displacement was measured as a vector value by comparing its location in 16 sectors of a grid partitioned into eight sectors in two rings (inner, 2 to 4 mm; outer, 4 to 6 mm). The distance and angle of displacement were calculated as an average vector and were compared between the two groups for whole sectors, inner ring, outer ring, and for each sector. Twenty patients were included in the ILM flap group and 22 in the ILM removal group. There were no statistical differences between the groups for baseline characteristics. The average displacement in the ILM flap group and the ILM removal group was 56.6 μm at -3.4° and 64.9 μm at -2.7°, respectively, for the whole sectors (p = 0.900), 76.1 μm at -1.1° and 87.3 μm at -0.9° for the inner ring (p = 0.980), and 37.4 μm at -8.2° and 42.7 μm at -6.3° for the outer ring (p = 0.314). There was no statistical difference in the displacement of each of the sectors. Postoperative topographic changes showed no significant differences between the ILM flap and the ILM removal group for idiopathic MH. The single-layered ILM flap technique did not appear to cause additional displacement of the retinal vessels in the macula. © 2017 The Korean Ophthalmological Society

  18. Characterization of anisotropic UF-membranes: top layer thickness and pore structure

    NARCIS (Netherlands)

    Cuperus, F.P.; Cuperus, F.P.; Bargeman, D.; Bargeman, D.; Smolders, C.A.; Smolders, C.A.

    1991-01-01

    Anisotropic poly(2,6-dimethyl-, 1,4-phenylene oxide) (PPO) ultrafiltration membranes are characterized by means of two techniques. A new method for the determination of skin thicknesses, the gold sol method, is introduced and applied to these membranes. The membranes appeared to have a well-defined

  19. Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer.

    Science.gov (United States)

    Choi, Hyeon-Gyu; Son, Moon; Choi, Heechul

    2017-10-01

    Thin-film composite mixed matrix membrane (TFC MMM) with functionalized carbon nanotube (fCNT) blended in polyethersulfone (PES) support layer was synthesized via interfacial polymerization and phase inversion. This membrane was firstly tested in lab-scale integrating seawater desalination and wastewater reclamation forward osmosis (FO) process. Water flux of TFC MMM was increased by 72% compared to that of TFC membrane due to enhanced hydrophilicity. Although TFC MMM showed lower water flux than TFC commercial membrane, enhanced reverse salt flux selectivity (RSFS) of TFC MMM was observed compared to TFC membrane (15% higher) and TFC commercial membrane (4% higher), representing membrane permselectivity. Under effluent organic matter (EfOM) fouling test, 16% less normalized flux decline of TFC MMM was observed compared to TFC membrane. There was 8% less decline of TFC MMM compared to TFC commercial membrane due to fCNT effect on repulsive foulant-membrane interaction enhancement, caused by negatively charged membrane surface. After 10 min physical cleaning, TFC MMM displayed higher recovered normalized flux than TFC membrane (6%) and TFC commercial membrane (4%); this was also supported by visualized characterization of fouling layer. This study presents application of TFC MMM to integrated seawater desalination and wastewater reclamation FO process for the first time. It can be concluded that EfOM fouling of TFC MMM was suppressed due to repulsive foulant-membrane interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Multilayer composite membranes for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrimid R 5218 selective layer

    Czech Academy of Sciences Publication Activity Database

    Peter, Jakub; Peinemann, K.; V.

    2009-01-01

    Roč. 340, 1-2 (2009), s. 62-72 ISSN 0376-7388 Grant - others:Marie Curie fellowship(XE) HPMT-CT-2001-00220 Institutional research plan: CEZ:AV0Z40500505 Keywords : composite membrane * gas separation * PTMSP * Matrimid Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.203, year: 2009

  1. ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization

    International Nuclear Information System (INIS)

    Portaccio, M.; Gravagnuolo, A.M.; Longobardi, S.; Giardina, P.; Rea, I.; De Stefano, L.; Cammarota, M.; Lepore, M.

    2015-01-01

    Graphical abstract: - Highlights: • Hydrophobin self-assembled layers on Teflon in different preparation conditions were investigated. • ATR collection data geometry allowed samples examination without any particular preparation. • Amide content, lipid/amide and carbohydrate/amide ratios of the protein layer were estimated. • Secondary structure of protein was determined for the examined samples. • FT-IR demonstrated to be of extreme relevance in monitoring hydrophobin self-assembled layers preparation. - Abstract: Surface functionalization by layers of hydrophobins, amphiphilic proteins produced by fungi offers a promising and green strategy for fabrication of biomedical and bioanalytical devices. The layering process of the Vmh2 hydrophobin from Pleurotus ostreatus on Teflon membrane has been investigated by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy. In particular, protein layers obtained with hydrophobin purified with two different procedures and in various coating conditions have been examined. The layers have been characterized by quantifying the amide I and amide II band area together with the lipid/amide ratio and carbohydrate/amide ratio. This characterization can be very useful in evaluating the best purification strategy and coating conditions. Moreover the analysis of the secondary structure of the layered protein using the deconvolution procedure of amide I band indicate the prevalent contribution from β-sheet state. The results inferred by infrared spectroscopy have been also confirmed by scanning electron microscopy imaging

  2. ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Portaccio, M., E-mail: marianna.portaccio@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy); Gravagnuolo, A.M., E-mail: alfredomaria.gravagnuolo@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Longobardi, S., E-mail: sara.longobardi@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Giardina, P., E-mail: paola.giardina@unina.it [Dipartimento di Scienze Chimiche, Università “Federico II”, Via Cintia, 21- 80126 Napoli (Italy); Rea, I., E-mail: ilaria.rea@na.imm.cnr.it [Institute for Microelectronics and Microsystems, CNR, Via P. Castellino, 111-80131 Napoli (Italy); De Stefano, L., E-mail: luca.destefano@na.imm.cnr.it [Institute for Microelectronics and Microsystems, CNR, Via P. Castellino, 111-80131 Napoli (Italy); Cammarota, M., E-mail: marcella.cammarota@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy); Lepore, M., E-mail: maria.lepore@unina2.it [Dipartimento di Medicina Sperimentale – Seconda Università di Napoli, Via S.M. di Costantinopoli, 16-80134 Napoli (Italy)

    2015-10-01

    Graphical abstract: - Highlights: • Hydrophobin self-assembled layers on Teflon in different preparation conditions were investigated. • ATR collection data geometry allowed samples examination without any particular preparation. • Amide content, lipid/amide and carbohydrate/amide ratios of the protein layer were estimated. • Secondary structure of protein was determined for the examined samples. • FT-IR demonstrated to be of extreme relevance in monitoring hydrophobin self-assembled layers preparation. - Abstract: Surface functionalization by layers of hydrophobins, amphiphilic proteins produced by fungi offers a promising and green strategy for fabrication of biomedical and bioanalytical devices. The layering process of the Vmh2 hydrophobin from Pleurotus ostreatus on Teflon membrane has been investigated by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy. In particular, protein layers obtained with hydrophobin purified with two different procedures and in various coating conditions have been examined. The layers have been characterized by quantifying the amide I and amide II band area together with the lipid/amide ratio and carbohydrate/amide ratio. This characterization can be very useful in evaluating the best purification strategy and coating conditions. Moreover the analysis of the secondary structure of the layered protein using the deconvolution procedure of amide I band indicate the prevalent contribution from β-sheet state. The results inferred by infrared spectroscopy have been also confirmed by scanning electron microscopy imaging.

  3. Comparative Study of MIL-96(Al) as Continuous Metal-Organic Frameworks Layer and Mixed-Matrix Membrane.

    Science.gov (United States)

    Knebel, Alexander; Friebe, Sebastian; Bigall, Nadja Carola; Benzaqui, Marvin; Serre, Christian; Caro, Jürgen

    2016-03-23

    MIL-96(Al) layers were prepared as supported metal-organic frameworks membrane via reactive seeding using the α-alumina support as the Al source for the formation of the MIL-96(Al) seeds. Depending on the solvent mixture employed during seed formation, two different crystal morphologies, with different orientation of the transport-active channels, have been formed. This crystal orientation and habit is predefined by the seed crystals and is kept in the subsequent growth of the seeds to continuous layers. In the gas separation of an equimolar H2/CO2 mixture, the hydrogen permeability of the two supported MIL-96(Al) layers was found to be highly dependent on the crystal morphology and the accompanied channel orientation in the layer. In addition to the neat supported MIL-96(Al) membrane layers, mixed-matrix membranes (MMMs, 10 wt % filler loading) as a composite of MIL-96(Al) particles as filler in a continuous Matrimid polymer phase have been prepared. Five particle sizes of MIL-96(Al) between 3.2 μm and 55 nm were synthesized. In the preparation of the MIL-96(Al)/Matrimid MMM (10 wt % filler loading), the following preparation problems have been identified: The bigger micrometer-sized MIL-96(Al) crystals show a trend toward sedimentation during casting of the MMM, whereas for nanoparticles aggregation and recrystallization to micrometer-sized MIL-96(Al) crystals has been observed. Because of these preparation problems for MMM, the neat supported MIL-96(Al) layers show a relatively high H2/CO2 selectivity (≈9) and a hydrogen permeance approximately 2 magnitudes higher than that of the best MMM.

  4. Preparation of dual-layer coated polyester membranes with nuclear tracks and their wave-absorbing property

    International Nuclear Information System (INIS)

    Liu Cunxiong; Hu Lian; Ni Bangfa; Tian Weizhi; Fan Qiwen; Xiao Caijin; Nie Peng; Wang Pingsheng; Zhang Guiying; Huang Donghui

    2010-01-01

    Nanometer materials are of importance in developing electromagnetic-wave-absorbing materials. In this work, 16 μm thick polyester membranes were bombarded by 140 MeV 32 S ions from the HI-13 tandem accelerator to produce latent tracks. The bombarded samples were sensitized by DMF and UV light at 360 nm wavelength, before chemical etching by NaOH solution to develop latent tracks into pores in sizes of nanometers or micrometers in full depth of the membrane. The samples were coated with thin layers of barium ferrite and magnesium fluoride by vacuum evaporation. The reflectivity indices were measured at 2-18 GHz. The results indicate that the modified polyester membrane can effectively absorb 8-18 GHz radar waves.(authors)

  5. Microstructural properties of non-supported microporous ceramic membrane top-layers obtained by the sol-gel process

    NARCIS (Netherlands)

    de Lange, Rob; de Lange, R.S.A.; Hekkink, J.H.A.; Hekkink, J.H.A.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1996-01-01

    Dried and calcined non-supported membrane top-layers of SiO2, SiO2/TiO2, SiO2/ZrO2 (10, 20 and 30 mol% TiO2 and ZrO2, respectively) and SiO2/Al2O3 (10 mol% AlO1.5) were prepared using acid catalyzed hydrolysis and condensation of alkoxides in ethanol. The microstructure was determined using nitrogen

  6. A novel catalyst layer structure based surface-patterned Nafion® membrane for high-performance direct methanol fuel cell

    DEFF Research Database (Denmark)

    Chen, Ming; Wang, Meng; Ding, Xianan

    2018-01-01

    .5% respectively, compared with the conventional catalyst layer. Performance improvement is attributed to the fact that the novel catalyst layer structure optimizes the electrolyte membrane/catalyst layer and gas diffusion layer/catalyst layer interfacial structure, which increases the electrochemical reaction......Conventional catalyst layer with a smooth surface exists the larger area of“catalytic dead zone” and reduces the utilization of catalyst. Based on this, a novel catalyst layer structure based surface-patterned Nafion® membrane was designed to achieve more efficient electrochemical reaction...... to prepare the novel catalyst layer, and the effect of pressure on the performance of MEA was investigated. The results suggested that the peak power density of DMFC with optimal novel catalyst layer structure increased by 28.84%, the charge transfer resistances of anode and cathode reduced by 28.8% and 26...

  7. Preparation and evaluation of tamsulosin hydrochloride sustained-release pellets modified by two-layered membrane techniques

    Directory of Open Access Journals (Sweden)

    Jingmin Wang

    2015-02-01

    Full Text Available The aim of the present study was to develop tamsulosin hydrochloride sustained-release pellets using two-layered membrane techniques. Centrifugal granulator and fluidized-bed coater were employed to prepare drug-loaded pellets and to employ two-layered membrane coating respectively. The prepared pellets were evaluated for physicochemical characterization, subjected to differential scanning calorimetry (DSC and in vitro release of different pH. Different release models and scanning electron microscopy (SEM were utilized to analyze the release mechanism of Harnual® and home-made pellets. By comparing the dissolution profiles, the ratio and coating weight gain of Eudragit® NE30D and Eudragit® L30D55 which constitute the inside membrane were identified as 18:1 and 10%–11%. The coating amount of outside membrane containing Eudragit® L30D55 was determined to be 0.8%. The similarity factors (f2 of home-made capsule and commercially available product (Harnual® were above 50 in different dissolution media. DSC studies confirmed that drug and excipients had good compatibility and SEM photographs showed the similarities and differences of coating surface between Harnual® and self-made pellets before and after dissolution. According to Ritger-Peppas model, the two dosage form had different release mechanism.

  8. Effects of alterations of the E. coli lipopolysaccharide layer on membrane permeabilization events induced by Cecropin A.

    Science.gov (United States)

    Agrawal, Anurag; Weisshaar, James C

    2018-04-22

    The outermost layer of Gram negative bacteria is composed of a lipopolysaccharide (LPS) network that forms a dense protective hydrophilic barrier against entry of hydrophobic drugs. At low μM concentrations, a large family of cationic polypeptides known as antimicrobial peptides (AMPs) are able to penetrate the LPS layer and permeabilize the outer membrane (OM) and the cytoplasmic membrane (CM), causing cell death. Cecropin A is a well-studied cationic AMP from moth. Here a battery of time-resolved, single-cell microscopy experiments explores how deletion of sugar layers and/or phosphoryl negative charges from the core oligosaccharide layer (core OS) of K12 E. coli alters the timing of OM and CM permeabilization induced by Cecropin A. Deletion of sugar layers, or phosphoryl charges, or both from the core OS shortens the time to the onset of OM permeabilization to periplasmic GFP and also the lag time between OM permeabilization and CM permeabilization. Meanwhile, the 12-h minimum inhibitory concentration (MIC) changes only twofold with core OS alterations. The results suggest a two-step model in which the core oligosaccharide layers act as a kinetic barrier to penetration of Cecropin A to the lipid A outer leaflet of the OM. Once a threshold concentration has built up at the lipid A leaflet, nucleation occurs and the OM is locally permeabilized to GFP and, by inference, to Cecropin A. Whenever Cecropin A permeabilizes the OM, CM permeabilization always follows, and cell growth subsequently halts and never recovers on the 45 min observation timescale. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A novel reverse osmosis membrane by ferrous sulfate assisted controlled oxidation of polyamide layer

    Science.gov (United States)

    Raval, Hiren D.; Raviya, Mayur R.; Gauswami, Maulik V.

    2017-11-01

    With growing desalination capacity, it is very important to evaluate the performance of thin film composite reverse osmosis (TFC RO) membrane in terms of energy consumption for desalination. There is a trade-off between salt rejection and water-flux of TFC RO membrane. This article presents a novel approach of analyzing the effect of mixture of an oxidizing agent sodium hypochlorite and a reducing agent ferrous sulfate on virgin TFC RO membrane. Experiments were carried out by varying the concentrations of both sodium hypochlorite and ferrous sulfate. The negative charge was induced on the membrane due to the treatment of combination of sodium hypochlorite and ferrous sulfate, thereby resulting in higher rejection of negative ions due to repulsive force. Membrane treated with 1000 mg l-1 sodium hypochlorite and 2000 mg l-1 ferrous sulfate showed the best salt rejection i.e. 96.23%. The characterization was carried out to understand the charge on the membrane surface by Zeta potential, morphology of membrane surface by scanning electron microscope (SEM), surface roughness features by atomic force microscope (AFM) and chemical structural changes by nuclear magnetic resonance (NMR) analysis.

  10. Dynamics of the Fouling Layer Microbial Community in a Membrane Bioreactor

    DEFF Research Database (Denmark)

    Ziegler, Anja Sloth; McIlroy, Simon Jon; Larsen, Poul

    2016-01-01

    Membrane fouling presents the greatest challenge to the application of membrane bioreactor (MBR) technology. Formation of biofilms on the membrane surface is the suggested cause, yet little is known of the composition or dynamics of the microbial community responsible. To gain an insight...... of the fouling process, we concurrently investigated the communities of the biofilm, MBR bulk sludge, and the conventional activated sludge system used to seed the MBR system over several weeks from start-up. As the biofilm matured the initially abundant betaproteobacterial genera Limnohabitans, Hydrogenophaga...

  11. Synthesis of hyperbranched copolyimides and their application as selective layers in composite membranes

    Czech Academy of Sciences Publication Activity Database

    Peter, Jakub; Kosmala, Barbara; Bleha, Miroslav

    2009-01-01

    Roč. 245, 1-3 (2009), s. 516-526 ISSN 0011-9164. [Engineering with Membranes 2008; Membrane Processes: Development, Monitoring and Modelling – From the Nano to the Macro Scale – EWM 2008. Vale do Lobo, Algarve, 25.05.2008-28.05.2008] R&D Projects: GA MPO 2A-1TP1/116 Institutional research plan: CEZ:AV0Z40500505 Keywords : hyperbranched polyimide * composite membrane * gas separation * soluble polyimide Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.034, year: 2009

  12. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; Dohnalkova, Alice; Smit, John; Jiao, Yongqin

    2016-09-23

    ABSTRACT

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFaand RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaFaand RsaFbare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFaand RsaFbare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFaand RsaFbled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFaand RsaFbled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFaand RsaFbin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels in

  13. Irreversible membrane fouling abatement through pre-deposited layer of hierarchical porous carbons

    KAUST Repository

    Hamad, Juma; Dua, Rubal; Kurniasari, Novita; Kennedy, Maria Dolores; Wang, Peng; Amy, Gary L.

    2014-01-01

    In this work, dual-templated hierarchical porous carbons (HPCs), produced from a coupled ice-hard templating approach, are shown to be a highly effective solution to the commonly occurring problem of irreversible fouling of low-pressure membranes

  14. Effect of PVP Intermediate Layer on the Properties of SAPO 34 Membrane

    Directory of Open Access Journals (Sweden)

    Jugal K. Das

    2012-01-01

    Full Text Available SAPO 34 zeolite membranes were prepared on a tubular mullite support. Before membrane preparation, the support surfaces were coated with seed crystals. Seeds particles were prepared by hydrothermal synthesis. Before seeding, the substrates were treated with polyvinylpyrrolidone (PVP to orient the seeds. Both the treated and untreated supports were seeded, and membranes were synthesized on those support tubes by ex situ hydrothermal method. The PVP molecule exists in the two resonance structures. Hence the acylamino bond –N+ = C–O-– acts as intermediate linker between support surface and seed surface. Due to charge interaction, the seed crystals were anchored strongly to support surface. The synthesized membranes along with seed crystals were characterized by XRD, FESEM, and EDAX analysis. The single-gas permeation with CO2 and H2 was investigated. Up to 5 bar of feed pressure, the permselectivity of CO2 and H2 was as high as 4.2.

  15. Presence of Fe-Al binary oxide adsorbent cake layer in ceramic membrane filtration and their impact for removal of HA and BSA.

    Science.gov (United States)

    Kim, Kyung-Jo; Jang, Am

    2018-04-01

    To enhance the removal of natural organic matter (NOM) in ceramic (Ce) membrane filtration, an iron-aluminum binary oxide (FAO) was applied to the ceramic membrane surface as the adsorbent cake layer, and it was compared with heated aluminum oxide (HAO) for the evaluation of the control of NOM. Both the HAO and FAO adsorbent cake layers efficiently removed the NOM regardless of NOM's hydrophobic/hydrophilic characteristics, and the dissolved organic carbon (DOC) removal in NOM for FAO was 1-1.12 times greater than that for HAO, which means FAO was more efficient in the removal of DOC in NOM. FAO (0.03 μm), which is smaller in size than HAO (0.4 μm), had greater flux reduction than HAO. The flux reduction increased as the filtration proceeded because most of the organic foulants (colloid/particles and soluble NOM) were captured by the adsorbent cake layer, which caused fouling between the membrane surface and the adsorbent cake layer. However, no chemically irreversible fouling was observed on the Ce membrane at the end of the FAO adsorbent cake layer filtration. This means that a stable adsorbent cake layer by FAO formed on the Ce membrane, and that the reduced pure water flux of the Ce membrane, resulting from the NOM fouling, can easily be recovered through physicochemical cleaning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Part I. Fabrication, morphological characterization, and in situ performance

    Science.gov (United States)

    Chevalier, S.; Lavielle, N.; Hatton, B. D.; Bazylak, A.

    2017-06-01

    In this first of a series of two papers, we report an in-depth analysis of the impact of the gas diffusion layer (GDL) structure on the polymer electrolyte membrane (PEM) fuel cell performance through the use of custom GDLs fabricated in-house. Hydrophobic electrospun nanofibrous gas diffusion layers (eGDLs) are fabricated with controlled fibre diameter and alignment. The eGDLs are rendered hydrophobic through direct surface functionalization, and this molecular grafting is achieved in the absence of structural alteration. The fibre diameter, chemical composition, and electrical conductivity of the eGDL are characterized, and the impact of eGDL structure on fuel cell performance is analysed. We observe that the eGDL facilitates higher fuel cell power densities compared to a commercial GDL (Toray TGP-H-60) at highly humidified operating conditions. The ohmic resistance of the fuel cell is found to significantly increase with increasing inter-fiber distance. It is also observed that the addition of a hydrophobic treatment enhances membrane hydration, and fibres perpendicularly aligned to the channel direction may enhance the contact area between the catalyst layer and the GDL.

  17. Nacre-Templated Synthesis of Highly Dispersible Carbon Nanomeshes for Layered Membranes with High-Flux Filtration and Sensing Properties.

    Science.gov (United States)

    Kong, Meng; Li, Mingjie; Shang, Ruoxu; Wu, Jingyu; Yan, Peisong; Xu, Dongmei; Li, Chaoxu

    2018-01-24

    Marine shells not only represent a rapidly accumulating type of fishery wastes but also offer a unique sort of hybrid nanomaterials produced greenly and massively in nature. The elaborate "brick and mortar" structures of nacre enabled the synthesis of carbon nanomeshes with <1 nm thickness, hierarchical porosity, and high specific surface area through pyrolysis, in which two-dimensional (2D) organic layers served as the carbonaceous precursor and aragonite platelets as the hard template. Mineral bridges within 2D organic layers templated the formation of mesh pores of 20-70 nm. In contrast to other hydrophobic carbon nanomaterials, these carbon nanomeshes showed super dispersibility in diverse solvents and thus processability for membranes through filtration, patterning, spray-coating, and ink-writing. The carbon membranes with layered structures were capable of serving not only for high-flux filtration and continuous flow absorption but also for electrochemical and strain sensing with high sensitivity. Thus, utilization of marine shells, on one hand, relieves the environmental concern of shellfish waste, on the other hand, offers a facile, green, low-cost, and massive approach to synthesize unique carbon nanomeshes alternative to graphene nanomeshes and applicable in environmental adsorption, filtration, wearable sensors, and flexible microelectronics.

  18. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).

    Science.gov (United States)

    Suresh, P V; Jayanti, Sreenivas

    2016-10-01

    Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.

  19. Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Kong, Im Mo; Jung, Aeri; Kim, Min Soo

    2016-01-01

    Highlights: • The performance of self-humidified PEMFCs can be improved with double GDBL. • The effect of double GDBL on water retention capability and membrane hydration was investigated. • In addition to HFR and EIS measurements, numerical analysis was conducted. • Optimized design of double GDBL for self-humidified PEMFC was investigated. • This study provides an inspiration on how to design the double GDBL. - Abstract: In order to simplify the system configuration and downsize the volume, a proton exchange membrane fuel cell (PEMFC) needs to be operated in a self-humidified mode without any external humidifiers. However, in self-humidified PEMFCs, relatively low cell performance is a problem to be solved. In our previous study, a gas diffusion layer (GDL) containing double gas diffusion backing layer (GDBL) coated by single micro porous layer (MPL) was introduced and its effect on the cell performance was evaluated. In the present study, the effect of the double GDBL was investigated by measuring high frequency resistance (HFR) and electrochemical impedance spectroscopy (EIS). In the experiments, the HFR value was remarkably reduced, while the diameter of semicircle of EIS was increased. It means that the membrane hydration was improved due to enhanced water retention capability of the GDL despite of interrupted gas diffusion. The result of numerical analysis also showed that the water retention capability of GDL can be improved with proper structure design of double GDBL. Based on the result, optimized design of double GDBL for water retention was obtained numerically. The result of this study provides useful information on the structural design of GDBL for self-humidified PEMFCs.

  20. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy.

    Science.gov (United States)

    Yuan, Bo; Wang, Xinhua; Tang, Chuyang; Li, Xiufen; Yu, Guanghui

    2015-05-15

    Since the concept of the osmotic membrane bioreactor (OMBR) was introduced in 2008, it has attracted growing interests for its potential applications in wastewater treatment and reclamation; however, the fouling mechanisms of forward osmosis (FO) membrane especially the development of biofouling layer in the OMBR are not yet clear. Here, the fouled FO membranes were obtained from the OMBRs on days 3, 8 and 25 in sequence, and then the structure and growing rule of the biofouling layer formed on the FO membrane samples were in-situ characterized by multiple fluorescence labeling and confocal laser scanning microscopy (CLSM). CLSM images indicated that the variations in abundance and distribution of polysaccharides, proteins and microorganisms in the biofouling layer during the operation of OMBRs were significantly different. Before the 8th day, their biovolume dramatically increased. Subsequently, the biovolumes of β-d-glucopyranose polysaccharides and proteins continued increasing and leveled off after 8 days, respectively, while the biovolumes of α-d-glucopyranose polysaccharides and microorganisms decreased. Extracellular polymeric substances (EPS) played a significant role in the formation and growth of biofouling layer, while the microorganisms were seldom detected on the upper fouling layer after 3 days. Based on the results obtained in this study, the growth of biofouling layer on the FO membrane surface in the OMBR could be divided into three stages. Initially, EPS was firstly deposited on the FO membrane surface, and then microorganisms associated with EPS located in the initial depositing layer to form clusters. After that, the dramatic increase of the clusters of EPS and microorganisms resulted in the quick growth of biofouling layer during the flux decline of the OMBR. However, when the water flux became stable in the OMBR, some microorganisms and EPS would be detached from the FO membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Water-Permeable Dialysis Membranes for Multi-Layered Micro Dialysis System

    Directory of Open Access Journals (Sweden)

    Naoya eTo

    2015-06-01

    Full Text Available This paper presents the development of water-permeable dialysis membranes that are suitable for an implantable microdialysis system that does not use dialysis fluid. We developed a microdialysis system integrating microfluidic channels and nanoporous filtering membranes made of polyethersulfone (PES, aiming at a fully implantable system that drastically improves the quality of life of patients. Simplicity of the total system is crucial for the implantable dialysis system, where the pumps and storage tanks for the dialysis fluid pose problems. Hence, we focus on hemofiltration, which does not require the dialysis fluid but water-permeable membranes. We investigated the water-permeability of the PES membrane with respect to the concentrations of the PES, the additives, and the solvents in the casting solution. Sufficiently water-permeable membranes were found through in vitro experiments using whole bovine blood. The filtrate was verified to have the concentrations of low-molecular-weight molecules, such as sodium, potassium, urea, and creatinine, while proteins, such as albumin, were successfully blocked by the membrane. We conducted in vivo experiments using rats, where the system was connected to the femoral artery and jugular vein. The filtrate was successfully collected without any leakage of blood inside the system and it did not contain albumin but low-molecular-weight molecules whose concentrations were identical to those of the blood. The rat model with renal failure showed 100% increase of creatinine in 5 h, while rats connected to the system showed only a 7.4% increase, which verified the effectiveness of the proposed microdialysis system.

  2. Atomic layer deposition of AlN for thin membranes using trimethylaluminum and H2/N2 plasma

    International Nuclear Information System (INIS)

    Goerke, Sebastian; Ziegler, Mario; Ihring, Andreas; Dellith, Jan; Undisz, Andreas; Diegel, Marco; Anders, Solveig; Huebner, Uwe; Rettenmayr, Markus; Meyer, Hans-Georg

    2015-01-01

    Highlights: • AlN films grown at 150 °C by ALD using trimethylaluminum and H 2 /N 2 -plasma. • Nearly stoichiometric AlN films (ratio Al:N = 0.938), polycrystalline by XRD/TEM. • Refractive index of n = 1.908 and low thermal conductivity of κ = 1.66 W/(m K). • Free-standing AlN membranes mechanically stable and buckling free (tensile strain). • Membrane patterning by focused ion beam etching possible. - Abstract: Aluminum nitride (AlN) thin films with thicknesses from 20 to 100 nm were deposited on silicon, amorphous silica, silicon nitride, and vitreous carbon by plasma enhanced atomic layer deposition (PE-ALD). Trimethylaluminum (TMA) and a H 2 /N 2 plasma mixture were used as precursors. We investigated the influence of deposition temperature and plasma parameters on the growth characteristics and the film properties of AlN. Stable PE-ALD growth conditions were obtained from 150 °C to the highest tested temperature of 300 °C. The growth rate, refractive index, and thickness homogeneity on 4″ wafers were determined by spectroscopic ellipsometry. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Rutherford backscattering spectrometry (RBS) were carried out to analyze crystallinity and composition of the films. Furthermore, the thermal conductivity and the film stress were determined. The stress was sufficiently low to fabricate mechanically stable free-standing AlN membranes with lateral dimensions of up to 2.2 × 2.2 mm 2 . The membranes were patterned with focused ion beam etching. Thus, these AlN membranes qualify as dielectric support material for a variety of potential applications

  3. Mechanisms and modeling development of water transport/phase change in catalyst layers of portion exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yexiang [Dept. of Thermal Engineering, Tsinghua University Beijing (China)], email: Yexiang.Xiao@energy.lth.se; Yuan, Jinliang; Sunden, Bengt [Dept. of Energy Sciences, Faculty of Engineering, Lund University (Sweden)], email: Jinliang.yuan@energy.lth.se, email: bengt.sunden@energy.lth.se

    2011-07-01

    Research on proton exchange membrane fuel cells has shown that incorporation of nanosized catalysts can effectively increase active areas and catalyst activity and make a great contribution to development in performance and catalyst utilization. Multiphase transport processes are as significant and complicated as water generation/transfer processes which occur in nano-structured catalyst layers. A review project has been launched aimed at gaining a comprehensive understanding of the mechanisms of water generation or transport phenomena. It covers catalytic reactions and water-phase change within the catalyst layers. The review proceeds in three main stages: Firstly, it characterizes and reconstructs the nano/micro-structured pores and solid-phases; secondly, it emphasises the importance of sensitive and consistent analysis of various water-phase change and transport schemes; and thirdly, it recommends development of microscopic models for multi-phase transport processes in the pores and the solid phases.

  4. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: linking biofouling layer morphology with flux stabilization.

    Science.gov (United States)

    Akhondi, Ebrahim; Wu, Bing; Sun, Shuyang; Marxer, Brigit; Lim, Weikang; Gu, Jun; Liu, Linbo; Burkhardt, Michael; McDougald, Diane; Pronk, Wouter; Fane, Anthony G

    2015-03-01

    In this study gravity-driven membrane (GDM) ultrafiltration is investigated for the pretreatment of seawater before reverse osmosis (RO). The impacts of temperature (21 ± 1 and 29 ± 1 °C) and hydrostatic pressure (40 and 100 mbar) on dynamic flux development and biofouling layer structure were studied. The data suggested pore constriction fouling was predominant at the early stage of filtration, during which the hydrostatic pressure and temperature had negligible effects on permeate flux. With extended filtration time, cake layer fouling played a major role, during which higher hydrostatic pressure and temperature improved permeate flux. The permeate flux stabilized in a range of 3.6 L/m(2) h (21 ± 1 °C, 40 mbar) to 7.3 L/m(2) h (29 ± 1 °C, 100 mbar) after slight fluctuations and remained constant for the duration of the experiments (almost 3 months). An increase in biofouling layer thickness and a variable biofouling layer structure were observed over time by optical coherence tomography and confocal laser scanning microscopy. The presence of eukaryotic organisms in the biofouling layer was observed by light microscopy and the microbial community structure of the biofouling layer was analyzed by sequences of 16S rRNA genes. The magnitude of permeate flux was associated with the combined effect of the biofouling layer thickness and structure. Changes in the biofouling layer structure were attributed to (1) the movement and predation behaviour of the eukaryotic organisms which increased the heterogeneous nature of the biofouling layer; (2) the bacterial debris generated by eukaryotic predation activity which reduced porosity; (3) significant shifts of the dominant bacterial species over time that may have influenced the biofouling layer structure. As expected, most of the particles and colloids in the feed seawater were removed by the GDM process, which led to a lower RO fouling potential. However, the dissolved organic carbon in the

  5. Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.-B.; Dlubak, B.; Piquemal-Banci, M.; Collin, S.; Petroff, F.; Anane, A.; Fert, A.; Seneor, P. [Unité Mixte de Physique CNRS/Thales, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France and Université Paris Sud, 91405 Orsay (France); Weatherup, R. S.; Hofmann, S.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Yang, H. [IBS Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Blume, R. [Helmholtz-Zentrum Berlin fur Materialien und Energie, 12489 Berlin (Germany); Schloegl, R. [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2015-07-06

    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the sign reversal of the measured magnetoresistance.

  6. Cake layers and long filtration times protect ceramic micro-filtration membranes for fouling

    NARCIS (Netherlands)

    Lu, J.

    2013-01-01

    The objective of this research was to decrease membrane fouling of a ceramic microfiltration system and at the same time increase the recovery. A conventional operation in micro- and ultrafiltration is an in-line coagulation and a frequent hydraulic backwash. The idea about these frequent backwashes

  7. Bio-layer management in anaerobic membrane bioreactors for wastewater treatment

    NARCIS (Netherlands)

    Jeison, D.; Lier, van J.B.

    2006-01-01

    Membrane separation technology represents an alternative way to achieve biomass retention in anaerobic bioreactors for wastewater treatment. Due to high biomass concentrations of anaerobic reactors, cake formation is likely to represent a major cause of flux decline. In the presented research,

  8. Irreversible membrane fouling abatement through pre-deposited layer of hierarchical porous carbons

    KAUST Repository

    Hamad, Juma

    2014-11-01

    In this work, dual-templated hierarchical porous carbons (HPCs), produced from a coupled ice-hard templating approach, are shown to be a highly effective solution to the commonly occurring problem of irreversible fouling of low-pressure membranes used for pre-treatment in wastewater reuse. For the first time, dual-templated HPCs, along with their respective counterparts - single-templated meso-porous carbon (MPCs) (without macropores) - are tested in terms of their fouling reduction capacity and ability to remove different effluent organic matter fractions present in wastewater and compared with a commercially available powdered activated carbon (PAC). The synthesized HPCs provided exceptional fouling abatement, a 4-fold higher fouling reduction as compared to the previously reported best performing commercial PAC and ~2.5-fold better fouling reduction than their respective mesoporous counterpart. Thus, it is shown that not only mesoporosity, but macroporosity is also necessary to achieve high fouling reduction, thus emphasizing the need for dual templating. In the case of HPCs, the pre-deposition technique is also found to outperform the traditional sorbent-feed mixing approach, mainly in terms of removal of fouling components. Based on their superior performance, a high permeability (ultra-low-pressure) membrane consisting of the synthesized HPC pre-deposited on a large pore size membrane support (0.45μm membrane), is shown to give excellent pre-treatment performance for wastewater reuse application. © 2014 Elsevier Ltd.

  9. Wire rod coating process of gas diffusion layers fabrication for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, A.M.; Sadananda, S.; Parker, D.; Munukutla, L. [Electronic Systems Department, Arizona State University, 7001 E Williams Field Road, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road West Groton, MA 01472 (United States); Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2008-03-15

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth and Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 C using H{sub 2} and air at 50% RH, compared to all other compositions. (author)

  10. How Do Polyethylene Glycol and Poly(sulfobetaine) Hydrogel Layers on Ultrafiltration Membranes Minimize Fouling and Stay Stable in Cleaning Chemicals?

    KAUST Repository

    Le, Ngoc Lieu

    2017-05-18

    We compare the efficiency of grafting polyethylene glycol (PEG) and poly(sulfobetaine) hydrogel layer on poly(ether imide) (PEI) hollow-fiber ultrafiltration membrane surfaces in terms of filtration performance, fouling minimization and stability in cleaning solutions. Two previously established different methods toward the two different chemistries (and both had already proven to be suited to reduce fouling significantly) are applied to the same PEI membranes. The hydrophilicity of PEI membranes is improved by the modification, as indicated by the change of contact angle value from 89° to 68° for both methods, due to the hydration layer formed in the hydrogel layers. Their pure water flux declines because of the additional permeation barrier from the hydrogel layers. However, these barriers increase protein rejection. In the exposure at a static condition, grafting PEG or poly(sulfobetaine) reduces protein adsorption to 23% or 11%, respectively. In the dynamic filtration, the hydrogel layers minimizes the flux reduction and increases the reversibility of fouling. Compared to the pristine PEI membrane that can recover its flux to 42% after hydraulic cleaning, the PEG and poly(sulfobetaine) grafted membranes can recover their flux up to 63% and 94%, respectively. Stability tests show that the poly(sulfobetaine) hydrogel layer is stable in acid, base and chlorine solutions, whereas the PEG hydrogel layer suffers alkaline hydrolysis in base and oxidation in chlorine conditions. With its chemical stability and pronounced capability of minimizing fouling, especially irreversible fouling, protective poly(sulfobetaine) hydrogel layers have great potential for various membrane-based applications.

  11. Changes in the physical properties of the dynamic layer and its correlation with permeate quality in a self-forming dynamic membrane bioreactor.

    Science.gov (United States)

    Guan, Dao; Dai, Ji; Watanabe, Yoshimasa; Chen, Guanghao

    2018-09-01

    The self-forming dynamic membrane bioreactor (SFDMBR) is a biological wastewater treatment technology based on the conventional membrane bioreactor (MBR) with membrane material modification to a large pore size (30-100 μm). This modification requires a dynamic layer formed by activated sludge to provide effective filtration function for high-quality permeate production. The properties of the dynamic layer are therefore important for permeate quality in SFDMBRs. The interaction between the structure of the dynamic layer and the performance of SFDMBRs is little known but understandably complex. To elucidate the interaction, a lab-scale SFDMBR system coupled with a nylon woven mesh as the supporting material was operated. After development of a mature dynamic layer, excellent solid-liquid separation was achieved, as evidenced by a low permeate turbidity of less than 2 NTU. The permeate turbidity stayed below this level for nearly 80 days. In the fouling phase, the dynamic layer was compressed with an increase in the trans-membrane pressure and the quality of the permeate kept deteriorating until the turbidity exceeded 10 NTU. The investigation revealed that the majority of permeate particles were dissociated from the dynamic layer on the back surface of the supporting material, which is caused by the compression, breakdown, and dissociation of the dynamic layer. This phenomenon was observed directly in experiment instead of model prediction or conjecture for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Modelling porous active layer electrodes of proton exchange membrane fuel cells; Modelisation des couches actives d'electrodes volumiques de piles a combustible a membrane echangeuse de protons

    Energy Technology Data Exchange (ETDEWEB)

    Bultel, Yann

    1997-07-01

    This work focusses on the modeling of mass, charge and heat transfer in the active layers of the volume electrodes of proton exchange membrane fuel cells (PEMFC). A first part describes the structure of fuel cells and the physico-chemical processes taking place at the electrodes. An analysis of the classical models encountered in the literature shows that they all assume that the electro-catalysts is uniformly distributed in a plane or in volume. In a second part, the modeling of mass and charge transport phenomena has been carried out with a numerical calculation software which uses the finite-elements method and which allows to take into consideration the discrete distribution of the catalyst in nano-particulates. The simulations show the limitations of the catalyst use because of the diffusion and ionic ohmic drop both at the electrolyte and particulates scale. In order to improve the modeling of PEMFC fuel cells, the classical models have been modified to consider these local contributions. They require only simple numerical methods, like the finite-differences one. When applied to the oxygen reduction at the cathode or to the hydrogen oxidation at the anode, these models allow to determine the kinetics parameters (exchange current densities and slopes of the Tafel lines) after correction of the active layer diffusion. A modeling of the heat transfers at the active layers scale is proposed. The model takes into account the convective heat transfers between the solid phases and the gas, the electro-osmosis water transfer, and the generation of heat by joule effect and by the electrochemical reactions. Finally, the last chapter presents a study of the reaction mechanisms in the case of porous electrodes using the impedances method. Numerical and analytical models have been developed to calculate the electrode impedances and are applied to the study of oxygen reduction and hydrogen oxidation. (J.S.)

  13. Electromotive force and impedance studies of cellulose acetate membranes: Evidence for two binding sites for divalent cations and for an alveolar structure of the skin layer

    DEFF Research Database (Denmark)

    Smith Sørensen, T.; Jensen, J.B.; Malmgren-Hansen, B.

    1991-01-01

    asymmetic membranes. The skin layer in asymmetric membranes is assumed to have properties similar to dense membranes. The EMF measurements were interpreted by means of a Donnan-Nernst-Planck (Teorell-Meyer-Sievers) model, which functions quite well due to the low fixed charge in the membrane. The membrane...... diffusion potential is calculated by the Henderson method and in some cases by solving transcendental equations according to Planck, Pleijel and Schlogl. There is no great difference between the membrane potentials calculated by the two methods, but the ion profiles and the actual rates of electrodiffusion...... of ca. 30 in the alveolar phase is also supported by a simple dielectric calculation of the Nernst distribution of mono- and divalent ions between external water and the alveolar solution. Corrections for activity coefficients only seems important above 0.5 M. The Onsager-Samaras dielectric repulsion...

  14. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria.

    Science.gov (United States)

    Saarani, Nur Najiha; Jamuna-Thevi, Kalitheerta; Shahab, Neelam; Hermawan, Hendra; Saidin, Syafiqah

    2017-05-31

    A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.

  15. A Highly Ion-Selective Zeolite Flake Layer on Porous Membranes for Flow Battery Applications.

    Science.gov (United States)

    Yuan, Zhizhang; Zhu, Xiangxue; Li, Mingrun; Lu, Wenjing; Li, Xianfeng; Zhang, Huamin

    2016-02-24

    Zeolites are crystalline microporous aluminosilicates with periodic arrangements of cages and well-defined channels, which make them very suitable for separating ions of different sizes, and thus also for use in battery applications. Herein, an ultra-thin ZSM-35 zeolite flake was introduced onto a poly(ether sulfone) based porous membrane. The pore size of the zeolite (ca. 0.5 nm) is intermediary between that of hydrated vanadium ions (>0.6 nm) and protons (99 % and an energy efficiency of >81 % at 200 mA cm(-2), which is by far the highest value ever reported. These convincing results indicate that zeolite-coated membranes are promising in battery applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing.

    Science.gov (United States)

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-06-07

    We report on a plasticized polyurethane ionophore-based thin film material (of hundreds of nanometer thickness) for simultaneous voltammetric multianalyte ion activity detection triggered by the oxidation/reduction of an underlying poly(3-octylthiophene) film. This material provides excellent mechanical, physical, and chemical robustness compared to other polymers. Polyurethane films did not exhibit leaching of lipophilic additives after rinsing with a direct water jet and exhibited resistance to detachment from the underlying electrode surface, resulting in a voltammetric current response with less than acrylate) ionophore-based membranes of the same thickness and composition exhibited a significant deterioration of the signal after identical treatment. While previously reported works emphasized fundamental advancement of multi-ion detection with multi-ionophore-based thin films, polyurethane thin membranes allow one to achieve real world measurements without sacrificing analytical performance. Indeed, polyurethane membranes are demonstrated to be useful for the simultaneous determination of potassium and lithium in undiluted human serum and blood with attractive precision.

  17. Determining time-weighted average concentrations of nitrate and ammonium in freshwaters using DGT with ion exchange membrane-based binding layers

    DEFF Research Database (Denmark)

    Huang, Jianyin; Bennett, William W.; Welsh, David T.

    2016-01-01

    Commercially-available AMI-7001 anion exchange and CMI-7000 cation exchange membranes were utilised as binding layers for DGT measurements of NO3-N and NH4-N in freshwaters. These ion exchange membranes are easier to prepare and handle than DGT binding layers consisting of hydrogels cast with ion...... exchange resins. The membranes showed good uptake and elution efficiencies for both NO3-N and NH4-N. The membrane-based DGTs are suitable for pH 3.5-8.5 and ionic strength ranges (0.0001-0.014 and 0.0003-0.012 mol L−1 as NaCl for the AMI-7001 and CMI-7000 membrane, respectively) typical of most natural...... freshwaters. The binding membranes had high intrinsic binding capacities for NO3-N and NH4-N of 911 ± 88 μg and 3512 ± 51 μg, respectively. Interferences from the major competing ions for membrane-based DGTs are similar to DGTs employing resin-based binding layers but with slightly different selectivity...

  18. Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation.

    Science.gov (United States)

    Chang, Yung; Shih, Yu-Ju; Ko, Chao-Yin; Jhong, Jheng-Fong; Liu, Ying-Ling; Wei, Ta-Chin

    2011-05-03

    In this work, the hemocompatibility of PEGylated poly(vinylidene fluoride) (PVDF) microporous membranes with varying grafting coverage and structures via plasma-induced surface PEGylation was studied. Network-like and brush-like PEGylated layers on PVDF membrane surfaces were achieved by low-pressure and atmospheric plasma treatment. The chemical composition, physical morphology, grafting structure, surface hydrophilicity, and hydration capability of prepared membranes were determined to illustrate the correlations between grafting qualities and hemocompatibility of PEGylated PVDF membranes in contact with human blood. Plasma protein adsorption onto different PEGylated PVDF membranes from single-protein solutions and the complex medium of 100% human plasma were measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Hemocompatibility of the PEGylated membranes was evaluated by the antifouling property of platelet adhesion observed by scanning electron microscopy (SEM) and the anticoagulant activity of the blood coagulant determined by testing plasma-clotting time. The control of grafting structures of PEGylated layers highly regulates the PVDF membrane to resist the adsorption of plasma proteins, the adhesion of platelets, and the coagulation of human plasma. It was found that PVDF membranes grafted with brush-like PEGylated layers presented higher hydration capability with binding water molecules than with network-like PEGylated layers to improve the hemocompatible character of plasma protein and blood platelet resistance in human blood. This work suggests that the hemocompatible nature of grafted PEGylated polymers by controlling grafting structures gives them great potential in the molecular design of antithrombogenic membranes for use in human blood.

  19. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  20. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  1. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croue, Jean-Philippe

    2016-01-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  2. Fabrication of nanopores in multi-layered silicon-based membranes using focused electron beam induced etching with XeF_2 gas

    International Nuclear Information System (INIS)

    Liebes-Peer, Yael; Bandalo, Vedran; Sökmen, Ünsal; Tornow, Marc; Ashkenasy, Nurit

    2016-01-01

    The emergent technology of using nanopores for stochastic sensing of biomolecules introduces a demand for the development of simple fabrication methodologies of nanopores in solid state membranes. This process becomes particularly challenging when membranes of composite layer architecture are involved. To overcome this challenge we have employed a focused electron beam induced chemical etching process. We present here the fabrication of nanopores in silicon-on-insulator based membranes in a single step process. In this process, chemical etching of the membrane materials by XeF_2 gas is locally accelerated by an electron beam, resulting in local etching, with a top membrane oxide layer preventing delocalized etching of the silicon underneath. Nanopores with a funnel or conical, 3-dimensional (3D) shape can be fabricated, depending on the duration of exposure to XeF_2, and their diameter is dominated by the time of exposure to the electron beam. The demonstrated ability to form high-aspect ratio nanopores in comparably thick, multi-layered silicon based membranes allows for an easy integration into current silicon process technology and hence is attractive for implementation in biosensing lab-on-chip fabrication technologies. (author)

  3. 3D morphological characterization of the polyamide active layer of RO and NF membranes using TEM and soft X-ray scattering

    Science.gov (United States)

    Culp, Tyler; Paul, Mou; Roy, Abhishek; Rosenberg, Steve; Behr, Michael; Kumar, Manish; Gomez, Enrique; Penn State Team; Dow Team

    Polyamide-based thin-film composite (TFC) membranes used for reverse osmosis (RO) and nanofiltration (NF) separation processes are at the forefront of water desalination and purification technologies due to their high salt rejection, high energy efficiency, and ease of operation. Nevertheless, in spite of the benefits of RO and NF membranes, many open questions about the internal nanostructure of the membrane active layer remain, such as the dispersion and distribution of acid functional groups. We demonstrate that resonant soft X-ray scattering (RSOXS), where the X-ray energy is tuned to absorption edges of the constituent materials, is a powerful tool to examine the microstructure of the polyamide layer. In conjunction with complementary techniques such as transmission electron microscopy (TEM), where tomography is used to obtain a 3D reconstruction of the polyamide active layer, the effect of cross-linking can be quantified in 3D for a systematic series of membranes. This relationship can then be applied to a series of commercially available RO and NF membranes where the effect of polyamide cross-linking on their respective structure and water transport properties can be evaluated. The combination of RSOXS with traditional characterization tools provides a strategy for linking the chemical structure to the morphology and water transport properties of RO and NF membranes.

  4. An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation

    Science.gov (United States)

    Fan, Li; Chen, Zhe; Zhang, Shu-yi; Ding, Jin; Li, Xiao-juan; Zhang, Hui

    2015-04-01

    Insulating against low-frequency sound (below 500 Hz ) remains challenging despite the progress that has been achieved in sound insulation and absorption. In this work, an acoustic metamaterial based on membrane-coated perforated plates is presented for achieving sound insulation in a low-frequency range, even covering the lower audio frequency limit, 20 Hz . Theoretical analysis and finite element simulations demonstrate that this metamaterial can effectively block acoustic waves over a wide low-frequency band regardless of incident angles. Two mechanisms, non-resonance and monopolar resonance, operate in the metamaterial, resulting in a more powerful sound insulation ability than that achieved using periodically arranged multi-layer solid plates.

  5. SIMULATION OF POROSITY AND PTFE CONTENT IN GAS DIFFUSION LAYER ON PROTON EXCHANGE MEMBRANE FUEL CELL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    NUR H. MASLAN

    2016-01-01

    Full Text Available Numerous research and development activities have been conducted to optimize the operating parameters of a proton exchange membrane fuel cell (PEMFC by experiments and simulations. This study explains the development of a 3D model by using ANSYS FLUENT 14.5 to determine the optimum PEMFC parameters, namely, porosity and polytetrafluoroethylene (PTFE content, in the gas diffusion layer (GDL. A 3D model was developed to analyze the properties and effects of GDL. Simulation results showed that the increase in GDL porosity significantly improved the performance of PEMFC in generating electrical power. However, the performance of PEMFC decreased with increasing PTFE content in GDL. Thus, the PTFE content in the GDL must be optimized and the optimum PTFE content should be 5 wt%. The model developed in this simulation showed good capability in simulating the PEMFC parameters to assist the development process of PEMFC design.

  6. Impact of a silver layer on the membrane of tap water filters on the microbiological quality of filtered water

    Directory of Open Access Journals (Sweden)

    Bruderek Juliane

    2008-10-01

    Full Text Available Abstract Background Bacteria in the hospital's drinking water system represent a risk for the acquisition of a nosocomial infection in the severely immunocompromised host. Terminal tap water filters may be used to prevent nosocomial Legionnaires' disease. We present data from water samples using an improved kind of tap water filters. Methods In a blinded study on an intermediate care unit of the thoracic surgery department, a modified type of the Germlyser water filter (Aqua-Free Membrane Technology with a newly-introduced silver layer on the filtration membrane was compared to its preceding type without such a layer on 15 water outlets. We determined growth of Legionella, other pathogenic bacteria, and the total heterotrophic plate count in unfiltered water and filtered water samples after filter usage intervals of 1 through 4 weeks. Results A total of 299 water samples were tested. Twenty-nine of the 60 unfiltered water samples contained Legionella of various serogroups (baseline value. In contrast, all samples filtered by the original water filter and all but one of the water samples filtered by the modified filter type remained Legionella-free. No other pathogenic bacteria were detected in any filtered sample. The total plate count in water samples increased during use of both kinds of filters over time. However, for the first 7 days of use, there were significantly fewer water samples containing >100 CFU per mL when using the new filter device compared with the older filters or taps with no filter. No advantage was seen thereafter. Conclusion The use of this type of terminal water filter is an appropriate method to protect immunocompromised patients from water-borne pathogens such as Legionella.

  7. Incorporating Embedded Microporous Layers into Topologically Equivalent Pore Network Models for Oxygen Diffusivity Calculations in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    International Nuclear Information System (INIS)

    Fazeli, Mohammadreza; Hinebaugh, James; Bazylak, Aimy

    2016-01-01

    Highlights: • Pore network model for modeling PEMFC MPL-coated GDL effective diffusivity. • Bilayered GDL (substrate and MPL) is modeled with a hybrid network of block MPL elements combined with discrete substrate pores. • Diffusivities of MPL-coated GDLs agree with analytical solutions. - Abstract: In this work, a voxel-based methodology is introduced for the hybridization of a pore network with interspersed nano-porous material elements allowing pore network based oxygen diffusivity calculations in a 3D image of a polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) with an embedded microporous layer (MPL). The composite GDL is modeled by combining a hybrid network of block MPL elements with prescribed bulk material properties and a topologically equivalent network of larger discrete pores and throats that are directly derived from the 3D image of the GDL substrate. This hybrid network was incorporated into a pore network model, and effective diffusivity predictions of GDL materials with MPL coatings were obtained. Stochastically generated numerical models of carbon paper substrates with and without MPLs were used, and the pore space was directly extracted from this realistic geometry as the input for the pore network model. The effective diffusion coefficient of MPL-coated GDL materials was predicted from 3D images in a pore network modeling environment without resolving the nano-scale structure of the MPL. This method is particularly useful due to the disparate length scales that are involved when attempting to capture pore-scale transport in the GDL. Validation was performed by comparing our predicted diffusivity values to analytical predictions, and excellent agreement was observed. Upon conducting a mesh sensitivity study, it was determined that an MPL element size of 7 μm provided sufficiently high resolution for accurately describing the MPL nano-structure.

  8. Thickness of the Macula, Retinal Nerve Fiber Layer, and Ganglion Cell Layer in the Epiretinal Membrane: The Repeatability Study of Optical Coherence Tomography.

    Science.gov (United States)

    Lee, Haeng-Jin; Kim, Min-Su; Jo, Young-Joon; Kim, Jung-Yeul

    2015-07-01

    To analyze the repeatability of measurements of the thicknesses of the macula, retinal nerve fiber layer (RNFL), and ganglion cell inner plexiform layer (GCIPL) using spectral-domain optical coherence tomography (SD-OCT) in the epiretinal membrane (ERM). The prospective study analyzed patients who visited our retinal clinic from June 2013 to January 2014. An experienced examiner measured the thicknesses twice using macular cube 512 × 128 and optic disc cube 200 × 200 scans. The repeatability of the thicknesses of the macula, RNFL, and GCIPL were compared using the intraclass correlation coefficient (ICC) of two groups based on the central macular thickness (group A, ≤ 450 μm; group B, > 450 μm). A total of 88 patients were analyzed. The average thicknesses of the central macula, RNFL, and GCIPL were 256.5, 96.6, and 84.4 μm, respectively, in the normal fellow eye and 412.3, 94.6, and 56.7 μm in the affected eye. The ICCs of the central macula, RNFL, and GCIPL were 0.995, 0.994, and 0.996, respectively, for the normal fellow eye and 0.991, 0.973, and 0.881 for the affected eye. The average thicknesses of the central macula, RNFL, and GCIPL in group A were 360.9, 93.5, and 63.4 μm, respectively, and the ICCs were 0.997, 0.987, and 0.995. The thicknesses in group B were 489.5, 96.2, and 46.6 μm, respectively, and the ICCs were 0.910, 0.942, and 0.603, significantly lower repeatability compared with group A (P macula.

  9. Drainage of radioactive areas

    International Nuclear Information System (INIS)

    1981-04-01

    This Code of Practice covers all the drainage systems which may occur in the radioactive classified area of an establishment, namely surface water, foul, process and radioactive drainage. It also deals with final discharge lines. The Code of Practice concentrates on those aspects of drainage which require particular attention because the systems are in or from radioactive areas and typical illustrations are given in appendices. The Code makes references to sources of information on conventional aspects of drainage design. (author)

  10. Transient drainage summary report

    International Nuclear Information System (INIS)

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage

  11. Mine drainage treatment

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Krstev, Aleksandar

    2012-01-01

    Water flowing from underground and surface mines and contains high concentrations of dissolved metals is called mine drainage. Mine drainage can be categorized into several basic types by their alkalinity or acidity. Sulfide rich and carbonate poor materials are expected to produce acidic drainage, and alkaline rich materials, even with significant sulfide concentrations, often produce net alkaline water. Mine drainages are dangerous because pollutants may decompose in the environment. In...

  12. Development of gas diffusion layer using water based carbon slurry for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.F.; Liu, X.; Adame, A.; Villacorta, R. [Fuel Cell Research Laboratory, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States); Ahmad, R.; Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States); Kannan, A.M., E-mail: amk@asu.ed [Fuel Cell Research Laboratory, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2011-01-01

    The micro-porous layer of gas diffusion layers (GDLs) was fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS), by wire rod coating process. The aqueous carbon slurry with micelle-encapsulation was highly consistent and stable without losing any homogeneity even after adding polytetrafluoroethylene (PTFE) binder for hundreds of hours. The surface morphology, contact angle and pore size distribution of the GDLs were examined using SEM, Goniometer and Hg Porosimeter, respectively. GDLs fabricated with various SDS concentrations were assembled into MEAs and evaluated in a single cell PEMFC under diverse operating relative humidity (RH) conditions using H{sub 2}/O{sub 2} and H{sub 2}/air as reactants. The peak power density of the single cell using the GDLs with optimum SDS concentration was 1400 and 500 mW cm{sup -2} with H{sub 2}/O{sub 2} and H{sub 2}/air at 90% RH, respectively. GDLs were also fabricated with isopropyl alcohol (IPA) based carbon slurry for fuel cell performance comparison. It was found that the composition of the carbon slurry, specifically SDS concentration played a critical role in controlling the pore diameter as well as the corresponding pore volumes of the GDLs.

  13. Fabrication of gas diffusion layer based on x-y robotic spraying technique for proton exchange membrane fuel cell application

    International Nuclear Information System (INIS)

    Sitanggang, Ramli; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Kadhum, Abdul Amir H.; Iyuke, S.E.

    2009-01-01

    The x-y robotic spraying technique developed in the Universiti Kebangsaan Malaysia is capable of fabricating various sizes of thickness and porosity of gas diffusion layer (GDL) used in the proton exchange membrane fuel cell (PEMFC). These parameters are obtained by varying the characteristic spray numbers of the robotic spraying machine. This investigation results were adequately represented with mathematical equations for hydrogen gas distribution in GDL. Volumetric modulus (M) parameter is used to determine the value of current density produced on the electrode of a single cell PEMFC. Thus the M parameter can be employed as indicator for a successful GDL fabrication. GDL type 4 has three variables of layer design that can be optimized to function as gas distributor, gas storage, flooding preventer on GDL surface, to evacuate water from the electrode and to control the electrical conductivity. The gas distribution in GDL was mathematically represented with average error of 15.5%. The M value of GDL type 4 according to the model was 0.22 cm 3 /s and yielded a current density of 750 A/m 2 .

  14. Production and Characterization of a Novel, Electrospun, Tri-Layer Polycaprolactone Membrane for the Segregated Co-Culture of Bone and Soft Tissue

    Directory of Open Access Journals (Sweden)

    Sasima Puwanun

    2016-06-01

    Full Text Available Composite tissue-engineered constructs combining bone and soft tissue have applications in regenerative medicine, particularly dentistry. This study generated a tri-layer, electrospun, poly-ε-caprolactone membrane, with two microfiber layers separated by a layer of nanofibers, for the spatially segregated culture of mesenchymal progenitor cells (MPCs and fibroblasts. The two cell types were seeded on either side, and cell proliferation and spatial organization were investigated over several weeks. Calcium deposition by MPCs was detected using xylenol orange (XO and the separation between fibroblasts and the calcified matrix was visualized by confocal laser scanning microscopy. SEM confirmed that the scaffold consisted of two layers of micron-diameter fibers with a thin layer of nano-diameter fibers in-between. Complete separation of cell types was maintained and calcified matrix was observed on only one side of the membrane. This novel tri-layer membrane is capable of supporting the formation of a bilayer of calcified and non-calcified connective tissue.

  15. Pore-Size-Tuned Graphene Oxide Frameworks as Ion-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox-Flow Batteries.

    Science.gov (United States)

    Kim, Soohyun; Choi, Junghoon; Choi, Chanyong; Heo, Jiyun; Kim, Dae Woo; Lee, Jang Yong; Hong, Young Taik; Jung, Hee-Tae; Kim, Hee-Tak

    2018-05-07

    The laminated structure of graphene oxide (GO) membranes provides exceptional ion-separation properties due to the regular interlayer spacing ( d) between laminate layers. However, a larger effective pore size of the laminate immersed in water (∼11.1 Å) than the hydrated diameter of vanadium ions (>6.0 Å) prevents its use in vanadium redox-flow batteries (VRFB). In this work, we report an ion-selective graphene oxide framework (GOF) with a d tuned by cross-linking the GO nanosheets. Its effective pore size (∼5.9 Å) excludes vanadium ions by size but allows proton conduction. The GOF membrane is employed as a protective layer to address the poor chemical stability of sulfonated poly(arylene ether sulfone) (SPAES) membranes against VO 2 + in VRFB. By effectively blocking vanadium ions, the GOF/SPAES membrane exhibits vanadium-ion permeability 4.2 times lower and a durability 5 times longer than that of the pristine SPAES membrane. Moreover, the VRFB with the GOF/SPAES membrane achieves an energy efficiency of 89% at 80 mA cm -2 and a capacity retention of 88% even after 400 cycles, far exceeding results for Nafion 115 and demonstrating its practical applicability for VRFB.

  16. Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer

    International Nuclear Information System (INIS)

    Kong, Im Mo; Choi, Jong Won; Kim, Sung Il; Lee, Eun Sook; Kim, Min Soo

    2015-01-01

    Highlights: • Investigated self-humidification effect of structurally modified GDBLs in PEMFCs. • One conventional and two modified GDLs were prepared. • Structural design of the GDBLs significantly affected self-humidification. • Stacking was found to have negligible effect on self-humidification. • It can be applied readily to self-humidified PEMFCs. - Abstract: Adequate hydration of the membrane is required to ensure high proton conductivity in proton exchange membrane fuel cells (PEMFCs), which, in turn, is required for achieving high cell performances. While external humidifiers are typically used to humidify the supplied air in conventional systems, their use increases the complexity, weight, volume, and parasitic power loss in fuel cell systems, rendering them unviable in some systems, particularly for portable applications. In this study, the structure of a gas diffusion backing layer (GDBL) was modified to enhance the self-humidification effect in PEMFCs. Three types of GDLs were prepared for the experiments: a conventional GDL (GDL-A with uniform single GDBL) and two modified GDLs (GDL-A′B with uniform double GDBL and GDL-A′C with heterogeneous double GDBLs). In order to evaluate the effect of stacking and structural design on the self-humidification characteristics, some characteristics of the GDLs such as contact angle, resistance, and vapor permeation rate were measured. The electrochemical performances of the fuel cells were also measured at various relative humidity (RH) and stoichiometric ratio (SR) conditions. The results showed that stacking had a negligible effect, whereas the structural design of the GDBL had a significant effect on self-humidification. The self-humidification effect and the cell performance were improved significantly in the structurally modified GDBL. In addition, considering the actual field conditions and the results of the present study, it was concluded that the structural modifications made to the GDBL would

  17. Characterization of internal wetting in polymer electrolyte membrane gas diffusion layers

    Science.gov (United States)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    Capillary pressure vs. saturation (P C(S L)) curves are fundamental to understanding liquid water transport and flooding in PEM gas diffusion layers (GDLs). P C(S L) curves convolute the influence of GDL pore geometry and internal contact angles at the three-phase liquid/solid/gas boundary. Even simple GDL materials are a spatially non-uniform mixture of carbon fiber and binder, making a Gaussian distribution of contact angles likely, based on the Cassie-Baxter equation. For a given Gaussian contact angle distribution with mean (θ Mean) and standard deviation (σ), a realistic P C(S L) curve can be computed using a bundle of capillaries model and GDL pore size distribution data. As expected, computed P C(S L) curves show that θ Mean sets the overall hydrophilic (θ Mean 90°) character of the GDL (i.e., liquid saturation level at a given capillary pressure), and σ affects the slope of the P C(S L) curve. The capillary bundle model also can be used with (θ Mean, σ) as unknown parameters that are best-fit to experimentally acquired P C(S L) and pore size distribution data to find (θ Mean, σ) values for actual GDL materials. To test this, pore size distribution data was acquired for Toray TGP-H-090 along with hysteretic liquid and gas intrusion capillary pressure curve data. High quality best-fits were found between the model and combined datasets, with GDL liquid intrusion showing fairly neutral internal surface wetting properties (θ Mean = 92° and σ = 10°) whereas gas intrusion displayed a hydrophilic character (θ Mean = 52° and σ = 8°). External liquid advancing and receding contact angles were also measured on this same material and they also showed major hysteresis. The new methods described here open the door for better understanding of the link between GDL material processing and the wetting properties that affect flooding.

  18. On-line cake-layer management by trans-membrane pressure steady state assessment in Anaerobic Membrane Bioreactors for wastewater treatment

    NARCIS (Netherlands)

    Jeison, D.; Lier, van J.B.

    2006-01-01

    Membrane bioreactors have been increasingly applied for wastewater treatment during the last two decades. High energy requirements and membrane capital costs remains as their main drawback. A new strategy of operation is presented based on a continuous critical flux determination, preventing

  19. Modes of supraglacial lake drainage and dynamic ice sheet response

    Science.gov (United States)

    Das, S. B.; Behn, M. D.; Joughin, I. R.

    2011-12-01

    We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice

  20. WATER DRAINAGE MODEL

    International Nuclear Information System (INIS)

    Case, J.B.

    2000-01-01

    The drainage of water from the emplacement drift is essential for the performance of the EBS. The unsaturated flow properties of the surrounding rock matrix and fractures determine how well the water will be naturally drained. To enhance natural drainage, it may be necessary to introduce engineered drainage features (e.g. drilled holes in the drifts), that will ensure communication of the flow into the fracture system. The purpose of the Water Drainage Model is to quantify and evaluate the capability of the drift to remove water naturally, using the selected conceptual repository design as a basis (CRWMS M andO, 1999d). The analysis will provide input to the Water Distribution and Removal Model of the EBS. The model is intended to be used to provide postclosure analysis of temperatures and drainage from the EBS. It has been determined that drainage from the EBS is a factor important to the postclosure safety case

  1. Poly(Acrylic acid–Based Hybrid Inorganic–Organic Electrolytes Membrane for Electrical Double Layer Capacitors Application

    Directory of Open Access Journals (Sweden)

    Chiam-Wen Liew

    2016-05-01

    Full Text Available Nanocomposite polymer electrolyte membranes (NCPEMs based on poly(acrylic acid(PAA and titania (TiO2 are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO2.The highest ionic conductivity of (8.36 ± 0.01 × 10−4 S·cm−1 is obtained with addition of 6 wt % of TiO2 at ambient temperature. The complexation between PAA, LiTFSI and TiO2 is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR studies. Electrical double layer capacitors (EDLCs are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F·g−1 (or equivalent to 29.54 mF·cm−2 with excellent electrochemical stability.

  2. A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Xiao, Boqi; Fan, Jintu; Ding, Feng

    2014-01-01

    The study of water and gas transport through fibrous gas diffusion layer (GDL) is important to the optimization of proton exchange membrane fuel cells (PEMFCs). In this work, analytical models of dimensionless permeability, and water and gas relative permeabilities of fibrous GDL in PEMFCs are derived using fractal theory. In our models, the structure of fibrous GDL is characterized in terms of porosity, tortuosity fractal dimension (D T ), pore area fractal dimensions (d f ), water phase (d f,w ) and gas phase (d f,g ) fractal dimensions. The predicted dimensionless permeability, water and gas relative permeabilities based on the proposed models are in good agreement with experimental data and predictions of numerical simulations reported in the literature. The model reveals that, although water phase and gas phase fractal dimensions strongly depend on porosity, the water and gas relative permeabilities are independent of porosity and are a function of water saturation only. It is also shown that the dimensionless permeability decreases significantly with the increase of tortuosity fractal dimension. On the other hand, there is only a small decrease in the water and gas relative permeabilities when tortuosity fractal dimension increases. One advantage of the proposed analytical model is that it contains no empirical constant, which is normally required in past models

  3. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, Dietmar; Sadeler, Christian [Fraunhofer Institute for Solar Energy Systems ISE, Department of Energy Technology, Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2010-08-15

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management. (author)

  4. Validity of two-phase polymer electrolyte membrane fuel cell models with respect to the gas diffusion layer

    Science.gov (United States)

    Ziegler, C.; Gerteisen, D.

    A dynamic two-phase model of a proton exchange membrane fuel cell with respect to the gas diffusion layer (GDL) is presented and compared with chronoamperometric experiments. Very good agreement between experiment and simulation is achieved for potential step voltammetry (PSV) and sine wave testing (SWT). Homogenized two-phase models can be categorized in unsaturated flow theory (UFT) and multiphase mixture (M 2) models. Both model approaches use the continuum hypothesis as fundamental assumption. Cyclic voltammetry experiments show that there is a deterministic and a stochastic liquid transport mode depending on the fraction of hydrophilic pores of the GDL. ESEM imaging is used to investigate the morphology of the liquid water accumulation in the pores of two different media (unteflonated Toray-TGP-H-090 and hydrophobic Freudenberg H2315 I3). The morphology of the liquid water accumulation are related with the cell behavior. The results show that UFT and M 2 two-phase models are a valid approach for diffusion media with large fraction of hydrophilic pores such as unteflonated Toray-TGP-H paper. However, the use of the homgenized UFT and M 2 models appears to be invalid for GDLs with large fraction of hydrophobic pores that corresponds to a high average contact angle of the GDL.

  5. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Science.gov (United States)

    Gerteisen, Dietmar; Sadeler, Christian

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management.

  6. Two-Ply Composite Membranes with Separation Layers from Chitosan and Sulfoethylcellulose on a Microporous Support Based on Poly(diphenylsulfone-N-phenylphthalimide

    Directory of Open Access Journals (Sweden)

    Svetlana V. Kononova

    2017-12-01

    Full Text Available Two-ply composite membranes with separation layers from chitosan and sulfoethylcellulose were developed on a microporous support based on poly(diphenylsulfone-N-phenylphthalimide and investigated by use of X-ray diffraction and scanning electron microscopy methods. The pervaporation properties of the membranes were studied for the separation of aqueous alcohol (ethanol, propan-2-ol mixtures of different compositions. When the mixtures to be separated consist of less than 15 wt % water in propan-2-ol, the membranes composed of polyelectrolytes with the same molar fraction of ionogenic groups (-NH3+ for chitosan and -SO3− for sulfoethylcellulose show high permselectivity (the water content in the permeate was 100%. Factors affecting the structure of a non-porous layer of the polyelectrolyte complex formed on the substrate surface and the contribution of that complex to changes in the transport properties of membranes are discussed. The results indicate significant prospects for the use of chitosan and sulfoethylcellulose for the formation of highly selective pervaporation membranes.

  7. Pleural fluid drainage: Percutaneous catheter drainage versus surgical chest tube drainage

    International Nuclear Information System (INIS)

    Illescas, F.F.; Reinhold, C.; Atri, M.; Bret, P.M.

    1987-01-01

    Over the past 4 years, 55 cases (one transudate, 28 exudates, and 26 empymas) were drained. Surgical chest tubes alone were used in 35 drainages, percutaneous catheters alone in five drainages, and both types in 15 drainages. Percutaneous catheter drainage was successful in 12 of 20 drainages (60%). Surgical tube drainage was successful in 18 of 50 drainages (36%). The success rate for the nonempyema group was 45% with both types of drainage. For the empyema group, the success rate for percutaneous catheter drainage was 66% vs 23% for surgical tube drainage. Seven major complications occurred with surgical tube drainage, but only one major complication occurred with percutaneous catheter drainage. Radiologically guided percutaneous catheter drainage should be the procedure of choice for pleural fluid drainage. It has a higher success rate for empyemas and is associated with less complications

  8. Transport Properties, Mechanical Behavior, Thermal and Chemical Resistance of Asymmetric Flat Sheet Membrane Prepared from PSf/PVDF Blended Membrane on Gauze Supporting Layer

    Directory of Open Access Journals (Sweden)

    Nita Kusumawati

    2018-05-01

    Full Text Available Asymmetric polysulfone (PSf membrane is prepared using phase inversion method and blending with polyvinylidene fluoride (PVDF on the gauze solid support. Casting solution composition optimization has been done to get PSf/PVDF membrane with best characteristics and permeability. The result shows that blending on PSf with PVDF polymer using phase inversion method has been very helpful in creating an asymmetric porous membrane. Increased level of PVDF in casting solution has increased the formation of asymmetry structure and corresponding flux membrane. The result from thermal test using Differential Scanning Calorimetry (DSC-Thermal Gravimetric Analysis (TGA shows the resistance of the membrane to temperature 460 °C. Membrane resistance against acid looks from undetectable changes on infrared spectra after immersion process in H2SO4 6–98 v/v%. While membrane color changes from white to brownish and black is detected after the immersion process in sodium hydroxide (NaOH 0.15–80 w/v%.

  9. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 1: Surface and Cross-Sectional Chemical Analysis.

    Science.gov (United States)

    Dereymaker, Aswin; Scurr, David J; Steer, Elisabeth D; Roberts, Clive J; Van den Mooter, Guy

    2017-04-03

    Fluid bed coating has been shown to be a suitable manufacturing technique to formulate poorly soluble drugs in glass solutions. Layering inert carriers with a drug-polymer mixture enables these beads to be immediately filled into capsules, thus avoiding additional, potentially destabilizing, downstream processing. In this study, fluid bed coating is proposed for the production of controlled release dosage forms of glass solutions by applying a second, rate controlling membrane on top of the glass solution. Adding a second coating layer adds to the physical and chemical complexity of the drug delivery system, so a thorough understanding of the physical structure and phase behavior of the different coating layers is needed. This study aimed to investigate the surface and cross-sectional characteristics (employing scanning electron microscopy (SEM) and time of flight secondary ion mass spectrometry (ToF-SIMS)) of an indomethacin-polyvinylpyrrolidone (PVP) glass solution, top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) were also considered. In addition, polymer miscibility and the phase analysis of the underlying glass solution were investigated. Significant differences in surface and cross-sectional topography of the different rate controlling membranes or the way they are applied (solution vs dispersion) were observed. These observations can be linked to the polymer miscibility differences. The presence of PVP was observed in all rate controlling membranes, even if it is not part of the coating solution. This could be attributed to residual powder presence in the coating chamber. The distribution of PVP among the sample surfaces depends on the concentration and the rate controlling polymer used. Differences can again be linked to polymer miscibility. Finally, it was shown that the underlying glass solution layer

  10. Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor.

    Science.gov (United States)

    Wang, Wei; Wang, Shun; Ren, Xuesong; Hu, Zhenhu; Yuan, Shoujun

    2017-11-01

    Although toxic and refractory organics, such as phenol and quinoline, are decomposed by anaerobic bacteria, the establishment of specific degrading consortia is a relatively slow process. An anaerobic membrane bioreactor allows for complete biomass retention that can aid the establishment of phenol- and quinoline-degrading consortia. In this study, the anaerobic digestion of phenol (500 mg L -1 ) and quinoline (50 mg L -1 ) was investigated using an anaerobic baffled ceramic membrane bioreactor (ABCMBR). The results showed that, within 30 days, 99% of phenol, 98% of quinoline and 88% of chemical oxygen demand (COD) were removed. The substrate utilisation rates of the cake layer for phenol and quinoline, and specific methanogenic activity of the cake layer, were 7.58 mg phenol g -1  mixed liquor volatile suspended solids (MLVSS) day -1 , 8.23 mg quinoline g -1  MLVSS day -1 and 0.55 g COD CH4  g -1  MLVSS day -1 , respectively. The contribution of the cake layer to the removals of phenol and quinoline was extremely underestimated because the uncounted scoured cake layer was disregarded. Syntrophus was the key population for phenol and quinoline degradation, and it was more abundant in the cake layer than in the bulk sludge. The highly active scattered cake layer sped up the establishment of phenol- and quinoline-degrading consortia in the ABCMBR.

  11. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.

    Science.gov (United States)

    Hong, Juree; Lee, Sanggeun; Seo, Jungmok; Pyo, Soonjae; Kim, Jongbaeg; Lee, Taeyoon

    2015-02-18

    A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.

  12. [Ascites drainage at home

    NARCIS (Netherlands)

    Lutjeboer, J.; Erkel, A.R. van; Hoeven, J.J.M. van der; Meer, R.W. van der

    2015-01-01

    Ascites can lead to many symptoms, and often occurs in patients with an end-stage malignancy such as ovarian, pancreatic, colonic, or gastric cancer. Intermittent ascites drainage is applied in these patients as a palliative measure. As frequent drainage is necessary, a subcutaneously tunnelled

  13. Combination tones along the basilar membrane in a 3D finite element model of the cochlea with acoustic boundary layer attenuation

    Science.gov (United States)

    Böhnke, Frank; Scheunemann, Christian; Semmelbauer, Sebastian

    2018-05-01

    The propagation of traveling waves along the basilar membrane is studied in a 3D finite element model of the cochlea using single and two-tone stimulation. The advantage over former approaches is the consideration of viscous-thermal boundary layer damping which makes the usual but physically unjustified assumption of Rayleigh damping obsolete. The energy loss by viscous boundary layer damping is 70 dB lower than the actually assumed power generation by outer hair cells. The space-time course with two-tone stimulation shows the traveling waves and the periodicity of the beat frequency f2 - f1.

  14. Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells

    Science.gov (United States)

    Hild, Nora; Schneider, Oliver D.; Mohn, Dirk; Luechinger, Norman A.; Koehler, Fabian M.; Hofmann, Sandra; Vetsch, Jolanda R.; Thimm, Benjamin W.; Müller, Ralph; Stark, Wendelin J.

    2011-02-01

    The present study evaluates the in vitro biomedical performance of an electrospun, flexible, anisotropic bilayer with one layer containing a collagen to mineral ratio similar to that in bone. The double membrane consists of a poly(lactide-co-glycolide) (PLGA) layer and an amorphous calcium phosphate (a-CaP)/collagen (Col)/PLGA layer. In vitro biomineralisation and a cell culture study with human mesenchymal stem cells (hMSC) were conducted to characterise such membranes for possible application as biomaterials. Nanofibres with different a-CaP/Col/PLGA compositions were synthesised by electrospinning to mimic the actual composition of bone tissue. Immersion in simulated body fluid and in cell culture medium resulted in the deposition of a hydroxyapatite layer. Incubation of hMSC for 4 weeks allowed for assessment of the proliferation and osteogenic differentiation of the cells on both sides of the double membrane. Confocal laser scanning microscopy was used to observe the proper adhesion of the cells. Calcium and collagen content was proven by Alizarin red S and Sirius red assays. Acute cytotoxic effects of the nanoparticles or the chemicals used in the scaffold preparation could be excluded based on viability assays (alamarBlue and alkaline phosphatase activity). The findings suggest possible application of such double membranes is in treatment of bone defects with complex geometries as wound dressing material.The present study evaluates the in vitro biomedical performance of an electrospun, flexible, anisotropic bilayer with one layer containing a collagen to mineral ratio similar to that in bone. The double membrane consists of a poly(lactide-co-glycolide) (PLGA) layer and an amorphous calcium phosphate (a-CaP)/collagen (Col)/PLGA layer. In vitro biomineralisation and a cell culture study with human mesenchymal stem cells (hMSC) were conducted to characterise such membranes for possible application as biomaterials. Nanofibres with different a

  15. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  16. Influence of artificially aged gas diffusion layers on the water management of polymer electrolyte membrane fuel cells analyzed with in-operando synchrotron imaging

    International Nuclear Information System (INIS)

    Arlt, Tobias; Klages, Merle; Messerschmidt, Matthias; Scholta, Joachim; Manke, Ingo

    2017-01-01

    The influence of artificial ageing of gas diffusion layers (GDLs) on the cell performance was investigated using high resolution synchrotron radiography. State-of-the-art GDLs of the type SIGRACET ® SGL 25BC were aged for 0 h, 16 h and 24 h in a hydrogen peroxide solution before they were assembled in the fuel cells. In-operando radiographic measurements were combined with voltage and contact angle measurements. Correlations between applied ageing conditions, GDL water saturation and cell performance were revealed. Hereby, all cell operating conditions were tested several times to estimate the reproducibility of in-operando radiographic fuel cell measurements. Water films at the GDL-membrane and at the GDL-flow field interfaces were found and attributed to MPL cracks and large pores in the GDL structure. The combination of these cracks and pores are assumed to play a crucial role for blocked gas paths, leading to an undersupply with reactants and an increased humidification of the membrane. It is shown that water agglomerations directly impact the membrane resistance. We assume that the hydrophobicity of the fibers inside the GDL is more important for the cell performance than water agglomerations at the membrane-GDL interface. - Highlights: • Influence of ageing of gas diffusion layers on cell performance was investigated. • Cell performance decreased using artificially aged GDLs. • Performance decrease correlated to altered water distribution. • Reproducibility of water thickness measurements with synchrotron imaging.

  17. A Theoretical Study of Subsurface Drainage Model Simulation of ...

    African Journals Online (AJOL)

    User

    Simulation of Drainage Flow and Leaching in Salt Affected ... mg/l with an impermeable layer at 10 m depth and impermeable field boundaries. .... The hydraulic where D is the free molecular diffusion ...... Dynamics of fluid in porous media.

  18. The Experimental Measurement of Local and Bulk Oxygen Transport Resistances in the Catalyst Layer of Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Wang, Chao; Cheng, Xiaojing; Lu, Jiabin; Shen, Shuiyun; Yan, Xiaohui; Yin, Jiewei; Wei, Guanghua; Zhang, Junliang

    2017-12-07

    Remarkable progress has been made in reducing the cathodic Pt loading of PEMFCs; however, a huge performance loss appears at high current densities, indicating the existence of a large oxygen transport resistance associated with the ultralow Pt loading catalyst layer. To reduce the Pt loading without sacrificing cell performance, it is essential to illuminate the oxygen transport mechanism in the catalyst layer. Toward this goal, an experimental approach to measure the oxygen transport resistance in catalyst layers is proposed and realized for the first time in this study. The measuring approach involves a dual-layer catalyst layer design, which consists of a dummy catalyst layer and a practical catalyst layer, followed by changing the thickness of dummy layer to respectively quantify the local and bulk resistances via limiting current measurements combined with linear extrapolation. The experimental results clearly reveal that the local resistance dominates the total resistance in the catalyst layer.

  19. Percutaneous transhepatic biliary drainage

    International Nuclear Information System (INIS)

    Park, Jae Hyung; Hong, Seong Mo; Han, Man Chung

    1982-01-01

    Percutaneous transhepatic biliary drainage was successfully made 20 times on 17 patients of obstructive jaundice for recent 1 year since June 1981 at Department of Radiology in Seoul National University Hospital. The causes of obstructive jaundice was CBD Ca in 13 cases, metastasis in 2 cases, pancreatic cancer in 1 case and CBD stone in 1 case. Percutaneous transhepatic biliary drainage is a relatively ease, safe and effective method which can be done after PTC by radiologist. It is expected that percutaneous transhepatic biliary drainage should be done as an essential procedure for transient permanent palliation of obstructive jaundice

  20. Acid Mine Drainage Treatment

    National Research Council Canada - National Science Library

    Fripp, Jon

    2000-01-01

    .... Acid mine drainage (AMD) can have severe impacts to aquatic resources, can stunt terrestrial plant growth and harm wetlands, contaminate groundwater, raise water treatment costs, and damage concrete and metal structures...

  1. Agricultural Drainage Well Intakes

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Locations of surface intakes for registered agriculture drainage wells according to the database maintained by IDALS. Surface intakes were located from their...

  2. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  3. Stripping analysis of nanomolar perchlorate in drinking water with a voltammetric ion-selective electrode based on thin-layer liquid membrane.

    Science.gov (United States)

    Kim, Yushin; Amemiya, Shigeru

    2008-08-01

    A highly sensitive analytical method is required for the assessment of nanomolar perchlorate contamination in drinking water as an emerging environmental problem. We developed the novel approach based on a voltammetric ion-selective electrode to enable the electrochemical detection of "redox-inactive" perchlorate at a nanomolar level without its electrolysis. The perchlorate-selective electrode is based on the submicrometer-thick plasticized poly(vinyl chloride) membrane spin-coated on the poly(3-octylthiophene)-modified gold electrode. The liquid membrane serves as the first thin-layer cell for ion-transfer stripping voltammetry to give low detection limits of 0.2-0.5 nM perchlorate in deionized water, commercial bottled water, and tap water under a rotating electrode configuration. The detection limits are not only much lower than the action limit (approximately 246 nM) set by the U.S. Environmental Protection Agency but also are comparable to the detection limits of the most sensitive analytical methods for detecting perchlorate, that is, ion chromatography coupled with a suppressed conductivity detector (0.55 nM) or electrospray ionization mass spectrometry (0.20-0.25 nM). The mass transfer of perchlorate in the thin-layer liquid membrane and aqueous sample as well as its transfer at the interface between the two phases were studied experimentally and theoretically to achieve the low detection limits. The advantages of ion-transfer stripping voltammetry with a thin-layer liquid membrane against traditional ion-selective potentiometry are demonstrated in terms of a detection limit, a response time, and selectivity.

  4. Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms.

    Science.gov (United States)

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2015-10-20

    The volume-averaged amide link scission in the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine was quantified at a variety of free chlorine exposure times, concentrations, and pH and rinsing conditions. The results showed that (i) hydroxyl ions are needed for scission to occur, (ii) hydroxide-induced amide link scission is a strong function of exposure to hypochlorous acid, (iii) the ratio between amide links broken and chlorine atoms taken up increased with the chlorination pH and reached a maximum of ∼25%, (iv) polyamide disintegration occurs when high free chlorine concentrations, alkaline conditions, and high exposure times are combined, (v) amide link scission promotes further chlorine uptake, and (vi) scission at the membrane surface is unrepresentative of volume-averaged scission in the active layer. Our observations are consistent with previously proposed mechanisms describing amide link scission as a result of the hydrolysis of the N-chlorinated amidic N-C bond due to nucleophilic attack by hydroxyl ions. This study increases the understanding of the physicochemical changes that could occur for membranes in treatment plants using chlorine as an upstream disinfectant and the extent and rate at which those changes would occur.

  5. Pervaporation Membranes with Poly(γ-Benzyl-L-Glutamate) Selective Layers for Separation of Toluene - n-Heptane Mixtures

    Czech Academy of Sciences Publication Activity Database

    Kononova, S.V.; Kremnev, R.V.; Suvorova, E.I.; Baklagina, Y.G.; Volchek, B.Z.; Uchytil, Petr; Shabsels, B.M.; Romashkova, K.A.; Setničková, Kateřina; Řezníčková Čermáková, Jiřina

    2015-01-01

    Roč. 477, MAR 1 (2015), s. 14-24 ISSN 0376-7388 Institutional support: RVO:67985858 Keywords : composite membrane * structure * hydrocarbons pervaporation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 5.557, year: 2015

  6. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process

    Science.gov (United States)

    Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin

    2017-10-01

    A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.

  7. Cheap Thin Film Oxygen Membranes

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention provides a membrane, comprising a porous support layer a gas tight electronically and ionically conducting membrane layer and a catalyst layer, characterized in that the electronically and ionically conducting membrane layer is formed from a material having a crystallite...... structure with a crystal size of about 1 to 100 nm, and a method for producing same....

  8. A proposed agglomerate model for oxygen reduction in the catalyst layer of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhang, Xiaoxian; Gao, Yuan; Ostadi, Hossein; Jiang, Kyle; Chen, Rui

    2014-01-01

    Highlights: • We developed a new agglomerate model to describe oxygen reduction reaction. • We showed how to calculate the model parameters from catalyst layer structure. • We verified the agglomerate model. - Abstract: Oxygen diffusion and reduction in the catalyst layer of PEM fuel cell is an important process in fuel cell modelling, but models able to link the reduction rate to catalyst-layer structure are lack; this paper makes such an effort. We first link the average reduction rate over the agglomerate within a catalyst layer to a probability that an oxygen molecule, which is initially on the agglomerate surface, will enter and remain in the agglomerate at any time in the absence of any electrochemical reaction. We then propose a method to directly calculate distribution function of this probability and apply it to two catalyst layers with contrasting structures. A formula is proposed to describe these calculated distribution functions, from which the agglomerate model is derived. The model has two parameters and both can be independently calculated from catalyst layer structures. We verify the model by first showing that it is an improvement and able to reproduce what the spherical model describes, and then testing it against the average oxygen reductions directly calculated from pore-scale simulations of oxygen diffusion and reaction in the two catalyst layers. The proposed model is simple, but significant as it links the average oxygen reduction to catalyst layer structures, and its two parameters can be directly calculated rather than by calibration

  9. [Ascites drainage at home].

    Science.gov (United States)

    Lutjeboer, Jacob; van Erkel, Arian R; van der Hoeven, J J M Koos; van der Meer, Rutger W

    2015-01-01

    Ascites can lead to many symptoms, and often occurs in patients with an end-stage malignancy such as ovarian, pancreatic, colonic, or gastric cancer. Intermittent ascites drainage is applied in these patients as a palliative measure. As frequent drainage is necessary, a subcutaneously tunnelled permanent ascites catheter is a good alternative for intermittent drainage. The patient can open - and then re-close - the catheter when abdominal pressure increases. We inserted 35 subcutaneously permanent ascites catheters in the course of the past 3.5 years in the Leiden University Medical Centre. The success rate was 100% and the complication risk was 2.9%. A subcutaneously tunnelled ascites catheter is an effective and safe palliative treatment for patients with end-stage malignant disease and suffering from ascites.

  10. Agricultural drainage water quality

    International Nuclear Information System (INIS)

    Madani, A.; Gordon, R.

    2002-01-01

    'Full text:' Agricultural drainage systems have been identified as potential contributors of non-point source pollution. Two of the major concerns have been with nitrate-nitrogen (NO3 - -N) concentrations and bacteria levels exceeding the Maximum Acceptable Concentration in drainage water. Heightened public awareness of environmental issues has led to greater pressure to maintain the environmental quality of water systems. In an ongoing field study, three experiment sites, each with own soil properties and characteristics, are divided into drainage plots and being monitored for NO3 - -N and fecal coliforms contamination. The first site is being used to determine the impact of the rate of manure application on subsurface drainage water quality. The second site is being used to determine the difference between hog manure and inorganic fertilizer in relation to fecal coliforms and NO3-N leaching losses under a carrot rotation system. The third site examines the effect of timing of manure application on water quality, and is the only site equipped with a surface drainage system, as well as a subsurface drainage system. Each of the drains from these fields lead to heated outflow buildings to allow for year-round measurements of flow rates and water samples. Tipping buckets wired to data-loggers record the outflow from each outlet pipe on an hourly basis. Water samples, collected from the flowing drains, are analyzed for NO3 - -N concentrations using the colorimetric method, and fecal coliforms using the Most Probable Number (MPN) method. Based on this information, we will be able better positioned to assess agricultural impacts on water resources which will help towards the development on industry accepted farming practices. (author)

  11. Characterization on glow-discharge-treated cellulose acetate membrane surfaces for single-layer enzyme electrode studies

    Czech Academy of Sciences Publication Activity Database

    Biederman, H.; Boyaci, I. H.; Bílková, P.; Slavinská, D.; Mutlu, S.; Zemek, Josef; Trchová, M.; Klimovič, J.; Mutlu, M.

    2001-01-01

    Roč. 81, - (2001), s. 1341-1352 ISSN 0021-8995 Institutional research plan: CEZ:AV0Z1010914 Keywords : cellulose acetate membrane * plasma polymerization * surface treatment * enzyme electrodes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.992, year: 2001

  12. X-ray Tomographic Analysis of Porosity Distributions in Gas Diffusion Layers of Proton Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Odaya, S.; Phillips, R.K.; Sharma, Y.; Bellerive, J.; Phillion, A.B.; Hoorfar, M.

    2015-01-01

    This paper describes a method to characterize the structure of polytetrafluoroethylene (PTFE) treated gas diffusion layers (GDLs) with and without microporous layers (MPLs) using 3D X-ray micro computed tomographic (μCT) microscopy. In this work, the structure of single and dual layer GDLs is evaluated via μCT for various GDL samples (such as Toray TGP-H-060 and AvCarb EP40) loaded with different MPLs. A new method is presented for separating, or segmenting, the various phases of the GDL, i.e., void space, carbon fiber (including binder and PTFE), and MPL. Through analysis, it was found that the variation in bulk porosity and the average pore diameter of the GDLs depends highly on the GDL series manufacturing and treatment processes. Using advanced image analysis techniques, routines were developed to accurately segment the GDL fibers (including binder/PTFE) and the MPL. The percentage of the intruding MPL material into the carbon fiber paper as a function of the GDL thickness was successfully found for dual layer GDLs, with varying PTFE content and areal weight loading in the MPL. This analysis provides invaluable insight into the physical microstructure of paper-based GDLs, emphasizing the heterogeneous porosity distribution of single layer GDLs and the interaction of the MPL with the carbon fiber paper of dual layer GDLs

  13. Drainage Water Filtration

    Science.gov (United States)

    Tile drainage discharge from managed turf is known to carry elevated concentrations of agronomic fertilizers and chemicals. One approach being considered to reduce the transport is end-of-tile-filters. Laboratory and field studies have been initiated to address the efficacy of this approach. Result...

  14. Effect of interactions between Co(2+) and surface goethite layer on the performance of α-FeOOH coated hollow fiber ceramic ultrafiltration membranes.

    Science.gov (United States)

    Zhu, Zhiwen; Zhu, Li; Li, Jianrong; Tang, Jianfeng; Li, Gang; Hsieh, Yi-Kong; Wang, TsingHai; Wang, Chu-Fang

    2016-03-15

    The consideration of water energy nexus inspires the environmental engineering community to pursue a more sustainable strategy in the wastewater treatment. One potential response would be to enhance the performance of the low-pressure driven filtration system. To reach this objective, it is essential to have a better understanding regarding the surface interaction between the target substance and the surface of membrane. In this study, the hollow fiber ceramic membranes were coated with a goethite layer in order to enhance the Co(2+) rejection. Experimental results indicate that higher Co(2+) rejections are always accompanied with the significant reduction in the permeability. Based on the consideration of electroviscous effect, the surface interactions including the induced changes in viscosity, pore radius and Donnan effect in the goethite layer are likely responsible for the pH dependent behaviors in the rejection and permeability. These results could be valuable references to develop the filtration system with high rejection along with acceptable degree of permeability in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Induced- and alternating-current electro-osmotic control of the diffusion layer growth in a microchannel-membrane interface device

    Science.gov (United States)

    Park, Sinwook; Yossifon, Gilad

    2014-11-01

    The passage of an electric current through an ionic permselective medium under an applied electric field is characterized by the formation of ionic concentration gradients, which result in regions of depleted and enriched ionic concentration at opposite ends of the medium. Induced-current electro-osmosis (ICEO) and alternating-current-electro-osmosis (ACEO) are shown to control the growth of the diffusion layer (DL) which, in turn, controls the diffusion limited ion transport through the microchannel-membrane system. We fabricated and tested devices made of a Nafion membrane connecting two opposite PDMS microchannels. An interdigitated electrode array was embedded within the microchannel with various distances from the microchannel-membrane interface. The induced ICEO (floating electrodes) / ACEO (active electrodes) vortices formed at the electrode array stir the fluid and thereby suppress the growth of the DL. The intensity of the ACEO vortices is controlled by either varying the voltage amplitude or the frequency, each having its own unique effect. Enhancement of the limiting current by on-demand control of the diffusion length is of importance in on-chip electro-dialysis, desalination and preconcentration of analytes.

  16. Wound Drainage Culture (For Parents)

    Science.gov (United States)

    ... Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Wound Drainage Culture KidsHealth / For Parents / Wound Drainage Culture What's in ...

  17. Flexible Strain Sensor Based on Layer-by-Layer Self-Assembled Graphene/Polymer Nanocomposite Membrane and Its Sensing Properties

    Science.gov (United States)

    Zhang, Dongzhi; Jiang, Chuanxing; Tong, Jun; Zong, Xiaoqi; Hu, Wei

    2018-04-01

    Graphene is a potential building block for next generation electronic devices including field-effect transistors, chemical sensors, and radio frequency switches. Investigations of strain application of graphene-based films have emerged in recent years, but the challenges in synthesis and processing achieving control over its fabrication constitute the main obstacles towards device applications. This work presents an alternative approach, layer-by-layer self-assembly, allowing a controllable fabrication of graphene/polymer film strain sensor on flexible substrates of polyimide with interdigital electrodes. Carboxylated graphene and poly (diallyldimethylammonium chloride) (PDDA) were exploited to form hierarchical nanostructure due to electrostatic action. The morphology and structure of the film were inspected by using scanning electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The strain-sensing properties of the graphene/PDDA film sensor were investigated through tuning micrometer caliper exertion and a PC-assisted piezoresistive measurement system. Experimental result shows that the sensor exhibited not only excellent response and reversibility behavior as a function of deflection, but also good repeatability and acceptable linearity. The strain-sensing mechanism of the proposed sensor was attributed to the electrical resistance change resulted from piezoresistive effect.

  18. Premature rupture of membranes

    Science.gov (United States)

    ... gov/ency/patientinstructions/000512.htm Premature rupture of membranes To use the sharing features on this page, ... water that surrounds your baby in the womb. Membranes or layers of tissue hold in this fluid. ...

  19. Comparison of semen variables, sperm DNA damage and sperm membrane proteins in two male layer breeder lines.

    Science.gov (United States)

    M, Shanmugam; T R, Kannaki; A, Vinoth

    2016-09-01

    Semen variables are affected by the breed and strain of chicken. The present study was undertaken to compare the semen quality in two lines of adult chickens with particular reference to sperm chromatin condensation, sperm DNA damage and sperm membrane proteins. Semen from a PD3 and White Leghorn control line was collected at 46 and 47 weeks and 55 weeks of age. The semen was evaluated for gross variables and sperm chromatin condensation by aniline blue staining. Sperm DNA damage was assessed by using the comet assay at 47 weeks of age and sperm membrane proteins were assessed at 55 weeks of age. The duration of fertility was studied by inseminating 100 million sperm once into the hens of the same line as well as another line. The eggs were collected after insemination for 15days and incubated. The eggs were candled on 18th day of incubation for observing embryonic development. The White Leghorn control line had a greater sperm concentration and lesser percentage of morphologically abnormal sperm at the different ages where assessments occurred. There was no difference in sperm chromatin condensation, DNA damage and membrane proteins between the lines. Only low molecular weight protein bands of less than 95kDa were observed in samples of both lines. The line from which semen was used had no effect on the duration over which fertility was sustained after insemination either when used in the same line or another line. Thus, from the results of the present study it may be concluded that there was a difference in gross semen variables between the lines that were studied, however, the sperm chromatin condensation, DNA damage, membrane proteins and duration over which fertility was sustained after insemination did not differ between the lines. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Preparation and characterization of micro-cell membrane chromatographic column with N-hydroxysuccinimide group-modified silica-based porous layer open tubular capillary.

    Science.gov (United States)

    Xu, Liang; Xu, Bei; Zhao, Zhi-Yu; Yang, Hui-Ping; Tang, Cheng; Dong, Lin-Yi; Liu, Kun; Fu, Li; Wang, Xian-Hua

    2017-09-22

    Cell membrane chromatography (CMC) is an effective tool in screening active compounds from natural products and studying membrane protein interactions. Nevertheless, it always consumes a large amount of cells (e.g. 10 7 -10 8 ) for column preparation. To overcome this, micro-CMC (mCMC), that employs a silica capillary as membrane carrier, was developed. However, both CMC and mCMC suffer from short column life span (e.g. 3days), mainly due to the falling-off of cellular membranes (CMs). This has greatly limited further application of CMC and mCMC, especially when the cells are hard to obtain. To solve this, N-hydroxysuccinimide (NHS)-modified silica-based porous layer open tubular capillary was first prepared for mCMC. The NHS groups can easily react with amino groups on CMs to form a stable covalent bond under a mild condition. So, CMs immobilized on the NHS-modified capillary are less likely to fall off. To verify this, SKBR3/mCMC (Her2 positive) and BALL1/mCMC (CD20 positive) columns were prepared. Two monoclonal antibody drugs, trastuzumab (anti-Her2) and rituximab (anti-CD20), were selected as analytes to characterize the columns. As a result, NHS-modified column for mCMC can afford higher chromatographic retention than non-modified column. Besides, the column life span was significantly improved to more than 16days for SKBR3/mCMC and 14days for BALL1/mCMC, while the compared column showed a sharp decline in retention factor in first 3days. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Application of Gas Pre-drainage Using Layer-through Borehole Technology from Strip Mining Region in Zhaozhuang Coal Mine%穿层钻孔预抽煤巷条带煤层瓦斯在赵庄矿的应用

    Institute of Scientific and Technical Information of China (English)

    李付涛

    2015-01-01

    According to the coal seam permeability difference and the not -ideal drainage effect, pre -drainage based an drilling through the floor roadway is used in Zhaozhuang Mine.analysis and study of the effecs gas drainage,including the bottom layer selec-tion, borehole layout and hole sealing technology,confirmed the feasibility and good gas treatment effect of this measure, which provi-ding security for the long-term development of the coal mine.%针对煤层透气性差、抽采效果不理想的问题,赵庄矿应用了底板岩巷穿层钻孔预抽措施。通过对底抽巷的层位选择、穿层钻孔的布置、封孔工艺等影响瓦斯抽采效果的各个环节的分析研究,验证了采用底抽巷实施穿层钻孔预抽煤巷条带煤层瓦斯掩护巷道掘进的可行性和良好的瓦斯治理效果,为矿井的长远发展提供了安全保障。

  2. Prontonic ceramic membrane fuel cells with layered GdBaCo{sub 2}O{sub 5+x} cathode prepared by gel-casting and suspension spray

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bin; Zhang, Shangquan; Zhang, Linchao; Bi, Lei; Ding, Hanping; Liu, Xingqin; Gao, Jianfeng; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China)

    2008-03-01

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs) with layered GdBaCo{sub 2}O{sub 5+x} (GBCO) cathode, a dense BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) electrolyte was fabricated on a porous anode by gel-casting and suspension spray. The porous NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (NiO-BZCY7) anode was directly prepared from metal oxide (NiO, BaCO{sub 3}, ZrO{sub 2}, CeO{sub 2} and Y{sub 2}O{sub 3}) by a simple gel-casting process. A suspension of BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} powders synthesized by gel-casting was then employed to deposit BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) thin layer by pressurized spray process on NiO-BZCY7 anode. The bi-layer with 10 {mu}m dense BZCY7 electrolyte was obtained by co-sintering at 1400 C for 5 h. With layered GBCO cathode synthesized by gel-casting on the bi-layer, single cells were assembled and tested with H{sub 2} as fuel and the static air as oxidant. An open-circuit potential of 0.98 V, a maximum power density of 266 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.16 {omega} cm{sup 2} was achieved at 700 C. (author)

  3. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  4. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling.

    Science.gov (United States)

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2014-01-01

    We studied the volume-averaged chlorine (Cl) uptake into the bulk region of the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine. Volume-averaged measurements were obtained using Rutherford backscattering spectrometry with samples prepared at a range of free chlorine concentrations, exposure times, and mixing, rinsing, and pH conditions. Our volume-averaged measurements complement previous studies that have quantified Cl uptake at the active layer surface (top ≈ 7 nm) and advance the mechanistic understanding of Cl uptake by aromatic polyamide active layers. Our results show that surface Cl uptake is representative of and underestimates volume-averaged Cl uptake under acidic conditions and alkaline conditions, respectively. Our results also support that (i) under acidic conditions, N-chlorination followed by Orton rearrangement is the dominant Cl uptake mechanism with N-chlorination as the rate-limiting step; (ii) under alkaline conditions, N-chlorination and dechlorination of N-chlorinated amide links by hydroxyl ion are the two dominant processes; and (iii) under neutral pH conditions, the rates of N-chlorination and Orton rearrangement are comparable. We propose a kinetic model that satisfactorily describes Cl uptake under acidic and alkaline conditions, with the largest discrepancies between model and experiment occurring under alkaline conditions at relatively high chlorine exposures.

  5. Percutaneous drainage of lung abscesses

    International Nuclear Information System (INIS)

    van Sonnenberg, E.; D'Agostino, H.; Casola, G.; Vatney, R.R.; Wittich, G.R.; Harker, C.

    1989-01-01

    The authors performed percutaneous drainage of lung abscesses in 12 patients. Indications for drainage were septicemia and persistence or worsening of radiographic findings. These lung abscesses were refractory to intravenous antibiotics and to bronchial toilet. Etiology of the abscesses included pneumonia (most frequently), trauma, postoperative development, infected necrotic neoplasm, and infected sequestration. Guidelines for drainage included passage of the catheter through contiguously abnormal lung and pleura, inability of the patient to cough, and/or bronchial obstruction precluding bronchial drainage. Cure was achieved in 11 of 12 patients. Catheters were removed on an average of 16 days after insertion. Antibiotics were administered an average of 18 days before drainage. No major complications occurred

  6. Acid mine drainage

    Science.gov (United States)

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  7. New Method for Super Hydrophobic Treatment of Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells Using Electrochemical Reduction of Diazonium Salts.

    Science.gov (United States)

    Thomas, Yohann R J; Benayad, Anass; Schroder, Maxime; Morin, Arnaud; Pauchet, Joël

    2015-07-15

    The purpose of this article is to report a new method for the surface functionalization of commercially available gas diffusion layers (GDLs) by the electrochemical reduction of diazonium salt containing hydrophobic functional groups. The method results in superhydrophobic GDLs, over a large area, without pore blocking. An X-ray photoelectron spectroscopy study based on core level spectra and chemical mapping has demonstrated the successful grafting route, resulting in a homogeneous distribution of the covalently bonded hydrophobic molecules on the surface of the GDL fibers. The result was corroborated by contact angle measurement, showing similar hydrophobicity between the grafted and PTFE-modified GDLs. The electrochemically modified GDLs were tested in proton exchange membrane fuel cells under automotive, wet, and dry conditions and demonstrated improved performance over traditional GDLs.

  8. Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Molaeimanesh, Golamreza; Akbari, Mohammad Hadi [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2014-04-15

    A major challenge in the application of proton exchange membrane fuel cells (PEMFCs) is water management, with the flooding of electrodes as the main issue. The Lattice-Boltzmann method (LBM) is a relatively new technique that is superior in modeling the dynamic interface of multiphase fluid flow in complex microstructures such as non-homogeneous and anisotropic porous media of PEMFC electrodes. In this study, the dynamic behavior of a water droplet during removal from gas diffusion layer (GDL) of a PEMFC electrode with interdigitated flow field is simulated using LBM. The effects of GDL wettability and its spanwise and transverse gradients on the removal process are investigated. The results demonstrate great influence of wettability and its spanwise and transverse gradients on the dynamic behavior of droplets during the removal process. Although increasing the hydrophobicity of GDL results in better droplet removal, its increase beyond a critical value does not show a significant effect.

  9. Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA).

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Medeiros, Felipe A; Hammel, Naama; Yang, Zhiyong; Weinreb, Robert N; Zangwill, Linda M

    2016-02-01

    We determined if the Bruch's membrane opening (BMO) location changes over time in healthy eyes and eyes with progressing glaucoma, and validated an automated segmentation algorithm for identifying the BMO in Cirrus high-definition coherence tomography (HD-OCT) images. We followed 95 eyes (35 progressing glaucoma and 60 healthy) for an average of 3.7 ± 1.1 years. A stable group of 50 eyes had repeated tests over a short period. In each B-scan of the stable group, the BMO points were delineated manually and automatically to assess the reproducibility of both segmentation methods. Moreover, the BMO location variation over time was assessed longitudinally on the aligned images in 3D space point by point in x, y, and z directions. Mean visual field mean deviation at baseline of the progressing glaucoma group was -7.7 dB. Mixed-effects models revealed small nonsignificant changes in BMO location over time for all directions in healthy eyes (the smallest P value was 0.39) and in the progressing glaucoma eyes (the smallest P value was 0.30). In the stable group, the overall intervisit-intraclass correlation coefficient (ICC) and coefficient of variation (CV) were 98.4% and 2.1%, respectively, for the manual segmentation and 98.1% and 1.9%, respectively, for the automated algorithm. Bruch's membrane opening location was stable in normal and progressing glaucoma eyes with follow-up between 3 and 4 years indicating that it can be used as reference point in monitoring glaucoma progression. The BMO location estimation with Cirrus HD-OCT using manual and automated segmentation showed excellent reproducibility.

  10. Quasi-three dimensional dynamic modeling of a proton exchange membrane fuel cell with consideration of two-phase water transport through a gas diffusion layer

    International Nuclear Information System (INIS)

    Kang, Sanggyu

    2015-01-01

    Water management is one of the challenging issues for low-temperature PEMFCs (proton exchange membrane fuel cells). When liquid water is formed at the GDL (gas diffusion layer), the pathway of reactant gas can be blocked, which inhibits the electrochemical reaction of PEMFC. Thus, liquid water transport through GDL is a critical factor determining the performance of a PEMFC. In present study, quasi-three dimensional dynamic modeling of PEMFC with consideration of two-phase water transport through GDL is developed. To investigate the distributions of PEMFC characteristics, including current density, species mole fraction, and membrane hydration, the PEMFC was discretized into twenty control volumes along the anode channel. To resolve the mass and energy conservation, the PEMFC is discretized into eleven and fifteen control volumes in the perpendicular direction, respectively. The dynamic variation of PEMFC characteristics of cell voltage, overvoltage of activation and ohmic, liquid water saturation through a GDL, and oxygen concentration were captured during transient behavior. - Highlights: • A quasi-three dimensional two-phase dynamic model of PEMFC is developed. • Presented model is validated by comparison with experimental data. • Two-phase model is compared with one-phase model at steady-states and transients.

  11. Arterial Pulsations cannot Drive Intramural Periarterial Drainage: Significance for Aβ Drainage

    Directory of Open Access Journals (Sweden)

    Alexandra K. Diem

    2017-08-01

    Full Text Available Alzheimer's Disease (AD is the most common form of dementia and to date there is no cure or efficient prophylaxis. The cognitive decline correlates with the accumulation of amyloid-β (Aβ in the walls of capillaries and arteries. Our group has demonstrated that interstitial fluid and Aβ are eliminated from the brain along the basement membranes of capillaries and arteries, the intramural periarterial drainage (IPAD pathway. With advancing age and arteriosclerosis, the stiffness of arterial walls, this pathway fails in its function and Aβ accumulates in the walls of arteries. In this study we tested the hypothesis that arterial pulsations drive IPAD and that a valve mechanism ensures the net drainage in a direction opposite to that of the blood flow. This hypothesis was tested using a mathematical model of the drainage mechanism. We demonstrate firstly that arterial pulsations are not strong enough to produce drainage velocities comparable to experimental observations. Secondly, we demonstrate that a valve mechanism such as directional permeability of the IPAD pathway is necessary to achieve a net reverse flow. The mathematical simulation results are confirmed by assessing the pattern of IPAD in mice using pulse modulators, showing no significant alteration of IPAD. Our results indicate that forces other than the cardiac pulsations are responsible for efficient IPAD.

  12. Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang; Cheng, Ping [Ministry of Education Key Laboratory of Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiaotong University, DongChuan Road 800, Shanghai 200240 (China)

    2010-06-15

    The effect of wettability on water transport dynamics in gas diffusion layer (GDL) is investigated by simulating water invasion in an initially gas-filled GDL using the multiphase free-energy lattice Boltzmann method (LBM). The results show that wettability plays a significant role on water saturation distribution in two-phase flow in the uniform wetting GDL. For highly hydrophobicity, the water transport falls in the regime of capillary fingering, while for neutral wettability, water transport exhibits the characteristic of stable displacement, although both processes are capillary force dominated flow with same capillary numbers. In addition, the introduction of hydrophilic paths in the GDL leads the water to flow through the hydrophilic pores preferentially. The resulting water saturation distributions show that the saturation in the GDL has little change after water breaks through the GDL, and further confirm that the selective introduction of hydrophilic passages in the GDL would facilitate the removal of liquid water more effectively, thus alleviating the flooding in catalyst layer (CL) and GDL. The LBM approach presented in this study provides an effective tool to investigate water transport phenomenon in the GDL at pore-scale level with wettability distribution taken into consideration. (author)

  13. Effect of carbon paper substrate of the gas diffusion layer on the performance of proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.F. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road, West Groton, MA 01472 (United States); Ahmad, R.; Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States); Kannan, A.M., E-mail: amk@asu.ed [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2010-03-01

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper substrates with various thicknesses developed by Hollingsworth and Vose Co. Highly consistent carbon slurry containing Pureblack carbon and vapor grown carbon fiber (3:1 ratio) with 25 wt.% Teflon was prepared by using a dispersion agent, Novec-7300 in isopropyl alcohol. Micro-porous layer was coated by using a fully automated Coatema coating tool with a uniform carbon loading of 2.6-3 mg cm{sup -2} using carbon slurry. The surface morphology, contact angle and pore size distribution of the GDLs were examined using SEM, Goniometer and Hg Porosimeter, respectively. Various cathode GDLs assembled into MEAs were evaluated in a single cell PEMFC under various operating relative humidity (RH) conditions using H{sub 2}/O{sub 2} and H{sub 2}/air as reactants. The peak power density of the single cell using the optimum carbon paper substrate thickness was about 1400 and 700 mW cm{sup -2} with H{sub 2}/O{sub 2} and H{sub 2}/air at 60% RH, respectively. It was found that the pore diameter as well as the corresponding pore volumes of the GDLs played a key role in exhibiting the optimum fuel cell performance.

  14. Analysis of the transient response and durability characteristics of a proton exchange membrane fuel cell with different micro-porous layer penetration thicknesses

    International Nuclear Information System (INIS)

    Cho, Junhyun; Park, Jaeman; Oh, Hwanyeong; Min, Kyoungdoug; Lee, Eunsook; Jyoung, Jy-Young

    2013-01-01

    Highlights: • The GDL which has a large MPL penetration showed a better transient response. • The transient response of the PEMFC was affected by the water balance of the GDL. • A large MPL penetration balanced the capillary pressure gradient through the GDL. • The carbon corrosion induced loss of the MPL penetration region. - Abstract: The optimal design of the gas diffusion layer (GDL) of proton exchange membrane fuel cells is crucial because it directly determines the mass transport mechanism of the reactants and products. In this study, the micro-porous layer (MPL) penetration thickness, which affects the pore size profile through the GDL, is varied as the design parameter of the GDL. The cell performance is investigated under various humidity conditions, and the water permeability characteristics are studied. In addition, the accelerated carbon corrosion stress test is conducted to determine the effect of MPL penetration on GDL degradation. GDLs with large MPL penetration thickness show better performance in the high-current–density region due to the enhanced management of water resulting from a balanced capillary pressure gradient. However, the loss of penetrated MPL parts is observed due to the low binding force between the MPL and the GDL substrate

  15. Investigating the effects of gas diffusion layer substrate thickness on polymer electrolyte membrane fuel cell performance via synchrotron X-ray radiography

    International Nuclear Information System (INIS)

    Lee, J.; Chevalier, S.; Banerjee, R.; Antonacci, P.; Ge, N.; Yip, R.; Kotaka, T.; Tabuchi, Y.; Bazylak, A.

    2017-01-01

    Synchrotron X-ray radiography was used to visualize the liquid water accumulation in polymer electrolyte membrane (PEM) fuel cells to compare the impact of carbon substrate thickness on water management. A differential fuel cell with an active area of 0.68 cm 2 and rib/channel width of 0.2 mm was custom-made to provide 1-dimensional (1D) conditions over the active area. The fuel cell with the thin substrate (TGP-H-030) outperformed the fuel cell with the thick substrate (TGP-H-060). The fuel cell with the thinner substrate exhibited a higher limiting current density, less liquid water in the microporous layer (MPL)-substrate transition region, and reduced oxygen transport resistance measured through electrochemical impedance spectroscopy (EIS). The compression behaviour of each GDL was also investigated through two consecutive fuel cell assemblies. The pressure in the second assembly was lower than that for the initial assemblies for both GDLs, and this significant change in assembly pressure was more pronounced for the thinner GDL (TGP-H-030). The resulting interfacial contact between the catalyst layer and the GDL was degraded, which manifested in the microscale displacement of fuel cell materials during operation (detected as a negative liquid water thickness). While the thinner GDL provided superior performance, the long term effects of material deformation may exacerbate a heterogeneous distribution of liquid water that could also impact the performance.

  16. Layered perovskite LaBaCuMO{sub 5+x} (M = Fe, Co) cathodes for intermediate-temperature protonic ceramic membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ling Yihan; Lin Bin; Zhao Ling; Zhang Xiaozhen; Yu Jia; Peng Ranran; Meng Guangyao [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China); Liu Xingqin, E-mail: lyhyy@mail.ustc.edu.c [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, Anhui 230026 (China)

    2010-03-18

    Layered perovskite LaBaCuFeO{sub 5+x} (LBCF) and LaBaCuCoO{sub 5+x} (LBCC) oxides are synthesized by a modified Pechini method and examined as potential cathode materials for intermediate-temperature protonic ceramic membrane fuel cells (IT-PCMFCs). Thin proton-conducting BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY) electrolyte and NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (NiO-BZCY) anode functional layer are prepared over porous anode substrates composed of NiO-BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} by a one-step dry-pressing/co-firing process. Laboratory-sized quad-layer cells of NiO-BYCZ/NiO-BYCZ/BYCZ/LBCF (LBCC) are operated from 550 to 700 {sup o}C with humidified hydrogen ({approx}3% H{sub 2}O) as fuel and the static air as oxidant. The single cell with LBCF cathode shows peak power densities of only 327 mW cm{sup -2} at 700 {sup o}C and 105 mW cm{sup -2} for 550 {sup o}C, while the single cell with LBCC cathode shows peak power densities of 432 and 171 mW cm{sup -2} at 700 and 550 {sup o}C, respectively. The dramatic improvement of cell performance is attributed to higher cobaltites catalytic activity than that of ferrites for IT-PCMFCs, which is in good agreement with the results of impedance measurement.

  17. Post-mining water treatment. Nanofiltration of uranium-contaminated drainage. Experiments and modeling

    International Nuclear Information System (INIS)

    Hoyer, Michael

    2017-01-01

    Nanofiltration of real uranium-contaminated mine drainage was successfully discussed in experiments and modeling. For the simulation a renowned model was adapted that is capable of describing multi-component solutions. Although the description of synthetic multi-component solutions with a limited number of components was performed before ([Garcia-Aleman2004], [Geraldes2006], [Bandini2003]) the results of this work show that the adapted model is capable of describing the very complex solution. The model developed here is based on: The Donnan-Steric Partitioning Pore Model incorporating Dielectric Exclusion - DSPM and DE ref. [Bowen1997], [Bandini2003], [Bowen2002], [Vezzani2002]. The steric, electric, and dielectric exclusion model - SEDE ref. [Szymczyk2005]. The developed modeling approach is capable of describing multi-component transport, and is based on the pore radius, membrane thickness, and volumetric membrane charge density as physically relevant membrane parameters instead of mere fitting parameters which allows conclusions concerning membrane modification or process design. The experiments involve typical commercially available membranes in combination with a water sample of industrial relevance in the mining sector. Furthermore, it has been shown experimentally that uranium speciation influences its retention. Hence, all experiments consider the speciation of uranium when assessing its charge and size. In the simulation 10 different ionic components have been taken into account. By freely fitting 4 parameters in parallel (pore radius, membrane thickness, membrane charge, relative permittivity of the oriented water layer at the pore wall) an excellent agreement between experiment and simulation was obtained. Moreover, the determined membrane thickness and pore radius is in close agreement with the values obtained by independent membrane characterization using pure water permeability and glucose retention. On the other hand, the fitted and the literature

  18. Post-mining water treatment. Nanofiltration of uranium-contaminated drainage. Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Michael

    2017-07-01

    Nanofiltration of real uranium-contaminated mine drainage was successfully discussed in experiments and modeling. For the simulation a renowned model was adapted that is capable of describing multi-component solutions. Although the description of synthetic multi-component solutions with a limited number of components was performed before ([Garcia-Aleman2004], [Geraldes2006], [Bandini2003]) the results of this work show that the adapted model is capable of describing the very complex solution. The model developed here is based on: The Donnan-Steric Partitioning Pore Model incorporating Dielectric Exclusion - DSPM and DE ref. [Bowen1997], [Bandini2003], [Bowen2002], [Vezzani2002]. The steric, electric, and dielectric exclusion model - SEDE ref. [Szymczyk2005]. The developed modeling approach is capable of describing multi-component transport, and is based on the pore radius, membrane thickness, and volumetric membrane charge density as physically relevant membrane parameters instead of mere fitting parameters which allows conclusions concerning membrane modification or process design. The experiments involve typical commercially available membranes in combination with a water sample of industrial relevance in the mining sector. Furthermore, it has been shown experimentally that uranium speciation influences its retention. Hence, all experiments consider the speciation of uranium when assessing its charge and size. In the simulation 10 different ionic components have been taken into account. By freely fitting 4 parameters in parallel (pore radius, membrane thickness, membrane charge, relative permittivity of the oriented water layer at the pore wall) an excellent agreement between experiment and simulation was obtained. Moreover, the determined membrane thickness and pore radius is in close agreement with the values obtained by independent membrane characterization using pure water permeability and glucose retention. On the other hand, the fitted and the literature

  19. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  20. Enhanced H2/CH4 and H2/CO2 Separation by Carbon Molecular Sieve Membrane Coated on Titania Modified Alumina Support: Effects of TiO2 Intermediate Layer Preparation Variables on Interfacial Adhesion.

    Czech Academy of Sciences Publication Activity Database

    Tseng, H.-H.; Wang, Ch.-T.; Zhuang, G.-L.; Uchytil, Petr; Řezníčková Čermáková, Jiřina; Setničková, Kateřina

    2016-01-01

    Roč. 510, JUL 15 (2016), s. 391-404 ISSN 0376-7388 Grant - others:NSC(TW) NSC100-2221-E- 040-004-MY3 Institutional support: RVO:67985858 Keywords : carbon membrane * intermediate layer * adhesion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 6.035, year: 2016

  1. Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Nabovati, Aydin; Hinebaugh, James; Bazylak, Aimy; Amon, Cristina H.

    2014-02-01

    In this paper, we study the effect of porosity heterogeneity on the bulk hydrodynamic properties (permeability and tortuosity) of simulated gas diffusion layers (GDLs). The porosity distributions of the heterogeneous reconstructed samples are similar to those previously reported in the literature for Toray TGP-H 120™ GDLs. We use the lattice Boltzmann method to perform pore-level flow simulations in the reconstructed GDL samples. Using the results of pore-level simulations, the effect of porosity distribution is characterized on the predicted in- and cross-plane permeability and tortuosity. It was found that porosity heterogeneity causes a higher in-plane permeability and lower in-plane tortuosity, while the effect is opposite in the cross-plane direction, that is a lower cross-plane permeability and a higher cross-plane tortuosity. We further investigate the effect of adding poly-tetra-fluoro-ethylene (PTFE) & binder material to the reconstructed GDL samples. Three fiber volume percentages of 50, 75, and 100% are considered. Overall, increasing the fiber volume percentage reduces the predicted in- and cross-plane permeability and tortuosity values. A previously reported relationship for permeability of fibrous materials is fitted to the predicted permeability values, and the magnitude of the fitting parameter is reported as a function of fiber volume percentage.

  2. Profiling EGFR activity in head and neck squamous cell carcinoma by using a novel layered membrane Western blot technology.

    Science.gov (United States)

    Patel, Vyomesh; Ramesh, Arun; Traicoff, June L; Baibakov, Galina; Emmert-Buck, Michael R; Gutkind, J Silvio; Knezevic, Vladimir

    2005-05-01

    Given the role of epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinomas (HNSCC), several rational approaches have now been utilized to abrogate tyrosine kinase activity and its disengagement from downstream signal transducers. Monitoring the activity of these molecules could potentially be useful to determine not only drug efficacy but also to identify HNSCC patients most likely to benefit from this type of therapy. In this study we have used a novel high throughput multi-layered Western blotting (MLWestern) method that allows the detection of multiple proteins from a single experiment in order to characterize key components in the EGFR signaling pathway in HNSCC cells. Total and activated forms of EGFR and the downstream effectors, Erk and Akt were readily detected in HNSCC cells, where in the control cells (HaCaT) these proteins could only be detected in EGF stimulated cells. Results from conventional Western blot and MLWestern were comparable. Clustering analysis of protein expression revealed similarities in cellular response between some of the cell lines indicative of similarities in their biological response. The data indicate that MLWestern can be potentially applied to identify molecular targets that could be used for rational therapeutic intervention strategies.

  3. Mitigating leaks in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Karnik, Rohit N.; Bose, Suman; Boutilier, Michael S.H.; Hadjiconstantinou, Nicolas G.; Jain, Tarun Kumar; O' Hern, Sean C.; Laoui, Tahar; Atieh, Muataz A.; Jang, Doojoon

    2018-02-27

    Two-dimensional material based filters, their method of manufacture, and their use are disclosed. In one embodiment, a membrane may include an active layer including a plurality of defects and a deposited material associated with the plurality of defects may reduce flow therethrough. Additionally, a majority of the active layer may be free from the material. In another embodiment, a membrane may include a porous substrate and an atomic layer deposited material disposed on a surface of the porous substrate. The atomic layer deposited material may be less hydrophilic than the porous substrate and an atomically thin active layer may be disposed on the atomic layer deposited material.

  4. Drainage and Stratification Kinetics of Foam Films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  5. Sustainable Drainage Systems

    Directory of Open Access Journals (Sweden)

    Miklas Scholz

    2015-05-01

    Full Text Available Urban water management has somewhat changed since the publication of The Sustainable Drainage System (SuDS Manual in 2007 [1], transforming from building traditional sewers to implementing SuDS, which are part of the best management practice techniques used in the USA and seen as contributing to water-sensitive urban design in Australia. Most SuDS, such as infiltration trenches, swales, green roofs, ponds, and wetlands, address water quality and quantity challenges, and enhance the local biodiversity while also being acceptable aesthetically to the public. Barriers to the implementation of SuDS include adoption problems, flood and diffuse pollution control challenges, negative public perception, and a lack of decision support tools addressing, particularly, the retrofitting of these systems while enhancing ecosystem services. [...

  6. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  7. Large scale simulation of liquid water transport in a gas diffusion layer of polymer electrolyte membrane fuel cells using the lattice Boltzmann method

    Science.gov (United States)

    Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi

    2017-09-01

    A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.

  8. A novel approach to determine the in-plane thermal conductivity of gas diffusion layers in proton exchange membrane fuel cells

    Science.gov (United States)

    Sadeghi, E.; Djilali, N.; Bahrami, M.

    Heat transfer through the gas diffusion layer (GDL) is a key process in the design and operation of a proton exchange membrane (PEM) fuel cell. The analysis of this process requires determination of the effective thermal conductivity. This transport property differs significantly in the through-plane and in-plane directions due to the anisotropic micro-structure of the GDL. A novel test bed that allows separation of in-plane effective thermal conductivity and thermal contact resistance in GDLs is described in this paper. Measurements are performed using Toray carbon paper TGP-H-120 samples with varying polytetrafluoroethylene (PTFE) content at a mean temperature of 65-70 °C. The measurements are complemented by a compact analytical model that achieves good agreement with experimental data. The in-plane effective thermal conductivity is found to remain approximately constant, k ≈ 17.5 W m -1 K -1, over a wide range of PTFE content, and its value is about 12 times higher than that for through-plane conductivity.

  9. Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network

    Directory of Open Access Journals (Sweden)

    Dietmar Gerteisen

    2013-09-01

    Full Text Available In order to model the liquid water transport in the porous materials used in polymer electrolyte membrane (PEM fuel cells, the pore network models are often applied. The presented model is a novel approach to further develop these models towards a percolation model that is based on the fiber structure rather than the pore structure. The developed algorithm determines the stable liquid water paths in the gas diffusion layer (GDL structure and the transitions from the paths to the subsequent paths. The obtained water path network represents the basis for the calculation of the percolation process with low calculation efforts. A good agreement with experimental capillary pressure-saturation curves and synchrotron liquid water visualization data from other literature sources is found. The oxygen diffusivity for the GDL with liquid water saturation at breakthrough reveals that the porosity is not a crucial factor for the limiting current density. An algorithm for condensation is included into the model, which shows that condensing water is redirecting the water path in the GDL, leading to an improved oxygen diffusion by a decreased breakthrough pressure and changed saturation distribution at breakthrough.

  10. The Impact of Lens Opacity on SD-OCT Retinal Nerve Fiber Layer and Bruch's Membrane Opening Measurements Using the Anatomical Positioning System (APS).

    Science.gov (United States)

    Mauschitz, Matthias M; Roth, Felix; Holz, Frank G; Breteler, Monique M B; Finger, Robert P

    2017-05-01

    To evaluate the impact of lens opacity on retinal nerve fiber layer thickness (RNFLT) and Bruch's membrane opening (BMO) measurements. Fifty-nine randomly selected patients without any other relevant ocular pathology undergoing elective routine cataract surgery in two specialized eye clinics were enrolled. RNFLT, BMO area, and BMO minimum rim width (BMO-MRW) were assessed with the Heidelberg Engineering Spectralis OCT using the anatomical positioning system (APS) prior to and 1 day after cataract surgery using a ring scan at different eccentricities of the disc (3.5, 4.1 and 4.7 mm). Lens opacity was quantified using densitometry based on Scheimpflug images (Oculus Pentacam AXL). RNFLT, BMO area, and BMO-MRW were virtually identical before and following removal of the cataractous lens. This held when assessed overall, within the six sectors for the 3.5-mm scan, or at any other eccentricity. Baseline RNFLT was not associated with lens opacity. Using the APS, RNFLT remained unchanged following cataract surgery, contrary to results reported by previous studies. Our results imply that the APS may have contributed to more precise spectral-domain optical coherence measurements, minimizing the influence of cataract on RNFLT and BMO assessments in our cohort.

  11. Effect of therapeutic concentration of lithium on live HEK293 cells; increase of Na+/K+-ATPase, change of overall protein composition and alteration of surface layer of plasma membrane.

    Science.gov (United States)

    Vosahlikova, Miroslava; Ujcikova, Hana; Chernyavskiy, Oleksandr; Brejchova, Jana; Roubalova, Lenka; Alda, Martin; Svoboda, Petr

    2017-05-01

    The effect of long-term exposure of live cells to lithium cations (Li) was studied in HEK293 cells cultivated in the presence of 1mM LiCl for 7 or 21days. The alteration of Na + /K + -ATPase level, protein composition and biophysical state of plasma membrane was determined with the aim to characterize the physiological state of Li-treated cells. Na + /K + -ATPase level was determined by [ 3 H]ouabain binding and immunoblot assays. Overall protein composition was determined by 2D electrophoresis followed by proteomic analysis by MALDI-TOF MS/MS and LFQ. Li interaction with plasma membrane was characterized by fluorescent probes DPH, TMA-DPH and Laurdan. Na + /K + -ATPase was increased in plasma membranes isolated from cells exposed to Li. Identification of Li-altered proteins by 2D electrophoresis, MALDI-TOF MS/MS and LFQ suggests a change of energy metabolism in mitochondria and cytosol and alteration of cell homeostasis of calcium. Measurement of Laurdan generalized polarization indicated a significant alteration of surface layer of isolated plasma membranes prepared from both types of Li-treated cells. Prolonged exposure of HEK293 cells to 1mM LiCl results in up-regulation of Na + /K + -ATPase expression, reorganization of overall cellular metabolism and alteration of the surface layer/polar head-group region of isolated plasma membranes. Our findings demonstrate adaptation of live HEK293 cell metabolism to prolonged exposure to therapeutic concentration of Li manifested as up-regulation of Na + /K + -ATPase expression, alteration of protein composition and change of the surface layer of plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. adequacy of drainage channels f drainage channels in a small

    African Journals Online (AJOL)

    eobe

    The area upon which waterfalls and the netw through ... ls were determined using the rational model and manning's equation. A .... runoff, including roads, culverts and drainage systems. ... hence, detailed design information of the drain is.

  13. Percutaneous drainage of lung abscess

    Energy Technology Data Exchange (ETDEWEB)

    Ri, Jong Min; Kim, Yong Joo; Kang, Duk Sik [Kyung-Pook National University Hospital, Daegu (Korea, Republic of)

    1992-05-15

    Medical treatment using antibiotics and postural drainage has been widely adopted as a treatment method of pulmonary abscess, accompanied by surgical methods in cases intractable to drug therapy. However long-term therapy may be required, and the tolerance of organisms to antibiotics or other complications are apt to be encountered, during medical treatment. To shorten the convalescent period or to decrease the risk of invasive procedures, rather simple and relatively easy interventional techniques such as transbronchial or percutaneous catheter drainage have been successfully tried. We have performed 12 cases of percutaneous drainages of lung abscesses under fluoroscope guidance. This report is on the results of this procedure.

  14. Percutaneous drainage of lung abscess

    International Nuclear Information System (INIS)

    Ri, Jong Min; Kim, Yong Joo; Kang, Duk Sik

    1992-01-01

    Medical treatment using antibiotics and postural drainage has been widely adopted as a treatment method of pulmonary abscess, accompanied by surgical methods in cases intractable to drug therapy. However long-term therapy may be required, and the tolerance of organisms to antibiotics or other complications are apt to be encountered, during medical treatment. To shorten the convalescent period or to decrease the risk of invasive procedures, rather simple and relatively easy interventional techniques such as transbronchial or percutaneous catheter drainage have been successfully tried. We have performed 12 cases of percutaneous drainages of lung abscesses under fluoroscope guidance. This report is on the results of this procedure

  15. Peritoneal Drainage Versus Pleural Drainage After Pediatric Cardiac Surgery.

    Science.gov (United States)

    Gowda, Keshava Murty Narayana; Zidan, Marwan; Walters, Henry L; Delius, Ralph E; Mastropietro, Christopher W

    2014-07-01

    We aimed to determine whether infants undergoing cardiac surgery would more efficiently attain negative fluid balance postoperatively with passive peritoneal drainage as compared to traditional pleural drainage. A prospective, randomized study including children undergoing repair of tetralogy of Fallot (TOF) or atrioventricular septal defect (AVSD) was completed between September 2011 and June 2013. Patients were randomized to intraoperative placement of peritoneal catheter or right pleural tube in addition to the requisite mediastinal tube. The primary outcome measure was fluid balance at 48 hours postoperatively. Variables were compared using t tests or Fisher exact tests as appropriate. A total of 24 patients were enrolled (14 TOF and 10 AVSD), with 12 patients in each study group. Mean fluid balance at 48 hours was not significantly different between study groups, -41 ± 53 mL/kg in patients with periteonal drainage and -9 ± 40 mL/kg in patients with pleural drainage (P = .10). At 72 hours however, postoperative fluid balance was significantly more negative with peritoneal drainage, -52.4 ± 71.6 versus +2.0 ± 50.6 (P = .04). On subset analysis, fluid balance at 48 hours in patients with AVSD was more negative with peritoneal drainage as compared to pleural, -82 ± 51 versus -1 ± 38 mL/kg, respectively (P = .02). Fluid balance at 48 hours in patients with TOF was not significantly different between study groups. Passive peritoneal drainage may more effectively facilitate negative fluid balance when compared to pleural drainage after pediatric cardiac surgery, although this benefit is not likely universal but rather dependent on the patient's underlying physiology. © The Author(s) 2014.

  16. Nonsurgical drainage of splenic abscess

    International Nuclear Information System (INIS)

    Berkman, W.A.; Harris, S.A. Jr.; Bernardino, M.E.

    1983-01-01

    The mortality associated with intraabdominal abscess remains high despite modern surgical methods and antibiotics. Draingae of abscesses of the abdomen, retroperitoneum, pelvis, pancreatic pseudocyst, mediastinum, and lung may be treated effectively by percutaneous catheter placement. In several reports of percutaneous abdominal abscess drainage, only three cases of splenic abscess drainage have been reported. The authors have recently drained two splenic abscesses with the aid of computed tomography (CT) and emphasize several advantages of the percutaneous guided approach

  17. Nasolacrimal drainage system cyst in an adult.

    Science.gov (United States)

    Yamasoba, T; Sugimura, H

    1996-01-01

    A cyst of the nasolacrimal drainage system (NLDS) is rare in an adult. We report a case in a 29-year-old man of a mucous retention cyst of the NLDS, which appeared 2 years after the patient developed dacryocystitis coincident with an aggravation of chronic sinusitis. The lesion was successfully managed by removing the bony wall of the NLDS at the interface with the ethmoid and nasal cavity, as well as the membranous closure of the ostium of the common canaliculus. We speculate that the cyst development might have been initiated by inflammatory change such as mucosal adhesion in the NLDS resulting from the spread of secondary infection from the sinonasal tract.

  18. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  19. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2014-09-01

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.

  20. Possibility of soil clean-up from 137Cs in coast part of drainage system

    International Nuclear Information System (INIS)

    Karlin, Yh.V.; Barinov, A.S.; Prozorov, L.B.; Kropotov, V.N.; Chujkov, V.Yh.; Shcheglov, M.Yh.; Bakanov, A.V.

    1996-01-01

    The net of drainage canals is used for the collection of the surface ground waters on the radioactive waste storage at the MosNPO RADON. The soils of the drainage system were contaminated by 137-Cs migrating in the direction of the common flow. A unique technology was elaborated permitting to extract 137 Cs from soil 90% and to concentrate 137-Cs on the selective inorganic sorbent (nickel ferrocyanide). This technology combines electrokinetics, membrane and sorption methods of the contaminated media cleaning

  1. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    OpenAIRE

    Jiříček, T.; Komárek, M.; Lederer, T.

    2017-01-01

    Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest ...

  2. Composite membrane with integral rim

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  3. Development of test method for assessing the bonding characteristics of membrane layers in wearing course laid on orthotropic steel bridge decks

    NARCIS (Netherlands)

    Liu, X.; Scarpas, A.; Li, J.; Tzimiris, G.; Hofman, R.; Voskuilen, J.

    2013-01-01

    In order to adequately characterize the adhesive bonding strength of the various membranes with surrounding materials on orthotropic steel decks and collect the necessary parameters for FE modeling, details of the Membrane Adhesion Test (MAT) are introduced. Analytical constitutive relations of the

  4. Dynamic coating of mf/uf membranes for fouling mitigation

    KAUST Repository

    Tabatabai, S. Assiyeh Alizadeh

    2017-01-19

    A membrane system including an anti-fouling layer and a method of applying an anti-fouling layer to a membrane surface are provided. In an embodiment, the surface is a microfiltration (MF) or an ultrafiltration (UF) membrane surface. The anti-fouling layer can include a stimuli responsive layer and a dynamic protective layer applied over the stimuli responsive layer that can be a coating on a surface of the membrane. The stimuli responsive polymer layer can act as an adhesive prior to coating with the dynamic protective layer to aid in adhering the dynamic protective layer to the membrane surface. The dynamic protective layer can be formed by suitable nanoparticles that can prevent adhesion of foulants directly to the membrane surface. The stimuli responsive layer can be responsive to physio- chemical stimuli to cause a release of the stimuli responsive layer and the dynamic protective layer including foulants from the membrane.

  5. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil; Kim, Youngdeuk; Kim, Wooseung; Francis, Lijo; Amy, Gary L.; Ghaffour, NorEddine

    2015-01-01

    membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement

  6. in remediating acid mine drainage

    African Journals Online (AJOL)

    The management and treatment of contaminated mine water is one of the most urgent problems facing the South African mining industry. The cost advantage of permeable reactive barriers (PRBs) has seen their increased application as means of passively treating mine drainage. A PRB is built by placing a reactive material ...

  7. Shear strength, consolidation and drainage of colliery tailings lagoons

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, J M

    1980-01-01

    The shear strength and consolidation characteristics of colliery tailings were related to the structure of the lagoon deposits. First, a theoretical investigation of vane shear tests in layered media is outlined, and then cone penetration tests are considered as an alternative tool for measuring strengths in situ. The geochemistry and sedimentology of colliery lagoons were investigated. The in-situ permeability of lagoons was also investigated and the results used to investigate the drainage characteristics. Finally, overtipping was investigated.

  8. Definition of the drainage filter problem

    NARCIS (Netherlands)

    Zaslavsky, D.

    1977-01-01

    It is common to consider the following: I. Retention of soil particles that may enter the drainage pipe and cause its clogging. For some sensitive structures it is important to prevent settlements due to soil transportation by drainage water.

  9. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2011-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a)extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  10. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2013-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a) extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  11. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    Science.gov (United States)

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  12. Drainage under increasing and changing requirements

    NARCIS (Netherlands)

    Schultz, E.; Zimmer, D.; Vlotman, W.F.

    2007-01-01

    This year the Working Group on Drainage of the International Commission on Irrigation and Drainage (ICID) celebrates its 25th anniversary. This paper reviews the development of drainage for three different agro-climatic zones, i.e. the temperate (humid), the arid/semi-arid and the humid/semi-humid

  13. Percutaneous catheter drainage of intrapulmonary fluid collection

    International Nuclear Information System (INIS)

    Park, E. D.; Kim, H. J.; Choi, P. Y.; Jung, S. H.

    1994-01-01

    With the success of percutaneous abdominal abscess drainage, attention is now being focused on the use of similar techniques in the thorax. We studied to evaluate the effect of percutaneous drainage in parenchymal fluid collections in the lungs. We performed percutaneous drainage of abscesses and other parenchymal fluid collections of the lungs in 15 patients. All of the procedures were performed under the fluoroscopic guidance with an 18-gauge Seldinger needle and coaxial technique with a 8-10F drainage catheter. Among 10 patients with lung abscess, 8 patients improved by percutaneous catheter drainage. In one patient, drainage was failed by the accidental withdrawal of the catheter before complete drainage. One patient died of sepsis 5 hours after the procedure. Among three patients with complicated bulla, successful drainage was done in two patients, but in the remaining patient, the procedure was failed. In one patient with intrapulmonary bronchogenic cyst, the drainage was not successful due to the thick internal contents. In one patient with traumatic hematoma, after the drainage of old blood clots, the signs of infection disappeared. Overally, of 14 patients excluding one who died, 11 patients improved with percutaneous catheter drainage and three patients did not. There were no major complications during and after the procedure. We conclude that percutaneous catheter drainage is effective and safe procedure for the treatment of parenchymal fluid collections of the lung in patients unresponsive to the medical treatment

  14. Percutaneous catheter drainage of intrapulmonary fluid collection

    Energy Technology Data Exchange (ETDEWEB)

    Park, E. D.; Kim, H. J.; Choi, P. Y.; Jung, S. H. [Gyeongsang National University Hospital, Chinju (Korea, Republic of)

    1994-01-15

    With the success of percutaneous abdominal abscess drainage, attention is now being focused on the use of similar techniques in the thorax. We studied to evaluate the effect of percutaneous drainage in parenchymal fluid collections in the lungs. We performed percutaneous drainage of abscesses and other parenchymal fluid collections of the lungs in 15 patients. All of the procedures were performed under the fluoroscopic guidance with an 18-gauge Seldinger needle and coaxial technique with a 8-10F drainage catheter. Among 10 patients with lung abscess, 8 patients improved by percutaneous catheter drainage. In one patient, drainage was failed by the accidental withdrawal of the catheter before complete drainage. One patient died of sepsis 5 hours after the procedure. Among three patients with complicated bulla, successful drainage was done in two patients, but in the remaining patient, the procedure was failed. In one patient with intrapulmonary bronchogenic cyst, the drainage was not successful due to the thick internal contents. In one patient with traumatic hematoma, after the drainage of old blood clots, the signs of infection disappeared. Overally, of 14 patients excluding one who died, 11 patients improved with percutaneous catheter drainage and three patients did not. There were no major complications during and after the procedure. We conclude that percutaneous catheter drainage is effective and safe procedure for the treatment of parenchymal fluid collections of the lung in patients unresponsive to the medical treatment.

  15. Outline of laundry drainage treatment system combining catalytic oxidation and filtration

    International Nuclear Information System (INIS)

    Kanda, Masanori; Matsuzaki, Susumu; Kikkawa, Ryouzo; Masuda, Kazumichi; Takeuchi, Kimihito; Urabe, Osamu

    2011-01-01

    We plan to use a laundry drainage treatment system that combines a device using a manganese dioxide-based catalyst for ozone oxidation with a ceramic microfiltration membrane (MF membrane). The high oxidizing power of ozone is enhanced by the catalyst, and the impurities (such as chemical oxygen demand (COD) causative substances and n-hexane extracts) in the drainage are sufficiently degraded to allow their releases to the environment. Ionic nuclides are also oxidized and in solubilized so that they can be separated with the MF membrane having fine pores of about 0.1 μm. The performance of the treatment system in removing radioactivity, COD causative substances, and n-hexane extracts was confirmed by hot demonstration tests using actual laundry drainage. Cold tests were also conducted using simulated laundry drainage to confirm the system operation conditions and the long-term stability of drainage treatment capability. While ozone has a high oxidizing power, it decays spontaneously in liquid within a short period of time. Therefore, the behavior of ozone under the operating conditions and its effect on the corrosion of structural materials were investigated to maintain a sufficient time for decay and select appropriate structural materials. (author)

  16. How Do Polyethylene Glycol and Poly(sulfobetaine) Hydrogel Layers on Ultrafiltration Membranes Minimize Fouling and Stay Stable in Cleaning Chemicals?

    KAUST Repository

    Le, Ngoc Lieu; Ulbricht, Mathias; Nunes, Suzana Pereira

    2017-01-01

    is improved by the modification, as indicated by the change of contact angle value from 89° to 68° for both methods, due to the hydration layer formed in the hydrogel layers. Their pure water flux declines because of the additional permeation barrier from

  17. Technical note on drainage systems

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby

    This technical note will present simple but widely used methods for the design of drainage systems. The note will primarily deal with surface water (rainwater) which on a satisfactorily way should be transport into the drainage system. Traditional two types of sewer systems exist: A combined system......, where rainwater and sewage is transported in the same pipe, and a separate system where the two types of water are transported in individual pipe. This note will only focus on the separate rain/stormwater system, however, if domestic sewage should be included in the dimensioning procedure, it......’s not major different than described below - just remember to include this contribution for combined systems where the surface water (rain) and sewage are carried in the same pipes in the system and change some of the parameters for failure allowance (this will be elaborated further later on). The technical...

  18. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  19. Exploring Agricultural Drainage's Influence on Wetland and ...

    Science.gov (United States)

    Artificial agricultural drainage (i.e. surface ditches or subsurface tile) is an important agricultural management tool. Artificial drainage allows for timely fieldwork and adequate root aeration, resulting in greater crop yields for farmers. This practice is widespread throughout many regions of the United States and the network of artificial drainage is especially extensive in flat, poorly-drained regions like the glaciated Midwest. While beneficial for crop yields, agricultural drains often empty into streams within the natural drainage system. The increased network connectivity may lead to greater contributing area for watersheds, altered hydrology and increased conveyance of pollutants into natural water bodies. While studies and models at broader scales have implicated artificial drainage as an important driver of hydrological shifts and eutrophication, the actual spatial extent of artificial drainage is poorly known. Consequently, metrics of wetland and watershed connectivity within agricultural regions often fail to explicitly include artificial drainage. We use recent agricultural census data, soil drainage data, and land cover data to create estimates of potential agricultural drainage across the United States. We estimate that agricultural drainage in the US is greater than 31 million hectares and is concentrated in the upper Midwest Corn Belt, covering greater than 50% of available land for 114 counties. Estimated drainage values for numerous countie

  20. Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments

    Science.gov (United States)

    Hammond, J. C.; Harpold, A. A.; Kampf, S. K.

    2017-12-01

    Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers

  1. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  2. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  3. Robust mixed conducting membrane structure

    DEFF Research Database (Denmark)

    2010-01-01

    circuited. The present invention further provides a method of producing the above membrane structure, comprising the steps of : providing a ionically conducting layer; applying at least one layer of electronically conducting material on each side of said ionically conducting layer; sintering the multilayer...

  4. Synthesis and characterization of ceramic-supported and metal-supported membrane layers for the separation of CO{sub 2} in fossil-fuel power plants; Herstellung und Charakterisierung von keramik- und metallgestuetzten Membranschichten fuer die CO{sub 2}-Abtrennung in fossilen Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Hauler, Felix

    2010-07-01

    The separation of CO{sub 2} in fossil fuel power plants has become a very important issue due to the contribution of this greenhouse gas to global warming. Thin microporous membranes are promising candidates for separating CO{sub 2} from gas flow before being exhausted into the atmosphere. The membrane demands are good permeation and separation properties and high stability under operation conditions. Novel sol-gel derived materials composed of TiO{sub 2}/ZrO{sub 2} and stabilized SiO{sub 2} seem to be promising due to their good chemical stability and microporous character, especially for the separation of H{sub 2} and CO{sub 2}. Metallic substrates should be preferred as membrane support because they exhibit practical advantages combining good mechanical stability and the benefit of facilitated joining. The present thesis deals with the development of sol-gel derived microporous membrane layers on ceramic and metallic supports for the separation of CO{sub 2}. In this context, the optimized preparation of high-quality membranes with TiO{sub 2}/ZrO{sub 2} and Ni, Co, Zr, Ti doped SiO{sub 2} top layers is presented. These multilayered membranes consist of a graded pore structure to provide a smooth transition of the pore size from the support to the functional layer. Due to the good surface properties, the ceramic substrates only need one interlayer, whereas the rough metallic substrates exhibiting larger pores require a total of three interlayers to obtain an enhanced surface quality. On both types of supports, crack-free functional layers with a thickness below 100 nm were deposited by dip-coating. The unsupported and supported sol-gel materials used for the top layers were investigated in terms of structural properties by thermal analysis, sorption measurements, X-ray diffraction and electron microscopy. Gas permeation tests with He, H{sub 2}, CO{sub 2} und N{sub 2} were carried out to determine the membrane performance with regard to permeation rates and

  5. Thin film drainage between pre-inflated capsules or vesicles

    Science.gov (United States)

    Keh, Martin; Walter, Johann; Leal, Gary

    2013-11-01

    Capsules and vesicles are often used as vehicles to carry active ingredients or fragrance in drug delivery and consumer products and oftentimes in these applications the particles may be pre-inflated due to the existence of a small osmotic pressure difference between the interior and exterior fluid. We study the dynamics of thin film drainage between capsules and vesicles in flow as it is crucial to fusion and deposition of the particles and, therefore, the stability and effectiveness of the products. Simulations are conducted using a numerical model coupling the boundary integral method for the motion of the fluids and a finite element method for the membrane mechanics. For low capillary numbers, the drainage behavior of vesicles and capsules are approximately the same, and also similar to that of drops as the flow-independent and uniform tension due to pre-inflation dominates. The tension due to deformation caused by flow will become more important as the strength of the external flow (i.e. the capillary number) increases. In this case, the shapes of the thin film region are fundamentally different for capsules and vesicles, and the drainage behavior in both cases differs from a drop. Funded by P&G.

  6. Vascular basement membranes as pathways for the passage of fluid into and out of the brain.

    Science.gov (United States)

    Morris, Alan W J; Sharp, Matthew MacGregor; Albargothy, Nazira J; Fernandes, Rute; Hawkes, Cheryl A; Verma, Ajay; Weller, Roy O; Carare, Roxana O

    2016-05-01

    In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5 min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed.

  7. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  8. Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation

    Science.gov (United States)

    Polishchuk, Kimberly Ann

    2013-03-05

    The subject matter disclosed herein relates to gas separation membranes and, more specifically, to polyimide gas separation membranes. In an embodiment, a gas separation membrane includes a porous substrate, a substantially continuous polyimide membrane layer, and one or more layers of boehmite nanoparticles disposed between the porous substrate and the polyimide membrane layer to form a bond-coat layer. The bond-coat layer is configured to improve the adhesion of the polyimide membrane layer to the porous substrate, and the polyimide membrane layer has a thickness approximately 100 nm or less.

  9. Mine Drainage Generation and Control Options.

    Science.gov (United States)

    Wei, Xinchao; Rodak, Carolyn M; Zhang, Shicheng; Han, Yuexin; Wolfe, F Andrew

    2016-10-01

    This review provides a snapshot of papers published in 2015 relevant to the topic of mine drainage generation and control options. The review is broken into 3 sections: Generation, Prediction and Prevention, and Treatment Options. The first section, mine drainage generation, focuses on the characterization of mine drainage and the environmental impacts. As such, it is broken into three subsections focused on microbiological characterization, physiochemical characterization, and environmental impacts. The second section of the review is divided into two subsections focused on either the prediction or prevention of acid mine drainage. The final section focuses on treatment options for mine drainage and waste sludge. The third section contains subsections on passive treatment, biological treatment, physiochemical treatment, and a new subsection on beneficial uses for mine drainage and treatment wastes.

  10. [Endoscopic ultrasound guided rendezvous for biliary drainage].

    Science.gov (United States)

    Knudsen, Marie Høxbro; Vilmann, Peter; Hassan, Hazem; Karstensen, John Gésdal

    2015-04-27

    Endoscopic retrograde cholangiography (ERCP) is currently standard treatment for biliary drainage. Endoscopic ultrasound guided rendezvous (EUS-RV) is a novel method to overcome an unsuccessful biliary drainage procedure. Under endoscopic ultrasound guidance a guidewire is passed via a needle from the stomach or duodenum to the common bile duct and from there on to the duodenum enabling ERCP. With a relatively high rate of success EUS-RV should be considered as an alternative to biliary drainage and surgical intervention.

  11. Percutaneous drainage treatment of primary liver abscesses

    Energy Technology Data Exchange (ETDEWEB)

    Berger, H.; Pratschke, E.; Berr, F.; Fink, U.

    1989-02-01

    28 primary liver abscesses, including 9 amoebic abscesses, in 24 patients were drained percutaneously. Indication for drainage in amoebic abscesses was imminent rupture and clinical symptoms as pleural effusion, lung atelectasis and pain. 95% of the primary abscesses were cured by percutaneous drainage and systemic antibiotic treatment. There was one recurrence of abscess, which was managed surgically. Reasons for drainage failure were: tumour necrosis and tumour perforation with secondary liver abscess.

  12. Percutaneous drainage treatment of primary liver abscesses

    International Nuclear Information System (INIS)

    Berger, H.; Pratschke, E.; Berr, F.; Fink, U.; Klinikum Grosshadern, Muenchen; Klinikum Grosshadern, Muenchen

    1989-01-01

    28 primary liver abscesses, including 9 amoebic abscesses, in 24 patients were drained percutaneously. Indication for drainage in amoebic abscesses was imminent rupture and clinical symptoms as pleural effusion, lung atelectasis and pain. 95% of the primary abscesses were cured by percutaneous drainage and systemic antibiotic treatment. There was one recurrence of abscess, which was managed surgically. Reasons for drainage failure were: tumour necrosis and tumour perforation with secondary liver abscess. (orig.) [de

  13. Fabrication and evaluation of auto-stripped tri-layer wound dressing for extensive burn injury

    International Nuclear Information System (INIS)

    Lin, F.-H.; Tsai, J.-C.; Chen, T.-M.; Chen, K.-S.; Yang, J.-M.; Kang, P.-L.; Wu, T-H.

    2007-01-01

    In the study, we are going to develop a tri-layer membrane as the artificial skin for extensive burn injury. The first layer is a three-dimensional tri-copolymer sponge of gelatin/hyaluronan/chodroitin-6-sulfate with 70% in porosity and 20-100 μm in pore size. The layer is constructed as a dermis analogous layer to stimulate capillaries penetration, to promote dermal fibroblast migration and to induce the secretion of extra-cellular matrix, which provides a better physiological environment for burn patient recovery. The second layer is as so called auto-stripped layer composed by poly-N-isopropyacrylamide (PNIPAAm). The layer will be automatically peeled off from the tri-copolymer layer once the wound site closed and recovered. The third layer is composed by polypropylene (PP) non-woven fabric, which provides an open structure for exudates drainage out that will reduce the risk of second infection. The tri-layer wound dressing has been successfully prepared by subsequently high-energy plasma treatment, γ-ray irradiation, UV light exposure, and lyophilized process. From the results of MTT, IL-8, IL-1α, IL-6, and TNF-α measurement, the developed material will not induce tissue inflammatory or immune response. The dermal fibroblasts showed initial contact with the material surface through the radial extension of filopodia followed by cytoplasmic webbing that could be examined by SEM. Dermal fibroblasts subsequently flattened for further proliferation and extra-cellular matrix secretion. Dermal analog layer provides a three-dimensional architecture for normal dermis regeneration. The layer can be completely biodegraded within 4 weeks post-operation. After served as a scaffold for the ingrowth of self-fibroblasts, a normal dermis like layer will be regenerated. The dressing will fall off automatically without any damage once the wound site healed completely

  14. Partially fluorinated electrospun proton exchange membranes

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a novel porous membrane layer, to a novel method for producing a membrane, and the membranes produced by the novel method. The present invention further relates to a fuel cell comprising the porous layer, as well as any use of the porous layer in a fuel cell or in...... copolymer, and wherein at least one side chain of the graft copolymer comprises a polymerization product of a polymerizable proton donor group or a precursor thereof....

  15. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  16. Percutaneous catheter drainage of lung abscess

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Shin; Chun, Kyung Ah; Choi, Hyo Sun; Ha, Hyun Kown; Shinn, Kyung Sub [Catholic University Medical college, Seoul (Korea, Republic of)

    1993-09-15

    From March 1987 to July 1989, six patients (five adults and one child) with lung abscess (size, 5-13 cm in diameter) were treated with percutaneous aspiration and drainage. In each case, the puncture was made where the wall of the abscess was in contact with the pleural surface. An 8 to 10 Fr cartheter was inserted for drainage. Five of 6 had a dynamatic clinical response within 24 hours of the drainage. Percutaneous drainage was successful with complete abscess resolution in four and partial resolution in one patient. No response was seen in the rest one. The duration of drainage ranged from 7 to 18 days(average, 15.5 days) in successful cases. One case of the failure in drainage was due tio persistent aspiration of the neurologically impaired patient. In one patient, the abscess resolved after drainage but recurred after inadvertent removal of the catheter 7 days after insertion. In two patients, concurrent pleural empyema was resolved completely by the drainage. Computed tomography provide anatomic details necessary for choosing the puncture site and avoiding a puncture of the lung parenchyma. Percutaneous catheter drainage is safe and effective method for treating patient with lung abscess.

  17. Percutaneous catheter drainage of lung abscess

    International Nuclear Information System (INIS)

    Kim, Young Shin; Chun, Kyung Ah; Choi, Hyo Sun; Ha, Hyun Kown; Shinn, Kyung Sub

    1993-01-01

    From March 1987 to July 1989, six patients (five adults and one child) with lung abscess (size, 5-13 cm in diameter) were treated with percutaneous aspiration and drainage. In each case, the puncture was made where the wall of the abscess was in contact with the pleural surface. An 8 to 10 Fr cartheter was inserted for drainage. Five of 6 had a dynamatic clinical response within 24 hours of the drainage. Percutaneous drainage was successful with complete abscess resolution in four and partial resolution in one patient. No response was seen in the rest one. The duration of drainage ranged from 7 to 18 days(average, 15.5 days) in successful cases. One case of the failure in drainage was due tio persistent aspiration of the neurologically impaired patient. In one patient, the abscess resolved after drainage but recurred after inadvertent removal of the catheter 7 days after insertion. In two patients, concurrent pleural empyema was resolved completely by the drainage. Computed tomography provide anatomic details necessary for choosing the puncture site and avoiding a puncture of the lung parenchyma. Percutaneous catheter drainage is safe and effective method for treating patient with lung abscess

  18. Composite fibrous glaucoma drainage implant

    Science.gov (United States)

    Klapstova, A.; Horakova, J.; Shynkarenko, A.; Lukas, D.

    2017-10-01

    Glaucoma is a frequent reason of loss vision. It is usually caused by increased intraocular pressure leading to damage of optic nerve head. This work deals with the development of fibrous structure suitable for glaucoma drainage implants (GDI). Commercially produced metallic glaucoma implants are very effective in lowering intraocular pressure. However, these implants may cause adverse events such as damage to adjacent tissue, fibrosis, hypotony or many others [1]. The aim of this study is to reduce undesirable properties of currently produced drains and improve their properties by creating of the composite fibrous drain for achieve a normal intraocular pressure. Two types of electrospinning technologies were used for the production of very small tubular implants. First type was focused for production of outer part of tubular drain and the second type of electrospinning method made the inner part of shape follows the connections of both parts. Complete implant had a special properties suitable for drainage of fluid. Morphological parameters, liquid transport tests and in-vitro cell adhesion tests were detected.

  19. Fouling resistant membrane spacers

    KAUST Repository

    Ghaffour, Noreddine

    2017-10-12

    Disclosed herein are spacers having baffle designs and perforations for efficiently and effectively separating one or more membrane layers a membrane filtration system. The spacer (504) includes a body (524) formed at least in part by baffles (520) that are interconnected, and the baffles define boundaries of openings or apertures (525) through a thickness direction of the body of the spacer. Alternatively or additionally, passages or perforations (526A, 526B) may be present in the spacer layer or baffles for fluid flow there through, with the passages and baffles having a numerous different shapes and sizes.

  20. Modification of porosity in the catalyst layer of membrane electrode assemblies using pore-forming agents; Modificacion de la porosidad en la capa catalitica de ensambles membrana-electrodo empleando agentes formadores de poros

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Reyes, Brenda [UNAM. Facultad de Quimica, Mexico D.F. (Mexico); Barbosa P., Romeli [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico); Cano Castillo, Ulises; Albarran, Lorena [Instituto de Investigaciones Electricas Cuernavaca, Morelos (Mexico)

    2009-09-15

    Membrane electrode assemblies (MEA) are the most important part of PEM fuel cells since their interface results in the electrochemical reactions that make the generation of electricity possible. The MEA is composed of a proton exchange membrane, both sides of which are impregnated with a catalyst layer, normally of carbon-supported platinum. Depending on the technique used for its fabrication (atomization, serigraphy, brush methods, chemical reduction, etc.), the properties of the MEA can be different in terms of porosity, distribution of the catalyst, thickness and structure of the catalyst layer, and the quality of the union between the catalyst layer and the membrane, etc. Currently, the porosity of the electrodes is generated by isopropanol evaporation (solvent used in the dye) during the fabrication process conducted in the Instituto de Investigaciones Electricas (IIE). This document presents the results obtained from adding a porous agent to the catalytic dye base composition used in the fabrication of MEA at the IIE. [Spanish] Los Ensambles Membrana-Electrodo (MEA's) son la parte mas importante en las celdas de combustibles tipo PEM, ya que en su interfaz se llevan a cabo las reacciones electroquimicas que hacen posible la generacion de electricidad. El MEA esta compuesto de una membrana de intercambio protonico a la cual se le impregna en ambos lados una capa catalitica normalmente de platino soportado en carbon. Dependiendo de la tecnica empleada en su fabricacion (atomizado, serigrafia, brocha, reduccion quimica, etc.), las propiedades del MEA pueden ser diferentes en cuanto a porosidad, distribucion del catalizador, grosor y estructura de la capa catalitica, asi como la calidad de la union entre la capa catalizadora y la membrana, etc. Actualmente, la porosidad de los electrodos es generada por la evaporacion del isopropanol (solvente utilizado en la tinta) durante el proceso de fabricacion que se realiza en el Instituto de Investigaciones

  1. Amniotic membrane for burn trauma

    International Nuclear Information System (INIS)

    Jamaluddin Zainol; Hasim Mohammad

    1999-01-01

    Amniotic membranes are derived from human placentae at birth. They have two layers mainly the amniotic and the chorionic surfaces which are separated by a thin layer of connective tissues. The two layers are separated during procurement, the placenta and the chorionic side are discarded and the amnion membranes are then further processed. Amnion membranes are normally procured from placentae which are normally free of infections, i.e; the mothers are antenatally screened for sexually transmitted diseases or AlDs related diseases. Intrapartum the mother should not be having chorioamnionitis or jaundice. Sometimes the amniotic membranes are acquired from fresh elective caeserian sections. After processing, the amniotic membranes are packed in two layers of polypropylene and radiated with cobalt 60 at a dose of about 25 kGy. The amniotic membranes are clinically used to cover burn surfaces especially effective for superficial or partial thickness burns. The thin membranes adhered well to the trauma areas and peeled off automatically by the second week. No change of dressing were necessary during these times because of the close adherence, there were less chance of external contamination or infections of these wounds. Due to their flexibility they are very useful to cover difference contours of the human body for example the face, body, elbows or knees. However our experience revealed that amniotic membranes are not useful for third degree bums because the membranes dissolves by the enzymes present in the wounds

  2. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  3. Composite membranes and methods for making same

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2012-07-03

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  4. Experimental evaluation of drainage filters sealing in peat soils

    Directory of Open Access Journals (Sweden)

    Nevzorov Aleksandr Leonidovich

    2014-02-01

    Full Text Available The article deals with research results of the sealing of pores in drainage filters by organic particles. Permeability tests were carried out with the constant gradient 1.5. The water flow through the sample of soil was top-down.The tests were carried out with 2 types of samples: the first part of samples had layers (from up to down 300 mm peat and 2 layers of geotextile, the second part consisted of 250 mm peat, 200 mm fine sand and 2 layers of geotextile. Well decomposed peatsamples were used. Peat had the following characteristics: density is 1,05...1,06 g/cm3, specific density — 1,53...1,56 g/cm3, void ratio — 12,0...12,5. The duration of each test was 15 days. During testing the hydraulic conductivity of samples was decreased by 1.3...1.9.After completing the tests the hydraulic conductivity of sand and geotextile were measured. The content of organic matter in geotextile and fine sand was determined as well. Dry mass of organic matter in the first layer of geotextile in the first type of samples were 1,0…1,3 g per 75 cm2. The organic matter in the second layer of geotextile in the first type of samples and in the first layer of geotextile in the second type wasn’t exposed. Fine sands protected the drainage geotextile as a result of sealing of pore space of sands by organic matter.

  5. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA

    Science.gov (United States)

    One of the main contributors to poor water quality in the Mississippi River and aeral increase in the hypoxic zone in the Gulf of Mexico is intensive drainage of the cropland within the watershed. Controlled drainage has been demonstrated as an approach to curb totla drainage outflow and nutrient di...

  6. Hollow fiber membranes and methods for forming same

    Science.gov (United States)

    Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward; Narang, Kristi Jean; Koros, William

    2016-03-22

    The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer which includes the polysiloxane of the second composition.

  7. Analytical solutions for a single vertical drain with time-dependent vacuum combined surcharge preloading in membrane and membraneless systems

    International Nuclear Information System (INIS)

    Geng, X Y; Indraratna, B; Rujikiatkamjorn, C

    2010-01-01

    Vertical drains combined with vacuum pressure and surcharge preloading are widely used to accelerate the consolidation process of soft clay in order to decrease the pore pressure as well as to increase the effective stress. Currently there are two types of vacuum preloading systems commercially available; (a) membrane system with an airtight membrane over the drainage layer and, (b) membraneless system where a vacuum system is connected to individual drain. Their effectiveness varies from site to site depending on the type of soil treated and the characteristics of the drain-vacuum system. This study presents the analytical solutions of vertical drains with vacuum preloading for both membrane and membraneless systems. According to the field and laboratory observations, the vacuum in both of the membraneless and membrane system was assumed to be decreasing along the drain whereas in the membrane system, it was maintained at a constant level. This model was verified by using the measured settlements and excess pore pressures obtained from large-scale laboratory testing and case studies in Australia. The analytical solutions improved the accuracy of predicting the dissipation of pore water pressure and the associated settlement. The effects of the permeability of the sand blanket in a membrane system and the possible loss of vacuum were also discussed.

  8. Differential bare field drainage properties from airborne microwave observations

    International Nuclear Information System (INIS)

    Bernard, R.; Soars, J.V.; Vidal-Madjar, D.

    1986-01-01

    Time variations of the surface soil moisture can be monitored using active microwave remote sensing. With the existence of airborne systems, it is now possible to estimate this variable on a regional scale. Data from a helicopter-borne scatterometer show that the surface water content reductions during a 9-day period are quite different from one field to another. A simple model describing the water budget of the soil surface layer due to evaporation and drainage is applied. From this model, a pseudo diffusivity can be calculated for each field using only the remotely sensed data. This new parameter gives a quantitative estimate of the observed drying heterogeneities. (author)

  9. Copper isotope fractionation in acid mine drainage

    Science.gov (United States)

    Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L.

    2009-01-01

    We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The ??65Cu values (based on 65Cu/63Cu) of enargite (??65Cu = -0.01 ?? 0.10???; 2??) and chalcopyrite (??65Cu = 0.16 ?? 0.10???) are within the range of reported values for terrestrial primary Cu sulfides (-1??? waters (1.38??? ??? ??65Cu ??? 1.69???). The average isotopic fractionation (??aq-min = ??65Cuaq - ??65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ?? 0.14??? and 1.60 ?? 0.14??? for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ?? 0.14???) and enargite (0.98 ?? 0.14???) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (??aq-mino = - 0.57 ?? 0.14 ???, where mino refers to the starting mineral) and no apparent fractionation for enargite (??aq-mino = 0.14 ?? 0.14 ???). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of ??65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures resulting from Cu sulfide dissolution should be useful for acid mine drainage

  10. Dynamic drainage of froth with wood fibers

    Science.gov (United States)

    J.Y. Zhu; Freya Tan

    2005-01-01

    Understanding froth drainage with fibers (or simply called fiber drainage in froth) is important for improving fiber yield in the flotation deinking operation. In this study, the data of water and fiber mass in foams collected at different froth heights were used to reconstruct the time dependent and spatially resolved froth density and fiber volumetric concentration...

  11. Percutaneous catheter drainage of tuberculous psoas abscesses

    International Nuclear Information System (INIS)

    Pombo, F.; Martin-Egana, R.; Cela, A.; Diaz, J.L.; Linares-Mondejar, P.; Freire, M.

    1993-01-01

    Six patients with 7 tuberculous psoas or ilio-psoas abscesses were treated by CT-guided catheter drainage and chemotherapy. The abscesses (5 unilateral and 1 bilateral) were completely drained using a posterior or lateral approach. The abscess volume was 70 to 700 ml (mean 300 ml) and the duration of drainage 5 to 11 days (mean 7 days). Immediate local symptomatic improvement was achieved in all patients, and there were no procedural complications. CT follow-up at 3 to 9 months showed normalization in 5 patients, 2 of whom are still in medical therapy. One patient, who did not take the medication regularly, had a recurrent abscess requiring new catheter drainage after which the fluid collection disappeared. Percutaneous drainage represents an efficient and attractive alternative to surgical drainage as a supplement to medical therapy in the management of patients with large tuberculous psoas abscesses. (orig.)

  12. Morphology transition of raft-model membrane induced by osmotic pressure: Formation of double-layered vesicle similar to an endo- and/or exocytosis

    International Nuclear Information System (INIS)

    Onai, Teruaki; Hirai, Mitsuhiro

    2010-01-01

    The effect of osmotic pressure on the structure of large uni-lamellar vesicle (LUV) of the lipid mixtures of monosialoganglioside (G M1 )-cholesterol-dioleoyl-phosphatidylcholine (DOPC) was studies by using wide-angle X-ray scattering (WAXS) method. The molar ratios of the mixtures were 0.1/0.1/1, 0/0.1/1, and 0/0/1. The ternary lipid mixture is a model of lipid rafts. The value of osmotic pressure was varied from 0 to 4.16x10 5 N/m 2 by adding the polyvinylpyrrolidone (PVP) in the range from 0 to 25 % w/v. In the case of the mixtures without G M1 , the rise of the osmotic pressure just enhances the multi-lamellar stacking with deceasing the inter-lamellar spacing. On the other hand, the mixture containing G M1 shows the structural transition from a uni-lamellar vesicle to a double-layered vesicle (a liposome including a smaller one inside) by the rise of osmotic pressure. In this morphology transition the total surface area of the double-layered vesicle is mostly as same as that of the LUV at the initial state. The polar head region of G M1 is bulky and highly hydrophilic due to the oligosaccharide chain containing a sialic acid residue. Then, the present results suggest that the existence of G M1 in the outer-leaflet of the LUV is essentially important for such a double-layered vesicle formation. Alternatively, a phenomenon similar to an endo- and/or exocytosis in cells can be caused simply by a variation of osmotic pressure.

  13. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  14. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima; Sutisna, Burhannudin; Sougrat, Rachid; Nunes, Suzana Pereira

    2016-01-01

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane's water flux and solute retention. © 2016 The Royal Society of Chemistry.

  15. Abdominal drainage versus no drainage post gastrectomy for gastric cancer.

    Science.gov (United States)

    Wang, Zhen; Chen, Junqiang; Su, Ka; Dong, Zhiyong

    2011-08-10

    Gastrectomy remains the primary therapeutic method for resectable gastric cancer. Thought of as an important measure to reduce post-operative complications and mortality, abdominal drainage was used widely after gastrectomy for gastric cancer in previous decades. The benefits of abdominal drainage have been questioned by researchers in recent years. The objectives of this review were to access the benefits and harms of routine abdominal drainage post gastrectomy for gastric cancer. We searched the Cochrane Controlled Trials Register (Central/CCTR) in The Cochrane Library (2010, Issue 10), including the Specialised Registers of the Cochrane Upper Gastrointestinal and Pancreatic Diseases (UGPD) Group; MEDLINE (via Pubmed, 1950 to October, 2010); EMBASE (1980 to October, 2010); and the Chinese National Knowledge Infrastructure (CNKI) Database (1979 to October, 2010). We included randomised controlled trials (RCTs) comparing abdominal drain versus no drain in patients who had undergone gastrectomy (not considering the scale of gastrectomy and the extent of lymphadenectomy; irrespective of language, publication status, and the type of drain). We excluded RCTs comparing one drain with another. From each trial, we extracted the data on the methodological quality and characteristics of the included studies, mortality (30-day mortality), re-operations, post-operative complications (pneumonia, wound infection, intra-abdominal abscess, anastomotic leak, drain-related complications), operation time, length of post-operative hospital stay and initiation of soft diet. For dichotomous data, we calculated the risk ratio (RR) and 95% confidence intervals (CI). For continuous data, we calculated mean differences (MD) and 95% CI. We tested heterogeneity using the Chi(2) test. We used a fixed-effect model for data analysis with RevMan software but we used a random-effects model if the P value of the Chi(2) test was less than 0.1. We included four RCTs involving 438 patients (220

  16. Geohydrologic reconnaissance of drainage wells in Florida

    Science.gov (United States)

    Kimrey, J.O.; Fayard, L.D.

    1984-01-01

    Drainage wells are used to inject surface waters directly into an aquifer, or shallow ground waters directly into a deeper aquifer, primarily by gravity. Such wells in Florida may be grouped into two broad types: (1) surface-water injection wells, and (2) interaquifer connector wells. Drainage wells of the first type are further categorized as either Floridan aquifer drainage wells or Biscayne aquifer drainage wells. Floridan aquifer drainage wells are commonly used to supplement drainage for urban areas in karst terranes of central and north Florida. Data are available for 25 wells in the Ocala, Live Oak, and Orlando areas that allow comparison of the quality of water samples from these Floridan aquifer drainage wells with allowable contaminant levels. Comparison indicates that maximum contaminant levels for turbidity, color, and iron, manganese, and lead concentrations are equaled or exceeded in some drainage-well samples, and relatively high counts for coliform bacteria are present in most wells. Biscayne aquifer drainage wells are used locally to dispose of stormwater runoff and other surplus water in southeast Florida, where large numbers of these wells have been permitted in Dade and Broward Counties. The majority of these wells are used to dispose of water from swimming pools or to dispose of heated water from air-conditioning units. The use of Biscayne aquifer drainage wells may have minimal effect on aquifer potability so long as injection of runoff and industrial wates is restricted to zones where chloride concentrations exceed 1,500 milligrams per liter. Interaquifer connector wells are used in the phosphate mining areas of Polk and Hillsborough Counties, to drain mines and recharge the Floridan aquifer. Water-quality data available from 13 connector wells indicate that samples from most of these wells exceed standards values for iron concentration and turbidity. One well yielded a highly mineralized water, and samples from 6 of the other 12 wells exceed

  17. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    Science.gov (United States)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  18. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  19. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    Science.gov (United States)

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  20. Radiologically-guided catheter drainage of intrathoracic abscesses and empyemas

    International Nuclear Information System (INIS)

    Berger, H.; Steiner, W.; Bergman, C.; Anthuber, M.; Dienemann, H.

    1993-01-01

    Radiologically guided percutaneous catheter drainage was used in 38 patients to treat pleural empyemas (35 patients) and pulmonary abscesses (3 patients). Drainage was successful in 85.7% of empyemas including 11 cases with fistulous communications. Three percutaneously drained pulmonary abscesses required subsequent lobectomy. One patient died during the drainage procedure due to sepsis. No major complications related to the drainage procedure were observed. Guided percutaneous drainage proved to be a safe and successful alternative to closed drainage of pleural fluid collections. (orig.)

  1. Organic fluid permeation through fluoropolymer membranes

    Science.gov (United States)

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  2. Decreased Thickness and Integrity of the Macular Elastic Layer of Bruch’s Membrane Correspond to the Distribution of Lesions Associated with Age-Related Macular Degeneration

    Science.gov (United States)

    Chong, N.H. Victor; Keonin, Jason; Luthert, Phil J.; Frennesson, Christina I.; Weingeist, David M.; Wolf, Rachel L.; Mullins, Robert F.; Hageman, Gregory S.

    2005-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly. In its severest form, choroidal neovessels breach the macular Bruch’s membrane, an extracellular matrix compartment comprised of elastin and collagen laminae, and grow into the retina. We sought to determine whether structural properties of the elastic lamina (EL) correspond to the region of the macula that is predilected toward degeneration in AMD. Morphometric assessment of the macular and extramacular regions of 121 human donor eyes, with and without AMD, revealed a statistically significant difference in both the integrity (P macula than in the periphery. The integrity of the macular EL was significantly lower in donors with early-stage AMD (P = 0.028), active choroidal neovascularization (P = 0.020), and disciform scars (P = 0.003), as compared to unaffected, age-matched controls. EL thickness was significantly lower only in individuals with disciform scars (P = 0.008). The largest gaps in macular EL integrity were significantly larger in all categories of AMD (each P macula is more susceptible to degenerative events that occur in this disease. PMID:15632016

  3. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    Science.gov (United States)

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effect of forest drainage on the carbon balance and greenhouse impact of Finnish peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Minkkinen, K.; Laiho, R. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The aim of this project is to produce an estimate of the change in the biomass and peat carbon stores arising from the drainage of peatlands for forestry, and of the change of greenhouse impact of these ecosystems. The study shows that the subsidence of mire surfaces due to drainage has been relatively small, on average about 20 cm. The observed increase in bulk density after drainage is caused by the physical compression of peat and the post-drainage input of organic material in the form of litter production from the above and below ground parts of the tree layer. Oxidative decay of organic matter may have further increased the compaction of peat, especially in fertile sites. When the changes in peat and vegetation carbon stores are summed up, it seems that, within the site types studied, the total impact of drainage to the ecosystem carbon store is close to zero on the nutrient rich sites and clearly positive on the poorer types. Water level drawdown in peatlands after drainage for forestry appears to decrease the greenhouse impact at least for a few hundred years. The estimated changes in all three emission components (CH{sub 4} emissions, CO{sub 2} sink from peatland and CO{sub 2} sequestered in trees) reduce the radiative forcing by approximately similar amounts

  5. Effect of forest drainage on the carbon balance and greenhouse impact of Finnish peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J; Minkkinen, K; Laiho, R [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1997-12-31

    The aim of this project is to produce an estimate of the change in the biomass and peat carbon stores arising from the drainage of peatlands for forestry, and of the change of greenhouse impact of these ecosystems. The study shows that the subsidence of mire surfaces due to drainage has been relatively small, on average about 20 cm. The observed increase in bulk density after drainage is caused by the physical compression of peat and the post-drainage input of organic material in the form of litter production from the above and below ground parts of the tree layer. Oxidative decay of organic matter may have further increased the compaction of peat, especially in fertile sites. When the changes in peat and vegetation carbon stores are summed up, it seems that, within the site types studied, the total impact of drainage to the ecosystem carbon store is close to zero on the nutrient rich sites and clearly positive on the poorer types. Water level drawdown in peatlands after drainage for forestry appears to decrease the greenhouse impact at least for a few hundred years. The estimated changes in all three emission components (CH{sub 4} emissions, CO{sub 2} sink from peatland and CO{sub 2} sequestered in trees) reduce the radiative forcing by approximately similar amounts

  6. Surface modification of gas diffusion layers by inorganic nanomaterials for performance enhancement of proton exchange membrane fuel cells at low RH conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, 7001 E Williams Field Rd., Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 (India); Kannan, A.M. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, 7001 E Williams Field Rd., Mesa, AZ 85212 (United States); Ahmad, R.; Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2009-08-15

    Prompted by our earlier study that fumed silica on gas diffusion layer (GDL) favored a performance improvement of the single fuel cell at lower RH conditions, the present study has been carried out with inorganic oxides in the nanoscale such as TiO{sub 2}, Al{sub 2}O{sub 3}, commercially available mixed oxides, hydrophilic silica and aerosil silica. The structure of each of the oxide coating on the GDL surface has resulted in refinement with graded pore dimension as seen from the Hg porosimetry data. The fuel cell evaluation at various RH conditions (50-100%) revealed that the performance of all the inorganic oxides loaded GDL is very high compared to that of pristine GDL. The results confirm our earlier observation that inorganic oxides on GDL bring about structural refinement favorable for the transport of gases, and their water retaining capacity enable a high performance of the fuel cell even at low RH conditions. (author)

  7. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  8. Percutaneous biliary drainage and stenting

    International Nuclear Information System (INIS)

    Totev, M.

    2012-01-01

    Full text: Percutaneous transhepatic cholangiography (PTC) is an X-ray or US guided procedure that involves the injection of a contrast material directly into the bile ducts inside the liver to produce pictures of them. If a blockage or narrowing is found, additional procedures may be performed: 1. insertion of a catheter to drain excess bile out of the body or both - internal and external; 2. plastic endoprothesis placement; 3. self-expandable metal stents placement to help open bile ducts or to bypass an obstruction and allow fluids to drain. Current percutaneous biliary interventions include percutaneous transhepatic cholangiography (PTC) and biliary drainage to manage benign and malignant obstructions. Internal biliary stents are either plastic or metallic, and various types of each kind are available. Internal biliary stents have several advantages. An external tube can be uncomfortable and have a psychological disadvantage. An internal stent prevents the problems related to external catheters, for example, pericatheter leakage of bile and the need for daily flushing. The disadvantages include having to perform endoscopic retrograde cholangiopancreatography (ERCP) or new PTC procedures to obtain access in case of stent obstruction. Better patency rates are reported with metallic than with plastic stents in cases of malignant obstruction, though no effect on survival is noted. Plastic internal stents are the cheapest but reportedly prone to migration. Metallic stents are generally not used in the treatment of benign disease because studies have shown poor long-term patency rates. Limited applications may include the treatment of patients who are poor surgical candidates or of those in whom surgical treatment fails. Most postoperative strictures are treated surgically, though endoscopic and (less commonly) percutaneous placement of nonmetallic stents has increasingly been used in the past few years. Now there are some reports about use of biodegradable biliary

  9. Lattice Boltzmann Pore-Scale Investigation of Coupled Physical-electrochemical Processes in C/Pt and Non-Precious Metal Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Chen, Li; Wu, Gang; Holby, Edward F; Zelenay, Piotr; Tao, Wen-Quan; Kang, Qinjun

    2015-01-01

    Highlights: • Nanoscale structures of catalyst layer are reconstructed. • Pore-scale simulation is performed to predict macroscopic transport properties. • Reactive transport in catalyst layer with non-precious metal and Pt catalysts is studied. • Mesopores rather than micropores are required to enhance mass transport. - Abstract: High-resolution porous structures of catalyst layers (CLs) including non-precious metal catalysts (NPMCs) or Pt for proton exchange membrane fuel cells are reconstructed using the quartet structure generation set. The nanoscale structures are analyzed in terms of pore size distribution, specific surface area, and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmann method are developed to predict the macroscopic transport properties in CLs. The non-uniform distribution of ionomer in CL generates more tortuous pathways for reactant transport, greatly reducing the effective diffusivity. The tortuosity of CLs is much higher than that adopted by the Bruggeman equation. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CLs is also investigated. Although the reactive surface area of the non-precious metal catalyst (NPMC) CL is much higher than that of the Pt CL, the oxygen reaction rate is lower in the NPMC CL due to the much lower reaction rate coefficient. Although pores of a few nanometers in size can increase the number of reactive sites in NPMC CLs, they contribute little to enhance the mass transport. Mesopores, which are a few tens of nanometers or larger in size, are shown to be required in order to increase the mass transport rate

  10. Prairie Pothole Region wetlands and subsurface drainage systems: Key factors for determining drainage setback distances

    Science.gov (United States)

    Tangen, Brian; Wiltermuth, Mark T.

    2018-01-01

    Use of agricultural subsurface drainage systems in the Prairie Pothole Region of North America continues to increase, prompting concerns over potential negative effects to the Region's vital wetlands. The U.S. Fish and Wildlife Service protects a large number of wetlands through conservation easements that often utilize standard lateral setback distances to provide buffers between wetlands and drainage systems. Because of a lack of information pertaining to the efficacy of these setback distances for protecting wetlands, information is required to support the decision making for placement of subsurface drainage systems adjacent to wetlands. We used qualitative graphical analyses and data comparisons to identify characteristics of subsurface drainage systems and wetland catchments that could be considered when assessing setback distances. We also compared setback distances with catchment slope lengths to determine if they typically exclude drainage systems from the catchment. We demonstrated that depth of a subsurface drainage system is a key factor for determining drainage setback distances. Drainage systems located closer to the surface (shallow) typically could be associated with shorter lateral setback distances compared with deeper systems. Subsurface drainage systems would be allowed within a wetland's catchment for 44–59% of catchments associated with wetland conservation easements in North Dakota. More specifically, results suggest that drainage setback distances generally would exclude drainage systems from catchments of the smaller wetlands that typically have shorter slopes in the adjacent upland contributing area. For larger wetlands, however, considerable areas of the catchment would be vulnerable to drainage that may affect wetland hydrology. U.S. Fish and Wildlife Service easements are associated with > 2,000 km2 of wetlands in North Dakota, demonstrating great potential to protect these systems from drainage depending on policies for installing

  11. Wrinkles in reinforced membranes

    Science.gov (United States)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  12. Postoperative drainage in head and neck surgery.

    Science.gov (United States)

    Amir, Ida; Morar, Pradeep; Belloso, Antonio

    2010-11-01

    A major factor affecting patients' length of hospitalisation following head and neck surgery remains the use of surgical drains. The optimal time to remove these drains has not been well defined. A routine practice is to measure the drainage every 24 h and remove the drain when daily drainage falls below 25 ml. This study aims to determine whether drainage measurement at shorter intervals decreases the time to drain removal and hence the length of in-patient stays. A 6-month prospective observational study was performed. The inclusion criteria were patients who underwent head and neck surgery without neck dissection and had a closed suction drain inserted. Drainage rates were measured at 8-hourly intervals. Drains were removed when drainage-rate was ≤ 1 ml/h over an 8-h period. A total of 43 patients were evaluated. The highest drainage rate occurred in the first 8 postoperative hours and decreased significantly in the subsequent hours. The median drainage rates at 8, 16, 24, 32 and 40 postoperative hours were 3.375, 1, 0, 0 and 0 ml/h, respectively. Applying our new removal criteria of ≤ 1 ml/h drainage rate, the drains were removed in 22 (51%) patients at the 16th postoperative hour; 37 (86%) were removed by 24 h after operation. In comparison, only nine (20.9%) patients could potentially be discharged the day after surgery if previous criteria of ≤ 25 ml/24-h were used to decide on drain removal. Our 8-hourly drainage-rate monitoring has facilitated safe earlier discharge of an additional 28 (65%) patients on the day after surgery. This has led to improvement in patient care, better optimisation of hospital resources and resulted in positive economic implications to the department.

  13. Intraoperative Ultrasonography during Drainage for Chronic Subdural Hematomas: A Technique to Release Isolated Deep-seated Hematomas—Technical Note

    Science.gov (United States)

    SHIMIZU, Satoru; MOCHIZUKI, Takahiro; OSAWA, Shigeyuki; KUMABE, Toshihiro

    2015-01-01

    After the drainage of chronic subdural hematomas (CSDHs), residual isolated deep-seated hematomas (IDHs) may recur. We introduce intraoperative ultrasonography to detect and remove such IDHs. Intra-operative ultrasonography is performed with fine transducers introduced via burr holes. Images obtained before dural opening show the CSDHs, hyper- and/or hypoechoic content, and mono- or multilayers. Images are also acquired after irrigation of the hematoma under the dura. Floating hyperechoic spots (cavitations) on the brain cortex created by irrigation confirm the release of all hematoma layers; areas without spots represent IDHs. Their overlying thin membranes are fenestrated with a dural hook for irrigation. Ultrasonographs were evaluated in 43 CSDHs (37 patients); 9 (21%) required IDH fenestration. On computed tomography scans, 17 were homogeneous-, 6 were laminar-, 16 were separated-, and 4 were trabecular type lesions. Of these, 2 (11.8%), 3 (50%), 4 (25%), and 0, respectively, manifested IDHs requiring fenestration. There were no technique-related complications. Patients subjected to IDH fenestration had lower recurrence rates (11.1% vs. 50%, p = 0.095) and required significantly less time for brain re-expansion (mean 3.78 ± 1.62 vs. 18 ± 5.54 weeks, p = 0.0009) than did 6 patients whose IDHs remained after 48 conventional irrigation and drainage procedures. Intraoperative ultrasonography in patients with CSDHs facilitates the safe release of hidden IDHs. It can be expected to reduce the risk of postoperative hematoma recurrence and to shorten the brain re-expansion time. PMID:26345671

  14. Gravity Drainage Kinetics of Papermaking Fibrous Suspensions

    Directory of Open Access Journals (Sweden)

    Przybysz Piotr

    2014-12-01

    Full Text Available The study analyses application possibilities of filtration and thickening models in evaluation of papermaking suspension drainage rate. The authors proposed their own method to estimate the drainage rate on the basis of an existing Ergun capillary model of liquid flow through a granular material. The proposed model was less sensitive to porosity changes than the Ergun model. An empirical verification proved robustness of the proposed approach. Taking into account discrepancies in the published data concerning how the drainage velocity of papermaking suspension is defined, this study examines which of the commonly applied models matches experimental results the best.

  15. Cholangitis following percutaneous biliary drainage

    International Nuclear Information System (INIS)

    Audisio, R.A.; Bozzetti, F.; Cozzi, G.; Severini, A.; Belloni, M.; Friggerio, L.F.

    1989-01-01

    The binomial PTBD-cholangitis often stands under different and sometimes even opposite relations. Among its indications the procedure lists, the treatment of cholangitis which, on the other hand, may be itself a complication of biliary drainage. The present work proposes a critical review of cholangitis-PTBD correlations, from an ordinary clinical-radiological point of view. Different pathogenetic hypothesis of cholangitis (inflammation, cholestasis, surgical manipulation) are discussed together with risk factors (impaired macrophagic-phagocytic system, immunosuppresion, wide neoplastic liver involvement, multiple intrahepatic ductal obstructions, chronic liver diseases, aged patients, etc.). The authors also report about prevention and treatment of septic complications which must be carried out following technical and therapeutic strategies, such as chemoprophylaxis and focused antibiotic therapy according to coltural samples, slow injection of small amounts of contrast medium, peripheral branches approach, gentle handling of catheters and guidewires, flushing with saline solutions and brushing of the catheter itself, and finally use of large gauge catheters in the presence of bile sludge

  16. Solar system for soil drainage

    International Nuclear Information System (INIS)

    Kocic, Z.R.; Stojanovic, J.B.; Antic, M.A.; Pavlovic, T.M.

    1999-01-01

    The paper reviews solar system for drainage of the cultivable agricultural surfaces which can be situated near the rivers in plains. These are usually very fertile surfaces which cannot be cultivated die to constant presence of the water. Using such solar systems should increase the percentage of cultivable surfaces. These systems can also be installed on the cultivable agricultural surfaces, where the water surfaces or so called still waters appear, which make impossible the application of agritechnical measures on these surfaces, significantly decreasing crops and creating conditions for the growth of pond plants and animals. Increasing the percentage of cultivable agricultural surfaces would increase national agricultural income. At the same time, increasing the percentage of cultivable agricultural surfaces decreases the surfaces of unhealthy bog, swamp and marshland soils, where many insect breed. They are the cause for soil spraying from the air, which causes the pollution of environment. Solar systems do not pollute the environment because they use solar energy as the purest source of energy. Their usage has special significance in the places where there is no electricity distribution network

  17. Preparation and Oxygen Permeability of BaCo0.7Fe0.2Nb0.1O3-δ Membrane Modified by Ce0.8Y0.2O2-δ Porous Layer on the Air Side

    Directory of Open Access Journals (Sweden)

    Yuan Qiang

    2013-01-01

    Full Text Available BaCo0.7Fe0.2Nb0.1O3−δ (BCFN dense ceramic membrane with submicron-Ce0.8Y0.2O2−δ (YDC porous layer was investigated by the partial oxidation of coke oven gas (COG in hydrogen production. XRD analysis showed this composite had good stability and no chemical reaction at high temperature. SEM and TEM characterization further showed BCFN membrane was uniformly modified by YDC porous layer (about 5~6 μm thickness formed by the accumulation of relative nanoparticles. At the respective COG flux and air flux of 108 mL/min and 173 mL/min, the oxygen permeation flux of BCFN modified by submicron-YDC porous layer reached 16.62 mL·min−1·cm−2, which was about 23.5% higher than that of pure BCFN membrane. Therefore, submicron-YDC porous layer obviously improved the oxygen permeation flux of BCFN membrane and its stability at 875°C.

  18. An improved model for predicting electrical contact resistance between bipolar plate and gas diffusion layer in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiliang; Wang, Shuxin [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhou, Yuanyuan; Lin, Guosong; Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2008-07-15

    Electrical contact resistance between bipolar plates (BPPs) and gas diffusion layers (GDLs) in PEM fuel cells has attracted much attention since it is one significant part of the total contact resistance which plays an important role in fuel cell performance. This paper extends a previous model by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783] on the prediction of electrical contact resistance within PEM fuel cells. The original microscale numerical model was based on the Hertz solution for individual elastic contacts, assuming that contact bodies, GDL carbon fibers and BPP asperities are isotropic elastic half-spaces. The new model features a more practical contact by taking into account the bending behavior of carbon fibers as well as their anisotropic properties. The microscale single contact process is solved numerically using the finite element method (FEM). The relationship between the contact pressure and the electrical resistance at the GDL/BPP interface is derived by multiple regression models. Comparisons of the original model by Zhou et al. and the new model with experimental data show that the original model slightly overestimates the electrical contact resistance, whereas a better agreement with experimental data is observed using the new model. (author)

  19. Composite perfluorohydrocarbon membranes, their preparation and use

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  20. Basics of Postural Drainage and Percussion

    Science.gov (United States)

    ... Active Cycle of Breathing Technique Airway Clearance Techniques Autogenic Drainage Basics of Lung Care Chest Physical Therapy ... care. Clinician Awards Clinician Career Development Awards Clinician Training Awards Mutation Analysis Program Network News Network News: ...

  1. Social impact assessment of subsurface drainage

    International Nuclear Information System (INIS)

    Azhar, A.H.; Rafiq, M.; Alam, M.M.

    2005-01-01

    Social impact assessment of four drainage projects namely; Mardan SCARP Project (MSP), Fourth Drainage Project, Faisalabad (FDP), Chashma Command Area Development Project (CCADP) and Mirpurkhas Tile Drainage Project (MKOP) has been done. For this purpose, a socio-technical survey was carried out in which randomly selected farmers were interviewed. The investigations revealed that although significant population (-77%) at four study sites was educated, yet, the farmers were not satisfactorily educated to understand the operation and maintenance of drainage systems. The perusal of data revealed that 14%, 17% and 25% respondents from MSP, FOP and MKDP respectively had to migrate from their villages mainly due to pre-project water logging problem. However, installation of drainage systems in those areas improved the situation resulting in the increase of farm income, which was an attraction for them to return to their villages. The analysis of farm mechanization revealed that at MSP, FDP, CCADP and MKOP sites 71%, 42%, 40% and 75% respondents respectively were tractor owners and owners of some kind of other farm implements, whereas, remaining respondents were performing their farm operations on hire basis. Although, hire operation basis is much better than traditional ways, however, improving the farm mechanization could further enhance the benefits of drainage systems. The investigations revealed that a significant majority of respondents at four project sites had never met the Agricultural Extension Officer. The farmers' access to financing institutions such as ZTB was also negligible. There was lack of coordination among various departments such as WAPDA, Agriculture Extension and Irrigation and Power Department at four study sites. Nevertheless, the overall social impact investigations did reveal that the objectives of drainage systems installation have been achieved in terms of uplifting the socio-economic conditions of drainage areas. To make the efficient use of

  2. Scintigraphy of the lacrimal drainage system

    International Nuclear Information System (INIS)

    Denffer, H. von; Dressler, J.; Technische Univ. Muenchen

    1978-01-01

    A new scintigraphic method, the radionuclide dacryography, to evaluate lacrimal drainage and its disorders is described. A drop of sup(99m)Tc-pertechnetate is dropped onto the eyes and the transport of the nuclide is registered by a scintillation camera. By this method it is easy to verify, under physiological conditions, suspected obstructions of the lacrimal drainage system and to determine its localization. The absorbed radiation dose using radionuclide dacryography is very low as compared to radiological methods. (orig.) [de

  3. Pressure Jumps during Drainage in Macroporous Soils

    DEFF Research Database (Denmark)

    Soto, Diego; Paradelo Pérez, Marcos; Corral, A

    2018-01-01

    Tensiometer readings obtained at high resolution during drainage of structured soil columns revealed pressure jumps with long range correlations and burst sequences with a hierarchical structure. The statistical properties of jumps are similar to Haines jumps described in invasion percolation...... processes at pore scale, but they are much larger in amplitude and duration. Pressure jumps can result from transient redistribution of water potential in internal regions of soil and can be triggered during drainage by capillary displacements at the scale of structural pores....

  4. Are there still roles for exocrine bladder drainage and portal venous drainage for pancreatic allografts?

    Science.gov (United States)

    Young, Carlton J

    2009-02-01

    Controversy remains regarding the best methodology of handling exocrine pancreatic fluid and pancreatic venous effluent. Bladder drainage has given way to enteric drainage. However, is there an instance in which bladder drainage is preferable? Also, hyperinsulinemia, as a result of systemic venous drainage (SVD), is claimed to be proatherosclerotic, whereas portal venous drainage (PVD) is more physiologic and less atherosclerotic. Bladder drainage remains a viable method of exocrine pancreas drainage, but evidence is sparse that measuring urinary amylase has a substantial benefit in the early detection of acute rejection in all types of pancreas transplants. Currently, there is no incontrovertible evidence that systemic hyperinsulinemia is proatherosclerotic, whereas recent metabolic studies on SVD and PVD showed that there was no benefit to PVD. Given the advent of newer immunosuppressive agents and overall lower acute rejection rates, the perceived benefit of bladder drainage as a means to measure urinary amylase as an early marker of rejection has not been substantiated. However, there may be a selective role for bladder drainage in 'high risk' pancreases. Also, without a clear-cut metabolic benefit to PVD over SVD, it remains the surgeon's choice as to which method to use.

  5. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  6. Failures and complications of thoracic drainage

    Directory of Open Access Journals (Sweden)

    Đorđević Ivana

    2006-01-01

    Full Text Available Background/Aim. Thoracic drainage is a surgical procedure for introducing a drain into the pleural space to drain its contents. Using this method, the pleura is discharged and set to the physiological state which enables the reexpansion of the lungs. The aim of the study was to prove that the use of modern principles and protocols of thoracic drainage significantly reduces the occurrence of failures and complications, rendering the treatment more efficient. Methods. The study included 967 patients treated by thoracic drainage within the period from January 1, 1989 to June 1, 2000. The studied patients were divided into 2 groups: group A of 463 patients treated in the period from January 1, 1989 to December 31, 1994 in whom 386 pleural drainage (83.36% were performed, and group B of 602 patients treated form January 1, 1995 to June 1, 2000 in whom 581 pleural drainage (96.51% were performed. The patients of the group A were drained using the classical standards of thoracic drainage by the general surgeons. The patients of the group B, however, were drained using the modern standards of thoracic drainage by the thoracic surgeons, and the general surgeons trained for this kind of the surgery. Results. The study showed that better results were achieved in the treatment of the patients from the group B. The total incidence of the failures and complications of thoracic drainage decreased from 36.52% (group A to 12.73% (group B. The mean length of hospitalization of the patients without complications in the group A was 19.5 days versus 10 days in the group B. The mean length of the treatment of the patients with failures and complications of the drainage in the group A was 33.5 days versus 17.5 days in the group B. Conclusion. The shorter length of hospitalization and the lower morbidity of the studied patients were considered to be the result of the correct treatment using modern principles of thoracic drainage, a suitable surgical technique, and a

  7. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    Science.gov (United States)

    Friesen, Dwayne T.; Babcock, Walter C.

    1989-01-01

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  8. Dynamic coating of mf/uf membranes for fouling mitigation

    KAUST Repository

    Tabatabai, S. Assiyeh Alizadeh; Leiknes, TorOve

    2017-01-01

    A membrane system including an anti-fouling layer and a method of applying an anti-fouling layer to a membrane surface are provided. In an embodiment, the surface is a microfiltration (MF) or an ultrafiltration (UF) membrane surface. The anti

  9. Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes

    NARCIS (Netherlands)

    Patil, V.E.; Broeke, van den L.J.P.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Permeation of carbon dioxide was measured for two types of composite polymeric hollow fiber membranes for feed pressures up to 18 MPa at a temp. of 313 K. support membrane. The membranes consist of a polyamide copolymer (IPC) layer or a poly(vinyl alc.) (PVA) layer on top of a polyethersulfone

  10. Fouling mechanisms of dairy streams during membrane distillation

    NARCIS (Netherlands)

    Hausmann, A.; Sanciolo, P.; Vasiljevic, T.; Weeks, M.; Schroën, C.G.P.H.; Gray, S.; Duke, M.

    2013-01-01

    This study reports on fouling mechanisms of skim milk and whey during membrane distillation (MD) using polytetrafluoroethylene (PTFE) membranes. Structural and elemental changes along the fouling layer from the anchorpoint at the membrane to the topsurface of the fouling layer have been investigated

  11. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  12. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  13. Percutaneous drainage of abscesses associated with biliary fistulae

    International Nuclear Information System (INIS)

    Berger, H.; Winter, T.; Pratschke, E.; Sauerbruch, T.; Klinikum Grosshadern, Muenchen; Klinikum Grosshadern, Muenchen

    1989-01-01

    33 abdominal abscesses associated with fistulae in 31 patients were treated by percutaneous drainage. 19 of these patients had had surgery immediately preceding the drainage. In 64% the percutaneous drainage led to a diagnosis of an internal fistula. Additional therapeutic measures, because of the fistula, were necessary in 45% (operation, biliary drainage, repositioning of catheter). The average duration of drainage was 29 days. 77% of those abscesses which could be drained were treated successfully. Mortality in the entire series was 19%. (orig.) [de

  14. Improved drainage with active chest tube clearance.

    Science.gov (United States)

    Shiose, Akira; Takaseya, Tohru; Fumoto, Hideyuki; Arakawa, Yoko; Horai, Tetsuya; Boyle, Edward M; Gillinov, A Marc; Fukamachi, Kiyotaka

    2010-05-01

    This study was performed to evaluate the efficacy of a novel chest drainage system. This system employs guide wire-based active chest tube clearance to improve drainage and maintain patency. A 32 Fr chest tube was inserted into pleural cavities of five pigs. On the left, a tube was connected to the chest canister, and on the right, the new system was inserted between the chest tube and chest canister. Acute bleeding was mimicked by periodic infusion of blood. The amount of blood drained from each chest cavity was recorded every 15 min for 2 h. After completion of the procedure, all residual blood and clots in each chest cavity were assessed. The new system remained widely patent, and the amount of drainage achieved with this system (670+/-105 ml) was significantly (P=0.01) higher than that with the standard tube (239+/-131 ml). The amount of retained pleural blood and clots with this system (150+/-107 ml) was significantly (P=0.04) lower than that with the standard tube (571+/-248 ml). In conclusion, a novel chest drainage system with active tube clearance significantly improved drainage without tube manipulations. 2010 Published by European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. Surface engineering: molecularly imprinted affinity membranes by photograft polymerization

    Science.gov (United States)

    Matuschewski, Heike; Sergeyeva, Tatiana A.; Bendig, Juergen; Piletsky, Sergey A.; Ulbricht, Matthies; Schedler, Uwe

    2001-02-01

    Commercial polymer microfiltration membranes were surface-modified with a graft copolymer of a functional monomer and a crosslinker in the presence of a template (triazine-herbicide). As result, membranes covered with a thin layer of imprinted polymer (MIP) selective to the template were obtained. The influence of the polymerization conditions on membrane recognition properties was studied by membranes

  16. Enhanced water desalination performance through hierarchically-structured ceramic membranes

    NARCIS (Netherlands)

    Liu, Tong; Lei, Libin; Gu, Jianqiang; Wang, Yao; Winnubst, Louis; Chen, Chusheng; Ye, Chunsong; Chen, Fanglin

    2017-01-01

    Developments of membrane water desalination are impeded by low water vapor flux across the membrane. We present an innovative membrane design to significantly enhance the water vapor flux. A bilayer zirconia-based membrane with a thick hierarchically-structured support and a thin functional layer is

  17. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases.

    Science.gov (United States)

    Sun, Bao-Liang; Wang, Li-Hua; Yang, Tuo; Sun, Jing-Yi; Mao, Lei-Lei; Yang, Ming-Feng; Yuan, Hui; Colvin, Robert A; Yang, Xiao-Yi

    2017-09-10

    The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes. The brain lymphatic systems function physiological as a route of drainage for interstitial fluid (ISF) from brain parenchyma to nearby lymph nodes. Brain lymphatic drainage helps maintain water and ion balance of the ISF, waste clearance, and reabsorption of macromolecular solutes. A second physiological function includes communication with the immune system modulating immune surveillance and responses of the brain. These physiological functions are influenced by aging, genetic phenotypes, sleep-wake cycle, and body posture. The impairment and dysfunction of the brain lymphatic system has crucial roles in age-related changes of brain function and the pathogenesis of neurovascular, neurodegenerative, and neuroinflammatory diseases, as well as brain injury and tumors. In this review, we summarize the key component elements (regions, cells, and water transporters) of the brain lymphatic system and their regulators as potential therapeutic targets in the treatment of neurologic diseases and their resulting complications. Finally, we highlight the clinical importance of ependymal route-based targeted gene therapy and intranasal drug administration in the brain by taking advantage of the unique role played by brain lymphatic pathways in the regulation of CSF flow and ISF/CSF exchange. Copyright © 2017. Published by Elsevier Ltd.

  18. Fast spot-based multiscale simulations of granular drainage

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Wong, Yee Lok; Bazant, Martin Z.

    2009-05-22

    We develop a multiscale simulation method for dense granular drainage, based on the recently proposed spot model, where the particle packing flows by local collective displacements in response to diffusing"spots'" of interstitial free volume. By comparing with discrete-element method (DEM) simulations of 55,000 spheres in a rectangular silo, we show that the spot simulation is able to approximately capture many features of drainage, such as packing statistics, particle mixing, and flow profiles. The spot simulation runs two to three orders of magnitude faster than DEM, making it an appropriate method for real-time control or optimization. We demonstrateextensions for modeling particle heaping and avalanching at the free surface, and for simulating the boundary layers of slower flow near walls. We show that the spot simulations are robust and flexible, by demonstrating that they can be used in both event-driven and fixed timestep approaches, and showing that the elastic relaxation step used in the model can be applied much less frequently and still create good results.

  19. Endoscopic Ultrasound-Guided Biliary Drainage

    International Nuclear Information System (INIS)

    Artifon, Everson L.A.; Ferreira, Fla'vio C.; Sakai, Paulo

    2012-01-01

    To demonstrate a comprehensive review of published articles regarding endoscopic ultrasound (EUS)-guided biliary drainage. Review of studies regarding EUS-guided biliary drainage including case reports, case series and previous reviews. EUS-guided hepaticogastrostomy, coledochoduodenostomy and choledoantrostomy are advanced biliary and pancreatic endoscopy procedures, and together make up the echo-guided biliary drainage. Hepaticogastrostomy is indicated in cases of hilar obstruction, while the procedure of choice is the coledochoduodenostomy or choledochoantrostomy in distal lesions. Both procedures must be performed only after unsuccessful ERCPs. The indication of these procedures must be made under a multidisciplinary view while sharing information with the patient or legal guardian. Hepaticogastrostomy and coledochoduodenostomy or choledochoantrostomy are feasible when performed by endoscopists with expertise in biliopancreatic endoscopy. Advanced echo-endoscopy should currently be performed under a rigorous protocol in educational institutions.

  20. Endoscopic Ultrasound-Guided Biliary Drainage

    Energy Technology Data Exchange (ETDEWEB)

    Artifon, Everson L.A.; Ferreira, Fla& #x27; vio C.; Sakai, Paulo [University of Saeo Paulo, Saeo Paulo (Brazil)

    2012-02-15

    To demonstrate a comprehensive review of published articles regarding endoscopic ultrasound (EUS)-guided biliary drainage. Review of studies regarding EUS-guided biliary drainage including case reports, case series and previous reviews. EUS-guided hepaticogastrostomy, coledochoduodenostomy and choledoantrostomy are advanced biliary and pancreatic endoscopy procedures, and together make up the echo-guided biliary drainage. Hepaticogastrostomy is indicated in cases of hilar obstruction, while the procedure of choice is the coledochoduodenostomy or choledochoantrostomy in distal lesions. Both procedures must be performed only after unsuccessful ERCPs. The indication of these procedures must be made under a multidisciplinary view while sharing information with the patient or legal guardian. Hepaticogastrostomy and coledochoduodenostomy or choledochoantrostomy are feasible when performed by endoscopists with expertise in biliopancreatic endoscopy. Advanced echo-endoscopy should currently be performed under a rigorous protocol in educational institutions.

  1. Bronchoscopic drainage of a malignant lung abscess.

    Science.gov (United States)

    Katsenos, Stamatis; Psathakis, Konstantinos; Chatzivasiloglou, Fotini; Antonogiannaki, Elvira-Markela; Psara, Anthoula; Tsintiris, Konstantinos

    2015-04-01

    Bronchoscopic drainage of a pyogenic lung abscess is an established therapeutic approach in selected patients in whom conventional antibiotic therapy fails. This intervention has also been undertaken in patients with abscess owing to underlying lung cancer and prior combined radiochemotherapy. However, this procedure has rarely been performed in cavitary lesions of advanced tumor origin before initiating any chemotherapy/radiotherapy scheme. Herein, we describe a case of a 68-year-old woman with lung adenocarcinoma stage IIIB, who underwent bronchoscopic drainage of necrotizing tumor lesion, thus improving her initial poor clinical condition and rendering other treatment modalities, such as radiotherapy, more effective and beneficial. Bronchoscopic drainage of a symptomatic cancerous lung abscess should be considered as an alternative and palliative treatment approach in patients with advanced inoperable non-small cell lung cancer.

  2. Glaucoma Drainage Device Erosion Following Ptosis Surgery.

    Science.gov (United States)

    Bae, Steven S; Campbell, Robert J

    2017-09-01

    To highlight the potential risk of glaucoma drainage device erosion following ptosis surgery. Case report. A 71-year-old man underwent uncomplicated superotemporal Ahmed glaucoma valve implantation in the left eye in 2008. Approximately 8 years later, the patient underwent bilateral ptosis repair, which successfully raised the upper eyelid position. Three months postoperatively, the patient's glaucoma drainage implant tube eroded through the corneal graft tissue and overlying conjunctiva to become exposed. A graft revision surgery was successfully performed with no further complications. Caution and conservative lid elevation may be warranted when performing ptosis repair in patients with a glaucoma drainage implant, and patients with a glaucoma implant undergoing ptosis surgery should be followed closely for signs of tube erosion.

  3. Managing a chest tube and drainage system.

    Science.gov (United States)

    Durai, Rajaraman; Hoque, Happy; Davies, Tony W

    2010-02-01

    Intercostal drainage tubes (ie, chest tubes) are inserted to drain the pleural cavity of air, blood, pus, or lymph. The water-seal container connected to the chest tube allows one-way movement of air and liquid from the pleural cavity. The container should not be changed unless it is full, and the chest tube should not be clamped unnecessarily. After a chest tube is inserted, a nurse trained in chest-tube management is responsible for managing the chest tube and drainage system. This entails monitoring the chest-tube position, controlling fluid evacuation, identifying when to change or empty the containers, and caring for the tube and drainage system during patient transport. This article provides an overview of indications, insertion techniques, and management of chest tubes. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  4. Polymeric molecular sieve membranes for gas separation

    Science.gov (United States)

    Dai, Sheng; Qiao, Zhenan; Chai, Songhai

    2017-08-15

    A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.

  5. Characterization of antibacterial polyethersulfone membranes using the respiration activity monitoring system (RAMOS)

    NARCIS (Netherlands)

    Kochan, J.; Scheidle, M.; Erkel, J. van; Bikel, M.; Büchs, J.; Wong, J.E.; Melin, T.; Wessling, M.

    2012-01-01

    Membranes with antibacterial properties were developed using surface modification of polyethersulfone ultrafiltration membranes. Three different modification strategies using polyelectrolyte layer-by-layer (LbL) technique are described. The first strategy relying on the intrinsic antibacterial

  6. High Performance Thin-Film Composite Forward Osmosis Membrane

    KAUST Repository

    Yip, Ngai Yin; Tiraferri, Alberto; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2010-01-01

    obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed

  7. Zeolite-filled silicone rubber membranes. Experimental determination of concentration profiles

    NARCIS (Netherlands)

    te Hennepe, H.J.C.; Boswerger, W.B.F.; Bargeman, D.; Bargeman, D.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1994-01-01

    Permeant concentrations in silicalite-filled silicone rubber membranes during pervaporation of propanol/water mixtures were measured using multi-layered membranes. Experimentally determined concentration profiles show that the propanol concentration in the silicalite-filled membrane increases with

  8. CT-guided biopsies and drainage

    International Nuclear Information System (INIS)

    Scheppers, I.; Wollschlaeger, D.

    2011-01-01

    Following the implementation of computed tomography (CT) or ultrasound-guided biopsy of solid tumors and the puncture and drainage of liquid processes, the number of surgical open biopsies and curative operations for abscess drainage has declined. Such CT-guided interventions are performed in nearly every organ. Instead of aspiration biopsies, more and more core biopsies are being performed to allow histopathological evaluation and thus allowing targeted therapy. This article is intended to give a general overview of techniques, materials, indications and contraindications. Ultrasound-guided biopsies as well as large bore vacuum biopsies of the breast are not included in this review. (orig.) [de

  9. Percutaneous transhepatic biliary drainage for hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Qian Xiaojun; Jin Wenhui; Dai Dingke; Yu Ping; Gao Kun; Zhai Renyou

    2007-01-01

    Objective: To evaluate the effect of PTBD in treating malignant biliary obstruction caused by hilar cholangiocarcinoma. Methods: We retrospectively analyzed the data of 103 patients(M:62,F:41)with malignant obstructive jaundice caused by hilar cholangiocarcinoma. After taking percutaneous transhepatic cholangiography, metallic stent or plastic external catheter or external-internal catheter for drainage was deployed and then followed up was undertaken with clinical and radiographic evaluation and laboratory. examination. Results: All patients went though PTBD successfully (100%). According to Bismuth classification, all 103 cases consisted of I type(N=30), II type (N=30), III type (N=26) and IV type (N=17). Thirty-nine cases were placed with 47 stents and 64 eases with drainage tubes. 4 cases installed two stems for bilateral drainage, 2 cases installed two stents because of long segmental strictures with stent in stent, 1 case was placed with three stents, and 3 cases installed stent and plastic catheter together. Sixty-four cases received plastic catheters in this series, 35 cases installed two or more catheters for bilateral drainage, 28 cases installed external and internal drainage catheters, 12 eases installed external drainage catheters, and 24 eases installed both of them. There were 17 patients involving incorporative infection before procedure, 13 cases cured after procedure, and 15 new patients got inflammation after procedure. 13 cases showed increase of amylase (from May, 2004), 8 eases had bloody bile drainage and 1 case with pyloric obstruction. Total serum bilirubin reduced from (386 ± 162) μmol/L to (161 ± 117) μmol/L, (P<0.01) short term curative effect was related with the type of hilar cholangiocarcinoma. The survival time was 186 days(median), and 1, 3, 6, 12 month survival rate were 89.9%, 75.3%, 59.6%, 16.9%, respectively. Conclusion: Percutaneous transhepatic bile drainage is a safe and effective palliative therapy of malignant

  10. Urban drainage models - making uncertainty analysis simple

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Mikkelsen, Peter Steen; Deletic, Ana

    2012-01-01

    in each measured/observed datapoint; an issue which is commonly overlook in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter......There is increasing awareness about uncertainties in modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here...

  11. Percutaneous catheter drainage of pancreatic pseudocysts

    International Nuclear Information System (INIS)

    Karnel, F.; Gebauer, A.; Jantsch, H.; Prayer, L.; Schurawitzki, H.; Feil, W.

    1991-01-01

    The results of CT/US-guided percutaneous drainage in 35 patients with pancreatic pseudocysts are reported. 27 patients recovered without surgery and no further treatment was required. 8 patients required a subsequent surgery due to recurrence. The role of CT/US-guided percutaneous drainage in pancreatic pseudocysts as well as an analysis of the technical aspects associated with a successful procedure are discussed. Although US may be used, we believe CT is safer and allows more precise localisation and guidance in the treatment of pseudocysts. (orig.) [de

  12. Transanal Drainage of Coloanal Anastomotic Leaks

    Directory of Open Access Journals (Sweden)

    Bradley Sherman

    2018-01-01

    Full Text Available The conventional operative intervention for leaks following coloanal anastomoses has been proximal fecal diversion with or without take-down of anastomosis. A few of these cases are also amenable to percutaneous drainage. Ostomies created in this situation are often permanent, specifically in cases where coloanal anastomoses are taken down at the time of reoperation. We present two patients who developed perianastomotic pelvic abscesses that were treated with transanal large bore catheter drainage resulting in successful salvage of coloanal anastomoses without the need for a laparotomy or ostomy creation. We propose this to be an effective therapeutic approach to leaks involving low coloanal anastomoses in the absence of generalized peritonitis.

  13. Comparison of natural drainage group and negative drainage groups after total thyroidectomy: prospective randomized controlled study.

    Science.gov (United States)

    Woo, Seung Hoon; Kim, Jin Pyeong; Park, Jung Je; Shim, Hyun Seok; Lee, Sang Ha; Lee, Ho Joong; Won, Seong Jun; Son, Hee Young; Kim, Rock Bum; Son, Young-Ik

    2013-01-01

    The aim of this study was to compare a negative pressure drain with a natural drain in order to determine whether a negative pressure drainage tube causes an increase in the drainage volume. Sixty-two patients who underwent total thyroidectomy for papillary thyroid carcinoma (PTC) were enrolled in the study between March 2010 and August 2010 at Gyeongsang National University Hospital. The patients were prospectively and randomly assigned to two groups, a negative pressure drainage group (n=32) and natural drainage group (n=30). Every 3 hours, the volume of drainage was checked in the two groups until the tube was removed. The amount of drainage during the first 24 hours postoperatively was 41.68 ± 3.93 mL in the negative drain group and 25.3 ± 2.68 mL in the natural drain group (pdrain group was 35.19 ± 4.26 mL and natural drain groups 21.53 ± 2.90 mL (pdrain may increase the amount of drainage during the first 24-48 hours postoperatively. Therefore, it is not necessary to place a closed suction drain when only a total thyroidectomy is done.

  14. Effect of operating parameters and membrane characteristics on air gap membrane distillation performance for the treatment of highly saline water

    KAUST Repository

    Xu, Jingli; Singh, Yogesh Balwant; Amy, Gary L.; Ghaffour, NorEddine

    2016-01-01

    , such as feed temperatures, feed flow velocities and salt concentrations reaching 120 g/L, and different membrane characteristics, such as membrane material, thickness, pore size and support layer, using a locally designed and fabricatd AGMD module and spacer

  15. A study for the research trends of membranes for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Sener, T.

    2004-01-01

    'Full text:' A single PEM fuel cell is comprised of a membrane electrode assembly, two bipolar plates and two fields. Membrane electrode assembly is the basic component of PEM fuel cell due to its cost and function, and it consists a membrane sandwiched between two electrocatalyst layers/electrodes and two gas diffusion layers. Increasing the PEM fuel cell operation temperature from 80 o C to 150-200 o C will prevent electrocatalysts CO poisoning and increase the fuel cell performance. Therefore, membranes must have chemical and mechanical resistance and must keep enough water at high temperatures. The aim of membrane studies through fuel cell commercialization is to produce a less expensive thin membrane with high operation temperature, chemical and mechanical resistance and water adsorption capacity. Within this frame, alternative membrane materials, membrane electrode assembly manufacture and evaluation methods are being studied. In this paper, recent studies are reviewed to give a conclusion for research trends. (author)

  16. Spectroscopy of thin nanodiamond layers and membranes

    Czech Academy of Sciences Publication Activity Database

    Kravets, Roman; Remeš, Zdeněk; Vorlíček, Vladimír; Bryknar, Z.; Nesládek, M.; Potměšil, Jiří; Poruba, Aleš; Vaněček, Milan

    2006-01-01

    Roč. 352, - (2006), s. 1344-1347 ISSN 0022-3093 R&D Projects: GA ČR GA202/05/2233 Institutional research plan: CEZ:AV0Z10100521 Keywords : Raman scattering * chemical vapor deposition * optical spectroscopy * defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.362, year: 2006

  17. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning.

    Science.gov (United States)

    Zheng, Yi; Zhang, Wenxiang; Tang, Bing; Ding, Jie; Zheng, Yi; Zhang, Zhien

    2018-02-01

    Biofilm membrane bioreactor (BF-MBR) is considered as an important wastewater treatment technology that incorporates advantages of both biofilm and MBR process, as well as can alleviate membrane fouling, with respect to the conventional activated sludge MBR. But, to be efficient, it necessitates the establishment of proper methods for the assessment of membrane fouling. Four Hermia membrane blocking models were adopted to quantify and evaluate the membrane fouling of BF-MBR. The experiments were conducted with various operational conditions, including membrane types, agitation speeds and transmembrane pressure (TMP). Good agreement between cake formation model and experimental data was found, confirming the validity of the Hermia models for assessing the membrane fouling of BF-MBR and that cake layer deposits on membrane. Moreover, the influences of membrane types, agitation speeds and transmembrane pressure on the Hermia pore blocking coefficient of cake layer were investigated. In addition, the permeability recovery after membrane cleaning at various operational conditions was studied. This work confirms that, unlike conventional activated sludge MBR, BF-MBR possesses a low degree of membrane fouling and a higher membrane permeability recovery after cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  19. Endoscopic Ultrasound-Guided Perirectal Abscess Drainage without Drainage Catheter: A Case Series

    Directory of Open Access Journals (Sweden)

    Eun Kwang Choi

    2017-05-01

    Full Text Available A perirectal abscess is a relatively common disease entity that occurs as a postsurgical complication or as a result of various medical conditions. Endoscopic ultrasound (EUS-guided drainage was recently described as a promising alternative treatment. Previous reports have recommended placement of a drainage catheter through the anus for irrigation, which is inconvenient to the patient and carries a risk of accidental dislodgement. We report four cases of perirectal abscess that were successfully treated with only one or two 7 F double pigtail plastic stent placements and without a drainage catheter for irrigation.

  20. Drainage filter technologies to mitigate site-specific phosphorus losses in agricultural drainage discharge

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Canga, Eriona

    in drainage. The Danish “SUPREME-TECH” project (2010-2016) (www.supreme-tech.dk) aims at providing the scientific basis for developing cost-effective filter technologies for P in agricultural drainage waters. The project studies different approaches of implementing filter technologies including drainage well....... Targeting high risk areas of P loss and applying site-specific measures promises to be a cost-efficient approach. The Danish Commission for Nature and Agriculture has, therefore, now called for a paradigm shift towards targeted, cost-efficient technologies to mitigate site-specific nutrient losses...... environmental threshold values (

  1. Long-Term Outcomes of Double-Layered Polytetrafluoroethylene Membrane-Covered Self-Expandable Segmental Metallic Stents (Uventa) in Patients with Chronic Ureteral Obstructions: Is It Really Safe?

    Science.gov (United States)

    Kim, Myong; Hong, Bumsik; Park, Hyung Keun

    2016-12-01

    To evaluate the long-term clinical efficacy and safety of double-layered polytetrafluoroethylene membrane-covered self-expandable segmental metallic stents (Uventa) in patients with chronic ureteral obstruction. In a retrospective study, a total of 50 ureter units (44 patients) with chronic obstructions were included from July 2010 to May 2015. Indications for Uventa placement were primary stenting for malignant ureteral obstruction, failed conventional polymeric Double-J stent (PS), or percutaneous nephrostomy (PCN) technique, with comorbidities or fears limiting PS/PCN changes, or with irritation or pain due to PS/PCN. Patients underwent Uventa stent placement using the antegrade or retrograde approach. There were no immediate procedure-related complications, and all stents were placed in the proper sites. During the median follow-up of 30.9 (interquartile range [IQR], 8.1-49.0) months, the primary (no obstruction and no additional intervention) and overall success (no obstruction and no additional intervention except supplementary Uventa) was 30.0% and 34.0%, respectively. Moreover, 14 of 50 ureter units (28.0%) experienced major complications (≥Clavien-Dindo class IIIb), such as ureteroarterial fistula (three cases, 6.0%), ureteroenteric fistula (three, 6.0%), ureterovaginal fistula (one, 2.0%), ureter perforation (one, 2.0%), uncontrollable bleeding (one, 2.0%), and complete obstruction (five, 10.0%). On univariate analysis, major complications were associated with female (odds ratio [OR] = 6.000), cervical cancer (OR = 4.667), ureteral stricture length (≥6.0 cm, OR = 4.583), and placement duration (≥24.0 months, OR = 20.429; all p stent demonstrated poor treatment outcomes with frequent major complications in patients with chronic ureteral obstructions.

  2. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    Science.gov (United States)

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  3. Preoperative biliary drainage for pancreatic cancer

    NARCIS (Netherlands)

    van Heek, N. T.; Busch, O. R.; van Gulik, T. M.; Gouma, D. J.

    2014-01-01

    This review is to summarize the current knowledge about preoperative biliary drainage (PBD) in patients with biliary obstruction caused by pancreatic cancer. Most patients with pancreatic carcinoma (85%) will present with obstructive jaundice. The presence of toxic substances as bilirubin and bile

  4. Preoperative biliary drainage for pancreatic cancer.

    Science.gov (United States)

    Van Heek, N T; Busch, O R; Van Gulik, T M; Gouma, D J

    2014-04-01

    This review is to summarize the current knowledge about preoperative biliary drainage (PBD) in patients with biliary obstruction caused by pancreatic cancer. Most patients with pancreatic carcinoma (85%) will present with obstructive jaundice. The presence of toxic substances as bilirubin and bile salts, impaired liver function and altered nutritional status due to obstructive jaundice have been characterized as factors for development of complications after surgery. Whereas PBD was to yield beneficial effects in the experimental setting, conflicting results have been observed in clinical studies. The meta-analysis from relative older studies as well as more importantly a recent clinical trial showed that PBD should not be performed routinely. PBD for patients with a distal biliary obstruction is leading to more serious complications compared with early surgery. Arguments for PBD have shifted from a potential therapeutic benefit towards a logistic problem such as patients suffering from cholangitis and severe jaundice at admission or patients who need extra diagnostic tests, or delay in surgery due to a referral pattern or waiting list for surgery as well as candidates for neoadjuvant chemo(radio)therapy. If drainage is indicated in these patients it should be performed with a metal stent to reduce complications after the drainage procedure such as stent occlusion and cholangitis. Considering a change towards more neoadjuvant therapy regimes improvement of the quality of the biliary drainage concept is still important.

  5. Peritoneal drainage for newborn intestinal perforation: primary ...

    African Journals Online (AJOL)

    Keywords: intestinal perforation in newborn, necrotizing enterocolitis, primary peritoneal drainage. Department of Surgery, Paul L. Foster School of Medicine, Texas Tech University. HSC, El Paso, Texas, USA. Correspondence to Donald E. Meier, MD, Department of Surgery, Paul L. Foster. School of Medicine, Texas Tech ...

  6. Treatment of dyeing drainage by radiation

    International Nuclear Information System (INIS)

    Shimokawa, Toshinari; Sawai, Takeshi

    1985-01-01

    Decolorization of artificial dyeing drainage and sewage by radiation treatment. Artifical dyeing drainage was prepared from water, polyvinyl alcohol, starch, urea and several kinds of inorganic salts, and artificial sewage, from water, peptone, broth, urea and several kinds of inorganic salts. The above mentioned sample liquors of artificial dyeing drainage and sewage were exposed to γ-radiation of 5 kCi of 60 Co source by aerating through a ball filter. Absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD) were determined after irradiation to evaluate radiation treatment effect. With the experimental data obtained, it was clarified that absorbance, COD and TOC was decreased with the increase of absorbed dose. Decoloring was made effectively and about 95 % of bleaching ratio was obtained at 5 kGy of radiation. COD was decreased also by irradiation rather slower decreasing rate than that of decolorization, and TOC decrease was very slow at the initial stage of radiation but 40 % of TOC was decomposed by 10 kGy radiation. Dye of chemically stable structure was found more resistant to radiation decolorization. Decomposition efficiency was found less for dyes in the artificial sewage but secondary treated sewage showed no adverse effect. With the obtained understandings, a tentative scheme was planned for the radiation decolorization of dyeing drainage after aeration treatment. (Takagi, S.)

  7. GROUNDWATER IMPACTED BY ACID MINE DRAINAGE

    Science.gov (United States)

    The generation and release of acidic, metal-rich water from mine wastes continues to be an intractable environmental problem. Although the effects of acid mine drainage (AMD) are most evident in surface waters, there is an obvious need for developing cost-effective approaches fo...

  8. The Heimlich Valve for Pleural Cavity Drainage

    African Journals Online (AJOL)

    The ANNALS of AFRICAN SURGERY | www.annalsofafricansurgery.com. The ANNALS of AFRICAN SURGERY. July 2016 Volume 13 Issue 2 45. The Heimlich Valve for Pleural Cavity Drainage. Winston Ominde Makanga1, Andrew Nyaoncha Nyangau2 , Benjamin Njoga Njihia3. 1. St Mary's Mission Hospital, Elementaita.

  9. 1 The Effect of Camber Bed Drainage

    African Journals Online (AJOL)

    User

    The Effect of Camber Bed Drainage Landforms on Soil. Nutrient Distribution and Grain Yield of Maize on the Vertisols ... The Vertisols of the Accra Plains of Ghana are water logged after significant rainfall ... Excess application of 15-15-15 NPK and sulphate of ammonia fertilizers (150% .... beds, before planting and nutrient.

  10. Application of nanofiltration to the treatment of acid mine drainage waters

    International Nuclear Information System (INIS)

    Bastos, Edna T.R.; Barbosa, Celina C.R.; Oliveira, Elizabeth E.M.; Carvalho, Leonel M. de; Pedro Junior, Antonio; Queiroz, Vanessa B.C. de

    2009-01-01

    This study investigated the separation of uranium and other elements in high concentrations from acid mine waters at Caldas Uranium Mining, in the southeast of Brazil, using nanofiltration membranes. Nanofiltrarion is widely used in water treatment due to the lower energy requirements and higher yields than reverse osmosis. Separation characteristics are dependent on both the molecular size and charge of the dissolved species in the feed solution as well as membrane properties. In this investigation the potential of nanofiltration to removed dissolved species like uranium from acid mine water drainage was measured. Two composite aromatic polyamide commercially membranes of FilmTec/Dow were tested and it found that uranium rejections of greater than 90% and also showed potential for the separation of aluminum and manganese. (author)

  11. Preparation of bipolar membranes by electrospinning

    International Nuclear Information System (INIS)

    Pan, Jiefeng; Hou, Linxiao; Wang, Qiuyue; He, Yubin; Wu, Liang; Mondal, Abhishek N.; Xu, Tongwen

    2017-01-01

    A new preparative pathway for the bipolar membranes was initiated via the electrospinning and hot-press process. The prepared bipolar membrane was consisting of sulfonated poly (phenylene oxide), polyethylene glycol, and quaternized poly (phenylene oxide). The above mentioned membrane was fabricated by the continuous electrospinning of the respective layer, followed by the solvent atmosphere treatment and hot-pressing, to obtain a transparent and dense structure. The thickness of each layer can be easily tuned by controlling the electrospinning parameters. The clear interfacial structure was observed and confirmed by the scanning electron microscope. The bipolar performance is evaluated by the current–voltage curves and production yield of acid and base. The final optimized bipolar membrane had similar yield of acid and base as the casting membrane. However, extremely lower potential drop value was observed when they are applied for the production of acid and base. The experimental results showed that, electrospinning is an effective and well controlled way to fabricate bipolar membranes, in which anion or cation exchange layer as well as interfacial layer can be easily changed or added as requested. - Highlights: • Bipolar membranes were prepared through electrospinning followed by post-treatment. • As-prepared membranes were successfully applied in electrodialysis for production of acid and base. • Electrospun membranes exhibit better performance than the casting ones.

  12. Preparation of bipolar membranes by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jiefeng; Hou, Linxiao; Wang, Qiuyue; He, Yubin; Wu, Liang; Mondal, Abhishek N.; Xu, Tongwen, E-mail: twxu@ustc.edu.cn

    2017-01-15

    A new preparative pathway for the bipolar membranes was initiated via the electrospinning and hot-press process. The prepared bipolar membrane was consisting of sulfonated poly (phenylene oxide), polyethylene glycol, and quaternized poly (phenylene oxide). The above mentioned membrane was fabricated by the continuous electrospinning of the respective layer, followed by the solvent atmosphere treatment and hot-pressing, to obtain a transparent and dense structure. The thickness of each layer can be easily tuned by controlling the electrospinning parameters. The clear interfacial structure was observed and confirmed by the scanning electron microscope. The bipolar performance is evaluated by the current–voltage curves and production yield of acid and base. The final optimized bipolar membrane had similar yield of acid and base as the casting membrane. However, extremely lower potential drop value was observed when they are applied for the production of acid and base. The experimental results showed that, electrospinning is an effective and well controlled way to fabricate bipolar membranes, in which anion or cation exchange layer as well as interfacial layer can be easily changed or added as requested. - Highlights: • Bipolar membranes were prepared through electrospinning followed by post-treatment. • As-prepared membranes were successfully applied in electrodialysis for production of acid and base. • Electrospun membranes exhibit better performance than the casting ones.

  13. 13 Morphometric Analysis of Ogunpa and Ogbere Drainage Basins ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    form and process of drainage basins that may be widely ... ferruginous tropical soil on basement complex rock (Areola ... landuse pattern control the infiltration loss, the distribution of ... the water intercepted by Ogbere drainage basin to longer ...

  14. Estimating the benefits of improved drainage on pavement ...

    African Journals Online (AJOL)

    user

    2 Centre for Transportation Systems, Indian Institute of Technology Roorkee, INDIA ... parking lots that only allow cars, not trucks). ..... drainage section) and 2015 & 2019 (for poor drainage section) after the construction of an overlay, it was ...

  15. Internal drainage of infected pancreatic pseudocysts: safe or sorry?

    NARCIS (Netherlands)

    Boerma, D.; van Gulik, T. M.; Obertop, H.; Gouma, D. J.

    1999-01-01

    BACKGROUND: External drainage is the traditional surgical therapy for infected pancreatic pseudocyst, although associated with high morbidity and mortality rates. In this study it was determined whether internal drainage is feasible with acceptable postoperative morbidity and recurrence rates.

  16. Performance evaluation and accuracy of passive capillary samplers (PCAPs) for estimating real-time drainage water fluxes

    Science.gov (United States)

    Successful monitoring of pollutant transport through the soil profile requires accurate, reliable, and appropriate instrumentation to measure amount of drainage water or flux within the vadose layer. We evaluated the performance and accuracy of automated passive capillary wick samplers (PCAPs) for ...

  17. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  18. Routine Sub-hepatic Drainage versus No Drainage after Laparoscopic Cholecystectomy: Open, Randomized, Clinical Trial.

    Science.gov (United States)

    Shamim, Muhammad

    2013-02-01

    Surgeons are still following the old habit of routine subhepatic drainage following laparoscopic cholecystectomy (LC). This study aims to compare the outcome of subhepatic drainage with no drainage after LC. This prospective study was conducted in two phases. Phase I was open, randomized controlled trial (RCT), conducted in Civil Hospital Karachi, from August 2004 to June 2005. Phase II was descriptive case series, conducted in author's practice hospitals of Karachi, from July 2005 to December 2009. In phase I, 170 patients with chronic calculous cholecystitis underwent LC. Patients were divided into two groups, subhepatic drainage (group A: 79 patients) or no drainage (group B: 76 patients). The rest 15 patients were excluded either due to conversion or elective subhepatic drainage. In phase II, 218 consecutive patients were enrolled, who underwent LC with no subhepatic drainage. Duration of operation, character, and amount of drain fluid (if placed), postoperative ultrasound for subhepatic collection, postoperative chest X-ray for the measurement of subdiaphragmatic air, postoperative pain, postoperative nausea/vomiting, duration of hospital stay, and preoperative or postoperative complications were noted and analyzed. Duration of operation and hospital stay was slightly longer in group A patients (P values 0.002 and 0.029, respectively); postoperative pain perception, nausea/vomiting, and postoperative complications were nearly same in both groups (P value 0.064, 0.078, and 0.003, respectively). Subhepatic fluid collection was more in group A (P = 0.002), whereas subdiaphragmatic air collection was more in group B (P = 0.003). Phase II results were nearly similar to group B patients in phase I. Routine subhepatic drainage after LC is not necessary in uncomplicated cases.

  19. Foamed emulsion drainage: flow and trapping of drops

    OpenAIRE

    Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina

    2017-01-01

    Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oi...

  20. An update on the drainage of pyogenic lung abscesses

    Directory of Open Access Journals (Sweden)

    Siraj O Wali

    2012-01-01

    Full Text Available Most lung abscesses (80-90% are now successfully treated with antibiotics; however, this conservative approach may occasionally fail. When medical treatment fails, pulmonary resection is usually advised. Alternatively, percutaneous transthoracic tube drainage or endoscopic drainage can be considered, though both remain controversial. In this communication, the medical literature focusing on percutaneous tube drainage efficacy, indications, techniques, complications, and mortality, as well as available data regarding endoscopic drainage are reviewed.

  1. Land drainage and restoration of land after NCB opencast mining

    Energy Technology Data Exchange (ETDEWEB)

    Bragg, N.

    The author outlines the MAFF Field Drainage Research Unit's research into drainage of reinstated land. Current investigations have aimed at identifying the problems of reinstated soil and how they affect drainage design. Experiments on efficiency of permeable field drains and non-permeable field drains are mentioned. Further work is needed to examine long-term effects of storage on soil structure and whether existing drainage can be revitalised by secondary treatment.

  2. The foam drainage equation for drainage dynamics in unsaturated porous media

    Science.gov (United States)

    Lehmann, P.; Hoogland, F.; Assouline, S.; Or, D.

    2017-07-01

    Similarity in liquid-phase configuration and drainage dynamics of wet foam and gravity drainage from unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation—SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. The study provides new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions. Two novel analytical solutions for saturation profile evolution were derived and tested in good agreement with a numerical solution of the SFDE. The study and the proposed solutions rectify the original formulation of foam drainage dynamics of Or and Assouline (2013). The new framework broadens the scope of methods available for quantifying unsaturated flow in porous media, where the intrinsic conductivity and geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches.

  3. The Effect of Different Subsurface Drainage Systems on Improvement of Water Flow in Paddy fields

    Directory of Open Access Journals (Sweden)

    ghassem aghajani mazandarani

    2017-03-01

    soil aeration conditions and performance of drainage systems, the grain yield hasincreased in different drainage treatments. The results showed a direct relationship between improvement of system performance and increase in grain yield. In the second year, grain yield increased in all treatments. On the other hand, the yield under drainage systems with deeper depth (D0.9 L30 even higher in the 2nd and 4th years than with low depth drain (D0.65 L30. This was because of more fall in water table levels during days after rainfall and also with next rainfall, saturation of soil up to surface layer in the plots with deeper drains were performed later and it may not reach up to thesoil surface. Conclusion: Due to betterconditions of deep drains and with higher spacing in the improvement of paddy field use and also less environmental harm use of drains with higher spacing are recommended for these lands. On the other hand,a low increase in drain depth from 0.65 m to 0.9 m along with increase in spacing of30 m with respect to 15 m and even with 0.65 m depth, will have less cost. Due to decrease in the costs of drain installation with higher spacing, due to improvement of conditions, the performance of these systems in 2 to 3 years one can have cheaper drainage systems in the longest time and will improve the economic situation of farmers due to higher yield.

  4. Role of Lithology and Rock Structure in Drainage Development in ...

    African Journals Online (AJOL)

    Lithology and Rock structure play a vital role in the development of Drainage Network in any drainage basin. The drainage patterns upon land surface develop as directed by the underlying lithology and rock structure. In fact, lithology and rock structure together shape the basin and are decisive parameters of nature and ...

  5. Drainage of Splenic Abscess: A Case Report | Kombo | Nigerian ...

    African Journals Online (AJOL)

    ... and was managed by tube drainage. His post operative recovery was uneventful. Conclusion: Tube drainage of the splenic abscess is encouraged if there is easy access to the abscess and there is evidence of residual splenic tissue in the critically ill patient. Key Word: Tube drainage, splenic abscess, splenectomy.

  6. PASSIVE TREATMENT OF ACID ROCK DRAINAGE FROM A SUBSURFACE MINE

    Science.gov (United States)

    Acidic, metal-contaminated drainages are a critical problem facing many areas of the world. Acid rock drainage results when metal sulfide minerals, particularly pyrite, are oxidized by exposure to oxygen and water. The deleterious effects of these drainages on receiving streams a...

  7. Membranous nephropathy

    Science.gov (United States)

    ... skin-lightening creams Systemic lupus erythematosus , rheumatoid arthritis, Graves disease, and other autoimmune disorders The disorder occurs at ... diagnosis. The following tests can help determine the cause of membranous nephropathy: Antinuclear antibodies test Anti-double- ...

  8. Control of distributed heat transfer mechanisms in membrane distillation plants

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-01-05

    Various examples are provided that are related to boundary control in membrane distillation (MD) processes. In one example, a system includes a membrane distillation (MD) process comprising a feed side and a permeate side separated by a membrane boundary layer; and processing circuitry configured to control a water production rate of the MD process based at least in part upon a distributed heat transfer across the membrane boundary layer. In another example, a method includes determining a plurality of estimated temperature states of a membrane boundary layer separating a feed side and a permeate side of a membrane distillation (MD) process; and adjusting inlet flow rate or inlet temperature of at least one of the feed side or the permeate side to maintain a difference temperature along the membrane boundary layer about a defined reference temperature based at least in part upon the plurality of estimated temperature states.

  9. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-01-01

    polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids

  10. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara; Li, Z.; Behzad, Ali Reza; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2015-01-01

    and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions

  11. Ion transport Modeling in a Bipolar Membrane

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Park, Kwang Heon; Kim, Kwang Wook

    2010-01-01

    The COL(Carbonate-based Oxidative Leaching) process is an environmentally-friendly technique for collecting only uranium from spent fuel with oxidation leaching/ precipitation of carbonate solution. The bipolar membrane used for the electrolyte circulation of the salt used in the COL process is a special form of ion exchange membrane which combines CEM(cation exchange membrane) and AEM(anion exchange membrane). After arranging positive ion exchange layer toward negative terminal and positive ion exchange layer toward positive terminal, then supply electricity, water molecules are decomposed into protons and hydroxyl ions by a strong electric field in the transition region inside bipolar membrane.1) In this study, a theoretical approach to increase the efficiency of Na + and NO3 - ion collecting device using bipolar membrane was taken and simulating using the COMSOL program was tried. The details of results are also discussed

  12. EFFECTIVENESS OF AUTOGENIC DRAINAGE VERSUS POSTURAL DRAINAGE ON OXYGEN SATURATION IN PATIENTS WITH CHRONIC BRONCHITIS WITH 15 MINUTES POST THERAPY

    OpenAIRE

    V. Kiran; Dr. Bhimasen .S; E. Mastanaiah; A. Thiruppathi

    2014-01-01

    Background: Patients with COPD will have more amount of secretions. To clear the secretions by using of different bronchial hygiene techniques like postural drainage and autogenic drainage technique, manual hyperventilation technique ,active cycle breathing technique .Hence in this study to compare the short-term effects of postural drainage with clapping (PD) and autogenic drainage (AD) on level of oxygen saturation in blood, and amount of sputum recovery. Methodology: The study was done ...

  13. Composite hollow fiber gas-liquid membrane contactors for olefin/paraffin separation

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Visser, Tymen; Assen, R.; Wessling, Matthias

    2004-01-01

    Gas¿liquid membrane contactors frequently suffer from undesired wetting of the microporous membrane by the absorption liquid. Stabilization layers at the liquid-side of the microporous membrane potentially prevent this wetting. We apply such stabilized membranes in a membrane contactor using AgNO3

  14. Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt

    Directory of Open Access Journals (Sweden)

    M. El Bastawesy

    2013-04-01

    Full Text Available This paper investigates the development of waterlogging in the cultivated and arable areas within typical dryland closed drainage basins (e.g. the Farafra and Baharia Oases, which are located in the Western Desert of Egypt. Multi-temporal remote sensing data of the Landsat Thematic Mapper (TM and Enhanced Thematic Mapper (ETM+ were collected and processed to detect the land cover changes; cultivations, and the extent of water ponds and seepage channels. The Shuttle Radar Topography Mission (SRTM digital elevation model (DEM has been processed to delineate the catchment morphometrical parameters (i.e. drainage networks, catchment divides and surface areas of different basins and to examine the spatial distribution of cultivated fields and their relation to the extracted drainage networks. The soil of these closed drainage basins is mainly shallow and lithic with high calcium carbonate content; therefore, the downward percolation of excess irrigation water is limited by the development of subsurface hardpan, which also saturates the upper layer of soil with water. The subsurface seepage from the newly cultivated areas in the Farafra Oasis has revealed the pattern of buried alluvial channels, which are waterlogged and outlined by the growth of diagnostic saline shrubs. Furthermore, the courses of these waterlogged channels are coinciding with their counterparts of the SRTM DEM, and the recent satellite images show that the surface playas in the downstream of these channels are partially occupied by water ponds. On the other hand, a large water pond has occupied the main playa and submerged the surrounding fields, as a large area has been cultivated within a relatively small closed drainage basin in the Baharia Oasis. The geomorphology of closed drainage basins has to be considered when planning for a new cultivation in dryland catchments to better control waterlogging hazards. The "dry-drainage" concept can be implemented as the drainage and

  15. Reuse of drainage water in the Nile Delta; monitoring, modelling and analysis; final report Reuse of Drainage Water Project

    NARCIS (Netherlands)

    Staring Centrum, Instituut voor Onderzoek van het LandelijkGebied

    1995-01-01

    The effects of reusing drainage water have been evaluated and other options to increase the water utilization rate in Egypt explored. The results are an operational network for monitoring drainage water discharges and salinity along the major drains, a database for monitored drainage water

  16. Dehydration processes using membranes with hydrophobic coating

    Science.gov (United States)

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  17. Application of a mixture of soils to create a stable layer of support on the slope in ponds waterproofed with geo membranes. Application to a specific case in the reservoir Conseller Jose Ramon Garcia Anton in Elche (Alicante)

    International Nuclear Information System (INIS)

    Ferran Gozalvez, F. J.; Ferrer Gisbert, C.; Redon Santafe, M.; Perez Sanchez, M.; Torregrosa Solar, J. S.; Zapata Raboso, F. J.; Sanchez Romero, F. J.

    2014-01-01

    This text present the experience developed in a reservoir in Elche (Alicante). This communication explains the importance of the layer of support to prevent the punching. This phenomenon can occur in a reservoir that has a deficient layer of support. Also, the paper describes the requirements to be met by the support layer to perform its function. (Author)

  18. Application of ceramic membranes to SAGD produced water treatment for enhanced recycle and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, K. [Veolia Water Solutions and Technologies, Mississauga, ON (Canada)

    2009-07-01

    Drivers for using ceramic membranes in steam assisted gravity drainage (SAGD) include reduced investment cost; alternative treatment technologies that reduce energy and greenhouse gas emissions; and ceramic membranes can be chemically and steam cleaned. This presentation discussed the application of ceramic membranes to SAGD produced water treatment for enhanced recycle and reuse. The presentation illustrated conventional ceramic membranes as well as surface enhanced membranes and provided background information on oil separation. Other topics that were discussed included issues regarding desalter bottoms de-oiling; challenges in de-oiling oil sands produced water; CeraMem surface enhanced membranes; surface facilities and ceramic membrane opportunities; and water treatment using ceramic membranes. The presentation concluded with a discussion of the application of ceramic membranes to SAGD next steps such as a demonstration test of industrial prototype membranes for de-oiling, and pilot testing of ceramic desilication. tabs., figs.

  19. Development of drainage water quality from a landfill cover built with secondary construction materials.

    Science.gov (United States)

    Travar, Igor; Andreas, Lale; Kumpiene, Jurate; Lagerkvist, Anders

    2015-01-01

    The aim of this study was to evaluate the drainage water quality from a landfill cover built with secondary construction materials (SCM), fly ash (FA), bottom ash (BA) sewage sludge, compost and its changes over time. Column tests, physical simulation models and a full scale field test were conducted. While the laboratory tests showed a clear trend for all studied constituents towards reduced concentrations over time, the concentrations in the field fluctuated considerably. The primary contaminants in the drainage water were Cl(-), N, dissolved organic matter and Cd, Cu, Ni, Zn with initial concentrations one to three orders of magnitude above the discharge values to the local recipient. Using a sludge/FA mixture in the protection layer resulted in less contaminated drainage water compared to a sludge/BA mixture. If the leaching conditions in the landfill cover change from reduced to oxidized, the release of trace elements from ashes is expected to last about one decade longer while the release of N and organic matter from the sludge can be shortened with about two-three decades. The observed concentration levels and their expected development over time require drainage water treatment for at least three to four decades before the water can be discharged directly to the recipient. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Diffuse Charge Effects in Fuel Cell Membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Franco, A.A.; Bazant, M.Z.

    2009-01-01

    It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, the standard model for electron transfer kinetics at the membrane/electrode

  1. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  2. In-office drainage of sinus Mucoceles: An alternative to operating-room drainage.

    Science.gov (United States)

    Barrow, Emily M; DelGaudio, John M

    2015-05-01

    Endoscopic drainage has become the standard of care for the treatment of mucoceles. In many patients this can be performed in the office. This study reviews our experience with in-office endoscopic mucocele drainage. Retrospective chart review. A retrospective review of one surgeon's experience with in-office endoscopic drainage of sinus mucoceles between 2006 and 2014 was performed. Charts were reviewed for patient demographics, previous surgery, mucocele location, bone erosion, and outcomes. Thirty-two patients underwent 36 in-office drainage procedures. All procedures were performed under topical/local anesthesia. The mean age was 55 years (range, 17-92 years). The mean follow-up time was 444 days. Fifty-five percent had previous sinus surgery. The primary sinus involved was the frontal (12), anterior (11), posterior ethmoid (six), maxillary (four), and sphenoid (two). Bone erosion was noted to be present on computed tomography in 18 mucoceles (51%) (16 orbital, seven skull-base). All mucoceles were successfully accessed in the office with the exception of one, which was aborted due to neo-osteogenesis. Five patients (14% of mucoceles) required additional surgery, two for mucocele recurrence and three for septated mucoceles not completely drained in the office. No treatment complications occurred. All but one patient preferred in-office to operating-room drainage. In-office drainage of sinus mucoceles is well tolerated by patients, with high success and low complication rates, even in large mucoceles with bone erosion. The presence of septations and neo-osteogenesis reduce the likelihood of complete drainage and are relative contraindications. Orbital and skull base erosion are not contraindications. 4. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Percutaneous drainage of chest abscesses in children

    International Nuclear Information System (INIS)

    Ball, W.S. Jr.; Towbin, R.B.; Bisset, G.S. III.

    1987-01-01

    Similar techniques for draining abdominal abscesses are now being applied to abscesses within the chest. This report describes the authors' experience in percutaneous drainage of seven chest abscesses in six children aged 3-13 years (mean, 7.3 years). Four pleural/extrapleural loculations were drained in three patients. Abscess location included right apex (one), right minor fissure (one), and left supradiaphragmatic (two). Collections resulted from esophageal perforation (two) or esophageal anastomotic leak (two). Three lung abscesses were drained in three patients. Abscess location included right lower, left lower, and right middle lobes. All lay adjacent to a pleural surface and were localized by CT or US before drainage. There were no complications. Complete resolution occurred in all six patients without the need for surgical intervention

  4. Range of drainage effect of surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Sozanski, J.

    1978-03-01

    This paper discusses methods of calculating the range of effects of water drainage from surface coal mines and other surface mines. It is suggested that methods based on test pumping (water drainage) are time consuming, and the results can be distorted by atmospheric factors such as rain fall or dry period. So-called empirical formulae produce results which are often incorrect. The size of a cone shaped depression calculated on the basis of empirical formulae can be ten times smaller than the size of the real depression. It is suggested that using a formula based on the Dupuit formula is superior to other methods of depression calculation. According to the derived formulae the radius of the depresion cone is a function of parameters of the water bearing horizons, size of surface mine working and of water depression. The proposed formula also takes into account the influence of atmospheric factors (water influx caused by precipitation, etc.). (1 ref.) (In Polish)

  5. Percutaneous drainage of 100 subphrenic abscesses

    International Nuclear Information System (INIS)

    Casola, G.; Sonnenberg, E. van; D'Agostino, H.; Kothari, R.; May, S.; Taggart, S.

    1990-01-01

    PURPOSE: Percutaneous drainage of subphrenic abscesses is technically more difficult because lung and pleura may be transgressed during catheter insertion. The purpose of this paper is to determine the incidence of thoracic complications secondary to subphrenic abscess drainage and to determine factors that may alter this. The authors' series consists of 100 subphrenic abscesses that were drained percutaneously. Patients range in age from 14 to 75 years. Abscesses were secondary to surgery (splenectomy, pancreatectomy, partial hepatectomy, gastrectomy), pancreatitis, and trauma. Catheters ranged in size from 8 to 14 F and were inserted via trocar or Seldinger technique. Thoracic complications of pneumothorax or empyema were determined from follow-up chest radiographs or CT scans

  6. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang; Zhang, Sui; Chung, Neal Tai-Shung

    2015-01-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  7. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  8. Urban Floods Adaptation and Sustainable Drainage Measures

    Directory of Open Access Journals (Sweden)

    Helena M. Ramos

    2017-11-01

    Full Text Available Sustainability is crucial to the urban zones, especially related to the water management, which is vulnerable to flood occurrence. This research applies the procedure contemplated by the Soil Conservation Service (SCS to determine the generated volumes when the impervious areas can exceed the drainage capacity of existing pluvial water networks. Several computational simulations were developed for the current scenario of an existing basin in Lisbon. Using CivilStorm software from Bentley Systems (Bentley EMEA, Bentley Systems International Limited, Dublin, Ireland, it enabled the evaluation of the volumes of flood peaks and the hydraulic behavior of a small hydrographic basin in the continuation of an urbanization process, considering the modification of its superficial impervious parts and the growth of the urbanized area. Several measures are suggested to solve the limited capacity of the existing drainage system. This study analyzes the efficiency of the application of constructive measures, pondering the viability of their effectiveness, individually and combined. The option that best minimizes the effects of the urbanization is the combination of different structural measures, in particular retention ponds, storage blocks, ditches and specific drainage interventions in some parts of the network.

  9. Physics of smectic membranes

    Science.gov (United States)

    Pieranski, P.; Beliard, L.; Tournellec, J.-Ph.; Leoncini, X.; Furtlehner, C.; Dumoulin, H.; Riou, E.; Jouvin, B.; Fénerol, J.-P.; Palaric, Ph.; Heuving, J.; Cartier, B.; Kraus, I.

    1993-03-01

    Due to their layered structure, smectic liquid crystals can form membranes, similar to soap bubbles, that can be spanned on frames. Such smectic membranes have been used extensively as samples in many structural X-ray studies of smectic liquid crystals. In this context they have been considered as very convenient and highly perfect samples but little attention has been paid to the reasons for their existence and to the process of their formation. Our aim here is to address a first list of questions, which are the most urgent to answer. We will also describe experiments and models that have been conceived especially in order to understand the physics of these fascinating systems.

  10. Acid drainage (AD) in nature and environmental impact of acid mine drainage (AMD) in Southern Tuscany

    International Nuclear Information System (INIS)

    Di Lella, Luigi Antonello; Protano, Giuseppe; Riccobono, Francesco

    2005-01-01

    Acid drainage (AD) is a natural process occurring locally at the Earth's surface. It consists in a substantial increase of acidity of surface waters as a result of chemical reactions occurring in the atmosphere (i.e. acid rain) or involving reactive phases (i.e. pyrite) present in the percolated medium. Acidic surface waters (usually pH < 4) can be produced by oxidation of sulphides (mainly pyrite and other iron sulphides) exposed to atmospheric oxygen, while human activities, such as mining, can greatly enhance this process. Acid drainage promoted by mining activities is called acid mine drainage (AMD) and is a primary source of environmental pollution and a world-wide problem in both active and abandoned mining areas. In fact, exposure of iron sulphides to oxidising conditions produces strongly acidic drainage waters rich in sulphate and a variety of heavy elements (i.e. As, Cd, Pb, Sb). Several occurrences of active acid mine drainage have been found in the Metalliferous Hills (southern Tuscany). The most important AMD phenomena were observed in the Fenice Capanne and Niccioleta mining areas

  11. Membrane with Stable Nanosized Microstructure and Method for Producing same

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a membrane, comprising in this order a first catalyst layer, an electronically and ionically conducting layer having a nanosized microstructure, and a second catalyst layer, characterized in that the electronically and ionically conducting layer is formed from...... an electrolyte material, a grain growth inhibitor and/or grain boundary modifier, and a method for producing same....

  12. Axionic membranes

    International Nuclear Information System (INIS)

    Aurilia, A.; Spallucci, E.

    1992-01-01

    A metal ring removed from a soap-water solution encloses a film of soap which can be mathematically described as a minimal surface having the ring as its only boundary. This is known to everybody. In this letter we suggest a relativistic extension of the above fluidodynamic system where the soap film is replaced by a Kalb-Ramand gauge potential B μν (x) and the ring by a closed string. The interaction between the B μν field and the string current excites a new configuration of the system consisting of a relativistic membrane bounded by the string. We call such a classical solution of the equation of motion an axionic membrane. As a dynamical system, the axionic membrane admits a Hamilton-Jacobi formulation which is an extension of the HJ theory of electromagnetic strings. (orig.)

  13. Biocatalytic Self-Cleaning Polymer Membranes

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2015-09-01

    Full Text Available Polymer membrane surfaces have been equipped with the digestive enzyme trypsin. Enzyme immobilization was performed by electron beam irradiation in aqueous media within a one-step method. Using this method, trypsin was covalently and side-unspecific attached to the membrane surface. Thus, the use of preceding polymer functionalization and the use of toxic solvents or reagents can be avoided. The resulting membranes showed significantly improved antifouling properties as demonstrated by repeated filtration of protein solutions. Furthermore, the biocatalytic membrane can be simply “switched on” to actively degrade a fouling layer on the membrane surface and regain the initial permeability. The membrane pore structure (pore size and porosity was neither damaged by the electron beam treatment nor blocked by the enzyme loading, ensuring a stable membrane performance.

  14. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  15. Challenges in recovering resources from acid mine drainage

    Science.gov (United States)

    Nordstrom, D. Kirk; Bowell, Robert J.; Campbell, Kate M.; Alpers, Charles N.

    2017-01-01

    Metal recovery from mine waters and effluents is not a new approach but one that has occurred largely opportunistically over the last four millennia. Due to the need for low-cost resources and increasingly stringent environmental conditions, mine waters are being considered in a fresh light with a designed, deliberate approach to resource recovery often as part of a larger water treatment evaluation. Mine water chemistry is highly dependent on many factors including geology, ore deposit composition and mineralogy, mining methods, climate, site hydrology, and others. Mine waters are typically Ca-Mg-SO4±Al±Fe with a broad range in pH and metal content. The main issue in recovering components of these waters having potential economic value, such as base metals or rare earth elements, is the separation of these from more reactive metals such as Fe and Al. Broad categories of methods for separating and extracting substances from acidic mine drainage are chemical and biological. Chemical methods include solution, physicochemical, and electrochemical technologies. Advances in membrane techniques such as reverse osmosis have been substantial and the technique is both physical and chemical. Biological methods may be further divided into microbiological and macrobiological, but only the former is considered here as a recovery method, as the latter is typically used as a passive form of water treatment.

  16. Metamaterial membranes

    International Nuclear Information System (INIS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-01-01

    We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena. (paper)

  17. Comparison between autologous blood transfusion drainage and closed-suction drainage/no drainage in total knee arthroplasty: a meta-analysis.

    Science.gov (United States)

    Hong, Kun-Hao; Pan, Jian-Ke; Yang, Wei-Yi; Luo, Ming-Hui; Xu, Shu-Chai; Liu, Jun

    2016-08-01

    Autologous blood transfusion (ABT) drainage system is a new unwashed salvaged blood retransfusion system for total knee replacement (TKA). However, whether to use ABT drainage, closed-suction (CS) drainage or no drainage in TKA surgery remains controversial. This is the first meta-analysis to assess the clinical efficiency, safety and potential advantages regarding the use of ABT drains compared with closed-suction/no drainage. PubMed, Embase, and the Cochrane Library were comprehensively searched in March 2015. Fifteen randomized controlled trials (RCTs) were identified and pooled for statistical analysis. The primary outcome evaluated was homologous blood transfusion rate. The secondary outcomes were post-operative haemoglobin on days 3-5, length of hospital stay and wound infections after TKA surgery. The pooled data included 1,721 patients and showed that patients in the ABT drainage group might benefit from lower blood transfusion rates (16.59 % and 37.47 %, OR: 0.28 [0.14, 0.55]; 13.05 % and 16.91 %, OR: 0.73 [0.47,1.13], respectively). Autologous blood transfusion drainage and closed-suction drainage/no drainage have similar clinical efficacy and safety with regard to post-operative haemoglobin on days 3-5, length of hospital stay and wound infections. Autologous blood transfusion drainage offers a safe and efficient alternative to CS/no drainage with a lower blood transfusion rate. Future large-volume high-quality RCTs with extensive follow-up will affirm and update this system review.

  18. Advances in drainage: Selected works from the Tenth International Drainage Symposium

    Science.gov (United States)

    Strock, Jeffrey S.; Hay, Christopher; Helmers, Matthew; Nelson, Kelly A.; Sands, Gary R.; Skaggs, R. Wayne; Douglas-Mankin, Kyle R.

    2018-01-01

    This article introduces a special collection of fourteen articles accepted from among the 140 technical presentations, posters, and meeting papers presented at the 10th International ASABE Drainage Symposium. The symposium continued in the tradition of previous symposia that began in 1965 as a forum for presenting and assessing the progress of drainage research and implementation throughout the world. The articles in this collection address a wide range of topics grouped into five broad categories: (1) crop response, (2) design and management, (3) hydrology and scale, (4) modeling, and (5) water quality. The collection provides valuable information for scientists, engineers, planners, and others working on crop production, water quality, and water quantity issues affected by agricultural drainage. The collection also provides perspectives on the challenges of increasing agricultural production in a changing climate, with ever-greater attention to water quality and quantity concerns that will require integrated technical, economic, and social solutions.

  19. Fluoroscopy guided percutaneous catheter drainage of pneumothorax in good mid-term patency with tube drainage

    International Nuclear Information System (INIS)

    Park, Ga Young; Oh, Joo Hyung; Yoon, Yup; Sung, Dong Wook

    1995-01-01

    To evaluate efficacy and the safety of percutaneous catheter drainage in patients with pneumothorax that is difficult to treat with closed thoracotomy. We retrospectively reviewed effectiveness of percutaneous catheter drainage (PCD) in 10 patients with pneumothorax. The catheter was inserted under fluoroscopic guidance. Seven patients had spontaneous pneumothorax caused by tuberculosis (n =4), reptured bullae (n = 2), and histiocytosis-X (n = 1). Three patients had iatrogenic pneumothorax caused by trauma (n = 1) and surgery (n = 2). All procedures were performed by modified Seldinger's method by using 8F-20F catheter. All catheter were inserted successfully. In 9 of 10 patients, the procedure was curative without further therapy. Duration of catheter insertion ranged from 1 day to 26 days. In the remaining 1 patient in whom multiple pneumothorax occurred after operation, catheter insertion was performed twice. Percutaneous catheter drainage under fluoroscopic guidance is effective and safe procedure for treatment of pneumothorax in patients with failed closed thoracotomy

  20. Fluoroscopy guided percutaneous catheter drainage of pneumothorax in good mid-term patency with tube drainage

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ga Young; Oh, Joo Hyung; Yoon, Yup; Sung, Dong Wook [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1995-10-15

    To evaluate efficacy and the safety of percutaneous catheter drainage in patients with pneumothorax that is difficult to treat with closed thoracotomy. We retrospectively reviewed effectiveness of percutaneous catheter drainage (PCD) in 10 patients with pneumothorax. The catheter was inserted under fluoroscopic guidance. Seven patients had spontaneous pneumothorax caused by tuberculosis (n =4), reptured bullae (n = 2), and histiocytosis-X (n = 1). Three patients had iatrogenic pneumothorax caused by trauma (n = 1) and surgery (n = 2). All procedures were performed by modified Seldinger's method by using 8F-20F catheter. All catheter were inserted successfully. In 9 of 10 patients, the procedure was curative without further therapy. Duration of catheter insertion ranged from 1 day to 26 days. In the remaining 1 patient in whom multiple pneumothorax occurred after operation, catheter insertion was performed twice. Percutaneous catheter drainage under fluoroscopic guidance is effective and safe procedure for treatment of pneumothorax in patients with failed closed thoracotomy.

  1. Experimental and numerical analysis of the drainage of aluminium foams

    International Nuclear Information System (INIS)

    Brunke, O; Hamann, A; Cox, S J; Odenbach, S

    2005-01-01

    Drainage is one of the driving forces for the temporal instability of molten metal foams. For usual aqueous foams this phenomenon is well examined and understood on both the experimental and the theoretical side. The situation is different for metallic foams. Due to their opaque nature, the observation of drainage is only possible by either measuring the density distribution of solidified samples ex situ or by x-ray or neutron radioscopy. Up to now there exists just one theoretical study describing the drainage behaviour of metallic foams incorporating the drainage equation, the temperature dependence of the viscosity and thermal transport. This paper will present results on the drainage behaviour of aluminium foams grown by a powder-metallurgical production route. For this purpose an experiment which allows the observation of drainage in cylindrical metal foam columns has been developed. Experimental density profiles after different drainage times are measured ex situ and compared to numerical results of the standard drainage equation for aqueous foams. This first comparison between the density redistribution of metallic aluminium foams and numerical solutions shows that the standard drainage equation can be used to explain the drainage behaviour of metallic foams

  2. design of ceramic membrane supports: permeability, tensile strength and stress

    NARCIS (Netherlands)

    Biesheuvel, Pieter Maarten; Biesheuvel, P.M.; Verweij, H.

    1999-01-01

    A membrane support provides mechanical strength to a membrane top layer to withstand the stress induced by the pressure difference applied over the entire membrane and must simultaneously have a low resistance to the filtrate flow. In this paper an experimental and a theoretical approach toward the

  3. Traditional Foley drainage systems--do they drain the bladder?

    Science.gov (United States)

    Garcia, Maurice M; Gulati, Shelly; Liepmann, Dorian; Stackhouse, G Bennett; Greene, Kirsten; Stoller, Marshall L

    2007-01-01

    Foley catheters are assumed to drain the bladder to completion. Drainage characteristics of Foley catheter systems are poorly understood. To investigate unrecognized retained urine with Foley catheter drainage systems, bladder volumes of hospitalized patients were measured with bladder scan ultrasound volumetrics. Additionally, an in vitro bench top mock bladder and urinary catheter system was developed to understand the etiology of such residual volumes. A novel drainage tube design that optimizes indwelling catheter drainage was also designed. Bedside bladder ultrasound volumetric studies were performed on patients hospitalized in ward and intensive care unit. If residual urine was identified the drainage tubing was manipulated to facilitate drainage. An ex vivo bladder-urinary catheter model was designed to measure flow rates and pressures within the drainage tubing of a traditional and a novel drainage tube system. A total of 75 patients in the intensive care unit underwent bladder ultrasound volumetrics. Mean residual volume was 96 ml (range 4 to 290). In 75 patients on the hospital ward mean residual volume was 136 ml (range 22 to 647). In the experimental model we found that for every 1 cm in curl height, obstruction pressure increased by 1 cm H2O within the artificial bladder. In contrast, the novel spiral-shaped drainage tube demonstrated rapid (0.5 cc per second), continuous and complete (100%) reservoir drainage in all trials. Traditional Foley catheter drainage systems evacuate the bladder suboptimally. Outflow obstruction is caused by air-locks that develop within curled redundant drainage tubing segments. The novel drainage tubing design eliminates gravity dependent curls and associated air-locks, optimizes flow, and minimizes residual bladder urine.

  4. Summertime nocturnal drainage flow in the San Mateo and Ambrosia lake air sheds of the grants basin

    International Nuclear Information System (INIS)

    Gedayloo, T.; Barr, S.; Clements, W.E.; Wilson, S.K.

    1979-01-01

    An initial study of some fundamental meteorological properties of two major air sheds in the Grants Basin of northwestern New Mexico was conducted from May 18 to September 19, 1978. Three mechanical weather stations were used in conjunction with a few vertical wind soundings to develop a data set for the summer regime. Data collected between May 18 and July 30 is analyzed to investigate nocturnal drainage flows, daytime flows, and channeling of synoptic wind. Drainage wind averaging 2.5 m s -1 was found to exist in a surface layer not greater than 200 m deep on 60% of the nights investigated. This frequently occurring drainage flow is characterized by a strong decoupling from the upper level winds. Daytime winds, on the other hand, are representative of the synoptic flow patterns suggesting a rather rapid coupling after sunrise

  5. Scleral electrocautery and its effects on choroid vessels: implications for subretinal fluid drainage during scleral buckling surgery.

    Science.gov (United States)

    Roybal, C Nathaniel; Tsui, Irena; Sanfilippo, Christian; Hubschman, Jean-Pierre

    2013-01-01

    External drainage of subretinal fluid as part of a scleral buckling procedure rapidly restores the retinal pigment epithelium-neural retina interface in rhegmatogenous retinal detachments but carries the inherent risk of subretinal hemorrhage and retinal incarceration. The authors investigated variations to the technique to reduce the chance of subretinal hemorrhage originating from the choroid. A novel method for needle drainage using electrocautery of the sclerochoroidal layers before puncture was employed. The effect of 0% to 50% scleral electrocautery in a porcine model was investigated. A significant decrease in choroidal vessel diameter and choroidal vessel density at 40% electrocautery was demonstrated. Electrocautery without scleral cut-down before external drainage of subretinal fluid likely decreases the chance of subretinal hemorrhage by decreasing choroidal vascularity. Copyright 2013, SLACK Incorporated.

  6. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  7. Ultrastructure of Reissner's membrane in the rabbit

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, J; Bretlau, P

    1994-01-01

    and an oxygen-carrying fixative. In ultrathin sections capillaries were observed between the two cell layers comprising Reissner's membrane. The mesothelial cells facing the scala vestibuli were connected by junctional complexes and neither pores nor discontinuities were observed in the cell layer...

  8. Suprascarpal fat pad thickness may predict venous drainage patterns in abdominal wall flaps.

    Science.gov (United States)

    Bast, John; Pitcher, Austin A; Small, Kevin; Otterburn, David M

    2016-02-01

    Abdominal wall flaps are routinely used in reconstructive procedures. In some patients inadequate venous drainage from the deep vein may cause fat necrosis or flap failure. Occasionally the superficial inferior epigastric vessels (SIEV) are of sufficient size to allow for microvascular revascularization. This study looked at the ratio of the sub- and suprascarpal fat layers, the number of deep system perforators, and SIEV diameter to determine any correlation of the fat topography and SIEV. 50 abdominal/pelvic CT angiograms (100 hemiabdomens) were examined in women aged 34-70 years for number of perforators, SIEV diameter, and fat pad thickness above and below Scarpa's fascia. Data was analyzed using multivariate model. The average suprascarpal and subscarpal layers were 18.6 ± 11.5 mm and 6.2 ± 7.2 mm thick, respectively. The average SIEV diameter was 2.06 ± 0.81 mm and the average number of perforators was 2.09 ± 1.03 per hemiabdomen. Hemiabdomens with suprascarpal thickness>23 mm had greater SIEV diameter [2.69 mm vs. 1.8 mm (P fat layer thickness did not correlate with the number of perforators. Neither subscarpal fat thickness nor suprascarpal-to-subscarpal fat layer thickness correlated significantly with SIEV caliber or number of perforators in multivariate model. Suprascarpal fat pad thicker than 23 mm had larger SIEVs irrespective of the number of deep system perforators. This may indicate a cohort of patients at risk of venous congestion from poor venous drainage if only the deep system is revascularized. We recommend harvesting the SIEV in patients with suprascarpal fat pad >23 mm to aid in superficial drainage. © 2015 Wiley Periodicals, Inc.

  9. Button self-retaining drainage catheter

    International Nuclear Information System (INIS)

    Caridi, James G.; Hawkins, Irvin F.; Akins, E. William; Young, Ronald S.

    1997-01-01

    To help improve patient acceptance of long-term internal/external catheter access to the biliary tract in those with benign biliary obstruction, a simple design allows the catheter end to remain flush with the skin. It consists of a clothes button affixed to the drainage catheter with a wood screw after the catheter has been cut off at the skin exit. This button/screw device has been used successfully in 22 patients over the last 10 years; catheter exchanges were easily accomplished

  10. Percutaneous biliary drainage in patients with cholangiocarcinoma

    International Nuclear Information System (INIS)

    Mehta, A.C.; Gobel, R.J.; Rose, S.C.; Hayes, J.K.; Miller, F.J.

    1990-01-01

    This paper determines whether radiation therapy (RT) is a risk factor for infectious complications (particularly hepatic abscess formation) related to percutaneous biliary drainage (PBD). The authors retrospectively reviewed the charts of 98 consecutive patients who had undergone PBD for obstruction. In 34 patients with benign obstruction, three infectious complications occurred, none of which were hepatic abscess or fatal sepsis. In 39 patients who had malignant obstruction but did not have cholangiocarcinoma, 13 infectious complications occurred, including two hepatic abscesses and three cases of fatal sepsis. Of the 25 patients with cholangiocarcinoma, 15 underwent RT; in these 15 patients, 14 infectious complications occurred, including six hepatic abscesses and two cases of fatal sepsis

  11. Radiologic drainage of infected and noninfected thoracic fluid collections

    International Nuclear Information System (INIS)

    Van Sonnenberg, E.; Casola, G.; Stavas, J.; Neff, C.C.; Varney, R.A.; Wittich, G.R.; Dillard, J.; Christensen, R.A.; Friedman, P.J.

    1987-01-01

    Radiologically guided drainage of 100 thoracic fluid collections is described in this paper. Collections that underwent drainage include empyemas, lung abscesses, bronchopleural fistulas (BPFs), mediastinal abscesses, paracardial collections, bronchogenic cysts, sequestrations, lymphoceles, lymphangiomas, malignant effusions, and necrotic tumors. Catheters were placed for sclerotherapy in nine patients. Guidance modalities (in descending order of frequency) were CT, US, fluoroscopy, and MR. Inadequate thoracostomy tube drainage occurred in a third of the patients prior to radiologic drainage. Drainages were effective in 85% of cases, sparing surgery or another thoracostomy tube. Complications occurred in 7% of patients, most being minor and none requiring operation. Criteria for drainage of lung abscess and BPF will be emphasized, as will techniques and methods of follow-up

  12. Percutaneous drainage of diverticular abscess: Adjunct to resection

    International Nuclear Information System (INIS)

    Mueller, P.R.; Saini, S.; Butch, R.J.; Simeone, J.F.; Rodkey, G.V.; Bousquet, J.C.; Ottinger, L.W.; Wittenberg, J.; Ferrucci, J.T. Jr.

    1986-01-01

    Traditional surgical management of acute diverticulitis with abscess may require a one-, two-, or three-stage procedure. Because of recent interest in CT diagnosis of diverticulitis, and novel access routes for interventional drainage of deep pelvic abscesses, the authors investigated the potential for converting complex two- and three-stage surgical procedures to simpler, safer one-stage colon resections by percutaneous drainage of the associated abscess. Of 23 patients with acute perforated diverticulitis who were referred for catheter drainage under radiologic guidance, successful catheter drainage and subsequent single-stage colon resection were carried out in 15. In three patients catheter drainage was unsuccessful and a multistage procedure was required. In three patients only percutaneous drainage was performed and operative intervention was omitted entirely

  13. Fabrication of asymmetric alumina membranes

    International Nuclear Information System (INIS)

    Firouzghalb, H.; Falamaki, C.

    2010-01-01

    The effect of SrO addition on the thermal stabilization of transition aluminas with the aim of producing membrane layers (supported and unsupported) has been investigated. Al 2 O 3 -x wt.% SrO composite powders (x = 1, 3, 5, 8) were synthesized by co-precipitation of the hydroxides from solutions of AlCl 3 and Sr(NO 3 ) 2 salts using NH 4 OH as a precipitating agent. Optimum SrO dopant concentration regarding the transition aluminas stabilization effect was determined to be 5 wt.% based on XRD analysis. STA analysis showed a 30 deg. C shift versus higher temperatures in the transformation of final transitional alumina (θ-Al 2 O 3 ) to stable alpha phase due to addition of 5 wt.% SrO. The mechanism of transition aluminas thermal stabilization as a result of SrO addition is thoroughly discussed. Unsupported alumina membranes were prepared by drying boehmite sols at 600, 800, 1000 and 1100 deg. C. The effect of calcination temperature on surface area, pore size distribution of unsupported membranes containing 5 wt.% SrO has been investigated. The microstructure of unsupported and supported membranes revealed quite different. Smaller grains in the supported layers were attributed to the interaction between support and membrane.

  14. Preoperative biliary drainage for periampullary tumors causing obstructive jaundice; DRainage vs. (direct) OPeration (DROP-trial)

    NARCIS (Netherlands)

    N.A. van der Gaag (Niels); S.M.M. de Castro (Steve); E.A.J. Rauws (Erik); M.J. Bruno (Marco); C.H.J. van Eijck (Casper); E.J. Kuipers (Ernst); J.J.G.M. Gerritsen (Josephus); J.P. Rutten (Joost Paul); J.W. Greve; E.J. Hesselink (Eric); J.H. Klinkenbijl (Jean); I.H.M.B. Rinkes; D. Boerma (Djamila); B.A. Bonsing (Bert); C.J. van Laarhoven (Cees); F.J. Kubben; E. van der Harst (Erwin); M.N. Sosef (Meindert); K. Bosscha (Koop); I.H.J.T. de Hingh (Ignace); L. Th de Wit (Laurens); O.M. van Delden (Otto); O.R.C. Busch (Olivier); T.M. van Gulik (Thomas); P.M.M. Bossuyt (Patrick); D.J. Gouma (Dirk)

    2007-01-01

    textabstractBackground. Surgery in patients with obstructive jaundice caused by a periampullary (pancreas, papilla, distal bile duct) tumor is associated with a higher risk of postoperative complications than in non-jaundiced patients. Preoperative biliary drainage was introduced in an attempt to

  15. Preoperative biliary drainage for periampullary tumors causing obstructive jaundice; DRainage vs. (direct) OPeration (DROP-trial)

    NARCIS (Netherlands)

    van der Gaag, Niels A.; de Castro, Steve M. M.; Rauws, Erik A. J.; Bruno, Marco J.; van Eijck, Casper H. J.; Kuipers, Ernst J.; Gerritsen, Josephus J. G. M.; Rutten, Jan-Paul; Greve, Jan Willem; Hesselink, Erik J.; Klinkenbijl, Jean H. G.; Borel Rinkes, Inne H. M.; Boerma, Djamila; Bonsing, Bert A.; van Laarhoven, Cees J.; Kubben, Frank J. G. M.; van der Harst, Erwin; Sosef, Meindert N.; Bosscha, Koop; de Hingh, Ignace H. J. T.; Th de Wit, Laurens; van Delden, Otto M.; Busch, Olivier R. C.; van Gulik, Thomas M.; Bossuyt, Patrick M. M.; Gouma, Dirk J.

    2007-01-01

    BACKGROUND: Surgery in patients with obstructive jaundice caused by a periampullary (pancreas, papilla, distal bile duct) tumor is associated with a higher risk of postoperative complications than in non-jaundiced patients. Preoperative biliary drainage was introduced in an attempt to improve the

  16. Reuse of drainage water model : calculation method of drainage water and watertable depth

    NARCIS (Netherlands)

    Roest, C.W.J.; Rijtema, P.E.; Abdel Khalik, M.A.

    1986-01-01

    The main objective of the project is to assist the Ministry of Irrigation in Egypt in the planning of future watermanagement strategies incorporating reuse of drainage water practices. In order to achieve this main objective a comprehensive measurement programme has been initiated and a mathematical

  17. Time effects of water drainage from deposited back-fill

    International Nuclear Information System (INIS)

    Baranski, L.A.

    1976-01-01

    Time effects of water drainage from deposited back-fill in mine excavations are considered. The time dependence of drainage from the deposited material was determined from ''in situ'' measurements with the aid of radioisotope gauges. The measurements were performed for given drainage conditions and practically constant grain size composition. It was found that in a few hours after the end of the back-filling operation the mechanical properties of the deposited material are practically constant. (author)

  18. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  19. Effect of viscosity on tear drainage and ocular residence time.

    Science.gov (United States)

    Zhu, Heng; Chauhan, Anuj

    2008-08-01

    An increase in residence time of dry eye medications including artificial tears will likely enhance therapeutic benefits. The drainage rates and the residence time of eye drops depend on the viscosity of the instilled fluids. However, a quantitative understanding of the dependence of drainage rates and the residence time on viscosity is lacking. The current study aims to develop a mathematical model for the drainage of Newtonian fluids and also for power-law non-Newtonian fluids of different viscosities. This study is an extension of our previous study on the mathematical model of tear drainage. The tear drainage model is modified to describe the drainage of Newtonian fluids with viscosities higher than the tear viscosity and power-law non-Newtonian fluids with rheological parameters obtained from fitting experimental data in literature. The drainage rate through canaliculi was derived from the modified drainage model and was incorporated into a tear mass balance to calculate the transients of total solute quantity in ocular fluids and the bioavailability of instilled drugs. For Newtonian fluids, increasing the viscosity does not affect the drainage rate unless the viscosity exceeds a critical value of about 4.4 cp. The viscosity has a maximum impact on drainage rate around a value of about 100 cp. The trends are similar for shear thinning power law fluids. The transients of total solute quantity, and the residence time agrees at least qualitatively with experimental studies. A mathematical model has been developed for the drainage of Newtonian fluids and power-law fluids through canaliculi. The model can quantitatively explain different experimental observations on the effect of viscosity on the residence of instilled fluids on the ocular surface. The current study is helpful for understanding the mechanism of fluid drainage from the ocular surface and for improving the design of dry eye treatments.

  20. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    OpenAIRE

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindb?ck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and exa...

  1. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil

    2015-01-10

    This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.

  2. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... were compared with preoperative endoscopic retrograde cholangiopancreatography (ERCP) morphology. The preoperatively elevated pressure decreased in all patients but one, to normal or slightly elevated values. The median pressure decrease was 50% (range, 0-90%; p = 0.01). The drainage anastomosis (a...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  3. The construction technology of Chinese ancient city drainage facilities

    Science.gov (United States)

    Hequn, Li; Yufengyun

    2018-03-01

    In ancient china, according to the local natural environment, a variety of drainage facilities were built in order to excrete rainwater, domestic sewage, production wastewater and so on. These drainage facilities were mainly made of pottery, bricks, wood, stone, etc. For example, ceramic water pipelines, buried in the ground, connect together one by one, and there was a slight drop from one end to the other in favor of drainage. These measures can also be used for reference in today’s urban drainage and flood control.

  4. Drainage filters and constructed wetlands to mitigate sitespecific nutrient losses

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Canga, Eriona; Heckrath, Goswin Johann

    2012-01-01

    Research Council, aims at providing the scientific basis for developing cost-effective filter technologies targeting P-retention and N-removal in agricultural subsurface drainage. The project studies different approaches of implementing the filter technologies including drainage well filters as well...... typically applied to point sources. This calls for a shift of paradigm towards the development of new, cost-efficient technologies to mitigate site-specific nutrient losses in drainage. A newly launched Danish research project “SUPREME-TECH” (2010-2015) (www.supreme-tech.dk) funded by the Danish Strategic...... in drainage water to below environmental threshold values (

  5. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  6. Peat drainage conditions assessment in Scotland

    Science.gov (United States)

    Poggio, Laura; Artz, Rebekka; Donaldson-Selby, Gillian; Aitkenhead, Matt; Donnelly, David; Gimona, Alessandro

    2017-04-01

    Large areas of Scotland are covered in peat, providing an important sink of carbon but also a notable source of emission where peatlands are not in good condition. However, despite data from designated sites that peat degradation is common, a detailed spatial assessment of the condition of most peatlands across the whole of Scotland is missing. An assessment of peatland drainage was carried out at >600 random sampling locations with an expert-based estimation of presence or absence of drainage ditches within a 500 metre block using 25 cm resolution aerial imagery. The resulting dataset was modelled using a scorpan-kriging approach, in particular using Generalised Additive Models for the description of the trend. Remote sensing images from different sensors (i.e. MODIS, Landsat and Sentinel 1 and 2) were used. In particular we used indices describing vegetation greenness (Enhanced Vegetation Index), water availability (Normalised Water Difference index), Land Surface Temperature and vegetation productivity. When considering MODIS indices we used time series and phenological summaries. The model provides also uncertainty of the estimations. The derived dataset can then be used in the decision making process for the selection of sites for restoration, emissions estimation and accounting.

  7. Caesium-137 as an indicator of geomorphic processes in a drainage basin system

    International Nuclear Information System (INIS)

    Campbell, B.L.; Elliott, G.L.

    1982-01-01

    Caesium-137 from fallout from nuclear weapons tests is adsorbed on fine sediments and becomes an effective tracer. It is hypothesised that within a drainage basin, sites undergoing little or no erosion accumulate Cs-137 in their upper layers; cultivated soils will have Cs-137 uniformly distributed within the cultivated layer; eroded soils, cultivated or not, will have relatively less Cs-137, depending on the severity of erosion. Accumulated sediments will have characteristic Cs-137 profiles reflecting temporal fallout variations and sedimentation history. This hypothetical model is largely confirmed by results from Maluna Creek basin, where erosion and accumulation of sediments has taken place. Soils under viticulture have about one third the Cs-137 content of soils with grass cover, indicating more severe erosion under cultivation. Caesium-137 profiles in alluvial fan and flood plain deposits correlate with sediment layers and known cultivation history

  8. Synthesis of a composite inorganic membrane for the separation of nitrogen, tetrafluoromethane and hexafluoropropylene

    Directory of Open Access Journals (Sweden)

    Hertzog Bissett

    2011-09-01

    Full Text Available Composite inorganic membranes were synthesised for gas component separation of N2, CF4 and C3F6. Selectivities lower than Knudsen selectivities were obtained due to membrane defects. A composite ceramic membrane consisting of a ceramic support structure, a MFI intermediate zeolite layer and a Teflon top layer, was developed to improve separation.

  9. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    Science.gov (United States)

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  10. Endoscopic ultrasound-guided transmural drainage of postoperative pancreatic collections.

    Science.gov (United States)

    Tilara, Amy; Gerdes, Hans; Allen, Peter; Jarnagin, William; Kingham, Peter; Fong, Yuman; DeMatteo, Ronald; D'Angelica, Michael; Schattner, Mark

    2014-01-01

    Pancreatic leak is a major cause of morbidity after pancreatectomy. Traditionally, peripancreatic fluid collections have been managed by percutaneous or operative drainage. Data for endoscopic ultrasound (EUS)-guided drainage of postoperative fluid collections are limited. Here we report on the safety, efficacy, and timing of EUS-guided drainage of postoperative peripancreatic collections. This is a retrospective review of 31 patients who underwent EUS-guided drainage of fluid collections after pancreatic resection. Technical success was defined as successful transgastric deployment of at least one double pigtail plastic stent. Clinical success was defined as resolution of the fluid collection on follow-up CT scan and resolution of symptoms. Early drainage was defined as initial transmural stent placement within 30 days after surgery. Endoscopic ultrasound-guided drainage was performed effectively with a technical success rate of 100%. Clinical success was achieved in 29 of 31 patients (93%). Nineteen of the 29 patients (65%) had complete resolution of their symptoms and collection with the first endoscopic procedure. Repeat drainage procedures, including some with necrosectomy, were required in the remaining 10 patients, with eventual resolution of collection and symptoms. Two patients who did not achieve durable clinical success required percutaneous drainage by interventional radiology. Seventeen (55%) of 31 patients had successful early drainage completed within 30 days of their operation. Endoscopic ultrasound-guided drainage of fluid collections after pancreatic resection is safe and effective. Early drainage (collections was not associated with increased complications in this series. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Composite Membrane Formation by Combination of Reaction-Induced and Nonsolvent-Induced Phase Separation

    KAUST Repository

    Aburabie, Jamaliah; Villalobos, Luis Francisco; Peinemann, Klaus-Viktor

    2017-01-01

    A novel method of preparing skinned asymmetric membranes with two distinctive layers is described: a top layer composed of chemically cross-linked polymer chains (dense layer) and a bottom layer of non-cross-linked polymer chains (porous substructure). The method consists of two simple steps that are compatible with industrial membrane fabrication facilities. Unlike conventional processes to prepare asymmetric membranes, with this approach it is possible to finely control the structure and functionalities of the final membrane. The thickness of the dense layer can be easily controlled over several orders of magnitude and targeted functional groups can be readily incorporated in it.

  12. Composite Membrane Formation by Combination of Reaction-Induced and Nonsolvent-Induced Phase Separation

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-25

    A novel method of preparing skinned asymmetric membranes with two distinctive layers is described: a top layer composed of chemically cross-linked polymer chains (dense layer) and a bottom layer of non-cross-linked polymer chains (porous substructure). The method consists of two simple steps that are compatible with industrial membrane fabrication facilities. Unlike conventional processes to prepare asymmetric membranes, with this approach it is possible to finely control the structure and functionalities of the final membrane. The thickness of the dense layer can be easily controlled over several orders of magnitude and targeted functional groups can be readily incorporated in it.

  13. Support influence on the properties of the alumina ceramic membranes

    International Nuclear Information System (INIS)

    Clar, C.; Scian, A.N.; Aglietti, E.F.

    2003-01-01

    The ceramic substrates used as supports for the formation of a top layer membrane must meet several requirements.Some of them are: have an average pore size and a suitable surface rugosity to obtain a homogenous top layer preventing the penetration of the membrane precursor particles into the support pores.This work analyzes the performance of the three α-Al 2 O 3 supports, with different average pore sizes and surface textures, for the formation of a membrane top layer by the dipcoating technique from colloids in suspension of aluminum basic acetate and later thermal treatment at 1000degC.The pore size distribution of the supports, the support-membrane systems and the top layer membrane was obtained by the mercury intrusion porosimetry technique.The microstructural differences of the supports and the top layer thickness were observed by MEB.It could be observed that for numerous deposits the membrane layer pore size obtained is independent on the support used and that the thickness of the last layer is lower for the greater pore size supports.The possibility of an intermediate layer between the support and the top layer was considered in every case

  14. Irrigation management to optimize controlled drainage in a semi-arid area

    OpenAIRE

    Soppe, R.W.O.; Ayars, J.E.; Christen, E.W.; Shouse, P.J.

    2003-01-01

    On the west side of the San Joaquin Valley, California, groundwater tables have risen after several decades of irrigation. A regional semi-permeable layer at 100 m depth (Corcoran Clay) combined with over-irrigation and leaching is the major cause of the groundwater rise. Subsurface drain systems were installed from the 60¿s to the 80¿s to remove excess water and maintain an aerated root zone. However, drainage water resulting from these subsurface systems contained trace elements like seleni...

  15. The effect of a small creek valley on drainage flows in the Rocky Flats region

    International Nuclear Information System (INIS)

    Porch, W.

    1996-01-01

    Regional scale circulation and mountain-plain interactions and effects on boundary layer development are important for understanding the fate of an atmospheric release from Rocky Flats, Colorado. Numerical modeling of Front Range topographic effects near Rocky Flats have shown that though the Front Range dominates large scale flow features, small-scale terrain features near Rocky Flats are important to local transport during nighttime drainage flow conditions. Rocky Flats has been the focus of interest for the Department of Energy's Atmospheric Studies in Complex Terrain (ASCOT) program

  16. Drainage of shallow peat harvesting areas with pipe drains; Madaltuneen turvetuotantokentaen kuivatustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Klemetti, V. [Vapo Oy, Jyvaeskylae (Finland)

    1997-12-01

    This study aims to develop pipe draining techniques in peat harvesting areas, which have been in active use so long time that the remaining peat layer is about one meter thick. The method should be technically and economically feasible as well as environmentally acceptable. Special attention is paid to pipe installation techniques, drain spacing and impacts on watercourses, which receive the drainage waters. After pipe installation the area was monitored by measuring pipe runoffs, water tables, moisture content of peat and quality of drain water. These are the results of second year. (orig.)

  17. Drainage of shallow peat harvesting areas with pipe drains; Mataloituneen turvekentaen kuivatus putkisalaojilla

    Energy Technology Data Exchange (ETDEWEB)

    Klemetti, V.; Saenkiaho, K. [Vapo Oy, Jyvaeskylae (Finland); Rautiainen, O. [Ojamarkkinointi Oy, Heinola (Finland)

    1996-12-31

    This study aims to develop pipe draining technics in peat harvesting areas, which have been in active use so long time that the remaining peat layer is about one meter thick. The method should be technically and economically feasible as well as environmentally acceptable. Special attention is paid to pipe installation techniques, drain spacing and impacts on watercourses, which receive the drainage waters. After pipe installation the area is monitored by measuring pipe runoffs, water tables, moisture content of peat and quality of drain water

  18. Arterial Complications of Percutaneous Transhepatic Biliary Drainage

    International Nuclear Information System (INIS)

    L'Hermine, Claude; Ernst, Olivier; Delemazure, Olivier; Sergent, Geraldine

    1996-01-01

    Purpose: To report on the frequency and treatment of arterial complications due to percutaneous transhepatic biliary drainage (PTBD).Materials: Lesions of the intrahepatic artery were encountered in 10 of 525 patients treated by PTBD (2%). Hemobilia followed in 9 patients and subcapsular hematoma in 1. Seven patients had a benign biliary stenosis and 3 had a malignant stenosis.Results: The bleeding resolved spontaneously in 3 patients. In 7 it required arterial embolization, which was successfully achieved either through the percutaneous catheter (n= 3) or by arteriography (n= 4).Conclusion: Arterial bleeding is a relatively rare complication of PTBD that can easily be treated by selective arterial embolization when it does not resolve spontaneously. In this series its frequency was much higher (16%) when the stenosis was benign than when it was malignant (0.6%)

  19. Drainage treatment technology for water pollution prevention

    Energy Technology Data Exchange (ETDEWEB)

    Ebise, Sen' ichi

    1988-03-01

    Drainage is purified either at terminal treatment plants or by septic tanks for sewage. At terminal treatment plants, sewage is purified by activated sludge prosessing or by biological treatment equipment. By the normal activated sludge processing, only 20 - 30 % of nitrogen and phosphur can be removed. To solve this problem, many advanced processing systems have been employed, representative systems being coagulating sedimentation, rapid filtration, recirculating nitro-denitrification, etc. The coagulating sedimentation is a treatment process in which such metallic salt coagulations as aluminum, iron, etc. are injected and mixed with sewage, and then phosphur and the like are sedimented in the form of grains. The rapid filtration requires no large space, and can reliably remove suspended matter. For large scale septic tank processing system, advance treatment processing is supplemented to improve the quality of treated water. Among other systems of sewage purification are oxidized channel, oxidized pond, soil treatment, etc. (2 figs, 2 refs)

  20. Integrated urban drainage, status and perspectives

    DEFF Research Database (Denmark)

    Harremoës, Poul

    2002-01-01

    This paper summarises the status of urban storm drainage as an integrated professional discipline, including the management-policy interface, by which the goals of society are implemented. The paper assesses the development of the discipline since the INTERURBA conference in 1992 and includes...... aspects of the papers presented at the INTERURBA-II conference in 2001 and the discussions during the conference. Tools for integrated analysis have been developed, but there is less implementation than could be expected. That is due to lack of adequate knowledge about important mechanisms, coupled...... with a significant conservatism in the business. However, significant integrated analyses have been reported. Most of them deal with the sewer system and the treatment plant, while few incorporate the receiving water as anything but the object of the loads to be minimised by engineering measures up-stream. Important...